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Abstract: This paper introduces a Deep Neural Network (DNN) framework for near-real-time damage assessment using the structural 

response data from an earthquake event. The proposed network is constructed by Convolutional Autoencoder (Conv-AE), which is a 

powerful self-supervised DNN that can effectively recognize patterns from two-dimensional data such as image by using two-dimen-

sional convolutional layers. The network is trained using the correlation matrix of acceleration time-series data obtained from sensors 

of the target structure at a healthy state. A structural damage index (SDI) is proposed at a local scale to locate the structural damage, 

which increases as the structure deviates from the healthy state due to the occurrence of structural damage. To demonstrate the pro-

posed method, structural analysis is performed for a 20-story shear building at its healthy state under 2,000 artificial seismic ground 

motions, which are pre-assigned to the train and test datasets in the ratio of 9:1. After training the proposed networks, SDI is computed 

for each of the simulated damage conditions using real ground motions. Furthermore, damage assessment criteria are proposed based 

on the pre-obtained SDI for various damage conditions. Through further development, the proposed damage assessment framework is 

expected to help reduce the time required for disaster response by providing near-real-time damage assessment using the pre-estab-

lished DNN and damage assessment criteria. 

 

Keywords: earthquakes, structural response, deep neural network, convolutional autoencoder, damage assessment, structural damage 

index. 

 

1. Introduction 
Structural health monitoring (SHM) plays an important 
role in maintenance efforts to assure the safety and integ-
rity of in-service civil engineering systems. A failure to 
identify critical structural damage may reduce the service 
life of the structural system or cause functional failures. 
Therefore, it is essential to implement a proper SHM pro-
cess that can evaluate the integrity of the engineering sys-
tem and detect possible damage to structural systems. 
SHM-based damage identification processes usually con-
sist of four steps: (1) detecting the existence of the damage, 
(2) locating the damage, (3) identifying the types of dam-
age, and (4) quantifying the severity of the damage (Ente-
zami and Shariatmadar 2018). In general, SHM process are 
categorized into long-term and short-term SHM (Dawson 
1976). A long-term SHM utilizes periodically updated in-
formation about the ability to perform the intended func-
tion, which is affected by aging and degradation resulting 
from its operational environments. On the other hand, a 
short-term SHM aims at rapid screening of change in the 
structural condition and providing information about the 
integrity of the structure in near-real-time. 

With rapid developments in sensing technologies and 
data science, the vibration-based damage identification 
methods have been gaining attention especially among the 
applications of machine learning to SHM. These methods 
are built upon the fact that a change in structural character-
istics, such as mass and stiffness, changes the vibration 
characteristics such as mode shape and natural frequency. 
During extreme events such as earthquakes, structural 
characteristics may change due to the local damage or fail-
ure of the structural system. Therefore, it is important to 
detect the structural damage immediately to protect human 

lives, and maintain or recover the serviceability of infra-
structures. In particular, vibration-based pattern recogni-
tion methods are considered suitable for near-real-time 
damage detection. This is because these methods use the 
pre-trained statistical model, such as a deep neural network 
(DNN; Pathirage et al. 2018), using features from the vi-
bration signals. This requires low computational time to 
recognize the changes in vibration characteristics. 

Autoencoder (AE) is one of the well-known DNN 
methods used for anomaly detection (An and Cho 2015). 
The aim of AE is to learn patterns for a set of data by re-
constructing input data identically by passing through the 
bottleneck, i.e. dimensionality reduction. In the same way, 
AE pre-trained by the data from the healthy state can re-
construct data at the healthy state only while the recon-
struction error increases in the damage condition. This 
means that the reconstruction error can be used as a meas-
ure of structural damage for the purpose of damage identi-
fication. 

