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Abstract

Object tracking plays an important role in many applications, such

as video surveillance, human-computer interaction, vehicle navigation,

and robot control. It is generally defined as a task of estimating the

location of an object over a sequence of images. In practical appli-

cations, there are many factors that make the task complex such as

illumination variation, appearance change, shape deformation, partial

occlusion, and camera motion. Moreover, lots of these applications

require real-time response. Therefore, the development of real-time

working algorithms is of essential importance. In order to accomplish

such a challenging task, a real-time tracking system has been devel-

oped and proposed in this thesis.

In this thesis, a solution to the tracking task is proposed based on con-

sideration of e�cient implementation as priority, and several critical

issues are resolved as follows. At first, a hardware-friendly tracking

framework is designed, which is implemented on field-programmable

gate array (FPGA) technology, and compatible with very large scale

integration (VLSI) technology. This framework, named multiple can-

didate regeneration (MCR), is developed as a simple but high-speed

and high-e�ciency searching algorithm. The basic idea was inherited

from the particle filter (PF) but the algorithm has been greatly mod-

ified from the original particle filter so that it can be implemented

on VLSI hardware very e�ciently. The important di↵erence between

MCR and PF is that the MCR is developed by simplifying the visual

tracking task and considering the simple hardware implementation.

It can be considered as an e�cient searching strategy instead of an



intensity estimation method. In the development, several problems

that may limit the hardware performance have been solved, such as

complex computation, data transmission and utilization of hardware

resources. The proposed architecture achieved 150 frame per second

(f/s) on FPGA, and can reach about 900 f/s if it is implemented on

VLSI with on-chip image sensor. This solution has several advantages.

First, it works at high frame rate, which can enhance the e↵ect of lo-

calization. It also meets the requirement of higher processing speed

in some complex intelligence systems, which seems di�cult to achieve

by conventional solutions. Second, the system can be extended to

be useful in many applications because of its flexibility. Third, since

the processing speed is faster than the frame rate, there is still large

space for further improving the ability of the system without losing

real-time performance. The system was implemented on a Terasic

DE3 FPGA board. Under the operating frequency of 60 MHz, the

experimental system achieved a processing ability of 0.8 ms per frame

in tracking a 64 ⇥ 64 scale object image in 640 ⇥ 480-pixel size video

sequences.

In tracking algorithms, how to represent the target image is of particu-

lar importance because it greatly influences the tracking performance

under certain tracking framework. Color, edge, and texture are typical

attributes used for representing objects. A number of other features,

including active contour, scale-invariant feature transform (SIFT) fea-

ture, oriented energy, and optical flow, are also used in many works.

Some works also combine these features or incorporate on-line learn-

ing of the model of an object and background. In this thesis, we have

aimed to establish both robustness of object representation and the

real-time performance of the processing, because feature extraction

is usually a time consuming process. It was well known that the vi-

sual perception of animals relies heavily on the directional edges. In

the present work, therefore, the directional-edge-based image feature

representation algorithm is employed to represent the object image.



Robust performance of the directional-edge-based algorithms has al-

ready been demonstrated in various image recognition applications.

In addition, dedicated VLSI chips for e�cient directional edge detec-

tion and image vector generation have also been developed for object

recognition systems.

Whether a tracking system can be easily extended for various purposes

is also a critical issue. This thesis contains a detailed discussion on

extending the function of the system, including hardware implemen-

tation on VLSI, multiple-object tracking, full-occlusion and initializa-

tion problems, and employing of state vector. The architecture of this

system is compatible with VLSI design, and may reach better perfor-

mance on VLSI. For the multiple-object tracking, an e�cient method

is proposed to allocate the limited hardware resources. For the full-

occlusion and initialization problems, a searching algorithm based on

proposed system is developed. By using the state vector, more at-

tributes can be estimated for achieving more information about the

object, which also helps deal with appearance change and increase the

tracking accuracy.

The following parts of the thesis are focused on building learning abil-

ity for the system. For object tracking, one promising direction is to

consider the object tracking as a binary classification problem, and

employ discriminative methods in the tracking framework. Nearest

neighbor (NN) classifier is a simple but widely used classifier. Some

tracking algorithms have tried to use it because of its e↵ectiveness

in some tasks and its outstanding simplicity. Support vector machine

(SVM), as a powerful classification scheme, has been also used in many

tracking algorithms, benefiting the algorithms with accurate localiza-

tion and flexible modeling of the target. Each of the classifier works

as an appearance model of the target by changing its templates while

training. For NN classifier, the training and testing process is really



simple and fit for hardware implementation. For the SVM classifier,

one feature is that the boundary is represented by the combination

of support vectors, and the number of support vectors is usually a

small portion of the total training dataset. This feature becomes very

important when implementing the tracking algorithm on hardware,

because the hardware resources are always limited.

The SVM-based tracking system proposed in this thesis aims to solve

the following problems. Some work builds a superior SVM classi-

fier and gives good results in tracking vehicles. However, the o↵-line

training mechanism employed in the work requires a large number of

training samples selected manually and does not support updating

the training samples. In some research, all samples learned from each

frame of an image sequence are stored for training the SVM. This

causes a large memory cost if it is used in a long-duration task. In

some work, a simple strategy is employed to determine new training

samples, which may cause “drift problem”. Moreover, these algo-

rithms do not consider their real-time performances, which is in fact

of great importance in object tracking applications. This is mainly be-

cause of the complex computation of SVM. Especially for the on-line

learning SVMs, frequently repeated training and predictions make this

problem even worse. Therefore, in order to extend the power of SVM

in most of the general tracking applications, it is necessary to develop

a proper tracking framework and a VLSI hardware-implementation

friendly structure for the SVM-based algorithm.

A real-time visual tracking algorithm is presented employing an on-

line support vector machine scheme. In this system, a novel training

framework is proposed, which enables the system to select reliable

training samples from the image sequence. The tracking framework

includes how to update training samples and how to select test sam-

ples and make prediction of the target location. Di↵erent from other



algorithms, this framework gives a rule guiding the selection of target

training samples. When the target changes its appearance signifi-

cantly, the system may fail to localize the target because the classifier

misclassifies the target image to the background image category. In

order to solve this problem, background samples are utilized to pre-

dict the location of the target image. Unlike the moving target image,

most of the background sample images are stable. As a result, high-

accuracy tracking has been established. In addition, regarding the

selection of target samples for on-line training of SVM, a new selec-

tion method has been introduced.

The on-line SVM learning requires repeated training and predicting

process. The predicting process always contains computation of thou-

sands of test samples in conventional algorithms, preventing these al-

gorithms from working in real-time. In this process, not only the

SVM, but also the feature extraction of each sample will cost lots

of time. Based on a SVM chip developed in our group, the most

complex part in this algorithm can be computed e�ciently. At the

same time, multiple candidate regeneration is employed to reduce the

computational cost without sacrificing the tracking accuracy. In addi-

tion, the directional-edge-feature vector representation, whose VLSI

implementation has been proposed, is employed to represent the sam-

ple images. The algorithm has been evaluated on challenging video

sequences and showed robust tracking ability with accurate tracking

results. The hardware implementation is also discussed, while verifi-

cation has been done to prove the real-time ability of this algorithm.

After development of the SVM-based tracking system, the essential

facts of the tracking task were analyzed, and an NN-based tracking

system has been proposed. The basic idea is that a classifier specially

designed for tracking task is more e�cient. The classifiers mentioned



above are usually used in object recognition in computer vision. Com-

pared with object recognition task, object tracking contains much

less categories of objects, and it is obvious that object recognition

is a time-consuming work in most of the time. Therefore, a “weak

classifier to recognition can be su�cient for the tracking task, and it

is also very important to the hardware implementation. In this part,

relationship between similarity, APED vector, and NN classifier is an-

alyzed. Based on the analysis, a new appearance model use basic NN

has been proposed. The accuracy of this system has been evaluated

and the simplicity of hardware implementation has been discussed.

In summary, this thesis presents a novel real-time solution to object

tracking task with learning ability. The robust feature learning ability

of the system is realized by introducing the SVM and NN classifiers

into the tracking system, and designing a new tracking framework for

the classifier-based algorithm. The hardware implementation problem

was considered carefully. Hardware-friendly architecture has been de-

signed and the real-time tracking system has been finally implemented

on an FPGA board with a dedicated VLSI chip. Extensive experi-

ments have been performed for evaluation on the tracking accuracy of

this system. The thesis also contains very detailed discussions about

the system.
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1

Introduction

1.1 Background

Object tracking is an important research topic in several fields, such as computer

vision and video processing. Generally speaking, the purpose of an object is to

generate the trajectory of an object over time by locating its position in every

frame of the video. In other words, a tracker assigns consistent labels to the

tracked objects in di↵erent frames. In some cases, a tracker also provides object

centric information, such as orientation, area, or shape of an object. However,

location of the tracked object is still the most essential information. Object

tracking is well-studied during the past two decades, and has many practical

applications, such as video surveillance, robot control, medical care, and human-

computer interaction (2, 3, 4, 5, 6).

Since in human brain recognition and tracking are two basic and important

abilities, which are realized in ventral pathway and dorsal pathway in brain ac-

cording to some researches in biology, psychology, and neuroscience. The tracking

ability tells us where is the object that we are interested in, and also sends the in-

formation for motion detection and some other high-level processing. The brain

structure is a high e�cient system, which is very di↵erent from modern com-

puter. It can achieve robust tracking ability as well as high-speed performance.

Although the mechanism in human brain is still not clear, it is possible to learn

from present knowledge about brain. This method has achieved many successes

in other fields, in which neural network is a famous example.

1



1. INTRODUCTION

There are two aspects that we learn from the brain. The first aspect is the

system structure (or tracking framework). In order to achieve real-time perfor-

mance, we need to consider both the algorithms and implementations. The other

aspect is the learning ability. The learning ability can solve di�cult problems

in object tracking, such as deformation, occlusion, rotation, illumination change,

and multi-target tracking. These are very common problems in practical appli-

cations.

A typical tracking system consists of two components: 1) an appearance

model, which can evaluate the likelihood that the object of interest is at some

particular location, and 2) a search strategy for finding the most likely location

in the current frame. In this thesis, the tracking algorithm will be discussed in

detail based on this two-part system structure.

1.2 Related Works

During the recent more than two decades, many algorithms and hardware imple-

mentations on object tracking have been proposed. In this part, a brief summary

of researches on object tracking is given according to some di↵erent standards.

As described above, a typical tracking algorithm contains an appearance

model (7, 8, 9, 10). In many cases, the model itself is a representation of the

object image using some features. Color (11), shape (12), and texture (13) are

very common features. Especially the color feature is widely used in some al-

gorithms because of its simple computation. However, it is obvious that the

color is not an e↵ective feature in many situations, and it is usually sensitive

to illumination change. Object boundaries usually generate strong changes in

image intensities. An important property of edges is that they are less sensi-

tive to illumination changes. Texture is a measure of the intensity variation of a

surface which quantifies properties such as smoothness and regularity. It is not

sensitive to illumination change and shape change (non-rigid object). However,

it requires the object should be rich of texture information that is su�cient for

discriminating di↵erent objects.

There are also some other complex features, which can describe the object e�-

ciently, including optical flow, active contour (14), SIFT (15), PCA (16), oriented
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energy (17, 18) and many others (19, 20, 21, 22). These features have their own

characteristics and are e↵ective for corresponding situations. Since in most of the

situations, a single feature is not su�cient to deal with all situations, many works

consider to use combination of some of these features (23, 24, 25, 26). This is re-

lated to problems of feature selection and feature combination. There are several

aspects to evaluate a feature representation algorithm. For example, whether it

is a global representation or local representation is important in object tracking

algorithm. Another aspect can be the computational cost of this algorithm. No

matter the algorithm is implemented by software or hardware circuits, high-speed

processing is always a critical issue. Generally speaking, along with the algorithm

becomes complex, the processing time increases. Therefore, a balance between the

accuracy and speed becomes important recently. Take SIFT as example, which is

one of the most e↵ective feature extraction algorithms, there are many researches

on both development on algorithm and hardware implementation (27, 28). SIFT

extracts key features from image with size and orientation information. These

features are selected for e↵ectiveness, and the number of featured depends on

the image. In order to make SIFT usable in more applications, there are some

researches focused on implementing SIFT on VLSI chip for high-speed processing

(29, 30, 31, 32). It has been claimed that some VLSI can generate one SIFT fea-

ture from an image in only 3600 clock cycles (32). The selection of features will

a↵ect the performance of tracking algorithm (33, 34). Especially in a tracking

system, the feature extraction is usually of great important to the performance.

How to evaluate the similarity between two images is related to the feature

extraction algorithm (35), but sometimes related to localization algorithms (36).

In order to estimate the object tracking algorithms there are many kinds of local-

ization strategy (37, 38). These algorithms can also be considered as an object

detection algorithm in the tracking algorithm, although there is slight di↵erence

between tracking and object detection. Object detection is a task to find some

object or tell whether some object exists in an scene. Object tracking for one

frame of image is similar that it also requires finding the object in the image.

