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Abstract: In large-scale earthquakes, a technique for collectively and remotely monitoring a variety of structures (structure-portfolio
monitoring) is expected to be an effective solution. We have proposed a novel data-driven technique for structure-portfolio monitoring
based on a method called Correlation Anomaly Detection (CAD), which was originally proposed in a machine learning community
and has been improved for vibration systems in our previous papers as Extended Correlation Anomaly Detection (ECAD). These
studies, however, have assumed that Single-Degree-Of-Freedom (SDOF) structures linearly behave during excitation. The paper
therefore investigates how the nonlinearity of structural responses influences the applicability of ECAD to structure-portfolio monitoring.
Specifically, we numerically evaluate the detection performance of ECAD in different cases of hysteretic models of SDOFs.
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1. Introduction

For rapid planning of emergency responses immediately
after large earthquakes, such as evacuation warnings and
recovery operations, it is essential to quickly evaluate
the damage of structures (buildings and infrastructures)
and prioritize their necessities to respond. Because of
the limitation of human resources available for visual
inspection, a technique for collectively and remotely
monitoring a variety of structures i.e., structure-portfolio
monitoring is expected to be an effective solution.

We have proposed a novel data-driven technique
for structure-portfolio monitoring based on a method
called Correlation Anomaly Detection (CAD), which was
originally proposed in a machine learning community (Ide
et al. 2009) and has been improved for vibration systems
in our previous papers as Extended Correlation Anomaly
Detection, ECAD (Yaoyama et al. 2019; Yaoyama et al.
2020). In CAD, a change of graph-structure of monitored
variables evaluated as a covariance matrix, is tracked to
score correlation anomaly for each variable. In contrast,
ECAD uses a co-spectrum matrix, which is a covariance
matrix expanded into the frequency domain, in order to
capture correlation anomaly in the frequency content of
data. In our problem, ECAD detects structural damage
in a portfolio by evaluating the graph structure of seismic
responses collected from structures.

Main advantages of the proposed technique are: (a)
it is aimed at collectively monitoring on large portfolio
of structures, which gives a unique perspective that
other techniques do not have; (b) it requires neither
observations of input ground motions (i.e., a kind of
output-only technique) nor sensor synchronization, which
allows cost-effective implementation; (c) it also requires
neither prior knowledges nor assumptions on structural
characteristics, which gives its wide applicability.

Our previous studies have suggested the applicability of
ECAD to structure-portfolio monitoring and its superiority
to CAD by performing numerical experiments on a
portfolio composed of SDOF models (Yaoyama et al.

2019; Yaoyama et al. 2020). These studies, however,
have assumed that SDOF structures linearly behave during
excitation, and not considered the nonlinearity of structural
responses. The paper therefore investigates how the
nonlinearity of structures influences the applicability of
ECAD to structure-portfolio monitoring. Specifically, we
consider two different cases of hysteresis models: ordinary
bilinear and modified Clough’s, and examine the effects of
the difference on detection performance.

2. Methodologies
2.1 Correlation Anomaly Detection (CAD)

The problem of Correlation Anomaly Detection (CAD,
Ide et al. 2009) is stated as follows. Consider a system
composed of M variables and let D = {x(t) € RM|t =
1,..., N} denote a set of time-series observations for a
certain period. Specifically, we define a set of data
collected under normal conditions as reference data D,
and one which may include abnormal conditions of some
variables as test data D, . All variables are assumed to
be standardized to zero mean and unit s.d., because we are
interested only in their correlation. The aim of CAD is the
quantification of correlation anomaly for each variable by
comparing graph structures between D¢ and D, .

The algorithm is described as follows. First, each data
D is modelled as Gaussian Graphical Model (GGM):

det(A)!/2

-1 _
N0I0.A™ = S

exp <—%X(t)TAx(t)> o)

where A € RM*M denotes an inverse covariance matrix,
i.e., a precision matrix. In order to obtain the optimal A*,
penalized maximum likelihood estimation called sparse
structure learning is adopted;

A* = arg max [logdet(A) — trEA) = pllAllL], ()

where tr(-) and || - || respectively denote the trace and
L; norm of a matrix; X represents the sample covariance
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Figure 1. Comparison between CAD (Ide et al. 2009) and ECAD (Yaoyama et al. 2020)

matrix. The final term of the objective function equation
(2) is the penalty term introduced to controll the sparsity
of A*, which allows the calculation stability of the
matrix inversion and the noise-robust estimation of a graph
structure. When the penalty coefficient p = 0, the solution
is obtained as A* = X. Equation (2) can be solved by
graphical lasso algorithm (Friedman et al. 2008).

