
A Fully Parallel Analog VLSI

Architecture for Implementing

Learning Algorithms

Renyuan Zhang

Electrical Engineering

The University of Tokyo

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

March 26th, 2013



1. Reviewer: Professor Tadashi Shibata

2. Reviewer: Professor Kunihiro Asada

3. Reviewer: Professor Shuichi Sakai

4. Reviewer: Professor Akira Hirose

5. Reviewer: Professor Makoto Ikeda

6. Reviewer: Professor Yoshio Mita

Day of the defense: January 29th, 2013

ii



Abstract

The cognitive functions play very important roles in the real-world

tasks such as text analysis, audio processing and visual processing. In

these cognitive tasks, the human brain is much superior to traditional

very large scale integrated (VLSI) processors or software programs,

since the brain can learn from samples autonomously. Therefore,

plenty of machine learning algorithms have been developed to real-

ize the learning operations, which were originally implemented by

the software programs. Due to the reasons of power consumption

and processing performances, a number of attempts to implement the

machine learning algorithms were made by using hardware includ-

ing graphic processing units (GPUs), field programmable gate array

(FPGA), and VLSI circuits. Since many computations in the ma-

chine learning algorithms are very complex, the implementation costs

including computing time and hardware utilization are greatly con-

cerned. Furthermore, a large amount of iterations are always required

by these algorithms, the learning speed is also a critical issue. Thus,

the challenge on hardware implementations of learning algorithms lies

on achieving a high processing speed with the consideration of limited

hardware resource.

In this thesis, a fully parallel architecture for implementing learning

algorithms is proposed by using analog VLSI circuits. Several analog

circuitries are designed to carry out the complex functions such as

Gaussian function and Euclidean distance. These computations in

the learning algorithms can be done in real time within the compact

chip area. On the basis of analog computational circuitries, a generally

applied architecture in fully parallel is developed to implement some



machine learning algorithms. Since the chaos of analog signals is used

for learning instead of clock-based numerical iterations, the learning

operation is accomplished autonomously and self-converges with a

high speed. Furthermore, the chip area and inner connection explosion

problem in the traditionally parallel architectures can be prevented.

To verify the proposed architecture, the support vector machine (SVM)

was implemented by VLSI circuits and fabricated in a complementary

metal-oxide- semiconductor (CMOS) technology. SVM is one of most

important supervised machine learning algorithms, which has been

widely applied in the pattern recognition tasks. In fact, a number of

VLSI implementations have been developed to realize the SVM on-

chip learning. Since the kernel functions in SVM theory are always

expensive to carry out by using digital circuits, the analog imple-

mentations of SVM algorithm were suggested by some works. There

were two problems in the previously developed works. Firstly, the

traditional analog circuits applied in these works generate a highly

dimensional Gaussian function through single-dimension multipliers.

The error intolerably increases as the dimension increases. Therefore,

these works can be hardly implemented in highly dimensional pattern

classification. The second problem is the trade-off between the learn-

ing speed and the chip size. Generally, there is a trade-off between

the amount of circuits and the learning speed. A high processing

parallelism realizes a high speed; however, it requires a large number

of circuits. The number of learning iterations, which is usually very

large and does not depend on the hardware parallelism, has a marked

effect on the learning speed. Therefore, conventional VLSI implemen-

tations employing clock-based iterations consume much time on these

iterations indifferently to the degree of hardware parallelism. In this

work, the proposed fully parallel implementation of SVM was used

in the image recognition problem. An analog Gaussian generation

circuit, which is robust against process variations, is developed for

highly dimensional pattern vectors. The center, height, and width

of the generated Gaussian function feature can all be programmed



easily. Furthermore, the chip-area-hungry part for highly dimensional

Euclidean distance computations and the much smaller part for expo-

nential computation are built separately. Only the exponential com-

puting circuits should be duplicated for a high degree of parallelism.

In this manner, a fully parallel learning SVM processor was built

within the compact chip area in a standard 0.18 um CMOS technol-

ogy. Upon receiving highly dimensional pattern vectors, the learning

process autonomously proceeded without any clock-based control and

self-converged within a single clock cycle of the system (at 10MHz).

To confirm the learning/classifying performance characteristics, six-

teen object images from a database are converted into 64-dimensional

vectors and fed into the proposed SVM processor as learning samples.

After self-learning, several other vectors were used as test patterns.

The proposed SVM processor classified all the testing patterns into

correct classes according to the measurement results. The processing

speed, chip area and power consumption performances are improved

compared with the traditional approaches.

As a generally applied methodology, the proposed fully parallel archi-

tecture is also used to implement the unsupervised machine learning

algorithms. On the basis of K-means mechanism, which is an im-

portant pattern clustering algorithm, a hardware efficient version is

developed and named as K-Quasi-Centers (KQCs) method. From

viewpoint of clustering results, the suggested scheme of clustering

method has similar convergence performance to the original K-means

algorithm. By implementing this modified clustering algorithm, the

proposed analog fully parallel architecture can be applied to solve

the unsupervised pattern clustering problem. The proof-of-concept

processor was designed for 64-dimensional vectors categorization. In

order to verify the performances of the proposed processor, sixteen

images of two kinds of objects selected from the real image database

were converted into feature vectors and fed into our KQC clustering

processor. According to the circuit simulation results, all the im-

ages were correctly categorized into their respective classes even with



several different random initializations, and the categorization results

self-converged with higher speed than conventional approaches.

From the above image processing applications, the proposed archi-

tecture performs a high processing speed and acceptable accuracy.

However, the processing capacity of VLSI implementations is seri-

ously limited by the chip size. One of the reasonable solutions to

increase the number of learning samples is applying the on-line learn-

ing strategy, which was originally developed by software programs. In

this work, the efficiency and importance of each learning sample are

evaluated after the learning operation. The most inefficient sample is

discarded to make the learning processor accept a new sample on-line.

Employing the updated samples, the learning operation is repeated

again. In this manner, a fixed VLSI processor can be used for the

learning operation of a very large scale even unpredictable sample

space. However, since on-line learning results in a large number of

machine learning operations, this strategy is difficult to realize us-

ing software or traditional VLSI processors. Employing the proposed

fully parallel architecture, the learning operations are accomplished

with a high speed. Thus, this on-line learning strategy is efficient for

the proposed architecture particularly. In order to verify the on-line

learning performances, both SVM and KQC algorithms were imple-

mented employing the analog fully parallel architecture for the image

classification and clustering problems, respectively. From the circuit

simulation results, the learning results are all correct with the con-

sideration of on-line received samples. Furthermore, a visual tracking

system was built by the combination of FPGA boards and the analog

SVM processor developed by this work. Employing the on-line learn-

ing SVM, the object tracking performances were improved compared

with those of conventional approaches.

Besides the pattern classification and clustering problems, another

important task of machine learning is called data domain descrip-

tion. It was found that the data domain description has an enhanced



capacity for pattern recognitions. For instance, the SVM classifica-

tion algorithm is originally for the two-class classification problems;

but in the real-world applications, various numbers of classes might

be required, even only a single class of learning samples is available

in some applications. To solve these problems, a data domain de-

scription theory (also called one-class classification) was developed

as an extension of SVM theory, which is named support vector do-

main description (SVDD). The SVDD algorithm has been applied

in some classification problems, even unsupervised clustering prob-

lems by software programs. In this work, the SVDD algorithm has

been implemented by our proposed analog fully parallel architecture.

The proof-of-concept chip was built for the 64-dimensional pattern

recognition. A multiple chip topology was proposed for multi-class

recognition problems. For expending the classes, the number of chips

can be freely increased. As an example, a three-class classification

system employing three SVDD chips was built for real image recog-

nition. After the on-chip learning session, several test images were

fed in the system. From the chip measurement results, all the test

patterns were correctly recognized.

As the extension of analog VLSI implementations for soft-computing

tasks, we discuss how CMOS supporting circuitries can interface the

fabric of nano devices with digital computing world. Using CMOS ring

oscillators to emulate the nano oscillator behavior, how to produce

the associative memory function and to use it for image recognition

is demonstrated by circuit simulation.



viii



Acknowledgements

First of all, I would like to sincerely express my thanks to my super-

visor, Professor Tadashi Shibata, for his extremely valuable guidance

and powerful supports during the past three years. His enthusiasm

in teaching and research and his enduring encouragement led me to

become a full fledged person. It is my great honor and fortunate to

have taken him as my supervisor, and the experiences in this labora-

tory will be the treasure in my whole life.

I would like to thank Professor Kunihiro Asada, Professor Shuichi

Sakai, Professor Akira Hirose, Professor Makoto Ikeda and Professor

Yoshio Mita, for their preview of the thesis and their extremely valu-

able comments to my research. Their remarkable suggestions were

indispensable for making my dissertation study successful.

I am very thankful to Professor Yoshio Mita for his instructive sugges-

tions and comments. His kind supports and helps are quite important

to this thesis.

I express my appreciation to Ms. Kimiko Mori for her help on so many

documentaries, and to Ms. Motoko Inagaki for her helpful support.

I wish to express my sincere appreciation to those who have helped

me in the past three years. I want to express my gratitude to all the

lab members. During these three years, I received the most encour-

agement from them. I am so lucky to study and work with all of them.



I would like to thank my friends, Dr. Hongbo Zhu, Mr. Pushe Zhao,

Mr. Ruihan Bao, Mr. Wenjun Xia and Mr. Zheye Wang for their help

on my research and in my daily life. Whenever I need help, they are

always there. Their support is of great importance and really precious

to me. Being with them made my college life an amazing experience.

Thanks to the GCOE program for providing me with a platform to

communicate with those excellent students. The activities gave me

precious opportunities to learn from other people and to express my

own idea. I received very important support from GCOE program.

Finally, I would like to thank my father, mother. Without their warm

concerns and helps, it would be impossible for me to complete my

study. I feel their warm care and support, which encourages me all

the time.



Contents

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Learning Algorithms in This Thesis . . . . . . . . . . . . . . . . . 3

1.3 Applications in This Thesis . . . . . . . . . . . . . . . . . . . . . 4

1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Error-Tolerance Computation . . . . . . . . . . . . . . . . 6

1.4.2 Traditional VLSI architectures for Implementing Learning

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Proposed Fully Parallel Analog VLSI Architecture . . . . . . . . . 9

1.6 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . 11

2 Fully Parallel Support Vector Machine Processor Employing Ana-

log Circuitry 13

2.1 Introduction to the Proposed SVM On-Chip Learning Processor . 14

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Process of image pattern classification applied in this work 16

2.2.2 Hardware-friendly SVM algorithm . . . . . . . . . . . . . . 18

2.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Circuitry organization of the proposed SVM processor . . . 19

2.3.2 Proposed analog Gaussian generation circuit . . . . . . . . 19

2.4 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . 26

iii



CONTENTS

2.4.1 Performance characteristics of Gaussian generation circuit 26

2.4.2 64D pattern vector classification . . . . . . . . . . . . . . . 28

2.4.3 2D pattern vector classification . . . . . . . . . . . . . . . 30

2.4.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Fully Parallel K-Quasi-Centers Clustering Processor Employing

Analog Circuitry 35

3.1 Introduction to the Proposed KQC Clustering Processor . . . . . 36

3.2 Algorithm Applied in This Work . . . . . . . . . . . . . . . . . . 38

3.2.1 Basic idea of the original K-means algorithm . . . . . . . . 38

3.2.2 KQC method for highly dimensional pattern clustering . . 40

3.2.3 Comparison between the original K-means algorithm and

proposed KQC method . . . . . . . . . . . . . . . . . . . . 41

3.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Architecture of KQC on-chip learning processor . . . . . . 42

3.3.2 Analog circuitries in the KQC learning processor . . . . . . 44

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Performances of employed analog circuitries . . . . . . . . 48

3.4.2 Performances of entire processor . . . . . . . . . . . . . . . 50

3.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 On-line Learning Strategy Based on the Fully Parallel Architec-

ture 53

4.1 On-Line-Learning SVM . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Hardware-efficient on-line learning SVM methodology . . . 55

4.1.2 Hardware implementation . . . . . . . . . . . . . . . . . . 57

4.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.4 An example of real-world application: object tracking prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 On-Line-Learning KQC clustering . . . . . . . . . . . . . . . . . . 60

4.2.1 On-line-learning KQC algorithm . . . . . . . . . . . . . . . 61

4.2.2 Hardware implementation . . . . . . . . . . . . . . . . . . 62

iv



CONTENTS

4.2.3 Simulation results of on-line learning process . . . . . . . . 63

4.2.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.5 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Support Vector Domain Description 69

5.1 Introduction to the Analog SVDD Processor . . . . . . . . . . . . 69

5.2 The Application of SVDD in This Work . . . . . . . . . . . . . . 70

5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.1 2-D pattern recognition employing SVDD . . . . . . . . . 77

5.5.2 64-D pattern recognition employing SVDD . . . . . . . . . 79

5.5.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusion 85

6.1 Summary of This Thesis . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A CMOS Supporting Circuitries for Nano-Oscillator-Based Asso-

ciative Memories 89

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Associative Memory Architecture . . . . . . . . . . . . . . . . . . 90

A.3 Associative Memory Circuits . . . . . . . . . . . . . . . . . . . . . 93

A.3.1 Emulating STNO by neuron MOS ring oscillator . . . . . . 93

A.3.2 Associative cluster circuit . . . . . . . . . . . . . . . . . . 94

A.3.3 Associative memory circuit . . . . . . . . . . . . . . . . . . 95

A.4 SPICE Simulation Experiment . . . . . . . . . . . . . . . . . . . . 97

A.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References 101

v



CONTENTS

vi



List of Figures

1.1 Preliminary processes for the image recognition tasks in this thesis. 5

1.2 Circuit organization of tradition fully parallel architecture for im-

plementing SVM learning algorithm. . . . . . . . . . . . . . . . . 9

1.3 Circuit organization of proposed fully parallel architecture for im-

plementing learning algorithm. . . . . . . . . . . . . . . . . . . . . 10

2.1 Process of image pattern classification applied in this work. . . . . 17

2.2 Organization of proposed fully parallel learning SVM processor

composed of Euclidean distance calculator (I), exponential circuit

array (II), and α adjuster (III). . . . . . . . . . . . . . . . . . . . 20

2.3 Schematic of proposed Gaussian generation circuit. . . . . . . . . 22

2.4 Schematic of current mirror-based adder/subtracter. . . . . . . . . 24

2.5 Center programmability of Gaussian function feature. . . . . . . . 25

2.6 Peak-height programmability of Gaussian function feature. . . . . 25

2.7 Width programmability of Gaussian function feature. . . . . . . . 26

2.8 Robustness against the process variations of the proposed Gaussian

generation circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Micrograph of proof-of-concept chip for 64D SVM learning/classifying

processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Simulation results of learning and classifying processes. . . . . . . 29

2.11 Measurement results for 64D pattern vector classification. . . . . . 30

2.12 Performance characteristics of 2D pattern vector classification: (a)

simulation and (b) measurement results. . . . . . . . . . . . . . . 31

vii



LIST OF FIGURES

3.1 Basic idea of the K-means clustering: (a) original K-means clus-

tering and (b) the modified version applied in this work. . . . . . 39

3.2 Distance evaluations from a specific sample vector to different clus-

ters: (a) using the representatives of centroid vectors and (b) using

the average calculations. . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Architecture of proposed fully-parallel self-converging KQC learn-

ing circuitry with a configuration of 2-category clustering. . . . . 43

3.4 Circuit schematic of the distance calculator for 64-D vectors. . . . 45

3.5 Analog current memory cell with switching function. . . . . . . . 45

3.6 An advanced Translinear circuit (54) as an analog divider with the

vectors counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Performances of distance calculator (the output current against

input voltage with different center values). . . . . . . . . . . . . . 47

3.8 Temperature effects on the Euclidean distance calculation. . . . . 48

3.9 Performances of analog divider (the output current against input

current). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Learning performances with an illy random initialization of cate-

gory labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Proposed on-line learning strategy: (a) initial learning according

to a small set of samples; (b) on-line pattern is classified and the

most ineffective pattern is identified; (c) only effective patterns

(support vectors) remain after sufficient on-line learning operations. 55

4.2 Architecture of proposed on-line learning SVM system. . . . . . . 56

4.3 Schematic of WTA circuit. . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Circuit simulation results of the proposed on-line learning SVM

system by Nanosim: identification labels to search the most inef-

fective sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Circuit simulation results of the proposed on-line learning SVM

system by Nanosim: on-line classification results. . . . . . . . . . 58

4.6 Circuit simulation results of the proposed on-line learning SVM

system by Nanosim: α values during the on-line learning operations. 58

viii



LIST OF FIGURES

4.7 In one frame of video, the SVM chip successfully recognizes the

human face from eight candidates. . . . . . . . . . . . . . . . . . . 60

4.8 On-line-learning scheme of KQC clustering method. . . . . . . . . 61

4.9 Organization of proposed on-line learning KQC system. . . . . . . 62

4.10 Indexes to select the most inefficient sample. . . . . . . . . . . . . 63

4.11 On-line learning process in different rounds. The shadow marks

a sample which has been replaced by a new sample during the

previous round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Multi-class classification task for images employing the SVDDmech-

anism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Organization of multi-class recognition system employing SVDD

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Fully parallel on-chip learning SVDD processor. . . . . . . . . . . 75

5.4 Micrograph of fabricated SVDD learning chip. . . . . . . . . . . . 76

5.5 Schematic of alpha adjuster circuit. . . . . . . . . . . . . . . . . . 76

5.6 Schematic of alpha adjuster lambda. . . . . . . . . . . . . . . . . 77

5.7 Support vector domain description of a toy-example with sixteen

learning samples: (a) when a wide spread of Gaussian function

feature is applied, a rough boundary is described by 7 support

vectors; (b) when a narrow spread of Gaussian function feature is

applied, an improved boundary is described by 10 support vectors. 78

5.8 Variations of support vector domain description when different pa-

rameter C is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.9 Circuit simulation results of 64-D learning/classifying performances

of single SVDD learning chip. . . . . . . . . . . . . . . . . . . . . 80

5.10 Chip measurement results of an associative memory system em-

ploying SVDD learning processor: three chips are used as SVDD

processors independently. The test patterns are broadcasted to all

the chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1 Associative memory configuration. . . . . . . . . . . . . . . . . . . 90

A.2 Star frequency keying model. . . . . . . . . . . . . . . . . . . . . . 91

ix



LIST OF FIGURES

A.3 Frequency-tunable CMOS ring oscillator emulating a nano oscilla-

tor. The insert at the bottom left shows the symbol representing

the oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.4 Natural frequency control vs. Va. . . . . . . . . . . . . . . . . . . 92

A.5 (a) Associative cluster composed of frequency-tunable CMOS ring

oscillators. (b) A symbol representing associative cluster. . . . . . 93

A.6 DC current biasing scheme of STNOs for star frequency keying

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.7 Associative memory composed of three associative clusters and

WTA circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.8 Vref generator circuit. Simulation results are shown for ∆ = 0. . . 96

A.9 Oscillation wave forms for three vector matching results. . . . . . 96

A.10 Matching experiments using COIL-20 database (44) by HSPICE

simulation. Matching was carried out for Group 1 and Group 2

templates, separately. APED vectors of images and oscillating

signals from associative clusters are also shown. . . . . . . . . . . 97

A.11 Timer circuit yielding the degree of matching. . . . . . . . . . . . 98

A.12 HSPICE simulation results showing the operation of timer circuit

for matching experiments. Patterns used in this simulation are

different from those in Fig. A.10. . . . . . . . . . . . . . . . . . . 98

x



List of Tables

1.1 General discussion of VLSI implementation for SVM on the basis

of parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Performance comparisons. N represents the number of vectors and

S is the chip area occupied by one kernel for a single vector. l is the

number of iterations for convergence. . . . . . . . . . . . . . . . . . 32

4.1 Performance comparisons. . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Performance comparisons. . . . . . . . . . . . . . . . . . . . . . . 82

xi



LIST OF TABLES

xii



1

Introduction

1.1 Background

For a long time, people have been trying to grasp how human come to understand

the world. Human brain builds rich causal models, make strong generalizations,

and construct powerful abstractions, whereas the input data are sparse, noisy,

and ambiguous–in every way far too limited (1). Via these models, human brain

is much superior to the conventional artificial systems in the cognitive functions.

