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Abstract

We prove the time global existence of solutions of the degenerate
Keller-Segel system, under the assumption that the mass of the first com-
ponent is below a certain critical value. What we deal with is the full
parabolic-parabolic system'rather than the simplified parabolic-elliptic
system. Our approach is to formulate the problem as a gradient flow
on the Wasserstein space — a new -approach for the parabohc—parabohc
system. E

1 Introduction

1.1 Description of the problem

We consider the following degenerate parabolic system:

Byu =V - (Vu™ — xuVv), zeQ, t>0,
b = Av — yv + au, -z e, >0, - 1) -
u(z,0) = uo(z), €v(z,0) = ew(z), =€ Q,

where a, X, 7, €, m are constants satisfyihga x>0,v20,e>0,m> 2— ,d>

2and Qisa bounded domain in R? with smooth boundary. We 1mpose the

following boundary conditions:
ou™ ov

2 _

The aim of this thesis is to prove the time global existence of solutions of
the system (1) under the assumption that the initial mass [, uo dz. is below a
certain critical mass and for an arbitrary vg >-0.

Our approach is first to formulate (1) as a gradient flow on a certain metric
space, then to apply the techniques of [3] to prove the time global existence.
Note that the system (1) does not have a gradient structure in standard function
spaces such as L? because of the presence of the drlft term V - (xuVv). This is
why we use the Wasserstein formulation.

—v=0, z€dQ, t>0. | 2)
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The system (1) was proposed by Keller and Segel [13] in 1970 to describe an
aggregation phenomenon of certain microorganisms called “slime molds”, which
have a characteristic property called chemotaxis. Chemotaxis is a motion toward
higher concentration of a chemical substance. This kind of microorganisms,
when put in a nutrition-poor environment, produces a chemical substance that
attracts other individuals within the same population. This leads:to formation
of an aggregate, which produces spores. In this way, the slime molds propagate
‘next generation. In equations (1), u stands for the density of slime molds and v
stands for the concentration of the chemical substance, hence we are interested
in non-negative solutions of (1). From the mathematical aspect, the aggregation
phenomenon can be interpreted as a-blow-up phenomenon of the solution of (1),
that is, the density of slime molds singularly concentrates at some point.

Mathematically, it is known that whether the above aggregation phenomenon
occurs or not depends largely on the mass of u. Notice that (1) preserves the
mass fﬂ udx. In particular, the case m =1 is well-understood and it is known'
that the following sharp threshold M, exists provided that d = 2 (which is the
case with the classical Keller-Segel model): If |lug| L1 < M, then the solution
exists globally in time, while for any M > M, there exists a solution with
|lwollzr = M that blows up in finite time {15, 8, 7, 5]. These results hold true
both for the case &€ > 0 (parabolic-parabolic system) and for the case ¢ = 0
(parabolic-elliptic system).

In the case m > 1, the situation is more comphcated It is known, at least
formally and partlally rigorously, that the above-mentioned sharp threshold
mass M, can exist (if it ever doés) only when m =2—2 (hence m =1 if d = 2).
Early results in this direction were given by Sugiyama [19], who showed that
there exist constants 0 < M; < My (whose values are specified in [19]) such
that if 0 < {|luol/zr < M; the solutions exist globally in time, while there exist
a solution with ||ug||z1 > My that blows up in finite time. Later, under the
additional assumption that v = 0, Blanchet, Carrillo and Laurengot [6] showed
the existence of a sharp threshold ‘mass M, as in the case m'=1,d = 2, which
we have mentioned above. ‘

At present, the existence of such threshold phenomena is known only for
the parabolic-elliptic case with m = 2 — 2/d. As for the parabolic-parabolic
case, the recent work of Ishida and Yokota [11] proves the time global existence
under the assumption that both ug and Awvg are relatively small — a condition .
* that is too restrictive compared with what we have mentioned for the parabolic- |
elliptic system. So far, there has been no result that suggests the existence of a
‘threshold mass for the parabolic-parabolic system (1).

In the case m > 2 — %, it is shown by Sugiyama [20] for £ = 0 and by Ishida
~ and Yokota [10] for £ = 1 that solutions of the system (1) exist globally in time
.without any restrlctlon on the size of the mass. That is, the solutions never
_blow-up. ; ’ o

As mentioned earlier, our approach is- to formulate (1) as a gradient flow
in a certain metric space. - One of the advantages of this approach is that it
gives us better understanding of the relation between the time global existence
of (1) and the variational properties of the Lyapunov functional ¢, which is



to be defined in Section 1.3. More precisely, our approach shows that the lower
boundedness of the Lyapunov functional guarantees the time global existence
of the solution of (1). Our approach is, in its spirit, similar to that of Blanchet,
Calvez and Carrillo [5], who formulated the non-degenerate parabolic-elliptic
Keller-Segel system (where one sets m = 1 and e =4 = 0 in (1)) as a gradient
flow in a Wasserstein space. In the present case, where ¢ > 0, one cannot
reduce (1) to a single non-local equation. Nonetheless, we can still formulate it
partly in the framework of the Wasserstein space, as we will show later. The
Wasserstein techniques for the present type of evolution PDE’s were developed
in the pioneering work of Otto [16, 17], Jordan, Kinderlehrer and Otto [12], and
other related papers such as [1, 3, 14].

A common strategy in the above-mentioned papers [17 3, 5,12, 14, 16] is
first to approximate the evolution equation by a time-discrete problem, which
consists of solving a certain minimization problem at each time step. One
then proves the convergence of the approximate solution to a weak solution of
the original evolution equation as the time mesh size tends to 0. In proving
the convergence, one needs some compactness properties of the time-discrete
solution, but the minimizing nature of the time discretization s1mp11ﬁes the
compactness argument significantly.

There are two approaches for proving the convergence of discretized solution.
One is to use the Euler-Lagrange equation associated with the minimization
- problem at each time step. This Euler-Lagrange equation is written explicitly
in the form of a backward Euler difference scheme for the original evolution
equation with some penalty term. The other approach, found in [3, 14], uses
the concept of “curves of maximal slope”, which is formulated in the framework
of abstract metric spaces. The former approach based on the Euler-Lagrange
equation is visually more-explicit than the latter, but this latter approach based
on the notion of curves of maximal slope requires milder compactness properties
in the convergence proof, which is an advantage. The present thesis adopts this-
latter approach. -

- Note that, in this latter approach the subdlfferentlals of the functional play a
_crucial role. In [3], existence of subdifferentials having certain good properties is
shown for what they call “regular” functionals. However, in our present problem,
it is not easy to check if our Lyapunov functional is regular. We therefore will
use a different argument that guarantees the existence of subdifferentials of the
Lyapunov functional at every point where the approximate discrete solution
curves pass, which is sufficient for the convergence proof. More precisely, we
use a two-step time discretization scheme, in which the solution of the next
‘time level is given by solving a minimization problem for v (in the Wasserstein
space) and one for v (in L?) alternately rather than simultaneously. With this
new scheme one can obtain the regularity of the discrete solution, which is
sufficient to exist the subdifferentials of our Lyapunov functional. :

The main . difference between our results and the earlier results by Ishida-
Yokota [11] is that our variational approach makes it possible to obtain global
existence more directly from the Lyapunov functional, which is known to play
a fundamental role in determining the sharp threshold mass for the parabolic-



elliptic system. More precisely, our results show the time-global existence of
solutions of (1) under a rather mild condition ||up|[z1 < M, (and for an arbitrary
v3), where M, is the critical mass for the Lyapunov functional to be bounded
from below. Furthermore, the constant M, coincides with the sharp threshold
mass M, given by Blanchet et al. [6] for the parabolic-elliptic case.. Considering
that the threshold does not depend on ¢ in the case of m = 1, we suspect that M,
is the sharp threshold even for our parab:olic—parabolic system with m = 2 — %. o
Note that uniqueness is not known for the initial value problem (1), expect that
some partial results are given by Sugiyama [22] for the parabolic-elliptic case
e=0 '

1.2 Main Results

Now we state our main results. The following functional ¢,, is known as a
Lyapunov functional associated with the Keller-Segel system (1):

. 1 ‘
(;Sm(u? v) = m v Qum dr — X/ﬂuvdz + % /Q |Vo|? + yv? da.
We consider the functional ¢,, in the space

Xng = {(u, v) € (L' NL™(Q)) x HE(Q); Jlullps = M,u>0,0> o}.

‘We define pps and M, by

= inf m\U, V),
}LM ('u,,'ul)neXM ¢ (u U?
M, :=sup{M >0 ; ua > —‘00}5 : 3)

‘Theorem 1.1 (Well;deﬁnedness and properties of M,). M, has the fbllowmg
properties: ' «

(i) M. >0

(i) We have ppr > —oo for every M < M., while we have pupr = —oo for
every M > M,. .

Particularly, we have M, = co form > 2 — % and M, < oo form =2 — 721-.
That is, in the case of m = 2 —%, M, is the threshold of the lower bounds
of Lyapunov functiogml bm-  Moreover, M, depends on a,x,d and we have
M, (e, x,d) = (ax) ™2 Mi(1,1,d). '

Next, we state the time-global existence of solutions of the system (1). Here
the meaning of solutions of (1) is understood in the sense of (16).