However, the simplest di↵erence between object detection and object tracking

is that in object tracking the objects location always has some limitation. For
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example, the object location in current frame should be in a region determined

by the object location in previous frame.

For localization, many kinds of methods can be used, such as background

subtraction (2, 39), segmentation, and searching (40, 41). Among them, mean-

shift (15, 42, 43) and particle filters (24, 44, 45, 46, 47, 48) are very commonly

used. Particle filter is one of the most powerful algorithm for estimating the object

state in di↵erent frames (49). It provides an e↵ective framework for solving object

tracking problems in nonlinear, non-Gaussian systems. Particle filter is based on

the Bayes principle and is a sequential Monte-Carlo simulation method indicated

by probability density of particles. Simply speaking, it usually contains two

processes: predicting and updating. By using this two processes, the particles

are updated in a way of “fit for surviving”. The distribution of particles is used

for estimation of the object state (location). Despite its outstanding performance

(50), its computational cost is the disadvantage. Although there are researches

working on implementing particle filter on GPU, FPGA, or VLSI (51, 52, 53, 54),

a satisfied processing time is still di�cult to achieve.

Hardware implementation is a hot topic in object tracking research. This

is a little di↵erent from other researches in computer vision. One of reason is

what need to process in object is a consecutive image sequence, which can be

considered as a data stream. Therefore, the processing speed is more important

than in other researches (55). There are many implementations trying to realize

real-time object tracking, built on GPU, FPGA, or VLSI (56, 57, 58). The basic

idea of these researches is to parallelize the algorithm and then do computation

in parallel. In order to build a real-time tracking system, there are several critical

issues. Firstly, the camera as video data input is alway a limitation of the tracking

system, because most of the camera used transferring pixel data in serial way.

The data transfer and exposure time in fact take most of the computational time,

although the process can be organized in pipelined way. Secondly, it is more

convenient to deal with simple integers than floating numbers. This is related to

the complexity of the system, and also determine the memory cost. Thirdly, the

cost of hardware resources and the data transfer issue is especially important in

video processing. The process of object tracking contains operations and transfer

of large amount of data. Organization of the data stream usually is a critical
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issue in the hardware system. Until now, most of the implementations achieves

processing speed close to video frame rate, which is usually 25 to 30 f/s (59, 60).

In the development of object tracking, there are two interesting research direc-

tions, which are promising for significant improvements. One is object tracking

that considers the context information (61). For example, in a vehicle track-

ing application, the location of vehicles should be constrained to paths on the

ground. Another direction is to employ learning algorithms to make robust

tracker (62, 63, 64). This is because the tracker always deal with very complex

situations, which is always di�cult to describe before tracking or summarizing in

rules. For example, some classifiers are built to detect the object from the back-

ground, but it is very di�cult to determine what classifier should be used. In

di↵erent situations, the results can be very di↵erent. If the tracking algorithm has

some learning ability, especially on-line learning ability (65), it will be adaptive

and robust. A learning tracking algorithm has been developed using support vec-

tor machine classifier (66). For SVM-based trackers, the positive examples consist

of the images of the object to be tracked, and the negative examples consist of

all things that are not to be tracked. This is an example of tracking algorithm

with learning ability and using context information. One advantage of this ap-

proach is that knowledge about background objects is explicitly incorporated in

the tracker.

1.3 Evaluation Methodology

To evaluate an object tracking system is itself a challenge. The di�culties lay in

that the tracking in computer vision is a process similar to the tracking ability

in human brain. In most of the cases, it is simple to tell whether the system

has tracking ability as robust as human, but it is di�cult to tell how far away

it is from human ability when compare di↵erent systems. Another aspect is that

the evaluation on tracking ability sometimes depends on the applications. For

example, there must be some error between the predicted location and the real

object location. So what kind of error is acceptable? Despite the di�culties, there

must be some way to evaluate a research, which is essential for development of

the research.
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Figure 1.1: Illustration of evaluation methods on object tracking systems.

Generally speaking, there are three methods that are commonly used: qual-

itative comparison, location error, and precision. The qualitative comparison

method is most common. Usually, the researcher will use some video database to

test their algorithms, and the result is examined by researcher to tell whether the

algorithm track the object all the time. If the algorithm is not robust enough,

and lost target at a certain frame of image, then the situation in this image will

be discussed to show the advantage or disadvantage of an algorithm.

The location error analysis shows more information about tracking perfor-

mance, as shown in Fig. 1.1. At first, in order to build a database, some videos

must be collected and human subjects are asked to draw the object location in

every frame of the image, served as ground truth. Then the predicted locations

from some algorithm will be compared with the ground truth by calculating the

distance between the predicted location and ground truth location in each frame.

This distance is called location error. This method can evaluate algorithms more

accurately. However, there are still problems. Since the error versus frame plot

can be di�cult to interpret, it is useful to summarize performance by computing

the mean error over all the frames of the video. However, this value sometimes

fails to correctly capture tracker performance. For example, if a tracker tracks an

object closely for most of the video, but loses track completely on the last several

frames, the mean location error may be higher than a tracker that sticks with

the object though not as precisely. The preference between these two behaviors

inevitably depends on the final application.

The precision comparison is a method proposed in (67) to provide percentage

of the correct tracked frame within a certain threshold for location error. This
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method shows the percentage of frames for which the predicted object location

was within some threshold distance of the ground truth. For example, if we choose

threshold 20 to calculate the precision, the result of accuracy on a certain video

is the percentage of frames for which the tracker is less than 20 pixels away from

the ground truth. In this thesis, in order to evaluate the system from di↵erent

aspects, we adopted all the three methods.

1.4 Real-Time Object Tracking System

In this thesis, we proposed a solution to the tracking task based on consideration

of e�cient implementation as priority, and solved problems as follows. Firstly,

a hardware-friendly tracking framework is designed, which is implemented on

FPGA, and compatible with VLSI technology. This framework, named multiple

candidate regeneration (MCR), is developed as a simple but high-speed and high-

e�ciency searching and predicting algorithm. A simple illustration of the MCR is

shown in Fig. 1.2. In this algorithm, some candidates are used for searching the

desired location (location with maximum similarity in this case). By updating

and regenerating the candidates as illustrated, the candidates tend to accumulate

at the maximum location. Although it is very similar to particle filter (PF), it can

be considered as a fast searching strategy instead of a approximation of intensity

distribution. In the development, several problems, which may limit the hardware

performance, have been resolved, such as complex computation, data transmission

and cost of hardware resources. This solution has several advantages. First, it

can work at high frame rate, which can simplify the work of localization. Second,

the system can be extended to use in many applications because of its flexibility.

Third, since the processing speed is faster than real-time standard, it is probable

that the ability of this system can be improved in the future.

We have aimed to establish both robustness of object representation and the

real-time performance of the processing, because feature extraction is usually a

time consuming process. The directional-edge-based image feature representation

algorithm is employed to represent the object image. Robust performance of

the directional-edge-based algorithms has already been demonstrated in various

image recognition applications. In addition, dedicated VLSI chips for e�cient
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directional edge detection and image vector generation have also been developed

for object recognition systems.

Whether a tracking system can be easily extended for various purposes is

also very important. This thesis contains a detailed discussion on extending the

function of the system, including hardware implementation on VLSI, multiple-

object tracking, full-occlusion and initialization problems, and employing of state

vector. The architecture of this system is compatible with VLSI design, and may

reach better performance on VLSI. For the multiple-object tracking, an e�cient

method is proposed to allocate the limited hardware resources. For the full-

occlusion and initialization problems, a searching algorithm based on proposed

system is developed. By using the state vector, more attributes can be estimated

for achieving more information about the object. It also improves the tracking

ability and accuracy.

The following parts of the thesis are focused on the learning ability of the

system. For object tracking, one promising direction is to consider the object

tracking as a binary classification problem, and employ discriminative methods

in the tracking framework. Support vector machine (SVM), as a powerful clas-

sification scheme, has been used in many tracking algorithms, benefiting the

algorithms with accurate localization and flexible modeling of the target. The

SVM works as an appearance model of the target by changing its boundary while

training. In order to extend the power of SVM in most of the general track-

ing applications, it is necessary to develop a proper tracking framework and a

VLSI-hardware-implementation-friendly structure for the SVM-based algorithm.

A real-time visual tracking algorithm is presented employing an on-line support

vector machine (SVM) scheme. A novel training framework is proposed, which

enables us to select reliable training samples from the image sequence for tracking.

The tracking framework includes how to update training samples and how to se-

lect test samples and make prediction of the target location. Di↵erent from other

algorithms, this framework gives a rule guiding the selection of target training

samples. In addition, regarding the selection of target samples for on-line train-

ing of SVM, a new selection rule has been introduced. Based on a SVM chip

developed in our group, the most complex part in this algorithm can be com-

puted e�ciently. At the same time, multiple candidate regeneration is employed
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to reduce the computational cost without sacrificing the tracking accuracy. In

addition, the directional-edge-feature vector representation, whose VLSI imple-

mentation has been proposed in, is employed to represent the sample images. By

using this hardware-friendly structure, real-time tracking ability can be achieved.

The hardware architecture for realizing this kind of real-time tracking system is

discussed in detail.

After development of the SVM-based tracking system, the essential facts of

the tracking task were analyzed, and an NN-based tracking system has been

proposed. The basic idea is that a classifier specially designed for tracking task

is more e�cient. The classifiers mentioned above are usually used in object

recognition in computer vision. Compared with object recognition task, object

tracking contains much less categories of objects, and it is obvious that object

recognition is a time-consuming work in most of the time. Therefore, a “weak

classifier to recognition can be su�cient for the tracking task, and it is also very

important to the hardware implementation. In this part, relationship between

similarity, APED vector, and NN classifier is analyzed. Based on the analysis,

a new appearance model use basic NN has been proposed. The accuracy of this

system has been evaluated and the simplicity of hardware implementation has

been discussed.

In summary, this thesis presents a real-time solution to object tracking task

with learning ability. The robust feature learning ability of the system is realized

by introducing SVM and NN classifiers into the tracking system, and designing a

new tracking framework for the classifier-based system. The hardware implemen-

tation problem was considered carefully. Hardware-friendly architecture has been

designed and a real-time tracking system has been implemented. Extensive ex-

periments were performed for evaluation on the tracking system. The thesis also

contains very detailed discussion about various aspects of the tracking system.

1.5 Scope of This Thesis

Object tracking (visual tracking) is a research of a wide scale related to many

di↵erent fields, although it belongs to computer vision field basically. In this
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Figure 1.2: Illustration of the process of multiple candidate regeneration.

part, the scope of the thesis is described to clarify the focus of my work in object

tracking. The scope is described from several aspects in the following.

From the view point of how to represent an object in the video (scene), object

tracking algorithms can be classified into several groups. The most common ap-

proaches are feature-based, which means the image of the object is represented by

some features extracted from the image. Color, edge, texture are usually used as

basic features. Some special features are also used, such as motion feature, SIFT,

and active contour. My research is focused on the feature-based approaches,

and the directional-edge feature is adopted as the representation. Many object

tracking algorithms are based on a two-part model as described in the previous

section. My research follows this typical structure, contains object model and

location prediction.

In this thesis, the hardware implementation of the tracking system is of great

importance. A real-time object tracking system is the basic goal of this research.

Therefore, in this thesis, the issues and solutions for hardware implementation

are discussed in detail. There are several critical issues for implementation, such

as parallelism, power consumption, processing time and e�ciency, and system

stability. But in the discussion of this thesis, I discuss mainly on the processing
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speed and simple implementation of the system in order to focus on the main

contribution of my research and give some convincing verification.

In this research, some related research topics other than object tracking are

also included, such as feature extraction, machine learning, and neuroscience.

These researches help improve the object tracking system in various aspects.

Only the most important technologies that are closely related to my research are

discussed.

In summary, this thesis is focused on important issues and solutions in real-

ization of a real-time object tracking system, including both algorithm and hard-

ware implementation. It includes topics: tracking frame work, feature extrac-

tion, learning algorithm, extensive evaluations, architecture on VLSI technology,

FPGA implementation for verification, and detailed discussions.
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2

A Real-Time Object Tracking

System Employing Multiple

Candidate Regeneration

2.1 Introduction

Object tracking plays an important role in many applications, such as video

surveillance, human-computer interface, vehicle navigation, and robot control. It

is generally defined as a problem of estimating the position of an object over a se-

quence of images. In practical applications, however, there are many factors that

make the problem complex such as illumination variation, appearance change,

shape deformation, partial occlusion, and camera motion. Moreover, lots of these

applications require a real-time response. Therefore the development of real-time

working algorithms is of essential importance. In order to accomplish such a chal-

lenging task, a number of tracking algorithms(14, 17, 33, 40, 68, 69) and real-time

working systems(39, 49, 52, 57, 70, 71) have been developed in recent years.

