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Preface

The purpose of this thesis is to reveal relations among the asymptotic be-
havior of the cohomology group for high tensor powers of a line bundle on a
compact complex manifold, the geometry of the positivity (amplitude) and
the positivity of the curvature of a line bundle.

Let X be a compact complex manifold of dimension n. For the study of
the geometric structure of X, it is fundamental to consider a line bundle L
on X and various properties of L. Many important properties (for example,
the amplitude, the Kodaira dimension and so on) of L can be described by
the asymptotic behavior of the cohomology group H*(X, Ox(L™)) as m —
0o. The cohomology group H*(X,Ox(L™)) depends on the holomorphic
structure of L. However, the asymptotic behavior as m — oo is determined
only by the differential structure (the first Chern class) of L. The first Chern
class of L can be regarded as the space of (Chern) curvatures of L. Therefore
it is natural to investigate relations between the asymptotic behavior of the
cohomology group and the curvature of a line bundle.

In Chapter 2, we study relations between the g-amplitude and the curva-
ture of a line bundle. The g-amplitude is an asymptotic vanishing property of
the higher cohomology group whose degree is strictly larger than ¢. Strictly
speaking, a line bundle L on X is called g-ample, if for any coherent sheaf
F on X there exists an integer mq such that H*(X,F ® Ox(L™)) = 0 for
1 > g, m = my. The g-amplitude of a line bundle depends only on the
first Chern class of the line bundle. Therefore it is natural to ask what is a
characterization of a g-ample line bundle in terms of the curvature.

For this problem, we consider the Andreotti-Grauert vanishing theorem.
The Andreotti-Grauert vanishing theorem in the classical theory of several
complex variables can be generalized to an asymptotic cohomology vanishing
theorem of a line bundle on a compact complex manifold. This generalized
Andreotti-Grauert vanishing theorem asserts that a g-positive line bundle is
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always g-ample. Here a line bundle L on X is called ¢-positive, if L admits a
smooth metric whose Chern curvature has at least (n—g)-positive eigenvalues
everywhere on X. A 0O-positive line bundle is a positive line bundle in the
usual sense. Further, it follows from the Serre vanishing theorem that, a line
bundle is ample in the usual sense of algebraic geometry if and only if the
line bundle is 0-ample. Thanks to the Kodaira embedding theorem, we know
that a positive line bundle coincides with an ample line bundle. In particular,
the converse implication of the Andreotti-Grauert theorem holds when ¢ is
ZEro.

Therefore it is of interest to know whether the converse implication of the
Andreotti-Grauert theorem holds. That is to say, is a g-ample line bundle
L always g-positive 7 This problem was first posed by Demailly-Peternell-
Schneider. In Chapter 2, we investigate this problem and give affirmative
answers in the following cases.

(i) The problem is affirmatively solved on an arbitrary compact complex
manifold if L is semi-ample.

(i) The problem is affirmatively solved on a smooth projective surface with-
out any assumptions on L.

These results give a characterization of a g-ample line bundle in terms of the
curvature. In the proof of result (ii), we give a numerical characterization of
a (n — 1)-ample line bundle. From this numerical characterization, we con-
struct a metric with (n — 1)-positive curvature by using a solution of a global
equation (Monge-Ampere equation). On a surface, the asymptotic behavior
of the cohomology group can be described by the curvature, thanks to result
(i) and the theorem of Demailly on the holomorphic Morse inequality. In
this meaning, result (ii) is an important result on a surface.

The Griffiths conjecture says that, any ample vector bundle would admit
a hermitian metric with Griffiths positive curvature. It would be a gener-
alization of the Kodaira embedding theorem. The Griffiths conjecture has
similarity to the converse of the Andreotti-Grauert theorem. On the other
hand, Ottem recently constructed a counterexample to the converse of the
Andreotti-Grauert theorem on a higher dimensional manifold, by investigat-
ing the topology of the zero locus of a section of a g-positive line bundle, in
the spirit of the Lefschetz hyperplane theorem for an ample line bundle. In
Chapter 3, we study the Lefschetz type theorem for a vector bundle in this
view point.

Specifically, we compare the homotopy groups of a compact complex man-
ifold X with those of the zero locus S of a section of an ample vector bundle
E on X. Then it is conjectured that the relative homotopy group m;(X, S)
vanishes for 4 < n — r. Here r is the rank of E. We affirmatively solve this
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problem under the assumption that the tautological line bundle Op(a~)(—1)
is (r — 1)-positive. The proof is based on the Morse theory. This assump-
tion is satisfied when E is globally generated. Therefore this result can be
seen as generalizations of the classical results. Moreover, we prove that the
natural map 71(S) — m1(X) between fundamental groups is surjective when
S has the expected dimension. For the proof of this result, we consider the
cohomological dimension (cohomological completeness) of the complement
X\ S. Then we construct suitable sections which separate an étale covering.
For this purpose, we solve the O-equation with the L2-estimate. This idea is
based on the technique of Napier-Ramachandran. We estimate the number
of such sections by the dimension of the cohomology of the formal scheme.
Further, we apply the duality theorem on the formal scheme.

In Chapter 4, we give a characterization of the amplitude of a vector bun-
dle on a curve. As an application, we give a partial result for the Hartshorne
conjecture. The Hartshorne conjecture says that some positive multiple of a
smooth subvariety with ample normal bundle would move (as a cycle) in a
large algebraic family. Chapter 4 is based on a joint work with Ottem.

In Chapter 5, we investigate the restricted volume of a big line bundle
along a subvariety. We give an analytic description of the restricted volume
in terms of the curvature currents associated to singular metrics. Further,
we give a relation between the existence of a Zariski decomposition and the
behavior of the restricted volume of a big line bundle.

In Chapter 6, we consider the extendability of a singular metric of a line
bundle from a subvariety to an ambient space. We prove that the extend-
ability of singular metrics with positive curvature currents of a line bundle
implies the amplitude of the line bundle. It gives an ampleness criterion of
a line bundle with the extendability of singular metrics.
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Preliminaries

In this chapter, we collect the basic notations, definitions and results that
are often used in the subsequent chapters.

1.1 Notations and conventions

Throughout this thesis, we denote by X a compact complex manifold. Some-
times we may assume that X is Kéhler or projective. Further, we denote by
L a (holomorphic) line bundle on X. For simplicity, we denote by L*, the
k-th tensor product L®* of L, except Chapter 6. In Chapter 6, we use ad-
ditive notation for the tensor product of a line bundle. We use the words
“divisors”, “line bundles” and “invertible sheaves” interchangeably.

1.2 Currents

Let X be a compact Kéhler manifold. Since X is a Kéhler manifold, H??(X, C)
is identified with the quotient of the space of d-closed (p, p)-currents modulo
the dd®-exact currents. For our purpose, the case of p = 1 is important. We
say that a function ¢ is a potential function of a (1, 1)-current T if T = dd°y.
Notice that a (local) potential function is uniquely determined modulo the
pluriharmonic functions. If T is d-closed, we can locally take a potential
function of T. A d-closed (1, 1)-current is said to have analytic (resp. alge-
braic) singularities (along the subschema V' (Z) defined by an ideal sheaf Z),
if its potential function ¢ can be locally written as

c
o= 5l08(lfil* + . + [fel) +v



for some ¢ € Ry (resp. ¢ € Qsg), where fi,..., fr are local generators of
7 and v is a smooth function. Then V(Z) is called the singular locus of the
current.

1.3 Pull-backs of (1,1)-currents

Let us confirm the definition of the pull-back of a d-closed (1, 1)-current by a
holomorphic map. Let T be a d-closed (1, 1)-current on X and let f : Z — X
a holomorphic map from a complex manifold Z to X. Assume that the image
of Z by f is not contained in the polar set of a potential function of 7. Then
we can define the pull-back of T by f as follows: Since T is d-closed, we can
locally take a potential function ¢ of T'. Then the pullback of T is (locally)
defined to be f*T" := dd°f*p. It determines a global d-closed (1, 1)-current
on Z since dd®f*y does not depend on the choice of a local potential function
¢. In particular, we can restrict a d-closed (1,1)-current to a submanifold
if the submanifold is not contained in the polar set of its potential function.
Notice that the pull-back f*T is also positive if T is positive.

1.4 On the line bundles and transcendental
classes

In this section, we recall the definition of an ample (nef, big, pseudo-effective)
line bundle.

Let us recall that an class lies in HY!(X, Z) if and only if the class is the
first Chern class of some line bundle. The Néron-Severi space NSg(X) is the
R-vector space defined by NSg(X) := HY(X,Z) @ R.

If some positive multiple L™ of L has a holomorphic section, L is called
Q-effective. When L is Q-effective, the complete linear system of L™ gives
the rational map @z : X — P(|L™|). When the rational map induced by a
sufficiently large multiple of L is a birational map, the line bundle L is called
big. The pseudo-effective cone is defined by the closure of the cone generated
by positive linear combinations of big line bundles. If the first Chern class of
L lies in the pseudo-effective cone, L is called psuedo-effective. A line bundle
L is semi-ample, if its holomorphic global sections of some positive multiple
of L have no common zero set. When L is semi-ample, the the complete
linear system of a sufficiently large multiple of L induces the holomorphic
map to the projective space. If the holomorphic map give an embedding to
the projective space, L is called ample. If the first Chern class of L lies in



the closure of the cone generated by positive linear combinations of ample
line bundles, L is called numerically effective (nef in short).