Theorem 1.2 (time-global existence). For any uo € L2(Q) and v € HE(Q)
with ug,vp > 0, there exists a non-negative solution of (1) with this initial data
that exists globally for all t > 0, provided that ug satisfies

/%m<m.
0



1.3 Formal derivation

In this subsection we will explain how to formulate the sjrstern (1) as a gradient
flow for the following functional: - :

' 1 , ) '
Gm(u,v) = —— | u™dzr— X/ uvdz + L/ |Vo|? + yv? dz.
m—— 1 Q . o 2c Q

The arguments below are not rigorous but may hlghhght the underlymg ideas
that will come in the later sections.
Let us first consider the following system of equations:

{atu +V- ) =0 inQx(0,T) "(4)

Ov+n=0 : in % (0,T)
with the boundary conditions: (v - §)u = 0 and v = 0 on 9Q,¢ > 0. Here the
vector field € : © — R? and the scalar field n : @ — R are to be specified

later. We assume that w = (u,v) is sufficiently smooth. The time derivative of
G (w(t)) for w(t) = (u(t),v(t)) is then glven by

/ (mml me —Xv> 8tud1:——/(AU—’YU‘|'au)at”dx
o —

@), eude+ % [ pwind, | )

d
= bm(w(t)

It

where (-, -) denotes standard inner product in R? and

o) = (sa(w) 22w) = (v (2 um-l—‘xv), M)

m-—1 £

We introduce the following inner product {-,-),, at the point w - (u,v): for a
vector field & : Q0 — R? and a scalar field n; : @ = R, i = 1,2, we define

(€1, C2)w = /Q<§1,€2>Ud$ + %/6771772 dr for {; = (&,m:).

Using this notation, (5) can be rewritten as

4 | v . .
Z9mw(t) = {g(w), Qu, (= (&n)- (6)
Therefore by the Cauchy-Schwarz ineqilality and fhe Young inequality, we have
d o |
E(ﬁm(w(t)) = <g(w)7<>w o
' 2 —llg(w)lwl¢llw
> gl - 3]
2 5 g w5 w*



In particular, all the equalities hold if and only if ¢ = —g(w). In this case; (4)
-coincides with (1), and the following identity Liolds:

d ) I '
ZOm(w(®)) =~ llg(w)ly - 5ll¢ll- (7)

Conversely, if (4), (6) and (7) are satisfied, then w = (u,v) is a solution of (1).

In this thesis, using the theory of minimizing movements [3], we will prove
the existence of a curve w. satisfying the relations (4), (6) and (7) in a weak
sense. As a consequence, we obtain the time global existence of solutions of (1).

1.4 Notation
#?  d-dimensional Lebesgue measure
typ  push-forward of the measure u through the map ¢
t, optimal traﬁsport map from a measure 4 to a measure v
dyw  Wasserstein distance =
D(¢) effective domain of functional ¢
|v/| . metric derivative of w in a metric space %

|8¢|(v)  metric slope of functional ¢ at v \
P5(2)  probability measures on 2 with finite second moment

P5(Q)  regular measures in' %5(2) with finite second moment |
- LP(9) p-summable functions on © C R? with respect to .£¢
Li (4 R?Y)  Ré-valued 2-summable functions on Q with respect to
|- lz2u) the norm in L2 (Q;RY) ‘
"AC(a,b;.#) absolutely continuous curves.in a metric space &
WkP?(Q) Sobolev space over

2 Preliminaries

In this section, we collect some results on the Wasserstein metric. We refer to
the book [3] by Ambrosio, Gigli and Savaré.

P (R?) denotes the space of probability measures on R endowed with the -
following topology.

Definition 2.1 (narrow convergence). We say that a sequence (u,) C Z(R%)
is narrowly convergent to u € .@(]Rd) asn —ooif -

im [ £(@)dun(e /f ) duz

" n—o0o Rd

for every function f € Cy(R?), the space of continuous and bounded real func-
tions defined on RY.



We define the subset' %, (R?) of 2(R%) by
Wz(Rd’) = {,uJ € (R / lz)? du(z) < oo} . . (8)
Rd

and 225(R?) denotes the subset of #,(R?) whose element is absolutely contin-
uous with respect to the Lebesgue measure. v

- For © C RY, we identify 9,(Q) with the set of measures u € P, (R?) such
that p(R?\ Q) = 0. If Q is bounded, then %,(Q) coincides with 2 ().

Definition 2.2 ('push—forward). Let p,v € P(R%). If, for a y-measurable mép
t:R% — R? and for every f € C’b(]Rd) it holds that

e = [ @) (a),

theh we say that v is a push—forward of u through't and write v =tyu.

Definition 2.3 (Wasserstein distance).. Wasserstein distance dw is defined by

diy(p,v) = inf / Ir—yl2dp(ﬂc,y) )
’ pEl(p,v) JRd xRd

where the set T'(,v) of transport plans between u and v is defined by
I‘(u, 1/) ={pe Q(Rd x R%) : (7r1’)#p = p and (m2)4p =v}

with 7 (z;y) = = and 7T2(.’L‘ y) =y, that is,

/Rdxdf(w dp = /f(m)du, Adx f(y)dp:/ f@)dy

for every f € Cy(R?), where W(Rd X ]Rd) denotes the set of probability measures
on R? x R4 ‘

The space (#2(R?), dy) is a complete metric space and is called the “Wasser-
stein space” [3, 23].

Theorem 2.4 (Brenier’s theorem). Let p,v € ﬂg(Rd) If u is absolutely con-
- tinuous with respect to the Lebesgue measure %, then there exist the optimal
transport plan po. and the optimal transport map t” such that

vt = [ lo=yPdnlay)
X

= [ ot duto).
R

Moreover, the mdp t,, coincides p-a.e. with the gradient of a convex function pg.

Before stating the next theorem, we recall the definitions of absolutely con-
tinuous curves in a complete metric space (., d) and the metric derivative.



Definition 2.5 (absolutely continuous curves). Let (%, d) be a complete metric
space and (a, b) a finite interval in R. We say that a curve v : (a,b) — & is
absolutely continuous if there exists m € L*(a, b) such that

4ot o(s) < [ mtryar V.0 (@b

We write v € AC (a, b; %) to mean that v is absolutely continuous in the above
sense. If, in addition, m € LP(a,b) with p > 1, then we write v € AC?(a,b;.%).

Definition 2.6 (metric derlvatlve) For v € AC?(a,b;.%), p > 1, we define the
metric derwatwe [v'| as . '

)(6) = tim L) e (0.

s—>t [t — s

- The metric derivative is the equivalent of the normed value of a tangent
vector in Hilbert space. It is known that for v € AC?(a,b;.%), p = 1, the
metric derivative exists for #!-a.e. t € (a,b) and that |v'| € LP(a,b) (see for
instance [3]).

Theorem 2.7 (Representing formula for absolutely continuous curves). If p €

- AC(a,b; P5(R?)) then ‘there ezists a unique vector field € : R X (a,b) — R? -
" such that

Oppty + V- (&Mt) =0 inD'R%x (a,b)

and |u'|(t) = [|&ellL2quryy  Jor fl-‘a.e. t e (a,b),

“where | - ”Lz(#) stands for the norm in L2 (R%R?).

/‘ 3 Reformulatlon of the main results

In thls section, we reformulate our main result Theorem 1.2 in an equivalent
statement in a- Wasserstein framework. To do so, we first need to normalize
u to satisfy fﬂudx = 1, since the Wasserstein space is a space of probability
measures. For this purpose, we make the following change of variables:

4 = i, t= Mm_lt,‘ where M := / udz,
M ~ o ,
along with the new parameters:
%= MffL_I, E=M™le, a=alM. (10)

Then (4, v) satisfies the same equations as (1) with the above new parameters;
furthermore, we have Jo@dz = 1. Therefore, in what follows it suffices to
consider only the solution of (1) that satisfy

/Quo do =1. | | (11)



‘We consider a partition of the time interval [0, 4+00) and we identify a par-
tition with a sequence 7 := (71, 72,..., Tk, -.) by the relation

’{0=t9.<ti<t3'<-~-<t.’ﬁ<--- 12)

th=¢h14 1y

and let 7| := max 7."
E>1

Lt (u0,00) = (uo,v0) € (P(Q) N L2(Q)) x HL() be initial data and for
k=1,2,3,..., we recursively define (u¥,v%) by ‘

. . _ X —
ot € angmin {n(u71,0) + 52 o =k},

vEHL(Q) - 2ar7 (1‘3)
) :
i g ot St )
wEP(Q) 27
that is, vX minimizes -
‘ ‘ k—1 EX 4 k—1p2 ‘ol
0 (T, 0) + 52 o — bR in H ()
. QT
and u® minimizes
1 : “
U O (u, Uﬁ) +"2Td%V(u7 uf-_la) in 2(Q).
. k
Notice that in the Euclidian case, the variational scheme
' 1
z¥ € argmin {f(_x) + — ’x - ac’.f._llz} (14)
27k )

zeR4
leads to the implicit Euler scheme
ko k-1 .

7% V(b
Th .

. where f is a function on R%. "

Proposition 3.1. If M, = M,(a,X,d) > 1 and (ug, v0) € (FP(Q) N L™(N)) x
H(Q) , then (uk,v?) are well-defined for all k € N. :

Definition 3.2 (discrete solutioné). If the above minimization problems (13)
are well-defined for every & € N, then we define the piecewise constant interpo-
lation '

{U-r(t)) = ’Uz’-,c- forte (t]:-;l’tfrc-]? (15)

Ur(t) := vk for t € (tb71, k).
T T T

We call (Tr,T) a discrete solution.