Thus, it is very attractive but challenging to understand how the brain builds

these models, even construct similar models by artificialities. Considering the

situation of a child learning the meanings of words, any parent knows, and sci-

entists have confirmed, that typical 2-yearolds can learn how to use a new word

such as “horse” or “hairbrush” from seeing just a few examples (2, 3). Within

the infinite landscape of all possible objects, there is an infinite but still highly

constrained subset that can be called “horse” and another for “hairbrush” in

children’s mind. This natural phenomenon is called “learning the knowledge”.

In order to achieve the learning functions by artificialities, the theory of ma-

chine learning (ML) has been introduced (5). Machine learning is the study of

computer algorithms capable of learning to improve their performance of a task

on the basis of their own previous experience (7). The training examples come

from some generally unknown probability distribution and the learner has to ex-

tract from them something more general, something about that distribution, that

allows it to produce useful predictions in new cases (4). As an engineering field,

1



1. INTRODUCTION

ML has become steadily more mathematical and more successful in applications

over the past decades. These applications of ML were not only limited in the

fields of mathematics (8) but also in the surprisingly wide fields of engineering

(9), science (11), even business (10). Essentially, the tasks of machine learning

cover the following types of problems: pattern recognition, regression estimation

and density estimation (6). The focus of this thesis is the problem of pattern

recognition, which mainly includes the tasks of pattern classification (20), clus-

tering (46) and data domain description (67).

To solve these problems, various mathematical algorithms have been devel-

oped for many years. Most of these algorithms were originally implemented by

software programs. However, in some specific fields of applications, the hardware

implementations of machine learning algorithms are required (12, 13, 16) on the

basis of VLSI circuits. Specialized machine learning hardware (which can either

support or replace software) offers appreciable advantages in these situations as

can be traced as follows (14):

1. Speed: Specialized hardware can offer very high computational power at

limited price and thus can achieve several orders of speed-up, especially in

the neural domain where parallelism and distributed computing are inher-

ently involved.

2. Cost: A hardware implementation can provide margins for reducing system

cost by lowering the total component count and decreasing power require-

ments. This can be important in certain high-volume applications, such as

ubiquitous consumer-products for real-time image processing,that are very

price-sensitive.

3. Graceful degradation: An intrinsic limitation of any sequential uni-processor

based application is its vulnerability to stop functioning due to faults in the

system. As it was suggested by some works (15), even with some powerful

general purpose equipment such as multi-core-CPU computers, an efficient

error-tolerance mechanism is still present. Especially in most of machine

learning applications, the performances are not greatly sensitive to the com-

putational accuracy.

2



1.2 Learning Algorithms in This Thesis

Many types of hardware, which include general purpose graphic processing units

(GPUs), FPGAs, digital and analog VLSI circuits, were applied to implement

machine learning algorithms. In this thesis, the analog VLSI circuits for im-

plementing learning algorithms are interested, since the analog elements benefit

by exploiting simple physical effects to carry out some of complex functions di-

rectly. This property is helpful to generate a high parallelism for implementing

on-chip learning operations. However, the accuracy and reliability of analog cir-

cuits should be carefully considered.

1.2 Learning Algorithms in This Thesis

Among various machine learning algorithms, this thesis focuses on support vector

machine (SVM), K-means-like clustering and support vector domain description

(SVDD) particularly since they are very typical and important algorithms to

solve pattern recognition problems.

SVM (21) was originally developed in computer science field to solve binary

classification problems, which is one of most important supervised machine learn-

ing algorithms. The main idea of SVM is to separate the classes with a plane that

maximizes the margin between them. The objective function is then optimized

by solving a large-scale Quadratic Programming (QP) problem with linear and

box constraints (29). However, the learning sample patterns in the real-world

applications are usually in the form of high dimensional vectors, even non-linear

separable. Thus, the so-called “kernel tricks” are necessary to map the learn-

ing sample vectors nonlinearly into a higher-dimensional feature space via kernel

functions, and construct a separating hyperplane with maximum margin there.

This yields a nonlinear decision boundary in input space. By the use of a kernel

function, it is possible to compute the separating hyperplane without explicitly

carrying out the map into the feature space. Among plenty of kernel functions,

the Gaussian function was found one of most powerful kernel in SVM learning

problems. The SVM algorithm with Gaussian function kernels is the interest of

this work.

Not only the supervised but also the unsupervised machine learning algorithm

is interested in this thesis. The K-means algorithm is widely used in pattern

3



1. INTRODUCTION

recognition, data mining, and image segmentation as a very powerful learning

tool. It is a typical unsupervised clustering method. Using this algorithm, learn-

ing samples given in the form of multidimensional vectors can be partitioned into

a limited number (K) of clusters according to their feature similarity without

supervision. In order to implement the K-means like clustering algorithms by a

fully parallel architecture, a modified scheme of the original K-means is proposed

in this thesis, which is named K-Quasi-Centers (KQCs) method. This KQCs

method has very similar mathematical properties to the original K-means, but it

is friendly to implement by the fully parallel architecture.

The general problem of hardware implementations of learning algorithms is

the trade-off between the hardware utilization and processing capacity. In this

work, an on-line-learning strategy is applied to design the analog on-chip learning

processors with the consideration of limited hardware resource. In this manner,

both proposed SVM and KQCs learning processors can be used for the on-chip

learning of large (even unpredictable) scale sample space.

In addition, the problem of data domain description is considered in this work.

In domain description the task is not to distinguish between classes of samples

like in classification problems or to produce a desired outcome for each input

sample like in regression problems, but to give a description of a set of samples.

This description should cover the class of samples represented by the training set,

and ideally should reject all other possible samples in the sample space. Here, the

data domain description employing the support vector mechanism is interested,

which is called support vector domain description (SVDD), or one-class SVM

classification (OCSVM) (67).

1.3 Applications in This Thesis

Machine learning techniques were applied to different fields as natural language

processing, medical diagnosis, bio-informatics, efficient search engine design, mo-

bile learning, classifying DNA sequences, speech and handwriting recognition,

object identification in computer vision, game playing, robot locomotion, stock

market analysis, chem-informatics, detecting credit card fraud in financial insti-

tutions (16). In this thesis, we are particularly interested in the image recognition

4



1.3 Applications in This Thesis

Recogni�on

On-chip-learning operation

PPED

Figure 1.1: Preliminary processes for the image recognition tasks in this thesis.

problems including the supervised classification and unsupervised categorization

of real images. Regarding the image processing flows, some preliminary processes

are necessary to efficiently represent the real images in the hardware-friendly

forms, multi-dimensional vectors for instance. Figure 1.1 illustrates the prelimi-

nary processes applied in this work before the recognitions. Here, a vector gener-

ation procedure which is called projected principal-edge distribution (PPED for

short) algorithm (42) is used to convert two-dimensional image data to a vector

representation. The input image is first subjected to pixel-by-pixel spatial filter-

ing operations to detect edges in four directions: horizontal (H); +450 ; vertical

5



1. INTRODUCTION

(V); and −450. The number of projection sums for each direction is combined

in one vector with 64 dimensions. In this manner, the main features of an input

image can be extracted by a 64-dimensional vector representation, which is called

feature vectors. After these preliminary processes, the feature vectors are fed into

the on-chip learning processor for recognition.

1.4 Related Works

In order to implement the learning algorithms by hardware, two important issues

are concerned. Firstly, the VLSI circuits for carrying out necessary computa-

tions (usually complex) should be particularly designed according to different

algorithms. Secondly, a reasonable VLSI architecture is important to realize the

learning operations. Many approaches have been explored to solve these problems

during the past decades.

1.4.1 Error-Tolerance Computation

For the image recognition problems, the computations are always among high

dimensional vectors. Furthermore, in each interested machine learning algorithm

in this thesis, complex computations such as highly dimensional Gaussian func-

tion (for SVM and SVDD) and Euclidean distance calculation (For KQCs) are

needed. Thus, the implementations of these computations are expensive in sili-

con. Fortunately, the learning performances are usually not very sensitive to the

absolute accuracy of computations in the image recognition problems (64). There

are many approaches being explored to carry out the error-tolerant computations

by simple VLSI circuits. Here, the Gaussian generation circuits, which are widely

applied but not limited in the SVM algorithm, are used as examples.

Since the exact calculation of Gaussian function by traditional digital circuits

requires a long processing time and expensive hardware utilization, some digital

Gaussian generation circuits used the linear piece function (LPF) to mimic the

mathematical behavior of actual Gaussian (37). In their experiments, two or

three pieces of linear function can generate an acceptable performances in pattern

6



1.4 Related Works

recognition instead of actual Gaussian. The cost of hardware implementation was

greatly reduced.

To make further reduction of implementation cost, several attempts of analog

Gaussian generation circuits were also made on the basis of so-called “bump cir-

cuit” (38). In this type of implementations, the differential pairs operating in the

sub-threshold region are employed to generate the Gaussian-like function feature.

Other differential-pair-based circuits with improved performances were even de-

signed (19, 39) considering some practical issues. However, the MOS transistors

operating in sub-threshold region are usually sensitive to the process variations.

In addition, this kind of circuits generate a highly dimensional Gaussian function

through single-dimension multipliers (41). The error intolerably increases as the

dimension increases. Therefore, these works can be hardly implemented in highly

dimensional pattern classification. On the other hand, some other analog circuit

designs (17, 18) based on the translinear principle are also not convenient to im-

plement the learning algorithm due to their poor programmability on function

feature. Consequently, a robust highly dimensional Gaussian generation circuit,

which is compact and easy to program, is desired in this work.

1.4.2 Traditional VLSI architectures for Implementing Learn-

ing Algorithms

Here, the VLSI implementations of SVM algorithms are used as examples again.

From the essential point of view, the learning operation is to pursue suitable pa-

rameters for the recognition models by iterative updates. Namely, a large amount

of numerical iterations are needed by traditional approaches, which are expensive

in silicon. Some early presented works carry out the learning process off-chip by

using software programs (30, 31) to avoid the expensive on-line learning imple-

mentations. Recently, the feasibility to implement on-chip learning algorithms

were also investigated, where the trade-off between the learning speed and the

chip size was concerned. Generally, there is a trade-off between the amount of

circuits and the learning speed on the basis of parallelism. A high hardware

parallelism realizes a high speed; however, it requires a large number of circuits.

7



1. INTRODUCTION

Table 1.1: General discussion of VLSI implementation for SVM on the basis of

parallelism.

Hardware Step control Speed Chip area Flexibility

Serial Digital(36)
clock-based

iteration
low fair good

Partially

parallel
Analog(41)

clock-based

iteration
fair small poor

Fully

parallel
Analog(40)

analog chaos

free feedback
high large poor

The number of learning iterations, which is usually very large and does not de-

pend on the hardware parallelism, has a marked effect on the learning speed.

Therefore, conventional VLSI implementations employing clock-based iterations

consume much time on these iterations indifferently to the degree of hardware

parallelism.

Referring some previously proposed works, a general discussion of VLSI im-

plementation for SVM algorithm is made by Tab. 1.1 on the basis of parallelism.

The example of digital implementation was one of typical serial architectures,

which achieves very well flexibility. An attempt of partially parallel architecture

was made with considerations of both learning speed and chip area. A high pro-

cessing speed can be achieved within very compact chip area by this approach.

Regarding the traditional fully parallel architecture in this example, the chaos of

analog signals is used for the learning operation instead of numerical iteration.

Therefore, the learning speed in this work is extremely high.

The circuit organization of tradition fully parallel architecture is illustrated

in Fig. 1.2, which was designed to train a set of N samples Xis (i = 1, 2, . . . , N).

From the essential point of view, the learning operation of SVM is to pursue

the suitable values for N parameters (αis in this figure) by feedback updates.

Here, the freely feedback of analog signals were applied, and directly effect the

computational elements in real-time. That is the reason that this architecture

achieved extremely high learning speed. However, it is found that a large number

8



1.5 Proposed Fully Parallel Analog VLSI Architecture

1
X

1
X

1
X

2
X

1
X

N
X

2
X

1
X

2
X

2
X

2
X

N
X

N
X

1
X

Compute

Element 

N
X

2
X

N
X

N
X

……
Update 1

α

Update 2
α

Update N
α

1
α

……

……

…
…

…
…

…
…

2
α

N
α

…
…

Compute

Element 

Compute

Element 

Compute

Element 
Compute

Element 
Compute

Element 

Compute

Element 

Compute

Element 
Compute

Element 

Freely feedback

Figure 1.2: Circuit organization of tradition fully parallel architecture for imple-

menting SVM learning algorithm.

of computational elements (in proportion to square of the number of learning

samples) are needed by this architecture. Due to the chip size limitation, it is not

practical especially for the highly dimensional applications. A general problem of

these two parallel implementations is the flexibility. As soon as the hardware is

designed, the numbers of dimensions and samples are fixed and hardly changed

according to various applications.

1.5 Proposed Fully Parallel Analog VLSI Archi-

tecture

The purpose of this thesis is to propose a fully parallel architecture for implement-

ing learning algorithm, which can achieve a high on-chip-learning speed within

a compact chip area. Since we are interested in the highly dimensional pattern

recognition, applying traditional fully parallel architecture is not practical in the

real-world applications. Thus, a new topology is suggested as it is shown in Fig.

1.3.

9



1. INTRODUCTION

1
α

2
α

N
α

Vector

Compute

Vector

Compute
Vector

Compute
……

2
X

N
X

……

……

……

…
…

…
…

…
…

1
X

i
X

Scalar 
compute

Scalar 
compute

Scalar 
compute

Scalar 
compute

Scalar 
compute

Scalar 
compute

Scalar 
compute

Scalar 
compute

Scalar 
compute

in
 t

im
e
 s

e
q

u
e
n

c
e

Freely feedback

Figure 1.3: Circuit organization of proposed fully parallel architecture for imple-

menting learning algorithm.

The chip-area-hungry part for computations among highly dimensional vec-

tors and the much smaller part for computations among scalars are designed

separately. By designing specific computational circuits and adjusting the algo-

rithms, the learning operations (real-time updates of parameters) only effect the

scalar computation elements. Namely, Only the computing circuits for scalars

should be duplicated as an array for a high degree of parallelism. Before the

learning, complex computations among vectors are carried out by a row-parallel

circuitry, and the results are fed into the fully parallel array in time sequence.

During the learning operation, only the fully parallel array is active, which is

also helpful to reduce the power consumption. In this manner, a fully parallel

learning processor can be built within the compact chip area. Obviously, some

specific computational circuitries should be designed for this purpose, which will

be described in detailed in the following parts.

10



1.6 Organization of This Thesis

1.6 Organization of This Thesis

The rest part of this thesis is organized as follows. The fully parallel analog

VLSI implementation of SVM algorithm is described in Chapter 2 along with

verification examples of image classification. As a general applied methodology,

the proposed fully parallel architecture can also implement a pattern clustering

algorithm named K-Quasi-Centers. The circuit design and verification for image

clustering application are presented in Chapter 3. In order to extend the num-

ber of learning samples for both SVM and KQCs implementations, an on-line-

learning strategy is proposed with the consideration of limited hardware resource

in Chapter 4. Chapter 5 describes the proposed analog implementation of SVDD

algorithm, which has an advanced capacity in pattern classification problems.

The conclusion of this thesis is made in Chapter 6.

It should be noted that, the pattern recognition problem can be solved by us-

ing not only machine learning algorithms but also some other soft-computing

technologies based on the associative memory function. Building associative

memories based on the physics of nano oscillators presents a lot of potential

for pattern recognition. Using CMOS ring oscillators to emulate the nano os-

cillator behavior, how to produce the associative memory function and to use it

for image recognition using CMOS ring oscillators to emulate the nano oscillator

behavior is demonstrated in the appendix of this thesis.

11



1. INTRODUCTION

12



2

Fully Parallel Support Vector

Machine Processor Employing

Analog Circuitry

An analog support vector machine (SVM) processor employing a fully parallel

self-learning circuitry was developed for the classification of highly dimensional

patterns. To implement a highly dimensional Gaussian function, which is the

most powerful kernel function in classification algorithms but computationally

expensive, a compact analog Gaussian generation circuit was developed. By em-

ploying this proposed Gaussian generation circuit, a fully parallel self-learning

processor based on an SVM algorithm was built for 64 dimension pattern clas-

sification. The chip real estate occupied by the processor is very small. The

object images from two classes were converted into 64 dimension vectors using

the algorithm developed in a previous work and fed into the processor. The

learning process autonomously proceeded without any clock-based control and

self-converged within a single clock cycle of the system (at 10 MHz). Some test

object images were used to verify the learning performance. According to the

circuit simulation results, it was shown that all the test images were classified

into correct classes in real time. A proof-of-concept chip was designed in a 0.18

µm complementary metal oxide semiconductor (CMOS) technology, and the per-

formance of the proposed SVM processor was confirmed from the measurement

results of the fabricated chips.

13



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

2.1 Introduction to the Proposed SVMOn-Chip

Learning Processor

The human brain is very superior to traditional very large scale integrated (VLSI)

processors or software programs in cognitive tasks, such as pattern recognition,

since the brain can learn from samples autonomously. Thus, a number of algo-

rithms for machine learning functions have been developed over many years.(20)

Among them, the support vector machine (SVM) is known as one of the most

powerful algorithms (21) and has been applied to a number of pattern classifi-

cation problems, such as text categorization (22, 23, 24), audio processing (25),

and image classification (26, 27, 28). However, they were mostly implemented

by a software program. Recently, some attempts have been made to implement

the SVM algorithm directly in silicon (30, 31) for pattern classification. How-

ever, since the learning processes of these works were not implemented on-chip,

additional off-chip learning sessions are required to activate the systems.

Several VLSI implementations have realized on-chip learnable SVMs with lin-

ear or quadratic kernel functions (32, 33, 34). It is found that the SVM with a

Gaussian kernel has an enhanced capability in classifying linearly nonseparable

patterns (35). Therefore, the on-chip learnable SVM with a Gaussian function

kernel was proposed (36) by employing digital circuits. On the other hand, the

Gaussian function is computationally expensive when it is computed by digital

VLSI circuits (37). To compute the Gaussian function with a higher speed and

a lower cost in silicon, various types of analog Gaussian generation circuit have

been explored and applied to pattern classification.(38, 39, 40)

On the basis of analog Gaussian generation circuits, an on-chip learnable

SVM employing a fully parallel learning circuitry was developed(40). The chip

processed only four learning sample vectors and its performance was evaluated

by circuit simulation. Both the learning and classification speeds of this work

were improved compared with those of the previously proposed works. However,

the fully parallel learning circuitry requires a large chip area in proportion to the

square of the number of sample data, which is not practical. To reduce the chip

size, another on-chip learnable Gaussian kernel SVM processor was built (41)

14



2.1 Introduction to the Proposed SVM On-Chip Learning Processor

by employing a row-parallel learning circuitry with a learning capacity of twelve

sample vectors. However, the vectors have only two dimensions.

There were two problems in the two works mentioned above. Firstly, the

traditional analog circuits applied in these works generate a highly dimensional

Gaussian function through single-dimension multipliers. The error intolerably

increases as the dimension increases. Therefore, these works can be hardly im-

plemented in highly dimensional pattern classification. The second problem is

the trade-off between the learning speed and the chip size. Generally, there is

a trade-off between the amount of circuits and the learning speed. A high pro-

cessing parallelism realizes a high speed; however, it requires a large number

of circuits. The number of learning iterations, which is usually very large and

does not depend on the hardware parallelism, has a marked effect on the learn-

ing speed. Therefore, conventional VLSI implementations employing clock-based

iterations consume much time on these iterations indifferently to the degree of

hardware parallelism.

The purpose of this work is to develop a fully parallel learning SVM processor

with high learning speed and compact chip size for highly dimensional pattern

classification. An analog Gaussian generation circuit, which is robust against pro-

cess variations, was developed for highly dimensional pattern vectors. The center,

height, and width of the generated Gaussian function feature can all be pro-

grammed easily. Furthermore, the chip-area-hungry part for highly dimensional

Euclidean distance computations and the much smaller part for exponential com-

putation are built separately. Only the exponential computing circuits should be

duplicated for a high degree of parallelism. In this manner, a fully parallel learn-

ing SVM processor was built within the compact chip area in a standard 0.18 µm

complementary metal oxide semiconductor (CMOS) technology. Upon receiving

highly dimensional pattern vectors, the learning process autonomously proceeded

without any clock-based control and self-converged within a single clock cycle of

the system (at 10 MHz). To verify the learning/classifying performance charac-

teristics, 16 object images from a database were converted into 64-dimensional

(64D) vectors and fed into the proposed SVM processor as learning samples. Af-

ter self-learning, several other vectors were used as test patterns. The proposed

SVM processor classified all the testing patterns into correct classes according

15



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

to the simulation results. A proof-of-concept chip designed in a 0.18 µm CMOS

technology was fabricated and the performance of the proposed SVM processor

was confirmed from measurement results.

