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Abstract: In the field of reliability analysis of stochastic dynamic systems, the identification of rare parameter configurations that lead
to failure is one aspect of special interest. Often the identification of rare events that lead to a structures failure and the estimation of
the probability of this failure is computationally very costly or even unfeasible. When regarding the simulation of structures critical
combinations could arise because of uncertainties in material parameters, environmental parameters, as well as loading parameters,
which should be considered as random or in intervals when modelling safety-relevant systems. This work focuses on the Probability
Density Evolution Method, introduced by Jie Li and Jian-Bing Chen in the advent of the century, and its application to highly non-linear
dynamic systems subjected to stationary Gaussian stochastic processes. The major interest lies in establishing a robust estimator for the
system’s probability of failure and reliability towards a performance-based first-passage criterion. Due to the non-linearity and the high
dimension of random distributions included in the model, most usual approaches are computationally very costly and still only yield
results that come with a high variance or can only be assessed in large intervals. With the Probability Density Evolution Method, a
direct deterministic description of the outputs Joint Probability Density Function is available and therefore can be utilised for reliability
assessment. On the way of combining the Probability Density Evolution Method with advanced Monte Carlo Simulation techniques
to improve the outputs Joint PDF, this work shall help to understand the establishment of a reliability estimator on the PDEM PDF in
the first place. For this reason, a suitable numerical example has been set up. On this model, several different scenarios have been
established that include different sampling techniques. A comparison between Monte Carlo simulation, quasi Monte Carlo simulation
techniques and the PDEM approach has been made. The results of the probability of failure and the evolution of the system reliability
were observed for all examples.

Keywords: Stochastic Dynamics, Probability of Failure, Reliability, Monte Carlo Simulation, Probability Density Evolution Method,

Stochastic Processes.

1. Introduction

Stochastic dynamic systems describe the movement of par-
ticles or larger continua by the well established equations
of motion subjected to influences that are quantified by any
sort of random variable. Based on the posed problem, the
systems physical or random dimension a description can
either be done by a single differential equation or also com-
mon in engineering analysis for larger structural relations
by a combination of multidimensional differential equations
e.g. Finite Element systems. In civil engineering exam-
ples could be the analysis of large structures under natural
influences such as earthquake or wind loadings but also vi-
bration patterns of machinery. This unfolds that for many
purposes substantial studies of stochastic dynamic systems
are of great interest. In reliability engineering, the analy-
sis of stochastic dynamic systems can yield information on
critical events that might happen in the future or during the
lifeline of a product. Special interest is caught by certain
system behaviours which lead to a failure that affects the
system’s stability or serviceability. A practical example,
which this paper is working towards, is the effect of earth-
quakes on large structures. Seismic ground motion affecting
a structure lead to extreme stresses and displacements which
can have an direct impact on the structures serviceability.
These examples inherit the issue that it is not possible to
exactly predict an earthquake. However, it is feasible to de-
scribe certain characteristics of an earthquake and use these
to establish a stochastic description of different earthquake
signals with similar baseline characteristics. The random
nature of the earthquake’s occurrence poses the question of

how specific structures should be designed to be considered
safe. This is especially of interest in areas with higher seis-
mic activity and for non-customary structures such as high
rise buildings, dams, oil platforms or bridges.

The challenge for civil engineers is not only to design
the structure and compare different designs towards a safety
criterion or earthquake code but the challenge also lies in
the difficulty of how to describe the stochastic part of the
dynamic system and how to analyse it. Most commonly
used nowadays is the Monte Carlo Method (MC). By chang-
ing parameters due to pre-defined probability distributions,
it is a versatile tool to deterministically explore the random
behaviour in any system. In principle, for MC there is no
boundary for the systems complexity and dimension (ran-
dom or physical). Nonetheless, practically MC is suffering
from the so-called curse of dimensionality. That means for a
high random dimension dependent on the complexity of the
system (is it a large FE Model or a single analytical equation)
a certain number of the random dimension is reached where
the computational effort is ultimately too high to evaluate
the system sufficiently. Towards serviceability that is for-
mulated using a very small tolerable probability of failure,
a large amount of samples is needed. Especially for the
estimation of small failure probabilities a large amount of
samples is usually necessary to estimate a robust value.

Therefore in this work, a different approach has been cho-
sen to overcome the curse of dimensionality by keeping the
needed samples low. As already mentioned MC is a deter-
ministic solver that requires a high number of realisations
of every random distribution inside the system to carry out
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several simulations or calculations to get a sufficiently high
number of outcomes that statistically are significant.