These algorithms usually improve the performance from two major aspects of

the object tracking task, i.e. the target object representation and the location

prediction. In the location prediction, the particle filter(72) shows a superior

tracking ability, and has been used in a number of applications. It is a powerful

method to localize target, which can achieve high-precision results in complex

situations. Some works have proposed improvements based on the particle filter
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framework for better tracking abilities in very challenging tasks(69). Despite

the better performance of these algorithms with more complex structures, they

su↵ers from the high computational cost which prevents their implementation

from working in real time.

Some implementations using dedicated processors always result in power-

hungry systems(51, 52). Many implementations parallelize the time-consuming

part of algorithms, increasing the processing speed to real-time(55, 60, 73). These

solutions depend heavily on the algorithms and may be limited by them, if the

algorithms are not designed for e�cient hardware implementation. Sometimes it

is not an easy work to break the tradeo↵ between di↵erent aspects and make im-

provement in this situation. Some specific implementations can be employed

to speed up certain part of the algorithm, such as feature extraction(29) or

localization(54). In this case, it is necessary to consider how to combine them into

an e�cient system, because several problems rise when building parallel system,

such as transmission of large amount of data.

In this thesis, we have explored a solution to the object tracking task consider-

ing an e�cient implementation as the first priority. A hardware-friendly tracking

framework has been established and implemented on FPGA, thus verifying its

compatibility with VLSI technology. Several problems that limit the hardware

performance, such as complex computation, data transmission, cost of hardware

resources, etc., have been resolved. The proposed architecture has achieved 150

f/s on FPGA, and if it is implemented on VLSI with on-chip image sensor, it is

possible to achieve the frame rate as fast as 900 f/s.

Since our solution provides a high flexibility in its configuration, it can be in-

tegrated into a lot of other more-complex intelligent systems as their sub-systems.

Due to its real-time performance much faster than the video rate it would provide

a lot of opportunities for building real-time-operating highly-intelligent systems.

In tracking algorithms, how to represent the target image is of particular

importance because it greatly influences the tracking performance under certain

tracking framework. Color, edge, and texture are typical attributes used for repre-

senting objects(11, 23). A number of other features, including active contour(57),

SIFT feature(24), oriented energy(14), and optical flow(66), are also used in many

works. Some works also combine these features or incorporate on-line learning
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of the model of an object and background(17, 23, 33, 74). In our research, we

have aimed to establish both robustness of object representation and the real-

time performance of the processing, because feature extraction is usually a time

consuming process.

It is well known that animals have excellent ability in visual tracking, but the

biological mechanism has not yet been clarified. However, it was revealed that

the visual perception of animals relies heavily on the directional edges(75). In the

present work, therefore, the directional-edge-based image feature representation

algorithm developed in(76) is employed to represent the object image. Robust

performance of the directional-edge-based algorithms has already been demon-

strated in various image recognition applications. In addition, dedicated VLSI

chips for e�cient directional edge detection and image vector generation have

also been developed for object recognition systems(77, 78).

The purpose of this work is to develop a real-time object tracking system

which is robust against such disturbing situations like illumination variation, ob-

ject shape deformation, and partial occlusion of target images. By employing the

directional-edge-based feature vector representation, the system has been made

robust against illumination variation and small variation in object shapes. In or-

der to achieve real-time performance in tracking, a VLSI hardware-implementation

friendly algorithm has been developed. It employs a statistical approach in which

multiple candidate locations are generated during tracking. The basic idea was

inherited from the particle filter but the algorithm has been greatly modified and

simplified from the original particle filter so that it can be implemented in VLSI

hardware very e�ciently. The algorithm was first proposed in(79) and the perfor-

mance was verified by only simulation. In this article, however, the algorithm was

actually implemented on an FPGA, and the real-time performance and robust

nature have been demonstrated by the measurement of the working system. In

order to further enhance the robustness of the tracking ability, an on-line learning

technique has been introduced to the system. When the target object changes its

appearance beyond a certain range, the system autonomously learns the altered

shape as one of its variations, and continues its tracking. As a result, for a large

variation in the shape and for partial occlusion, the system has also shown a ro-

bust performance. The system was implemented on a Terasic DE3 FPGA board.
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Under the operating frequency of 60 MHz, the experimental system achieved a

processing ability of 0.8 ms per frame in tracking a 64⇥ 64 scale object image in

640⇥ 480-pixel size video sequences.

Object tracking is still a challenging task for application in real world due

to di↵erent requirements in complex situations. Based on the tracking system

developed in this work, we also proposed solutions to some important tracking

problems, which was not included in the algorithm of(79). We have designed a

flexible architecture for multiple target tracking, using only a limited number of

parallel processing elements. A new image scanning scheme has been explored

to realize automated initialization of the tracking system instead of manual ini-

tialization. In this scheme, the image of the tracking target is autonomously

localized in the initial frame of image sequences. The same scheme has also been

used to solve a group of similar problems: full occlusion, target disappearance

from the scene, and accidental loss of the target image, while requiring only a

few additional logic functions in the circuitry.

2.2 Algorithm

The most essential part of this algorithm is a recursive process called multiple

candidate regeneration (MCR), which is similar to the prediction and update in

the particle filter. The task of object tracking in a moving image sequence is

defined as making a prediction for the most probable location of the target image

in every consecutive frame. The iteration process is shown in Fig. 2.1.

At the very beginning of the tracking (the initialization stage), the target

image is specified manually by enclosing an image by a square window and the

center coordinates (x, y) of the window is defined as the image location. The

target image enclosed in the window serves as a template in the following tracking

process. At the same time, a fixed number of candidate locations are generated

as possible locations for search in the next frame. In the initialization, these

candidate locations are uniformly placed around the target image location so

that their average location coincides the target location.

In the second frame, the similarity between the target image and the local

image at each candidate location is calculated and a weight is assigned to each
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More frames?

Candidate Initialization

Weight computation for each 
candidate location

Candidate regeneration based on 
weight value

1 2 3 ... N

1' 2' 3' N'...

YES
Center of gravity
(target location)

End

NO

Figure 2.1: Process of multiple candidate regeneration (MCR).

location based on the similarity. The larger the similarity is, the larger weight

is assigned. Then, new candidate locations are regenerated reflecting the weight

(similarity) at each location. Namely, a larger number of new candidate locations

are generated where the weight is large. The average of newly generated candi-

date locations yields the new target location in the second frame. The process

continues iteratively for each coming frame.

Fig. 2.2 illustrates the procedure of weight computation and regeneration of

new candidate locations using a simple example having only four candidates. In

the previous frame shown at the top, there are four candidate locations repre-

sented by black dots around the target image of a smiling face. In the present

frame below, the target moves to right and comes closer to location 3. The dot-

ted line squares indicate the local images at candidate locations. The images at

candidate locations are matched with the template image, and the weights are

calculated according to their similarities, which are shown as solid black circles

below. A larger similarity corresponds to a larger weight, being represented by a
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Figure 2.2: A simplified four-candidate example illustrating weight computation

and candidate regeneration.

larger solid circle. Then the same number (four) of new candidate locations are

generated in the regeneration process, following the rule that a candidate with a

higher weight regenerates more new candidates around its location. The old can-

didates are discarded after regeneration so that the total number of candidates

stays constant. As shown at the bottom, four new candidates are generated and

the average of their locations yields the most probable location of the target in

the present frame.

In the following, the entire algorithm is explained in detail, including the

representation of object image, the weight generation, the candidate regeneration

and the on-line learning function. They are all designed specifically aiming at

easy and e�cient hardware implementation.
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2.2.1 Algorithm Structure

Fig. 2.3 shows the structure of the algorithm. The principal component is the

multiple candidate regeneration block (MCR). The algorithm starts with the ini-

tialization block at the beginning, which sets up all necessary parameters, includ-

ing candidate locations and the target template. The candidate container and

the template container are two memory blocks that store the candidate locations

and feature vectors of the templates, respectively. Initialization is carried out

with the first frame image, where the target for pursuit is identified by enclosing

the image with a square window as shown at the top right. This is done manu-

ally. The points in the tracking window represent locations of candidates. These

points are distributed uniformly in the tracking window in the initialization step,

and stored in the candidate container. A feature vector of the target is generated

from the image in the tracking window, and stored in the template container.

Throughout the algorithm, we use reduced representation of local images and the

procedure of feature vector representation is explained later in this section.

There are two loops in this algorithm: loop A and B as shown in the figure.

In loop A the output of MCR is sent back to the candidate container as inputs to

the next iteration. The MCR keeps updating the candidate distribution whenever

there is a new frame coming. One example is shown at the bottom right in Fig.

2.2, in which the points are candidate locations and the square is located at

the center of gravity of all the candidates at the present time. This yields the

most probable location of the target in the present frame. Loop B represents the

process of learning feedback. The on-line learning block generates new templates

during the tracking process and stores new templates into the template container.

Detail about this process is explained at the end of this section.

In summary, the algorithm starts from initialization block using the first frame

of image, then processes each new coming frame and outputs the target location

continuously until there is no more input image.

2.2.2 Object Representation

As explained above, in order to calculate the weight of each candidate, we need to

evaluate the similarity between the candidate image and the template image. This
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Figure 2.4: Feature extraction from a 64⇥ 64-pixel gray-scale image and conver-

sion to a 64-dimension feature vector(1).

is done by calculating the distance between the two feature vectors representing

the two images. Therefore, employing a suitable feature representation algorithm

is very important. We employed the directional-edge-based image representation

algorithm(1, 80, 81) which was developed being inspired by the biological principle

found in the animal visual system(75). This method needs only the gray-scale

information of an image as input, and the output is a 64-dimentional feature

vector. It consists of three successive steps: local feature extraction (LFE), global

feature extraction (GFE), and averaged principal-edge distribution (APED)(1).

Fig. 2.4 shows the function of each step.

2.2.2.1 Local feature extraction (LFE)

The function of LFE is to extract the edge and its orientation at each pixel loca-

tion in an image. For every pixel location, the convolutions of a 5⇥5 pixel region
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Figure 2.5: Process of directional edge detection using 5⇥5-pixel filtering kernels.

with four directional filtering kernels (horizontal, +45�, vertical, �45�) are cal-

culated as shown in Fig. 2.5. Then, the absolute values of these four convolution

results are compared, and the maximum value and its corresponding orientation

are stored as the gradient and edge orientation at this pixel location, respectively.

The processing is carried out at all pixel sites in an input image except for the

two rows and two columns adjacent to the four boundaries. Therefore, from a

68⇥68 input image, a 64⇥64 gradient map with orientation information at each

pixel is produced.

2.2.2.2 Global feature extraction (GFE)

The gradient map produced in the previous step contains edge orientation at

all pixel sites. In this step, only the edges of significance are left by setting a

threshold to the gradient map. All the gradient data are sorted, and we find out

a certain number of pixels that have larger gradient values than others. The pixel

locations with these larger gradients are marked as edges in four-directional edge

22



2.2 Algorithm

maps. The number of edges to be left is specified by a percentage to the total

pixel number.

2.2.2.3 Averaged principal-edge distribution (APED)

Although the information has been compressed by extracting edges in LFE and

GFE, the amount of information is still massive in quantity. Therefore, a method

called APED(1) is employed to transform the four edge maps into a 64-dimension

vector. In the APED vector representation, each edge map is divided into 16

square bins, and the number of edge flags in each bin is summed up, which

constitutes an element of the vector. The 64-dimensional feature vector is the

final output of the feature extraction processing, and is used throughout the entire

algorithm as the representation of local images, including candidate images as well

as template images.

2.2.3 Weight Computation and Candidate Regeneration

Since the basic principle has already been explained, how to implement the prin-

ciple is described here. In order to make all computations easily and e�ciently

implementable in the VLSI hardware, each mathematical operation was replaced

by a hardware-implementation friendly analogue, which are di↵erent from that

in the regular particle filter algorithm.

The local image taken from each candidate location is converted to a feature

vector and the Manhattan distances are calculated with template vectors. In this

algorithm, there are more than one templates in the template container to rep-

resent the target. The first template is generated at the initialization step, while

others are generated during the on-line learning process. Therefore, the mini-

mum Manhattan distance is utilized to determine the weight for this candidate

as described in the following.

MD

i,j

=
nX

k=1

|V

Ci

[k]� V

Tj

[k]| (2.1)

D

i

= min(MD

i1,MD

i2, ...,MD

in

) (2.2)
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W

i

=

⇢
0, (D

i

� C)
INT [N0 ⇥ (1�D

i

/C)], (D
i

< C).
(2.3)

Here, MD

ij

stands for the Manhattan distance between the candidate i and

the template j, and V

Ci

[k] and V

Tj

[k] denote the k-th element of the candidate

vector V
Ci

and the template vector V
Tj

, respectively. D

i

is the minimum dis-

tance of candidate i with all the templates and W

i

represents the weight for the

candidate i. N0 is a constant value determining the scale of the weight. In (3), C

is a threshold defining the scale of weight values, which is determined by experi-

ments. INT means taking the integer component of the value. In this manner,

those candidates that have at least one Manhattan distance value smaller than

the threshold C are all preserved to regenerate new candidates in the next frame.

At the same time, larger weight values are assigned to candidates having smaller

distances.

