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Abstract: This paper presents a method for building surrogate model for geotechnical reliability analysis based on sparse modeling, 

sparse surrogate model. Sparse modeling, which is called least absolute shrinkage statistical operator (lass) in statistics, has the 

property that some of the parameters in a surrogate model are driven to zero and leads to a simpler model. Building a surrogate 

model can be divided into two processes, model selection and parameter estimation, and the sparse modeling enables to achieve 

these two processes at the same time. A polynomial surrogate model was designed to estimate consolidation settlement based on 

sparse estimation, and its applicability has been investigated by comparing the results by the surrogate model with those by finite 

element analysis. 
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1. Introduction 
Surrogate model, also called “response surface” or “meta 
model”, is a regression equation that approximates 
relationships between input and output data of numerical 
simulations and have been commonly used for parameter 
identification and reliability-based analysis in many 
research fields. Applications of surrogate model in civil 
engineering include Bucher and Bourgund (1990), 
Tandjiria et al. (2000), Youssef and Soubra (2008), 
Schoefs et al. (2013), and Zhang et al. (2015). 

In surrogate modeling, model selection and parameter 
estimation need to be dealt with. Model selection is the 
problem in which how to set basis functions and model 
complexity (polynomial order) is discussed. Whereas 
parameter estimation is the problem to determine 
coefficients of the basis functions. In order to build the 
“best” surrogate model, all possible combinations of basis 
functions and their coefficients should be analyzed. This 
problem, however, is difficult to solve because the 
computation time to find a solution grows exponentially 
with problem size and is known as “NP-hard” problem. 
The methodology to efficiently achieve model selection 
and coefficient estimation in surrogate modeling. 

This study proposes a method for building surrogate 
models based on sparse modeling or least absolute 
shrinkage statistical operator (lasso, Tibshirani 1996). 
The proposed method can solve the both of model 
selection and parameter estimation problems at the same 
time. The applicability of the proposed method is 
investigated through numerical examples of geotechnical 
reliability analysis. In addition, we compare the results 
with those by existing method for comparison. 

2. Surrogate Modeling based on Lasso 

2.1 Basic Model 
We use Mth order polynomial functions as surrogate 
models. When the input parameter is x, the polynomial 
function f is defined by: 
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where, w0,…, wM are polynomial coefficients. The 
coefficients are determined by fitting the polynomial 
function to the training data yn. This fitting is usually 
done by minimizing the least squares objective function: 
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where N is the number of training data. If the squared 
error follows Gaussian distribution and the model 
function is linear for input parameter, the analytical 
solution is available. 

2.2 Regularization 
There remains the problem of choosing the order M of 
the polynomial, and this is a “model selection” problem. 
Although higher order polynomials generally give good 
fits to the data, bias of the model tend to be extremely 
large. This problem is called “over-fitting” in the context 
of machine learning. 

There is a technique called regularization to control 
over-fitting, and that is adding a penalty term to the 
objective functions to discourage the coefficients from 
reaching large values. The general expression of the 
modified objective functions including regularization 
term takes the form 
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where  is the regularization parameter which controls 
relative importance between first and second terms in Eq. 
(3), q is the parameter controls the regularization term, 
and q = 2 corresponds to the quadratic regularizer, 
so-called Ridge regression defined by 
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where ||w||2 = wTw = w0
2+w1

2+…+ wM
2. 

The case of q = 1 is called least absolute shrinkage 
statistical operator (lasso, Tibshirani 1996), and it 
takes the form. 
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where |w| = |w0|+|w1|+…+ |wM|. It has the property that 
if λ is sufficiently large, some of the coefficients wj are 
driven to zero because of the geometry of its 
regularization term. Figure 1 illustrates the estimation 
graph of ridge regression and the lasso, and x1 
becomes zero because of the diamond-shaped 
regularization term. The lasso tends to lead to a sparse 
model in which the corresponding basis functions play 
no role. Estimating for surrogate models via the lasso 
is called “sparse estimation” in this paper. 

2.3 Optimization Algorithm 
The lasso problem is a convex minimization problem, a 
quadratic program with a convex constraint. For 
simplicity, the following problem is used to explain the 
computational procedure for the lasso solution. 
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The standard approach to this one-dimensional 
minimization problem is to take the gradient with respect 
to w and to set it to zero. However, one of the central 
difficulties in solving Eq. (6) is the presence of a 
non-smooth L1 norm, |w|. In other words, the absolute 
value function |w| does not have a derivative at w = 0. 
Nevertheless, this problem can be solved by applying a 
soft-thresholding operator to w, which is defined as 
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where S is a soft-thresholding function (Figure 2). This 
operator translates w toward zero by an amount  and 
sets it to zero if |w| < . When  = 0, the solution of Eq. 
(5) becomes the solution for the ordinary least squares 
problem. The general approach for solving the lasso 
problem can be summarized as follows: 

Step 1: Minimize first term in the objective function 

Step 2: Apply the soft-thresholding operator to w 

Step 3: Repeat Steps 1 and 2 

To minimize the lasso-type objective function, we used 
Alternative Direction Method of Multipliers (ADMM, 
Boyd et al., 2010). 