Now we consider a transcendental class a in HY'(X,R). The Néron-
Severi space is contained in H“'(X,R) however NSg(X) & H“*(X,R) in
general. We recall the definition of a Kahler (nef, big, pseudo-effective) class.
Certainly, when « is the first Chern class of L, L is ample (resp. nef, big,
psuedo-effective) if and only if o is Kéhler (resp. nef, big, psuedo-effective).

Definition 1.4.1. Let a be a class in HY(X,R). Fix a hermitian form w
on X.

(1) o is said to be a Kdhler class if there exists a smooth positive form in
a.

(2) «is said to be a nef class if for each € > 0 there exists a smooth form
0. in « such that 6, > —ew.

(3) « is said to be a big class if there exists a Kahler current in a.

(4) « is said to be a pseudo-effective class if there exists a positive current
in a.

1.5 On the ample vector bundles

In this section, we confirm the definition of an ample vector bundle. Let F
be a vector bundle of rank 7 on X. Then we consider the projective space
bundle P(E) of E, which is a complex manifold of dimension n +r — 1. In
this thesis, we denote by P(FE) the projective space bundle associated to E
in the sense of Grothendieck. That is,

P(E) = Proj ( é Symk(E)) .

k=0

By the construction, we have the morphism P(E) — X and the invertible
sheaf Op(g)(1) on P(E). We denote by Opg)(—1), the dual line bundle of
Opg)(1). A fibre of P(E) — X is the space of 1-dimensional quotients of
E. Further the restriction to a fibre of Opz)(1) is equal to the hyperplane
bundle on the projective space (the space of 1-dimensional quotients of E).

Definition 1.5.1. (1) A vector bundle E is called ample if the line bundle
Op(g)(1) is an ample line bundle on P(E).

(2) A vector bundle E is called Griffiths-positive if there exists a hermitian
metric on F such that the Chern curvature is Griffith-positive.



We can easily see that a Griffiths positive vector bundle is ample. How-
ever, we do not know whether an ample vector bundle is always Griffiths
positive. It is so-called the Griffiths conjecture.

1.6 Asymptotic invariants of base loci

In this section, we collect the definitions and properties of the augmented base
locus and the restricted base locus of a divisor (line bundle). See Definition
1.2, 1.12 in [ELMNPO09] for more details.

Definition 1.6.1. Let L be an R-divisor (line bundle) on X.
(1) When L is a Q-divisor, the stable base locus B(L) of L is defined by

B(L) := () Bs(|kL|)
k

where k runs through all positive integers such that kL is a Z-divisor.
(2) The augmented base locus B, (L) of L is defined by

B.(L):= (1] Supp(E)
L=A+E

where the intersection is taken over all decomposition L = A+ E, A and E

are R-divisors such that A is ample and F is effective.
(3) The restricted base locus B_(L) of L is defined by

B_(L) := | JB(L + A)

where the union is taken over all ample R-divisors A such that L + A4 is a
Q-divisor.

Let us recall the definitions of the non-Kahler locus and the non-nef locus
of a class & € HM (X, R) (see definition 3.3, 3.17 in [Bou04]).

Definition 1.6.2. (1) Assume « is a big class (that is, it possesses a Kéhler
current). Then the non-Kdahler locus E,k(a) of a is defined to be

E.k(a):= m E (T)

where T' ranges among the Kéhler currents in a. Here E,(T) denotes
{z e X | v(T,z) > 0}.



(2) Assume « is a pseudo-effective class (that is, it possesses a positive cur-
rent). Then the non-nef locus Epn(a) of o is defined to be

Eun(a) ={ze X |via,z) >0.}.

Here v(a, ) is sup,sqV(Tmine, ), where Tpine is a current with minimal
singularities in a + e{w} and {w} is the class of a Kahler form w on X.

In this thesis, we need the following properties of these base loci. We state
the properties of the non-Kéhler (non-nef) locus without the proofs: (but we
give the references). Note that the non-Kéhler (resp. non-nef) locus of o
coincides with the augmented (resp. restricted) base locus of L when « is
the first Chern class of some line bundle L. Thus, the augmented (restricted)
base locus also satisfies the following properties.

Proposition 1.6.3. (1) ((ELMNPO09, Section 5]). Given a classa € HY(X,R),
we have E,x(B) C E.x(a) for every class B in a sufficiently small open
neighborhood of a € H' (X, R).

(2) ([Bou04, Theorem 3.17]). If « is big, there is a Kahler current S in «
with analytic singularities such that E.(S) = E, k().

(3) ([Bou04, Proposition 3.6]). If a is big, we have

Epn(a) = {r € X | v(Tinin,z) > 0.}
where Toin 15 a current with minimal singularities in o.

Precisely speaking, property (1) was proved only for the augmented base
locus in [ELMNPO9, Section 5]. However, we shall give the proof for the
non-Kahler locus in the proof of Proposition 5.4.10.

1.7 Numerical characterizations of pseudo-
effective line bundles

In this section, we give a numerical characterization of the pseudo-effective
line bundles, which was established in [BDPPO04]. In this section, we assume
that X is projective.

Definition 1.7.1. ([BDPP04, Definition 1.3]). A curve C on X is called a
strongly movable curve if

C=/,L*(Alﬁ”'ﬂAn_1)
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for suitable very ample divisors A; on X, where W X — X is a birational
morphism.

The following theorem gives a numerical characterization of the pseudo-
effective line bundles. We shall apply this theorem in Chapter 6, 4.

Theorem 1.7.2. ([BDPP04, 0.2, 1.5 Theorem]). The following conditions
are equivalent.

(1) A line bundle L is pseudo-effective.

(2) The degree of L on C is semi-positive for every strongly movable curve

C.



Asymptotic cohomology vanishing

and a converse to
the Andreotti-Grauert theorem

2.1 Introduction

In complex geometry, the concept of positivity plays an important role. In
particular, a positive line bundle is fundamental and important in the theory
of several complex variables and algebraic geometry. For that reason, a
positive line bundle has been characterized in various ways. For example,
some positive multiple gives an embedding to the projective space (geometric
characterization), all higher cohomology groups of some positive multiple
are zero (cohomological characterization), and the intersection number with
any subvariety is positive (numerical characterization). The purpose of this
chapter is to generalize these characterizations to a g-positive line bundle.

Throughout this chapter, let X be a compact complex manifold of dimen-
sion n, L a line bundle on X and ¢ an integer with 0 < g < n—1. Sometimes
we may assume that X is Kahler or projective.

In this chapter, we study relations between the g-positivity and the co-
homological g-amplitude of a line bundle. The fundamental relations are
discussed in [DPS96]. Further, Kiironya and Totaro investigated the coho-
mological g-amplitude of a line bundle in terms of algebraic geometry (see
[Kiir10], [Tot10]). We consider a g-ample line bundle in terms of complex ge-
ometry. Let us recall the definition of a g-positive (cohomologically g-ample)
line bundle. :

Definition 2.1.1. (1) A holomorphic line bundle L on X is called g-positive,
if there exists a (smooth) hermitian metric A whose Chern curvature v/—16,(L)



has at least (n — ¢) positive eigenvalues at any point on X as a (1, 1)-form.

(2) A holomorphic line bundle L on X is called cohomologically q-ample, if
for any coherent sheaf F on X there exists a positive integer mo = mgo(F) > 0
such that

Hi(X,f(X)OX(Lm)) =0 fori>q, m>my.

Andreotti and Grauert proved that a g-positive line bundle is always g-
ample. (see [AG62, Théoreme 14|, [DPS96, Proposition 2.1]). It is of interest
to know whether the converse implication of the Andreotti-Grauert theorem
holds. In this chapter, we mainly discuss the following problem.

Problem 2.1.2. ([DPS96, Problem 2.2]). Does the converse implication of
the Andreotti- Grauert theorem hold ? That is to say, is a g-ample line bundle
always g-positive ¢

This problem was first posed by Demailly, Peternell and Schneider in
[DPS96]. Precisely speaking, they consider a uniformly g-ample line bundle.
However, Totaro showed that the uniform g-amplitude is the same concept
as the cohomological g-amplitude (see [Tot10, Theorem 6.2]). It is a natural
question. However it has been an open problem for a long time, except the
case of ¢ = 0.

A 0-positive line bundle is a positive line bundle in the usual sense. Fur-
ther, it follows from the Serre vanishing theorem that a cohomologically 0-
ample line bundle is ample in the usual sense of algebraic geometry. Thanks
to the Kodaira embedding theorem, we know that a positive line bundle co-
incides with an ample line bundle. Therefore Problem 2.1.2 is affirmatively
solved in the case of ¢ = 0.

In Section 2.2, we study this problem when X is a smooth projective
surface. The main result of this section is an affirmative answer for Problem
2.1.2 on a surface (Theorem 2.1.3). For the proof of Theorem 2.1.3, we
establish Theorem 2.2.1. Theorem 2.2.1 also leads to Corollary 2.2.6, which
can be seen as the generalization of [FO09, Theorem 1]. Theorem 2.2.1 is
proved by using a solution of the Monge-Ampere equation.

Theorem 2.1.3. On a smooth projective surface X, the converse of the
Andreotti- Grauert theorem holds. That is, the following conditions are equiv-
alent.

(A) L is cohomologically q-ample.

(B) L is g-positive.



In his paper [Dem10-B], Demailly proved the converse of the holomorphic
Morse inequality under various situations. These results can be seen as a
“partial” converse of the Andreotti-Grauert theorem. The original part of
this chapter is to give an “exact” converse (see [Dem10-B] or Section 2.5
for the precise difference). By combining Theorem 2.1.3 and the result of
[Dem10-B], the asymptotic behavior of the higher cohomology on a surface
can be interpreted in terms of the curvature.

