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Abstract: This work presents a general framework for performing reliability analyses of involved structural models equipped with 
friction-based devices under stochastic excitation. An experimentally validated model that takes into account main sources of 
performance degradation that these devices experience during seismic events is considered. To deal with the variability of future 
excitations, a stochastic excitation model is adopted in the present formulation. First excursion probabilities are used as measures of 
system reliability. The associated reliability analysis is carried out by combining an advanced simulation technique with an adaptive 
parametric meta-model. The effectiveness of the methodology is demonstrated by means of one application problem. 
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1. General 
Isolation concepts have been used for the protection of a 
number of critical facilities such as hospitals, buildings, 
bridges, industrial and data center facilities, etc. One of the 
difficulties in the analysis of isolated systems has been the 
consideration of realistic models for the non-linear 
behavior of the isolation devices. Another challenge has 
been the efficient prediction of the dynamic response under 
future ground motions considering their potential 
variability as well as the efficient control of competing 
objectives related to the protection of the structure and the 
minimization of the base displacement. Among existing 
conventional isolation devices, friction-based isolators are 
suitable for a wide range of applications (Bomdonet and 
Filiatrault 1997); (Villaverde 2017). In this context, the 
reliability analysis of isolated systems plays an important 
role to ensure structural safety and integrity (Chen et al. 
2007); (Jensen and Kusanovic 2014).  
   This contribution presents a framework for the 
reliability analysis of involved structural systems equipped 
with friction-based devices. Specifically, devices 
composed of sliding concave bearings are considered. An 
experimentally validated model that takes into account 
main sources of performance degradation that these 
devices experience during seismic events is implemented 
in this study (Benzoni and Seible 1998). To take into 
account the variability of future excitations, a stochastic 
model for the description of ground motions is 
implemented (Boore 2003); (Atkinson and Silva 2000). 
First excursion probabilities are used as measures of the 
system reliability. Reliability is quantified as the 
probability that response quantities of interest will not 
exceed acceptable performance bounds within a particular 
reference period. Such probabilities are estimated by an 
adaptive Markov Chain Monte Carlo procedure (Au and 
Beck 2001). From a numerical and practical point of view, 
the reliability analysis of stochastic dynamical systems 
requires a large number of finite element analyses. These 
analyses correspond to finite element re-analyses over the 
uncertain parameter space that characterizes the structural 
parameters and the excitation. Consequently, the 
computational demands involved in the reliability analysis 
may be large or even excessive. To deal with this 

difficulty, a model reduction technique based on 
substructure coupling for dynamic analysis is considered 
in the present implementation (Craig and Kurdila 2006). 
The technique is combined with an adaptive finite element 
model parametrization scheme for approximating the 
different quantities involved in the definition of the 
reduced-order models in terms of the uncertain structural 
parameters (Angelikopoulos et al. 2015); (Jensen and 
Papadimitriou 2019). 

2. Isolator Modeling 
A sliding bearing, which is shown schematically in Figure 
1, is composed of an upper steel plate with a housing cap 
for the slider, a bottom plate with a concave semi-spherical 
stainless steel surface, and a steel slider. The low friction 
material that interfaces the stainless concave surface is 
usually made of an un-lubricated polymer composite liner. 
A simplified scheme that shows a typical force distribution 
on the slider of the sliding concave isolator is depicted in 
Figure 2.  
 