The remaining parts of this chapter are organized as follows: in Section 2.2,

the process of image pattern classification and the SVM algorithm applied in this

work are briefly introduced. In Section 2.3, the circuit architecture of the pro-

posed self-learning SVM processor is described. In Section 2.4, the experimental

verifications are shown by considering both simulation and measurement results.

Finally, summary is presented in Section 2.5.

2.2 Preliminaries

2.2.1 Process of image pattern classification applied in

this work

This work is carried out to classify the object images into their respective cate-

gories with a two-class configuration. A set of images with known class labels are

given as learning samples. After a machine learning process, other images used

as test patterns are expected to be recognized according to the learning samples.

The process of image pattern classification realized by this work is illustrated

in Fig. 2.1. The main features of images are extracted as highly dimensional

vectors (64D in this work) by employing the projected principle edge distribution

(PPED) method (42). In this manner, the task of image recognition is converted

to classify the respective highly dimensional vectors. The vectors representing

learning samples are fed into the proposed SVM processor operating in the learn-

ing mode. After learning, several significant vectors (named support vectors) are

identified. In the classifying mode, the vectors that represent test image patterns

are fed into the SVM processor. The classification results are output in the form

of a binary signal indexing the class label.

16



2.2 Preliminaries

F
ig
u
re

2
.1
:
P
ro
ce
ss

o
f
im

a
g
e
p
a
tt
er
n
cl
a
ss
ifi
ca
ti
o
n
a
p
p
li
ed

in
th
is

w
or
k
.

17



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

2.2.2 Hardware-friendly SVM algorithm

The SVM algorithm is usually used as a binary classifier to classify the n-

dimensional vectors Xs with the form of X = (x1, x2, . . . , xn). A set of learning

samples (Xi, yi)1≤i≤N is reqiured, where N is the number of learning samples and

yi ∈ {−1, 1} is the class label of the i-th sample Xi. Upon receiving a vector X,
the decision function used to classify this vector can be given as

f(X) = sign[
N∑
i=1

αiyiK(X,Xi) + b], (2.1)

where K(X,Xi) is the kernel function. A learning process used to obtain the

suitable coefficients αi and bias b is realized by solving

max
b

min
0≤αi≤C

[W (α, b) =
1

2

N∑
i,j=1

yiyjαiαjK(Xi,Xj)−
N∑
i=1

αi + b
N∑
i=1

αiyi], (2.2)

where C is a regularization parameter. A hardware-friendly type of SVM algo-

rithm (? ) is applied in this work to obtain αi by backward propagation. The

updating rule can be given by

αi ← αi − ηi
∂W (α, b)

∂αi

, (2.3)

where the sufficient condition of convergence is 0 ≤ ηi ≤ 2/K(Xi,Xi). By consid-

ering the kernel as a Gaussian function as K(Xi,Xj) = exp(−γ(Xi−Xj)
2), ηi can

be set as ηi = 1/K(Xi,Xi) = 1. In this manner, the updating rule is represented

as

αi ← 1− yi(
∑
j(̸=i)

αjyjK(Xi,Xj) + b). (2.4)

Since the bias b has a negligible effect on the performance in this case (36, 41),

it is set as 0 in both learning and classifying modes. Thus, the updating rule is

transformed into the following form with the consideration of C:

αi ← min(C,max(0, 1− yi
∑
j(̸=i)

αjyjK(Xi,Xj))). (2.5)

In the classification mode, the obtained α values are kept constant and recalled

by the decision function.

18



2.3 Hardware Implementation

2.3 Hardware Implementation

2.3.1 Circuitry organization of the proposed SVM proces-

sor

By assuming the total number of training samples N , the circuitry organization

of the proposed fully parallel learning SVM processor is illustrated in Fig. 2.2.

N vectors in the form of digital data are used as inputs. A set of on-chip digital-

to-analog converters (DACs) is designed to convert the input vectors into analog

forms. N sets of Euclidean distance calculation circuits are constructed in block I

to compute the distances between the vector Xi and all other samples in parallel.

The class label yi is reflected by the switches connected to the row buses.

Each cell in block II contains a capacitor (as an analog memory) and an

exponential generation circuit, which generates the final output as a Gaussian

function in the current mode. The Euclidean distance values are stored in array

II row by row as voltages. As a result, a fully parallel array of Gaussian kernels is

implemented in such a small area even for the high dimensionality (64 dimensions

of sample vectors of the presented work). The circuits of the α adjuster are current

mirror-based adders/subtracters. By collecting all the currents on the row bus,

the α adjusters realize the function represented by eq. 2.5.

During the learning process, the α values in block III are fed back to block

II and the learning process proceeds autonomously in a fully parallel manner.

Therefore, the training process can be accomplished only in a single clock cycle.

This is far faster than the clock-based sample-serial iterative approach (41). In

the classifying mode, the α values obtained by the learning process are kept

constant to realize the function represented by eq. 2.1.

2.3.2 Proposed analog Gaussian generation circuit

To implement a highly dimensional Gaussian function with a low cost in silicon,

an analog Gaussian generation circuit was designed, as shown in Fig. 2.3. Vectors

with a maximum number of dimensions of 64 are used as inputs in the form of

voltage, and the output is given in the form of current.

19



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

2

2
)

(
X

X
−

−
i

1
X

X
=

i

2

1
)

(
X

X
−

−
i

2 )
(

N
i
X

X
−

−

)
e
x
p
(

.
1
N

N
V

α

2
X

X
=

i

N
i
X

X
=

)
e
x
p
(

.
N
N

N
V

α
)

e
x
p
(

.
2

2
N
V

α

)
e
x
p
(

.
2
N

N
V

α

)
e
x
p
(

.
1
2

2
V

α
)

e
x
p
(

.
1
1

1
V

α

)
e
x
p
(

.
1

1
N
V

α

)
e
x
p
(

.
2
1

1
V

α
)

e
x
p
(

.
2
2

2
V

α

N
α

1
α

2
α

2 )
(

j
i

ij
V

X
X

−
−

=

F
ig
u
re

2
.2
:
O
rg
an

iz
at
io
n
o
f
p
ro
p
o
se
d
fu
ll
y
p
a
ra
ll
el

le
a
rn
in
g
S
V
M

p
ro
ce
ss
o
r
co
m
p
os
ed

o
f
E
u
cl
id
ea
n
d
is
ta
n
ce

ca
lc
u
la
to
r

(I
),
ex
p
on

en
ti
al

ci
rc
u
it
a
rr
ay

(I
I)
,
a
n
d
α
ad

ju
st
er

(I
II
).

20



2.3 Hardware Implementation

To make it flexible and possible to combine with digital circuits, even a com-

puter program, we also built an on-chip digital-to-analog converter (DAC) for

the system. The 64D pattern vectors are converted into analog voltage signals.

For instance, the vector Xi can be represented by voltages as {vi1, vi2, · · · , vi64}.
The part of the 64D squaring circuit illustrated in Fig. 2.3 is built to calculate

D(Xi,Xj), where

D(Xi,Xj) = |Xi − Xj|2 =
64∑
k=1

(xik − xjk)
2. (2.6)

By assuming vi1 > vj1, the potentials v1 and v2 of nodes 1 and 2 are shifted by a

sufficiently small current bias Ib as{
v1 ≈ vi1 + Vthn + |Vthp|
v2 ≈ vj1 + Vthn + |Vthp|

, (2.7)

where Vthn and Vthp are the threshold voltages of the n and p-type MOS transis-

tors, respectively. By considering vi1 > vj1, the transistors in the branch where

the current I1 flows are in the strong inversion region, the transistors in the branch

where the current I2 flows are in the weak inversion region. Thus, I1 ≫ I2 and

the current I1 can be obtained according to

I1 = Kn(v1 − v3 − Vthn)
2 = Kp(v3 − vj1 − |Vthp|)2, (2.8)

where Kn and Kp are the amplifier factors of the n and p-type MOS transistors,

respectively. By solving this equation with the consideration of eq. 2.7, the

potential of node 3, v3, can be expressed as

v3 =
vi1

√
Kn

Kp
+ vj1 − |Vthp|

√
Kn

Kp
+ |Vthp|

1 +
√

Kn

Kp

. (2.9)

Substituting eq. 2.9 into eq. 2.8, the current flowing through this branch can be

given by

I1 = β(vi1 − vj1)
2, (2.10)

where

β =
KnKp

(
√

Kp +
√
Kn)2

. (2.11)

21



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

I
c

I
b

M
1

I
o
u
t

I b

v
i1

v
j2

v
j2

I b

I b

v
i1

v
j1

I b v
i1

v
j1

2

2
2

)
(

j
i
v

v
−

β
2

1
1

)
(

j
i
v

v
−

β

2

6
4

6
4

)
(

j
i

v
v

−
β

2 )
(

j
i

s
q
r

I
v

v
−

=
β

F
ig
u
re

2
.3
:
S
ch
em

a
ti
c
o
f
p
ro
p
o
se
d
G
a
u
ss
ia
n
g
en
er
a
ti
o
n
ci
rc
u
it
.

22



2.3 Hardware Implementation

Since I1 ≫ I2, the total current generated by the 1D squaring circuit is almost

equal to I1 (I1 + I2 ≈ I1). In the case of vi1 < vj1, a similar derivation can be

applied to obtain

I1 + I2 ≈ I2 = β(vj1 − vi1)
2. (2.12)

Generally, the current generated by the 1-D squaring circuit is β|vi1 − vj1|2.
By collecting the current generated by all dimensions, the output for evaluating

D(Xi,Xj) can be obtained as

Isqr = β

64∑
k=1

|vik − vjk|2. (2.13)

Compared with traditional analog Gaussian generation circuits (38, 39, 40, 41)

(in which the functional transistors operate in the subthreshold region), all the

functional transistors in this part operate in the saturation region. Thus, the

proposed circuit realizes a large input range and high reliability against process

variations.

The current Isqr is copied to the current-to-voltage (I-V) converter, which is

biased by a sufficiently small current Ib. With this condition, Vx can be approxi-

mated as

Vx = Vbias + |Vthp|. (2.14)

Obviously, the gate voltage of M1 must be lower than its drain voltage. Thus, M1

operates in the linear region. Assuming its drain-source voltage as Vds (Vds=Vdd−
Vx), the current flowing across M1 can be given as

Iin ≈ Kp[(Vdd − Vdiff − |Vthp|)Vds −
V 2
ds

2
]. (2.15)

By considering eqs. (13) and (14), Vdiff is calculated as

Vdiff = V0 −
Isqr

Kp(Vdd − Vbias − |Vthp|)
= V0 − γ

64∑
k=1

|vik − vjk|2, (2.16)

where

V0 =
Vdd + Vbias − |Vthp|

2
, (2.17)

γ =
Kn

(Vdd − Vbias − |Vthp|)(
√

Kp +
√
Kn)2

. (2.18)

23



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

I con

∑
= ik yy

kI∑
≠ ij yy

jI
∑∑
≠=

+−=

ijik yy

j

yy

kconinew IIII
_

inewI _

Figure 2.4: Schematic of current mirror-based adder/subtracter.

At the exponential function generating stage, Vref is biased to compensate

the effect of V0 (which can be easily generated by another exactly the same I-V

converter without any input current). Thus, the output current Iout is given as

Iout =
Ic

1 + e∆V
≈ Ic

2
e−∆V , (2.19)

where ∆V is the voltage difference between two input terminals of differential

pairs. Finally, a wide-input-range Gaussian function is obtained as

Iout =
Ic
2
e−γ|Xi−Xj |2 . (2.20)

The peak-height value of the obtained Gaussian function feature can be scaled by

Ic, which reflects the α values in the SVM algorithm. The width of the Gaussian

function feature is scaled by the voltage bias Vbias. The width programmability

does not contribute to the SVM learning process theoretically. However, from

the viewpoint of hardware, it makes the system practical when various databases

(even various numbers of dimensions) are used. To realize a high hardware par-

allelism, exponential circuits with a number of N2 should be duplicated for N

sample learning. Fortunately, the chip area occupied by this part is much smaller

than that of Euclidean distance calculating circuits.

The current mirror-based adder/subtracter is illustrated in Fig. 2.4. By

collecting the current from all the kernels (including those of the same class and

24



2.3 Hardware Implementation

around 0.3V around 0.6V around 0.9V around 1.2V

Figure 2.5: Center programmability of Gaussian function feature.

Ic=200nA

Ic=150nA

Ic=100nA

Ic=50nA

Ic=0

Figure 2.6: Peak-height programmability of Gaussian function feature.

25



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

Vbias=0.8V

Vbias=0.9V

Vbias=1V

Vbias=1.1V

Vbias=1.2V

Figure 2.7: Width programmability of Gaussian function feature.

the different class), the current Inew i is obtained as a new alpha value for the

i− th kernel:

Inew i = min(Icon,max(0, Icon − yi
∑
m(̸=i)

ymIm)), (2.21)

where Icon represents the regularization parameter C in eq. 2.5.

2.4 Experimental Verification

2.4.1 Performance characteristics of Gaussian generation

circuit

The programmability of our proposed Gaussian circuit is verified by HSPICE sim-

ulations employing a 0.18 µm 1.8 V CMOS process. We selected one element from

64 dimensions randomly and kept the inputs of the remaining dimensions con-

stant at the same value. The center programmability of the Gaussian function

feature is verified from the simulation results shown in Fig. 2.5. Within an input

voltage range of 0 to 1.5 V, the proposed circuit generates Gaussian functions

26



2.4 Experimental Verification

Ic=150nA

Ic=200nA

Ic=100nA

Ic=50nA

Ic=0

Figure 2.8: Robustness against the process variations of the proposed Gaussian

generation circuit.

around various center values directly. Figure 2.6 reflects the peak-height pro-

grammability of the obtained Gaussian function feature. The peak-height value

can be scaled linearly to the current Ic, which is important in the SVM learning

process. As mentioned above, the width programmability, which is shown in Fig.

2.7, does not contribute to the SVM learning process theoretically, but improves

the hardware practicability owing to the sensitivity of analog circuits.

The performance robustness against fabrication process variations is shown

in Fig. 2.8. The Monte Carlo simulation with five trials is performed to verify

the mismatch problem. We randomly select one dimension for DC sweeping and

keep the other 63 dimensions constant at the same value. We only focus on the

threshold voltage for this simulation since it is the most sensitive factor to process

variations. It is assumed that the variations follow a Gaussian distribution, and a

sufficiently large variation of 5% is considered (43). According to the simulation

results, the maximum performance fluctuation of the proposed 64D Gaussian

generation circuit is about 4% when process variations are considered.

27



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

DAC

6
5
4
u
m

1091um

3
1
5
u
m

398um

Figure 2.9: Micrograph of proof-of-concept chip for 64D SVM learning/classifying

processor.

2.4.2 64D pattern vector classification

The proof-of-concept chip of the proposed fully parallel learning SVM processor

was built in a 0.18 µm CMOS process. This VLSI chip has a learning capacity

of 16 vectors with 64 dimensions. Its micrograph is shown in Fig. 2.9. Block II

occupies a smaller chip area than block I even if it contains many more cells. In

other words, the problem regarding the chip area and inner connection explosion

was prevented in this experiment.

To verify the learning and classifying performance characteristics of the pro-

posed SVM processor, the object images selected from a real database COIL-20

(Columbia Object Image Library) (44) were introduced as learning samples and

test patterns. All the images were preprocessed and extracted into 64D vectors

before the verification. Eight images from the same class (named “a” in this

work) and an eight other images from another class (named “b”) were randomly

selected as learning samples. A clock signal with a frequency of 10 MHz was

used for the DAC. After inputting the learning samples, the learning process

autonomously proceeds and the α values self-converge without any additional

clock-based control.

28



2.4 Experimental Verification

F
L

A
G

 A
C

T
I
V

A
T

I
N

G
 C

L
A

S
S

I
F

Y
I
N

G
 M

O
D

E

D
A

T
A

 I
N

P
U

T
 F

L
A

G

C
L

A
S

S
I
F

I
C

A
T

I
O

N
 R

E
S

U
L

T

a
  
 a

  
 a

  
 a

  
 a

  
 a

  
 a

  
  
a

 
b

  
 b

  
 b

  
 b

  
 b

  
 b

  
 b

  
 b

 

..
..
..

..
..
..

a
a

a
a

b
b

b
b

A
L

P
H

A
 V

A
L

U
E

S
 

s
a
m

p
le

s
 i

n
p

u
t

s
to

r
e
 a

n
d

 l
e
a
r
n

c
la

s
s
if

y

Voltage (V) Current (A)

T
im

e
 (

s
)

1
.5

0
.7

5

0
.0

1
.5

0
.7

5

0
.0

1
.5

0
.7

5

0
.0

3
0

0
n

1
5

0
n

0
.0

2
0

u
1

0
u

0
.0

2
0

u
1

0
u

0
.0

F
ig
u
re

2
.1
0
:
S
im

u
la
ti
o
n
re
su
lt
s
o
f
le
a
rn
in
g
a
n
d
cl
a
ss
if
y
in
g
p
ro
ce
ss
es
.

29



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

DAC
flag of classifying 

mode activation

flag of data input

classification result

1us

clock 10MHz

Figure 2.11: Measurement results for 64D pattern vector classification.

The Nanosim simulation results shown in Fig. 2.10 reflect the learning and

classifying performance characteristics. Upon receiving test vectors, the SVM

processor is activated in the classification mode by a flag signal. According to

the simulation results, eight test vectors are all classified into correct classes,

which is reflected by a voltage signal (high voltage represents the label of class

a, and low voltage represents the label of class b). The performance is confirmed

from the real measurement results shown in Fig. 2.11.

2.4.3 2D pattern vector classification

To verify the flexibility of the SVM processor when it deals with various types of

databases, a set of 2D pattern vectors is introduced into the same processer. We

adjusted the width of the Gaussian kernel function feature for this application.

The clock frequency is set as 2.5 MHz and the input data for the remaining

62 dimensions is set as 0. Therefore, the pattern X is transformed into the

form of X = {x1, x2}. The differences between 2D patterns are obviously much

smaller than those of the 64D application. Owing to this result, a lower system

clock frequency is applied for 2D experiments. Figure 2.12(a) shows the Nanosim

simulation results of this experiment. The pattern {x1, x2} is formalized into the

analog form {VDACx1/255, VDACx2/255} by the on-chip DAC, where VDAC is the

30



2.4 Experimental Verification

(a) (b)

x1 x1

x
2

x
2

Figure 2.12: Performance characteristics of 2D pattern vector classification: (a)

simulation and (b) measurement results.

reference voltage of DAC. The points marked by dotted circles are identified as

support vectors. A classification boundary is obtained by a set of test vectors

with a resolution of 32 × 32. The chip measurement results are shown in Fig.

2.12(b). The classification boundary is obtained from a set of test vectors with

a resolution of 16 × 16. When the test vectors are located near the expected

boundary, the result output signal becomes poor and unstable. This is the reason

why the boundary obtained by measurement is rough. In fact, the classification

performance of the 2D application is poorer than that of the 64D application.

However, the proposed SVM processor has a potential to extend to various types

of pattern, even if the number of pattern vector dimensions is as low as 2.

31



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

T
a
b
le

2
.1
:
P
er
fo
rm

a
n
ce

co
m
p
a
ri
so
n
s.

N
re
p
re
se
n
ts

th
e
n
u
m
b
er

o
f
v
ec
to
rs

a
n
d
S
is
th
e
ch
ip

ar
ea

o
cc
u
p
ie
d
b
y
on

e
k
er
n
el

fo
r
a
si
n
gl
e
v
ec
to
r.

l
is

th
e
n
u
m
b
er

o
f
it
er
a
ti
o
n
s
fo
r
co
n
v
er
g
en
ce
.