In the third step, new candidates are regenerated as described below. Firstly,

the maximum weight value W

max

is found and it is used as a threshold number

(N
th

) for new candidate regeneration. Note that N

th

= W

max

( N0) is an

integer number. At old candidate locations whose weights are equal to W

max

, a

new candidate is generated in the vicinity at each location. Then the threshold

number is decreased by one, and a new threshold is obtained as N
th

= W

max

� 1.

Then all weight values are compared again with the new threshold number, and

at those old candidate locations whose weights are greater than or equal to N

th

,

one more new candidate is generated in each vicinity. Then N

th

is decreased by

one again (N
th

= W

max

� 2). The process is repeated until the total number of

new candidates reaches a constant number N . After obtaining N new candidate

locations, old candidates are all discarded.

2.2.4 On-line Learning

In many practical applications, the target we are concerned about is a non-rigid

object, which may change its appearance and size. In addition, su�cient knowl-

edge about the target is in general not available before tracking. This problem

causes tracking failure if the algorithm does not flexibly learn the appearance

change in the target. An on-line learning method is introduced to solve this

24



2.3 Implementation

Figure 2.6: Object tracking system implementing the algorithm developed in this

work.

problem in this work. The learning process begins after the estimation of the

target location. One feature vector is generated from the image at the target lo-

cation in the present frame. Then the Manhattan distances between this feature

vector and all the templates are calculated, and the minimum distance is found.

If the minimum distance is larger than a certain threshold, it is interpreted as

that the target has changed its appearance substantially, and the feature vector

is stored as a new template in the template container.

2.3 Implementation

This tracking system has been implemented on Terasic DE3 FPGA board which

uses Altera Stratix III chip. Terasic TRDB-D5M camera is used as the image

input device, and a Terasic DE2 FPGA board is used for saving and displaying

the tracking result. A photo of this system is shown in Fig. 2.6. The following

sections explain each part of the system and give the evaluation of the processing

time.
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Memory Block: 64×4 shift register Logic Block: 5×5 register array and 
combinational logic circuit

Image Circuit for 
calculating the 

maximum 
gradient for one 

pixel position

Figure 2.7: Implementation of local feature extraction (LFE) block.
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Figure 2.8: Implementation of global feature extraction (GFE) block.

2.3.1 Feature Extraction

The feature extraction stage is implemented in three serially connected functional

blocks: local feature extraction (LFE), global feature extraction (GFE) and vec-

torization. In this system, the image transmission from camera to FPGA board

is serial, one pixel per clock cycle. Therefore, at this stage, we built the feature

extraction block working in pipeline for e�cient computation. The whole system

has eight such units working in parallel for e�cient computation. The processing

time is determined by the size of the candidate image, which was set as 68 ⇥ 68

pixels in this system. It takes about 5650 clock cycles to process one candidate

image. Implementation of each part is explained in the following.

The structure of LFE block is shown in Fig. 2.7. There are four 68-stage

shift registers each serially connected, and the output of each shift register is
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inputted to the respective row of a 5 ⇥ 5 register array. It shifts pixel data

of 8 bits. The shift register stores the minimum size of image data necessary

for computation. The 5 ⇥ 5 register array works as a bu↵er between the shift

register and the logic block. The combinational logic block deals with all the

logic processing needed to calculate the gradient and orientation in two clock

cycles, including doing convolution with four 5⇥ 5 kernels, taking their absolute

values, and storing the largest value. The intensity values of an image are sent

into the first row of the shift register and, at the same time, into the top row of

the register array pixel by pixel. The four rows of data in the shift register are

shifted-in to the corresponding lines of the 5 ⇥ 5 register array. In this manner,

the 5 ⇥ 5-pixel filtering kernel block scans the entire image pixel by pixel and

generates a directional gradient map. Because gradient values centered at the

peripheral two rows and two columns are not calculated, a 64⇥ 64 gradient map

is produced from a 68⇥68 image in 4626 clock cycles (2 more cycles for processing

the last value).

The following GFE block, as explained in the algorithm section, must im-

plement the sorting function. Since we employed a hardware-friendly sorting

algorithm, the processing time is only related to the bit length of the data. This

algorithm is briefly explained in the following, and the detail can be found in

(77).

Supposing that we need to pick out the K largest data from a group of data,

the sorting starts from the most significant bits (MSB) of the data. Before sorting,

all the data are assigned a mark of “UNKNOWN”. First, according to the value

of MSB (1 or 0), the data are divided into two groups. The first group has all

the data with “1” as MSB, while the second group owns all the data with “0”

as MSB. Then the system counts how many data are in the first group. If the

number is less than K, it is certain that all the data in the first group belong to

the K largest, and the data are marked with “YES”. If the number is greater

than K, all the data in the second group can be discarded as not belonging to

the K largest, and are marked with “NO”. The data left will be still marked

“UNKNOWN”. In the second step, similar computation is repeated upon the

second bit from MSB. The unknown data will be divided into two groups again,

but the summation of the data in this step will also count in the data with mark
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“YES”. By repeating this procedure, all the largest K data will be marked with

“YES” after processing all bits of the data. This is a parallel sorting method,

which can be completed in several clock cycles theoretically. The di�culty in

implementation is that we need an adder that sums up all single bits coming

from all the data. In this tracking system, there are totally 4096 data to process

in GFE. It is not easy to implement a 4096-input adder connected to 4096 15-

bit registers. Therefore, we made a tradeo↵ between the speed and complexity,

dividing the total 4096 data into 64 groups. The implementation of this part is

shown in Fig. 2.8.

The 64 groups of data are processed in parallel and in a pipelined way. The

“FLAG” and “MARK” are used to represent the state of each datum. The

“FLAG” indicates whether the decision has already been made or still “UN-

KNOWN”, while the “MARK” tells whether the datum is marked with “YES”

or “NO”. The 64 groups of data, and default values of “FLAG” and “MARK”

are all stored in respective shift registers. Each shift register stores 64 data, and

owns one output feeding back to its input. At the beginning, the shift register

shifts data for 64 clock cycles, and a 64-input adder with accumulator sums up

the MSB of all the data. In the next loop of 64 clock cycles, the “FLAG” and

“MARK” are modified according to the summation result following the rules ex-

plained above. At the same time, the summation of the next bit from all the

data are summed up, which will be used in the next loop. The calculation time

for GFE is 1024 clock cycles.

The output of GFE is a binary map that contains the edge information. In

the following step, this edge information is compressed e↵ectively into a feature

vector representation as explained in the algorithm section. We use shift registers

and accumulators to realize this function in a common way, and do not describe

it in detail here.

In computer vision, SIFT is a very e↵ective feature extraction method provid-

ing local feature description. From the viewpoint of hardware implementation,

we compared the APED with SIFT to illustrate the performance. Implemented

on VLSI and FPGA(29, 32), the time for computing one feature of SIFT has been

reduced to about 3300 clock cycles. In order to describe an sub-image e↵ectively,

at least three features are necessary, and more features are needed to describe
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the scene. Matching is performed between these features. The feature extraction

method in this thesis takes only about 5600 cycles to generate a global descrip-

tion of a candidate. Since the processing unit is not complex, it is convenient to

realize parallel processing.

2.3.2 Multiple Candidate Regeneration

The next several blocks of the system, including weight generation and new loca-

tion estimation, are explained in this part. Fig. 2.9 shows the hardware structure

of the weight generation block and candidate regeneration block. A shift register

is used to store the templates. Each time when this block receives a feature vector

from feature extraction block, it sends a start signal to the template container,

and the template container shifts out all the templates to the weight generation

block. Then Manhattan distances between the feature vector and all the tem-

plates are calculated one by one, and the minimum value of them is retained for

calculating the weight. At last, the weight will be sent to the candidate regener-

ation block.

In the candidate regeneration block a shift register is used to store the candi-

date locations, and the number of candidates is 64 in our system. The candidate

regeneration block first collects all the weights for 64 candidates, and then count

down from the largest weight value, which is set to 15 (N0 = 15 in (3)) in this sys-

tem. New candidate is generated when there is any candidate that has a weight

value greater than the counter. As shown in Fig. 2.9, there are eight directions

which the new candidate can choose randomly. This avoids the problem that all

the candidates may tend to be generated in the same location. A 3-bit counter

is used to represent the direction for regeneration. In every clock cycle while

generating new candidates, the counter is added by one. Because the process

of determining whether to generate new candidate is not regular, the directions

read from the counter will be like random values. For determining the distance

between the old and the new candidates, this system gives a small distance vari-

ance when the weight is large, because these candidates reflect the target location

better. A large distance variance is assigned when the weight is small, in order

to produce a wide distribution that can cover the area for detecting the target.
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For example, weights larger than 12, larger than 8, and less than 8 correspond

to distance of 1 pixel, 2 pixels, and 4 pixels, respectively. After the regeneration

of new candidates, the new location is stored in the candidate container. The

center of gravity of all the new candidate locations, is sent to both the display

block and the on-line learning block as the prediction of the new target location.

The calculation time is decreased dramatically due to the hardware-friendly

feature of this algorithm as compared to the software implementation of regular

particle filter algorithms. For the calculation of these blocks together, a typical

620 clock cycles are needed, and the maximum number of clock cycles is 1024.
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2.3.3 On-line Learning

After receiving the estimation of the new target location from the candidate

regeneration block, this on-line learning block will extract the feature vector from

the image at the new target location. This feature vector is compared to all the

templates by using Manhattan distance to find the minimum distance. If the

minimum distance is greater than a certain threshold, this feature vector will be

stored into the template container as a new template. In order to start searching

for new target locations, only a limited region in the input image that is four

times larger than the tracking window is stored for saving memory resource.

2.3.4 Overall Structure

Fig. 2.10 illustrates the overview of the hardware organization of this system.

Table 2.1 shows a summary of FPGA resource utilization of main processing

blocks with processing time. After receiving the image data from camera, this

system first allocates the data into corresponding memories. Then eight parallel

candidate processing blocks process these data in parallel, and output the weight

of each candidate. Then, these weight values are used to generate new candidate

locations and the target location. At the same time, the on-line learning block

updates the templates according to the tracking result in each iteration. In this

system, we set up total 64 candidates for tracking. Considering the resource

limitation of the FPGA board, we divided the 64 candidates into eight groups.

All eight candidates in each group are processed in parallel, and all eight groups

are processed serially. In the experiments on tracking with only eight candidates

in total, the system still shows tracking ability, but with some degradation in the

performance. Therefore, this system can be operated in di↵erent modes to achieve

the balance between the tracking speed and accuracy. In the high-speed mode,

the system handles a less number of candidates for higher speed search, while in

the high-accuracy mode, the system takes more time and handles a larger number

of candidates. At the working frequency of 60 MHz, the typical processing time

for one frame (640⇥ 480 pixel-size) is 0.1 ms in the high-speed mode and 0.8 ms

in the high-accuracy mode. Such a flexible configuration provides an opportunity
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of realizing multiple target tracking function with a fixed number of processing

elements, which is discussed in the discussion section.

Data transfer is one of the most important issues in video processing system.

Figure. 2.11 illustrates the data bandwidth of the connections between the func-

tional blocks and memories. In the figure, only the processing of one candidate

is shown, but all the types of connections in the system are included. It can be

observed that, after the image data are transferred to a vector, the quantity of

the data becomes very small for computing. In fact, the image data received are

only stored partially in registers for pipelined processing. The e↵ective features

for predicting the object location are all expressed in vectors for serial trans-

fer and convenient storage. The massive connections can be found in the GFE

part, which uses row-parallel processing to reduce computational time. There is

a balance between parallelism and implementation, which is discussed in imple-

mentation of GFE in detail. In summary, the strategy for data computing in this

system contains two aspects: First, the large amount of image data should be

transferred to feature vector in an e�cient way. Second, achieve balance between

parallelism and resource consumption, and limited the massive data transfer in

local region.
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2.4 Experiments

In this section, we evaluated the tracking system by using a group of challenging

video sequences, and showed the real-time performance of the system. For eval-

uation on accuracy, we did the experiments through software simulation. The

program was written in a way that every logic operation is same with the imple-

mentation on FPGA. From the viewpoint of logic function, the software simula-

tion should give the same results and show the same performance on accuracy

with the hardware implementation. For the experiments on the real system in the

following part, output of the system was real-time displayed on a monitor screen,

and it was recorded by a video camera. The results shown in figures are images

extracted from the video. In all the experiments, the parameters are fixed, such

as threshold and number of candidates.

2.4.1 Evaluation on Accuracy

In this part, we evaluated the proposed system by using several challenging video

sequences from a public database. For comparison, we adopted an evaluation

methodology proposed in (67), and compared our system with tracking system

in that work. Although this evaluation was made through software simulation,

we programmed in the way that every logic operation in program is same with

the implementation on FPGA.

In Fig. 2.12, tracking results on these video sequences are shown. The features

of these videos are: the Sylvester and David Indoor video sequences present

challenging lighting, scale, and pose changes; the Cola Can sequence contains a

specular object, which adds some di�culty; the Tiger sequences exhibit many

challenges and contain frequent occlusions and fast motion (which causes motion

blur); and the Coupon Book clip illustrates a problem that arises when the tracker

relies too heavily on the first frame.