 

 
 

 
 
 

 
 

Figure 1. Sliding bearing 
 

  In Figure 2, 𝐴 is the radius of the sliding surface and 𝑎 
is the radius of the slider. According to the simplified 
Coulomb model, the force-displacement relationship is 
expressed as 

f(t) =
𝑊

𝑅
𝑢௜௦(𝑡) + sgn൫𝑢̇௜௦(𝑡)൯μW (1) 

where 𝑊 represents the applied vertical load, 𝑢௜௦(𝑡) the 
horizontal relative displacement between  the slider and 
the concave base,   𝑢̇௜௦(𝑡)  the corresponding velocity, 
𝑅   the radius of the concave surface, 𝜇  the friction 
coefficient of the sliding system due to the composite 
material at the bottom of the slider and the stainless  steel 
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overlay of the concave base, and 𝑓(𝑡)  the horizontal 
force. It is seen that the horizontal force 𝑓(𝑡) is partially 
resisted by the force 𝜇𝑊  due to the frictional 
characteristics of the contact between the slider and steel 
concave surface. The remaining force is resisted by the 
linear component  (𝑊/𝑅)𝑢௜௦(𝑡)  associated with the 
restoring stiffness 𝑊/𝑅. 
 
 
 
 
 
  
 
 
 
 

 
 

 
 
Figure 2. Force distribution on the slider of the sliding concave 
isolator. 
 
  Regarding the frictional force, the simplified Coulomb 
model indicates that the force is directly proportional to the 
applied vertical load and not dependent upon the apparent 
area of contact and sliding velocity. However, 
experimental results indicate three mayor effects that are 
responsible for the departure of the frictional performance 
of the device from the theoretical Coulomb's model 
(Lomiento et al. 2013). They include the load, cycling and 
velocity effects. The load effect is related to the reduction 
of the friction coefficient as the vertical load increases, the 
cycling effect corresponds to the continued reduction of 
the friction coefficient with the repetition of cycles, and 
finally the velocity effect takes into account the increase of 
the friction coefficient with the velocity of motion.  
  A model able to represent the variation of the frictional 
characteristics of the sliding system along the traveled path 
is formulated as follows. The friction coefficient is 
expressed as the product of three components (Lomiento et 
al. 2013).  

μ൫W, c(t), 𝑢̇௜௦(𝑡)൯ = 𝑓ௐ(W)𝑓௖൫c(t)൯𝑓௨̇೔ೞ
൫𝑢̇௜௦(𝑡)൯ (2) 

 
where 𝑓ௐ(⋅), 𝑓௖(⋅) and 𝑓௨̇೔ೞ

(⋅) are functions representing 

the dependency of the coefficient of friction on the applied 
vertical load, the cycling effect, and the velocity, 
respectively. The load effect term is expressed as  
𝑓ௐ(𝑊) = μ଴ exp൫−𝑊/𝑊௥௘௙൯, where 𝜇଴  represents the 
theoretical slow-motion coefficient of friction under no 
vertical load (initial friction coefficient), and 𝑊௥௘௙  is a 
load reference value and represents the degradation rate of 
the slow-motion coefficient of friction. The parameters 𝜇଴ 
and 𝑊௥௘௙ are calibrated by using experimental data. The 
friction degradation function, related to the cycling effect, 
is defined as 𝑓௖൫𝑐(𝑡)൯ = exp (−𝑐(𝑡)/ 𝑐௥௘௙)ఉ , where 
𝑐௥௘௙  represents the degradation rate of the friction 
coefficient with the cycling variable 𝑐(𝑡), and β controls 

the shape of the function. These parameters are obtained 
by least square regression of experimental results. The 
variable 𝑐(𝑡) is associated with the cumulative heat flux 
on the sliding surfaces during the time interval (𝑡଴, 𝑡) , 
where 𝑡଴ is the initial time of analysis. Assuming a heat 
flux uniformly distributed over the whole concave sliding 
surface, the variable 𝑐(𝑡) is written as 
 

c(t) =
2

𝑎πଶAଶ
න W

୲

୲బ

𝑢̇௜௦(t)ଶdt (3) 

 
where 𝑎 is the radius of the slider, and 𝐴 the radius of 
the sliding surface as previously pointed out. Finally, the 
increment of the coefficient of friction with increasing 
sliding velocity is described by the function 
𝜂 + (1 − 𝜂) exp൫−|𝑢̇௜௦(𝑡)|/𝑢̇௜௦

