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Abstract: In long-term structural health monitoring (SHM), the environmental and operational variables (EOVs) such as 

temperature, vehicle and wind may introduce interference into the identified damage indicators (basically like modal frequencies, 

strain, displacement, etc.), and sometimes even cause a masking effect to damage impact. This kind of EOVs-related variability 

decreased the sensitivity and reliability of damage indicators. This study is intended to model the EOVs-related variability in the 

identified damage indicators utilizing the Gaussian process regression (GPR) technique combined with dummy variable. 

Considering the unclear nonlinear and coupling mechanism of EOVs-related impacts, GPR was applied and compared with some 

classical linear regression methods. A dummy variable was introduced to improve the performance of regression on the lack of 

observations. Investigations on the performance of different regression methods using residuals showed that GPR presented a better 

performance in capturing the EOVs-related variability, and a proper dummy variable as a supplementary resulted in an improvement 

in GPR. 
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1. Introduction 
The long-term structural health monitoring (SHM) based 
on system identification and pattern recognition 
techniques has played a more and more important role in 
the assessment and maintenance of infrastructures. 
However, how to deal with uncertainties have been a 
major challenge in the long-term SHM. As one of the 
major sources of uncertainty, environmental and operational 

variables (EOVs) such as temperature, humidity, vehicle 
and may induce apparent variation (sometimes make the 
damage impact blurry) in damage indicators such as 
modal properties. This kind of uncertainties could 
decrease reliability of decision based on SHM. 

Cornwell et al. (1999) investigated the environmental 
variability of modal properties with the data from the 
Alamosa Canyon Bridge, and found there were 
significant changes in modal frequencies along with the 
variation of temperature during a 24-hour period. Zhou 
and Sun (2019a, 2019b) investigated the environmental 
and operational effects in a sea-crossing bridge and a 
cable-stayed bridge, respectively, and clarified the 
underlying mechanism of the related impacts to modal 
frequencies, displacement, tower distance, etc. 
Comanducci et al. (2015) utilized an analytical parametric 
model of suspension bridge to study the impact of wind 
loading on modal frequencies compared with damage 
effect. The result showed that frequency variations caused 
by changing wind speed can be more significant than 
those produced by a small damage.  

To address the impacts of EOVs in SHM, Nandan and 
Singh (2014a, 2014b) introduced a state space 
model-based approach for the correlation research 
between modal frequency and temperature, and proposed 
two kinds of filtering methods to remove seasonal trend 
in observations. Ubertini et al. (2017) utilized a multiple 
linear regressive filter to remove temperature effects from 
identified modal frequencies and carried out an 

assessment of structural health condition based on novelty 
detection in the residuals. In recent years, various 
methods based on Bayes’ theorem have been studied to 
model the EOVs-related variability. Kim et al. (2018) 
proposed a Bayesian approach considering multiple 
factors such as temperature and vehicle weights in a 
long-term SHM on a Gerber-type steel girder bridge. Mu 
and Yuen (2018) developed an updated version of the 
sparse Bayesian learning for the regression of the relation 
between modal frequency and environmental condition. 
Avendaño-Valencia and Chatzi (2020) combined a 
Gaussian process with vector autoregressive model in 
different time-scales to model the variation of structural 
dynamics under varying wind speed and ambient 
temperature. 

As a basic means for modeling EOVs-related 
variability in long-term SHM, the regression analysis is 
usually adopted to recognize the correlative pattern and 
make a prediction. However, due to the deficient 
measurements, unclear coupling effect and linear 
approximation, to build a model with good performance 
in both reproduction and generalization is generally 
intractable. Therefore, this study investigates the 
performance of Gaussian process regression (GPR) 
compared to classical linear regression methods under the 
condition of deficient measurements and unclear coupling 
effect. In addition, a way to introduce dummy variable as 
a supplementary for deficient measurements was 
discussed associated with a case study as well. 

2. Regression methods 

2.1 Classical linear regression 
Classical regression models generally adopt a scheme of 
the linear regression with a basic form shown in Eq. 1. 

y X                     (1) 
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where y  denotes the response variable and 

 1 21, , , ,
T

nX x x x  denotes the predictor variables or 
explanatory variables;  0 1 2, , , , n      is the 
coefficient vector to be estimated, and   denotes the 
residual error which is usually assumed to be independent 
and identically distributed (IID). 

For the ordinary least square regression (OLSR), the 
objective function equals to the loss function as follows. 

2

2

1
( )J y X

n
                 (2) 

where 2|| ||  denotes the L2 norm. Then, coefficient 
estimator ̂  is calculated by minimizing ( )J   as 
follows. 