In Table 2.2, we show the tracking accuracy at a fixed threshold of 20. The

threshold is a distance in pixels. If the distance between the predicted location

and the ground truth in one image is larger than the threshold, the prediction

in this image is considered as failed. The data in Table 2.2 show the percentage

of how many successful predictions are made over the total number of images in
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Figure 2.12: Tracking results from software simulation. Video sequences from

top to bottom: Sylvester, David Indoor, Cola Can, Occluded Face, Occluded Face

2, Tiger 1, Tiger 2, Surfer, Coupon Book.

a video sequence. Detailed information about this measurement method can be

found in(67). Table 2.3 shows evaluation on average location error on various

tracking algorithms, including SemiBoost, Frag, MILTrack, DMLTrack(82), and
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Table 2.2: Comparisons: Precision at a Fixed Threshold of 20

OAB SemiBoost Frag MILTrack This Work

Sylvester 0.64 0.69 0.86 0.90 0.83

David

Indoor 0.16 0.46 0.45 0.52 0.88

Cola Can 0.45 0.78 0.14 0.55 0.93

Occluded

Face 0.22 0.97 0.95 0.43 0.12

Occluded

Face 2 0.61 0.60 0.44 0.60 0.44

Surfer 0.51 0.96 0.28 0.93 0.60

Tiger 1 0.48 0.44 0.28 0.81 0.37

Tiger 2 0.51 0.30 0.22 0.83 0.50

Coupon

Book 0.67 0.37 0.41 0.69 0.40

The results show the percentage of how many successful predictions are made

over the total number of images in a video sequence.

this work.

In the experiments, this tracking system shows ability of dealing with illu-

mination change, size change, deformation, and partial occlusion. In situations

of severe partial occlusion or full occlusion, this system has limitation. This is

mainly because the edge feature vector we employed is a global representation,

which is sensitive to severe occlusion.

2.4.2 Tracking on FPGA System

We set up the parameters of this system by optimizing them through preliminary

experiments, and did not change any parameter during the experiments.

Fig. 2.13 shows the results of an experiment, in which a cup was moved around

continuously in a complex circumstance. There is a sudden illumination change
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Table 2.3: Comparisons: Average Center Location Errors (pixels)

SemiBoost Frag MILTrack DMLTrack This Work

Cola Can 13.09 63.44 20.13 12.84 12.42

Coupon

Book 66.59 55.88 14.74 5.68 63.53

Sylvester 15.84 11.12 10.82 9.79 13.16

Tiger 2 61.20 36.64 17.85 31.39 23.80

David

Indoor 38.87 46.27 23.12 8.82 12.95

Occluded

Face 6.98 6.34 27.23 19.29 46.98

Occluded

Face 2 22.86 45.19 20.19 4.97 29.03

on the object, produced by a spotlight coming from the right. The background

also gives a disturbing brightness condition: there is light from the left side

of the window, while the right side is covered by a window blind. The target

changes its appearance and size while moving. According to the results, the

system gave stable trace of the target in the complex situation. In this experiment,

we turned o↵ the on-line learning function, and stored several templates of the

cup in di↵erent angles and sizes before tracking. Since in this system the size of

the tracking window is fixed, we stored some parts of the target as template when

the target size is larger than the window size. The total number of templates was

eight.

Fig. 2.14 shows the on-line leaning process of the system. When the hand

changed to several di↵erent gestures, the system detected the changes and stored

the new gestures as templates. After the system learned a su�cient number of

templates, it can track the target that moves around and changes its appearance

continuously, as shown in Fig. 2.15.

Fig. 2.16 shows the situation where partial occlusion occurs. The target goes

behind some obstacle (a chair), and a part of the target is lost from the scene.
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Figure 2.13: Experiment showing tracking of a cup with illumination change

and deformation. In this case, the templates are set up before tracking, including

appearances of cup in di↵erent angles and sizes. The on-line learning function is

turned o↵ in this case.

Figure 2.14: On-line learning process. The tracking system stores new templates

when the target changes its appearance.

The system learns the object image partially lost by occlusion as a new template

and keeps on tracking the target successfully.

In Table 2.4, we compared the performance of the proposed system with three

other implementations(51, 52, 57). All three other systems use particle filter as

localization method but use di↵erent feature representation algorithms. These

studies claimed real-time performance, but considering the calculation time for

one frame, our method is much faster than the first two systems, and is 40 times
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Figure 2.15: Experiment showing the tracking ability with a su�cient number of

templates obtained by on-line learning. The system can track the object moving

and deforming continuously.

Figure 2.16: Experiment showing the tracking including the partial occlusion of

the target.

faster than the third system with the tracking window size 16 times larger. In

addition, we also show the frame processing ability, which is in fact limited by the

camera and the transmission between camera and processing elements. This com-

mon problem can be solved by implementing the image sensor and the processing

elements on the same VLSI chip, which is discussed in the VLSI implementation

section. We set up the camera to work at 25 f/s. Because the system works faster

than the camera, the same frame of image is processed repeatedly (six times every

frame in this system) as if it is new frame until the real new frame of image is cap-

tured by the camera. Since new candidates are regenerated for the same frame of

image in each iteration, this makes the tracking result stable when object moves

faster than the movement step of candidates. For this reason, we have claimed

the processing ability of the present system is 150 f/s. The implementation of

this tracking system on VLSI chips for improved performance is discussed in the

following section.
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2.5 Summary

In this section, we have proposed a real-time object tracking system, which is

based on the multiple candidate-location generation mechanism. The system

employs the directional-edge-based image features and also an online learning

algorithm for robust tracking performance. Since the design of this algorithm is

hardware-friendly, we designed and implemented the real-time system on FPGA,

which has the ability of processing a 640⇥ 480 resolution image in about 0.1 ms.

It achieved 150 f/s frame rate on FPGA, and can reach about 900 f/s if imple-

mented on VLSI with on-chip image sensor. Evaluation of the tracking system

on both accuracy and speed are shown and discussed, which clarify the features

of this system. This section also presents a detailed discussion on several issues

of tracking, including VLSI chip implementation for faster operation, multiple

target tracking, initialization problem, and full occlusion problem. The solutions

presented in the discussion part are based on our hardware system, and will give

solutions in real-time applications.
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3

Extending Tracking Functions

3.1 Introduction

Basically speaking, the purpose of object tracking is to predict object location

in every frame of image. However, because of the complexity of practical appli-

cations, there are various requirements besides the simple location information.

For example, multiple object tracking is a very common situation. In some ap-

plications, more information, such as size and orientation of the object, is also

important. In some tracking task, the object may disappear from the scene or

be occluded by other objects. It is important to design a method to search the

missing object. Therefore, in order to fulfill di↵erent requirements, the flexibility

and extensibility of the system become very important. In this part, extension

of the tracking system is discussed by discussing five practical solutions: VLSI

implementation, multiple object tracking, initialization, full occlusion, and state

vector.

3.2 VLSI Implementation

The object tracking system of my work is implemented on FPGA, with an external

CCD camera. However, the design of the algorithm and hardware architecture

is compatible with implementation on VLSI technology. That means it is not

required to do additional work on the architecture in order to build the tracking
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3. EXTENDING TRACKING FUNCTIONS

system on a VLSI chip, although it could be more complex in VLSI design process.

In fact, while using VLSI technology, it is obvious that the performance of the

tracking system can be improved because of the flexibility of VLSI design, for

example, even the image sensor can be implemented on the same chip for high-

processing speed. Several di↵erences are discussed in the following.

From the analysis of the computational time of this system, it was found that

most of the time is consumed in waiting for image data input and doing feature

extraction computation. This is because we cannot process the image information

from camera e�ciently due to the data transmission limitation from the camera to

the FPGA. This problem can be resolved if the algorithm is directly implemented

on VLSI chips. If this algorithm is implemented with a high performance image

sensor, the performance will improve greatly. In fact, a VLSI processor has been

developed for the object recognition purpose that is composed of image sensor

and the feature extraction block based on the same algorithm employed in this

system (77). For a 68⇥68 image, that processor is capable of reading image data

directly from the on-chip image sensor array and calculate the intensity gradients

in a row-parallel way.

The global feature extraction (GFE) is a time consuming process, which is

implemented in row-parallel way on FPGA. The limitation is that this part con-

tains a parallel adder which will sum 4096 one-bit data selected from 4096 15-bit

data. This architecture requires massive connections among registers, adders and

multipliers. It is not a easy work, nor an e�cient solution for FPGA implementa-

tion. Therefore, the summation process is divided into 64 steps, a row of data are

added up in each step. If this architecture is implemented in fully parallel way

on VLSI, the GFE part can be finished in only 11 clock cycles while it needs 960

cycles in this system. Therefore, a nearly 6 times decrease in the computational

time and a higher frame rate can be expected by integrating the tracking system

developed in this work directly on the chip of (77).

3.3 Multiple Target Tracking

Multiple target tracking is in great demand in certain applications. The human

brain acquired such an essential ability through evolution. Although the multiple
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3.3 Multiple Target Tracking

Figure 3.1: Experiment on two-target tracking. In this experiment, each tar-

get had a template container, a candidate container, and 32 processing elements.

Locations of the targets were initialized separately in the first frame. The result

shows that the system can track two di↵erent objects well without using additional

memory or processing elements.

target tracking mechanism in the human brain is not yet known, in Pylyshyn and

Storm’s research (83) a widely accepted theory has been proposed, which is well

supported by experiments. Their data showed that participants can successfully

track a subset of up to five targets from a set of ten, and both accuracy and

reaction times decline with increasing numbers of targets. One possible inter-

pretation of their findings is that targets are being tracked by a strictly parallel

preattentive process with limited resources.

In hardware systems, the problem of limited processing resources always ex-

ists, especially for the real-time applications. In our system, this problem is

resolved by flexibly allocating the processing elements to multiple targets. Based

on the implemented tracking system, we verified the tracking mechanism really

works for a two-target experiment. In the experiment, there were two targets

with their own templates. The 64 candidates were allocated to the two targets,

and the tracking process was the same as the single-target tracking. The experi-

mental result in Fig. 3.1 shows that the system still tracks the targets successfully

in multi-target tracking with limited resources. In di↵erent tracking applications

with di↵erent number of targets and hardware resources, the mechanism of the

proposed system can provide flexible and highly e�cient solutions.
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Figure 3.2: Process of searching two targets in an image based on software sim-

ulation. Images in the first row show the candidate distribution in each iteration,

and the location of one object is detected as shown in the right most image. Images

in the second row show the candidates distribution after giving a feedback suppres-

sion to the original image. All candidates are initialized to the default location

again, and go to the location of the second object after eight iterations.

3.4 System Initialization

Initialization is a critical problem of the searching-based tracking algorithms.

However, because this tracking system is not designed for a specific application,

it is not easy to adopt a fixed method as initialization. In this paper and some

other tracking works, the proposed solutions focus on the situation that only the

object location in the first frame of image is known. The manual initialization is

also used for fair evaluation on the tracking system under same condition with

other works.

For initialization, we briefly discussed one possible solution, a searching method,

for the situation that the system has already stored templates of the target to be
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3.4 System Initialization

tracked, and will first try to find the initial location before tracking. In di↵erent

applications, the requirements can be very di↵erent. For example, it is possible

that some application requires detecting the movement first in the scene (the

system has no idea about what the target is), and then determines the initial lo-

cation and target by itself. For the proposed tracking system, if the performance

of the system meets the requirements, it can be used in practical applications

with configuration and specific initialization method.

The algorithm adopted in this tracking system is based on a regeneration

mechanism. Therefore, the initial target location must be specified manually.

In this subsection, it is explained that the problem of initialization can also be

resolved by employing the multiple candidate regeneration mechanism developed

in this work. The merit of this solution is that it does not need any additional

resources except for some simple logic elements.

In our previous experiments, initialization is done by setting up the target

location manually before the tracking starts. However, there are some other

requirements in di↵erent applications. For example, in some case, the system

has already possessed some templates of the target and starts tracking when the

target appears in the scene. Then the system must search for the target first

using the templates, and when it is found, the system use this location as the

initial location. We focus on this situation here, and propose a solution to the

initialization problem in the following.

Firstly, the image is divided into half-overlapped sub-regions having the same

size with the tracking window. Secondly, all such sub-regions are treated as candi-

dates in the multiple candidate regeneration. Similar to the tracking mechanism,

all the candidates accumulate at the target location after several iterations. At

last, the location determined by the candidates is stored as initial location. In the

multi-target situation, the target that is already found is suppressed by giving a

feedback to the image. Namely, the target found in the first round is blanked by

masking. Then, the searching operation explained above is repeated to find the

second target. In this iteration, the candidates accumulate at the second target

location naturally. An example of finding the initial locations of two black clips

in an image is shown in Fig. 3.2.
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For a searching task, the simplest way is to do template matching at every

location in the image. This exhaustive searching strategy needs a lot of com-

putation, especially for a large size image. In this regard, the computational

complexity has been reduced significantly by this solution because only the can-

didate images are processed for searching.