This paper proposes a DNN-based framework for near-
real-time damage identification using the vibration charac-
teristic of raw acceleration data from an earthquake event. 
The correlation matrices at zero lag for various time win-
dows are selected as the vibration characteristics describ-
ing localization as well as severity of damage. The pro-
posed network hinges on convolutional AE (Conv-AE) 
composed of convolutional layers for the pattern recogni-
tion of highly nonlinear two-dimensional data. The pro-
posed framework consists of the four steps: (1) Correlation 
matrices from artificial ground motions only at a healthy 
state are prepared as input data; (2) The network is trained 
to reconstruct the training input data and verified by the 
test data; (3) Computational simulations with real ground 
motions are performed for various damage conditions to 
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verify the pre-trained network; and (4) The proposed index 
of structural damage is calculated for every sensor location 
in near-real-time. A numerical example of the linear struc-
ture under seismic ground motions is investigated to 
demonstrate the proposed framework. 

2. Theoretical Backgrounds 

2.1 Autoencoder  
A traditional AE consists of encoder and decoder with a 
single hidden layer (Vincent et al. 2010). One can construct 
a deep AE by introducing multiple hidden layers. A con-
ceptual illustration of AE is shown in the Fig. 1. 

 

Figure 1. Conceptual illustration of AE. 

Encoder: The mapping function 𝒇(𝐱), which trans-
forms a d-dimensional input vector 𝐱 ∈ 𝑅𝑑  into an r-di-
mensional hidden representation 𝐡 ∈ 𝑅𝑟 , is called an en-
coder. Here, the dimension of the hidden layer is smaller 
than that of the input layer, i.e. 𝑑 > 𝑟. 𝒇(𝐱)  is usually 
written with the following nonlinear transformation: 

 𝐡 = 𝒇(𝐱) = 𝝈(𝐖𝐱 + 𝐛) (1) 

where 𝐖 ∈ 𝑅𝑟×𝑑  denotes the mapping weight matrix of 
the encoder, 𝐛 ∈ 𝑅𝑟 is the bias vector and 𝝈 is the acti-
vation function, which is usually a nonlinear function such 
as sigmoid, tangent hyperbolic, Rectified Linear Unit 
(ReLU) and Exponential Linear Unit (ELU) function. In 
this paper, the hidden layers employ the ELU function 

 ELUα(𝑥) = {
𝑥

𝛼(𝑒𝑥 − 1)  
𝑥 ≥ 0
𝑥 < 0

 (2) 

Decoder: The mapping function 𝒈(𝐡), which trans-
forms the hidden representation 𝐡  back into a recon-
structed vector 𝐳 ∈ 𝑅𝑑 , is called a decoder. Note that the 
dimension of 𝐱 and 𝐳 are same. 𝒈(𝐡) is usually written 
with the following nonlinear transformation: 

 𝐳 = 𝒈(𝐡) = 𝝈(𝐖̂𝐡 + 𝐛̂) (3) 

where 𝐖̂ ∈ 𝑅𝑑×𝑟  denotes the mapping weight matrix of 
the decoder, 𝐛̂ ∈ 𝑅𝑑 is the bias vector and 𝝈 is the acti-
vation function described above.  

To optimize the parameters 𝛉 = [𝐖, 𝐛, 𝐖̂, 𝐛̂] using the 
training data, the mean squared error (MSE) is often used 
as the loss function 

 𝐿(𝐱) =
1

𝑚
∑

1

2
‖𝒙(𝑖) − 𝒈 (𝒇(𝒙(𝑖)))‖

2
𝑚
𝑖=1  (4) 

where 𝑚 is the number of samples, 𝒙(𝑖) is the 𝑖th input, 
𝒇(·) and 𝒈(·) are the mapping functions of the encoder 
and decoder, respectively. Generally, 𝐿(𝐱) in Eq. (4) is 
difficult to optimize because of its non-linearity, thus a gra-
dient descent based optimizer such as Adam proposed by 
Kingma and Ba (2014) are commonly used. As shown in 
Eq. (4), AE is trained to reconstruct the input. 