In Section 2.3, the various characterizations of the g-positivity of a semi-
ample line bundle are given on an arbitrary compact complex manifold. A
line bundle L is called semi-ample, if its holomorphic global sections of some
positive multiple of L have no common zero set. A semi-ample line bundle
induces a holomorphic map to the projective space. (See [Laz] for more
details on a semi-ample line bundle.)

Theorem 2.3.1 gives a relation between the fibre dimension of a holo-
morphic map and the g-positivity. When the map is the holomorphic map
associated to a sufficiently large multiple of a semi-ample line bundle L, con-
dition (B) in Theorem 2.3.1 is equivalent to the cohomological g-amplitude
of L (see [Som78-B, Proposition 1.7]). It leads to the following theorem:

Theorem 2.1.4. Let L be a semi-ample line bundle on a compact complex
manifold X. Then the following conditions (A), (B) and (C) are equivalent.

(A) L is g-positive.

(B) The semi-ample fibration of L has fibre dimensions at most q.

(C) L is cohomologically q-ample.
Further of X 1is projective, the conditions above are equivalent to condition
(D).

(D) For every subvariety Z with dim Z > q, there exists a curve C on Z
such that the degree of L on C is positive.

Condition (B) (resp.(C), (D)) gives a geometric (resp. cohomological,
numerical) characterization of a g-positive line bundle. In particular, the
converse of the Andreotti-Grauert theorem holds for a semi-ample line bundle
on an arbitrary compact complex manifold.

In Section 2.4, we consider the Zariski-Fujita type theorem (Theorem
2.4.1) in order to investigate the g-positivity of a big line bundle. In par-
ticular, we know that the converse of the Andreotti-Grauert theorem for a
big line bundle is reduced to the case of varieties of smaller dimension (the
non-ample locus).



2.2 Monge-Ampere equations and (n — 1)-
positivity

This section is devoted to prove Theorem 2.2.1 and its corollaries. Through-
out this section, let L be a line bundle on a compact Kahler manifold X and
w a Kahler form on X. First we give the proof of Theorem 2.2.1.

Theorem 2.2.1. Let L be a line bundle on a compact Kihler manifold X
and w a Kahler form on X . Assume that the intersection number (L-{w}"™!)
is positive. Here {w} denotes the cohomology class in HY'(X,R) which is
defined by a d-closed (1,1)-form w.

Then L is (n—1)-positive. That is, there exists a smooth hermitian metric
h whose Chern curvature v/—10y(L) has at least 1 positive eigenvalue at
every point on X.

Proof. The main idea of the proof is to use a solution of the Monge-Ampére
equation. In order to solve the Monge-Ampere equation, we make use of the
following Calabi-Yau type theorem. It is a deep result which was proved as
a special case in [Yau78|. Roughly speaking, it says that the product of the
eigenvalues of a Kéhler form (which represents a given Kéhler class ) can be
controlled.

Theorem 2.2.2. ([Yau78]). Let M be a compact Kéhler manifold of dimen-
ston n and w a Kdhler form on M. For a positive smooth (n,n)-form F > 0
with [, F = [, @", there ezists a function ¢ € C®(M,R) with the following
properties :

(1) (W+dd°p)" = F at every point on M

(2) (W+dd%) is a Kahler form on M.

Fix a smooth hermitian metric h of L. Then the Chern curvature /—1 Or(L)
represents the first Chern class of L. We want to construct a real-valued
smooth function ¢ on X such that +/—10,(L) + dd°yp is (n — 1)-positive
(that is, the (1,1)-form has at least 1 positive eigenvalue everywhere). If
we obtain a function ¢ with the condition above, we can easily see that L
is (n — 1)-positive. In fact, the Chern curvature associated to the metric
defined by he™2? is equal to v/—10(L) + dd°p. Therefore it is sufficient to
construct a function ¢ with the condition above. To construct such function,
we make use of Theorem 2.2.2.
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Since w is a positive form, the (1,1)-form /—10,(L) + kw is a Kahler
form on X for a sufliciently large constant £ > 0. Now we consider the
following Monge-Ampére equation:

(\/——l@h(L) +hw + ddcgp)n = Dk (kw)n7
(\/:_I@h(L) + kw + ddc(‘p) > 0.

Here Dy is a positive constant which depends on k. In order to solve this
equation, we need to define Dy by

_ [ (V/=164x(L) + kw)"
Jx (kw)" '

When Dy is defined as above, we know that there exists a solution of the

Dki

equation, thanks to Theorem 2.2.2. In fact, by applying Theorem 2.2.2 to a
Kahler form

5= (V=104(L) + kw)

and a smooth (n,n)-form F := Dy (kw)n, we can obtain a solution. Notice
that the equality | W= f x I holds from the definition of Dy.

Now we shall show that the constant Dy is greater than 1 for a sufficiently
large k£ > 0. We use the assumption of the theorem only for this argument.
By the definition of Dy we obtain

_ [x (V=1O4(L) + kw)"
Sy (k)™
_ (LA Rw))”
(k{w})”
(L") + kn(Lr1 - {w}) + - + k" In(L - {w}™ )

- ) o

The molecule in the right hand is a polynomial of degree (n — 1) with

Dy,

respect to k. Further, the coeflicient of the highest degree term is equal to
n(L - {w}"!). It is positive by the assumption. Therefore the first term in
the right hand is greater than 0 for a sufficiently large & > 0. Hence Dy is
greater than 1.

Finally we show that +/—104(L) + dd°y has at least 1 positive eigenvalue
at every point on X. Here Ai(z) > --- > A\,(z) denote the eigenvalues of

(V=1O4(L) + kw + dd°p)

11



with respect to kw at x € X. Then the function A; fori =1,2,...,n is well-
defined as a function on X. Further A; for i = 1,2,...,n is continuous, since
the j-th symmetric function in Ag, ..., A, is smooth. Since ¢ is a solution of
the Monge-Ampére equation, the functions \; satisfy the following equality
everywhere:

AM(z)Ao(z) - Ap(z) = Dp > 1, forany z € X.
In addition, A,(z) is positive for any point x € X since
(V—104(L) + kw + dd°p)

is a Kahler (1,1)-from. Thus we know A;(z) > 1 at every point on X since
Dy is greater than 1.
Now the eigenvalues of

V—=104(L) 4 dd°p = (v/—104(L) + kw + dd°p) — kw

are (A1 —1),..., (A, —1) since all eigenvalues of kw are 1. Thus (v/—104(L)+
ddcgo) has 1 positive eigenvalue (A; — 1) everywhere. It completes the proof.
O

On the rest of this section, we give the proofs of Theorem 2.2.3 and
Corollary 2.2.6.

Theorem 2.2.3. (=Theorem 2.1.3). On a smooth projective surface X,
the converse of the Andreotti-Grauert theorem holds. That is, the following
conditions are equivalent.

(A) L is cohomologically q-ample.

(B) L s g-positive.

In the statement of Theorem 2.2.3, it follows that condition (B) leads to
(A) from the Andreotti-Grauert theorem. The converse is an open problem
and a main subject in this chapter. Theorem 2.2.3 claims the converse is
affirmative on a smooth projective surface.

For the proof of Theorem 2.2.3, we shall prepare Lemma 2.2.4 and Lemma,
2.2.5. These lemmata may be known facts. However we give proofs for
readers’ convenience. Lemma 2.2.4 can be proved even if X has singularities.
However for our purpose, we need only the case where X is smooth.

Lemma 2.2.4. Let L be a line bundle on a smooth projective variety X.
Then the following conditions are equivalent.

(1) The dual line bundle L™ is not pseudo-effective.

(2) L is cohomologically (n — 1)-ample.

12



Proof. This theorem follows from the Serre duality theorem.

First we confirm that condition (2) implies (1). For a contradiction,
we assume that L7! is psuedo-effective. Then we can take an ample line
bundle A on X such that A ® L™™ has a non-zero section for every positive
integer m > 0. Note that A does not depend on m. For the coherent sheaf
Ox(Kx ® A1), we can take a positive integer m such that

W (X,0x(Kx @ A7 Q@ L™) =0

from condition (2). Here Kx denotes the canonical bundle on X. The
Serre duality theorem asserts that h°(X,0Ox(4 ® L™™)) = 0. This is a
contradiction to the choice of A.

Conversely we show that condition (1) implies (2). Fix an ample line
bundle B on X. For a given coherent sheaf 7 on X, we can take the following
resolution of F by choosing an integer k£ > 0:

0—G— N ,0x(B™*) —F—0o.

In fact, F @ Ox(B*) is globally generated for a sufficient large k since B is
ample. Therefore we have a surjective map &Y ,0x(B~*) — F as a sheaf
morphism. We define G by the kernel of its map.

Thus it is sufficient to show that there is a positive integer mg such that

h"(X, Ox(B™*® Lm)) =0 for m > myg

In fact, the long exact sequence yields h™ (X, F ® Ox(L™)) = 0 for m > mso.
It means that L is cohomologically (n — 1)-ample.

Since L~! is not psuedo-effective, there is a sufficiently large integer myq
such that K3' ® B¥ ® L™™ is not psuedo-effective for m > myg. It implies

h’(X,0x(Kx' @ B*®@ L™)) = 0.
Again by using the Serre duality theorem, we have
R(X,0x(B*®L™) =0
for m > my. O

Lemma 2.2.5. Let L be a line bundle on a smooth projective variety X.
Then the following conditions are equivalent.