3.5 Full Occlusion

Full occlusion is a very challenging problem, which may cause the tracker lose

the target. This is because the tracking algorithm uses the previous target loca-

tion as important information. The same searching mechanism explained in the

initialization using multiple candidate regeneration can also be used to solve this

problem. When a certain condition is met while tracking (for instance, di↵er-

ence between the current target image and the templates is larger than a certain

threshold), the tracking system enters the searching mode, and keep searching the

target as it does in the initialization. When the system finds the target, it returns

to the tracking mode. In this way, a target is found and tracked in real-time even

after disappearing for some time from the scene.

3.6 State Vector

State vector is a concept commonly used to describe the state (attributes) of

an object in object tracking algorithm. The simplest state vector can have only

two elements: the coordinates (x, y). In many situations, the tracker not only

outputs the location of the object, but also describes other information, such

as object size, orientation, and appearance. For example, SIFT descriptor uses

features with size and orientation parameters. Therefore, tracking algorithm

employing SIFT descriptor can tell the size and orientation of the object from

the features. In our system, it is simple to extend the tracking function for more

useful information. In the following, a solution to this problem, which only needs

adding some preprocessing into the system, is discussed.

In our tracking system, the object image is represented by a feature vector,

which contains only the distribution of edge information. In order to describe
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the state of the object, a state vector containing location, size and orientation

has been adopted. The vector has four elements: location x, location y, size,

and orientation, represented as x, y, s, o. The size is a real number with range

from 0.0 to 5.0, which represent the ratio of current object size to the original

object size. In this case, 1.0 means the original size. The orientation is an integer

number ranging from 0 to 359, which represents the degree of orientation angle.

In order to update the additional information about the object based the

developed system a specific preprocessing block is needed. Every time before

extracting the image for each candidate from a frame of image, besides considering

the location the size and orientation are also taken into account. In this case,

the image extracted from the scene will be an image with candidate window size.

Then the sub-image is rotated by the degree of the orientation angle. At last,

the image is resized to the original size as normalization, because it is necessary

for calculating APED. After the preprocessing, the final result is still a sub-

image with normal size, but it contains more information about the object. The

predicting process is same, but for updating the state vector, all the elements

in state vector are updated (generating new candidates). Two experiments are

performed to verify the usage of state vector. The tracking result is shown in Fig.

3.3 and Fig. 3.4.

3.7 Summary

Several extensions of the proposed tracking system are discussed. The most im-

portant feature is that all these extensions are based on the same architecture

that has already been developed. The core part is the processing element called

candidate. Using the same architecture VLSI implementation is possible, and

will show better performance than implementation on FPGA. Multiple object

tracking is realized by controlling the candidates, allocating them to di↵erent

objects. An candidate-based object detection method is proposed to realize ini-

tialization and find missing object when full occlusion happens. Finally, state

vector is employed in our tracking system. The candidates are distributed in a

multiple dimensional feature space, and more information about the object, such

as object size, can be achieved. Experiments have been performed to verify these
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Figure 3.3: Experiment on tracking with size feature. The size value of each

object state is shown under the frame of image.

Figure 3.4: Experiment on tracking with both size and orientation feature.

methods. More functions can be expected because of the flexibility of the object

tracking system.
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4

A Real-Time Object Tracking

System with Online Learning

Support Vector Machines

4.1 Introduction

Object tracking is a critical and well-studied problem with many practical ap-

plications. A number of algorithms have been developed based on various mech-

anisms. One promising direction is to consider the object tracking as a binary

classification problem, and employ discriminative methods in the tracking frame-

work. Support vector machine (SVM), as a powerful classification scheme, has

been used in many tracking algorithms, benefiting the algorithms with accurate

localization and flexible modeling of the target (66, 84, 85). In Fig. 4.1, some

sub-images extracted from a video are shown. Supposing that in every frame of

image, images from some candidate locations are extracted. Some of these images

belong to the object category (human face in this case), and the others belong

to a combinational class - background. It is straightforward that if we can find a

way to tell which of the images belong to the object, then we can use the location

information of the object images to estimate the real object location. The func-

tion of discriminating images can be realized by using SVM classifier, as shown

in Fig. 4.2. Fig. 4.2 shows the basic concept of SVM and the training process.

Given a set of training examples (images), each marked as belonging to one of two
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Figure 4.1: Illustration of the sub-images extracted from a scene. These images

can be divided into two classes: target class and background class.

categories (object and background), the SVM training algorithm builds a model

that assigns new examples (images) into one category or the other, as shown in

Fig. 4.4. An SVM model is a representation of the examples as points in space,

mapped so that the examples of the separate categories are divided by a hyper-

plane with a gap that is as wide as possible. Fig. 4.3 shows the hyperplane and

the support vectors. Boundary is a linear combination of all the examples along

the gap, which are called support vectors. In order to set up a classifier, only

the support vectors are necessary to store in the memory after training process.

The SVM works as an appearance model of the target by changing its boundary

while training. One feature of SVM is that the boundary is represented by the

combination of support vectors, and the number of support vectors is usually a

small portion of the total training dataset. This feature becomes very important

when implementing the tracking algorithm on hardware, because the hardware

resources are always limited.

Despite the good performance of these algorithms, they su↵er from several

practical problems. The work in (66) builds a superior SVM classifier and gives

good results in tracking vehicles. However, the o↵-line training mechanism em-

ployed in the work requires a large number of training samples selected manually

and does not support updating the training samples. In (84), all samples learned
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Figure 4.2: Illustration of basic concept of support vector machines.

Figure 4.3: Illustration of basic concept of support vector machines.
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from each frame of an image sequence are stored for training the SVM. This

causes a large memory cost if it is used in a long-duration task. In (85), a simple

strategy is employed to determine new training samples, which may cause “drift

problem” as described in (86). Moreover, these algorithms do not consider their

real-time performances, which is in fact of great importance in object tracking

applications. This is mainly because of the complex computation of SVM. Espe-

cially for the on-line learning SVMs, frequently repeated training and predictions

make this problem even worse. Therefore, in order to extend the power of SVM

in most of the general tracking applications, it is necessary to develop a proper

tracking framework and a VLSI-hardware-implementation-friendly structure for

the SVM-based algorithm.

The tracking framework includes how to update training samples and how to

select test samples and make prediction of the target location. In this work, a new

improved tracking framework is proposed. Di↵erent from other algorithms, this

framework gives a rule guiding the selection of target training samples. When

the target changes its appearance significantly, the system may fail to localize

the target because the classifier misclassifies the target image to the background

image category. In order to solve this problem, background samples are utilized

to predict the location of the target image. Unlike the moving target image, most

of the background sample images are stable. As a result, high-accuracy tracking

has been established. In addition, regarding the selection of target samples for

on-line training of SVM, a new selection rule has been introduced.

As mentioned, the on-line SVM learning requires repeated training and pre-

dicting. The predicting process always contains computation of thousands of test

samples in conventional algorithms, preventing these algorithms from working

in real-time. In this process, not only the SVM, but also the feature extrac-

tion of each sample will cost lots of time. Based on a SVM chip developed in

(87), the most complex part in this algorithm can be computed e�ciently. At

the same time, multiple candidate regeneration (79) is employed to reduce the

computational cost without sacrificing the tracking accuracy. In addition, the

directional-edge-feature vector representation (1), whose VLSI implementation

has been proposed in (77), is employed to represent the sample images. By using

this hardware-friendly structure, real-time tracking ability can be achieved.
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4.2 Object Tracking Algorithm

4.2.1 On-line Learning SVM

The basic mechanism of on-line learning SVM is to train the SVM classifier

repeatedly with new training samples. How to update the training samples a↵ects

the training result greatly. In (88) a training strategy is proposed, in which in

each iteration of training the support vector machine is trained by a new data

set and the support vectors determined by the previous learning iteration. The

reasoning behind this is that the resulting decision function of an SVM depends

only on its support vectors so that training an SVM on the support vectors alone

results in the same decision function as training on the whole data set. This

strategy is suitable to implement on hardware because of its simplicity. The

following researches claimed that this strategy only give a proximate learning

result (89, 90), and proposed accurate approaches dealing with huge amount

of data. Although the computational complexity has been decreased in these

strategies, massive memory is necessary to store all the data. In this work, we

took advantage of the strategy in (88) and designed an on-line learning strategy

for object tracking, which is explained in the following.

An illustration of the on-line learning is shown in Fig. 4.4. After training

the SVM, we build a classifier with a boundary. It is di�cult to collect all the

necessary examples before training, so after some time of tracking, there may be

some new examples from both the object and background. In this case, we need

to determine how to modify the decision boundary according to the new exam-

ples, which is usually called incremental learning. One approximated method is

to retain the support vectors in current SVM, add new examples to the support

vectors, and then train the SVM again. As illustrated in the figure, the decision

boundary grows with the increase of new examples. One important feature of this

process is that the method focuses on the current change of decision boundary as

priority. This is very convenient in object tracking application, because the pur-

pose of tracking is discriminate object from background at present time. Fig. 4.5

shows the di↵erence between our learning process and the conventional learning

process. In the conventional learning process, the SVM is trained only once by
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Figure 4.4: Illustration of the learning strategy based on support vector machines.

a large database. It is necessary to build this su�cient database first, and after

training, it is di�cult to update the SVM classifier. However, tracking appli-

cation usually contains unpredictable change, such as object appearance change

and background change. In our on-line learning strategy, the SVM classifier is

trained for every frame of image. In each iteration, the algorithm determines new

examples autonomously. The important advantages are: First, it avoids building

larger database. Second, it updates along with the change of object and scene.

Third, in the on-line learning process, the number of support vectors usually stays

below a small number, which is very important for hardware implementation.

4.2.2 Training Framework

Fig. 4.6(a) shows the basic configuration of the on-line learning SVM in tracking

algorithms. In this work, sample images are represented by directional feature

vector proposed in (1). At the beginning, the SVM is trained by labeled samples

from previous iteration or the initialization stage. Then, in the present image, test

samples extracted from a certain region (shown as square in 4.6(b)) are classified

by the trained SVM into two classes: the target and the background. Then a
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Figure 4.5: Di↵erence between our learning strategy and conventional learning

strategy.

confidence map is generated (shown on the top left corner of the image) using

the locations of the test samples and their decision function values. The target

location is predicted based on the confidence map. After this step, new samples

for training in the next frame are selected and the next iteration starts.

The following parts focus on how to select reliable training samples in each

iteration. The training samples which are not support vectors are discarded in

the strategy in (88) to remove redundant training samples. In this work, the

same rule is applied to the background training samples. However, the target

training samples are all stored and never discarded, because the target samples

are more important than the background samples in the tracking application, and

the quantity of the target samples does not explode as the background samples

do in complex backgrounds.

Besides the support vectors retained as mentioned above, new training samples

from each frame of image are also added to the background training samples.

Suppose that the algorithm has finished predicting the target location in the

present frame. Then, several image patches around the predicted target location

are stored as new background samples, as shown in Fig. 4.7. This is based on

the assumption that in the next frame, the background images at these locations

tend to be critical distracters. Together with the background support vectors,
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(a)

(b)

Figure 4.6: Basic mechanism of the online learning SVM-based tracking algo-

rithm: (a) Training samples and the confidence map and (b) Basic process of the

algorithm.
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Figure 4.7: Selection of the background training samples.

the newly generated samples are stored as new background training samples for

the next frame.

For the target samples, we developed an approach to select reliable new train-

ing samples. Di↵erent from the conventional algorithms, the image patch at the

predicted target location in each frame is not added as new training sample. Since

the prediction of the target location always has small location error, adding the

image patches brings inaccurate training samples into the SVM. The error may

accumulate after a long time of tracking, and cause the tracker drift away from

the real target. In this work, whether to add a new target training sample is de-

termined by the decision function values of the test samples, as shown in Fig. 4.8.

If there are candidates with large function values in target class, it indicates the

knowledge in the SVM is su�cient at present and no new target sample is added.

However, when the target changes its appearance, it may happen that the deci-

sion function values of the samples in the target class become very small, or even

there is no test samples falling in the target class. In this situation, it is di�cult

to predict the target location in the present frame, which also means new target

sample should be learnt. From the confidence map in Fig. 4.8, it can be observed

that although the target images are not found (no samples are classified into the

target class), most of the background images are classified with large confidence

values (shown in brighter color). Among the background samples, some samples

own small confidence values (shown in darker color) because a certain region of

the background is occluded by the target. Based on this assumption, the center
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Figure 4.8: Selection of the target training samples.

of gravity of the background samples with small confidence values is calculated,

and the image at this location is stored as a new target training sample.

In summary, the training samples are composed of the initial target sample,

the target samples generated by background analysis, background support vectors

and new back ground samples generated in the present frame.