2.2 Convolutional Autoencoder 
Conv-AE combines the standard AE with the convolu-
tional layer to employ the convolutional operation instead 
of the matrix multiplication used in the general fully con-
nected layer (Goodfellow et al. 2016). In other words, the 
mapping matrix of 𝒇(𝐱), 𝐖 consists of multiple small fil-
ters called the kernel instead of one large weight matrix. 
The convolutional layer is generally used when the input is 
two-dimensional data with multiple features, such as im-
age and video, to capture local characteristics of data.  

In convolutional operation, the dimension of input is 
𝐱 ∈ 𝑅𝑛×𝑙×𝑙 where 𝑛 is the number of features and 𝑙 is the 
dimension of one feature map, and the convolutional layer 
has 𝑚 kernels, then the dimension of the output layer is 
𝐡 ∈ 𝑅𝑚×𝑝×𝑝, where 𝑝 ≤ 𝑙. In the de-convolutional opera-
tion, so-called the inverse convolutional operation, in con-
trast, the dimension of the output is larger than that of the 
input, i.e. 𝑝 > 𝑙. The procedure to obtain the hidden repre-
sentation from the input through the convolutional opera-
tion is called convolutional encoder, 𝒇(𝐱). In reverse, the 
procedure to obtain the reconstructed input from hidden 
representation through the de-convolutional operation is 
called convolutional decoder, 𝒈(𝒇(𝐱)). 

3. DNN-based Damage Assessment Framework 

3.1 Damage identification using correlation matrix 
As mentioned above, the vibration characteristics reflect 
changes in the structure. To capture the change in vibration 
characteristics, the correlation matrix at zero lag is used as 
the input data of the Conv-AE network in this paper. The 
correlation matrix of signals at lag 𝜏, 𝐑(𝜏), is a matrix 
containing the cross-correlations of all pairs of signals at 
lag 𝜏 as elements. The cross-correlation between two dis-
crete signals, 𝐱 and 𝐲, is defined as follows: 

 𝑅𝐱𝐲(𝜏) = {
∑ 𝑥𝑡+𝜏𝑦𝑡

∗𝑇−𝜏−1
𝑡=0

𝑅𝐱𝐲(−𝜏)
  

𝜏 ≥ 0
𝜏 < 0

 (5) 

where 𝑅𝐱𝐲(𝜏) is the cross-correlation between 𝐱 and 𝐲 
at lag 𝜏, 𝑇 is the length of 𝐱 or 𝐲, and 𝑦𝑡

∗ is the conju-
gate pair of 𝑦𝑡. If the signal data is obtained from 𝑛 sen-
sors, the correlation matrix as lag 𝜏 is 𝑛 × 𝑛 matrix, i.e. 
𝐑(𝜏) ∈ 𝑅𝑛×𝑛.  The correlation matrix of structural re-
sponses at the healthy condition differs from that of the 
damage condition. Furthermore, the element of correlation 
matrix corresponding to the sensor location close to the 
damage varies greatly compared to other elements.  
   In the proposed framework, the Conv-AE is pre-trained 
with the dataset of 𝐑(0) calculated with the structural re-
sponses of the healthy structure for various excitations 
such as White Gaussian Noise (WGN), and the seismic 
ground motion. To characterize the system status at differ-
ent time scales, various lengths of time window is applied 
to obtain multiple 𝐑(0) and each is uses as a feature map 
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(Zhang et al. 2019). The network is trained to learn the hid-
den representation of vibration characteristics of a healthy 
structure through reconstructing input data. The test da-
taset is stored in the database for analysis after training. 
   After pre-training, the real-time simulation is per-
formed to verify the pre-trained network by calculating the 
reconstruction error of the correlation matrix every time 
step. The reconstruction error is low at the healthy state 
since the network is pre-trained to reconstruct the data 
from a healthy structure. During the simulation, if the dam-
age occurs at a certain time step, the reconstruction error 
increases. By capturing the change in reconstruction error, 
the damage can be identified in near-real-time. However, 
the reconstruction error cannot be used as a measure of 
structural damage directly for accurate damage identifica-
tion since the MSE is one scalar value that cannot locate 
damage. For this reason, the reconstruction error should be 
calculated in element-wise, i.e. the reconstruction error 
matrix or MSE matrix. To quantify the damage, this paper 
proposes a new structural damage index (SDI) for damage 
identification in the next section. 