(2) L is cohomologically (n — 1)-ample.

(3) There exists a strongly movable curve C on X such that the degree of
L on C is positive.
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Proof. The deep result proved in [BDPP04] yields Lemma 2.2.5. It follows
from [BDPP04, Theorem2.2] that the cone of pseudo-effective line bundles is
the dual cone of strongly movable curves. That is, a line bundle is pseudo-
effective if and only if the degree of the line bundle on every strongly movable
curve is semi-positive. From Lemma 2.2.4, L is cohomological (n—1)-ample if
and only if L™ is not psuedo-effective. Therefore then there exists a strongly
movable curve C such that

(Lt.C)<o.

It completes the proof. O

By applying Lemma 2.2.5 and Theorem 2.2.1, we shall complete the proof
of Theorem 2.2.3.

Proof of Theorem 2.2.8. When X is a projective surface, the closure of the
cone of strongly movable curves coincides with the closure of the cone of
ample line bundles (that is, the nef cone). Indeed, the dual cone of pseudo-
effective line bundles equals to the closure of the cone of ample line bundles.
Therefore, when L is cohomologically (n — 1)-ample, we have an ample line
bundle H with (L - H) > 0 by Lemma 2.2.5.

Since L is ample, the first Chern class of L contains a Kahler form w.
Since the intersection number (L - H) equals to (L - {w}), the line bundle
L satisfies the assumption in Theorem 2.2.1. Therefore if follows that L is
1-positive from Theorem 2.2.1.

O

At the end of this section, we prove Corollary 2.2.6, which can be seen as
the generalization of [FO09, Theorem 1] to a psuedo-effective line bundle. In
[FO09], in order to show that an effective line bundle is (n — 1)-positive, Fuse
and Ohsawa apply (n — 1)-convexity of a non-compact complex manifold.
We make use of the Monge-Ampere equation instead of (n — 1)-convexity of
a non-compact complex manifold.

Corollary 2.2.6. Let L be a pseudo-effective line bundle on a compact Kdhler
manifold X. Assume that the first Chern class of L is not trivial.
Then L is (n — 1)-positive.

A line bundle is called pséudo— effective if there exists a singular hermitian
metric h whose curvature current /—16,(L) is positive on X as a (1,1)-
current. A pseudo-effective line bundle (which is not numerically trivial)
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is cohomologically (n — 1)-ample (see Lemma 2.2.4). Therefore a pseudo-
effective line bundle should be (n—1)-positive if the converse of the Andreotti-
Grauert theorem holds. Corollary 2.2.6 claims that it is affirmative on a
compact Kahler manifold.

Proof. Under the assumption of Corollary 2.2.6, we show that the line bundle
L satisfies the assumption in Theorem 2.2.1. In fact, it follows from the fol-
lowing lemma. Hence the intersection number (L-{w}"~!) must be positive.
It follows that L is (n — 1)-positive from Theorem 2.2.1. O

Finally we prove Lemma 2.2.7.

Lemma 2.2.7. Let L be a pseudo-effective line bundle whose first Chern
class c1(L) is not zero. Then the intersection number (L-{w}™1) is positive
for any Kdhler form w on X.

Proof. We take an arbitrary smooth (n — 1,n — 1)-form v on X. Since the
(n—1,n—1)-form w™ ! is strictly positive, there exists a large constant C' > 0
such that

—Cuw™ i< v < Cuw™ L.

Here we implicitly used the compactness of X. Since L is pseudo-effective, we
can take a singular metric 2 on L such that the curvature current /—10(L)
is positive. It gives the following inequality:

—C/X V=IO(L) Awr L < /X\/—_l@(L)/\fyg C/X\/—_l@(L)/\w”_l.

The (1,1)-current v/—1©(L) represents the first Chern class of L. Thus the
integral in the right and left hands

/X V=IO(L) AL

agrees with the intersection number (L - {w}™!). If the intersection number
is zero,

/\/—_1@(L)/\7:O

for any smooth (n — 1,n — 1)-form v from the inequality above. It means
that the (1,1)-current v/—10(L) is a zero current. This is a contradiction
to the assumption that ¢;(L) is not zero. Hence the intersection number
(L - {w}™ 1) is positive for any Kahler form w on X. O
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2.3 TFiber dimensions and q-positivity

The main purpose of this section is to give the proof of Theorem 2.1.4. For
this purpose, we first consider Theorem 2.3.1.

Theorem 2.3.1. Let ® : X — Y be a holomorphic map (possibly not
surjective) from X to a compact complex manifold Y. Then the following
conditions are equivalent.

(A) Fiz a Hermitian form w (that is, a positive definite (1,1)-form)
on Y. Then there exists a function ¢ € C®(X,R) such that the (1,1)-
form ®*w + dd°p is g-positive (that is, the form has at least (n — q) positive
eigenvalues at any point on X as a (1,1)-form). |

(B) The map © has fibre dimensions at most q.

Throughout this section, let ® : X — Y be a holomorphic map from
X to a compact complex manifold Y. Fix a hermitian form w on Y. Set
w := ®*w, which is a semi-positive (1,1)-form on X.

First we show that condition (A) implies (B). For a contradiction, we
assume that there is a fibre F' of the map ® with dim F/ > ¢. Then by
condition (A), X allows a smooth function ¢ such that &+ddy is g-positive.
Since F' is a fibre, the restriction to F' of w = ®*w is equal to zero. It implies
that the restriction to F' of ddp is g-positive. Even if F' has singularities,
we can define the g-positivity (see Definition 2.4.2) Thus, it follows from
dim F' > g, that there is a smooth function ¢|r on F whose Levi form has
at least 1 positive eigenvalue.

Since F' is compact, the function ¢|r has the maximum value. Suppose
that p € F attains the maximum value of ¢|r. Then the Levi-form of ¢|r
at p has no positive eigenvalues. It is a contradiction. Hence condition (A)
leads to (B).

On the rest of this section, we shall show that condition (B) implies (A).
From now on, we assume that the dimension of every fibre of the map ®
is at most g. Then we want to construct a function ¢ with condition (A).
For this purpose, we define the degenerated locus of a hermitian form by the
pull-back of the map & as follows:

Definition 2.3.2. The degenerated locus by the pull-back of ® is defined to
be

Bg:={pe€ X | ®w has at least (g+ 1) zero eigenvalues at p.}.
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Since w = ®*w is a semi-positive form, w is g-positive outside B,. There-
fore if B, is empty, condition (A) is satisfied by taking ¢ := 0. It is sufficient
to consider the case where By is not empty. The following lemma asserts that
the degenerated locus is locally the zero set of finite holomorphic functions.

Proposition 2.3.3. The degenerated locus By is a closed analytic set on X .

Proof. First we show that B, is a closed set in X. Fix a hermitian form @
on X. We denote by A\; > .-+ > A, > 0, the eigenvalues of W with respect
to w. The j-th symmetric function in Aq,..., A, is smooth since @ and @
is smooth forms. Therefore A; for 0 < ¢ < n is a (well-defined) continuous
function on X. Now p is contained in B, if and only if A,_;(p) = 0. Thus
the degenerated locus is closed since A,_, is a continuous function.

It remains to show that B, is the zero set of finite holomorphic functions.
Now we take a local coordinate (wi,...,wy,) on Y. Here m denotes the
dimension of Y. Then the degenerate locus of w coincides with the degenerate
locus of Y 7", dd®|w;|?. In fact, it follows since we have

m m
C> ddhwi|* > w > (1/C) Y dde|w;[?
i=1 i=1
for a sufficiently large constant C' > 0.
The holomorphic map ® can be locally written as

(2150 20) — (f1(2), .- ., fm(2))

for some holomorphic functions f;. Here (z1,...,2,) denotes a local co-
ordinate on X. Then B, is equal to the locus where the hermitian form
dde >, dd°| fi(2)|? has at least (g + 1) zero eigenvalues. In general, a semi-
positive hermitian form has at least (¢ + 1) zero eigenvalues if and only if
Jj-th symmetric function in the eigenvalues is zero for n — ¢ < 7 < n. By a
simple computation, j-th symmetric function o; in A, ..., A, is described as
follows:

o= Y det((6,Gu))

=1,...,n
0<ip<---<i;<n ’ mn

-l XY (),

0<ip << <n 0Ly << a; <m

2

Here gi* denotes the differential 0f,/0z, G; a vector (g7,...,g™), and (-, )
the standard hermitian metric on C™. Therefore the set defined by o; = 0
(n — q < j < n) is the zero set of finite holomorphic functions. O
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Thanks to Proposition 2.3.3, we can consider the dimension of B,. When
the dimension of Bj is less than or equal to ¢, we can easily see condition (A)
in Theorem 2.3.1 from Lemma 2.3.8. When the dimension is greater than g,
we factor B, to subvarieties of smaller dimension. For this purpose we need
Lemma 2.3.5. The assumption on fibre dimensions is used in the proof of
this lemma. Later we need to treat an analytic set which may not be closed.
For that reason, Lemma 2.3.5 is formulated for an analytic set (possibly not
closed).

Definition 2.3.4. A subset V in X is called an analytic set if at every point
pin V there exist a small neighborhood of p and finite holomorphic functions
on the neighborhood such that V is the zero set of these functions.

Note that an analytic set does “not” mean a closed analytic set in this
chapter. For example, the set {1 /neC ’ neN } is an analytic set, but not
a closed analytic set.