Theorem 3.3 (Lyapunov solution). Assume (11) and M, > 1. If (ug,v) €
(Z(Q)NLA(Q)) x HL(KY), then a subsequence of discrete solution (G, Ty) con-
verges to (u,v) weakly in L™(Q) x H(Q) for every t € [0,00), which satisfies
the system: v ' o : ‘

'

Bus +V - () =0 in D(Q x (0, +00)),
ey +m =0 in 2'(Q x (0,+00)),
—us&y = Vul* — xu; Vg in Q for Ll-a.e. t> 0,

= —Avy + vy —auy - in Q for Fl-ae t >0,

(16)

with the boundary conditions:
ou™ ov
e
E R

where the meaning of these boundary conditions are understood in the sense of

Remark 3.4 below..
Moreover, the energy mequalzty

=v=0, €09, t>0,

¢m(w(a))f¢m(w(t)) > 5/0 /Q|§(x,s)|2u(a:,s)dxds;l-2i<?/(zt/§2|n(x,s)|2d:£ds

holds for every t E [0, 4+00) and a € [0, t)\N N being a £ -negligible subset of
(0, +00).

Remark 3.4 (boundary conditions). Since u € H5(Q), we have

0= d udm—/atudm

dt
/ V (U-[;§
AR UAN
_/ ( E 81/) ds.
On the other hand, since v € H} () it holds -

- v-—O on.of.

Remark 3.5. Note that the uniqueness of the solution of (1) (for each given
initial data) is not known. :

Remark 3.6. If initial data wo = (ug,vp) € (L (Q) N L2()) x HE(Q) satisfies -
vo 2 0, then the above limit functions u and v are a non-negative weak solution
of system (1) (see remark 4.4).

4 Variational analysis

In this section, we give a proof of Theorem 1.1 and Proposition 3.1.

10



Proof'of Theorem 1.1. First, we consider the case of m > 2 — 3 and show that
M, =o001in thlS case. By the Holder 1nequahty, the Sobolev 1nequahty, and the
interpolation 1nequahty, we have

l/uvdm

< lull 2, vl 24,

< Collull g4, ||wuLz -
< Collullzz® ullgm V0 22

where C denotes the Sobolev constant and 6 = %. Therefore, for any
& > 0 we have

5 G2
[ wee]< (0O, 0oz, +

1 2
2(C¥+5) ”v’U“L2
Hence, it holds that
1 (a+ 5)X \& T OXCs ), 112(1-6) 26 - Ox 2 y
> m mn ~ 7 . N
b 2 el — S 0l + Vel 8)

This means.that M, = co for m>2— d, s1nce 20 <m."”
Next, we consider the case of m =2~ £ 2. By the estimate (18) we immedi-

ately have , ~
. 2 d/2
M, > | —————— .
" (ax( - 1)02>
In order to obtain the optimal estlmate we define the constant C, by

C,:= sup {u, v)r2
(u,0)€Xnm ”u”Ll”u“Lman”Lz

) 2 ' d/2
M= (ax(m— 1)03) '

These are well-defined by the estimate (17). We show that My, = M,. By using
M, Lyapunov functional ¢,, is estimated as follows, '

axC? a+d, 2
bz X (Md 2l ) bl +

¢

and set

dx ‘
mllvvllL27 -(19)

for any 6 > 0. This means M, > Mj.
On the other hand, by the definition of the constant Ci, for any 5 > 0, there
exists a pair (us,vs) € Xar such that

N

1 m
(us, vs) 2 > (Cx — 8)us 72 1usll o || Vs | 22

11



v
I Ué”f s We have
(Cs = 8)|luell Fallusll Zm -

- Hence for o« =

2 .
. C*‘— 5 2 d m
(G ve)ze > X Ul el

- ,
+£||VU5|I%2-

Therefore we have

axC? 2 C'*—(S 2 2z '
i (aef = C 2wl ) sl

*

X
O (us, v5) — %/vg dz <

Now we define the functions (uy,vy) by .

Muys(Az) Az eQ A-2us(Az) Az e Q
ux(z) = . oa(z) == ;
0 Ax & Q, 0 Az & Q,

and then, we have

Om(un,vp) = 42 b (s, vs) — X ug dr | + X¥ ,vi dz
2a

200
NoYe ) C’f 2 C* _5 2 P2 _ -
<026 (g = O oIy pustp + 342 [ g

* Therefore, if |[us][z1 = M > Mj, then we can choose § > 0 such that
v Gm(un, vr) — —o0, ()\ — 00).
Thus we have M; = M,. , | O
Remark 4.1. By the change of variable
My(Az) Az €Q X=2y(Az) Az €Q
ux(z) = , o oa(z) = ‘
0 Az € Q, 0 Az € Q,

we see that C, does not depend on Q. Therefore M, also does not depend on
Q.

Remark 4.2. M, coincides with the sharp threshold mass M, for the parabolic-
elliptic case given by Blanchet, Carrillo and Laurengot: [6].
Indeed, we define the functional A(u,v) by

IVollZ.

Au,v) = Tu o) o

12



. Then
N (T T

- 2

@)X [lul| E; [[ull 7 [ V)12,
i )
= . ‘

v Ul el v \AMWY)

1
= su 5
“ A\ MullZ: [l Zm inf Ay, v)

Here we can characterize the function v which attains inf A(u,v) by the Euler-
v :

-Lagrange equation. The function v which attains inf A(u, v} is given by
- . v .

—Av = {u,v) 12 Ay, v)u.

Therefore, using the fundamental solution K of the Laplace operator —A, we
can write ' ’

1 .
m‘— <IC*’U,,U)L2.

Asa consequence we obtain :
K
CE = sup < .2’“’7”)[42 .
5 al el e

Therefore fhe constant M, equals the threshold mass M, for the parabolic-
elliptic case (see [6]). ~

Lemma 4.3 (IOWer semicontinuity of ¢p,). Let u, — u wéakly in L™(Q) dnd
vp, — v weakly in HE(Q). Then we have

Om(u,v) < lminf ¢, (un, vn).

Proof. Tt suffices to show that (u,v)r2 is continuous with respect to the weak
topology in" L™()) x H}(€2), because it is well known that ¢, (u, v) — x(u, v) 2
is lower semicontinuous with respect to this weak topology. By Rellich’s com-
pactness theorem, we can extract a subsequence still denoted by wy, such that
vn, — v strongly in LP(Q) for p := % (0 < £ < 1). On the other hand,
for the conjugate exponent p’ of p we have m —p’ = %;;—m > 0. Hence
the interpolation inequality assures the uniform bounds of ||uy]|z,«. Therefore,

taking into account that (u,v)r2 is a bilinear form in L*' (Q) x L?(f), we have

lim / UpUn — uv) dz| = lim ‘/(u—un v4vn)d:£
n—oo n( ) S roelJa ) . (20)
< 7}1_{20 llw = tn| o [v — vnllLe = 0.
O

13



Remark 4.4 (non-negativity). Fdr any 7 and k € N, u® and vk are non-negative.
" Indeed, the non—negat1v1ty of uk is clear because uk belongs to 9’(9) Hence
we have

ngm(u.,.,v_,.) 2 ¢m(ur7 |UT‘)

Therefore, if the initial data vy is non-negative, then v¥ is non-negative.

Proof of Proposition 3.1. Let v; be a minimizing sequence of
k-1 EX . k—1)12
‘ 'U'_')d)m‘(u‘r 7v)+E”U_UT\ ”L27

and I be the infimum. Then, from the lower bounds of ¢,,, the infimum I,
is a finite value, and the coercivity (18)-(19) induces the weak compactness in
H{(Q). Therefore, there exists a subsequence of v; still denoted by v; and
Voo € H(2) such that v converges ve, weakly in H} (Q) By Lemma 4.3, we

have
€X

P (U ) + Yo

lvoo = vE 132 < I

Since the opposite inequality is obvious, we have
‘ k—1 ; X k—1(2
Ty = ¢m(us 5 ve0) + m‘”voo —Ur [Z2-

Therefore, we can define v by v.,. Taking into account the lower semicontinuity
~of the Wasserstem dlstance with respect to the weak convergence in L™(%),
which is stronger than the narrow convergence (see Ambrosio et al. [3]), by a
similar argument, u¥ is well-defined. O

5 Subdifferential calculus

In this section, we introduce the notion of metric slope and investigaﬁe its prop-

" erties. The metric slope is the equivalent of the normed value of a gradient of a

- functional in Hilbert space. Therefore, the concept of the metric slope plays a
crucial role in the construction of gradient flows in metric spaces.

Let X = () x L2(Q) be a metric space endowed with the following
distance : o
d* (w1, wo) := di (p1, ) + d3(v1,v3)  for wy = (s, v3) € X,

where the distances d; and d; are deﬁned by

dl(/"’) - dW V’: ) fOI‘ ,Uq# € Q(Q) c gzZGRd%

21
(v, ) \/7||v—v|]Lz for v, ¥ ELz(Q) - (31

and dy denotes the Wasserstein space introduced in §2 and || - || 2 denotes the
usual L?(2) norm. We define the subset K C X by :

K = {(n, v) € X; p=u? withu € L™(Q) and v € Hl(Q)}, (22)
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and the functional ¢m on X as follows: for w = (u,v) € X,

1 ‘
+/umdx—x/uvdx+i/ Vo2 + yvidz ifw e K,
pm(w):=¢ M~ 1lJa Q 2a Jo~ o

400 ) otherwise,

where £ denotes d-dimensional Lebesgue measure and u denotes the density
function of y. The effective domain of ¢y, is defined by

D(¢m) = {(/"’7 ’l)_) € X; ¢m(:u7 U) < +OO}' | _ (23)

. We see that D(qﬁm) K. We often identify probability measure u = u.#? with
its density u and write (u,v) € D{dn) instead of (u,v) € D(¢>m) ~
" Let us recall the definition of the metric slope.