3.2 Proposed structural damage index 
An example of the MSE matrix of between the correlation 
matrix at a healthy and damage condition is shown in Fig. 
2. Note that some values in the MSE matrix stand out, 
which indicates that the damage occurred at the location 
between certain sensors. In addition, the correlation be-
tween sensor signals adjacent to damage changes the most. 
Therefore, damage identification and localization can be 
employed by monitoring the change in the MSE matrix. In 
this paper, it is assumed that adjacent elements in the cor-
relation matrix indicate the correlation between signals 
from adjacent sensors. 

 

Figure 2. Heat maps of correlation matrix at (a) healthy and (b) 

damage condition, and (c) MSE matrix. 

Based on these facts, the proposed SDI is defined as 
follows: 

 SDI𝑖(𝑡) = ln [1 +
MSE𝑖(𝑡)

MSE𝑖
DB(𝑡)

] (6) 

where MSE𝑖(𝑡) denotes the maximum element among val-
ues adjacent to 𝑖-th diagonal element in the MSE matrices 
at time 𝑡, and MSE𝑖

DB(𝑡) denotes the value at the same lo-
cation as MSE𝑖(𝑡) in the most similar MSE matrices in the 
database. The effect of different form of correlation matrix 
is eliminated by dividing MSE𝑖(𝑡) by MSE𝑖

DB(𝑡). In addi-
tion, a logarithm with “+1” is applied to make SDI positive. 
Note that the more severe damage, the greater the proposed 
SDI. This is because MSE𝑖(𝑡) increases when damage oc-
curs, whereas MSE𝑖

DB(𝑡) does not increase since MSE ma-
trices in the database are obtained from responses at a 
healthy condition only. Fig. 3 summarizes the proposed 

framework. As mentioned, the framework is composed of 
four steps: (1) Responses of the healthy structure under ar-
tificial ground motions are pre-processed in the form of 
correlation matrices as input data. (2) The network is 
trained to learn hidden representations by reconstructing 
input data. (3) During the real-time simulation, the MSE 
matrix is obtained and (4) the proposed SDI for every sen-
sor location is calculated in near-real-time. 

 

Figure 3. Process of proposed damage assessment framework. 

4. Numerical Example 

4.1 Structural properties 
As a target structure, a linear 20-degree of freedoms (DoF) 
shear building is used. This is a simplified version of the 
LA 20-story structure presented in Spencer et al. (1998). 
The mass and stiffness of each story can be found in 
Mousavi and Ghorbani-Tanha (2012). The first 5 natural 
frequencies of the target structure are 0.26, 0.72, 1.18, 1.62 
and 2.06 Hz, and the corresponding mode shapes are 
shown in Fig. 3 where 𝑚𝑖, 𝑐𝑖  and 𝑘𝑖  denote the 𝑖 -th 
mass, damping coefficient and stiffness respectively. As 
proposed by Spencer et al. (1998), inherent modal damping 
ratios are given as follows: 

 𝜉𝑖 = min (
𝜔𝑗

50𝜔1
, 0.1) (7) 

where 𝜉𝑖 is the modal damping ratio of 𝑖-th mode and 𝜔𝑗 
is the natural frequency of the 𝑗-th mode. 

 

Figure 4. Target structure and its mode shapes. 
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4.2 Data generation and pre-processing 
To obtain responses from the seismic ground motion of 
various characteristics, structural analysis is performed un-
der the artificial ground motion with the magnitude from 6 
to 9, which is generated from the method proposed in Re-
zaeian (2010). In addition, WGN, which simulates live 
loads, is applied to every DoF before and after an earth-
quake event. 2,000 artificial ground motions are generated 
and a total time length of one simulation is 655.36s. As the 
structural response, horizontal accelerations of every DoF 
are recorded. To capture the effect of the signal length, var-
ious lengths of the time window, with the length of 1.28s, 
10.24s, and 81.92s, are applied to responses at each time 
step. Each time window characterizes the status of the tar-
get structure at different time scales. The interval of two 
signal segments is set as 1.28s, i.e. the length of the short-
time window. The correlation matrices are obtained from 
signal segments at each time step and the dataset of the 
correlation matrix is divided into the training and test da-
taset with a ratio of 9:1.  