Using the precision matrices A,q¢, Ay and their inverse
X of» Ziest» Obtained as above for both D, and D,
correlation anomaly can be estimated using the expected
Kullback-Leibler divergence:

d'ref—test
Pret (X;1%y;)
// Pret (%\)Pret (x; 1%, ) log — PretMD S dxdxy, )
ptest( Il \I
where x,; = (X1 s Xj_ 1> Xy 15 X g} > and prep(X)

and p.(x) represent GGMs respectively defined with
Aers Aot - The correlation anomaly score of each variable

x; is then defined as a; = max{dfef—te“, d;eSt_ref},

where d'*"""* is defined by replacing ‘ref’ and ‘test’ in
equation (3). The analytical solution of equation (3) is
obtained in the literature (Ide et al. 2009).

2.2 Extended Correlation Anomaly Detection (ECAD)
Extended Correlation Anomaly Detection (ECAD,

Yaoyama et al. 2020) uses covariance matrices expanded

in the frequency domain, i.e., co-spectrum matrices, and

respectively applies CAD to co-spectrum matrices at each
discretized frequency (Fig. 1).

First, we define the sample co-spectrum matrix K(wk)
for discretized circular frequency w, = 2zx(k — 1)/NAt
(k=1,..,N/2).

2n
NAt

where Re[:] denotes the real part of complex functions;
X(w) and X*(w) are respectively the vectors whose i-th
element is the Fourier transform of X;(w, ) and its conjugate
X (@y).

The algorithm of ECAD is then formulated as follows.
First, for D¢ and Dy, which are respectively normalized
to zero mean and unit s.d., compute the co-spectrum
matrices Kref(wk) and Ktest(wk). Next, apply ECAD to
K, f(®;) and K. (w;) for @, (k = 1,..., N/2) to obtain
a series of correlation anomaly scores {a;(w;)}, which
we call Correlation Anomaly SPectra (CASP). Finally,
integrate {a;(w;)} in terms of w, to obtain averaged
correlation anomaly score:

K(w) = Re [X* (@)X (@,)] “4)

NJ2
3= ) a(wp) Ao, (5)
k=1
where Aw = 27/ N At.

3. Problem Statement
The problem the paper tackles is stated as follows.
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Let us consider a portfolio of M structures spatially
distributed over a wide area. The acceleration response
of each structure is monitored with a sensor installed on
the top of each structure, and therefore every earthquake
that strikes this area yields a set of data D composed
of M variables. For evaluating structural damages in a
portfolio, two experienced earthquakes are selected and
thus two sets of data are determined: reference data D,
which is collected under assumably normal (undamaged)
conditions, and test data D,.y, in which some structures
might have experienced damages (i.e., ductile behavior). In
structure-portfolio monitoring, ECAD is applied to these
D,.s and D, to obtain correlation anomaly score for
each structure as a metric for the possibility of structural
damages.

In the following part, we examine the applicability of
ECAD to structure-portfolio monitoring described above
by some numerical experiments on a portfolio of single
degree of freedom (SDOF) systems, in which especially
two cases of hysteresis are assumed: ordinary bilinear
models and modified Clough’s models.

4. Experiments
4.1 Models and Conditions

Let us consider a portfolio of 18 structures modelled
as SDOFs. The mass of all SDOFs is assumed to be
103[kg]. The initial stiffnesses are given by sampling
the corresponding natural frequencies from lognormal
distribution with mean 1.0 [Hz] and c.o.v. 0.3. Initial
stiffness propotional damping is assumed with the damping
ratio 0.03 for all SDOFs. Two nonlinear response analyses
are performed on the SDOFs to obtain two sets of the
absolute response accelerations, which are normalized to
zero mean and unit s.d. in terms of each SDOF and defined
respectively as D ¢ and D, .