Lemma 2.3.5. Let W be an irreducible analytic set (possibly not closed,
singular) on X. Assume that the dimension of W is greater than q.
Then the degenerate locus D defined by

D = {p € Wieg ‘ The restriction &|w,,, has at least (g+1) zero eigenvalues at p }

is a closed analytic set on Wye and properly contained in Wieg. Here Wieg
denotes the regular locus of W.

Proof. We have already proved that D is a closed analytic set on Wieg in the
proof of Proposition 2.3.3. It remains to show that D is a properly contained
subset in Wi For a contradiction, we assume D = Wieg.

We take a point p in W,e such that ®|y : W — Y is a smooth morphism
at p, and a fibre F' of ® containing p. Further we take an open ball U in W
with a local coordinate (21, ..., 2,) centered at p. We may assume that the
first coordinate (2i,...,.2;) also becomes a local coordinate on Fy,. Here r
(resp. s) denotes the dimension of W (resp. F').

Now we consider the restriction f of ® which is defined by

fi=0@p: F* — Y, where F- ={(0,...,0,2°"},...,2") e U. }.

Then the fibre of ®(p) by f is a zero dimensional analytic set. It implies the
Jacobian of f is not identically zero on some neighborhood of p. Hence the
holomorphic map f gives a local isomorphism at some point. This means the
restriction of @ to F+ has (n — s) positive eigenvalues. Note that s is less
than or equal to g. This is a contradiction to Wi = D. O
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Lemma 2.3.5 leads to Proposition 2.3.6. Later we shall apply this propo-
sition to By. The set B, is a closed analytic set. However we formulate
this proposition for an analytic set to prove Proposition 2.3.6 with induction
on the dimension. Remark that “dimension ” in Proposition 2.3.6 does not
necessarily mean the pure dimension.

Proposition 2.3.6. Let V be an analytic set of dimension k (possibly, not
closed, not irreducible, singular). Then there exist sets Dy (0 < £ < k—1)
with following properties:

(1) Dy is an analytic set on X.

(2) Dp:=V 2Dy_12---2 Dy 2 Dj.

(3) dim D, =¢ for £=0,1,2,...,k.

(4) Dy \ Dy_y for £ = 1,2,...,k is a disjoint union of non-singular
analytic sets.

(5) For an irreducible component W of Dy \ Dy_1 with dimW > q, the
(1,1)-form W|w has (dim W — q) positive eigenvalues.

Proof. We prove this proposition by induction on the dimension & = dim V.
When £ is zero, we set Dy = V. Then the properties in Proposition 2.3.6
hold. From now on, we assume that k is greater than zero.

We consider the decomposition V' = Vieg U Viing. Here Ve (resp. Viing)
denotes the regular locus (resp. the singular locus) of V. Note that this
decomposition is a disjoint union. Since the dimension of Vg, is smaller
than k, we obtain 134 (0 < ¢ < dim Vi) with the properties in Proposition
2.3.6 by the induction hypothesis.

Let Viee = U,c; Vi be the irreducible decomposition of Vie;. For an irre-
ducible component V;, we set D¥; .y, := V; if the dimension of V; is less than
or equal to g. Otherwise, we investigate the degenerated locus D* of V; which
is defined by

D :={pe (Vi) reg | @|(v),,, has at least (g + 1) zero eigenvalues at p. }.

It follows that D? is an analytic set and properly contained in V; from Lemma
2.3.5. In particular, the dimension of D! is smaller than k. Therefore by
applying the induction hypothesis to D*, we obtain D (0 < ¢ < dim V;) with
the properties in Proposition 2.3.6.

For each £, we define the set D, to be the union of l~?g and D} (i € I).
Then we can easily see that D, has the properties in Proposition 2.3.6. In
fact, it follows since Eg and D} satisfy the properties in Proposition 2.3.6
and D, is a disjoint union of them. O
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For the proof of Theorem 2.3.1, we apply Proposition 2.3.6 to B;. Then we
obtain D, with the properties in Proposition 2.3.6. By using these properties,
we shall construct a function ¢ whose Levi-form has (n — dim W) positive
eigenvalues in the normal direction of an irreducible component W of D, \
De_1. On the other hand, the restriction @|w has (dim W — ¢q) positive
eigenvalues from property (5) if the dimension of W' is greater than ¢q. Thus
if there is such function ¢, w + dd°p has at least (n — ¢) positive eigenvalues
everywhere. To construct such function, we prepare Proposition 2.3.7, 2.3.9.
The proofs of these Propositions are similar to the proof of [Dem90, Theorem
4] (cf. [Siu77]).

Proposition 2.3.7. For{ =0,1,...,k, there exists a function v, € C?(X,R)
with the following properties :
(1) Let W be an irreducible component of Dy \ Dy_1. Then the Levi form
ddpg has (n — dim W) positive eigenvalues in the normal direction of W.
(2) The Levi form dd°yp, is semi-positive at every point in D,.

Here D, denotes the closure of D, in X. Note D, may not be a closed
analytic set. For example, the closure of {(z,y) € C* | z = €V} in the 2-
dimensional projective space is not a closed analytic set. In order to show
Proposition 2.3.7, we prepare the following lemma. If D, for £ = 0,1,...,k
is a closed analytic set, the statement of this lemma is same as that of
Proposition 2.3.7. ’

Lemma 2.3.8. Let £ be an integer with 0 < £ < k. For every open neigh-
borhood U of Dy \ Dy, there exists a function gy € C®(X,R) with following
properties :

(1) Let W be an irreducible component of Dy \ Dy_1. Then the Levi form
ddpy has (n — dim W) positive eigenvalues in the normal direction at every
point in W\ U.

(2) The Levi form dd®py is semi-positive at every point in D,.

Proof. For a given U, we take an open covering of X by open balls U;
( =1,2,...,N). Further, we can assume the following properties for this
covering. '

(@) The members U; (j =1,2,...,s) cover Dy \ Dy_;.

(b) The members U; (j =1,2,...,s) are contained in U.

(c) Every Uy which intersects with U; (j = 1,2,...,s) is also contained
inU.
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We denote by Zp,, the ideal sheaf associated to a closed analytic set
By. For every j =1,2,...,s, we take holomorphic functions { f”} 2, on U
such that these functions generate the ideal sheaf Tp,. Further for every
j=s+1,...,N, we take holomorphic functions {f;;}; jl on U; such that
these functlons generate the ideal sheaf Zp,. Note D, is a closed analytic set
onU; (j =s+1,...,N). Therefore we can define the ideal sheaf Zp, and
take its generators

Let { p]} be a partition of unity associated to the covering of X. Now

we define ¢y to be
N

N
ou =Y p (Z Ifj,¢\2> -
j=1 i=1

Then ¢y satisfies properties (1), (2). In fact, an easy computation yields

V=1 aagou—ZZ{uﬂW_ 89p; + V17530, A Dp;

=1 =1

+ vV —lfj,iapj A 8fj,¢ =+ —1pj8fj,i A WJ,%}

By the definition, f;; is identically zero on D,. (Notice that D, is contained
in B,.) Therefore the first three terms are zero on D,. Further the last term
is clearly semi-positive. Therefore property (2) is satisfied. For every point p
in W\ U, we can take jo such that U;, does not intersect with D, \ D,_; and
Pjo(p) # 0 by the choice of a covering. Hence the last term has property (2)
since Ofj,: A Ofjo: has (n — dim W) positive eigenvalues at p in the normal
direction of W. O

Before the proof of Proposition 2.3.7, we recall the definition of a C?-
norm || - [lcz on C?*(X,R). We take an open covering of X by open balls
U; (j =,1,2,..., N) with a differential coordinate (z{,...,},). Let V; be a
relatlvely compact set in U; such that {V} —; is also an open covering of X.
Then the C?-norm | - |2 W1th respect to the open covering is defined to be

eSS g |

j=1 a=1 peV;

N 2n,2n

|flcz = Z Z sup

j=1 a,=1 PEVj

+ su p
axaaxﬂ axa ‘ e /)]
for every f € C?(X,R). Certainly the norm depends on the choice of an
open covering. However the topology induced by these norms is unique. For

our purpose, we fix the norm. Let us begin the proof of Proposition 2.3.7.
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Proof of Proposition 2.3.7. Choose a family of open neighborhoods {U;}2;
of Dy \ D,_; such that Neey Ui = D;\ D,_;. For each positive integer i, we
can take a function ¢y, € C*°(X,R) with the properties in Lemma 2.3.8. We
set
Ai =| o, |lc2 -
Here || - ||c2 denotes the fixed C%-norm.
Now we define a function ¢, on X to be

Yo = Z 2541_ Pu;-

i=1

By the definition of A;, the sum in the definition uniformly converges with
respect to the C?-norm. Hence we obtain
= 1
dd°pe = —dd py,.
e Z %A, Yu;

i=1

Properties (1), (2) in Lemma 2.3.8 and the choice of U; lead to the properties
in Proposition 2.3.7.

O

Proposition 2.3.9. For every integer £ = 0,1, ..., k, there ezists a function
@p € C?*(X,R) with property (x).

(%) Let m be an integer with 0 < m < £ and W an irreducible component
0f Dy \Din—1. Then the Levi-form dd°@, has (n—dim W) positive eigenvalues
in the normal direction of W.

Before the proof of Proposition 2.3.9, we confirm that Proposition 2.3.9
and Proposition 2.3.6 complete the proof of Theorem 2.3.1. That is, there is
a smooth function ¢ on X such that the (1, 1)-form @ + ddp is g-positive.

