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Abstract: The face stability is a key issue in tunnel engineering, especially in weak grounds. This topic have attracted many 

researcher’s attention and various theoretical models for predicting necessary face pressures against its failure were proposed in the 

light of the limit equilibrium method (LEM) and the kinematical approach of limit analysis method (LAM). Meanwhile, a large 

number of experimental studies have been conducted to study tunnel face stability. Using centrifuge testing results, this paper aims 

at applying Bayesian method to characterize the model uncertainties of three classical models of predicting limit face pressures in 

frictional soils, by incorporating the test uncertainties and parameter uncertainties. The obtained results show that the Mollon model 

is less biased than the other two; the Horn model tends to be conservative but its model uncertainty has the largest variability.  
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1. Introduction 
In order to deal with urban problems caused by rapid 
increase in population and decrease in land resources, 
tunnel constructions have become an efficient way for 
making use of urban underground space. One of the most 
important issues when digging a tunnel is the face 
stability. In closed-face tunneling by means of tunneling 
boring machines (TBM), shield machines can provide a 
continuous support with compressed air, excavated soils 
or bentonite slurry to the tunnel face, thus the support 
pressure is a key factor to govern the face stability. If the 
applied face pressures are not enough, the soils will move 
towards the tunnel face, eventually leading to surface 
subsidence. 

Many researchers have developed simplified 
theoretical models to evaluate tunnel face stability, in the 
framework of the limit equilibrium method (LE) and the 
kinematical approach of limit analysis (LA). Both 
methods require an assumption of the failure mechanism 
of the tunnel face, based on which the LE and LA, 
respectively, considers the force equilibrium and the work 
rate balance. The construction of failure mechanisms is 
based on face failure features observed in experimental 
and numerical studies. The most classical failure 
mechanism in the context of the limit equilibrium method 
is the wedge-prism model (Horn 1961). With respect to 
the upper-bound limit analysis theory, one should cite the 
translational failure mechanism reported by Leca and 
Dormieux (1990) composing of a single or two conical 
blocks. It was improved by adding a series of truncated 
rigid blocks between the two conical blocks (Soubra et al. 
2008, Mollon et al. 2009, Zhao et al. 2019), which allows 
the failure surface to move more freely. Given these 
translational failure mechanisms failed to cover the full 
tunnel face, Mollon et al. (2011) proposed a classical 
three-dimensional (3D) rotational failure mechanism 
generated by a spatial discretization technique. Assuming 
a cylindrical rotational velocity field, the 3D rotational 

failure mechanism is generated “point by point” instead 
of using existing standard geometric shapes such as cones 
or cylinders, which allows it to pose two significant 
characteristics: including the entire tunnel face and being 
consistent with the soil rotational movement observed in 
experiments. The 3D rotational failure mechanism has 
been shown to improve the existing kinematical solutions 
significantly in frictional soils with respect to 
translational mechanisms (Mollon et al. 2011). 

These theoretical models are expected to give 
predictions that deviate from reality and differ in their 
precision comparing with experimental testing results, 
since they are an abstract representation of the tunnel face 
systems based on different assumptions for simplification. 
Thus these models are often subjected to model 
uncertainty. The model uncertainty may cause biased 
predictions and is important for geotechnical decision 
making (Phoon and Kulhawy 2005, Zhang et al. 2009, 
Zhang et al. 2015, Tang and Phoon 2018, Tang and 
Phoon 2019).  

This paper aims to evaluate the model uncertainty of 
tunnel face pressures in frictional soils. Three 
representative models, namely the Horn’s wedge-prism 
model, Soubra’s multiple-block model and Mollon’s 3D 
rotational model, are calibrated with using centrifuge 
experimental testing data. The Bayesian method is used to 
assess the model uncertainty by considering the parameter 
and test uncertainties. 

2. Predictive models and centrifuge testing data 

2.1 Predictive models 
Three theoretical models of predicting necessary face 
pressures, the Horn model, Soubra model (Soubra et al. 
2008) and Mollon model (Mollon et al. 2011), are 
considered in this study.  

The Horn model consists of a sliding wedge ahead of 
the tunnel face and an overlaying prism up to the ground 
surface. The limit face pressure can be obtained by 
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equilibrating all forces acting on the wedge, including the 
vertical force obtained by applying the silo theory, the 
gravity of the wedge, the normal and shear forces acting 
on the inclined sliding surface, the face support forces. 
This model involves several user-defined parameters, 
such as the lateral stress coefficients in the sliding wedge 
and the prism, the distribution of vertical stresses inside 
the wedge, the assumptions of which lead to various 
variations. An overview of Horn’s wedge-prism and its 
variations can be found in Zizka (2019). The version of 
Anagnostou and Kovári (1994) is adopted in this study. 