The assumed locations of all SDOFs, as shown in Fig.
2, correspond to the selected stations in the seismograph
networks K-NET (National Research Institute for Earth
Science and Disaster Resilience 2019). The SDOFs are
assumed to be excited by strong motions recorded at the
corresponding stations in order to represent the difference
of input ground motions in a portfolio, and numbered
corresponding to the codes of the K-NET stations. For
example, the SDOF located on the station TKYO0OI is
called the SDOF#001. The target earthquakes EQ. A
and B specified in Table 1 are respectively used for
generating D,.; and D,.. In order to generate ‘anomalies’
(i.e., damaged SDOFs) in D, the amplitude of the
ground accelerations input to randomly selected SDOFs
are increased to 1000% in order to trigger their structural
damage (specifically, ductility in this study). In this study,
SDOF#014, 016, 022 and 023 are selected and respectively
subjected to the amplified ground accelerations with the
peak of 134.2, 92.9, 149.9 and 137.9 [cm/s?].

Two cases of hysteresis are assumed: ordinary bilinear

Table 1. Earthquakes considered in numerical experiments.

EQ. Time Epicenter Depth M,
A 07/27/2016 23:47  36.5°E 140.6°N  57km 5.4
B 11/22/2016 05:59 37.4°E 141.6°N  25km 7.4
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Figure 2. Assumed locations of SDOFs and the epicenters of
considered earthquakes. The radius of circles for epicenters is
propotional to the magnitude of earthquakes.
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Figure 3. Diagrams of hysteresis models considered in numerical
experiments: (a) ordinary bilinear and (b) modified Clough’s.

(in Case 1) and modified Clough’s (in Case 2), as shown
in Fig. 3. In ordinary bilinear, the post-yield stiffness
is set as k;, = kg/10; in modified Clough’s, the
post-yield stiffness is also k; = k;/10 and the unloading
stiffness is ky = ko(8,/6,)"°, where &, and 5, denote
a yield displacement and a maximum displacement ever
experienced, respectively. The yield displacement in both
models are set as 6y = 5[cm].

We apply ECAD to D,¢ and D, obtained in the above
procedure and evaluate its performance, where the penalty
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Figure 4. Hysteresis curves of all SDOFs in test data in (a)
ordinary bilinear and (b) modified Clough’s.
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Figure 5. (a) The ductility factors of all SDOFs observed for D,
in both cases. (b) Correlation anomaly scores computed for all
SDOFs in both cases.

coefficient is p = 0.01.

4.2 Results and Discussions

Fig. 4 shows the hysteresis curves of all SDOFs
observed in the analyses for generating D,.. It can be
seen for both cases that the SDOFs excited by intentionally
amplified ground motions have actually experienced
yielding except SDOF#016.

Fig. 5 shows for all SDOFs (a) the ductility factors
observed and (b) the correlation anomaly scores computed
by ECAD, both in the descending order. In Case 1 (ordinary
bilinear), SDOF#014, one of the SDOFs which have a
ductility factor larger than one, i.e., the ‘damaged’ SDOFs,
ranks relatively higher (3rd) in the order of anomaly score,
while the others, SDOF#023 and #022 rank middle or lower
(9th and 13rd). This means that the latter two anomalies
are overlooked. In Case 2 (modified Clough’s), in contrast,
all of the damaged SDOFs have higher scores than the
undamaged SDOFs, which means, the anomaly detection
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Figure 6. (a-b) Correlation Anomaly SPectra (CASP) computed
for selected SDOFs and the response PSDs of the SDOFs both in
D, and D, plotted respectively for (a) Case 1 and (b) Case 2.
(c) The input PSDs of the SDOFs.

shows a good performance. These results imply that ECAD
has a good applicability to a structure with a dynamic
characteristic similar to a modified Clough’s model, not
to one with a characteristic similar to an ordinary bilinear
model.