First we obtain {D,}5_, with properties in Proposition 2.3.6 by applying
Proposition 2.3.6 to B;. Now we take @ with property () in Proposition
2.3.9. Recall k is the dimension of B,;. Then we shall show that & + edd®py
is g-positive for a sufficiently small € > 0.

Now w is g-positive at z ¢ B,;. Hence when z is not contained in By,
the form w + edd®{py, is g-positive for a small € > 0. When z is contained
in By, there is a positive integer ¢ such that z € D, \ D,—;. (Otherwise z is
contained in Dy. Then the Levi-form of ¢y has n positive eigenvalues at x.)
For an irreducible component W of D, \ D,_; containing z, the (1,1)-form
w|w has (dim W — ¢) positive eigenvalues along W. On the other hand, the
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Levi-form of ¢, has (n — dim W) positive eigenvalues in the normal direction
of W (property () in Proposition 2.3.9). Thus & + edd®@y has (n — q)
positive eigenvalues. The function @ may not be smooth. However we can
approximate it with smooth functions without the loss of the g¢-positivity
since it is C2-function (for instance, see [Ric68]). It completes the proof of
Theorem 2.3.1.

Proof of Proposition 2.3.9. We prove Proposition 2.3.9 by induction on /.
When £ is zero, the claim is obvious. Thus we assume £ is greater than 0. By
the induction hypothesis, we obtain a smooth function ¢, ; with property
(%). Further we take ¢, with the properties in Proposition 2.3.7. We define
a function @, to be ¢, + £@,—1. Then the function satisfies property () for
a sufficiently small € > 0.

O
Finally we see that it follows Theorem 2.1.4 from Theorem 2.3.1.

Theorem 2.3.10. (=Theorem 2.1.4). Let L be a semi-ample line bundle on
a compact complex manifold X. Then the following conditions (A), (B) and
(C) are equivalent.

(A) L is g-positive.

(B) The semi-ample fibration of L has fibre dimensions at most q.

(C) L is cohomologically qg-ample.
Further if X 1s projective, the conditions above are equivalent to condition
(D).

(D) For every subvariety Z with dim Z > q, there exists a curve C on Z
such that the degree of L on C is positive.

Proof. We can easily confirm the equivalence between condition (B) and
(C) from the standard argument of the spectral sequence (see [Som78-B,
Proposition 1.7]).

The equivalence between condition (A) and (B) is directly followed from
Theorem 2.3.1. Indeed, we apply Theorem 2.3.1 to the semi-ample fibration
Q:=Pipm: X — P¥m and w := wpg, Where wrg is the Fubini-Study form.
Then ®*wrg + dd°yp is g-positive for some function ¢ by Theorem 2.3.1. The
form represents the Chern class of L™. Therefore condition (B) implies (A).
Conversely, if L is g-positive, it is cohomologically g-ample by the Andreotti-
Grauert theorem. Therefore the fibre dimension of the semi-ample fibration
must be at most q.
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It remains to show the equivalence between condition (B) and (D). In
this step, we use the assumption that X is projective. Assume that the fibre
dimension of the semi-ample fibration is at most q. Then for any subvariety
Z with dim Z > ¢, we can take a curve on Z which is not contracted by
®. Then the degree of L on the curve is positive by the projection formula.
Conversely, if there exists a fibre F' with dim F' > ¢, the degree on every
curve in F' is zero. O

2.4 Zariski-Fujita type theorems of big line
bundles

In this section, we prove Theorem 2.4.1. Theorem 2.4.1 says that, a big line
bundle is g-positive if and only if the restriction to the non-ample locus of
the line bundle is ¢g-positive. See [ELMNPO06] or [Bou04, Section 3.5] for the
definition and properties of the non-ample locus. (Sometimes, the non-ample
locus is called the augmented base locus or the non-Kéhler locus.)

Theorem 2.4.1. Let L be a big line bundle on a smooth projective variety X .
Assume that the restriction of L to the non-ample locus B, (L) is g-positive.
Then L 1is g-positive on X.

Recall that 0-positive is positive in the usual sense (that is, ample). Hence
Theorem 2.4.1 claims that L is ample on X if the restriction to the non-ample
locus of L is ample. It can be seen as the parallel of the the Zariski-Fujita
theorem (see [Zar89] and [Fuj83] for the Zariski-Fujita theorem).

Throughout this section, we denote by X a compact Kahler manifold and
by L a line bundle on X. Moreover fix a smooth hermitian metric h of L.
The Chern curvature v/—10;(L) associated to h represents the first Chern
class ¢1(L). '

In this section, we treat a closed analytic set which may have the singu-
larities on X. For this purpose, we extend the concept of g-positivity concept
from a manifold to an analytic space. Note the following definition does not
depend on the choice of a hermitian metric h of L.

Definition 2.4.2. Let V be a closed analytic set on X. The restriction Ll|y
to V of L is g-positive if there exists a real-valued continuous function ¢ on
V with the following condition:

For every point p on V, there exist a neighborhood U of p on X and a C?-
function @ on U such that @|yny = ¢ and the (1, 1)-form /~104(L) + dd°@
has at least (n — g)-positive eigenvalues on U.
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For the proof of Theorem 2.4.1, we prepare the following lemma.

Lemma 2.4.3. Let V be a closed analytic set (possibly not irreducible) on
X. If the restriction Lly to V of L is q-positive, then X allows a function
ev € C®(X,R) on X such that /—10(L) + dd°py has at least (n — q)
positive eigenvalues on some neighborhood of V.

Proof. We take a smooth extension ¢ to X of the potential function in Def-
inition 2.4.2. Let V' = (J,.; Vi be the irreducible decomposition. From the
construction of @, the restriction to (V;),,, of v/=104(L) + dd°% has at least
(dim V; — ¢) positive eigenvalues. Then we can revise the positivity in the
normal direction of V' with the same argument as Proposition 2.3.9. It leads
to Lemma, 2.4.3. O

Proof of Theorem 2.4.1.

By the property of the non-ample locus (see [Bou04, Theorem 3.17]), there
exists a d-closed current 7" on X with following properties:

(1) T represents the first Chern class of L.

(2) T has analytic singularities along the non-ample locus of L.

(3) For some hermitian form w on X, the inequality 7 > w holds as a
(1, 1)-current.

From property (1), we obtain an L*-function ¢s on X with T' = +/—=16(L)+
dd°ps. On the other hand, by applying Lemma 2.4.3 to the non-ample locus,
we can obtain a function g, € C*°(X,R) such that /=10,(L) + dd°pp, is
g-positive on some neighborhood U on the non-ample locus.

Then we shall see that ¢, and @p can be glued. For a real number C' > 0,
we define the function 1¢ to be ¥¢ := max{pg, —C, ¢s}. For alarge C > 0,
wp — C is smaller than ¢, outside some neighborhood Ug of the non-ample
locus. By taking a sufficiently large C' > 0, we may assume that Ug is
relatively compact in U.

On the other hand, the function ¢, has a pole along the non-ample locus.
That is, ps(z) = —oo for any point z on the non-ample locus. Hence there
exists a neighborhood V¢ of the non-ample locus such that ¢, is smaller than
g, — C even if C' is large. We may assume V¢ is relatively compact in Ug.

Outside Ug, the (1, 1)-form

V=10n(L) + ddYc = vV ~104(L) + dd°p,
has n positive eigenvalues. On the other hand, inside Vi the (1, 1)-form
V—=104(L) + dd°c = V—104(L) + dd°ps,
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has (n — g)-positive eigenvalues. In order to investigate the positivity on
Uc \ Vo, we apply Lemma 2.4.4.

Lemma 2.4.4. Let vy be a smooth d-closed (1,1)-form on X and a function
w; (for i =1,2) be a y-psh function on X. Then the function max(p1, )
is also a y-psh function on X. (See Section 6.1 for the definition of a y-psh
function.)

Proof. First we remark ~-plurisubharmonicity is a local property. We can
locally take a smooth potential function of 7 since 7 is a d-closed (1, 1)-form.
Thus we can locally write v = dd®y for some function 4. By the assumption,
dd°(y + ;) is a positive current. Therefore the Levi form of

max (¥ + @1, ¥ + p2) = ¥ + max(p1, @2)

is also a positive current. It means that v + dd°max(p1,ps) > 0. Upper
semi-continuity of functions is preserved. Hence the function max(p, ps) is
a ~-psh function. O

Since Ug is relatively compact in U, v/—104(L) + dd°pg, is g-positive
on Ug. Certainly /=104 (L) + dd°y; is g-positive (0-positive) on Ug \ Ve.
Therefore it follows from the lemma above that, /=160, (L) + dd%)¢ is g-
positive on Ug \ V. The function )¢ may not be smooth. However we can
approximate it with smooth functions without the loss of the g¢-positivity

since ¥¢ is continuous. Therefore L is g-positive on X. O

When the dimension of the non-ample locus is smaller ¢, the assumption
in Theorem 2.4.1 is automatically satisfied. Thus the following corollary
holds.

Corollary 2.4.5. Assume the dimension of the non-ample locus of L is less
than or equal to q. Then L s q-positive.

Under the assumption in Corollary 2.4.5, L is cohomologically g-ample
(see [Kiir10]). Corollary 2.4.5 claims that the g-positivity has the same prop-
erty.

2.5 On the holomorphic Morse inequalities

In his paper [Dem10-B], Demailly proved the converse of the holomorphic
Morse inequality on a surface. This result has the similarity to the converse
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of the Andreotti-Grauert theorem. In this section, we explain the difference
between his result and the result (Theorem 2.1.3) in this chapter. First we
recall the holomorphic Morse inequality which is closely related with the
Andreotti-Grauert vanishing theorem.