3. Numerical Example 

3.1 Setup 
We built a surrogate model to estimate a value of ground 
surface settlement due to embankment loading. This 
section presents the setup of the numerical example. 

Figure 3 (a) and (b) show the model ground 
discretized with finite element mesh and the construction 
process of the embankment. The model ground is 
assumed to consist of three layers (sand layer, clay layer, 
and sandy clay), and the layers were modeled as an linear 
elastic model and Cam-clay models. An embankment is 
assumed to be constructed on the model ground 
following the construction process shown in Figure 3(b), 
and time-settlement behavior of the ground is observed at 
five points #1 ~ #5. 
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Figure 1. Estimation picture for ridge (left) and lasso (right) 

regression (modified from Hastie et al. 2015). 
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Figure 2. Soft-thresholding function. 
 
 

The surrogate model was designed to estimate the 
settlement value at #1 after 2,500 days after construction 
began, and this settlement value is the output (or the 
objective variable) in the surrogate models. We assumed 
that ten parameters, elastic modulus E and the Poisson’s 
ratio  of the sand layer, and the compression index c, 
the swelling index , the critical state parameter M, and 
the coefficient of permeability k (m/d) of the clay and 
sandy clay layers, as the input parameters. The total 
number of input parameters is ten. 
  The performance of the surrogate models depends on 
the value of regularization parameter , and we 
determined the parameter using leave-one-out 
cross-validation which is commonly and widely used in 
many research fields. In this study, we built two 
surrogate models 1) N = 1,000 and 2) N = 50 to 
investigate the effect of the number of training data on 
building surrogate models. The performance of the 
surrogate model was evaluated by comparing the 
estimated probability density function of the target 
settlement value by the surrogate model with the true 
value, i.e., the PDF by finite element analysis. 

3.2 Case 1: N=1,000 

N = 1,000 was used to build the surrogate model, and the 

target settlement values were estimated by the 

lasso-based model and ridge-based model. Figure 4 

compares the estimated PDF with the true PDF, and 
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Table 1 summarizes the number of active set and 

Kullback–Leibler (KL) divergence. The active set means 

the number of non-zero entry in x, and that number is 

lower, the simpler surrogate model is built. The 

KL-divergence is a measure of how one probability 

distribution is different from a reference probability 

distribution, and we can quantitatively evaluate the 

performance of the surrogate models. The PDF estimated 

by two methods, lasso and ridge, are very similar and 

agree well with the true PDF. The KL-divergence of 

lasso is a bit smaller than that of ridge, and lasso-based 

model is more accurate than ridge-based model. 

3.3 Case 2: N=100 

Only 50 data were used to build the surrogate model in 

Case 2, and this problem is a typical “underdetermined 

problem” because the number of unknowns is greater 

than that of observation data. Figure 5 compares the 

estimated PDF with the true PDF for ridge and lasso, 

and Table 2 summarizes the results. The 

KL-divergence shows that the estimation accuracy of 

ridge-based model is lower than that of lasso-based 

model, and the shape of the PDF by ridge is a bit 

different from the true PDF. The number of active sets 

in lasso-based model is 34, and most of the 

coefficients, 32 input parameters, led to “zero”. Figure 

6(a)(b) shows the solution path of ridge-based and 

lasso-based models. The vertical lines indicate the best 
regularization parameter  determined by the 

LOOCV.  

 

(a) Ridge regression 

 

(b) Lasso 

Figure 4. Comparison of PDF (N = 1,000). 

 

Table 1. Summary of Case 1. 

 Ridge Lasso 

The number of active sets 96 80 

KL-divergence 0.02672 0.02174 

 

 

(a) Ridge regression 

 

(b) lasso 

Figure 5. Setup of numerical simulation. 
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(a) Finite element mesh. 
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Figure 3. Setup of numerical simulation. 
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Table 2. Summary of Case 2. 

 Ridge Lasso 

The number of active sets 96 34 

KL-divergence 0.06578 0.03010 

 

 

(a) Ridge regression 

 
(b) Sparse estimation (lasso) 

Figure 6. Solution path. 

 

In ridge regression, regularization parameter is less 

sensitive to the shrinkage of the coefficients. In lasso, 

however, the larger  is used, the simpler model is 

estimated. These results demonstrate that the proposed 

lasso-based method for building surrogate models 

estimate simpler/less complex models and provide 

more accurate estimations compared to the existing 

method. 

4. Conclusions 
A method for building surrogate models based on 
lasso was newly proposed. The surrogate model was 
designed to estimate a value of surface settlement of 
the ground using the data of the finite element 
simulations, and the model accuracy was evaluated by 
comparing the estimated PDF of the settlement value 
by the surrogate model with the true value. The 
estimated PDF was agreed well with the true PDF. 
The proposed method leads to simpler models 
compared to the existing method, ridge regression, and 
the lasso-based model can accurately estimate the PDF 
with small training data. 
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