In contrast to MC the Probability Density Evolution
Method (PDEM) (Li and J.-B. Chen 2010, Ang|2017) offers
an approximation scheme that describes for a certain output
quantity of interest the whole stochastic behaviour by gen-
erating a multivariate Probability Density Function (PDF).
Utilising the principle of probability preservation, PDEM
captures the input random variables influence by once run-
ning a quasi MC simulation only in random space. The
information gathered from this quasi-MC run is then further
processes by selecting points in the multi-dimensional ran-
dom space between all input quantities which are describing
the main influential behaviour on the system. This is done
by generating a set that has a minimized generalized dis-
crepancy to cover the random space as broad as possible.
J.-B. Chen et al. 2016

The next step is how to estimate the probability of failure
governed by the simulation that is carried out. In this work,
only the probability of failure defined by a double-sided first
passage reliability statement is analysed. This means for
each system configuration the output quantity is analysed in
the face of a determined critical value, also known as the
system’s capacity. Once this capacity is exceeded this output
counts as a failed system. The number of failed systems is
then divided by all simulated system outputs, this yields an
estimator for the probability of failure. However, due to the
PDEM’s description of the output in the probability space
by approximating a multivariate joint PDF the reliability
statement can also be calculated utilising this outcome. Due
to the utilised approximation scheme, many stability con-
siderations must be made, otherwise, the approximation is
not valid. In previous work the goal was to overcome the
issue, that in the representative point set not a single realisa-
tion of the PDEM’s point set is lying in the failure domain.
This is realized by using the advanced MC simulation tech-
nique Subset sampling. But to quantify the effect of the
representative point set on the PDEM’s joint PDF output,
first a robust estimator for the probability of failure must be
established, which is the goal of this work.

2. Reliability Analysis for Stochastic Dynamic Systems
The probability of how long a system/product remains in
service can be measured by the reliability. Here a distinc-
tion between reliability in time and system reliability can be
made. Whereas reliability in time sets the probability of an
unaltered serviceability in dependence of time the system re-
liability tries to neglect the time factor and estimate a factor
of the systems reliability in general. For both approaches it
is possible that the system is composed of a number of com-
ponents that each distinctively have different characteristics.
In this work the system is composed of a one dimensional
stochastic dynamic equation of motion with a double-sided
first-passage failure criterion. This criterion is imposed on
a one dimensional time dependant stochastic dynamic sys-
tem. For each realisation of the stochastic system the first
exceedance in time of the double-sided first-passage prob-
lem is counted. For a number of realisations, e.g. Monte
Carlo samples, these exceedances can be counted over time.
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2.1. Probability of failure
X (0,1) shall be the response of a mechanical system sub-
jected to specific input probability distributions 6 with
corresponding random dimension ng. A sample reali-
sation of a specific distribution type © is denoted by 6.
Throughout this work a dynamic system with fixed pa-
rameters but with a stochastic excitation is considered to
mimic the basic relations between artificial earthquake in-
puts and mechanical system behaviour. The systems reli-
ability regarding a first-passage problem can be described
as Rel = Pr{X(0,t) € Q,,t € (0,T]} the domain Q is
considered to be the safe domain of the responses range.
As long as the response X (6, t) is not exceeding some spe-
cific boundaries during the defined time interval (0, 7] the
system is considered safe. Hence once X (6, t) exceeds this
boundary the system fails. The domain Q can be of any
shape and described in any dimension. Simple and common
appearances of the boundaries are a one-sided boundary or a
double-sided boundary. For a double-sided boundary prob-
lem, the probability of a failure in a defined time 7 can be
stated as the event

pr=Pr{X() e Qrlt € (0,T])} (1)
here C is the limit for the systems response, that define the
double-sided boundary. The failure domain £ ca be stated
with properties Q = 5, Qr NQ; =0,Q2¢ UQ =Q,.
Please note that Q, is the response domain related to the
systems output X and Qg the random domain. The prob-
ability of failure for any arbitrary multivariate probability
distribution function fg(@) is then calculated by following
integral over the whole failure domain € ¢