௥௘௙൯ , where 𝑢̇௜௦
௥௘௙ is a 

reference velocity that characterizes the variation rate, and 
𝜂 ≥ 1 is the ratio between the fast-motion and the slow-
motion coefficient of friction. The parameters 𝑢̇௜௦

௥௘௙  and 
𝜂 are calibrated according to the best fit with experimental 
results. 
  Under bi-directional excitations, the resultant horizontal 
force can be decomposed into a restoring force and a 
friction force, as in the one-dimensional case. The 
restoring force is associated with the pendulum behavior 
of the isolator due to the curvature of the sliding surface, 
while the friction force is activated at the interface between 
the sliding surface and the slider. The restoring force is 
directed towards the geometric center of the sliding 
concave surface as shown in Figure 3. 
 
 
 
 
 
 
 

 
 
 
  
 
 
 

 
 

Figure 3. Direction of the restoring and frictional forces. 𝑑௥: 
direction of restoring force. 𝑑௜௦: direction of friction force. 

 
 
 Moreover, the friction force vector direction 𝑑௜௦ shows 
an angular shift Δϕ with respect to the velocity vector 
൫𝑢̇௜௦(𝑡)൯ . Such angular shift has been estimated to be 
around 0.24 radians for the types of isolators investigated 
(Lomiento et al. 2012). For illustration purposes, the 
direction of the frictional force and velocity vector for a 
given instant are plotted in Figure 3. Additional 
information about the bi-directional case can be found in 
(Lomiento et al. 2013).  
 

𝑓𝑢𝑖𝑠
൫𝑢̇𝑖𝑠 (𝑡)൯ = 
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3. Reliability Analysis 
The performance of isolated structural systems is 
quantified by means of a set of response functions 
𝑟௜(𝑡, 𝜽, 𝒛), 𝑖 = 1, … , 𝑛௥ , 𝑡 ∈ [0, 𝑇], where 𝜽 ∈ Ω𝜽 ⊂ 𝑹𝒏𝜽is 
a vector of uncertain structural parameters, 𝒛 ∈ Ω𝒛 ⊂ 𝑅௡𝒛 
is a vector of uncertain variables involved in the 
characterization of the stochastic excitation model, and 
𝑛௥ , 𝑛𝜽, and 𝑛𝒛 are the number of response functions of 
interest, the number of uncertain structural parameters, and 
the number of uncertain variables defining the stochastic 
excitation, respectively. In terms of the excitation, the 
ground acceleration is modeled as a non-stationary 
stochastic process. In particular, a stochastic model based 
on a point-source model is considered in the present 
implementation (Boore 2003); (Atkinson and Silva 2000). 
The probability that performance conditions are satisfied 
within a particular reference period 𝑇 is used as reliability 
measure. In this context, a failure event 𝐹 can be defined 
in terms of a performance function ℎ(𝜽, 𝒛) as 𝐹(𝜽, 𝒛) =
ℎ(𝜽, 𝒛) ≤ 0, where 
 

ℎ(𝜽, 𝒛) = 1 − max
௜ୀଵ,…௡ೝ

ቆ max
௧∈[଴,்]

|𝑟௜(𝑡, 𝜽, 𝒛)|

𝑟௜
∗ ቇ (4) 

 
and 𝑟௜

∗, 𝑖 = 1, … , 𝑛௥  are the corresponding acceptable 
response levels. The probability of failure 𝑃ி can be 
expressed in terms of the probability integral 
 

𝑃ி = න 𝑞(𝜽)𝑝(𝒛)𝑑𝜽𝑑𝒛
௛(𝜽,𝒛)ஸ଴

 
 

(5) 

 
where 𝑞(𝜽) and 𝑝(𝒛) are multidimensional probability 
density functions that characterize the structural 
parameters and the uncertain variables involved in the 
excitation model, respectively.  For systems under 
stochastic excitation, the reliability estimation for a given 
value of the model parameters constitutes a high 
dimensional problem (Koutsourelakis et al. 2004). This 
problem is solved by applying an advanced simulation 
technique. In particular, Subset simulation is implemented 
in this work (Au and Beck 2001).  
 