To discuss the results, Fig. 6(a, b) show for both cases
the Correlation Anomaly SPectra (CASP) computed for
selected SDOFs and also the response PSDs in both D, ¢
and D,., smoothed with Parzen window of bandwidth
0.2[Hz]. Fig. 6(c) shows the PSDs of the corresponding
inputs which are normalized to zero mean and unit s.d.
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The natural frequencies determined by the initial stiffnesses
are shown with gray lines in the figures. Three SDOFs
are selected for the following reasons: #023 has a higher
ductility factor and actually shows the highest score in
Case 2, but ranks lower in Case 1; #021 with no structural
damage shows the lowest scores in both cases; #006 shows
the highest score in Case 1 and also the highest among
undmaged SDOFs in Case 2, in spite of no structural
damage.

The difference in the rank of SDOF#023 between both
cases is apparently due to characteristics in the frequency
domain. In Case 1, the CASP of SDOF#023 (damaged)
has characteristics similar to that of #006 (not damaged),
in terms of the height of its peaks and the width of the
frequency band in which strong anomalies can be observed.
In Case 2, on the other hand, the CASP of #023 has a
much higher peak than #006, which is one of the reasons
why the anomaly of #023 can be detected in Case 2.
Moreover, it can be noticed from the PSDs of #023 in
Case 2 that there is a clearer gap of the peak frequency
between D,.; and D, ., compared to Case 1, which leads to
strong anomalies around its natural frequency in the CASP.
This difference is due to the hysteretic characteristics, that
is, while in modified Clough’s hysteresis yielding leads
to the degradation of stiffness, in bilinear hysteresis, the
unloading stiffness remains the same as the initial stiffness
even after yielding and therefore the influence of yielding
on the frequency content is not clear.

The higher anomaly scores of SDOF#006 can also be
explained by frequency-domain characteristics. Compared
to the others, the CASP of #006 in both cases has higher
values in the frequency band lower than 1 [Hz]. In the same
band, the response PSD of this SDOF in D, has greater
components than D,.¢. The input PSD also clearly shows
the change from D, to D, in the corresponding band,
which is considered to be the source of the higher anomaly
scores of #006 in both cases. It can be stated from the above
that even undamaged structures could be misdetected due to
a change in the frequency content of excitations.

In summary, the following implications are obtained:
(i) the damage of a structure with a hysteresis similar to
an ordinary bilinear model can be overlooked by ECAD,
because its ductility does not have strong influence on
the frequency-domain characteristics of responses; (ii) the
damage of a structure with a hysteresis that has degrading
stiffnesses, like modified Clough’s model, is much easier
to detect, because its ductility has a clearer effect on the
frequency content; (iii) the misdetection of undamaged
structures can be induced by a change in the characteristics
of input ground motions. Specifically, the above (i) and
(ii) further imply that ECAD has a better performance for a
structure with degrading stiffness, like reinforced concrete
structures, than for a structure with stiffness that does not
radically change even after yielding, like steel structures.

5. Conclusions

The paper has presented a data-driven approach for
structure-portfolio performance monitoring, which adapts
a machine learning method called Extended Correlation
Anomaly Detection (ECAD). We have specifically
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examined the effects of the nonlinearity of structural
responses on the detection performance of ECAD, which
had not thoroughly been studied in our previous works,
by using numerical experiments on a portfolio of SDOF
models. Two cases of hysteresis, ordianry bilinear models
and modified Clough’s models, have been considered.
Main conclusions are:

(1) In the case of ordinary bilinear models, some SDOFs
does not show higher anomaly scores in spite of their
high ductility factors. This means the limitation of
application to such a structure that has a hysteresis
similar to an ordinary bilinear model.

(2) In the case of modified Clough’s models, all of
the SDOFs that experienced nonlinear behavior had
higher anomaly scores than the SDOFs that behaved
linearly. This implies the applicability of ECAD
to such structures that have a hysteresis similar to
modified Clough’s model.

(3) Although a SDOF has experienced no yielding,
correlation anomalies can be misdetected due
to the effect of input ground motions on the
frequency-domain characteristics of responses.

The above (1) and (2) imply that ECAD is more applicable
to a structure with degrading stiffness, like reinforced
concrete structures, than one with stiffness that does not
radically change even after yielding, like steel structures.
This implication should be examined in the future works
by additional numerical experiments that adopt other (more
refined) hysteresis models, e.g., Takeda model, and also by
physical experiments.
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