Pf =f fo(0)do, )
Qp

since the exact failure domain is usually unknown, by using
the indicator function 7 (@) with 7(6) = 1if @ € Q7 and 0
otherwise, the above integral can be expanded on the whole
domain and rewritten to

ps = / C10)fe0)d0=E[IO)]. O

2.2. Monte Carlo simulation
A versatile approach to estimate the probability of failure
is the Monte Carlo simulation, which basically utilizes a
deterministic analysis of a certain number of samples of e.g.
a double-sided first passage problem. For this purpose to
each output X(0,t) a certain performance g(6,7) can be
evaluated using following relation
g(0.1) =C - X0, “4)
to evaluate if a sample is inside Q¢ above expression can be
setin therelationif g(#,71) <0 - 0 € Qy — 7(0) =1and
0 otherwise. This offers a relation to evaluate the indicator
function introduced in eq. (3)). The deterministic estimation
of py shall be expressed by following equation

Nmc

> L(bin,)

i=1

s 5
Dy Nurc )
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where Npsc is the number of Monte Carlo samples used.
For each 6; a deterministic analysis of a given mechanical
system with ny random inputs is carried out. Note that
this only includes the random inputs used to generate the
stochastic excitation of the system. Later for comparison
the variance Var[p ¢ ] and the corresponding coefficient of
variation v, . are introduced as

- -2 -
R Py =Py yVar[pr]
Var[ps]l = ———, vp, = ————. (6)
P Nyc s Df

The accurate estimation of eq. (5) requires a very large
amount of samples Npsc. In general it is desirable to
achieve a small v, .. Additionally to above considerations
in Zio 2014 an estimator for the required minimum number
of samples is described to be

- 1-p
me = —" )
DfVpy

for ps =v,, =0.01 aminimum number of Np;c = 9.9-10°
is required to achieve the desired v, .

3. Probability Density Evolution Method
After MC the target X (6, 7) are deterministic timelines. For
Ny realisations of @ this means the whole mechanical
system must be evaluated for each sample. As aforemen-
tioned this is computationally expensive due to the necessary
high number of samples. The Probability Density Evolution
Method (PDEM) allows to approximate the joint Probability
Density Function (PDF) for the target value. The derivation
and mathematical as well as physical evolution of the PDEM
can be seen in Li and J.-B. Chen 2010, In this work just
a brief overview of the relation is given. Further infor-
mation about the in this work used approximation scheme
can be found in J.-B. Chen and Li 2010, an alternative ap-
proximation using a Finite Element approach is revisited in
Papadopoulos and Kalogeris[2016|
For an arbitrary equation of motion a generalized multi di-
mensional stochastic dynamic system with applied random
force can be stated as

M@)X(1) +C(®)X(1) +K(®)X (1) =F(0,1), (8)
in which ® = (0,0,,...,0,,) are the random param-
eters of the physical properties in the system with ran-
dom dimension ng, described by a known joint PDF.
X (1), X(1)and X (r) are respectively the displacements, ve-
locities and accelerations of the system. M(®), C(®) and
K (O) are the nxn mass, damping and stiffness matrices with
physical dimension n. F(0,1) is the external force which
can be time dependant. Influences of random distributions
could appear in the systems material parameters as well as
in the external applied force. eq. (8) must be solvable in a
deterministic procedure, this implies that all distributions @
must be known.

Under the condition that the random distributions @ as
input distributions do not change and that no additional ran-
domness in time is induced in the system, that means the sys-
tems randomness is subjected to the the Principle of Proba-
bility Preservation (P3) given as Pr{X(6,1) € Qx XQg,? €
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(0,T]} = const., following several derivations as in e.g. Li
et al. 2012, the Generalized Probability Density Evolution
Equation (GDEE) for a multi dimensional mechanical sys-
tem can be stated to be

apX@(xa 0; t)
ot

8PX®(X, 0,t) —

+X(0,1) o

0, O

where pxe(x, @, 1) is the joint PDF of X and ©. X (6, 1) is
the fist order derivative of the targeted response X (¢). In
contrast to the purely deterministic output of MC now a total
probabilistic output is available.

3.1. Point selection

Prior to solving eq. (9) a deterministic analysis of eq. (8)
needs to be carried out. Alike MC the PDEM uses a set
of samples to assesses the system behaviour. However, to
achieve this with a benefit, PDEM is choosing a sample
that utilises quasi Monte Carlo sample features to cover the
probability space as broad as possible and only realises sam-
ples around which the highest probability mass is centred.
For this purpose the sample set is firstly generated and then
a certain number of desired points are chosen to suffice a
minimized generalized F-discrepancy, as in Zhou et al.[2019
and in J.-B. Chen and Zhang 2013| or on the basis og the
GL, discrepancy as in J.-B. Chen et al. 2016, The gener-
ated sample set shall be called the representative point set
{0 = 61,14,02,14,---,04,n,} With g as the number of de-
sired samples, which is considerately smaller than Ny, c. A
drawback in computation is that to generate the represen-
tative Point Set (PS) when using e.g. a Sobol sequence as
quasi Monte Carlo simulation procedure, at least 10® sam-
ples need to be generate in order to select a low discrepancy
point set. However, these samples are not evaluated in the
system but are generated due to the know distributions.