4.2.3 Multiple Candidate Regeneration

The multiple candidate regeneration (MCR) is first proposed in (79) as a solution

of real-time object tracking. It is a statistical approach which is similar with the

particle filter, but simplified for hardware implementation. It has shown good

performance in solving the object tracking problem. This work employs the MCR

to determine the test samples in order to reduce the computational cost in the

predicting process.

The candidates in the MCR are used to represent the test samples. The

candidates are all distributed around the previous target location. In the present
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frame of image, feature vectors are generated from the candidate images centered

at these candidate locations and sent to SVM as test samples. The function values

returned by the SVM are used to calculate weight values for the candidates. The

candidate with larger decision function value is assigned a weight with larger

absolute value. The positive weight and negative weight stand for the target

candidate and the background candidate, respectively. Then, new candidates are

generated based on the criteria as follows: in each iteration, candidates with large

weight value have more new candidates in their vicinity and the total number of

the candidates is constant. The target location in present frame is predicted

based on the distribution of the new candidate locations. In this work, by using

this approach with 256 candidates the quantity of test samples becomes much

smaller compared with the conventional algorithms that generate test sample at

every pixel location in the image. Detailed description of this approach can be

found in (79).

4.3 Experiments and Verification

In this section experimental results are shown, including the simulation results,

evaluations on accuracy and number of support vectors. The video sequences

and the evaluation method are proposed in (67). The proposed algorithm showed

robust tracking ability with accurate tracking results in the experiments. Fig.

4.8(b) and Fig. 4.9(b) compare this work with the algorithm proposed in (67) on

two video sequences. Under the threshold of 20, this algorithm achieved 0.90 and

0.95 accuracy in Sylvester and David video sequence, respectively. The number of

support vectors stayed under a small value as expected, and the total number of

target samples is 68 and 82, respectively. Some examples of the target samples are

also shown. More experimental results on publicly available videos are shown in

Table 4.1. The algorithm shows high-accuracy tracking ability in the experiments.

Since this algorithm does not contain specific solution to the occlusion between

objects, it does not give accurate results in the two face occlusion videos, in which

the target (human face) is partially or almost fully occluded by a book. More

results are shown in Fig. 4.12.
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(a)

(b)

(c) (d)

Figure 4.9: Evaluation of this algorithm with Sylvester video sequences: (a)

tracking result; (b) precision evaluation; (c) number of support vectors and (d)

examples of target training samples.
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(a)

(b)

(c) (d)

Figure 4.10: Evaluation of this algorithm with David video sequences: (a) track-

ing result; (b) precision evaluation; (c) number of support vectors and (d) examples

of target training samples.
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Table 4.1: Evaluation of tracking accuracy at a fixed threshold of 20.

Sylvester
David

Indoor
Cola Can

Occluded

Face

Occluded

Face 2

OAB 0.64 0.16 0.45 0.22 0.61

SemiBoost 0.69 0.46 0.78 0.97 0.60

Frag 0.86 0.45 0.14 0.95 0.44

MILTrack 0.90 0.52 0.55 0.43 0.60

This work 0.90 0.95 0.93 0.27 0.44

In order to give a hardware-friendly solution to the object tracking task, we

considered the implementation of each part of the algorithm. For the training

of SVM, a dedicated VLSI chip proposed in (87) can be employed. It is a fully-

parallel self-training SVM system with high training speed. Based on this chip,

computational time caused by SVM computation can be decreased dramatically.

A functional verification of this algorithm on the chip is shown in Fig. 5. Vectors

were extracted from the image in advance and sent to the chip in real-time.

After 100ns of training process (not shown), the chip received and gave out the

classification result for each vector every 1µs, in which the 4th and 6th candidate

images were classified into the target class. In addition, we also employed a

directional-edge-based representation algorithm (1) to represent sample images,

for which a dedicated VLSI chip has been proposed in (77).
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Figure 4.13: Experiment on “fallonfloor” video clip. See text for detail.

4.3.1 Experiments on Real-World Data

The SVM-based tracking algorithm with state vector (size only in this part)

has been tested using several real video clips. There are various challenges in

these videos. In the first video fallonfloor, a person walks and falls down on the

floor, which contains severe deformation. The second video is a comparatively

long video clip, in which a person walks back and forth, and gets close to some

other objects. The di�cult in the third video clip is that two people get together

fighting, which is very confusing for the single target tracker. In this case specially,

our tracking algorithm tracked di↵erent person at di↵erent time. The tracker

should be improved to enhance the discriminative ability between similar objects.

The fourth video clip shows the front view of a car. We selected to track the back

of a car in front. There is some disturbance, such as rain and other automobiles.

The size of the object changes greatly, though the appearance does not change

much.
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Figure 4.14: Experiment on “browse” video clip. See text for detail.

Figure 4.15: Experiment on “twomanfight” video clip. See text for detail.
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Figure 4.16: Experiment on “cartracking” video clip. See text for detail.
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Figure 4.17: Hardware implementation of the tracking system.

4.4 Hardware Implementation

In this part, the hardware architecture implementing the SVM-based tracking

system is described. There are mainly three parts on the FPGA: feature extrac-

tion, multiple candidate regeneration, and SVM-chip controller. In the following,

each of the part is explained in detail.
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Fig. 4.18 shows the main structure of the system. At first, the image data is

sent from camera to the local feature extraction block pixel by pixel for generat-

ing edge map. Then the edge information is sent to vector generation block to

calculate APED feature vector for every pixel location. These three parts work in

pipelined way, and one feature vector is outputted in every clock cycles. Because

of the way of data transfer, this process can be considered as a scanning process.

There is a location block, which counts current scanning location in the entire

image. The location information is sent to the candidate blocks. Each candidate

block has its own location. If the current location equals to one candidates loca-

tion, the candidate will send an enable signal to the shift register that stores the

feature vector. Then the shift register store current vector for a specific location.

After all the feature vectors for all the candidates are calculated, these feature

vectors are sent to the SVM-chip for testing. The results will be stored in a

shift register that stores weights. Based on all these information, new candidate

locations are generated and the private locations of the candidates are updated

by the new locations.

4.4.1 Feature Extraction

The function of feature extraction in this system is same with the feature extrac-

tion in the system presented in §2. However, in this part, a new architecture is

introduced for simple and high-speed computation. The entire process is imple-

mented in pipelined structure. The image data is received pixel by pixel, and the

feature vector for every pixel location (64 ⇥ 64-pixel window) is calculated. The

structure is shown in Fig. 4.19. The image data is received and stored in a shift

register, which contains all the necessary data for computation. The shift register

is a 320 ⇥ 4 register array with 8-bit register for data of each pixel. The four rows

of data are retained for calculating the convolution of the image data and four 5

⇥ 5 kernels. This structure is similar to the directional-edge-feature extraction

in §2, but the di↵erence is that in this system the edge map of the entire frame

is calculated. More information can be found in description of previous system.

In the previous structure, only sub-image of the candidate is processed into edge
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map. The input of image data is one pixel per clock cycle, and the output of edge

data is also one pixel per clock cycle.

The serial pipelined output of edge data is sent to the second shift register,

which is used for calculating feature vector (APED in this case). The goal of

this part is to output the feature vector at every pixel location and make the

output one vector per clock cycle, which is compatible with the transfer speed

of input image and edge data. In order to reach this processing speed, some

calculating structure must be designed. The calculation of APED is in fact a

counting process. If the window size is 64 ⇥ 64-pixel, all the 4096 1-bit numbers

(0 or 1) should be added to corresponding counter. There are totally 64 elements

(counters) in one APED vector. In present structure, the edge data in a certain

tracking window is sent to logic part in a column-parallel way. This means it

will take 64 clock cycles to complete summation of one tracking window. But by

observing the APED vector, it is obvious that the APED result can be reusable.

Suppose that the APED at present location has already been calculated. The

next APED vector can be calculated based on this known vector. According to

the algorithm of directional-feature vector, the di↵erence between two adjacent

locations is only the new column of data and the oldest column of data, which

comes at first. Therefore, the new APED can be calculated by do some simple

summations and subtractions on the counters with the new column of data, as

shown in Fig. 4.19. The edge data are transferred to the vector generation block

in row-parallel way. A 320 ⇥ 64 shift register is used for storing the edge data

which are necessary for one computation. Corresponding edge data are added up

and sent through the shift registers. The element of the feature vector is calcu-

lated by summed up corresponding registers at every clock cycle. By using this

pipelined structure, one feature vector for a certain pixel location is calculated

and outputted in every clock cycle. In this way, the APED vector can be calcu-

lated at a very high speed. The loss in this structure is the accuracy, because

the ratio threshold is replaced by a fixed-value threshold. But the advantage is

that this structure provides other processing with APED vector at every pixel

location in the scene, while the previous system can only calculate vectors for the

selected candidates.

75



4. A REAL-TIME OBJECT TRACKING SYSTEM WITH ONLINE
LEARNING SUPPORT VECTOR MACHINES

H
or

iz
on

ta
l

Po
si

tiv
e 

45
Ve

rti
ca

l
N

eg
at

iv
e 

45

Ed
ge

3-
bi

t
Sh

ift
 R

eg
is

te
r

32
0

64

16
-b

it
Ad

de
r &

 
R

eg
is

te
r 0

R
eg

is
te

r 1
2

3
4

5
15

...
Ad

de
r &

 
R

eg
is

te
r 0

R
eg

is
te

r 1
2

3
4

5
15

...
Ad

de
r &

 
R

eg
is

te
r 0

R
eg

is
te

r 1
2

3
4

5
15

...
Ad

de
r &

 
R

eg
is

te
r 0

R
eg

is
te

r 1
2

3
4

5
15

...

AD
D

ER
 (E

le
m

en
t 1

)
2

3
4

F
ig
u
re

4
.1
9
:
H
ar
d
w
ar
e
im

p
le
m
en
ta
ti
on

of
th
e
ve
ct
or

ge
n
er
at
io
n
b
lo
ck
.

76



4.4 Hardware Implementation

In this system, we still use candidates to predict the object location. It can

be observed in the software simulation that the number of candidates is larger

than in previous system. This is one of the reasons why we need to design a

new structure for feature extraction. Along with the increase of the candidate

number, there are several problems. Firstly, the comparison of candidates, which

corresponds to the weighting process, takes more time then before. Secondly, it

also takes much more memory to store all the vectors. Thirdly, it is very di�cult

to process all the candidates in parallel, which require too much of hardware

resources. In fact, we have to divide the candidates into several groups, and

then process each group in serial as we have done in the previous system. The

serial processing without pipelined structure waste a lot of time in the image data

transfer. The new structure solved these problems. For the first problem, we do

not use Manhattan distance in this system. Instead, we use SVM to give weight

value to each candidate. The testing of SVM can only be serial, which means

we can calculate the weight (similarity) of one candidate at one time. But the

advantage is the processing takes very short time. For the second problem, in our

structure, the vectors for all the candidates can be discarded just several clock

cycles after it is calculated. Therefore, it is not necessary to store the vectors

for the candidates. In this case, it will be very e�cient to just store the weight

values of the candidates in the memory. The following processes are operations

on the weights and locations.

4.4.2 Weighting and Regeneration

Because it is the weighting function is similar to the implementation in §2, the

implementation of weight computation is not described in detail in this part.

Brief information is as the follows, emphasizing on the communication between

the FPGA and VLSI chip. After generating feature vectors for all the candidates,

the candidate vector is sent to the SVM chip by eight clock cycles. In each clock

cycle, one bit of the 64 elements (a 64-bit data) in one vector is sent. In the

following two clock cycles, the SVM chip will test the vector, and send back the

classification result, “0 or “1. Since the feedback signal is a analog signal lasting for

about one clock cycles, a circuit block working at a frequency ten times faster than

77



4. A REAL-TIME OBJECT TRACKING SYSTEM WITH ONLINE
LEARNING SUPPORT VECTOR MACHINES

Figure 4.20: The connection between FPGA and VLSI chip.

the system clock is designed for sampling from the analog signal. All the control

signals for the SVM chip are stored on the FPGA. In fact, in the entire process,

there is training procedure at the end of every prediction of object location. Fig.

4.20 shows an experimental result verifying the control and computation of the

system. At first, the SVM chip is trained using nine examples, as shown in

Fig. 4.11. After training, eight test vectors are sent to the SVM chip and the

FPGA tracking block read the classification results. The eight results are shown

as the “ON and “OFF of the LED lights on the FPGA. The regeneration in the

architecture is same with the previous system. Detailed information can be found

in §2.

4.5 Summary

In this part, we proposed a real-time object tracking algorithm based on the

on-line learning support vector machine with hardware-friendly structure and a

newly proposed training framework. The tracking framework give a solution to

the problem of updating reliable training samples in object tracking. The hard-
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ware structure employs several real-time algorithms which have been implemented

into VLSI chips. Software simulation results were evaluated, which showed robust

and accurate tracking ability. Hardware verification was carried out on a VLSI

SVM chip, which proved the real-time performance of this algorithm.
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5

A Real-Time Object Tracking

System with Online Learning

Nearest Neighbor Classifier

5.1 Introduction

In the multiple-candidate-regeneration-based (MCR-based) system that has al-

ready been explained in previous chapter, there are still two important problems

that need to solve. First, new templates are frequently added into the system.