R
ef
.
(4
0
)

R
ef
.
(4
1
)

T
h
is

w
o
rk

T
ec
h
n
o
lo
g
y

S
im

u
la
ti
o
n

0.
1
8
µ
m

C
M
O
S

0
.1
8
µ
m

C
M
O
S

O
p
er
at
io
n

L
ea
rn
in
g
/
C
la
ss
if
y
in
g

L
ea
rn
in
g
/
C
la
ss
if
y
in
g

L
ea
rn
in
g/

C
la
ss
if
y
in
g

L
ea
rn
in
g
p
a
ra
ll
el
is
m

F
u
ll
y
p
a
ra
ll
el

R
ow

p
a
ra
ll
el

F
u
ll
y
p
ar
a
ll
el

K
er
n
el

fu
n
ct
io
n

G
a
u
ss
ia
n

G
a
u
ss
ia
n

G
a
u
ss
ia
n

C
h
ip

a
re
a

(N
2
+

N
)
×

S
N
×

S
1.
17

N
×

S

In
p
u
t
v
ec
to
r

A
n
a
lo
g
v
o
lt
a
g
e

D
ig
it
a
l
(8

b
it
s)

D
ig
it
a
l
(8

b
it
s)

N
u
m
b
er

of
sa
m
p
le
s

4
1
2

1
6

N
u
m
b
er

o
f
d
im

en
si
o
n
s

2
2

1
∼

6
4

L
ea
rn
in
g
ti
m
e
(n
s)

N
/
A

1
2
×

l
×

6
0

10
0

C
la
ss
ifi
n
g
sp
ee
d
(v
ec
to
rs
/
s)

N
/
A

8
.7
×

1
0
5

1
06

32



2.5 Summary

2.4.4 Comparisons

Performance comparisons are shown in Table 2.1. The dimensions of previously

developed Gaussian kernel SVM processors (40, 41) are difficult to expand owing

to the limitation of the conventional Gaussian generation circuits. Obviously,

a conventional fully parallel strategy could achieve a high learning speed but

requires a very large number of kernel generation circuits, which is unacceptable

for highly dimensional applications. By using the proposed architecture, a high

learning speed can be realized within a chip area similar to that of the row-parallel

strategy (41), which is much smaller than that of the conventional fully parallel

strategy (40). In addition, the number of learning iterations strongly depends on

the learning samples, which is usually large and unpredictable. Therefore, a non-

clock-based iterative approach is helpful for some real-time learning applications.

2.5 Summary

A fully parallel self-learning SVM processor was developed for the classification

of highly dimensional vectors. To implement the kernel function of SVM, an ana-

log highly dimensional Gaussian generation circuit was designed with function

feature programmability, which is robust against the process variations. On the

basis of this circuit, a fully parallel array of kernels was implemented in a compact

chip area by using the proposed architecture. Therefore, the learning process pro-

ceeded autonomously without clock-based iterations and converged with a high

speed. A proof-of-concept chip was fabricated in a 0.18 µm CMOS technology

and measured by employing real images. According to the measurement results,

the proposed SVM processor classified all the test images into correct classes.

33



2. FULLY PARALLEL SUPPORT VECTOR MACHINE
PROCESSOR EMPLOYING ANALOG CIRCUITRY

34



3

Fully Parallel K-Quasi-Centers

Clustering Processor Employing

Analog Circuitry

As it was introduced in the previous chapters, the proposed fully parallel ar-

chitecture can be also applied to implement the unsupervised machine learning

algorithms such as pattern clustering. A fast self-converging analog learning

processor is presented in this chapter for use in image clustering. The image

patterns represented by high-dimensional vectors can be clustered into different

classes based on our proposed hardware-friendly version of the K-means algo-

rithm, which we called K-Quasi-Center (KQC for short). In order to speed up

the KQC learning, we developed an analog circuit to carry out the Euclidean

distance between high-dimensional vectors in real-time. Furthermore, the fully-

parallel learning and self-converging structure was built employing these analog

circuits. The chip-area and interconnect explosion problem has been resolved in

this proposed structure. Since the learning autonomously proceeds in a fully-

parallel manner via analog free-feedback signals without any clock control, learn-

ing can be accomplished within a single clock cycle, which is far faster than

the conventional iteration-based approaches. A proof-of-concept system was con-

structed and verified by the HSPICE and Nanosim simulations. Sixteen actual

images of two objects were randomly selected from the database and converted

into 64-dimensional vectors. Feeding these vectors into our KQC learning pro-

35



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

cessor, the images were all correctly categorized into two classes within one clock

cycle for several different initialization conditions.

3.1 Introduction to the Proposed KQC Cluster-

ing Processor

The K-means algorithm is one of the most typical unsupervised machine learning

algorithms for pattern classification (45), which was originally developed in the

computing science area. Unsupervised learning algorithms have been successfully

implemented for image processing problems such as the image segmentations (46)

and image-sets categorizations (47) using software programs. Like most of other

machine learning algorithms, a large amount of numerical computing iterations

are always required in K-means clustering problems. Then, this learning process

could be very computationally expensive. Consequently, VLSI implementations

of the K-means algorithm (48, 49) were considered for the applications of portable

electronic equipments or those requiring high speed performances.

Several works employing digital VLSI circuits realized image segmentation

based on the K-means algorithm (50, 51). In these approaches, the Manhat-

tan distance was employed as distance measure to avoid the complexity of the

Euclidean distance calculation. Considering high-level applications of image pro-

cessing (47), the image-sets categorization for instance, the number of dimensions

of sample vectors becomes much larger since the feature vector describes and rep-

resents a lot of important features in the entire image. Due to this reason, the

distance calculation becomes much more computationally expensive. Even if the

powerful hardware as GPU is applied as in the work of (52), it takes much time

to calculate the distances between vectors having a large dimension.

One of possible solution to speed up the learning processes is applying analog

circuits to carry out the core functions. The accuracy of analog processing is not

as high as that of digital processors, but it is sufficient for carrying out learning

iterations. Therefore, there have been several attempts realizing the supervised

machine learning algorithms such as the Support Vector Machine classification

(41) using the analog circuits. Since the analog circuits take up much smaller

36



3.1 Introduction to the Proposed KQC Clustering Processor

chip area than digital ones, it is possible to integrate multiple analog processing

cores on-chip and accomplish all the high-dimensional calculations in parallel for

single iteration. However, this approach employing analog processors still needs

clock-based iterations during the learning process, which means long time for

convergence and complex controlling mechanism are required.

Generally, there is a trade-off between the amount of circuits and the process-

ing speed in the hardware implementations of both digital and analog K-means

learning systems. The higher processing parallelism realizes the higher speed, but

requires the larger number of circuits on the other hand. The number of learning

iterations, which is usually very large and not dependent on the hardware paral-

lelism, has a noticeable influence on the learning speed. Therefore, conventional

VLSI implementations employing clock-based iterations consume a lot of time on

these iterations indifferently to the degree of hardware parallelism.

The purpose of this work is to build a fast on-chip learning processor for

high-dimensional patterns categorization, in which the calculations and learning

process are both accomplished in a fully-parallel architecture of analog circuits. A

modified scheme of K-means algorithm, named KQC method, is implemented by

this learning circuitry, which is essentially similar to the original K-means mech-

anism but more efficient for the fully parallel implementation. Using the analog

free-feedbacks instead of clock-based iterations, the learning process can be ac-

complished autonomously within only one clock cycle and self-converges without

any clock-based controlling, which is far faster than the conventional iteration-

based approaches. The proof-of-concept system was built for 64-dimensional

vectors categorization. In order to verify the performances of our proposed sys-

tem, sixteen images of two kinds of objects selected from the COIL-20 database

(Columbia-Object-Images-Library) (44) were converted into feature vectors and

fed into our KQC learning processor. According to the Nanosim simulation re-

sults, all the images were correctly categorized into their respective classes even

with several different randomly ill initializations.

The rest parts of this chapter are organized as follows: the modified version of

K-means algorithm will be briefly introduced in the section 3.2; in the section 3.3,

the system organization and its operational principle will be presented; section

3.4 shows the HSPICE and Nanosim simulation results for the performances of

37



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

our proposed analog processors and the whole system respectively; summary will

be made in the section 5.

3.2 Algorithm Applied in This Work

The K-means algorithm is widely used in pattern recognition, data mining, and

image segmentation as a very powerful learning tool. It is a typical unsupervised

clustering method. Using this algorithm, learning samples given in the form

of multidimensional vectors can be partitioned into a limited number (K) of

clusters according to their feature similarity without supervision. In this work,

the original K-means algorithm is adjusted to be a hardware-friendly version for

the high-dimensional vector categorization. The purpose is to prevent duplicate of

complexly computational processors in order to realize the fully-parallel learning

and self-converging mechanism.

3.2.1 Basic idea of the original K-means algorithm

The basic idea of original K-means algorithm is illustrated in Fig. 3.1(a). A

large number of sample vectors X = {x1, x2, . . . , xn} with n dimensions are given.

Considering the K value as 2, the target is to cluster the sample vectors into two

categories. The unsupervised learning process is described as follows:

1. Initializing the categorization randomly and computing the centroid vector

for each cluster;

2. evaluating the distances between a specific vector and all centroid vectors;

3. resetting the categorization label for this specific vector according to the

distance comparisons;

4. repeating 2) and 3) till all the given vectors have been re-clustered for this

round;

5. computing the new centroid vectors and back to 2);

6. results converging and stopping learning.

38



3.2 Algorithm Applied in This Work

Figure 3.1: Basic idea of the K-means clustering: (a) original K-means clustering

and (b) the modified version applied in this work.

Many different types of mathematical representations were introduced to

evaluate the distance D(Xi,Xj) between vectors Xi and Xj such as Euclidean

Distance. In some previously proposed VLSI implementations of K-means, the

Manhattan Distance was employed since it is computationally simpler than the

Euclidean Distance. However, the complex computations for high-dimensional

vectors still should be repeated for heaps of times, including average-vector cal-

culations (to search the centroid) and the distance evaluations. These calculations

for vectors are usually hungry for the hardware and computing-time especially

when the number of vector dimensions is large. Due to this reason, the original K-

means algorithm can be hardly implemented by VLSI circuits with fully-parallel

learning strategy.

39



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

3.2.2 KQC method for highly dimensional pattern clus-

tering

In order to avoid iterating calculations of vectors, a modified version of K-means

algorithm was proposed and named K-Quasi-Centers method by this work. The

basic idea of our proposed method is illustrated by Fig. 3.1(b). Instead of iterat-

ing operations to search centroid vectors and calculate distances between vectors,

all the vector calculations are carried out at the beginning and kept for the whole

learning process. The Euclidean Distances from every vector to all the others are

calculated (in parallel by analog VLSI circuits in this work) and stored in the

form of scalars, which can be directly reused during the learning process. In this

manner, the only operation needed to be iterated is changing the category label

for each vector, which is easily realized by analog VLSI circuits and possible to

be proceeded in parallel.

1. Calculating the Euclidean Distances from every vector to all the others and

initializing the categorization randomly;

2. evaluating the similarities from a specific vector to all the categories (by

calculating the average distances from the specific vector to all the vectors

from the same category);

3. resetting the categorization label for this specific vector according to the

evaluation;

4. repeating 2) and 3) till all the given vectors have been re-clustered for this

round;

5. results converging and stopping learning.

During the learning operation, the only calculation is to compute the average

values among scalars. Therefore, the chip area and processing time for learning

processor can be reduced. In the actual VLSI implementation by this work,

the similarity evaluations and the label resetting are both proceeded in vector-

parallel rather than one by one based on the clock cycle. The temporal results

are immediately feedback to the circuity and autonomously converge.

40



3.2 Algorithm Applied in This Work

(a) (b)

Figure 3.2: Distance evaluations from a specific sample vector to different clus-

ters: (a) using the representatives of centroid vectors and (b) using the average

calculations.

3.2.3 Comparison between the original K-means algorithm

and proposed KQC method

Regarding the original K-means algorithm, the centroid vector (or called gravity)

of each cluster is represented when the clustering scheme is changed by learning.

The distances from any specific sample vector to the gravities of all the clusters are

calculated. Essentially, the distances from a specific sample to all the clusters are

evaluated by this calculation. These distance evaluations are compared, and the

smallest one is selected to determine the new cluster label of this sample vector.

Namely, the representatives of centroid vectors even the values of distances have

no direct effects on the updating, but the comparison among distance evaluations

is important. In our proposed KQC method, the distances from a specific sample

to different clusters are evaluated by the average calculation of distances from this

sample to all the members in a cluster. Comparing Fig. 3.2 (a) with (b), these

two types of evaluations give the same comparisons of distances from a specific

sample to different clusters in general cases. Therefore, two types of evaluations

lead to the same updating operation in those cases. The learning operation will

stop and converge till the cluster label for each sample does not change, which is

the same as original K-means mechanism. From this point of view, the suggested

41



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

scheme of clustering method has similar convergence performance to the original

K-means algorithm.

3.3 Hardware Implementation

3.3.1 Architecture of KQC on-chip learning processor

In this implementation, N vectors represented by Xis with high-dimensions (64-

dimensional in this actual work) can be autonomously clustered into two cate-

gories after a fast KQC learning process. The Labeli with a binary form (one bit

for two-category implementations) is introduced to reflect the category index of

the i− th given vector respectively.

The analog KQC learning circuitry is mainly composed of three blocks using

analog VLSI circuits as shown in Fig. 3.3. Block I contains N sets of distance cal-

culators, which evaluate the distance between two vectors Xi and Xj as following

equation:

D(Xi,Xj) = |Xi − Xj|2 =
64∑
k=1

(xik − xjk)
2, (3.1)

where, X is a 64-dimensional vector as X = {x1, x2, . . . , x64}. The evaluation

results are given in current mode and stored in the analog current memory array

as block II row by row in time sequence. Each memory cell is connected with two

switches (in fact, the number of switches depends on the number of categories

for a specific application) controlled by its respective category label. Since the

evaluation results are read out in current mode, it is easy to sum them up for

each category by a bus wire. The analog dividers in block III are built to compute

the average distance from a specific vector to all the others belonging to a same

category. As it is shown in Fig.3.3, the NA and NB represent the numbers of

vectors in category A and category B respectively. According to the distances

from a given vector to two categories, the categorization result for this vector in

the form of a binary label is output by using a simple analog comparator. All

the calculations and operations are carried out using analog circuits. Thus, the

operations can be accomplished in real-time and in parallel by compact circuits.

42



3.3 Hardware Implementation

)
,

(
1
X

X
i

D
)

,
(

2
X

X
i

D
)

,
(

N
i

D
X

X

1
=
i

I
I
I

I

I
I

N
i
=

F
ig
u
re

3
.3
:

A
rc
h
it
ec
tu
re

of
p
ro
p
os
ed

fu
ll
y
-p
a
ra
ll
el

se
lf
-c
o
n
v
er
g
in
g
K
Q
C

le
a
rn
in
g
ci
rc
u
it
ry

w
it
h

a
co
n
fi
g
u
ra
ti
on

of

2-
ca
te
go
ry

cl
u
st
er
in
g
.

43



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

Since only the comparisons among distances are concerned rather than the

accurate values, the accuracy of analog circuits is acceptable in this implementa-

tion.

During the learning process, the categorization results in the form of binary

labels are immediately feedback into the circuitry to control the switches in block

II and count the number of NA and NB in block III. These switching operations

are also easy to be realized in real-time by analog VLSI circuits. The dynamics

of analog free feedback realizes the mechanism of step iterations, which was men-

tioned in the algorithm description. Without any additional controlling mecha-

nism, the learning process is accomplished autonomously and self-converges with

very high speed (within single clock cycle). The block II contains much more

cells compared with other blocks. However, the values stored and processed by

block II are all in the form of scalars, which means the chip area of single cell in

block II is much smaller than that of block I. Furthermore, it is easy to collect

the information by row bus-wires. Therefore, the chip area and interconnect ex-

plosion problem can be prevented. Theoretically, a triangular array in block II

is sufficient to store necessary values since D(Xi,Xj) = D(Xj,Xi). However, this

distance value contributes to the label updating of two different patterns. The

switches and wire connection associated to these two contributions are separate.

The elimination of the redundant capacitors does not greatly reduce the chip area

of this block, but increase the complexity of inner connection. Therefore, a full

array is designed in block II. In the case of category expansion, more bus-wires

for categories could be added.

3.3.2 Analog circuitries in the KQC learning processor

Our proposed analog circuit to calculate the distance between two vectors Xi and

Xj with 64 dimensions is shown by Fig. 3.4. In order to make it flexible and

able to combine with digital circuits even computer programs, we also design a

Digital-to-Analog Converter (DAC) for the processor. The 64-D pattern vectors

are converted into analog voltage signals. For instance, the vector Xi can be

represented by voltages as {vi1, vi2, . . . , vi64}. In fact, this circuit is a part of the

the Gaussian-generation circuit introduced in the previous chapter. Thus, it is

44



3.3 Hardware Implementation

Ib

vi1 vj1

vi64

vi1vj1

Ib

Figure 3.4: Circuit schematic of the distance calculator for 64-D vectors.

Figure 3.5: Analog current memory cell with switching function.

easily to obtain:

Iout = α
64∑
k=1

|vik − vjk|2. (3.2)

where, α = KnKp

(
√
Kn+
√

Kp)2
.

45



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

Figure 3.6: An advanced Translinear circuit (54) as an analog divider with the

vectors counter.

This current which evaluates the distance D(Xi,Xj) is stored in an analog

current memory as illustrated in Fig. 3.5. Each memory cell is combined with

two analog switches controlled by the categorization label (the number of switches

depends on the number of categories). The label of a specific vector determines

the current value stored in its respective cell should contribute to category “A”

or “B”. The bus-wires collect all results in current mode and feed them into

the analog dividers to calculate the average distances from this vector to all the

others of each category.

An advanced topology of Translinear circuit (54) is applied in this work as

an analog divider as shown in Fig. 3.6. According to the Translinear principle,

the output current of this circuit is obviously obtained by: Iout = Iin
Ir
Icnt

, where

Ir is a constance current reference and Icnt can be generated by our proposed

vector counter. The switches in this counter are controlled by the labels for all

the vectors. For instance, the Icnt generated by the counter for category A can

46



3.4 Experiments

A

A

A

A

C
u

rr
e

n
t 

0V 0.2V 0.4V 0.6V 0.8V 1.0V 1.2V

Voltage 

Figure 3.7: Performances of distance calculator (the output current against input

voltage with different center values).

be obtained as Icnt = NA · Ir, where NA is the number of vectors from category

A. Finally, the output current is given by: Iout =
Iin
NA

(for the dividers on bus-

wire of category A) or Iout =
Iin
NB

(for the dividers on bus-wire of category B).

These average values are used to generate new labels by the simple comparators.

The new labels are immediately feedback to the operational blocks till results

converge.

3.4 Experiments

A 0.18µm 1.8V CMOS technology is employed to construct the proof-of-concept

processor for 64-D vectors categorization. The HSPICE and Nanosim simulations

were introduced to verify the performances of our proposed analog circuits and

the KQC learning processor.

47



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

A

A

A

A

V V V V V

Voltage 

C
u

rr
e

n
t 

C
o

25

C
o

50

C
o

75

C
o

100

Figure 3.8: Temperature effects on the Euclidean distance calculation.

3.4.1 Performances of employed analog circuitries

The performances of analog circuits applied in our proposed processor are verified

by the HSPICE simulations. Considering the distance between vectors Xi and

Xj, the k − th dimension was selected randomly. The voltage vjk was set as a

“center” value. For other dimensions, vil = vjl|l ̸=k = 0. By sweeping the voltage

vik, the output current can be obtained as shown in Fig. 3.7, which reflects the

distance generated by this dimension.

The performance robustness against fabrication process variations is also shown

in this simulation. The Monte Carlo simulation with five trials is performed to

verify the mismatch problem. We focus on the threshold voltage Vth for this sim-

ulation since it is the most sensitive factor to process variations. Considering the

model proposed by the previous works (56), the variation of Vth can be described

by the following equation:

σ2
∆Vth

= σ2
∆Vth
|VBS=0 (1−

VBS

ϕB

) +
2
√
q3ϵsiϕBNA

3WLC2
ox

(

√
1− VBS

ϕB

− (1− VBS

ϕB

)). (3.3)

The variation of Vth is related to the mismatch problem during the fabrication

process and the dynamic bias VBS. From the results of some related works (56),

48



3.4 Experiments

A

A

A

A

O
u

tp
u

t 
c
u

rr
e

n
t

800nA

1uA

Input current 

1uAAAA 800nAA

Figure 3.9: Performances of analog divider (the output current against input

current).

the worst case of Vth variation was evaluated as σ(∆Vth) ≈ 3%Vth in a 0.18µm

technology, where Vth is the typical value of the threshold voltage. In this sim-

ulation, it is assumed that the variations follow a Gaussian distribution. An

excessive value of σ(∆Vth) is set as 5%. The fluctuation of Euclidean distance

calculation is illustrated in Fig. 3.7.

Figure. 3.8 shows the temperature effects on the Euclidean distance calcula-

tion. The operational temperatures are set as 25 ◦C, 50 ◦C, 75 ◦C and 100 ◦C for

this simulation. From the simulation results, the temperature effects on the Eu-

clidean distance calculation are approximately symmetrical to the center value.