4. Numerical Implementation 
The reliability analysis of complex structural systems is 
computationally very demanding due to the large number 
of dynamic analyses required during the corresponding 
simulation process. In fact, the reliability estimation 
requires the evaluation of the system response at a large 
number of samples in the uncertain parameter space (of the 
order of hundreds or thousands). Consequently, the 
computational cost may become excessive when the 
computational time for performing a dynamic analysis is 
significant. To cope with this difficulty, a parametric 
model reduction technique is considered in the present 
implementation. In particular, a method based on 
substructure coupling is implemented here (Craig and 
Kurdila 2006). Details of the technique can be found in 
(Jensen and Papadimitriou 2019) and (Jensen et al. 2020). 
Once a parametric reduced-order model of the structure 

has been defined, the equation of motion of the structural 
system in terms of a reduced set of generalized coordinates 
can be established. Such set of generalized coordinates are 
defined in terms of the so-called dominant fixed-interface 
modal coordinates of all substructures and of the vector of 
physical coordinates at the independent interfaces. 
According to this methodology, the evaluation of the 
reduced-order matrices at a given design is direct, since it 
depends only on the value of the different substructure 
matrices at a number of support points. Such points are 
selected based on an adaptive scheme (Jensen et al. 2020). 
The equation of motion in terms of the reduced-order 
model together with the equation for the isolation system 
can be integrated efficiently by an appropriate step-by-step 
integration scheme.  
 
5. Application Problem 
5.1 Model Description  
The structural system, which is shown in Figure 4, consists 
of a seven floor three-dimensional reinforced concrete 
building model under stochastic ground acceleration. 
Material properties of the reinforced concrete structure 
have been assumed as follows: Young's modulus 𝐸 =
2.3 × 10ଵ଴𝑁/𝑚ଶ ; Poisson ratio ν =  0.2;  and mass 
density ρ = 2,500𝑘𝑔/𝑚ଷ . The height of each floor is 
3.3 𝑚  leading to a total height of 23.1 𝑚  for the 
structure. The floors are modeled with shell elements with 
a thickness of 0.2 𝑚 and beam elements of rectangular 
cross section of dimension 0.5 𝑚 × 0.7 𝑚. Each floor 
is supported by 56 columns of square cross section of 
dimension 0.5 𝑚 × 0.5 𝑚 . The finite element model 
has approximately 38,000 degrees of freedom. A 5% of 
critical damping is added to the model. The structural 
system is equipped with 56  sliding bearings in its 
isolation system. The sliding bearings are characterized by 
the experimentally validated model introduced in Section 
2, with model parameters given in (Jensen et al. 2020). The 
fundamental period of the base-isolated system is about 
2.97 𝑠, while the period of the fixed system (without the 
isolators) is close to 0.97 𝑠 . Thus, the increase of the 
fundamental period is significant due to the isolation 
system. The building is excited horizontally by a ground 
acceleration applied at −45௢ with respect to the axis 𝑥, 
as shown in the figure. The ground excitation is modeled 
as indicated in previous sections. It is assumed that the 
bending stiffness of the column elements of the different 
floors is uncertain. For demonstration purposes, such 
uncertainty is modeled in terms of three global parameters, 
namely, θଵ, θଶ and θଷ. The parameter θଵ is associated 
with the bending stiffness of the column elements of the 
first floor, θଶ  is related to the bending stiffness of the 
column elements of floors 2 to 4, and θଷ is associated 
with the bending stiffness of the column elements of floors 
5 to 7. These parameters are modeled as independent and 
identically distributed log-normal random variables with 
mean values equal to 1.0, and coefficient of variations of 
15%. The global parameters scale the nominal values of 
the bending stiffness of the column elements. A parametric 
reduced order model is constructed for performing a 
reliability analysis. The dimension of the reduced-order 
model represents a reduction of more than 90%  with 
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respect to the full finite element model. The reader is 
referred to (Jensen et al. 2020) for more information about 
the reduced-order model.  
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4. Isometric view of finite element model with base 

isolation system. 
 