Note that the form of the correlation matrix is different 
for the vibration situation. The situation can be divided into 
three categories: (1) the vibration during the WGN force, 
(2) the earthquake, and (3) after the earthquake or free vi-
bration. The typical form of the correlation matrix accord-
ing to each situation is shown in Fig. 5. As mentioned in 
Section 3.2, however, the effect of different forms of the 
matrix is eliminated at the stage of calculating the proposed 
SDI. 

 

Figure 5. Typical heat maps of correlation matrix during (a) 

WGN, (b) earthquake, and (c) free vibration. 

4.3 Network training 
The architecture of Conv-AE used in this example, in-
spired by Na et al. (2018), is illustrated in Fig. 6. As men-
tioned, Conv-AE consists of two main parts: (1) the con-
volutional encoder, and (2) decoder. The convolutional en-
coder is composed of six convolutional layers with 64, 64, 
128, 128, 256, and 256 filters respectively. Stride 2 is used 
at the 4th and 6th layers for dimension reduction. After the 
convolutional calculation, the output of the last convolu-
tional layer is reshaped into the one-dimensional vector by 
Flatten layer, which is followed by one Dense layer with 
256 nodes representing the hidden representation. ELU ac-
tivation function is used in all layers. Since the proposed 
Conv-AE has deep network architecture, the batch normal-
ization is used after every convolutional layer to prevent 
the gradient from vanishing and exploding problem (Ioffe 
and Szegedy 2015). The decoder has the inverse architec-
ture of the encoder and uses the same hyper-parameters as 
the encoder. The shape of the output layer is the same as 
the input layer. The value of the MSE loss function is cal-
culated as the last step of the forward-propagation and the 
value is back-propagated through the network to optimize 
parameters 𝛉. 

Conv-AE was constructed using the Python deep learn-
ing library Keras with the Tensorflow backend and trained 
on a server with 2x Intel(R) Xeon(R) Gold 6126 2.60GHz 
and 2 NVIDIA TITAN RTX graphics cards. The number 
of epochs and batch size is set to 200 and 32 respectively. 
Rectified Adam (RAdam) optimizer proposed by Liu et al. 
(2019) with the learning rate of 0.003 is used for optimiz-
ing the loss function. The training process took about 6 
hours and the final training and test loss value were 
1.64 × 10−4  and 1.96 × 10−4,  respectively. The con-
vergence of the loss function was fast and stable without 
showing overfitting or exploding of the test loss.  
 

Figure 6. Conv-AE architecture in the proposed framework. 
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4.4 Near-real-time damage assessment 
To verify the performance of the pre-trained network, a 
real-time simulation is performed with a real ground mo-
tion. The N-S component of El Centro earthquake in 1940 
is selected as the ground motion for simulation. In addition, 
WGN forces that simulate the live load are applied to every 
DoF before and after an earthquake event. The correlation 
matrix is obtained every time step, and SDI𝑖(𝑡) for every 
sensor is calculated simultaneously through the pre-trained 
Conv-AE. 

In this experiment, two assumptions are introduced: (1) 
The stiffness degradation simulates the damage to the 
structure, and (2) the damage occurs when the earthquake 
reaches the peak ground acceleration (PGA). To verify the 
performance for damage localization, two damage cases 
are employed: (1) the stiffness degradation in 𝑘8 and 𝑘13, 
and (2) 𝑘3 and 𝑘18. In each case, 15%, 30%, and 50% of 
stiffness degradation are considered to test the quantifica-
tion of the damage severity. Each scenario indicates the 
minor, moderate, and severe damage, respectively. 