_ Definition 5.1 (metric slope). The metric slope [0¢,|(w). of ¢ at w € D(dpm,)
is defined by ‘

, o) — o ()
|0¢m|(w) := ligjgp (¢m(u2(w 4;71)1( )

- For w = (u,v), we also define [01¢:|(w) and [02¢m|(w) as

(d)m(ﬂa v) — ¢m(ﬁ'7v))+ ] ‘

?

N Ol (w /:: lim suy —
|01 @1 (w) msup 5o )

| s
(B2 (1) 1= limsup (ém (1, ;2@%(% )"

e

In order to investigate the properties of the metric slope, we first give defi-
nitions of the inner product (-, ), on L2(€;R?) x L%(f2) and subdifferentials. .

Definition 5.2 (inner product). For vector fields &; : © — R¢ and scalar fields
7 : Q@ — R, (2 =1,2) we define their inner product by

(1, C2)w ?=/Q<§1,§2>d#+%/ﬂ771772d93, G= (§i,77i)~

Note that this inner product depends on a point w = (1, v) € X.

Definition 5.3 (subdifferential Opm(w)). We say that g = (g1,92) € L3(Q:
R?) x L%(2) belongs to the subdifferential of ¢m at w = (1, v) € D(dy,) if for
any W = (fi,7) € D(¢m)

b(@) = () 2 (9,0 + o(d(w, B)),

where ¢ = (t” —id,0—v) and t“ is the optimal transport map from p to b We
denote by 8¢m(w) the set of all the subdlfferentlals of ¢, at w.

15



In order to calculate the subdifferential of ¢,,, we consider a curve w(t) € X
that passes through a given point w = (u,v) € D(dm) 4t t = 0 with a none-
“zero metric derivative |w’|(0) and calculate the differential of ¢y, o w(t). Since
D(¢m) C P5(Q) x HL(Q), for every (u,v) € D{¢pn,) and v € P5(Q) there exists
the optimal transport - map = such that ‘

v=ryn and &)= [ Jo-r@)Pdu - (2)
. . R . .
Let ' :
re=id+t(r —id) and ;= repu (26)
and . . '
w=v+n, neCT(Q). ' (27)

Lemma 5.4. If v, converges to v in L%(Q), then for every t € (0 T), vn(ry)
converges to v('r‘t) in L2(Q). In addition, It holds '

lvn(re) = v(r)lzs < Crllvn —vlze (0 <t<T),
where Cr is a positive constant depending T'.
. Proof. ‘ ,
o) = vtre@) P do = [ fono) = v(u)P der(Dr 1) dy
< sﬁp(det (f)rt_l(y))> lvn — vl|L2-
y .
Here D denotes the approximate differential. See [3] for a definition of the ap-

proximate differential and on approximate differentiability of the optimal trans-
port map. , |

Lemma 5.5. g = (g1,92) belongs to BdJm(w) zf,u - u.Zd with u™ € WhH(Q)
and

9= (mnj TVum T - XVU> S Li‘(Q;Rd), g2 =—Aviyu—ou€ 152(9)~ |
' PfOOf. The subdifferential of ¢, splits into the following three parts. k

']__[# = ——-1—/ umda:, I(/,L,v)=/—x/ﬂuvd$7

Gl = 35 [ 9ol 4 e

Subdifferentials of F[u] and G[v] are well-known because they are subdifferen-
tials in Wasserstein space and L2-space, respectively. Therefore we will focus
on the subdifferential of I.

16



Let e = utgd and vy be curves defined by (26) and (27), réspectively.
Considering the relation u; (rt(m)) det Dry(z) = u(z), it easily follows that "

o Flue] — []—'m 1 - 1 —.umzm
| %I_I)I(l) t C }1—>0 (m — 1)t/g ((detbrt(x))m‘l : 1> (z)d w
=_/Qum(m)trf7(r(x)'—z) dz.

Here, since u belongs to W11(9), using a weak integration by parts (see Thm
10.4.5 of [3]) ‘we can write

lim w > '/Q’<V“m,r(x) - x> u‘dw,.

t—0 u

Moreover, it easily follows that

Ips, ve] = Ipe, 0] . -
lim o ——Xth_r}(l)»ﬂumdw——x un dz,

and if Av € L?(2) then the following holds:

i S5l

=X .‘
t—0 t o« /Q Vv ?ﬁ +ovndz

= K/(*A’U'F’Y’U)T]d.’b.

As we shall 'see below note that by the Sobolev embedding theorem u belongs -
to L?(Q2) and then Av also belongs to L?(Q).

Let (vn)nen C C°(2) be a sequence converging to v in H2 (). We define -
the following fun‘ctions: ' S

It = —x | o(ry(z))u(z) dx,

L) = _XA v (e (2))u(z) d.

By Lemma 5.4, I,(t) converges to I(t) uniformly in [0,T]. Moreover I/ (t)
converges to \

P() = —x /Q (Vo(ry(@)),7(z) — 2)u(z)dz  uniformly in [0, 7.

In fact, by the assumption u™ € W11(Q) and the Sobolev embedding theorem,
u € L*(Q). Considering the definition of the push-forward and u,v € £(Q),
we see that 7(z) belongs to Q for y-a.e. = € Q. Since § is bounded, r — id
belongs to L3°(Q2). Therefore by Lemma 5.4, I, (¢) uniformly converges to I’ (t)
and hence I(t) is differentiable in (0,7) and we have

t—0 t

lim Ay, ol = Il I'(d) = —x/ (Vu(z), r(z) — z)u(x) dz.
‘ Ja
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Combmlng all the relations above, we have

o B, v) — b (10)
t—0 t

s um ‘ —A _ '
>/Q<Zu——)(V'v r(z) — w>udx+% Mnd&:. (28)

e . -
Finally, we notice that for w = (u,v) and wy = (i, v4), we have d(w, w;) = O(t).
In fact, ‘ ' g

A (w,wr) = & (, pe) + (v, )
£X
< [ o= r@P dutz) + Zlez
Rd (8%
_ 42 52 EX .12 ’
=& (d(u.v) + Xz
Therefore (28) means that g = (g1, 92) € 8dm(w). . : O

Lemma 5.6. If (ﬁ,v) € D(|0¢m|) and u € L?(R), then ¢y (u,v) is not empty
and we have : '

06m20) = | (2 —0)

2 +ax Av—yv + ou 2
L2y ¢

y
2

[

where w = (u,v) with p = u.L?.

Proof. By the definition of subdlﬁerentlals, for every g € 0¢m(w), |0¢m|(w) <
llgllw obviously holds.” We prove that the opposite inequality holds for the
subdifferential given in Lemma 5. 5 Let & € C (9 ]Rd) and Xt be the solution

of the fOllOWlIlg equatlon
= X .
{ t 6( t ) ; . (2 9)

XO =1d.
We define p; = (X;)zp and vy = v +1n, n € C2(Q). Then we have

s ) < [ | lo = Xe@)P du(o)

. 2 .
— [ | [ exx0yas| dute) - (30)
R4 [JO .

<t I vg(xs(zwdudé

d1 (u, )

and hence
| lim ~ Iellzeu

Therefore for w: = (u,v) and w; = (,ut, 'ut) we have

. ¢m(w) ¢m(wt) lim d(-w7 wt)
= |5¢m|(w)l|C||w, where ¢ = (£, 7).
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On the other hand, we have

Jim 8 (@) — Em(we) _ / u™ div € + x(Vv, €)udz
t Q )

t—0
+ i’é/ —__A”" WO e (32)

Hence combmlng (31) and (32), by the density of C°°(Q R%) x CX(Q) in
L2(Q;RY) x L2(Q) and the duality in LZ(Q;R?) x L*(Q), we obtain ‘

. ‘m
g1 = o

and for g = (g1, g2)

VUl — xVu ) € LL(@RY), egy = —Av+yw — ou € LX(),
1 4 .

”gHw S |6¢ml( )
Finally, we complete the proof by proving g € 8¢, (w). By the Cauchy—Schwarz

inequality, we have
2 3 BN
udm) (/ u(z) dm)
; Q

[Vu™ — xuVv| 1 < (/Q ’V (mnj 1um_1 - Xv)
<Pl
By the assumption u € L?(Q), we obtain
[Vu™|Lr < 10¢ml(u,v) + xlullz2 [ Vo] L2 ,
Hence by Lemma 5.5, g belongs to 3¢m(w). ‘ ' O

Remark 5.7. From the proof above, we see that

’ [
181¢ml(w) = llgallzaqny  and  |826m|(w) = 4/ =2llg2l L2
By the convexity of 8¢m(w) and the relation |8¢y,|(w) < | g||w for every
g € 0y, (w) a element of A¢,, (w ) satisfying |0¢m, |(w) = ||g|w is unique.

Definition 5.8. We denote by gradx ¢ (w) the unique element of d¢,(w)
which satisfies || gradx ¢m (W)l = |8¢m|(w).

Lemma 5.9. If (u,v) € D(|01|) and v € W2(Q), then u belongs to L2().
Conversely, if (u,v) € D(|82¢m|) and u € L2(), then v belongs to W>2(Q).