Namely, the temperature has equal effect on the calculation of each dimension

for every learning sample, which is negligible to the learning result theoretically.

The simulation results shown in Fig. 3.9 present the performances of the

analog divider, which carries out the average current Iout =
Iin
N
, where N is the

amount of vectors. By setting different amounts of N = 1, 2, 4, 6, 8 and 10 for

instances, the output current with the ratios of Iout = Iin,
Iin
2
, Iin

4
, Iin

6
, Iin

8
and Iin

10

can be obtained as presented in Fig. 3.9.

49



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

initial category “a” initial category “b”

Labels

converge

s s s s s s s s s s s

s s s s s s

Time 

Time 

Figure 3.10: Learning performances with an illy random initialization of category

labels.

3.4.2 Performances of entire processor

The images selected from an actual database COIL-20 are employed to verify

our proposed fully-parallel learning architecture. Before the learning process,

all the images are converted into 64-dimensional vectors applying the PPED

method. A set of classic serial DACs has also been designed to translate this

digital information into analog voltage signals. The Nanosim simulation results

are presented by Fig. 3.10 with the illy random initialization for category labels.

50



3.5 Summary

The binary signals “1” (1.8V in this work) and “0” (0V ) are used to reflect the

category label for each vector. According to the upper windows in Fig. 3.10, all

the images describing the same objects are clustered into the same categories,

even if they are ill-initialized. The learning process is autonomously proceeded

and self-converges within one clock cycle (0.1 µs as a system clock frequency

of 10 MHz). The label signals during the learning process are zoomed in and

shown in the lower windows of Fig. 3.10. Without any additional controlling

mechanism, they are self-reset for several rounds and completely converges. In

the traditional applications based on lock-driven iterations, the learning speed

are seriously related to the amount of iterations (55). Assuming the amount of

iterations and learning samples are l and N , respectively, the learning process

requires a number of clock cycles as l×N for clock-based works. In other words,

the learning process of our proposal is l × N times faster than the traditional

clock-based processors at least.

3.4.3 Discussions

The numbers of learning iterations are usually unpredictable and might be quite

different depending on both the database and initialization. This problem could

result in the inconvenience especially for the real-time applications. From this

point of view, limiting the learning process within one clock cycle is not only

helpful to improve the speed performance and reduce the controlling complexity,

but also helpful to formalize the learning time. Furthermore, since the learning

speed is very high by using our proposed architecture, repeating the whole learn-

ing process is acceptable. Therefore, it is possible to apply the on-line learning

strategy based on this architecture for the applications with a large amount of

learning vectors.

3.5 Summary

An analog VLSI KQC learning processor was proposed by this work employ-

ing the fully-parallel self-converging circuitry. An analog circuit has also been

51



3. FULLY PARALLEL K-QUASI-CENTERS CLUSTERING
PROCESSOR EMPLOYING ANALOG CIRCUITRY

proposed to carry out the distance between two high-dimensional vectors in real-

time for this purpose, which is robust against the fabrication process variations.

Based on the this modified version of K-means algorithm, the learning process

can autonomously proceed and self-converge within one clock cycle without any

additional controlling mechanism. Furthermore, the chip-area and interconnect

explosion problem can be prevented by using our proposed architecture. The

images selected from an actual database were employed to verify the learning

performances of the proof-of-concept system. According to the simulation re-

sults, all the images were correctly clustered into two categories, even if they

were initialized as messed categories randomly. Since the learning speed of the

proposed processor is very high, the on-line learning strategy will be considered

based on this processor in order to tackle larger amount of learning vectors.

52



4

On-line Learning Strategy Based

on the Fully Parallel Architecture

In the previous chapters, the analog implementations of SVM and KQC algo-

rithms were introduced on the basis of proposed fully parallel architecture. The

proof-of-concept processors were designed with sixteen learning samples for both

SVM and KQC implementations. Obviously, in the real-world applications, the

number of learning samples is usually much larger than sixteen. On the other

hand, the processing capacity of the proposed processors is limited by the fabri-

cation technology, and fixed as soon as the chip is built. Thus, the gap between

application demands and implicit limitation of hardware should be filled.

Here, an on-line-learning strategy is proposed to fill this gap. The basic idea

is to efficiently use the hardware. In order to expend the capacity of processing

(the number of learning samples), the learning operation can be repeated for

many times by the same VLSI processor. The learning results are harvested in

each round of learning. At the same time, the efficiency or importance of each

learning sample is evaluated in fully parallel. Some parts of VLSI processors

occupied by inefficient samples can be released for accepting new comers on-line.

In this manner, the capacity of on-chip learning processors is expended with the

consideration of limited hardware resource.

In fact, this on-line-learning strategy is obvious and well-known. However, it

is not widely applied in the previously proposed works on the related implemen-

tations. There are two reasons that the on-line-learning strategy is particularly

53



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

suitable for our work. Firstly, the evaluation of each learning sample’s efficiency

is expensive especially when a high parallelism is desired. Secondly, the learning

operation is time-consuming in the traditional implementations of machine learn-

ing. Repeating the learning operations for many times is unacceptable somehow

in these works. But in our work, the learning speed is sufficiently high to support

the on-line-learning strategy.

To verify the on-line-learning strategy based on the proposed architecture,

both SVM and KQC algorithms are implemented in the on-line scheme. The

system design is introduced in the following sections.

4.1 On-Line-Learning SVM

Regarding the hardware implementations of SVM, the previously presented digi-

tal and analog processors have very limited capacities on the amounts of learning

samples due to the limited hardware resource. From the essential point of view,

most learning samples (so-called non-support-vectors) are useless for the classifi-

cation after the learning. Namely, they occupy a large part of hardware but do

not contribute to the classification. Since a remarkable part of hardware is inac-

tive, the hardware-efficiency is not high for the traditional VLSI implementations

of SVMs.

One reasonable solution to enhance the capacity is applying on-line learning

strategy in SVMs, which was originally developed by software programs (57, 58).

Several works have implemented the on-line learning SVMs into the real-time ap-

plications such as the object tracking problems (59, 60) using software. However,

since on-line learning results in a large number of SVM learning operations, the

real-time applications usually require the high learning speed, which is difficult to

realize using software or traditional VLSI processors. In addition, these on-line

learning strategies always increase the number of learning samples. As a result,

they are hardly implemented by VLSI circuits with the consideration of limited

hardware resource.

The purpose of this work is to propose a hardware-efficient on-line leaning

SVM system for the classification of high-dimensional pattern vectors. The SVM

on-chip learning processor is used as the core part of this system. Based on this

54



4.1 On-Line-Learning SVM

SVM processor, a hardware-efficient on-line learning strategy has been proposed

with limited hardware resource. The performances of the proposed on-line learn-

ing system were verified by circuit simulation results. The image patterns from

an actual database were used as initial learning samples and test patterns. All

the test patterns were classified into correct classes, and the ineffective samples

were updated by the test patterns along with on-line learning.

4.1.1 Hardware-efficient on-line learning SVM methodol-

ogy

In the real-time applications of on-line learning SVMs, the number of learning

samples is usually very large and unpredictable. As a result, the traditional

on-line incrementally learning strategies (57, 58) can be hardly implemented by

VLSI circuits since the hardware resource is strictly limited. Fortunately, in SVM

theory some of the learning samples (non-support vectors) are ineffective, which

can be removed from sample space. A hardware-efficient on-line learning strategy

with constant number of learning samples is proposed in this work. In order to

reduce the loss of accuracy, the effectiveness of each sample is evaluated and only

the most ineffective sample is replaced by an on-line pattern. In this manner, the

learning sample space can be expanded within compact chip area.

(a) (b) (c)

Figure 4.1: Proposed on-line learning strategy: (a) initial learning according to a

small set of samples; (b) on-line pattern is classified and the most ineffective pattern

is identified; (c) only effective patterns (support vectors) remain after sufficient on-

line learning operations.

55



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

),( ii yXSample space

SVM processor
Winner-Take-AllX

y

Classification result

Identifying ineffective vector and replacing it by new comer

Figure 4.2: Architecture of proposed on-line learning SVM system.

16 NOR

output1

output2

outputN

1
II

c o n
−

2
II

c o n
−

N
II

c o n
−

Figure 4.3: Schematic of WTA circuit.

The strategy of proposed on-line learning SVM with a constant number of

samples is illustrated in Fig. 4.1. A set of initial learning samples (Xi, yi)1≤i≤N is

needed, where N is the number of learning samples and yi ∈ {−1, 1} is the class

label of the i-th sample Xi. The SVM learning proceeds as soon as one on-line

pattern is received. The function used to identify the most ineffective pattern is

given by

min
i

∑
j(yj ̸=yi)

αjG(Xi,Xj). (4.1)

The process of this on-line learning strategy is shown as follows:

1. Initial SVM learning according to a small set of samples as it is shown in

Fig. 4.1(a);

2. Classifying the new-received on-line pattern;

3. Evaluating the effectiveness of previous samples and replacing the most

inefficient one by new-received pattern as it is shown in Fig. 4.1(b);

56



4.1 On-Line-Learning SVM

Vo
lta

ge
 (V

)

#16

#15

#14

#13

#12

#11

#10

#9

#8

#7

#6

#3

#2

#1

#5

#4

0

replaced sample: #10 #1 #1,2,16 #2

round k round k+1 round k+2 round k+3

Figure 4.4: Circuit simulation results of the proposed on-line learning SVM sys-

tem by Nanosim: identification labels to search the most ineffective sample.

4. SVM learning according to the updated samples;

5. Receiving new on-line pattern and repeating 2, 3, and 4.

After sufficient on-line learning operations, all the inefficient samples are replaced

by significant on-line patterns as shown in Fig. 4.1(c).

4.1.2 Hardware implementation

The architecture of proposed on-line learning SVM system is illustrated in Fig.

4.2. This system is composed of an analog on-chip learnable SVM processor and

a Winner-Take-All (WTA) circuit with N candidates. According to the learning

samples (Xi, yi)1≤i≤N , on-line pattern X is classified by the SVM processor. As

57



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

0 80u 100u 120u

DATA INPUT FLAG

CLASSIFICATION RESULT

V
o

lt
a

g
e

 (
V

)

b ba a

Figure 4.5: Circuit simulation results of the proposed on-line learning SVM sys-

tem by Nanosim: on-line classification results.

0 80u 100u 120u

100n

50n

0

C
u

rr
e

n
t 

(A
)

ALPHA VALUES

Figure 4.6: Circuit simulation results of the proposed on-line learning SVM sys-

tem by Nanosim: α values during the on-line learning operations.

soon as the most ineffective sample is identified by WTA circuit, X replaces this

sample along with classification result y. The circuit design of WTA block is

given in Fig. 4.3.

58



4.1 On-Line-Learning SVM

4.1.3 Experiments

Images in two classes from an actual database COIL-20 are used as learning

samples, and several other images are used as test patterns. The class labels are

represented by a high voltage signal (class “a”) and a low voltage signal (class

“b”). All the images are converted into 64-dimensional vectors employing the

PPED method. Receiving the on-line learning patterns, the inefficient ones of

previous learning samples are indexed by high voltage signals as shown in Fig.

4.4. According to the database, all the on-line classification results in Fig. 4.5

are correct. The α values are self-adjusted while every on-line learning pattern is

input as shown in Fig. 4.6.

4.1.4 An example of real-world application: object track-

ing problem

In order to investigate the feasibility to apply the proposed on-line SVM in the

real-world task, the object tracking problem is demonstrated. A combination

of FPGA and our fabricated SVM processor is used to implement the on-line-

learning SVM for human face tracking. The FPGA board, which was programmed

by my colleague Mr. Pushe Zhao, is employed to do the preliminary visual

processes including edge detection and feature vector extraction. While a frame of

video is input to the FPGA board, plenty of sub-images (windows) are converted

to 64-D vectors and fed to the SVM learning chip. From the stored samples, the

SVM chip recognizes the human face and returns the results to the FPGA board.

Namely, the FPGA board is used as framework, and the analog SVM chip is used

as a recognition core.

Traditionally, a large number of samples considering all the possibility of ob-

ject’s appearance should be given before the tracking. But this is not practical in

some applications. The benefit to employ SVM chip is that, only a small number

of initial samples are needed to recognize objects for a long sequence of video.

In fact, in our experiment, only one sample of human faces and eight samples

of background are initially given. Along with the on-line learning, the samples

are updated when the appearances of face and background are changing. Fig-

ure 4.7 represent the contribution of the analog SVM processor to the tracking

59



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

Figure 4.7: In one frame of video, the SVM chip successfully recognizes the human

face from eight candidates.

task. In one frame of video, the SVM chip successfully recognizes the human face

from several candidates, and returns these results to FPGA board. The updating

operations for on-line strategy is managed by the FPGA.

4.2 On-Line-Learning KQC clustering

The on-line-learning strategy can be also applied in the KQC clustering problems

to expend the number of samples. By previously proposed work, the on-line

learning strategy (63) has been developed for the K-means algorithm. Its learning

process kept receiving on-line samples when the sample space was expended. It

has been proved that, this on-line learning strategy is helpful to deal with the

incremental sample space and the ill initialization. However, this method was

realized by a software program, and the number of dimensions of sample vectors

was only two. The purpose of this work is to implement the on-line learning KQC

algorithm by VLSI circuits for the categorization of high dimensional sample

vectors. The previously introduced KQC processor is used as learning core of

this system. In order to verify the proof-of-concept processor, the images of two

objects selected from the COIL-20 database (44) are converted into 64-D feature

vectors as learning samples. Upon receiving an on-line sample vector, the learning

process autonomously proceeds and self-converges within one clock. According

60



4.2 On-Line-Learning KQC clustering

(a) (b)

(c) (d)

initialization initial clustering

identify inefficient sample remove it, read in new one

Figure 4.8: On-line-learning scheme of KQC clustering method.

to the Nanosim simulation results, all the images were categorized into correct

classes with a randomly ill initialization.

4.2.1 On-line-learning KQC algorithm

With the similar mechanism to on-line-learning SVM, the essence of on-line KQC

clustering is to update the learning samples along with each round of learning.

At the beginning, the first round of clustering is processed by using the initial

learning samples. Upon receiving a new sample vector on-line, the efficiency of

each current sample vector is evaluated according to: mini

∑
j(yj ̸=yi)

αjD(Xi,Xj),

where yi is the category label of the i-th sample. The most inefficient sample is

updated by the coming sample. The learning process flow is given as follows:

1. Setting up an initial sample space with a small size;

61



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

i
XSample space

K-means circuitry Winner-Take-All

remove ineffective sample

results

on-line sample

Figure 4.9: Organization of proposed on-line learning KQC system.

2. Calculating the Euclidean Distances from every vector to all the others and

initializing the categorization randomly as shown in Fig. 4.8(a);

3. evaluating the similarities from a specific vector to all the categories (by

calculating the average distances from the specific vector to all the vectors

from the same category);

4. resetting the categorization label for this specific vector according to the

evaluation as shown in Fig. 4.8(b);

5. repeating steps 3 and 4 till all the given vectors have been re-clustered;

6. results converging and updating the sample space as shown in Fig. 4.8(c)

and (d);

In this manner, the number of learning samples can be expended to infinite

theoretically.

4.2.2 Hardware implementation

The proof-of-concept processor is designed to realize the on-line learning KQC

clustering function. Figure 4.9 illustrates the processor organization, which con-

sists of an analog fully-parallel self-converging K-means circuitry and a winner-

take-all (WTA) circuit. Sixteen sample vectors with 64 dimensions are used as

62



4.2 On-Line-Learning KQC clustering

Vo
lta

ge
 

#16

#15

#14

#13

#12
#11

#10

#9

#8

#7

#6

#5

#4

#3

#2

#1

replaced samples: #2 #6 #5 #8

Time 
s s s s s s s s s s s s

Figure 4.10: Indexes to select the most inefficient sample.

a fixed sample space. The analog K-means circuitry clusters these sample vec-

tors into two categories in real-time. The WTA circuit is introduced to evaluate

the current sample space, and identify the most inefficient sample, which will be

replaced by an new coming sample on-line.

4.2.3 Simulation results of on-line learning process

The KQC on-line learning processor has a fixed hardware set for sixteen sample

vectors. A small number of sample vectors are initially read in the learning cir-

63



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

a
b

b

b

b

b

b
b
b

b

a
a
a

a

a
a

a

a

a

a

a

a
a

a

b

b

b
b

b
b
b

b

a

a
a

a

a

a
a

b

b

b

b
b

b
b
b

b

a

a
a

b

a

a
a

b

b

b

b
b

b
b
b

b

a

a
a

b

a

a
a

b

b

b

b
b

b
b
b

b

Vo
lta

ge

#16
#15

#14

#13

#12

#11

#10

#9

#8

#7

#6

#5

#4

#3

#2

#1

initial samples with random label round 2round 1 round 3round 4

Time 
s s s s s s s s s s s s

Figure 4.11: On-line learning process in different rounds. The shadow marks a

sample which has been replaced by a new sample during the previous round.

cuitry, and the learning operation proceeds for the first round. During each round

of learning process, the most ineffective sample is indexed by a selection-signal as

shown in Fig. 4.10. Upon receiving a new sample on-line, this ineffective sample

will be replaced by the new sample according to the selection-index. When the

sample space is updated, the learning operation proceeds as the next round. The

cluster-label for each sample is presented in Fig. 4.11 in several on-line learning

rounds. Considering plenty of different learning samples (random initialization

64



4.2 On-Line-Learning KQC clustering

Table 4.1: Performance comparisons.

(61) (62) This work

Implementation FPGA & CPU Digital Analog

Number of devices N/A 414K gates 20K Tran.s

Distance measurement Manhattan Euclidean Euclidean

Number of dimensions 2 1 ∼ 8 1 ∼ 64

Number of iterations 25 16 self-converging

Speed (vectors/s) < 4.93× 106
∗

1.38× 106 10× 106

Number of samples 2905 76.8× 103 on-line

∗ Some of the calculations were pre-processed by the software program.

and on-line-updating samples), the learning operations successfully converge in

every round of the entire on-line sequence. The shadow marks a sample which

has been replaced by a new sample during the previous round. From the Nanosim

simulation results, all the on-line test samples are clustered into correct categories.

4.2.4 Comparisons

The performance comparisons among this work and some other works are shown

in Tab. 4.1. The learning complexity is greatly related to the number of di-

mensions of the sample vectors. Thus, previously reported works (61, 62) were

difficult to be implemented in the highly dimensional applications. By using the

proposed architecture, a larger number of dimensions and samples, even a higher

learning speed were achieved with less complexity of hardware. Furthermore,

the self-convergence is helpful to improve the learning performances compared

with the traditional approach, which stops learning by setting a fixed number of

iterations.

4.2.5 Reliability

Generally, the accuracy of calculational analog circuits is poorer than that of

software programs and digital circuits. Plenty of factors influence the precision

65



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

of the storage and calculations for analog signals, which might lead to defective

results of K-means learning.

The error of calculations is mainly resulted by the mismatch and deviation

problems on all the devices (especially the threshold voltages of MOS transis-

tors). On the other hand, the storage of sampling voltages also results in errors.

Since the capacitors are used as analog memories, the switch channel charges

and the leakage current of capacitors cause the voltage drops ∆Vsw and ∆Vleak,

respectively. In the K-means learning circuitry, voltages representing the ele-

ment values of patterns are broadcasted to block I controlled by sixteen sets of

switches. Considering the originally stored voltage as Vorig, the effect of switch

channel charge can be described as ∆Vsw/Vorig =
16Csw

Csampling+16Csw
, where Csampling

and Csw are the voltage sampling capacitance and the equivalent capacitance due

to switch channel charge, respectively. In this sense, large sampling capacitance

and small size of switching transistors are suggested to reduce the voltage drops.

The voltage drops due to the leakage current of sampling capacitors are related

to the entire time of usage. Therefore, this effect appears when the proposed

processor operates in the on-line learning mode and the number N of on-line

patterns is very large. Since the digital data with a bit-length of eight is used as

input, the expected accuracy of analog voltages is VDAC/256 (about 4 mV in this

work) after D/A conversion. The information of patterns will be correctly kept

in the analog memories if the voltage drop is smaller than 4 mV. Assuming the

leakage current density and capacitance density are J and Cden, respectively, the

reliable condition becomes 10NJ
Cdenf

< VDAC

256
, where f is the operational frequency.

The effects of all these errors to the clustering results are also related to the

learning patterns. Fortunately, in the K-means theory, the similarity comparisons

among patterns are concerned rather than the absolutely accurate calculations.