The quick increase of the templates may cause memory waste and increase the

time for template matching. Second, like in many tracking algorithms with learn-

ing ability, it is of great importance to select new reliable templates. A wrong

template may cause the shift problem or even leads to failure. The goal of this

paper is to resolve the above problems to improve the tracking capability without

sacrificing the other advantages, such as simplicity of hardware implementation.

In fact, these two problems are both related to the appearance model. The

representation of object image and the measurement of the likelihood between

two images are usually defined as appearance model, which a↵ects the tracking

accuracy and robustness greatly (68). Therefore, in this chapter we propose a

novel appearance model with an online learning strategy. Instead of measuring

the likelihood by Manhattan distance between the APED vectors of the two

images, we adopt the nearest neighbor (NN) classifier to discriminate the object

81



5. A REAL-TIME OBJECT TRACKING SYSTEM WITH ONLINE
LEARNING NEAREST NEIGHBOR CLASSIFIER

Figure 5.1: Structure of the tracking system.

images from the background images. The obvious merit of this method is that

the likelihood is well expressed by the distance because of considering background

information. By analyzing the likelihood map generated by the NN classifier, we

found that only a small number of templates can fulfill the requirement of tracking

in each frame provided that the templates are updated in each frame. Therefore,

in the new learning strategy, old templates are replaced by new templates very

quickly. The object templates are only updated when the system detects the

classifier does not have su�cient e↵ective templates to discriminate the object

and the background. In this situation, the background region, which is more

reliable, is analyzed to deduce the most possible location of the object. Then the

object image at this location will be stored as a new object template. Although

the analysis is focused on a specific tracking system, the solution can be utilized

in many other situations with similar tracking mechanism.
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5.2 Algorithm

5.2.1 Basic Tracking Framework

A tracking system usually consists of two parts: object representation and search

strategy. In this work, the bio-inspired algorithm APED that has already been

implemented on VLSI chip is employed. By using APED, a grayscale image is

processed by four directional filters to generate directional edge maps. Then a

64-D feature vector is generated by calculating the number of edges in certain

subregions in each edge maps. It is simpler and faster to manipulate these feature

vectors than many other representation features, such as scale-invariant feature

transform (SIFT). The performance of APED and detailed information can be

found in (1).

For the search strategy, we employed the MCR algorithm, which is first pro-

posed in (79) and implemented on hardware in (91). It is a statistical approach

that has been designed for e�cient hardware implementation. The MCR uses a

group of locations called candidates to search for the target object in a certain re-

gion. At the location of each candidate, a sub-image is extracted and transformed

into a feature vector. Then each candidate is assigned with a weight according to

the likelihood between its feature vector and the templates. In the next step, new

candidates are generated following the criteria as follows. First, candidates with

large weight have more new candidates in their vicinity. Second, in every itera-

tion, the number of candidates is constant. In the last step, the object location

is predicted by analyzing the distribution of the candidates in location space.

Combining the APED and MCR, Fig. 5.1 shows the structure of the tracking

system. At the beginning, an object image is selected as object template and

the locations of candidates are initialized. When a new frame of image comes,

the subimages at candidates location are extracted and transformed into APED

vectors. Then in the MCR process, new candidates are generated in the vicinity

of the old candidates that are similar to the object template. The center of

gravity of all the candidate locations is calculated as the prediction of the object

location. At this point, the object image in this frame is checked to determine
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whether it is necessary to store a new template. After this learning process, the

algorithm receives the next frame of image and repeat the entire process.

5.2.2 Nearest Neighbor Classifier

Many object tracking systems use classifiers, such as the support vector machines

(SVM) (66) and the NN classifier (92), to form the appearance model. These al-

gorithms consider the object tracking task as a binary classification problem,

and realize accurate and flexible description of object. Although the classifiers

have di↵erent mechanisms and advantages, they all benefit from considering the

background information. In this work, we use the NN classifier because of its

simplicity and we also verified its capability to describe the likelihood between

images. We use an example to illustrate the e↵ectiveness of the NN classifier

combined with APED vector, as shown in Fig. 5.2. The likelihood maps show

the likelihood values between the subimage at each pixel location and the tem-

plates. Fig. 5.2(a) shows the confidence map generated by using Manhattan

distance. Smaller distance gives higher likelihood score. The subimage at the

center location works as the template. In Fig. 5.2(b), the NN classier is used,

and the suppression of likelihood score by background templates is observed. The

object is the subimage at center location too, while 24 background templates are

selected as shown in Fig. 5.3(a). In this figure, the larger the value is, the closer

the subimage is to the object class. On the opposite, the smallest value means

the closest to the background templates. We can observed that in a small track-

ing region, a small number of templates are su�cient to cover the background

and the object. In fact, for a typical tracking algorithm, it is e�cient to build a

classifier that can just discriminate the object from background in current frame

of image. It is not e�cient to make the classifier as powerful and accurate as in

object detection or categorization tasks. Therefore, this system only retains the

most critical templates. For instance, only the background examples extracted

from last frame is retained. In the first two figures, there is no di↵erence when

use MCR to search the object (the peak location). In Fig. 5.2(c), a real example

generated by Manhattan distance is shown which makes the MCG fail to locate

accurately and stably. The solution is discussed in the learning strategy.
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5.2.3 Online Learning Strategy

Instead of o✏ine training with a large database, many algorithms choose to online

update the classifier, which makes it adaptive to the appearance change of the

object. Like the SVM-based tracking system, we propose an online learning

strategy specifically designed for tracking task.

For the background templates, the capacity is limited to hold only a certain

number of templates and only the most recent examples are retained. After pre-

dicting the object location in each frame, 24 background subimages are extracted

from current frame at locations shown in Fig. 5.3(a). In the tracking in next

frame, these new examples are critical distractors according to the illustration in

Section I.

Fig. 5.3(b) shows the updating mechanism of the object templates. The object

templates are not updated in every frame in order to avoid the “shift problem”

in tracking. New object examples are added only when the classifier can not

find su�cient reliable candidates belonging to the object class for predicting the

object location. This always happens when the object changes its appearance

and it is possible that all candidates fall into the background class. But it is

still possible to predict the object location by analyzing the candidates in the

background class. In this case, some candidates have large distances between

itself and both the object templates and the background templates. Fig. 5.3(c)

shows the likelihood map from the same frame with the example shown in Fig.

5.2(c). It is obvious that we can still deduce the object location from this map,

because the background does not change much in the consecutive frames and they

are detected with confidence (high likelihood). In this case, we store the image at

the location where is unknown (neither object nor background) as a new object

template. In summary, when the “knowledge” about the object in the classifier

is su�cient, no new template is updated. When it is not su�cient, the system

tracks the background to deduce the possible location of object, and generates

new template.
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Table 5.1: Comparisons: Precision at a Fixed Threshold of 20

OAB SemiBoost Frag MILTrack MCR (91) This Work

Sylvester 0.64 0.69 0.86 0.90 0.83 0.88

David Indoor 0.16 0.46 0.45 0.52 0.88 0.86

Cola Can 0.45 0.78 0.14 0.55 0.93 0.96

Occluded Face 0.22 0.97 0.95 0.43 0.12 0.38

Occluded Face 2 0.61 0.60 0.44 0.60 0.44 0.62

Surfer 0.51 0.96 0.28 0.93 0.60 0.92

Tiger 1 0.48 0.44 0.28 0.81 0.37 0.41

Tiger 2 0.51 0.30 0.22 0.83 0.50 0.50

Coupon Book 0.67 0.37 0.41 0.69 0.40 0.38

5.3 Experimental Results

We evaluated the tracking system by using a group of challenging video sequences

from a public database. The same evaluation methodology employed by the

SVM-based tracking system is adopted, including evaluation on both accuracy

and location error. In Table I, we show the tracking accuracy at a fixed threshold

of 20. This threshold is a distance in pixels. If the distance between the predicted

location and the ground truth is smaller than the threshold, the prediction in the

corresponding frame is considered as successful. The accuracy of tracking in each

video is expressed as the percentage of frames tracked correctly in the video. Some

selected frames from the experimental results are shown in Fig. 5.4. The result

shows this tracking system can deal with appearance change well as expected by

using only 32 templates for each class. In most of the videos, this system gave

better results than the precedent system. It shows less accurate when the videos

contain heavy occlusion. This is mainly because the feature vector we employed

is a global representation, which is sensitive to severe occlusion.
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Figure 5.4: Some selected frames from the tracking results.

5.4 Discussion

Object tracking applications usually require real-time performance. Moreover, in

some situations, it is necessary to reach a processing speed much higher than the

frame rate. In order to solve this problem, a VLSI-based hardware architecture

of the object tracking system is proposed in (91). This architecture achieves

processing speed of 150 f/s on FPGA and can reach 900 f/s if implemented

on VLSI. The tracking system proposed can be implemented by using similar

architecture. Only some logic elements for controlling and matching operations

are needed, which will not bring any drawbacks to the system.

5.5 Conclusion

In this chapter, we proposed a real-time object tracking system with online learn-

ing capability realized by a novel appearance model based on the NN classifier.

We verified the e↵ectiveness of the combination of APED feature vector and

the NN classifier, which showed the merit of using background information. An

online learning strategy, including selection of reliable templates, was designed

specifically for the object tracking task. Evaluation of the system on accuracy

was shown and discussed to clarify the features of the system. Since this tracking
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system is designed for simple hardware implementation, the realization of the

high-speed system is also discussed.
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Conclusion

6.1 Summary

This thesis is focused on feature-based object tracking system, which discusses

the tracking problem and its implementation and presents a complete solution to

real-time object tracking problem.

At first, we proposed a real-time object tracking system, which is based on

the multiple candidate-location generation mechanism. The system employs the

directional-edge based image features and also an online learning algorithm for

robust tracking performance. Since the design of this algorithm is hardware-

friendly, we designed and implemented the realtime system on FPGA, which has

the ability of processing a 640 ⇥ 480 resolution image in about 0.1 ms. It achieved

150 f/s frame rate on FPGA, and can reach about 900 f/s if implemented on VLSI

with on-chip image sensor. Evaluation of the tracking system on both accuracy

and speed are shown and discussed, which clarify the features of this system.

In the following, this thesis also presents a detailed discussion on several issues

of tracking, including VLSI chip implementation for faster operation, multiple tar-

get tracking, initialization problem and full occlusion problem, and state vectors.

The solutions presented in the discussion part are based on our hardware system,

and can be easily implemented. Software simulation is preformed for verification

of the design.

At last, this work proposed a real-time object tracking algorithm based on

the on-line learning support vector machine and nearest neighbor classifiers with
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hardware-friendly architecture and a novel training framework. The tracking

framework gives a solution to the problem of updating reliable training samples

in object tracking. The hardware structure employs several real-time algorithms

which have been implemented on VLSI chips. Software simulation results were

evaluated, which showed robust and accurate tracking ability compared with

other superior works. In addition, the hardware architecture was also presented.

Hardware verification was carried out on a VLSI SVM chip with tracking frame-

work on FPGA, which proved the real-time performance of this algorithm.

6.2 Perspectives

Significant progress has been made in object tracking during the last few years.

Several robust trackers have been developed for real-time tracking. However, it

is also obvious that there are still some unsolved problems, and object tracking

still can not be used in many practical applications. Therefore, the first direc-

tion which we can put e↵ort on is to improve the robustness of the trackers in

various complex situations. Improving feature representations, analyzing context

information, and realizing on-line learning ability are all promising directions at

present.

For representation of the object, feature selection and combination become

more and more important. Many papers are focused on this direction in recent

years. They use multiple cues for discriminating di↵erent objects. And in di↵erent

situations, the most e↵ective features are used. One problem in this method is

that computation of multiple features brings much more computational cost.

In many researches, the information from the video is exploited deeply. For

example, not only the object information, but also the background information

is of great importance. From the background, we can analyze the context of the

scene, and find where the object is possible to be. The background information

can also be used for selecting features, because the purpose of using some feature

is to discriminate the object from the background. The entire video, or consec-

utive frames can also be analyzed as a complete motion. This is very useful for

predicting the behavior of object.
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Since the object tracking is more like a cognitive process, more and more

learning algorithms will be introduced into tracking system. The learning ability

is not limited to the building the appearance model of the object. It can be

used in analyze the state of the object, such as distribution of object features.

The learning ability solve the problem that most of the tracking algorithms are

designed for some kinds of scene, and there is few general solution working as hu-

man visual system. By learning, we can extract important rules from experience,

and on-line learning provide the system with adaptive ability to changes, which

usually can not predict before tracking.

Real-time performance of the tracker will always be a hot topic in object

tracking. In fact, there are two ways to achieve this purpose. The first is to

simply and parallelize the algorithm, and implement the algorithm on high-speed

processor. The second way is to design high-e�ciency hardware architecture

for object tracking. For example, there are some implementations using on-chip

image sensor, which can achieve really high-speed processing with low power

consumption.
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