) ([ woree)

Proof. By the Cauchy-Schwarz inequality, we have

[Vu™ —XquHLl < (/ ‘ < —u -1 “‘XU>

< [016ml(u, v).

(S
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By the Sobolev embedding theorem, if v € W22(Q), then Vv € L7z 7(Q).
Therefore we have Vv € L™ (Q) (1/m+1/m’ = 1), since m’ < .2(d 1) < 2
and then uVwv belongs to L'(Q2). Hence we have

IVu™lzs < 181ml(u,v) +x[[uVol s

On the other hand, by the interpolation inequality, for 6 = %(_ﬁ% €(0,1)
and p= > 1, we have

ull®, u leue md |~ k
Jul? (um|||‘L ot s )* @

= ||u Pap

Moreover, by the Sobolev inequality, there exists a constant Cy dependmg only
on d and Q such that

Ny S G (s + V).
Thereforé we have u € Lz(Q)'and ,
Nl < O ([l + Banl(0) + T ). 30
- The second assertion follows from the estimate
180 =0+l < B3l ),
and the L2-estimate |[v]|y22 < C||Av]|z2 for v € W22(2) N HL(Q). ' 0
Lemma 5.10 (L2-estimate). If u, € L2(Q) and -
50D [016ml(un, vn) < 00, SUD [l < +00, s [Tl < oo,
then we have sup flu,| 2 < +oo and sup ||V/(un)m||L1 < +o00.
Proof. Fr'om the estimate (34), we have

Nl < C (sup et [T + 50 |91 (s o) + x (supnwnuLz) nunnm) |
" n . n -

Since p > 1, this estimate means that
sup flun Lz < +oo,
K

and then We obtain
sup [|V(un)™ [+ < sup(|01¢m|(tn, vn) + xllunl 2] Vunllz2). (35)
n B n g
[
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Lemma 5.11 (lower semicontinuity of |8¢>m|) Assume that un, — u weakly n
Lm(Q) and v, = v weakly in H3 () with

sup[unllzs < +00, sup unflwas < +oo.
Then we have v
. |81¢m|(u7 v) S_hn}linf I81¢m|(um Un),

- ) . 36)
|a2¢.m|(u7 'U) < lin}ninf |82¢m|(unyvn)~ ( )

Proof. Take any éequence Wn = (%n, n) € D(|0¢m]|) such that up, — u weakly
in L™(Q) and v, — v weakly in H}(Q) with

sup|[un||Lz < +o0, sup lvn Iz < +o0.

In order to prove ‘the lower semicontinuity, it suffices to con51der the case where
the metric slope at wy, remains bounded, that is,

0¢m[*(wn) = llg1 (wa) 32 ) + Eng(wn)lle <C (n=1,23,...)
for some constant C, where
» U g1 (wy) = Vum — XUV, €g2(wpn) = —Avy + YUn — GUs,.

The estimate (35) and the boundedness of |[uy|| L= imply that w7 is bounded
in WhH1(£2), hence in BV(Q). By the compactness theorem for, BV functions
(see Thm.3.23 of [2]), a bounded sequence in BV(f2) has a subsequence that
is weakly convergent in BV(Q), thus strongly convergent in I (Q) Therefore,
there exists a function L € BV(Q) such that a subsequence of 7" converges to
L in L'(). We can extract a further subsequence still denoted by Uy, such that

ul(z) — L(:z:) for #%-a.e. z € Q and then, u,(z) — L= (z) for Z%ae. z € Q.
Let pp, = |Lm —up|. Then the Lebesgue dominated convergence theorem yields

/1+pndx——>O (n —-00).

By the Holder inequality we have.

m—=1

: " Pn ™m , -1 #
ndz=/( ) (nl—l—nm> dx
/Qp o\T+ 7 Pl 4 pn)
(/ 'ﬁ——dz>T (/ pn<1+pﬁ)m-1dx)“.
1+pn

The second factor of the right hand ‘side is. bounded since  is bounded and -
Un, L7 € L™(Q) with sup wnllzm <-+oo. Hence we have u, — L= in L(Q).

It thereby follows that Lm = v and then
up,—u - in LYQ),

‘ 37
U —u™ in EY(Q). (87)
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Therefore the compactness of BV functions yields
/ (Vu™, &) de — / (Vu™ €)dz  for every £ € C°(Q;RY).
Q 0 , ,

On the other hand, by Rellich’s compactness theorem, we can extract a sub-
sequence still denoted by v, such that v, — v strongly in H}(Q). Thus we
have ' ’ o

_X/ <v;‘1n7€>un dr — —X/(V’U, &udz.
0 Q
By the Cauchy-Schwarz ‘inequality, we have

(91(wn), &) r2un) < 91 (wa)ll L2 (un) €] 22 (un)

(38)
= |01¢6m|(wn) €]l 22 ()
- Therefore, passing to the limit as n — 400, we have
(g1(u,v),E) 2@y < linn_ligf|81¢m|(wn)||§”L2(u)~ : (39)

Hence by duality, we obtain
C 1oieml(w) = g (@)l < lim i 1816 ()
VThe relation |62¢m|(u, v) < li% inf |82¢r, |(un, Un) follows from
(Avy,, — ﬁvnk + a@nk) — (Av = yv 4 au) weakly in L*(Q)

for a subsequence still denoted by (uy,v,) and the weak lower semicontinuity
of the norm in L?-space. O

Lemma 5.12 (continuity of ¢,). Assume that u, — u weakly in L™(Q) and
vy, — v weakly in H}(Q) ‘with

SUP [0 (n, vn) < +00, 5D [unflz2 < +o0,  sup v w2z < +oo.
Then there exists a subsequence (un,?,v,;k) such- that
klggo Gm(tin,,» vnk) = ¢m (U;U)'
Proof. From (37), it follows
Un, — « in L™(Q).

On the other hand, by Rellich’s compactness theorem, we can extract a subse-
quence vp, such that v,, —.v strongly in Hg (). Therefore, it follows that

.klim .¢m(unk7 vnk) = ¢m(u7 'U)-
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6 Energy identity of discrete solutions

In this section, we apply some well-known results of minimizing movement
scheme to our case. It is natural to treat our case in the metric space X =
Z(Q) x L*(Q2) endowed with distance d defined by «

i € : . .
@ (w1, wa) = d2y (uy, up) + Exnvz —wul2,  for w; = (ui,v) € X, (i =1,2).

That is, we should consider the following variational scheme

wk € argmin {(;Sm(w) + ——d2(w,w.]f._1)}. T (40)
we P(Q)x HL(Q) 27y, , 7

However, by this formulation, we encounter difficulties concening the existence
of subdifferentials of ¢,,,. To avoid these difficulties; we apply minimizing move-
ment scheme t0 ¢y, (-, v) in the metric space X; := F() endowed with distarice
d; defined by : :

dy (u, @) = dy (4, @) for u, i € P(Q) C Po(RY),

and 10 ¢, (u,-) in the metric space X, 1= L?(Q) endowed with distance ds
defined by - ‘ ’ k

da(v, ) == 4 /%Xnv — |2 for v, b€ L2(Q),

respectively. In this section, we refer to [3] and [18]

Remark 6.1 (implicit Euler method). Assume that we define wk = (uk,vk) by
the variational scheme (40). Then, we consider the following perturbation: for
any ¢ € C°(Q), ' ' ’

wp, 1= (uh:vh) = ((V<ph)#uf' 7'U-I;C_- + h(p),

where Vo, = id —|— hVy and h € R. Then we have

=0.
h=0

d ( L o k-1
dh {¢m(wh) + Qde (wh7w-r ) )
This relation yields the following Euler-Lagrange equations:

(o

Tk

) =T+ Tk, Vi) + O (14, )
L

vk — pk-1 . ‘ . .
- € <"I'—Tk;7 50> = —(V'UT, V‘P)LZ + (au.,. = YVUp ‘10>L2-
L2 :

(41)

Note that .the above equations coincide with the weak form of the implicit
Euler method for (1) except for the penalty term O(d%, (uf~1,uk)) in the first
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equation. In order to prove the existence of a weak solution of (1), one could -
possibly argue the convergence of (41) as |7| — 0. Such an approach works well”
in the parabolic-elliptic case (¢ =0) as shown in [5]. However, in the present
problem it is not easy to show the convergence of (41) directly. This is why we
are using another approach due to Ambrosio et al. [3].

Definition 6.2 (Mdreau—Yosida approximation): The Moreau- Yosida approzi-

mations a1 r(u,v) and as - (u,v) of ¢, are respectively defined by

o Lo 1 o
a1,r(u,v) = ﬁelélzf(g) {¢m(u, v) + Ed;(u, u)} ,

; 1 (42)
ag.r(u,v) == f)eli%f(n) {¢m(u, o)+ —270@(11, 'D)} .

‘We also define the sets of minimizers J; ,[u, v] and Ja ,[u, v] as follows:

r € i 1] 01,00, v) = () + - (ur, ), .
vr € Jo r[u,v] & ag(u,v) = ¢m(u; vr) + %d%(v, v;)
Furthermore, we set
df,(u, v) := sup {d1 (u, ur) | ur € J1 7w, v]},

: df,f(u’ v) = inf {d1(u, us) | ur € J1,7[u, ]}, (4

d'{’.,_(u, v) := sup {da(v, v;) I|'v.,- € Jo.ru,v]},
dy - (u,v) == inf {dz(v,vs) | vr € Jp,7[u,v]}.