3.2. Solving procedure

1. Generate the representative point set {6, .,}. Each
sample within the point set has an assigned proba-
bility given to be P, = /Vq pe(0)do, in which V,
refers to the space covered by this sample due to
the quasi MC sample and choosing of points in the
procedure of minimizing the discrepancy. The as-
signed probability can be seen as a weighting factor
for each sample in the representative point set and suf-
fices Z?:1 P; = 1. The assigned probability weights
the starting condition for the approximation scheme as
following pxe(z, 04, to) = 6(x —x0) P4, where ¢ is the
Kronecker delta.

2. Carry out a deterministic analysis of the mechanical
system eq. using {60, ., }. The output is given to
be X(6,1). Calculate X(6,7) by using e.g. a central
difference scheme.

3. For given initial condition and above values solve
eq. @]) for each pointi = 1,2,..., g in the represen-
tative point set to obtain the joint PDF of X and ©®
pxe(x,0;,1) using a initial value solving procedure,
e.g. a finite difference scheme as in J.-B. Chen and Li
2010l

4. To obtain the joint PDF for the output value calculate
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the summation of all previously obtained PDF values,
ie: px(x,0) =271 pxe(x,0;,1).

3.3. Approximation scheme

The approximated joint PDF pxe(x, 6, t) is highly depen-
dant on the chosen approximation scheme. The stability of
the approximation scheme on the other hand is of course
dependant on the analysed system. Since the external force
in the following example is highly non-linear, the stability
of the approximation scheme is difficult to achieve. The
difficulty arises from the trade-off between accuracy and
stability. However, since the goal is to capture the proba-
bility of failure for rare random events the accuracy is of
utmost importance. In this work a closer investigation of the
approximation schemes parameters in the face of the relia-
bility statement has been carried out.

The hybrid Lax-Wendroff approximation scheme used as
in Li and J.-B. Chen [2010| and J.-B. Chen and Li 2010! to
approximate the joint PDF for each point 6; in the represen-
tative point set the scheme is given to be

ety _ (k) _ 1o w _ Lo (k)

p; =r; 2(/164 I/laI)Apj% 5(a I/laI)Apj_%
1 2 2 (k) (k)

—E(Iflal —-Aa )(lﬂj+%Apj+% —wj_%Apj_%)-

(10)

in which p(k) is the approximated value for a certain point in

J
the representative point set for pxe(x;, 8;, fx). At this point
the discretisation of time and space domain are introduced.
That means 7 = k - Af and x; = j - Ax. For the sake of
brevity the parameter a is actually the approximated speed
%8 from the input of eq. For each time step k the

Courant-Friedrich-Lewy condition towards A = ﬁ—)’c should
be checked: |1 -a| < 1. Note at this point that not only
the space grid with Ax can be chose in the approximation
scheme but also the time grid A7 can be chosen to suffice the
CFL condition. This might lead to a finer discretisation of
the time domain A7 than the original simulation time domain
At. To achieve a higher stability in the case of discontinuities
following consecutive gradients, forward and backward on
the space grid, are calculated and shall serve as discontinuity
indicators

(k) _ (k)

(k) _ (k)

rflzpﬁz pj+1’r4l:pj+2 Pji
T

k k k k
Y el N < ol = S
R )

Supposing that for example r+’+1 = 1 this means the two
J*3

points in x forward the grid are on a straight line. If the values
in above equations get large the points are widely spread
from one and another which indicates an abrupt change of
the curve. As proposed in Li and J.-B. Chen|[2010]a superbee
(aka. Roe-Sweby) flux limiter based on following gradient
control equation Yo (r) = max(0, min(2r, 1), min(r,2) is
used which leads to following specific flux limiters based on
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the probability ratios utilised in eq. (TT)

Vs (7)) = u(=ao(rf ) +ul@io(r,,)

l,[/j_%(r; | ,VJ_;%) = u(—a)l//()(r;i%) + ”(a)l//()(r;-fl)v

2 2

12)

(S

which are case sensitive dependant mainly on the speed. In
all above equations u(-) is the Heaviside step funtion given
tou(x) =1,ifx > 0 and otherwise u(x) =0.