In some related works (64), it is reported that the poor calculational accuracy

has acceptable effect on K-means learning result.

4.3 Summary

An on-line-learning strategy for implementing learning algorithms was proposed

in this chapter. The essence of this strategy is to expend the learning capacity

66



4.3 Summary

with a consideration of limited hardware resource. This methodology is par-

ticularly suitable for our proposed hardware architecture due to high learning

speed and parallelism. To verify the proposed methodology, the SVM and KQC

algorithms have been implemented in a on-line-learning form and verified by cir-

cuit simulation. Even, a real-world application of object tracking problem was

demonstrated as an example. It should pointed out that, the practical capacity

of on-line-learning processor is strongly limited by some reliability factors.

67



4. ON-LINE LEARNING STRATEGY BASED ON THE FULLY
PARALLEL ARCHITECTURE

68



5

Support Vector Domain

Description

An analog VLSI hardware implementation of support vector domain description

(SVDD) has been developed in this work. SVDD algorithm is found more flexible

and practical than the standard SVM algorithm in the multi-class recognition

problems. On the other hand, it is more complicated to solve mathematically and

implement in silicon. A special solution scheme for SVDD problems is proposed

on the basis of fully parallel process. The on-chip learning operation of SVDD

algorithm was implemented by an analog on-chip learning processor based on the

fully parallel architecture. A proof-of-concept chip was built for sixteen learning

sample vectors. From the circuit simulation results, the entire learning operation

is accomplished within 0.6 µs, and the domain of sample space is described by

a reduced number of sample vectors. In addition, the various forms of domain

description can be realized by tuning the kernel function feature dynamically.

5.1 Introduction to the Analog SVDD Proces-

sor

Traditionally, the SVM algorithm was developed for the binary classification prob-

lems. Two classes of learning samples are needed for a standard SVM classifi-

cation. A complicated mechanism was introduced to solve multi-class classifica-

69



5. SUPPORT VECTOR DOMAIN DESCRIPTION

tion problems (65). In the real-world applications, various numbers of classes

might be required, even only a single class of learning samples are available in

some applications. To solve these problems, a data domain description theory

(also called one-class classification) was developed as an extension of SVM the-

ory (66, 67, 71), which is named support vector domain description (SVDD).

The SVDD algorithm has been applied in some classification problems (68), even

unsupervised clustering problems (70) by software programs.

However, the learning operation of SVDD algorithm requires iterative ma-

trix computations. Therefore, software implementations of SVDD learning are

very time-consuming, even if some advanced mathematical methods are employed

(69). Furthermore, the conventional hardware implementation strategies can be

hardly applied for SVDD problems due to the matrix computations. Regard-

ing the highly dimensional pattern recognition, the problem becomes even more

complicated.

The purpose of this work is to report a feasibility study of VLSI hardware

implementation for SVDD problems. The proposed fully parallel architecture

employing the Gaussian generation circuit is applied for this purpose. By using

a proposed solution of SVDD, a proof-of-concept chip is built for the multi-

class recognition of image patterns. From the experiment results, the entire

learning operation is accomplished within 0.6 µs, and the domain of sample space

is described by a reduced number of sample vectors. Furthermore, various forms of

domain descriptions can be realized by tuning some learning parameters according

to the original SVDD theory. All the test image patterns are classified into correct

classes from the measurement results.

5.2 The Application of SVDD in This Work

The target application of this work is the image recognition with multi-class

samples. In the standard SVM algorithm, learning is processed by using two

classes of learning samples. Thus, SVM is one of the so-called binary classification

algorithms. However, multi-class recognition is always needed in the real-world

applications. Figure 5.1 represents the multi-class classification task for images

employing the SVDD mechanism.

70



5.3 Algorithm

……

…… ……

……

……

……

……

………

……

……

……

……

……

……

……

……

……

……

……

……

…………

……

… … …

…

A
s

s
o

c
ia

tive
 M

em
o

ry w
ith

 L
ea

rn
in

g
 F

u
n

c
tio

n

…

…

Test patterns

Learning samples

……………… ...... ?

Figure 5.1: Multi-class classification task for images employing the SVDD mech-

anism.

In fact, each class of samples and its learning operation are independent to

others. Therefore, the number of classes can be freely increased or decreased

according to the application demands. One VLSI learning chip is applied for the

on-chip learning of one class. During the recognition session, the test pattern is

broadcasted to all the chips as it is shown in Fig. 5.2. The result is output by

this system in real-time. In this manner, multi-class recognition is achieved with

a high performances.

There are several benefits using the SVDD algorithm in the image recognition

problems. Sharing some properties with the standard SVM, SVDD algorithm

can obtain an accurate classification boundary by remarkably reduced number

of samples. On the other hand, the number of classes can be freely expended.

Furthermore, the volume of data domain can be reasonably given by the learning

operation.

5.3 Algorithm

To classify the n-dimensional vectors Xs with the form of X = (x1, x2, · · · , xn).

A set of learning samples {Xi, 1 ≤ i ≤ N} is given, where N is the number of

samples.

71



5. SUPPORT VECTOR DOMAIN DESCRIPTION

...

...

...

..
. ... ..
.

...

...

...

..
. ... ..
.

...

...

...

..
. ... ..
.

Class1 Class2 ClassN

SVDD
Chip1

SVDD
Chip2

SVDD
ChipN

...

Class1
...

Class2
...

ClassN

Learning samples

Associate memory

Domain description

Input broadcast

Recognition results

Figure 5.2: Organization of multi-class recognition system employing SVDD al-

gorithm.

We try to find a sphere with minimum volume R, containing all (or most of)

the data objects, which is defined by:

F (R, a, ξi) = R2 + C
∑
i

ξi, (5.1)

where, a is the center of this sphere; ξi is a slack variable for error tolerance; and

parameter C gives the trade-off between simplicity (or volume of the sphere) and

the number of errors (number of target objects rejected). This function has to be

minimized under the constraints:

(Xi − a)T(Xi − a) ≤ R2 + ξi, (5.2)

Applying the theory developed for original SVDD algorithm, and consider-

ing the Gaussian Kernel function K(Xi,Xj) = e−
∥Xi−Xj∥

2

σ , the task becomes the

following Quadratic Programming (QP) problem:

minL = 1−
∑
i

α2
i −

∑
i̸=j

αiαjK(Xi,Xj), (5.3)

under the constraints: ∑
i

αi = 1, (5.4)

72



5.3 Algorithm

and 0 ≤ αi ≤ C. In order to solve this QP problem, another Lagrangian function

is constructed with multiplier λ:

L = L+ λ(
∑

i αi − 1)
= 1−

∑
i α

2
i −

∑
i ̸=j αiαjK(Xi,Xj) + λ(

∑
i αi − 1)

. (5.5)

Then, the following equations should be solved to minimize L:{
∂L
∂αi

= 0∑
i αi − 1 = 0

(5.6)

The expansion of these equations is in the linear form as:

−2α1 −
∑

j ̸=1 αjK(X1,Xj) + λ = 0

−2α2 −
∑

j ̸=2 αjK(X2,Xj) + λ = 0
...

−2αN −
∑

j ̸=N αjK(XN ,Xj) + λ = 0

α1 + α2 + . . .+ αN = 1

. (5.7)

With the consideration of Gaussian function kernel (αiK(Xi,Xi) = αi), these

linear equations can be equivalently converted into:

−2α1 −
∑

j ̸=1 αjK(X1,Xj) + λ = 0

−2α2 −
∑

j ̸=2 αjK(X2,Xj) + λ = 0
...

−2αN −
∑

j ̸=N αjK(XN ,Xj) + λ = 0

−
∑

i

∑
j αjK(Xi,Xj) +Nλ = 1

. (5.8)

The Jacobian Iterative method is applied to solve these linear equations.

Thus, the iterative updating rule is obtained as:{
αi ← 1

2
(λ−

∑
j ̸=i αjKij)

λ← 1
N
(1 +

∑
i

∑
j αjK(Xi,Xj))

, (5.9)

By considering the upper and lower boundary of α and λ, the final updating rule

becomes: {
αi ← max(0,min(1

2
(λ−

∑
j ̸=i αjKij), C))

λ← max(0, 1
N
(1 +

∑
i

∑
j αjK(Xi,Xj)))

. (5.10)

The trade-off parameter C should be set within an interval of 1/N ≤ C ≤ 1 to

guarantee the solution of QP problem can be obtained (66).

73



5. SUPPORT VECTOR DOMAIN DESCRIPTION

Obviously, a large scale of parallel matrix computation is needed to update λ

by this method. It is the reason why the fully parallel architecture is considered

in this work based on the analog Gaussian-cell array.

During the test session, to determine whether a test object Z is within the

sphere, the distance to the center of the sphere has to be calculated. When

(Z−a)T(Z−a) ≤ R2 is satisfied, the object Z is accepted. Expressing the sphere

center in forms of the support vectors, the object Z is accepted when

1− 2
∑
i

αiK(Z,Xi) +
∑
i,j

αiK(Xi,Xj) ≤ R2. (5.11)

Theoretically, the distance from any support vector Xs to the center should be

R. Thus, the constant items in Eq. 5.11 could be observed by using any support

vector in the following form:

1 +
∑
i,j

αiK(Xi,Xj)−R2 = 2
∑
i

αiK(Xs,Xi). (5.12)

In this manner, the object Z is accepted when the following condition is satisfied:

∑
i

αiK(Z,Xi) ≥
∑
i

αiK(Xs,Xi). (5.13)

In this work, the support vector with the largest alpha value is selected for ob-

servation.

5.4 Hardware Implementation

A proof-of-concept processor is built to implement the learning operation of

SVDD algorithm in a 0.18µm CMOS technology. The organization of proposed

processor is illustrated in Fig. 5.3 along with its chip micrograph in Fig. 5.4. The

entire processor contains an analog Gaussian-cell array, a set of alpha adjusters,

and a lambda adjuster. All the Gaussian kernel functions are carried out by the

Gaussian-cell array in real-time and fully parallel. During the learning session,

these function values are fed into the alpha and lambda adjusters; the updated al-

pha and lambda values are freely fed back to the Gaussian-cell array in the forms

74



5.4 Hardware Implementation

),( 111 XXKα

Nα

1α

2α

),( 212 XXKα ),( 1 NNK XXα

),( 121 XXKα ),( 222 XXKα ),( 2 NNK XXα

),( 11 XXNKα ),( 22 XXNKα ),( NNNK XXα

λ

2

2 )( XX −− i

2

1)( XX −− i

2)( Ni XX −−

1XX =i

2XX =i

Ni XX =

)/)(exp(),( 2
σjijiK XXXX −−=

λ

Figure 5.3: Fully parallel on-chip learning SVDD processor.

of analog signals. In this manner, the learning operation proceeds autonomously

and self-converges without any clock-based control. During the test session, only

the Gaussian cells in the first row are used, and all the calculations for an object

test are also carried out in parallel and real-time according to Eq. 5.13.

The analog Gaussian generation circuit has been introduced in the previous

chapters. Receiving two vectors in the form of voltages Vi = (vi1, vi2) and Vj =

(vj1, vj2), the Gaussian function related to these two vectors can be computed as

Iout =
Iα
2
e−γ||Vi−Vj ||2 , (5.14)

where

γ =
Kn

(Vdd − Vbias − |Vthp|)(
√

Kp +
√
Kn)2

, (5.15)

Vthn and Vthp are the threshold voltages of the n-type and p-type MOS transis-

tors, respectively. The current Iα reflects the alpha value in Eq. 5.10, which is

dynamically programmed by the alpha adjusters. The spread-width of Gaussian

function feature is programmed by tuning the voltage signal Vbias.

75



5. SUPPORT VECTOR DOMAIN DESCRIPTION

Euclidean calculation

1100 x 640 um

Exp. array 

400 x 320um

Learners

WTA

DAC

Figure 5.4: Micrograph of fabricated SVDD learning chip.

∑
row

iout
I

_

λ
I

α
I

c
I

c
I

Figure 5.5: Schematic of alpha adjuster circuit.

A current mirror based circuit is designed as the alpha adjuster as shown in

Fig. 5.5. By collecting the output current of Gaussian cells in a specific row,

the updated current Iα is output to the respective column of Gaussian-cell array

according to update rule in Eq. 5.10. The current source Ic is introduced to

reflect the trade-off parameter C. The circuit schematic of lambda adjuster is

shown in Fig. ??. The lambda adjuster collects the output current from all the

Gaussian cells, and the updated lambda value is fed into all the alpha adjusters.

The current source Iunit reflects the constant factor “1” in Eq. 10. Therefore, the

parameter C is represented by C = Ic/Iunit.

76



5.5 Experiments

∑
array

ioutI _
λ
I

unitI

Figure 5.6: Schematic of alpha adjuster lambda.

5.5 Experiments

5.5.1 2-D pattern recognition employing SVDD

A toy-example with sixteen learning samples is set up to verify the performances

of the proposed proof-of-concept processor. Each learning sample is represented

by a set of voltage signals. For instance, the learning sample X = {0.6, 0.6} is

represented by V = {0.6V, 0.6V }. In this application, a Gaussian-cell array with

16× 16 elements is constructed. The HSPICE simulation results and description

boundaries are shown in Fig. 9 by applying different Gaussian function features.

For this experiment, the parameter C is set as 0.08 by setting the current Iunit

and Ic as 10µA and 0.8µA, respectively. From the simulation results, there is no

any outlier with these configurations, and the learning operation is accomplished

within about 0.6µs. When a wide spread of Gaussian function feature is applied,

a rough domain is described by 7 support vectors as it is shown in Fig . 5.7(a). An

improved domain description is obtained by applying a narrow spread of Gaussian

function feature, which is shown in Fig. 5.7(b). However, the number of support

vectors is increased in this case.

77



5. SUPPORT VECTOR DOMAIN DESCRIPTION

s
u

p
p

o
rt

 v
e
c
to

rs
n

o
n

-s
u

p
p

o
rt

 v
e
c
to

rs

n
u

m
b

e
r 

o
f 

S
V

s
 i
s

 7
V

b
ia

s
=

0
.8

V

T
im

e
(s

)

Current (A)

G
a
u

s
s
ia

n
 k

e
rn

e
l 
fe

a
tu

re
A

lp
h

a
 v

a
lu

e
s
 (

p
re

s
e
n

te
d

 b
y
 I

c
) 

d
u

ri
n

g
 t

h
e
 l
e
a
rn

in
g

d
o

m
a
in

 d
e

s
c
ri

p
ti

o
n

in
p

u
t 
v
o

lt
a

g
e

 (
V

)

Current (A)40
0n

20
0n

(a
)

n
u

m
b

e
r 

o
f 

S
V

s
 i

s
 1

0

s
u

p
p

o
rt

 v
e

c
to

rs
n

o
n

-s
u

p
p

o
rt

 v
e

c
to

rs

V
b

ia
s
=

1
.2

V

T
im

e
 (

s
)

Current (A)

G
a

u
s

s
ia

n
 k

e
rn

e
l 

fe
a

tu
re

A
lp

h
a

 v
a

lu
e

s
 (

p
re

s
e

n
te

d
 b

y
 I

c
) 

d
u

ri
n

g
 t

h
e

 l
e

a
rn

in
g

d
o

m
a

in
 d

e
s

c
ri

p
ti

o
n

in
p

u
t 
v
o

lt
a

g
e

 (
V

)

Current (A)40
0n

20
0n

(b
)

F
ig
u
re

5
.7
:
S
u
p
p
o
rt

v
ec
to
r
d
om

a
in

d
es
cr
ip
ti
o
n
o
f
a
to
y
-e
x
a
m
p
le

w
it
h
si
x
te
en

le
a
rn
in
g
sa
m
p
le
s:

(a
)
w
h
en

a
w
id
e
sp
re
ad

of
G
au

ss
ia
n
fu
n
ct
io
n
fe
a
tu
re

is
ap

p
li
ed
,
a
ro
u
g
h
b
o
u
n
d
a
ry

is
d
es
cr
ib
ed

b
y
7
su
p
p
o
rt

v
ec
to
rs
;
(b
)
w
h
en

a
n
ar
ro
w

sp
re
a
d

of
G
au

ss
ia
n
fu
n
ct
io
n
fe
a
tu
re

is
a
p
p
li
ed
,
a
n
im

p
ro
ve
d
b
o
u
n
d
a
ry

is
d
es
cr
ib
ed

b
y
1
0
su
p
p
or
t
v
ec
to
rs
.

78



5.5 Experiments

Small width of Gaussian-kernel function feature (Vbias = 1.2V)

Large width of Gaussian-kernel function feature (Vbias = 0.8V)

C = 0.08 (Ic = 800nA)

C = 0.08 (Ic = 800nA)

C = 0.15 (Ic = 1500nA)

C = 0.15 (Ic = 1500nA)

number of SVs: 10 number of SVs: 9

number of SVs: 7 number of SVs: 4

Figure 5.8: Variations of support vector domain description when different pa-

rameter C is set.

The effect of parameter C on the variations of domain description is also

investigated. Using the same learning samples, the parameter C is set as 0.15 by

setting the current Iunit and Ic as 10µA and 1.5µA. The number of support vectors

is obviously reduced. On the other hand, some errors (outliers) are introduced

by these domain descriptions as shown in Fig. 5.8.

5.5.2 64-D pattern recognition employing SVDD

Regarding the real-world applications, an associative memory system for image

recognition is constructed by the SVDD learning chips. In the proof-of-concept

system, three fabricated chips are used as SVDD learner. Namely, three classes

of images from the COIL-20 database are employed as learning samples. The

recognition performances of single SVDD learning chip is given in Fig. 5.9 by the

circuit simulation results.

79



5. SUPPORT VECTOR DOMAIN DESCRIPTION

......

......

SVDD

Chip 

learning classify

Figure 5.9: Circuit simulation results of 64-D learning/classifying performances

of single SVDD learning chip.

80



5.5 Experiments

......

......

......

......

......

......

SVDD

Chip 1

SVDD

Chip 2

SVDD

Chip 3

learning

learning

learning classify

classify

classify

Figure 5.10: Chip measurement results of an associative memory system employ-

ing SVDD learning processor: three chips are used as SVDD processors indepen-

dently. The test patterns are broadcasted to all the chips.

Chip measurement results for the proposed associative memory system is

shown in Fig. 5.10. Three chips are used as SVDD processors independently.

The test patterns are broadcasted to all the chips. In this manner, three classes

of learning samples are used for data domain description. After the learning ses-

sion, test test patterns are broadcasted to all the chips. If the test pattern belongs

to a specific class, the respective chip outputs a signal of high voltage. From this

figure, some test patterns do not belong to any sample class. Thus, none of the

output signals is high voltage.

5.5.3 Comparisons

81



5. SUPPORT VECTOR DOMAIN DESCRIPTION

T
a
b
le

5
.1
:
P
er
fo
rm

a
n
ce

co
m
p
a
ri
so
n
s.

(4
1)

(6
8)

T
h
is
w
or
k

Im
p
le
m
en
ta
ti
on

A
n
al
og

V
L
S
I

S
of
tw

ar
e
(M

at
la
b
)

A
n
al
og

V
L
S
I

A
lg
or
it
h
m

S
ta
n
d
ar
d
S
V
M

S
V
D
D

S
V
D
D

L
ea
rn
in
g
p
ar
al
le
li
sm

R
ow

p
ar
al
le
l

N
/A

F
u
ll
y
p
ar
al
le
l

K
er
n
el

fu
n
ct
io
n

G
au

ss
ia
n

G
au

ss
ia
n

G
au

ss
ia
n

N
o.

of
sa
m
p
le
s

12
u
n
li
m
it
ed

16

N
o.

of
d
im

en
si
on

s
2

2
∼

18
2
∼

64

L
ea
rn
in
g
sp
ee
d

16
.7
/l

∗
×

10
6
ve
ct
or
s/
se
c

2.
78
×

10
3
ve
ct
or
s/
se
c
(2
-D

ve
ct
or
s)

26
.7
×

10
6
ve
ct
or
s/
se
c

*
l
is
th
e
n
u
m
b
er

of
it
er
at
io
n
s
fo
r
co
n
ve
rg
en
ce
.

82



5.6 Summary

The performance of proposed SVDD on-chip learnable processor is presented

in Tab. 5.1. An analog implementation of standard SVM and a software imple-

mentation of SVDD algorithm are introduced as comparisons. Since an analog

fully parallel array is constructed in this work, the learning speed is much higher

compared with the software implementation, even the analog implementation of

standard SVM.