Lemma 6.3 (continuity of the Moreau-Yosida approximation). The map (7, u) —
a1,-(u,v) is continuous in (0,00) X P(Q) for every v € HE(Q), and (1,7) —
az,r(u,v) is continuous in (0,00) x L%(Q) for everyu € L™(Q). If0< 7o < 7
and Ury € J1 (U, V], Ur, € J1,r (U, V], then the following holds:

bm(u,v) 2 a1,7, (4, 0) 2 a1,n (u,0), di(u, un) < di(y, ur),

Br1r0) > Braltirg,0) 2 bt ), o (0) S dpn(wyo), )

li?ol a1 (u,v) = lim< inf ¢m(u7,v)) = ¢ (u; v),

70 \ur€Jy,r[u,v].
Moreover, if (u,v) € D(dpm); then it holds that h?ol di. (u,v) = 0. In particular,
. T b
there exists an (at most) countable set'. A, ., such that
dIT(u, v) =di,(u,v) V7€ (0,00)\ Ay
_ Thé same relations hold for v, € Jo ,[u,v] and az r(u,v). |

v
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Proof. Let 7, — 7, di(un,u) — 0 and fcn' € Ji.r, [Un,v]. Then we have

: , 1 :
lim sup a1 7, (Un, v) = limsup {qﬁm(ﬁn,v) + ?d%(ﬂn, Un)} :

n—oo’ n— o0
i ) 1
< limsup {asm(a, v+ 5—di(d, un)} (46)
n—oo : Tn

= ¢m(G,v) + ;df(a,u), Vi e 2(Q).
Taking the infimum, we_get

limsup ai r, (tn, v) < ay - (u,v).
n—oo

On the other hand,

n

. _ , ‘ 1
liminf a1 7, (un, v) =lim inf {qu(ﬁn, v) + Fd%(ﬂh’ un)}
Zlhnllgf {qﬁm(un, v) + —Q_Tn (dl(@n, u) — dy (u, U’n))Q}

> liminf {qsm(an, v) + %df(ﬁn, u)} 47

. -7, _ 1 ) ) ‘
—|—liminf{T2 0 42 (i, ) — -T-dl(un,u)dl(un,u)}

n—eo ThT n

Zal,‘r(u7v)'

Therefore we have

) nan;o a1,7, (Un, v) = a1,7(u,v).

Hence (7,u) = a1,7(u,v) is continuous in (0, 00) x Z(Q).
By the monotonicity 7 — 7'_‘1, it easily follows that

‘ 1 . : s 1 '
. ¢m(u7‘1vv) + %di(u717u)$ ¢m(u’l‘o,v) + 2_7_1'd%(u7'07u)

1
< ¢m(u‘ro7 U) + _d%(u‘rovu) (48)
27 0 .
S ¢m (’U,, U)7
all the equalities hold if and only if %,, = ur, = 4. Therefore we have the first
inequality of (45) and ' '

li{r& a1,-{u,v) = lim ( | inf qﬁﬁ(u,,v)) =,¢;n(u, v).

710 \ur€J1 7 [u,v]
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The second inequality follows from

1 : . 1 :
¢m(u7'o7p) + %dg (uTmu) < ¢m('ur1iv) + Ed%(u‘ruv)
‘ ' A 1 T1 — 70 ‘
= ¢M(uf1’v) + %d%(uTUu’) + 20Tt d%(uru@)
1 » 1 — 70
S ¢m(u7'07v) + %d%(’u’ﬂﬁ U)+ 2TOT1 d%(u'rl7u’)'
From the definition of u,,, Wé have
A 1 o 1 5
Gm (ur,,v) + 2_d1 (Wry s u) < b (Uroy v) + 2_d1 (uforu)' ‘ (49)
T1 . T1 ¢ .

Combining with the second inequality of (45), we have

‘ ¢m(u’r17'v) < d’m(umvv)'

Let u, € Jy ;[u,v]. Then for arbitrary @ such that (%,v) € D(¢m), we have

d%(u.r,‘u) < d% (@, u) + 27(m (T, v) — Pm(ur, v)).
Taking the supremum', we have
(@1 (w,0))? < (3, 9) + 27 ($m(, ) — inf Gy,
~and then ‘ '
lim sup(dy , (u,v))? < d (&, v).
710
Here we can choose % = u, since (u,v) € D(¢r,). Therefore we have |

Li{% dIL,T (u,v) = 0.

‘We omit the proof of the last assertion. See [18] to complete the proof. O
Lemma 6.4 (slope estimate). If ur € Ji+[u,v], then (ur,v) € D(|81¢m|) and

1t holds that : 4
101 (i, v) < L(ziT’_“_T)

On the other hand, if v, € Ja 7 [u,v]; then (u,vr) € D(|8a¢m|) and

a1, 7) < 2L200)

Proof. Let u, € J1[u,v], then for every @ € (), we have

' 1 , 5 1 .,
¢m(u7'7 'U) + ;df(umu) < ¢m(”> v) + Zd?(% u),
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a,nd then
b (trs) — (s 0) < B ) — ()
m AT TS = g TV or N
= % (@ ) = dr(ur, ) (A1 (@) + ds (7)) (50)
< %d(u,,ﬂ) (da (@) + da (u, ur)).

Hence we have

(¢m(r,v) = 6m(@, )"

|81 ¢m| (Ur,v) = lim sup

Ti—u, ‘ d; (u‘ry ﬂ)
1

< limsup = (d1 (@, u) + di1 (ur, u)) g (51)
[y 2T }

_ di(ur,u)

= e

Similarly, we can obtain
|03 (u, vr) < w for vy € Jor[u,v].

O

Lemma 6.5 (derivative of Moreau-Yosida approximations). Moreau- Yosida ap-
prozimation T+ a; 7 (u,v) is differentiable £'-a.e. T >0 and we have

(i, (u,v))*

5 for L'-ae. 7> 0,0 =‘1,2)/,
-

—a;.(u,v)=—

dr

d3(u, u, T (dE, (u,v)) :
CL / @ o Dt = by ) = m(ars) Vs € il

2
Bv;vr) 7 (A, (u,v)) -~ |
“or +/0 S dr = $n(w,0) — dm(u,v,)  Vur € Typfu, ol

Proof. Let 0 <79 < 71 and ur, € J1,ro[u,v),ur, € J1,r[w50]. Then, we easily
get the following estimate, ' :

. d3(u, ur, d3(u, u,

a'l,To'('U'a 'U) — Q1,7 (’LL, 'U) = ¢m(u7'o>'”) + I(TOO)' - ¢m(u7’1av) - _I(Tll)
v d?(u, ur,) d3(u, ur,)

< ik VAN AN

< Om (UTQ v) + 27 Grm(Ury, ) o

o 1 =70 ,2 :

L= 27_07_1 dl (u, 'U/Tl ).

(52)

27



Similarly, we also have '

To — 71

al,Tl ('Ll,, U) = val,To (uy 'U) S d? ('LL, 'l),.-,-o).
' . T0T1 )

Therefore it holds that

T1 — 70 T1 — To0
0 S 27_07_1 d%(u" u"l'o) S ai,7o (u7 U) —a1,m (QL,"U) S 27‘;07_1 'd%(uﬁ u71)7 (53)
and then, for 0 < 79 < 71 we have
1 " ay (u,v) — a1, (u,v) 1 _
d+ 2 < sT0 3 yT1 ) < d 2' 54
(A (1,0)? < S 2 < g—(d, W) (54

This implies that the map’ T + a1,r(u,v) is locally Lipschitz. Passing to the
limit as 79 T 7 and 71 | 7, we obtain o

(df,_(u, v))2

d ’ |
Ealﬂ'(u, v) =— 53 for £ -a.e. 7> 0.
O
Recall the definition of the discrete solution. Let (ul,v2) = (uo,v0) be the
initial data. For k =1,2,3, ..., we recursively define v¥ and u* by
'U-I,g- € =]2,7'1c [uf-_lvv-,lc'_l]f ’
i Rl g (55)
Ur € Jl,‘l'lc’[u-r 7UT]'
Then the discrete solution W, = (%, V) is defined by
W (t) = (uk,vk)  forte (th k]
Furthermore, we also define u, by
u,(t) i=uit fort e (t+1 ek, (56)

Definition 6.6 (De Giorgi variational interpolation). Let {(u%,v¥) 2o be a
solution of the variational scheme (55). We define the De Giorgi variational
interpolation (@r,7,) by '
Br(t) = (0 4 6) € Tuslubh k] for =5 8 e (15, 8],
B (t) := 0r (8571 4 6) € Jpglub ™, vE™]  fort =151 46 € (B, 5]

(57)

We also define two functions G, and |w/.| by

' : df (ul1 ok 2 di (ukt okl 2
Galt) = (M B e ) N ]

6 3
d(wk-1 wk)
! = \Pr W)
bl = S
. ’ dl(uk—l uk) 2 dz(vk_'l Uk) 2 ak o
= L1\Br. s/ L2\Vr ) _
= 1 ghT + T \for te (th ,tT].
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‘Lemma 6.7. The function Gr(t) satisfies thé following inequality:
1018 |*(@r (£), T (2)) + 1026m * (ur (8), - (F)) < G2(B). (58)
Proof. By Lemma 6.4 and the definitions of dt s(u,v) and &, we have

d (UT(tk 1+6)7 k- 1)

|al¢m|('ar(tl,c-_1"—|‘ (5),'1) ) <

é
(59)
< di'_,é( f‘ 17“7-)
< 5 .
Similarly, we have
+ ( k—1 vk'—l)
|B2¢m | (W™, (857 + 6)) < "
Therefore, it holds that v
|81m | (i (£), B (1)) + |B26m | (1 (£), 5 (2)) < G2(2).
'O

- Proposition 6.8 (energy identity of discrete solutions). The discrete solution
Wy = (Ur,Tr) satisfies the following identity: .