3.4. Reliability in PDEM
The P3 states that no additional randomness than the initial
input random distributions is induced in the system over
time. It is possible to use this statement in combination
with the fact that once a failure criterion has been reached
and the lets say first-passage boundary condition has been
violatedi.e. the probability trajectory has left Q and entered
Q¢ this probability trajectory must not return to the safe
space because the systems state has already been in a state
of failure. These trajectories now contribute to the failure
probability. Within the approximation scheme of PDEM it is
possible to introduce a absorbing boundary condition on the
joint PDF that realizes the aforementioned considerations
pxe(x,0,t) =0 for xeQf (13)
For the specific description of the failure probability a sort of
violation of P3 is used but by not inducing new randomness
but by reducing the probability mass for those events that
already lead to a failure. This ensures that these events can
not contribute to the safe domain, as in regulation with the
definition of the probability of failure of a first-passage prob-
lem. The boundary "absorbs" the probability mass that is
reaching the pre-defined capacity. The by absorbing bound-
ary conditions obtained probability density is called the re-
maining probability density and denoted by px (x, ¢) for the
resulting systems response PDF and px (x, 6, ¢) for the in-
put joint sample PDF. The relationship with the pre defined
restrictions from above are given as

ﬁx(xJ)=/Q Pxe(x,0,1)do (14)
(0]

For a certain threshold C as already introduced in section[2.2]
the systems reliability can be calculated by

C oo
Rel(t) = /C Px(x,t)dx =/ Px (x,t)dx (15)

from which the probability of failure can be calculated as
pr(t)=1-Rel(r).

At this point it is very important to note that in the represen-
tative point set in most cases after the quasi MC simulation
and point selection procedure no sample in the failure region
is present. However, due to the single realisations and the
approximation of the overall joint PDF the PDF tails still
reach the failure region.

4. Numerical Example

With the above considerations about the estimation of a
probability of failure as well as the PDEM several Monte
Carlo simulations (MCS) and PDEM simulations are carried
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out to investigate the effect of different grid parameters for
the approximation scheme on the estimation of the proba-
bility of failure for a highly non-linear mechanical system
with a high random dimension.

4.1. Model
A simple Single Degree-of-Freedom (SDOF) linear oscilla-
tor in the form

mx(t) + cx(t) + kx(r) = F(0,1), (16)
with mass m = 50 kg, spring constant £k = 1922 N/m and
damping coefficient ¢ = 37.2 kg/s is introduced. x,x, X are
displacements, velocities and accelerations of the system.
The forcing term on the right hand side F (6, ¢) is modelled
by a stochastic process using the Spectral Representation
Method (SRM) formulated in Shinozuka and Deodatis/1991,
To generate a stationary stochastic process following model
is used

N-1
F(6,1) = Z VASy (wp)Aw cos(wpt + n(0)),  (17)
n=0

where w, = nAw, n=0,1,2,...,N-land Aw = F*. In
theory to achieve a stationary process the series is summed
over N — oo and ¢,(0) as n = ne uniform distributed
phase angles between [0,27]. For Sx(w) the following
Power Spectral Density (PSD)

1+a-w?

Sx(w) = (w%, -w) + (Z{a)wp)z’

(18)

is used with ¢ = 5 and ¢ = 0.25 as shape parameters and
wp = 10 rad/s as peak frequency. Since it is a Gaussian
stationary process, the overall mean of the signal should
be zero. The above differential equation of the mechanical
system is solved using an explicit Runge-Kutta. The capacity
within the performance function C is chosen to be 0.0055
m. The demand D is the maximum absolute displacement
of the system

— 0.0055 - . 1
§(6) =0.0055— max [1x(6,1)]] (19)

This equation states a double-sided boundary condition. All
other system parameters, as well as the performance func-
tions capacity is chosen in order to generate a relatively small
probability of failure which is py < 0.01. The random di-
mension ng describing the distinct distribution functions to
generate the random phase angles corresponds to the simula-
tion time. This relationship was chosen to be n, > I'TE%'I
with w,, = 25 rad/s is the so called cut-off frequency and Tg
is the total simulation time given to be 49 s. This results in
ny, = 195 uniform distributed phase angles.