Definition 2.5.1. Let L be a line bundle on a compact complex manifold
X. Then the asymptotic g-cohomology of L is defined to be

71 — 1 n! i m
A'(L) = limsup —2h'(X, Ox (L))

In his paper [Dem85|, Demailly gave a relation between the dimension
of the asymptotic cohomology of a line bundle and certain Monge-Ampere
integrals of the curvature. It is so-called Demailly’s holomorphic Morse in-
equality. For simplicity, we assume that X is projective.

Theorem 2.5.2. ([Dem85]). For every holomorphic line bundle L on a
projective manifold X, we have the (weak) Morse inequality

" h:hermitian metric on L

h(L) < inf /X(h _) (vV—=16,(L))"(-1)?,

where h runs through smooth hermitian metrics on L, and X (h,3) is the set
defined by

X(h,i):= {z € X | V=164(L) has a signature (n —4,1) at z.}.

The holomorphic Morse inequality would be seen as an asymptotic ver-
sion of the Andreotti-Grauert vanishing theorem. In his paper [Dem10-A],
Demailly conjectured that the inequality would actually be an equality. The
conjecture has the similarity to Problem 2.1.2. In [Dem10-B], he showed the
converse of the holomorphic Morse inequality holds in the following case:

(1) The case where X is projective surface.

(2) The case where X is an arbitrary projective manifold and i = 0.
Result (2) can be seen as a “partial” converse of the Andreotti-Grauert the-
orem. However, Result (2) seems not to lead to Theorem 2.1.3.

2.6 Examples
Thanks to Theorem 2.1.3, a 1-ample line bundle is always 1-positive on a

smooth projective surface. However, in general, it is difficult to construct
a concrete metric whose curvature is 1-positive. Thus it seems to be worth
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collecting examples which can be explicitly computed. This subsection is
devoted to give such examples. For simplicity, we use additive notation for
line bundles in this section.

Example 2.6.1. Let X be the product of two 1-dimensional projective
spaces. Denote by p; : X — P!, the i-th projection (i = 1,2). Then a
line bundle L on X can be written as

L(a,b) =aq pTOPl(l) +b pz(ﬁﬁu(l)

with integers a, b. Here Opi(1) is the hyperplane bundle on P!. From a
simple computation (or Corollary 2.2.5), L (which parametrized by integers
a, b) is 1-ample if and only if @ > 0 or b > 0. Then a metric on L which is
induced by the pullback of suitable multiple of the Fubini-Study metric has
a l-positive curvature.

Example 2.6.2. Let E be an elliptic curve. We set X := E x E with
projections p; : X — E (i = 1,2). We consider line bundles

Fy = pi(Og(p)), Fy := p3(Or(p)), I':=0x(4A),

where p is a point on F and A C X = E x E is the diagonal divisor.
It is known that an arbitrary line bundle on X can be written as a linear
combination of Fi, F» and I". Thanks to Proposition 2.2.5, L is 1-ample if
and only if —L is not pseudo-effective. Since the automorphism group of X
(which is a connected algebraic group) acts transitively on X, the pseudo-
effective cone corresponds with the nef cones. Thus, the line bundle L is
l-ample if and only if (L?) < 0 or (L - A) > 0, where A is an ample line
bundle such as A := F} + F5 + I'. The intersection numbers among Fi, Fj
and I can be computed as follows:

L-FA)=0 -FK)=(FR -FK)=

]-,
(I?) = (F7) = (F3) = 0.

By the argument above, we have the following proposition.

Proposition 2.6.3. A line bundle L = aF; +bF>+cI is 1-ample if and only
if

a+b+c>0 or
ab+ bc+ ca < 0.
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Now we construct a metric on L whose curvature is 1-positive under the
condition above on a, b and c. Denote by h, a hermitian metric on Og(p)
such that the pull-back of the Chern curvature by the universal covering
C — E is equal to du A du. Here u is a (standard) coordinate on C. On the
other hand, we can construct a metric £ on I' whose Chern curvature can be
written as:

O () = dd°|z — w|?
=dzANdZ+dw Adw— dz Adw — dw A dz.

Here (z,w) is a local coordinate on X which is induced by the universal
covering C? — X. Then the Chern curvature of

L=aF1+bF2+cF
associated to a metric p}(h®%) @ p3(h®®) ® k®° is
(a+c)dz A dz + (b+ ¢)dw A dib — cdz A di — cdw A dz.

Eigenvalues of the curvature are solutions of the equation
det (a+c)—z —c _
—c (b+c)—x

The a necessary and suflicient condition that the equation has at least 1-
positive solution is

a+b+2c>0 or
ab+ bec 4 ca < 0.

It is easy to see that this condition is equivalent to the condition in Propo-
sition 2.6.3.

2.7 Counterexamples to Problem 2.1.3

In this section, we study Ottem’s counterexample to Problem 2.1.3. Fur-
ther we investigate the converse implication of Andreotti-Grauert vanishing
theorem on a non-compact manifold.

By the (classical) Andreotti-Grauert vanishing theorem, a g-complete
complex space is always cohomologically g-complete. Let us confirm the
definitions. Let M be a non-compact, irreducible and reduced analytic space
of dimension n and ¢ an integer with 0 < g < (n —1).
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Definition 2.7.1. (1) M is called g-complete, if there exists a (smooth)
~ exhaustive function ¢ € C®(M,R) whose Levi-form /~100¢ has at least
(n — q) positive eigenvalues at any point on M as a (1,1)-form.

(2) M is called cohomologically g-complete, if for any coherent sheaf F on
M,

H'(M,F)=0 fori>gq.

It is natural to ask whether the converse implication holds. It is a non-
compact version of Problem 2.1.3.

Problem 2.7.2. If M is cohomologically q-complete, is M q-complete 7

In their paper [ES80], Eastwood and Suria proved that the problem above
is affirmatively solved, if M is a domain with a smooth boundary in a Stein
manifold. Another proof is given for a domain with a smooth boundary in
C™ in [Wat94].

It is well-known that any non-compact complex space of dimension n is
cohomologically (n — 1)-compete. If Problem 2.7.2 is affirmative, any non-
compact complex space of dimension n should be (n — 1)-compete. In the
case where complex space is non-singular, Greene and Wu proved (n — 1)-
completeness of non-compact analytic space in [GWT75]. In the case where
complex space has singularities, that is proved by Ohsawa (see [Ohs84]).

In this section, we show that the observation for Ottem’s example gives
a counterexample to Problem 2.1.3. See [Ott11, Section 10] for the example.
The essential devotion of the counterexample is due to Ottem.

Proposition 2.7.3. For a pair (n,q) of positive integers withn/2—1 < q <
n — 2, there exists a complex manifold M of dimension n such that M is
cohomologically g-complete, but not g-complete. In particular, Problem 2.7.2
s megative in general.

Proof. We give the proof only in the case where (n,q) = (4,1). (A slight
‘change in the proof gives the proof of other cases. )

We consider a smooth Enriques surface S in the projective space P4. Then
we shall show that the complement P* \ S is cohomologically 1-complete,
but not 1-complete. We denote by M, the complement P*\ S. Since S is
an Enriques surface, the fundamental group m;(S) is isomorphic to Z/2Z.
Therefore, we have H'(S,Q) = 0, (which is isomorphic to H'(P4, Q)). Thus
we can conclude that M is cohomologically 1-complete from [Ogu73, Theorem
4.4].
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It remains to show that M is not 1-complete. We assume that M is 1-
complete for a contradiction. By the definition, there exists an exhaustive
function ¢ € C®°(M, R) such that v/—190¢ has at least 3 positive eigenvalues
at any point on M. We can assume that ¢ > 0 since ¢ is exhaustive. Now
we consider a function f on P* which is defined to be

o= 1/ ifx &S,
10 others.

A simple computation implies that the critical points of f on M are equal
to that of ¢. Therefore we have

V=109f = ‘—V;lfa“p

at the critical points of ¢ on M. It implies that the index (the number of
negative eigenvalues of the Hessian) at the critical points is greater than or
equal to 3. Note that the index of the Hessian of a smooth function is equal
to the number of the negative eigenvalues of the Levi-form. Therefore by
applying the standard Morse theory, for an arbitrary number § > 0 we have
that, X is obtained from Wjs by successively attaching cells of dimension > 3.
Here W5 is f71([0,4]). In particular, we have the isomorphism ;(W;, S) =
m;(P*, S) for i = 0,1,2 for any § > 0. Since we triangulate P* with S as a
subcomplex, we can take a neighborhood U of S which deformation retracts
onto S. Since ¢ is an exhaustive function, f is continuous. Thus, W5 is
contained in U for a sufficiently small § > 0, since f has a positive valued on
M. Then we have the following commutative diagram

Uy (P47 S)

™

Wi(Wg,S) WZ(U,S)

IR

The diagonal map on the left is an isomorphism for ¢ = 0,1,2. Since U
can retracts onto S, we have m;(U,S) = 0 for any i. Therefore we obtain
(P4, S)=0fori=0,1,2.