1 tlf. 1 tf. . . .
§/t£_1 |wl[*(r) dr + 3 /tff._l G.zr(r) dr = ¢m(w7(t_’ﬁ‘1)) — bm(wr (%)), (60)

Proof. Since uf,“. € J1,-[ufm1, vE] and vk € Jo - [ub~1, vE1], by Lemma 6.5, we
have

dF(uft, uf) T (d (uf -r)) k=1 .k kok
27_k 27‘2 dr = ¢m (’LL.,. ; U,,.) - ¢m (U_,., UT)7
2 .
U ,aUT) Tk(d kl _)) k—1 kl k-1
27 27.2 dr = ¢m (u ) U ) G (g "0 -r)'

By adding both equalltles, and then taking into account the definitions of |w |
and G-, (60) holds true. . . O

Lemma 6.9. The discrete solution (Tr,Tr) and the De Giorgi variational in-
terpolatzon (tir, Tr) satisfy the following inequalities:

& (0 (8), T (8)) < 2I7(mi, 00) = int ), |
A (ir (0, T(0) < Birl(@mluo,o0) ~ inf ), (6)
d3(0-(t), Tr (t)) < 8|7|(¢m (uo,v0) — inf ¢pm): ‘

29



Proof. Let t € (t571, tf.].‘ From the déﬁnition of uk, we have

1 _ e
¢m(u’f_,v,’f.) + Edi(uﬁ 1?'“'5-) < ¢m(uf- lav—lf-)'

On the other hand, from the definition of vE, we have
- - - 1 B ’ ~ _ -
b (uly 1:UE)+Edg(v-’ﬁ Luf) < m(ub T b,
. Therefore, for every k € N,
G (4, 08) < G (uET,05) < Gm(ub L 0b ) < < $m(uo,v0). - (62)

Hence we have

a3 (u (), Tr (1) = df(uﬁ‘l,uf) < 27 (b (ul™t, 0F) - ¢m(U§,va)
" < 2|‘r|(¢m(u0,vo) inf ¢m). '

By the definition of #,(t) and Lerima 6.3, we have
dy (T (8), uf ™) < da(ufh uf).
Therefore we have ,
5 _ ~ - ‘ _ 2
(@ (1), T (1)) < (da(r (t),uf) + du(uf, uk))
< 4d?(ub1 uk) (64)
‘< 8|TI(¢m(uO7vo) inf ¢p).

Similarly, we have
d3(0r (t), U= (t)) < 8|7|(Bm (0, v0) — inf Gm).
O

Definition 6.10 (generalized minimizing movements). We say that a curve
w = (u,v).: [0, +o0) — L™ (Q) x H(f) is a Generalized Minimizing Movement
starting from wy = (ug, vo), if there exists a subsequence of partitions 7, with
|| | 0 and a corresponding sequerice of discrete solutions (@r,,,Tr,) defined by
Definition 3.2 such that

TUr, (t) = u(t) weakly in L™(Q) V¢ € [0, +00),

T, (£) = v(t) weakly in Hé (Q) Vte]o,4+0). (69)

The set of all the generalized minimizing movements starting from (uo, vp) will
be denoted by (u, v) € GMM (ug, vo) or w € GMM (wy).
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Proposition 6.11 (non-emptiness of GMM(wO))'. Ifwo € L™(Q)x H3(Q), then
. there exzists a subsequence wr, = (Ur,,vr,) of discrete solutions with |7,| | 0
and w = (u,v) € ACZ ([0, +00); X) such that

Ty, (£) = u(t) weakly in L™(Q), it >0,
T, (t) = v(t) weakly in HY(Q), Vit >0.

(66)

Moreover, w, and i, also converye to u wéa]gly in L™(Q). In particular, it -
holds that

o t et /
| / ' [2(r) dr < lim in / kol P(r)dr  for ¥(s,t) C [0, 00).
8 k_ n—00 ] . '
Proof.. From Proposition 6.8, we have
o | |
/ W, () dr < 2$m(wo) — inf dra). (67)
o . o

Therefore we can extract a sequence (7,,) such that
lwl, | = A weakly in L%(0, c0),

for some function A € L?(0,00). For 0 < s < t, there exist s(n) € N and
t(n) € N such that ' ~

-1 -1 '
)T s, £ <<y,
| e =l 6 =t
Taking into account that

T, (s) = Tr,(15)  and @, () = @, (),

we obtain

. t(n)=1
AW+, (5),Tr, (£)) < Y d(@r, (5, Tr, (t511))
k=s(n) ’ 68)
- (69
~ [ o tohlr)ar
3™ i
and therefore ’ ‘ . )

Jim sup d{Tn, (5), Tr, (£)) < / A(r) dr. (69)

Moreover, for each fixed ¢, from the coercivity (18)-(19), the sequence {w, (t)}
is relatively weakly compact in L™(Q2) x H}(€). Hence by a standard diagonal
argument we can find a subsequence still denoted by 7, and w : Q1 [0, 00) —
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L™(Q) x Hg () such that Wy, (¢) — w(t) weakly in L™(Q) x HE(Q) for all
t e QnNI0,00) and :

d@@%w@)swggmmg@xwmm>s/§uww

oo (70)
S\/t—s/ A?%(r)dr . for all s,t € QN [0,00), s <.
' 0 ‘

Moreover, by the inequality (70), we can extend w to an element of
ACE ([0, 400); X) and ‘

loc
|w’|(t) < A(t)  for L'-ae t>0.

By Fatou s lemma and weak lower semlcontmulty of the norm in L?-space, we
- get

n—00

/ |w| (r)dr</ A%(r) dr < liminf |w _JP(r)dr  for all (s,t) C [0,00).

O

| 7 Proof of Theorém 3.3

' In this final section, we show that w € GMM(wyg) is a time global weak solution
of the system (1). Our strategy comes from the formal derivation given in §1.3.
Proposition 7.1 (tangent velocity vector). If w = (u,v) € AC%(0,T;X) then
there ewist a unique vector field € : t € [0,T] — & € L2.(R%R%) and scalar field
n:te[0,T) — ny € L2(R?) such that
' d o
ZHt TV (Eepe) =0 in D'(Q % (0,T))

(1)

d ' ‘
v +7,=0 in D'(Qx(0,7))

ex ‘
and 1)) = [l a0y + el

Proof. By the \deﬁnitions of the distance d and its metric derivative, we have'

i) = g LEEROD _fry + Ko,

where |u |(t) and ||v( )||z2 denote the metric derivatives in Z2(Q) and L*(Q), |
respectively. Therefore if w € AC?(0,T; X) then we see.that

p € AC?(0,T; #,(Q)) and v € AC?(0,T; L*(Q)). -

By Theorem 2.7 there exists &€ such that the first equation of (71) holds and
1€/l L2(u(eyy = |4](2). On the other hand, It is known that v € AC?(0,T; L*(Q))
if and only if ¢ — v(t) is differentiable in L?(f2) and its derivative ©. belongs to
L%(0,T; L?(2)) (see [4]). It thereby follows the proposition. O
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Definition 7.2 (tangent velocity vector). We denote by w’ the tangent velocity
vector (€,n) of w = (u,v) € AC?(0,T; X), which satisfies the equations (71) in
the sense of distributions. ‘ ‘

Lemma 7.3 (chain rule). Let w+ (a,b) — w; € D(¢m) be an absolutely con-
tinuous curve in X with tangent veloczty vector wy. Let A C (a,b) be the set of
points t € (a,b) such that

(@) 108ml(w) < +0,
(b) bm 0wy is equal to a function (t) with finite pointwise variation,
(c) differential coefﬁcieni Y’ (t) exists,
(d) gradx ¢m(wy) exists.

Then we have '

V(1) = (grodx Sm(w(),w'(s)) - forte A

Proof. Let te A Observing that

lim Eh_—d =& in L}, (R;R) and lim Deth 7Bt gy in L2() |
h—0 h ¢ e ’ —0 h T?t_

(see Prop.8.4.6 of [3]), from the definition of subdiﬁerentials, we have
b (Wern) = dm(ws) > <gradX ¢m(wt) ¢(we, wetn) >w + o(d(ws, wern)),
where C(wt,wt+h) (t’““ —d, viyp = vt). Hence for‘ﬁl—a.e. h,

Y(E+h) —p(t) > <gradX Sm(we), C(we, wern) ¥ od(we, wiyn))-
Dividing by h and passing to the limit as h 1 Oand A T0, we get

¥(6) = (eradx ¢m(wi), w} )

| O
Lemma 7.4 (regularlty of dlscrete solutlons) If up € L?(Q) and (ug,v) €
D(¢r), then we have
Tr(t) € L2(Q) . ¥Vt > 0;

72
(t)eW“(Q) Vt>0 (72)
Proof By Lemma 6.4, we have (ug, v1) € D(|02¢:m|) and by Lemma 5.9 we have
vl € W22(Q). Again, by Lemmas 6.4and 5.9, we have (ul,vl) € D(|816m])
and ul € L?(0). Repeating this argument, we obtain u.,-(t) € L2(Q) and
T, (t) € W22(Q) for every t > 0. . d
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Remark 7.5. We can. obtain the same results under the assumption Vv €
L™ (Q) instead of ug € L?(§2), where 1/m + 1/m’ = 1. Then, we recursively -
“define u® and vk by v : ‘

Cub e gy [ukt vk, (73)
vE € Jop [uF, vE1).