 ˆ arg min  J


                (3) 

In order to control the complexity of the regression 
model, regularization skills are often utilized by adding a 
penalty term. Least square shrinkage and selection 
operator (LASSO) is one of these methods frequently 
utilized in the linear regression analysis. The objective 
function is given by Eq. 4. 

2

2 1

1
( )J y X

n
                (4) 

where 1|| ||  denotes the L1 norm and   is a shrinkage 
factor (or called as regularization parameter) which can 
be decided with a cross-validation. 

Compared with other regularization skills like the 
ridge regression (or called Tikhonov regularization), 
LASSO has an additional effect in sparse feature 
selection and can help further decrease the complexity of 
the regression model. 

2.2 Gaussian process regression (GPR) 
The GPR is a nonparametric and fully Bayesian 
regression method (Rasmussen and Williams 2006). GPR 
describes the regression model as Eq. 5 treating f(X) as 
the latent function without a fixed form, and estimates 
the distribution of f(X) based on the Bayesian inference. 

( )y f X                    (5) 

Here, f(X) is supposed to be a stochastic process with 
a priori as follows. 

( ) ~ [0, ( , )]f X GP K X X              (6) 

where  ( , ) E ( ) ( )K X X f X f X  is a kernel covariance 
matrix; 1 2{ , , }mX X X X  and 1 2{ , , , }my y y y are the 
sample sets for model training with a set size m. If 

2~ (0, )nN   is the noise with IID, and K(.)  denotes a 
kernel covariance matrix, the predictive posterior 
distribution has a solution as follows. 

2
* * * * *( , , , ) [ ,cov( )]np f X y X N f f f          (7) 

1
2

* *( , ) ( , ) nf K X X K X X I y


  
 

         (8) 

1
2

* * * * *cov( ) ( , ) ( , ) ( , ) ( , )nf K X X K X X K X X I K X X


   
 

  (9) 

where X* denotes the inputs of test samples, and f* is the 
corresponding predicted outputs. 

To get the posterior distribution, hyper-parameters 
including signal variance, length scale and error variance 
should be determined by means of the maximum 
likelihood estimation (MLE) and other techniques like 
cross-validation. Compared to classical regression 
methods, an advantage of the GPR is that the model is not 
confined to be linear and the solution space contains all 
possible forms of nonlinearity if enough kernel functions 
are considered. In addition, the assumption of the GPR 
priori is not required to be IID which is generally a 
restriction in the statistical linear regression. 

2.3 Dummy variable 
A dummy variable is the one that has only the value 0 or 
1 to indicate the existence of categorical effect that may 
make a difference in the output of a model. It is also 
called a qualitative variable and mainly used in the linear 
regression analysis. For a dataset that can be divided into 
m groups by a qualitative attribute, a basic form of the 
linear regression with the dummy variable can be 
described as Eq. 10. 

y X D                   (10) 

where  1 2 1= , , , mD D D D   is a vector of dummy 
variables;  1 2 1= , , , m      is the corresponding 
coefficient vector, and the rest components are same as 
Eq. 1. For a dataset that has just two different group 
values in qualitative attribute, only one dummy variable 
will be introduced into the model. 

As deficient measurement of EOVs is a universal 
problem in SHM, involving dummy variable based on the 
acquired observations may help improve the performance 
of regression under this condition. Since the GPR differs 
from the linear regression method, a trial of combining 
the GPR with dummy variable is also considered in this 
study.  

2.4 Jensen-Shannon divergence 
The Jensen-Shannon divergence offers a way for 
measuring the similarity between two probability 
distributions in statistics, which is also known as 
information radius in the information theory. It is an 
improvement of the Kullback-Leibler (KL) divergence 
and takes a basic form as follows. 

1 1
( || ) ( || ) ( || )

2 2
JS KL KLD P Q D P M D Q M      (11) 

where P and Q are the compared probability distributions, 

and 
1

( )
2

M P Q  .  

The LHS of Eq. 11 is the notation of Jensen-Shannon 
divergence, while the RHS is a combination of two KL 
divergences with a basic form for discrete probability 
distribution as follows. 

   
 

 
|| logKL

x

P x
D P M P x

M x

 
   

 
         (12) 

where P and M are defined in the same probability space 
 .  

Since the residuals of training set and validating set 
are usually investigated in regression analysis to assess 
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the performance of a regressed model, the 
Jensen-Shannon divergence thus can be utilized to assess 
the generalization ability of a model by measuring the 
similarity between distributions of residuals in training set 
and validating set.   

3. Case study 
As a case study, data from a long-term monitoring on a 
simply supported steel plate-girder bridge with reinforced 
concrete deck are investigated. Fig. 1 shows the 
monitoring bridge with a span of 40.5 m and width of 4.5 
m, which was built in 1957. The monitoring on the bridge 
was started from September 1st, 2016, and the operation 
of this bridge was ceased from March, 2017 since the 
operation of a newly built bridge nearby was started.  