5.6 Summary

The feasibility of analog VLSI implementation of on-chip learnable SVDD was

studied in this work. For this purpose, a fully parallel analog on-chip learning

SVDD processor was built in a 0.18µm CMOS technology. The learning operation

of this SVDD processor autonomously proceeds without any clock-based control,

and self-converges with a high speed. From the HSPICE simulation results of

a toy-example, the learning can be accomplished within 0.6µs, and the domain

boundary is described by a reduced number of learning samples. Furthermore,

various forms of domain description were also demonstrated by circuit simulation

results. For the multi-class recognition problems, an associative memory system

was built employing three SVDD learning chips. Three classes of real images were

used as learning samples. From the measurement results, all the test patterns

were classified into correct classes respectively.

83



5. SUPPORT VECTOR DOMAIN DESCRIPTION

84



6

Conclusion

6.1 Summary of This Thesis

A fully parallel analog VLSI architecture was proposed in this thesis for imple-

menting learning algorithms. Several analog circuitries were designed to carry

out the complex functions such as Gaussian function and Euclidean distance.

These computations in the learning algorithms can be done in real time within

the compact chip area. Employing these analog circuitries, a general applied

analog architecture was developed preventing the chip area explosion problem.

Since the chaos of analog signals is used for learning instead of clock-based nu-

merical iterations, the learning operation can be accomplished autonomously and

self-converges with a high speed.

In order to solve some pattern recognition problems, several machine learning

algorithms were implemented by the proposed fully parallel architecture. A fully

parallel SVM on-chip learning processor was built for pattern classification prob-

lem. As the kernel element of SVM processor, an analog Gaussian generation

circuit was developed for highly dimensional pattern vectors. The center, height,

and width of the generated Gaussian function feature can all be programmed

easily. Furthermore, the chip-area-hungry part for highly dimensional Euclidean

distance computations and the much smaller part for exponential computation

are built separately. Only the exponential computing circuits should be dupli-

cated for a high degree of parallelism. Therefore, the fully parallel architecture

85



6. CONCLUSION

was fabricated within a compact chip area. To verify the performance of pro-

posed SVM processor, sixteen object images from a database were converted into

64-dimensional vectors and fed into the processor as learning samples. After self-

learning, several other vectors were used as test patterns. From measurement

results, the SVM processor classified all the testing patterns into correct classes

with a high speed.

The proposed fully parallel architecture can be also used to implement the

unsupervised machine learning algorithms. On the basis of K-means mechanism,

which is an important pattern clustering algorithm, a hardware efficient version

was developed and named as KQCs method. By implementing this modified

clustering algorithm, the proposed analog fully parallel architecture was applied

to solve the unsupervised pattern clustering problem. The proof-of-concept pro-

cessor was designed for 64-dimensional vectors categorization. From the circuit

simulation results, this processor correctly carried out the learning function for

image pattern clustering in a high speed.

Furthermore, an on-line-learning strategy was proposed to expend the num-

ber of learning sample considering the limited hardware resource. The learning

operation can be repeated for many times by the same VLSI processor. Learning

results are harvested in each round of learning. At the same time, the efficiency

or importance of each learning sample is evaluated in fully parallel. Some parts

of VLSI processors occupied by inefficient samples can be released for accepting

new comers on-line. In this manner, the capacity of on-chip learning processors

is expended with the consideration of limited hardware resource. Both SVM and

KQC algorithm were implemented in the scheme of on-line learning, and verified

by the circuit simulation results.

At last, the SVDD algorithm was implemented by the proposed fully par-

allel architecture, which was found more advanced than the standard SVM in

the multi-class classification problems. An analog SVDD learning processor was

built for the 64 dimensional vectors. Employing three chips of this processor, an

associative memory system was constructed for the recognition of images from

three classes. From chip measurement results, all the test patterns were correctly

recognized with a high speed.

86



6.2 Perspectives

6.2 Perspectives

As it is well known, the analog computational circuits have poorer accuracy than

that of software program or digital circuits. Moreover, the storage and processing

of analog signals are not always reliable. This is one of important reasons that

machine learning algorithms were mainly implemented by software programs and

digital VLSI circuits by the previously developed works. In this thesis, a fully par-

allel architecture of analog VLSI circuits was introduced for implementing some

learning algorithms. This architecture performs several benefits over learning

speed, chip area and power consumption. It has even been fabricated in silicon

and applied for solving some real-world problems. However, the reliability and

flexibility are still poorer than the digital approaches. Thus, deeper investigation

on the reliability issue is always needed for the analog implementations.

One of reasonable solution to reliably apply analog learning processor is the

combination of analog and digital circuits (even software) as it was pointed out by

some early works (14). We have ever tried the combination of analog SVM learn-

ing chip and FPGA board, even applied it for the real-world task. This attempt

encourages us to make further exploration of analog-digital mixed processors.

Ambitiously, new fabricated technologies even physics devices are desired in

the future exploration. For instance, if the 3-D fabricated technology is available

in our work, the number of vector dimensions would not be limited by the pins

of a VLSI chip. In the beyond CMOS era, the use of analog signals could be

promising and exciting.

87



6. CONCLUSION

88



Appendix A

CMOS Supporting Circuitries for

Nano-Oscillator-Based

Associative Memories

the pattern recognition problem can be solved by using not only machine learning

algorithms but also some other soft-computing technologies based on the asso-

ciative memory function. “Let physics do computing” is a promising approach to

new-paradigm computing in the beyond CMOS era. Building associative memo-

ries based on the physics of nano oscillators presents a lot of potential for pattern

recognition. Using CMOS ring oscillators to emulate the nano oscillator behav-

ior, how to produce the associative memory function and to use it for image

recognition is investigated in this thesis.

A.1 Introduction

Facing the fundamental limitations in the scaling of conventional devices, utiliz-

ing the physics of nano-scale devices directly for computation is quite appealing.

It not only enhances the functionality per device but also allows us to integrate

a profusion of high-functionality devices in a small chip area. It was proposed

to use the highly non-linear resonance-type I-V characteristics in quantum-effect

devices for building associative memories (72, 73). The concept was verified by

experiments using simple CMOS circuits emulating the resonance characteristics

89



A. CMOS SUPPORTING CIRCUITRIES FOR
NANO-OSCILLATOR-BASED ASSOCIATIVE MEMORIES

Figure A.1: Associative memory configuration.

(? ), and also using single electron transistors operating at a room temperature

(74). On the other hand, it is well known that the non-linear dynamics of coupled

oscillators presents rich computational powers (75). In the non-Boolean architec-

ture project supported by the Intel Labs University Research office, methodolo-

gies have been explored to build associative memories based on the dynamics of

coupled nano oscillators, such as STOs (76) and RBTs (77).

In this appendix, the supporting circuits that interface between the fabric

of nano device oscillators and digital computing is presented. In order to clar-

ify the role of CMOS supporting circuitries, nano oscillators are emulated by

frequency-tunable CMOS ring oscillators and the recognition operation has been

demonstrated by HSPICE simulation.

A.2 Associative Memory Architecture

Fig. A.1 illustrates the basic associative memory configuration composed of mul-

tiple associative clusters. Each associative cluster computes the degree of match-

ing (similarity) between the input vector X and the template vector Ti stored

in the cluster. The maximum degree-of-match location is identified by the win-

ner localizer and a flag “1” is set at the location. (Such a circuit is called the

90



A.2 Associative Memory Architecture

Figure A.2: Star frequency keying model.

winner-take-all (WTA) and a variety of architectures have been developed either

in analog or digital CMOS technologies.) This flag controls the data output from

the local data memory (LDM) at the winner location. In most cases, output is the

class label, thus the classification or recognition of the input data being accom-

plished. In either digital (78) or analog (19) CMOS implementation of associative

memories, associative clusters occupy the largest area on the chip. Therefore, in

the non-Boolean architecture project it is planned to build the associative clusters

in the nano device physics domain using coupled nano oscillators and other parts

by conventional CMOS circuits.

An important issue here is how to implement the template memories that

store the pattern data to be matched with input patterns preferably with non-

volatility. In CMOS implementations (19, 78), SRAMs were used. In the case of

analog matching cell, on-chip D/A converters were employed and analog template

data were temporarily stored as charges on the capacitors in the analog matching

cell (19). In nano device implementation, spin torque transfer memory could be

a good choice if spin-transfer nano-oscillators (STNOs) are employed in building

associative memories.

Two schemes have been explored for coupled-oscillator-based associative mem-

ories: “star phase keying” and “star frequency keying” (79). The former was ap-

plied to building Hopfield network architecture and the results by Hoppensteadt

and Izhikevichin (80) were reproduced. Fig. A.2 shows the latter scheme in which

each nano oscillator frequency is shifted by the difference between the template

and input vector elements, and their outputs are summed by an averager and the

91



A. CMOS SUPPORTING CIRCUITRIES FOR
NANO-OSCILLATOR-BASED ASSOCIATIVE MEMORIES

Figure A.3: Frequency-tunable CMOS ring oscillator emulating a nano oscillator.

The insert at the bottom left shows the symbol representing the oscillator.

Va=0 Va=0.3V
Va=0.6V

Va=0.9V

f=167MHz f=299MHz f=381MHz f=487MHz

(a)

Non external  

oscillation  

input  

(b)

Figure A.4: Natural frequency control vs. Va.

sum is broadcasted back to each oscillator. The synchronization among oscillators

maximizes when the input vector is close to the template vector because oscilla-

tor frequencies come closer to each other. In STNOs, the oscillation frequency is

easily tuned by the DC bias current (81).

92



A.3 Associative Memory Circuits

… ..
.

Subtracter

Subtracter

Subtracter

Subtracter

Subtracter

Subtracter

VCO_P

VCO_N

In

Out

VCO_P

VCO_N

In

Out

VCO_P

VCO_N

In

Out

),,(
21 n

xxx ⋅⋅⋅=X

x1

t1

x2

t2

xn

tn

),,(
21 n

ttt ⋅⋅⋅=T

Input pattern:

Template pattern:

VDD

VDD

VDD

)(
11 txb
vvv −+

)(
22 txb
vvv −+

)(
tnx nb
vvv −+

DC bias : Vb

Control voltage generator

(a) (b)

Figure A.5: (a) Associative cluster composed of frequency-tunable CMOS ring

oscillators. (b) A symbol representing associative cluster.

A.3 Associative Memory Circuits

A.3.1 Emulating STNO by neuron MOS ring oscillator

A three-stage CMOS ring oscillator shown in Fig. A.3 was employed to emulate

a frequency tunable oscillator. The variable threshold concept of neuron MOS

(multiple-input floating-gate MOS (82)) is used in the last stage CMOS inverter,

thus making the stage delay variable. When a positive DC voltage Va is given to

the input terminal marked V CO N , it boosts up the floating gate voltage of the

NMOS via capacitive coupling and reduces the apparent threshold voltage of the

NMOS as seen from the other input terminal. Vdd − Va is applied to the control

terminal V CO P , which lowers the apparent PMOS threshold. As a result, the

signal propagate delay in this inverter stage is reduced. The capacitance coupling

is also employed in the first stage, thus enabling the mixing of external oscillation

with internal oscillation.

Dynamical control of the natural frequency by control voltage Va is demon-

93



A. CMOS SUPPORTING CIRCUITRIES FOR
NANO-OSCILLATOR-BASED ASSOCIATIVE MEMORIES

Ix

It

I0

I0+(Ix-It)

STNO

Figure A.6: DC current biasing scheme of STNOs for star frequency keying

model.

strated in Fig. A.4(a), where no external oscillation was applied to “In” terminal.

The results were obtained by HSPICE simulation where the device parameters of

a typical 1.8µm CMOS technology was employed for the simulation. Fig. A.4(b)

shows the natural frequency as a function of control voltage Va.

A.3.2 Associative cluster circuit

Fig. A.5(a) depicts the associative cluster configuration in which the output from

each oscillator is averaged via capacitance coupling and the averaged value is fed

back to the input (“In” terminal) of each oscillator. The control voltage generator

produces a voltage proportional to the difference between the input and template

vector elements, determining the frequency shift in each oscillator. In the present

simulation control voltage generators were configured using OP amps. In real

STNOs in which DC current bias is used to determine the frequency, such control

signals can be rather easily produced via Kirchhoff summation as illustrated in

Fig. A.6. In the rest of the paper, the associative cluster of Fig. Here an

important comment is give concerning the simulation of circuits including neuron

MOS’ (neuMOS’). Thermal equilibrium condition is assumed for the floating

gate charge of a neuMOS, i.e., the net charge on the floating gate is zero when

all other terminals are grounded. Such condition is usually achieved after device

fabrication, or if hot electron injection occurs during circuit operation, injected

charges can be removed by UV irradiation and thermal equilibrium is restored

(82, 83). In the HSPICE simulation, the floating gate charge initialization is

94



A.3 Associative Memory Circuits

Figure A.7: Associative memory composed of three associative clusters and WTA

circuitry.

carried out by circuit operation as follows. Floating nodes and input terminals are

all equipped with switching transistors and they are all grounded firstly. Then the

floating nodes are disconnected from ground with all other inputs being grounded.

After this, the circuits can be operated in normal ways. A.5(a) is represented by

a simple symbol of Fig. A.5(b). If such a switched neuron MOS configuration

(84) is employed in real CMOS circuit implementation, the subtraction operation

yielding the difference between the input and template vector element voltages

(Vx−Vt in Fig. A.5(a)) can be directly carried out at the very neuMOS transistor

level. The operation is simple. In the initialization step, V CO N terminal is

biased to Vt instead of being grounded and given with Vx in the operation mode.

This results in an effective input of Vx − Vt, and thus the bulky OP amp circuits

can be eliminated. (We need an additional input gate to yield the constant bias

Vb.) This means that oscillator-based implementation of associative memories

using only CMOS circuits is also feasible as analog VLSI chips.

A.3.3 Associative memory circuit

An associative memory composed of three associative clusters is shown in Fig.

A.7. Each output, after going through a comparator and two inverters, drives

a peak-detector circuit composed of a diode and a capacitor. Since the time

95



A. CMOS SUPPORTING CIRCUITRIES FOR
NANO-OSCILLATOR-BASED ASSOCIATIVE MEMORIES

Figure A.8: Vref generator circuit. Simulation results are shown for ∆ = 0.

)7.0,6.0,5.0(=T

)3.0,7.0,1.0(
3
=X)7.0,6.0,5.0(

1
=X

)7.0,6.0,5.0(=T

)7.0,5.0,6.0(
2
=X

)7.0,6.0,5.0(=T

0 0.2 0.9

t1

t2

t3

x1

x2

x3

Out

result1

D

A

B

C

D

A B C

Figure A.9: Oscillation wave forms for three vector matching results.

constant of the peak detector is made much larger than the period of oscillation,

it works as a slow integrator. As a result, the voltage across the capacitor increases

depending on the oscillation mode. Regular oscillation yields faster voltage rise,

while irregular oscillation yields slower voltage rise. When the capacitor voltage

reaches the inverting threshold of the following inverter, it turns on and upsets

the NOR circuit, which stops the charging of all integrators. In this manner, the

winner is identified as the first upsetting inverter, and a flag “1” is set at the

location of the winner. The circuit generating Vref for comparators is shown in

Fig. A.8. The dummy capacitor charging circuit at the bottom using an NMOS

with Vbias specifies the lower bounds to the degree of matching. If the charging of

oscillators are all slower than this circuit, the dummy is identified as the winner

96



A.4 SPICE Simulation Experiment

1 1 

2 2 

3 3 4 4 

5 5 

6 6 

Figure A.10: Matching experiments using COIL-20 database (44) by HSPICE

simulation. Matching was carried out for Group 1 and Group 2 templates, sepa-

rately. APED vectors of images and oscillating signals from associative clusters are

also shown.

and “no match” would be the result. Such lower bounds can be varied by Vbias.

A.4 SPICE Simulation Experiment

HSPICE simulation was carried out using the device parameters of a typical

1.8µm CMOS technology. The oscillation wave forms at respective locations in

each associative cluster for three different vector matching results are demon-

strated in Fig. A.9. Depending on the similarity between the input vector Xi

and the template vector T, the oscillation mode changes and the capacitor volt-

age increases accordingly. The slowest charging curve in the bottom right figure

represents the one from the dummy charging circuit.

The comparator placed in front of each associative cluster plays an important

role of cutting out only the upper part of an oscillating wave form, thus enhancing

97



A. CMOS SUPPORTING CIRCUITRIES FOR
NANO-OSCILLATOR-BASED ASSOCIATIVE MEMORIES

t1

t2

t3

x1

x2

x3

Out

NOR

result1

Vbias

result2

result3

t1

t2

t3

x1

x2

x3

Out

t1

t2

t3

x1

x2

x3

Out

Vref

t1

t2

t3

x1

x2

x3

Out

1
T

X

2
T

3
T

X

X

Figure A.11: Timer circuit yielding the degree of matching.

Figure A.12: HSPICE simulation results showing the operation of timer circuit

for matching experiments. Patterns used in this simulation are different from those

in Fig. A.10.

98



A.5 Summary

the difference in the oscillation modes. The cut level is specified by Vref produced

by the Vref generator shown in Fig. A.8. The oscillating signal from the dummy

associative cluster is rectified by the peak detector and the source follower yields

the output Vref with a voltage drop determined by Vb. The Vref level is tunable

either by ∆ or Vb. The simulation results in the figure was obtained with ∆ = 0.

The matching results for images from Columbia Object Image Library (COIL-

20) (44) represented by APED (averaged principal edge distribution) vectors

(73) are demonstrated in Fig. A.10. Each associative cluster is composed of 64

oscillators to handle 64-dimension vectors. The oscillation mode becomes most

stable for the most similar patterns and the winner-take-all circuitry correctly

identifies the best match pattern.

The degree of matching value is obtained by activating a timer circuit that

measures the time for the winner to be identified as shown in Fig. A.11. The timer

is started when the reference associative cluster accepting exact matching patterns

upsets the inverter.This yields the maximum degree of matching. Therefore, the

capacitor charged up to VDD is started to discharge at this timing, and when the

winner is found, the discharging is stopped.

Simulation results are shown in Fig. A.12. For Group 1 templates, the capac-

itor voltage of the timer is highest because pattern 1 is the same as the input. In

Group 2, the capacitor voltage becomes smaller because pattern 4 is similar to the

input but not the same. In this manner the degree of matching is measured by

the time to win and represented by the capacitor voltage. The scale of the value

is easily adjusted by the current source that discharges the capacitor voltage.

A.5 Summary

Using frequency-tunable CMOS ring oscillators to emulate the behavior of nano

oscillators, the basic CMOS supporting circuitries to produce associative memory

function has been explored and demonstrated by HSPICE simulation. Since the

array of nano oscillators and CMOS parts are well segregated in the configuration,

full advantage of nano device integration could be exploited.

99



A. CMOS SUPPORTING CIRCUITRIES FOR
NANO-OSCILLATOR-BASED ASSOCIATIVE MEMORIES

100



References

[1] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman.

How to Grow a Mind: Statistics, Structure, and Abstraction. In

J. Science, 331: pages 1279–1285, 2011. 1

[2] P. Bloom. How Children Learn the Meanings of Words. MIT Press,

Cambridge, MA, 2000. 1

[3] F. Xu and J. B. Tenenbaum. Word learning as Bayesian inference.

In J. Psychol. Rev. , 114(2): pages 245–272, 2007. 1

[4] C. M. Bishop. Pattern Recognition and Machine Learning.

Springer, 2006. 1

[5] T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997. 1

[6] V. N. Vapnik,. An Overview of Statistical Learning Theory. In

Neural Network, IEEE Transactions on, 10 (5): pages 988–999 , 1999. 2

[7] E. Mjolsness and D. DeCoste. Machine Learning for Science:

State of the Art and Future Prospects. In J. Science, 293: pages

2051–2055, 2001. 1

[8] G. -B. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme Learn-

ing Machine for Regression and Multiclass Classification. In Sys-

tem, Man, and Cybernetics Part B: Cybernetics, IEEE Transactions on, 42

(2): pages 513–529, 2012. 2

101



REFERENCES

[9] C. Rudin, D. Waltz, R. N. Anderson, A. Boulanger, A. Salleb-

Aouissi, M. Chow, H. Dutta, P. N. Gross, B. Huang, S. Ierome,

D.F. Isaac, A. Kressner, R. J. Passonneau, A. Radeva and L.