Lemma 7.6 (finiteness of the slope). The following relations hold:
1}2&; 181 6m|(Tr (£),Be () < 400 for L1-ae. £ 0, (74)
lim inf 182 bum | (wr (£), Tr (t)) < +00  for Lloge. t>0, (75)
| l}nlnnf 16010m | (Tr (), Tr(t)) < +oo for £'-a:e. t >0, / (76 )
I}m inf ]82¢m|(u.,.(t) Ur(t)) < +o0  for Ll-ae. t >0, (77)
Proof It easily follows from Proposition 6.8 and Lemma 6.7. g

Lemma 7.7. Let (u, v) € GMM(uo,v0). Let us suppose that (T, (t), Vs, (£))
and (9, (t),r, (t)) converge to (u(t),v(t)) weakly in L™(Q) x HA(Q) for any
t > 0 and u, (t) converges to u(t) weakly.in L™(Q) for any t > 0. Then the
following inegualities hold: ‘ ‘

|81 | (), () < llim inf |81 o | (i, (£), Tre, (£))  for S-ace. t> 0,
78
1020 | (ult),v(®)) < 11m1nf|82¢m|(u,.n(t),v.,-n )  for L-a.e t>0. (78)

" Proof. In order to fix the ideas, let us suppose that

l}m_iflf |816m|(fr (t0), Ux (t0)) = lim [01m|(iir, (o), Tr, (f0)) < +o0.

Then, we can further assume sup |01 @ | (i, (B0), T, (to)) < +o00. Therefore by

Lemmas 7.4 and 5.9, we have uTn (to) € L*(Q). Moreover, by Lemmas 5. 10 and ‘
5.11, we have '

81| (u(10), (00)) < Tim_ |01yl (1), B, (1)

By Lemma 7.6, this estimate holds for #*-a.e. 1 > 0. ‘
Next, we prove the second relation. Let us suppose that

\ l}minflazqﬁml(u (t0), = (to)) = 1im~ |32¢m|(uf (t0)>5rn(t0)) < o0,

11m1nf|82¢m|( ( 0), Ur (o)) = hm |020m | (wr, (to), Tx, (t0)) < +o0, (79)

’
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and
U (826 (i, (), T (10)) < +o00, | (s0)

sup |O28m|(Lr, (to) ¥r, (t0)) < +o0. © (81

Then, by (80), Lemmas 7.4 and 5.10, we have

sup |, (to) |2 < +oo.
"

Since (81) means that

- sup | Az, (to) — ¥or, (to) + oy, (to)]l L2 < +o0,
and since (18)-(19) and the Poincaré inequality imply the uniform boundedness
of ||Tr, (to)]| L2, applying L%-estimate, we obtain

sup |[or, (to) lw22 < +o0.
n . .

Therefore by Lemma 5.11, we have
1826m|(u(to), v(to)) < hm 0 [92¢m|(&r, (o), Br, (to))-

O

Corollary 7.8. If ug € L*(Q) and vy € HL(Q), then for w € GMM(uO,vo)
gradx ¢m(w(t)) emists for Plae t>0. :

Now we give a proof of Theorem 3. 3.

Proof of Theorem 3. 3. From Lemmas 6.7 and 7.7 and Fatou’s lemma, one has
that

/ |0bm )% (w(r)) dr < Iiminf/ G2 (r)dr for0<s<t.

From the monoton1c1ty (62) and Helly’s selection theorem, there ex1sts a non-
increasing function 1 and a subsequence, still denoted by ('rn) such that

lim (@, () = 9(t) Vt 0.

n—oo
For 0 < s <t < +00, there exist s(n) € N and t(n) € N such that
B R R A A0 B AON
lim, ts(") =5, lim tt(”) =1.

n—00 n—oo

Hence we have
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t | g | ) ,
3 ) Wrears s [os.Paear -
. . . 1 tt(") t:.(nn)
<fiminf (2 L trerarsg [ 62 dr> -
= lllmllnf(zﬁm(w,.n (ts(” ) — ¢m W, ( tt(” ))
= llgnlglg.(gsm Wer, (5)) - ¢m(m‘rn (t)))
=(s) —¥(t).

Therefore,' taking into account the differentiability of a monotone function (see
- for instance Cor.- 3.29 of [2]), it follows that :

’ 1 1, ’
P (t) < —§|w'|2(t) - 5|a<;5m|2(w(t)) for £tae t>0. - (83)
Considering the definition of gradx ¢, and Proposition 7.1, we can erite
‘ ) . v
V() < —5lwlle — Sl erady gm(w(t),  for Ll-ae t>0. (84)

Moreover, from Lemmas 7.6 and 5.12,

lhm Gm (@, (1)) = dm(w(t)) for zl-a.e._t; 0.

Therefore we have

P(t) = pm(w(t)) L'-ae t20.

On the other hand by Lemma 7.3, the Cauchy-Schwarz inequality and the
Young inequality, for #-a.e. t > 0, we have

(t) = (gradx ¢m(w):w >w_2 — |l grad x Gum () s |||

> Ly bl - 2wis
In particular, tﬁe‘equality holds if and only if
| w' = — grady ém(w). (86)
Therefore, corﬁbining (84) and (85), we obtain (86) for‘;f l-a.ej t > 0. Finally, ‘
considering Proposition 7.1, we obtain the results of Theorem 3.3. O

Acknowledgement. The author would like to thank Professor Hiroshi Matano
for his valuable advise and continued encouragement, and also Professor Filippo -
Santambrogio for stimulating discussions.

36



1]
(2]

References

M. Agueh, Ezistence of solutions to degenerate parabolic equations via the Monge-
Kantrovich theory, adv. differential Equations, 10 (2005), 309-360.

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free
dzscontmmty problems, Oxford Mathematical Monographs. The Clarendon Press
Oxford University Press, New York (2000). '

L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the
space of probability measures, Lectures in Mathematics, Birkhéuser, (2005).

L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Bnanach spaces,

’ Math Ann., 318 (2000), pp. 527-555.

(171,

(18]

A. Blanchet V. Calvez, and J. A. Ca.rrlllo, Convergence of the mass-transport
steepest descent scheme for the subcritical. Patlak-Keller-Segel model SIAM J.
Numer. Anal. 46 (2008), pp.691-721.

A. Blanchet, J. A. Carrillo, and PH. Laurengot Critical mass for a Patlak- K eller-
Segel model with degenerate diffusion in higher dimensions, Cale. Var. Partial
Differential Equations 35 (2009); pp.133-168.

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model:
optimal critical mass and qualztatwe properties of the solutions, Electron. J. Dif-
ferential Equations 44 (2006), 32 pp. (electronic).

H. Gajewski and K. Zacharias, Global behavior of a reaction- dzﬁ‘uszon system
modeling chemotaxis, Math. Nachr. 195 (1998), 77-114.

M. A. Herrero and Veldzquez, Chemotazis collapse for Keller-Segel model J.
Math. Biol. 35 (1996), 177-194.

S.Ishida and T. Yokota, Global existence of weak solutions to quasilinear degener-
ate Keller-Segel systems of pambolzc-pambohc type, J. Differential Equations 252
(2012) 1421-1440. A

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degener-

- ate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential

Equations 252 (2012) 2469-2491.

R. Jordan, D. Kinderlehrer and F. Otto, The wvariational formulation  of the
Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998) 1-17 (electronic).

E. F. Keller and L. A: Segel, Initiation of slime mold aggregation viewed as an
instability, J. Theor. Biol. 26 (1970), 399-415.

S. Lisini, Nonlinear diffusion equations with variable coefficients as gradic‘antv flows
in Wasserstein spaces, ESAIM: COCV 15, {2009), 712-740.

T.Nagai, T.Senba and K.Yoshida, Application of the Trudinger-Moser inequality
to a parabolic system of chemotaxis, Funckeial, Ekvac. 40 (1997), 411-433.

E. Otto, Doubly degenerate diffusion equations as steepest descent, Manuscript
(1996).

F. Otto, The geometry of dissipative evolution equations: the porous medium
equation, Comm. Partial Diff. Eq. 26 (2001) 101-174.

R. Rossi and G. Savaré, Gradient flows of non convez functionals in Hilbert spaces
and applications, ESAIM Control Optim. Cale. Var., 12 (2006), pp. 564- 614 (elec-
tronic).

37



[19]

[20]

[21]

[22]-

(23]

Y. Sugiyarha, Application of the best constant of the Sobolev inequality to degen-
erate Keller-Segel models Adv. Differential Equations 12(2007), pp. 121-144.

Y. Sugiyama, Global existenice in the sub-critical cases and finite time blow-up
in the super-critical cases to degenerate Keller-Segel systems, Differential Integral
Equations 19 (2006) 841-876.

Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degen-
erate quasi-linear parabolic systems of chemotazis, Differential Integral Equations
20 (2007) 133-180. ‘

Y. Sugiyama and Y. Yahagi, Uniqueness and continuity of solution for the initial
data in the scaling invariant class of the degenerate Keller-Segel system J. Evol.
Equ. 11 (2011), 319-337. '

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics
58, American Mathematical Society, Providence, RI (2003).

38