3.1 Data pre-processing 
The bridge was mainly monitored with a sensor system 
of accelerometers and thermometers. The sampling 
frequency of accelerometers was set as 200 Hz, while the 
temperature was recorded every 30 minutes. Details of 
the sensor setup can be seen in Kim et al. (2019). 

Based on the data collection, a Bayesian FFT method 
was utilized to identify the first three bending modal 
frequencies per 30 minutes (see Fig. 2 for results). The 
average modal frequency of each mode was 3.11 Hz, 9.50 
Hz and 21.91 Hz, respectively, and an obvious trend was 
observed in the time series of the first and second bending 
modes. 

Temperature is the only measured EOVs (see Fig. 3), 
and with a feature selection process (stepwise regression 
and LASSO), the temperature records ‘T2’, ‘T4’ and ‘T5’ 
were reserved to be explanatory variables in the 
regression analysis. 

 

Figure 1. Elevation view of the target bridge. 

 

Figure 2. Identified modal frequencies (f1 to f3: 1
st to 3rd 

bending frequencies; partitioned to training and validating 

datasets). 

3.2 Regression analysis and comparison 
Based on above data collections, a regression analysis is 
carried out with OLSR, LASSO and GPR, respectively. 
An Engle-Granger two-step method for co-integration test 
is firstly conducted with an OLSR model, and the 
feasibility of classical regression methods is suggested. 
The temperature-related varying patterns are then trained 
and validated on separate datasets. For LASSO, a 
cross-validation process is applied to select optimal 
shrinkage factor. For GPR, the hyper-parameters 
including kernel parameters and variance of noise are 
estimated by MLE and optimal values were subsequently 
selected from the estimated solution space by the 
cross-validation.  

Figure 4 shows the predictive results on validating set 
based on the mentioned three methods. Compared with 
OLSR and LASSO, the results indicated that GPR 
captured more local features of the variation in the dataset. 
A difference in the predictability among three bending 
modal frequencies is observed from the plot. Compared to 
the 1st and 2nd modal frequencies, prediction of the 3rd 
modal frequencies seemed to be intractable. Two 
explanations may dedicate to this situation: (i) the 3rd 
modal vibration is hard to be excited by ambient 
excitations with a higher modal frequency around 21.91 
Hz, which means the identified 3rd modal frequencies 
may contain more noisy components; (ii) the higher 
modes may be less sensitive to temperature. Thus, 
regression analysis about the 3rd modal frequency was 
ignored in further investigation. 

To further assess the performance of each regressed 
model, an investigation about the properties of residuals 
were carried out while the residuals of the 3rd modal 
frequency were ignored (see Fig. 5). As is widely 
acknowledged in regression analysis, the ability of 
reproduction and generalization is declared for a good 
regressed model. Therefore, some indices like mean 
square error ‘MSE’, coefficient of determinant ‘R

2
’ and 

normalized Akaike Information Criterion ‘nAIC’ were 
calculated for assessing the performance of reproduction 
(see Table 1). 

 

Figure 3. Temperature records in five sensors (T1 to T4 were 

attached to two girders, and T5 was outside the bridge). 
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The results in the table also proposed GPR showed a 
better goodness of fit of the training set. As to the ability 
of generalization, an optimal model should leave the 
residual as a white process, or at least a stationary process. 
However, as shown in Fig. 5, an apparent distinction of 
the residual distribution between training set and 
validating set was observed in three models, which 
indicated a non-stationary property. This phenomenon 
may be caused by the model approximation, intermittent 
measurement and deficient EOVs involved, with the last 
one considered as a crucial factor. According to Chang et 
al. (2014), existence of vehicles might cause increment or 
decrement in identified modal frequencies of bridges, 
especially in low order modes of short-span bridges like 
the one in this research. 

(a)  

 (b)  

 (c)  

Figure 4. Prediction on validating set: (a) OLSR; (b) LASSO; (c) 

GPR. 

 (a)  

(b)  

 (c)  

Figure 5. Comparison of residual distribution between training 

set and validating set: (a) OLSR; (b) LASSO; (c) GPR. 

 

Table 1. Indices for assessment of reproduction ability. 

Response  Method MSE R2 nAIC 

1st modal 

frequency 

OLSR 0.0108 0.1181 -4.5253 

LASSO 0.0110 0.1007 -4.5057 

GPR 0.0074 0.3950 -4.9021 

2nd modal 

frequency 

OLSR 0.0109 0.2936 -4.5150 

LASSO 0.0113 0.2718 -4.4846 

GPR 0.0081 0.4775 -4.8165 
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A superposition of thermal effect and traffic effect 
exactly dedicated to the phenomenon of trend in the time 
series of the 1st and 2nd modal frequencies as previously 
mentioned. Thus, an idea about introducing dummy 
variable to reflect the existence of vehicle at each 
observation was investigated in next discussion.  