The kinematical approach of limit analysis is able to 
provide an upper bound estimate to an active limit load, 
for instance the foundation capacity, or a lower bound to 
a reaction, such as the tunnel face pressure. In the 
Soubra’s multiple-block model and Mollon’s 3D 
rotational model, the limit face pressure can be obtained 
by equating the work rate of external forces, including the 
gravity and the face pressure, to the internal energy 
dissipation (Soubra et al. 2008, Mollon et al. 2011).   

2.2 Centrifuge testing data 
The stability of a tunnel face has been investigated by 
many researchers by means of experimental tests 
(Chambon and Corté 1994, Kamata and Mashimo 2003, 
Idinger et al. 2011, Chen et al. 2013, Lü et al. 2018, to 
cite a few). The centrifuge testing results performed by 
Chambon and Corté (1994) are employed to characterize 
the above predictive model uncertainties since the 
number of tests is large enough for Bayesian analysis on 
model uncertainty. 

Chambon and Corté (1994) conducted a series of 
centrifuge experiments to study the face stability in 
cohesionless soils. The tunnel is modeled by a rigid 
metallic tube in diameter of 100mm. The model was 
accelerated to 50g and 100g (g=gravitational acceleration) 
in the experiments, respectively corresponding to 
prototype tunnels of 5.0m and 10m in diameter D. The 
soil cover depth to the tunnel diameter ratio C/D is set to 
change from 0.5 to 4.0. The Fontainebleau sand is used in 
the experiments. The unit weights of sands change from 
15.3 kN/m

3
 to 16.1 kN/m

3
. The face failure feature is 

observed by gradually reducing the applied pressures, and 
the limit face pressure pf is obtained when the horizontal 
displacement of tunnel face suddenly increases. A 
summary of 12 test results are given in Table 1 (Chambon 
and Corté 1994). 

Table 1. A summary of centrifuge testing data from (Chambon 

and Corté 1994) 

D(m)   C/D  γ (kN/m3)  pf (kPa)      
a(kPa)       

a(kPa) 

5 0.5 16.1 3.6 3.137 1.613 

5 0.5 15.3 4.2 2.873 1.613 

5 0.5 16.1 3.3 3.189 1.627 

5 1 16.1 3.5 3.131 1.606 

5 1 15.3 5.5 2.892 1.614 

5 1 16.1 3.0 3.166 1.626 

5 1 16.1 3.3 3.160 1.631 

5 2 15.3 4.2 2.832 1.606 

5 2 16.1 4.0 3.166 1.610 

10 1 16.0 7.4 8.976 1.733 

10 2 16.0 8.0 8.992 1.748 

10 4 16.0 8.2 8.995 1.713 

a  G xi  and  G xi  are computed by the Mollon’s model. 

3. Bayesian characterization of model uncertainties 

3.1 Model uncertainties 
Denote          a predictive model of necessary 
face pressures,   representing a vector of uncertain 
input parameters and    a vector of known model 
parameters (say D, C/D, γ in Table 1). The model 
uncertainty ε is defined as the difference between the 
model prediction p and the real system response r, 

       (1) 

The observed response d may not be exactly equal to 
the real system response r due to the observational 
uncertainty  . In this study, the limit face pressures pf 
obtained in centrifuge tests in Table 1 are taken as the 
observed values, thus   is mainly attributed to the 
experimental test uncertainty. The observed response d 
can be written as, 

       (2) 

Substituting Eq.(1) to Eq.(2) leads to, 

              (3) 

In order to investigate the model uncertainty  , a 
function               is defined, where   =( , 
 ). Eq. (3) can be rewritten as, 

          (4) 

3.2 Bayesian estimations of model uncertainties 
It is assumed that the model uncertainty   follows a 
normal distribution with mean    and standard 
deviation   , 
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The observational model response d is therefore 
described by a normal distribution with mean         
and standard deviation   , 
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The physical model test results are used to calibrate 
the model uncertainties. Define    ,   ,    represents the 

results of i-th physical model testing, i =1,…, N, N being 
the number of model tests. Assume that the N model tests 
are statistically independent, the likelihod function can be 
therefore derived as, 
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Let          and      represent the priori 
distributions of         and  . According to the Bayes 
theorem, the posterior distribution          |   is 
expressed as (Bishop 2006, Pan et al. 2020), 
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where k is a normalization constant. In order to evaluate 
the statistics of  ,   in Eq.(8) can be eliminated by 
integration. However the integration computation is 
intractable due to the dimension issue of    and the 
computational burden of      , thus an approximation 
solution is given by (Zhang et al. 2009), 
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where  G  i 
 and  G  i 

 respectively represent the mean 
and standard deviation of      under the priori 
distribution of     . The values of  G  i 

 and  G  i 
 

can be obtained by Monte Carlo simulations (MCS). The 
posterior distributions        |  are obtained 
numerically by means of the shuffled complex evolution 
Metropolis algorithm because of its robustness and 
efficiency, a variant of Markov Chain Monte Carlo 
simulation proposed by (Vrugt et al. 2003). 