5. Results

In following table[T]specific results for the system in eq. (16))
with the properties explained in previous section are pre-
sented.

The method refers to the sample realisation technique and
output evaluation method. MC means crude Monte Carlo
simulation on the system in eq. (I6). PS means the evalu-
ation of the representative point set (PS) generated on the
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Table 1. Results for different simulation methods and number of

samples Ny
Method MC PS PDEM
N, 106 185 as PS
v/ Var[x] (m) 0.0012 0.0013 0.0014
2.1940 - -7.3904 - -3.8215 -

E[x] (m) 10—7 10—7 10—6
max[|x|] (m) 0.0075 0.0056 -
Vps 0.0103 0.9973 -

Df (%) 0.0095 0.0054 0.0104

way to calculate the joint PDF for PDEM. Note that for
the generation of the samples in PS a quasi Monte Carlo
Sobol sequence with 10° samples was generated, from these
set 185 samples have ben chosen according to minimizing
the discrepancy of the set. The values of PDEM are derived
from the multivariate joint PDF. N; is the number of samples

used for this method. +/Var[x] is the mean standard devia-
tion over time of the systems response x. E[x] is the mean
over time of the mean displacements in x. max[|x|] is the
overall maximum over all samples and the whole time do-
main. v, is the coeflicient of variation calculated according
to eq. @ and p ¢ likewise, according to the considerations
in section 2.1 In fig. [I] the reliability for the above given
MC and PDEM scenarios is plotted over time. Additional
another MC simulation with a lesser number of samples is
used to compare, and to indicate the overall range of the
reliability curves. The figure fig. [2] depicts one realisation
of the multivariate joint PDF yielded by PDEM. A brighter
colour in the contour plot means a higher probability, the
highest probability is centred around zero. A darker colour
indicates a lower PDF value and therefore lower probability.
The critical values of the double-sided boundary condition
are shown as thick lines at the top and at the bottom of the
graph.

6. Discussion

There are several issues here, first in table[I]it can be seen that
the number of chosen points for the PS is extremely small in
comparison with the MC simulation, due to the quasi MC
sampling the probability of failure is not zero but the coeffi-
cient of variation is very high. The PDEM result is based on
this PS but approximating the PDF according to the PDEM
scheme presented in this work. This leads to an overestima-
tion of the probability of failure, calculated by the PDF with
absorbing boundary conditions. Second, when regarding
this result closer as in fig. [I] the overall systems behaviour
described by the PDEM is different. This is because of the
induced absorbing boundary condition. For most of the time
the PDF does not reach the critical value but it seems when-
ever it does, a higher amount of the probability trajectory
becomes absorbed. Therefore some abrupt changes in the
reliability curve for the PDEM result can be observed. How-
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Figure 1. Three different reliability curves corresponding to the
simulations presented in tableEl

ever interestingly, the PDEM result is approximated with the
weights according to the PS that inhibits just a single sample
that fails and still it simulates more frequent failures due to
absorbed probability trajectories of the PDF. Nonetheless,
the approximation performance is not quite good since all
PDEM estimations are lying outside of the one sigma in-
terval of the high MC result. Additionally, some numerical
oscillations can be observed, since after the reliability is
lowering, it immediately increases in the next time step af-
terwards. The solving procedure for PDEM seems to be not
calibrated totally correct. This may be caused by choosing
a unsuitable time and/or space grid. From my observations
the CFL condition alone is not sufficient to ensure a robust
calculation. But considering the extremely small number
of samples and the needed computation time, further cali-
bration of the solving procedure to gain a robust estimator
should be carried out. For future considerations the random
dimension of the mechanical system should be achieved.
Either by decreasing the overall simulation time, choosing a
different example or using other methods than the SRM. It
is planned to extend the reliability estimation also on non-

%107
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J’&*&fobf;

| | | | {350

300
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Figure 2. Joint PDF values of eq. @ for the PDEM result, above
and below, the line in red, the critical value.
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stationary processes. Suitable for this extension might be
the Stochastic Harmonic Function representation introduced
by J. Chen et al.[2013| which can reduce the total number of
used RVs by defining the PSDs omega partition as random
and the Super Asperity Model by Nozu which relies
on earthquake measurements and observations to reduce the
number of RVs for generation of signals. All in all, for this
presented numerical example the system parameters as well
as PDEM approximation parameters definitely must be ex-
plored further to achieve a robust estimator for the reliability
and the probability of failure.
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