4.4.1 Case 1: degradation in 𝑘8 and 𝑘13 

The results of near-real-time damage assessment for the 
case of the degradation in 𝑘8 and 𝑘13 are shown in Fig. 
7. The thick lines indicate the SDIs for the damaged DoFs. 
It is seen that the SDI increases as soon as the damage oc-
curs. Note that the SDIs for the damaged DoF are distrib-
uted in a specific range for all cases of vibrations according 
to the damage severity. The range is illustrated by the black 
dashed lines in Fig. 7. The range for the minor, moderate, 
and severe damage is 2.0~4.5, 3.5~6.5, and 5.0~7.5, re-
spectively. For the undamaged case, the SDI is distributed 
below 2.0. The fact that SDI of the damaged DoFs are dis-
tributed in the constant range at all times confirms that the 
proposed SDI can eliminate the effect of the vibration case 
or the matrix form. In addition, it is observed that some of 
SDIs for the undamaged DoF also increase after the earth-
quake and these DoFs are close to the damage location. 
This is because the closer to the damage location, the more 
vibration characteristics change.  

4.4.2 Case 2: degradation in 𝑘3 and 𝑘18 
The result for the case of the degradation in 𝑘3 and 𝑘18 

is shown in Fig. 8. As the result of Case 1, the SDIs for the 
damaged DoF are also distributed in the aforementioned 
range for all cases. During the earthquake, however, all 
SDIs are distributed in a higher range than a result of Case 
1. This is because the first mode is dominant during the 
earthquake and the element adjacent to the ground, 𝑘3, is 
damaged. The damage to the element close to the ground 
affects the vibration characteristic of other elements above 
it significantly. Nevertheless, the SDIs for the damaged 
DoF are distributed higher than those for the undamaged 
in all vibration cases in the constant range, which gives the 
same result as Case 1. 

The results from the two cases confirm that the pro-
posed damage assessment framework based on DNN can 
identify and locate the damage accurately in near-real-time. 

 
Figure 7. SDIs for (a) 15%, (b) 30%, and (c) 50% degradations 

in 𝑘8 and 𝑘13. 

 

Figure 8. SDIs for (a) 15%, (b) 30%, and (c) 50% degradations 

in 𝑘3 and 𝑘18. 
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5. Conclusions 
In this paper, a new DNN framework was proposed for 
near-real-time damage assessment of the structural system 
subject to the earthquake. In the proposed framework, a 
Conv-AE is trained only with the correlation matrix from 
the structural response at a healthy state to detect the dam-
age by the reconstruction error. A new structural damage 
index (SDI) was proposed based on the mean square error 
(MSE) matrix to locate the damage accurately. The pro-
posed SDI was configured to have consistent performance 
by removing the effects of the form of the correlation ma-
trix. A numerical example of the real-time simulation was 
provided to verify the proposed framework. As the target 
structural system, the linear shear building subject to the 
live load, and seismic ground motion was selected. The 
Conv-AE was trained successfully to reconstruct the input 
and learn the hidden representation. The proposed SDI 
shows a great performance for the damage localization and 
quantification in near-real-time. However, the perfor-
mance of the SDI varied while the structure is subject to 
the earthquake depending on the damage location.  
   Future research topics were identified as follows dur-
ing this study. First, the proposed framework can be ap-
plied to a nonlinear and complex structural system. How-
ever, the patterns of changes in vibration characteristic 
may be different from the linear system because of its non-
linearity and complexity. This would make it difficult to 
identify the damage based on the correlation matrix. To ad-
dress this, the proposed framework need to be modified. 
Second, a modified or new SDI can be developed to 
achieve a more stable and accurate performance of the 
damage identification regardless of various situations. The 
SDI proposed in this paper does not perform well during 
the earthquake excitations. To improve this, a new type of 
damage or health index is needed to facilitate near-real-
time SHM. 
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