4. Results 

4.1 Priori distributions of model uncertainties and soil 

strength parameters 

In this study, the priori distributions       and       
are respectively assumed to normally distributed and 
log-normally distributed. Based on the priori distributions, 
the statistics of model uncertainties can be expressed as 
(Zhang et al. 2009), 

            (10) 

                               (11) 

The test uncertainty in centrifuge testing mainly 
includes systematic bias and random test error (Zhang et 
al. 2008, Zhang et al. 2009). In this study the systematic 
bias is neglected, which means that the mean of   is 
taken to be zero; the random test error is characterized by 
the standard deviation of   (Zhang et al. 2009). The 
standard deviation of   is firstly set to zero in the 
following analysis and its influence will be discussed 
later. 

 

Figure 1. Obtained distributions of G(x) for 12 prototype tunnels 

using Mollon’s model (Std( ) = 0) 

As reported by Chambon and Corté (1994), the 
measurements of internal friction angle φ and cohesion c 
are subjected to some uncertainties, with φ in the range of 
38-42°and c in the range of 0-5kPa bounding the 
experimental values, thus they are modeled as random 
variables, namely  ={c, φ}. Both φ and c are assumed to 
follow uniform distributions under the above bounds. 
According to the priori distributions of φ and c, the 
statistics of       is firstly computed by MCS. Fig. 1 
shows the obtained probability density distributions of 
      (limit face pressure normalized by soil unit weight 
and tunnel diameter) for the 12 prototype tunnels using 
Mollon’s model. The obtained values of  G xi 

 and 
 G xi 

 are provided in Table 1. 

4.2 Posterior model uncertainties 
With the results of  G xi 

 and  G xi 
, the prior 

knowledge of    and   , the posterior distributions of 
   and    can be obtained using the shuffled complex 
evolution Metropolis algorithm. Fig. 2 plots the posterior 
marginal density curves of    and    obtained from 
1.0×10

4
 Markov chain samples. 
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Figure 2. Posterior marginal distributions of (a)    and (b)    

using Mollon’s model (Std( ) = 0) 

Table 2 presents the prior and the associated posterior 
statistics of   ,    and   using Eq.(10) and Eq.(11) for 
three considered predictive models. The posterior mean 
of model uncertainty      for the Mollon’s model and 
Soubra’s model are positive, indicating that these two 
models underestimate the limit face pressures on the 
average. This confirms well the fact that these two 
models are based on the kinematical approach of limit 
analysis which provides a lower-bound estimate to the 
limit loads against resisting tunnel face failure. Besides, 
Mollon’s model has the minimum magnitude of posterior 
mean     , implying that the Mollon’s model is less 
biased than the other two. On the contrary, the Horn’ 
model overestimates the limit face pressures since it has a 
negative posterior     . This indicates that the Horn’s 
model tends to be conservative when estimating limit face 
pressures, which is preferred by engineers. However, the 
Horn’s model has the largest posterior standard deviation 
Std(ε), which is fourteen times larger than those of the 
Mollon’s model and Soubra’s model. 

Table 2. Priori and posterior statistics of model uncertainties 

(Std( ) = 0) 

         

                                        

Prior 0 0.5 0.5 1.0 0 1.225 

Post

erior 

Mollon 0.179 0.346 0.242 0.262 0.179 0.482 

Soubra 0.899 0.349 0.259 0.255 0.899 0.490 

Horn -0.328 0.502 5.618 1.659 -0.328 7.063 

  

4.3 Influence of Std( ) = 0 

In order to check the influence of Std( ) on the model 
uncertainty, the posterior statistics, E(ε) and Std(ε), are 
computed by varying Std( ) from 0.0 to 0.3. Fig. 3 shows 
the posterior statistics, E(ε) and Std(ε), as a function of 
Std( ) for the considered three models. It is seen that the 
Std( ) has negligible influences on E(ε) and Std(ε). 

 

 

Figure 3. Effect of Std(∆) on (a) posterior mean E(ε) and 

posterior standard deviation Std(ε) 

5. Conclusions 
This paper presents a study of applying Bayesian method 
to calibrate the model uncertainties of one LEM model 
(Horn model) and two LAM models (Mollon’s model and 
Soubra’s model) of predicting limit face pressures in 
frictional soils, by using 12 centrifuge model testing 
results and incorporating the test uncertainties and 
parameter uncertainties. The obtained results can be 
summarized as follows: 
1. The posterior mean of model uncertainty for the two 

LAM models are positive, indicating that these two 
models underestimate the limit face pressures. 

2. The Mollon’s model is less biased than the other two 
models. 

3. The Horn’s model tends to be conservative 
estimating limit face pressures, but its model 
uncertainty has the largest posterior standard 
deviation. 

4. The test uncertainty hardly affects the posterior 
statistics of model uncertainty. 
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