3.3 Combination with dummy variable 
Since traffic effect may be an influential factor affecting 
the variability of modal frequencies and traffic condition 
was not recorded in this case study, the existence of 
vehicle at each observation may be a qualitative attribute 
that makes a difference in the output of the model. 
Although it is hard to judge the existence of vehicle 
without relative records, diurnal period that vehicle may 
exist with a high probability may be roughly detected 
from these two reasons: (i) generally in common sense, 
the existence of vehicle in the daytime and nighttime 
must have different probability; (ii) the inconsistency of 
the variation extent in temperature and modal frequency 
may indicate a high probability of vehicle existence due 
to a superposition effect. Then, according to these two 
ideas, the diurnal period along with temperature increase 
is statistically investigated (see Fig. 6 (top plot)). 
Observations that presented an inconsistency of variation 
extent in the period corresponding to a temperature 
increasing process are roughly detected based on the 
differential of dataset and statistical quartiles, with 
corresponding periods shown in Fig. 6 (bottom plot).  

From Fig. 6, it can be noted that the period from 9 a.m. 
to 5 p.m. may indicate a higher probability of vehicle 
existence than other clock time in a day. Therefore, a 
dummy variable is defined to reflect the difference of 
these two periods: (i) period from 9 a.m. to 5 p.m. with 
the value ‘1’ of dummy variable to corresponding 
observations; (ii) period outside this interval with the 
value ‘0’. Figure 7 shows a correlation plot between 
modal frequency and temperature. It can be found that 
this defined dummy variable grouped these observations 
with a good performance. 

 

Figure 6. Histograms for statistical investigation on: period of 

temperature increase (top plot); period of inconsistent variation 

extent along with temperature increase (bottom plot).  

The regression analysis with dummy variable is 
subsequently carried out. Comparison between the GPR 
and the GPR with dummy variable is shown in Fig. 8, 
and a better performance was observed in the prediction 
by the GPR with dummy variable. The residuals in the 
former three regression methods with dummy variable 
are also investigated (see Fig. 9), and apparent changes in 
the residual distribution can be noted. To compare the 
generalization ability before and after considering 
dummy variable in each method, the Jensen-Shannon 
divergence is calculated to reflect the distance between 
two distributions in training set and validating set. As 
shown in Table 2, the results proposed that introduction 
of the defined dummy variable reduced the distinction of 
the residual distribution between training set and 
validating set, and definitely improved the generalization 
ability of each method in this case. 

(a)  

(b)  

Figure 7. Correlation plot between modal frequency and 

temperature: (a) 1st modal frequency; (b) 2nd modal frequency. 

Table 2. Jensen-Shannon divergence of the residual 

distribution between training set and validating set. 

Response Method 
Jensen-Shannon divergence 

WO/dummy W/dummy 

1st modal 

frequency 

OLSR 0.1596 0.1301 

LASSO 0.1551 0.1057 

GPR 0.2871 0.2506 

2nd modal 

frequency 

OLSR 0.1500 0.1081 

LASSO 0.1092 0.0643 

GPR 0.1952 0.1547 

 



The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020) 

October 4–7 2020, Tokyo, Japan 

T. Takada, I. Yoshida & T. Itoi (editors) 

4. Concluding remarks 
Regression methods to reduce EOVs to long-term SHM 
are discussed. The dummy variable is introduced into the 
regression models to improve regression and prediction 
by reducing the influence of deficient measurements. 
Observations through this study can be summarized as 
follows. 
(i) The data quality makes a different influence to 
classical linear regression methods and the GPR. Under 
the situation of deficient measurement, GPR captures 
more local features about the EOVs-related variability, 
while classical linear regression methods like OLSR and 
LASSO are awfully affected by the data quality. 
(ii) Introducing proper dummy variable to further group 
the original dataset may improve the performance of 
regression methods in some extent, especially when the 
records of EOVs are deficient. However, to search and 
define a proper dummy variable needs further studies. 
(iii) In addition to deficient measurement, model 
approximation and intermittent measurement may be also 
two factors that mainly affect the regression performance. 
The former one weighs more in classical linear regression 
as the reality of nonlinear and coupling effects, while the 
latter one may take more errors to GPR as it considers the 
covariance matrix of time series. 
 

(a)  

(b)  

Figure 8. Comparison of GPR and GPR with dummy variable 

in prediction: (a) on 1st modal frequency; (b) on 2nd modal 

frequency. 
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(a)  

(b)  

 (c)  

Figure 9. Comparison of residual distribution between training 

set and validating set involving defined dummy variable: (a) 

OLSR; (b) LASSO; (c) GPR. 
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