Wu. Machine Learning for the New York City Power Grid. In

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34 (2):

pages 328–345, 2012. 2

[10] W. -Y. Lin, Y. -H. Hu, and C. -F. Tsai. Machine Learning in

Financial Crisis Prediction: A Survey. In Systems, Man, and Cyber-

netics, Part C: Applications and Reviews, IEEE Transactions on, 42 (4):

pages 421–436, 2012. 2

[11] M. Narwaria and W. Lin. SVD-Based Quality Metric for Image

and Video Using Machine Learning. In System, Man, and Cybernetics

Part B: Cybernetics, IEEE Transactions on, 42 (2): pages 347–364 , 2012.

2

[12] G. M. Edelman. Learning in and from Brain-Based Devices. In J.

Science, 318: pages 1103–1105, 2012. 2

[13] S. Mitra, S. Fusi, and G. Indiveri. Real-Time Classification of

Complex Patterns Using Spike-Based Learning in Neuromorphic

VLS. In Biomedical Circuits and Systems, IEEE Transactions on, 3 (1):

pages 32–42 , 2009. 2

[14] J. Misra and I. Saha. Artificial neural networks in hardware: A

survey of two decades of progress. In J. Neurocomputing (Elsevier),

74: pages 239–255 , 2010. 2, 87

[15] L. Zhang, Y. Han, H. Li and X. Li. Fault tolerance mechanism in

chip many-core processors. In Tsinghua Science and Technology, 12:

pages 169–174 , 2007. 2

[16] A. Chaudhary, S. Kolhe and R. Kamal. Machine Learning Tech-

niques for Mobile Intelligent Systems: A Study. In Wireless and

Optical Communications Networks (WOCN), IEEE Int. Conf. on , pages

1–5, 2012. 2, 4

102



REFERENCES

[17] J. Madrenas, M. Verleysen, P. Thissen and J. L. Voz. A CMOS

Analog Circuit for Gaussian Functions. In Circuits and Systems–II:

Analog and Digital Signal Processing, IEEE Transactions on, 43 (1): pages

70–74, 1996. 7

[18] S. Moshfe, A. Khoei, K. Hadidi and B. Mashoufi. A fully pro-

grammable nano-watt analogue CMOS circuit for Gaussian func-

tions. In IEEE Intl Conf. on ICEDSA, pages 82–87, 2010. 7

[19] T. T. Bui and T. Shibata. Compact Bell-Shaped Analog

Matching-Cell Module for Digital-Memory-Based Associative

Processors. In Japanese Journal of Applied Physics, 47 (4): pages 2788–

2796, 2008. 7, 91

[20] N. Abramson, D. Braverman, and G. Sebestyen. Pattern recog-

nition and machine learning . In IEEE J. Solid-State Circuits, 9 (4):

pages 257–261, 1963. 2, 14

[21] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,

New York, 1995. 3, 14

[22] A. M. Mesleh and G. Kanaan. Support vector machine text clas-

sification system: Using Ant Colony Optimization based feature

subset selection. In Computer Engineering and Systems, IEEE Int. Conf.,

pages 143–148, 2008. 14

[23] B. Goertzel and J. Venuto. Accurate SVM Text Classification

for Highly Skewed Data Using Threshold Tuning and Query-

Expansion-Based Feature Selection. In Neural Networks, IEEE Int.

Joint Conf., pages 1220–1225, 2008. 14

[24] Y. Li, S. Xia, and Y. Zhou. A Supervised Local Linear Embed-

ding Based SVM Text Classification Algorithm. In Web Information

Systems and Applications, IEEE Conf., pages 21–26, 2009. 14

103



REFERENCES

[25] X.-Y. Wang, P.-P. Niu, and H.-Y. Yang. A Robust, Digital-Audio

Watermarking Method. In IEEE J. Multimedia, 16 (3): pages 60–68,

2009. 14

[26] T. Habib, J. Inglada, G. Mercier, and J. Chanussot. Speed-

ing up Support Vector Machine (SVM) image classification by a

kernel series expansion. In Image Processing, IEEE Int. Conf., pages

865–868, 2008. 14

[27] X. Wang, X. Li, and X. Liu. Nude image detection based on

SVM. In Computational Intelligence and Natural Computing, IEEE Int.

Conf., pages 178–181, 2009. 14

[28] Y. Huang, J. Zhang, Y. Zhao, and D. Ma. Medical Image Re-

trieval with Query-Dependent Feature Fusion Based on One-Class

SVM. In Computational Intelligence and Natural Computing, IEEE Int.

Conf., pages 176–183, 2010. 14

[29] X. Wang and Y. Zhong. Statistical Learning Theory and State of

the Art in SVM. In IEEE Int. Conf. Cognitive Informatics, pages 55–59,

2003. 3

[30] R. Genov and G. Cauwenberghs. Kerneltron: support vector

“machine” in silicon. In Neural Networks, IEEE Transactions on, 14

(5): pages 1426–1434, 2003. 7, 14

[31] S. Chakrabartty and G. Cauwenberghs. Sub-Microwatt Analog

VLSI Trainable Pattern Classifier. In IEEE J. Solid-State Circuits, 42

(5): pages 1169–1179, 2007. 7, 14

[32] D. Anguita, S. Ridella, and S. Rovetta. Circuital implementa-

tion of support vector machines. In IEEE Electron. Lett., 34 (16):

pages 1596–1597, 1998. 14

[33] Y. Xia and J. Wang. A One-Layer Recurrent Neural Network for

Support Vector Machine Learning. In System, Man, and Cybernetics

104



REFERENCES

Part B: Cybernetics, IEEE Transactions on, 34 (2): pages 1261–1269, 2004.

14

[34] R. Perfetti and E. Ricci. Analog Neural Network for Support

Vector Machine Learning. In Neural Networks, IEEE Transactions on,

17 (4): pages 1085–1091, 2006. 14

[35] B. Schoelkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T.

Poggio, and V. Vapnik. Comparing Support Vector Machines

with Gaussian Kernels to Radial Basis Function Classifiers. In

Signal Process, IEEE Transactions on, 45 (11): pages 2758–2765, 1997. 14

[36] D. Anguita, A. Boni, and S. Ridella. A Digital Architecture

for Support Vector Machines: Theory, Algorithm, and FPGA

Implementation. In Neural Networks, IEEE Transactions on, 14 (5):

pages 993–1009, 2003. 8, 14, 18

[37] M. Shi and A. Bermak. An Efficient Digital VLSI Implementation

of Gaussian Mixture Models-Based Classifier. In VLSI Systems,

IEEE Transactions on, 14 (9): pages 962–974, 2006. 6, 14

[38] T. Delbruck. ‘Bump’ circuits for computing similarity and dis-

similarity of analog voltages. In Neural Networks, IEEE Int. Joint

Conf., pages 475–479, 1991. 7, 14, 23

[39] M. Ogawa and T. Shibata. NMOS-based gaussian-element-

matching analog associative memory. In IEEE Proc. European Conf.

Solid-State Circuits, pages 257–260, 2001. 7, 14, 23

[40] S.-Y. Peng, B. A. Minch, and P. E. Hasler. Analog VLSI imple-

mentation of support vector machine learning and classification.

In IEEE Proc. Int. Symp. Circuits Syst., pages 860–863, 2008. 8, 14, 23,

32, 33

[41] K. Kang and T. Shibata. An On-Chip-Trainable Gaussian-Kernel

Analog Support Vector Machine. In Circuits and Systems, IEEE

105



REFERENCES

Transactions on, 57 (7): pages 1513–1524, 2010. 7, 8, 14, 18, 19, 23,

32, 33, 36, 82

[42] M. Yagi and T. Shibata. An image representation algorithm com-

patible with neural-associative-processor-based hardware recogni-

tion systems. In Neural Networks, IEEE Transactions on, 14 (5): pages

1144–1161, 2003. 5, 16

[43] J. A. Croonat, M. Rosmeulen, S. Decoutere, W. Sansen, and H.

E. Maes. An easy-to-use mismatch model for the MOS transistor.

In IEEE J. Solid-State Circuits, 37 (8): pages 1056–1064, 2002. 27

[44] S. A. Nene, S. K. Nayar and H. Murase. Columbia Object Image

Library (COIL-20). Technical Report CUCS-005-96. x, 28, 37, 60, 97,

99

[45] J. MacQueen. Some methods for classification and analysis of

multivariate observations. In Proc. 5th Berkeley Symp. Math. Stat.

Probab., pages 281–297, 1967. 36

[46] S. Ray and R. H. Turi. Determination of number of clusters in

K-means clustering and application in colour image segmentation.

In Proc. 4th Int. Conf. Adv. Pattern Recog. Digit. Techn., pages 137–143,

1991. 2, 36

[47] S. Gordon, H. Greenspan, and J. Goldberger. Applying the in-

formation bottleneck principle to unsupervised clustering of dis-

crete and continuous image representations. In Proc. 9th Int. Conf.

Computer Vision, pages 370–377, 2003. 36

[48] B. Maliatski and O. Yadid-Pecht. Hardware-driven adaptive K-

means clustering for real-time video imaging. In Circuits Syst. Video

Technol., IEEE Transactions on, 15 (1): pages 164–166, 2005. 36

[49] T.-W. Chen and S.-Y. Chien. Bandwidth adaptive hardware ar-

chitecture of K-means clustering for video analysis. In Very Large

106



REFERENCES

Scale Integr. (VLSI) Syst., IEEE Transactions on, 18 (6): pages 957–966,

2010. 36

[50] T.-W. Chen, C.-H. Sun, J.-Y. Bai, H.-R. Chen, and S.-Y. Chien.

Architectural analyses of K-means silicon intellectual property

for image segmentation. In Proc. IEEE Int. Symp. Circuits Syst., pages

2578–2581, 2008. 36

[51] T. Maruyama. Real-time K-means clustering for color images on

reconfigurable hardware. In Proc. Int. Conf. Pattern Recog., pages 816–

819, 2006. 36

[52] I. Chiosa, A. Kolb. GPU-Based multilevel clustering. In Visualiza-

tion and Computer Graphics, IEEE Transactions on, 17: pages 132–145,

2011. 36

[53] Y. Ma and T. Shibata. A binary-tree hierarchical multiple-Chip

architecture for real-time large-scale learning processor systems.

In Japanese Journal of Applied Physics, 49: pages 04DE08, 2010.

[54] B. A. Minch. MOS translinear principle for all inversion levels.

In Circuits and Systems, IEEE Transactions on, 55: pages 121–125, 2008.

viii, 46

[55] X. Wang and M. Leeser. K-means Clustering for Multispectral

Images Using Floating-Point Divide. In IEEE 15th Int. Symp. Field-

Programmable Custom Computing Machines, pages 151–162, 2007. 51

[56] J. A. Croon, M. Rosmeulen, S. Decoutere, W. Sansen and H.E.

Maes. A Simple Characterization Method for MOS Transistor

Matching in Deep Submicron Technologies. In IEEE Proc. Int. Conf.

Microelectronic Test Structures, 55: pages 213–218, 2001. 48

[57] G. Cauwenberghs and T. Poggio. Incremental and Decremental

Support Vector Machine Learning. In Advances in Neural Information

Processing Systems, 2001. 54, 55

107



REFERENCES

[58] L. Matthews, T. Ishikawa and S. Baker. The Template Update

Problem. In Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 26: pages 810–815 2004. 54, 55

[59] M. Tian, W. Zhang and F. Liu. On-Line Ensemble SVM for Ro-

bust Object Tracking. In Yagi, Y., Kang, S., Kweon, I., Zha, H. (eds.)

ACCV. LNCS, 4843: pages 355–364, Springer, Heidelberg, 2007. 54

[60] F. Tang, S. Brennan, Q. Zhao and H. Tao. Co-Tracking Using

Semi-Supervised Support Vector Machines. In IEEE 11th Interna-

tional Conference on Computer Vision, pages 1–8, 2007. 54

[61] H. M. Hussain, K. Benkrid, H. Seker and A. T. Erdogan. FPGA

Implementation of K-means Algorithm for Bioinformatics Appli-

cation: An Accelerated Approach to Clustering Microarray Data.

In NASA/ESA Conf. Adaptive Hardware and Systems, pages 246–255, 2011.

65

[62] T.-W. Chen and S.-Y. Chien. Flexible Hardware Architecture of

Hierarchical K-Means Clustering for Large Cluster Number. In

Very Large Scale Integr. (VLSI) Syst., IEEE Transactions on, 11(8): pages

1336–1345, 2011. 65

[63] C. Wang., J. Lai, J. Zhu. A Conscience On-line Learning Ap-

proach for Kernel-Based Clustering. In IEEE Conf. Data Mining,

pages 531–540, 2010. 60

[64] T.-W. Chen, C.-H Sun, H.-H. Su, S.-Y. Chien, D. Deguchi, I.

Ide, and H. Murase. Power-Efficient Hardware Architecture of

K-Means Clustering With Bayesian-Information-Criterion Pro-

cessor for Multimedia Processing Applications. In IEEE J. Emerging

and Selected Topics in Circuits and Systems, 1(3): pages 357–368, 2011. 6,

66

[65] Y. Wang. A Tree-based Multi-class SVM Classifier for Digital Li-

brary Document. In Proc. IEEE Int. Conf. MultiMedia and Information

Technology, pages 15–18, 2008. 70

108



REFERENCES

[66] D. M. J. Tax, and R. P. W. Duin. Data Domain Description

Using Support Vectors. In Proc. European Symposium on Artificial

Neural Networks, pages 251–256, 1999. 70, 73

[67] D. M. J. Tax, and R. P. W. Duin. Support Vector Domain De-

scription. In Pattern Recognition Letters, 20: pages 1191–1199, 1999. 2,

4, 70

[68] H. Wang, G. Zhao, and H. Gu. A fast training method for OC-

SVM based on the random sampling lemma. In Proc. IEEE Int.

Conf. Natural Computation, pages 824–827, 2010. 70, 82

[69] J. Xu, J. Yao, and L. Ni. Fault Detection Based on SVDD and

Cluster Algorithm. In Proc. IEEE Int. Conf. Electronics, Communica-

tions and Control, pages 2050–2052, 2011. 70

[70] X. Huang, and X. Chen. A Novel Clustering Algorithm Based on

One-Class SVM. In Proc. IEEE Global Congress on Intelligent Systems,

pages 486–490, 2009. 70

[71] H. Galmeanu and R. Andonie. Incremental / decremental SVM

for function approximation. In Proc. IEEE Int. Conf. Optimization of

Electrical and Electronic Equipment, pages 155–160, 2008. 70

[72] T. Yamasaki and T. Shibata. An Analog Similarity Evaluation

Circuit Featuring Variable Functional Forms. In Proc. IEEE Int.

Symp. Circuits and Systems, pages III-561–564, 2001. 89

[73] T. Shibata. Computing based on the physics of nano devices −
A beyond-CMOS approach to human-like intelligent systems. In

Solid-State Electronics, 53: pages 1227–1241, 2009. 89, 99

[74] M. Saitoh, H. Harata, and T. Hiramoto. Room-Temperature

Demonstration of Integrated Silicon Single-Electron Transistor

Circuits for Current Switching and Analog Pattern Matching. In

International Electron Devices Meeting (IEDM), pages 187–190, 2004. 90

109



REFERENCES

[75] T. Roska and Á. Rodriguez-Vázquez. Towards Visual Micropro-

cessors. In Proceedings of the IEEE, 90: pages 1244–1257, 2002. 90

[76] M. R. Pufall, W. H. Rippard, S. E. Russek, S. Kaka, and J.

A. Katine. Electrical Measurement of Spin-Wave Interactions of

Proximate Spin Transfer Nanooscillators. In Phys. Rev. Letters, 97:

pages 087206, 2006. 90

[77] Dana Weinstein, and Sunil A. Bhave. The Resonant Body Tran-

sistor. In Nano Lett., pages 1234–1237, 2010. 90

[78] A. Nakada, T. Shibata, M. Konda, T. Morimoto, and T. Ohmi. A

Fully-Parallel Vector Quantization Processor for Real-Time Mo-

tion Picture Compression. In IEEE Journal of Solid-State Circuits,

34(6): pages 822–830, 1999. 91

[79] Dmitri E. Nikonov, Gyorgy Csaba, Wolfgang Porod, Tadashi

Shibata, Dan Hammerstrom, and George Bourianoff. Coupled-

oscillator associative memory array operation. to be submitted to

IEEE Nano Transactions special issue. 91

[80] Frank C. Hoppensteadt and Eugene M. Izhikevich. Oscillatory

Neurocomputers with Dynamic Connectivity. In Physical Review

Letters, 82(14): pages 2983–2986, 1999. 91

[81] György Csaba, Matt Pufall, Dmitri Nikonov, George Bouri-

anoff, Andras Horvath, Tamas Roska, and Wolfgang Porod.

Spin Torque Oscillator (STO) Models for Applications in Associa-

tive Memories. In IEEE Int. Conf. Cellular Nano-scale Networks, 2012.

92

[82] Tadashi Shibata and Tadahiro Ohmi. A functional MOS transis-

tor featuring gate-level weighted sum and threshold operations.

In Electron Devices IEEE Transactions on, 39(6): pages 1444–1455, 1992.

93, 94

110



REFERENCES

[83] A. Luck, S. Jung, R. Brederlow, R. Thewes, K. Goser, and W.

Weber. On the design robustness of threshold logic gates using

multi-input floating gate MOS transistors. In Electron Devices IEEE

Transactions on, 47(6): pages 1231–1240, 2000. 94

[84] K. Kotani, T. Shibata, M. Imai, T. Ohmi. Clocked-neuron-MOS

logic circuits employing auto-threshold-adjustment. In Digest of

Technical papers, IEEE International Solid-State Circuits conference, pages

320–321, 1995. 95

111



 

 

 

List of Publications 

 

Journal Papers: 

[1] Renyuan Zhang and Tadashi Shibata, “Fully Parallel Self-Learning Analog 
Support Vector Machine Employing Compact Gaussian-Generation Circuits”, 
Jpn. J. Appl. Phys., vol. 51, no. 4, pp. 04DE10-1 - 04DE10-7. (2012)     

[2] Renyuan Zhang and Tadashi Shibata, “An Analog On-Line-Learning K-means 
Processor Employing Fully Parallel Self-Converging Circuitry”, J. Analog In-
tegrated Circuits and Signal Processing (Springer), vol. 75, no. 2, pp.267- 
277.(2013) 

Refereed papers at International Conferences: 

[1] Renyuan Zhang and Tadashi Shibata, “A Fully-Parallel Self-Learning Analog 
Support Vector Machine Employing Compact Gaussian-Generation Circuits”, 
Int. Conf. Solid-State Device and Materials, 2011, pp. 174-175. 

[2] Renyuan Zhang and Tadashi Shibata, “An Analog K-means Learning Proc-
essor Employing Fully-Parallel Self-Converging Circuitry”, Int. Analog VLSI 
Workshop, 2011, pp. 91-96. 

[3] Pushe Zhao, Renyuan Zhang, and Tadashi Shibata, “Real-time Visual Tracking 
Algorithm Employing On-Line Support Vector Machine and Multiple Candi-
date Regeneration,” L. Rutkowski et al. (Eds.): Lecture Notes in Computing 
Science (Proc. ICAISC2012), vol. 7267, Part I, pp. 617-625. Springer, Heidel-
berg ISBN: 978-3- 642-29346-7. 

[4] Renyuan Zhang and Tadashi Shibata, “Real-Time On-Line-Learning Support 
Vector Machine Based on A Fully-Parallel Analog VLSI processor,” L. Rut-
kowski et al. (Eds.): Lecture Notes in Computing Science (Proc. ICAISC2012), 
vol.7268, Part II, pp.223-230. Springer, Heidelberg ISBN: 978-3-642-29349-8. 



[5] Tadashi Shibata, Hongbo Zhu, Ruihan Bao, Pushe Zhao, and Renyuan Zhang, “A 
VLSI System for Motion Perception and Action Recognition,” in the Proceedings 
of the 2nd  Solid-State Systems Symposium (4S 2012), Ho Chi Minh City, Viet-
nam, August 22-24, 2012. 

[6] Tadashi Shibata, Renyuan Zhang, Steven P. Levitan, Dmitri Nikonov, and George 
Bourianoff, “CMOS Supporting Circuitries for Nano-Oscillator-Based Associa-
tive Memories”, invited by IEEE Int. Workshop on Cellular Nanoscale Networks 
and their Applications, Turin, Italy, Aug. 29-31, 2012. 

[7] Renyuan Zhang and Tadashi Shibata, “A VLSI Hardware Implementation Study 
of SVDD Algorithm Using Analog Gaussian- Cell Array for On-Chip Learning”, 
IEEE Int. Workshop on Cellular Nanoscale Networks and their Applications, Tu-
rin, Italy, Aug. 29-31, 2012.  

 


	thesis
	Publications