5.2 Results 
The system reliability is defined in terms of the relative 
displacement between the different floors of the building. 
The corresponding failure event is defined as  
 

𝐹(𝜽, 𝒛) = max
௧∈[଴,்],௜ୀଵ,…,ଶସ

ቆ
|δ௜(𝑡, 𝜽, 𝒛)|

δ∗
ቇ ≥ 1, 

 

(6) 

where 𝛿௜(𝑡, 𝜽, 𝒛) denotes the  maximum relative 
displacement between the different floors at control point 
𝑖 = 1, … ,24 , and  𝛿∗  is the corresponding acceptable 
response level. The control points are located over the 
height of the structure at different corners and at the center 
of each floor. Some of these points, represented as dots, are 
shown in Figure 4. Figure 5 shows the failure probability 
in terms of the threshold. For comparison purposes, the 
cases of fixed- and isolated-base are considered. An 
average of five independent runs of subset simulation is 
used in the figure. It is observed that the effect of the 
isolation system is quite dramatic in terms of the system 
reliability. In other words, the beneficial effect of the 
sliding bearings in protecting the structure is significant. 
  The effect of considering the simplified Coulomb model 
for the sliding bearings is examined in Figure 6. In this 
case, the reliability of the system is considered in terms of 
the absolute displacement at the top of the building. This is 
done in order to take into account the displacement 
experienced by the isolation system. Figure 6 shows the 
corresponding failure probability with respect to the 
threshold by using the experimentally validated model and 
the simplified friction model. It is seen that the simplified 
model overestimates the system reliability. This is due to 
the fact that the simplified model underestimates the 
displacement of the sliding bearings. Thus, the importance 
of considering the experimentally validated model for the 
performance of the friction-based devices is apparent. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5. Probability of failure in terms of the threshold. 

 
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 6. Probability of failure in terms of the threshold. Failure 
event associated with the absolute displacement at the top of the 

building.  
 
 
5.3 Computational Demand 
Validation calculations show that the computational 
demands involved in the reliability analysis are decreased 
by using the proposed parametric reduced-order model 
without compromising the accuracy of the reliability 
estimates. Actually, a speedup value of more than 6 is 
obtained in this case for the on-line computations. In this 
context, the speedup is the ratio of the execution time for 
performing the reliability analysis by using the full finite 
element model and the reduced-order model. The gain in 
computational savings for this structural model is 
significant considering the complexity of the model 
equipped with friction-based devices. Finally, it is noted 
that once a parametric reduced-order model has been 
defined, several scenarios in terms of reliability analyses 
can be performed in an efficient manner. Therefore, even 
higher speedup values can be obtained for the reliability 
analysis as a whole. 
 
6. Conclusions 
A framework for performing reliability analyses of 
involved structural models equipped with friction-based 
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devices under stochastic excitation has been presented. 
The experimentally validated model for the performance 
of sliding concave isolators takes into account main 
sources of performance degradation experienced by these 
devices during seismic events. With respect to the 
numerical implementation, the adaptive parametric model 
reduction technique has been validated in an involved 
model. Results show that an important reduction in 
computational efforts can be achieved without 
compromising the accuracy of the reliability estimates. 
Numerical results indicate that the simplified theoretical 
Coulomb's model tends to underestimate the displacements 
experienced by the sliding bearings. Moreover, the 
simplified model leads to failure probability estimates 
smaller than the ones obtained by the experimentally 
validated model. As a consequence, the simplified model 
overestimates the reliability of the system. Based on the 
application problem and additional validation calculations, 
it is concluded that the beneficial effect of the sliding 
bearings in protecting structural system is significant. 
Actually, the effect of the devices is quite dramatic in terms 
of the system reliability. 
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