By the argument above,we have that, if M is 1-complete, then the map
m1(S) — w1 (P*) (which is induced by the inclusion map) should be an iso-
morphism. However, since P* is simply connected, it is a contradiction. O
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Weak Lefschetz theorems and

the topology of zero loci
of ample vector bundles

3.1 Introduction

Topology and the concept of positivity in algebraic geometry have been nour-
ishing each other for a long time. For example, there are the Lefschetz hyper-
plane theorem, Connected theorem of Fulton and Hansen, and Barth-Larsen
theorem and so on. In particular, the Lefschetz hyperplane theorem has
been developed for various purposes. The theorem asserts that the homo-
topy groups of a smooth projective variety X can be compared with those of
the zero locus of a section of an ample line bundle on X. In this chapter, we
investigate the homotopy groups of the zero locus of a section of an ample
vector bundle on X, in the sprit of the Lefschetz hyperplane theorem. In this
direction, Sommese gave the following celebrated result:

Theorem 3.1.1. ([Som78-B, Proposition 1.16], ¢f. [Laz, Theorem 7.1.1]).
Let E be an ample vector bundle of rank r on a smooth projective variety X
of dimension n. Consider a holomorphic section s € H*(X, Ox(F)) and the
zero locus defined to be

S=s10)={zeX |s(x)=0€E,.}.
Then
H(X,5:2)=0 for i<n-—r.

It is natural and of interest to ask whether the relative homotopy groups
7;(X, S) vanish in the same setting of this theorem. In this chapter, we
mainly study the following problem.
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Problem 3.1.2. In the same assumption in Theorem 8.1.1, does the relative
homotopy group m;(X, S) vanish fori <nm—r 7

In his paper [Oko87], Okonek proved that Problem 3.1.2 is affirmative if £
is ample, globally generated and S has the expected codimension r. Further,
Lazarsfeld affirmatively solved Problem 3.1.2 without assuming codimxS =
r, when E ® B! is globally generated where B is an ample and globally
generated line bundle. (See [Laz83, Theorem 3.5].) The following theorem
claims that Problem 3.1.2 is affirmatively solved under the weaker assumption
than them.

Theorem 3.1.3. Let E be a vector bundle of rank r on a smooth projective
variety X of dimension n. Consider a section s € H*(X,Ox(E)) and the
zero locus S of s. Assume that the line bundle Opg+y(—1) is (r + k — 1)-
positive on P(E*). ‘
Then

m(X,8)=0 for i<n—r—k.

In particular, the map (which is induced by the inclusion map j : S — X
) Jx @ m(S) — mi(X) is isomorphic for i < m —r — k, and surjective for
i=n—r—k.

Here P(E*) is the projective space bundle associated to the dual vector
bundle E* of E, and Op(g~)(—1) is the tautological line bundle on P(E*).

If £ is ample and globally generated, Op(z+)(—1) is (r—1)-positive, thanks
to [Som78-A, Proposition 1.3] (cf. [DPS96, Proposition 2.8]). Remark that
the theorem above holds without assuming codimyxS = 7. Therefore this
theorem can be seen as the generalization of [Oko87] and [Laz83, Theorem
3.5].

Problem 3.1.2 is closely related with the Griffiths conjecture for a vector
bundle. The Griffiths conjecture says that any ample vector bundle would
be Griffiths positive. (A Griffiths positive vector bundle is always ample.)
From a simple computation, we can easily see that Opg-y(—1) is (r — 1)-
positive when F is Griffiths positive. (For instance, see [DPS96, Proposition
2.8].) Thus if the Griffiths conjecture is affirmative, Problem 3.1.2 should be
affirmative under only the assumption that F is ample.

Problem 3.1.2 is also related with the converse implication of the Andreotti-
Grauert vanishing theorem. The Andreotti-Grauert theorem asserts that
any g¢-positive line bundle is always g-ample. (See [AG62, Théorem 14],
[DPS96, Proposition 2.1].) In [DPS96], Demailly, Peternell and Schneider
asked whether the converse implication of the Andreotti-Grauert theorem
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holds. It is a natural question. However, it has been an open problem for a
long time except the case of ¢ = 0.

E is ample if and only if Op(g+)(—1) is (r — 1)-ample on P(E*). It follows
from the standard argument on the spectral sequences of the direct image
sheaves. For instance, see [DPS96, Example 2.7] or [Ott11, Proposition 4.1].
On the other hand, when E is Griffiths positive, Op(g-)(—1) is (r—1)-positive.
Theorem 3.1.3 says that, if the converse of the Andreotti-Grauert theorem
for Op(g+)(—1) holds, Problem 3.1.2 is affirmative.

The converse of the Andreotti-Grauert theorem for a semi-ample line
bundle holds on any compact manifold. Moreover, the converse holds on a
smooth projective surface without any assumption on a line bundle. (See
Chapter2.) However Ottem recently constructed a counterexample to the
converse of the Andreotti-Grauert theorem, by investigating the Lefschetz
hyperplane type theorem. (See [Ott11] for the precise argument. ) If there
similarly exists a counterexample to Problem 3.1.2, then the example would
be a counterexample to the Griffiths conjecture. In this sense, Problem 3.1.2
is interesting.

E : ample duivalont Opg+(—1) : (r — 1)-ample
hold( )013'311 Andreotti—Grauert( lopen
B : Griffiths positive —— Op(g-)(—1) : (r — 1)-positive.

Problem 3.1.2 seems to be a hard problem. However we can give a partial

result (Corollary 3.1.4) on Problem 3.1.2, in terms of the weak Lefschetz
theorem.

Corollary 3.1.4. Let E be an ample vector bundle of rank v on a smooth
projective variety X of dimension n, and R a nowhere dense analytic set
on X. We consider a section s € HY(X,Ox(E)) and the zero locus S of
s. Assume S has the expected codimension r (that is, codimx(S) = r) and
r < n. Then the map j. : m(S\R) — m1(X \ R) is surjective. In particular,
when R = ¢, the map 7, : m1(S) — m(X) is surjective.

Corollary 3.1.4 follows from Theorem 3.3.6. The proof of Theorem 3.3.6
is based on the method of [NR98] and its variation. We mainly use the
L? J-method and the theory of a formal scheme. In [NR98|, Napier and
Ramachandran constructed holomorphic sections of an ample line bundle
which separate sheets of an étale covering, by using the L? d-method. We
slightly generalize its construction. The generalization and the computation
of cohomology groups of a formal scheme lead to Theorem 3.3.6.
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This chapter is organized in the following way: In Section 3.2, we prove
Theorem 3.1.3. Section 3.3 is devoted to give the proof of Theorem 3.3.6
and Corollary 3.1.4. In Section 3.4, we give Theorem 3.4.1 as an application
of the slight variation of the Napier-Ramachandran’s method established in
Section 3.3. In Section 3.5, we collect the known facts on the topology in
complex geometry for readers’ convenient.

3.2 The Lefschetz type theorems and the
Morse theory

3.2.1 Preliminaries

In the proof of Theorem 3.1.3, we shall use the standard Morse theory. In
this subsection, we collect materials on the Morse theory for the proof of the
theorem.

Let ® be a real-valued smooth function on a compact C*°-manifold M of
(real) dimension k. A point m € M is called a critical point if d® = 0 at m.
In terms of a local coordinate (z1, ..., zx), the (real) Hessian of ® at m € M
is defined to be
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(8xi8qu)(m)>1gi, i<k’
which is a symmetric quadric form on the tangent space T,,M at m. When
m is a critical point of ®, the Hessian does not depend on the choice of a
local coordinate. The number of negative eigenvalues of the Hessian at a
critical point is called the inder at the critical point. A function on M is
called non-degenerate, if the function has only non-degenerate manifold. See
[Bot59-A, Definition 3.1] for the definition of a non-degenerate manifold. (In
this chapter, we do not use the precise definition. ) The following theorem
says that a non-degenerate function allows us to reconstruct the manifold as
a CW complex.

Theorem 3.2.1. ([Bot59-B, Theorem 3]). Let ® be a real-valued smooth
function on a compact C*®-manifold M. Assume that ® is non-degenerate.
Let X\ be the infimum of the indices of ® at the critical points. Then for an
arbitrary real number a, M is obtained from W, by successively attaching
cells of dimension > A. In particular, we have

(X, W,) =0 for i<A—-1

Here Wy is {m € M | ®(m) < a}.
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In the proof of Theorem 3.1.3, we construct a non-degenerate function
from a suitable perturbation. For this purpose, we apply the following ap-
proximation theorem. We take an open coverlng of M by open balls U;
(j=,1,2,...,N) with a coordinate (2}, ...,z]). Let V; be a relatively com-
pact set in U such that {V;}IL, is also an open covering of X. Then the
C?-norm | - |Cz with respect to the open covering is defined to be

[ floe = Z Z sup

i=1 a,8= 1 PEV;

N k
| T

j=1 a=1 pe

55 ‘*i?}f:’f )

up
v;
for every function f € C%(X,R). A C?-function is called (g,2)-small when
the C%-norm of the function is smaller than .

Theorem 3.2.2. ([Whib5]). Let ® be a real-valued smooth function on a
compact C®-manifold M. Then for an arbitrary positive number ¢ > 0,

there ezists an (e,2)-small function n. such that ® + 1. is non-degenerate on
M.

3.2.2 Proof of Theorem 3.1.3

This subsection is devoted to give the proof of Theorem 3.1.3. For the proof,
we shall construct a non-degenerate function with a suitable index, from a
hermitian metric whose Chern curvature satisfies a partial positivity condi-
tion. Then we apply the standard Morse theory.

Let us begin to prove Theorem 3.1.3. Since Opg~y(—1) is (r + &k — 1)-
positive on P(E*), there exists a smooth hermitian metric A such that the
Chern curvature associated to h has at least (n — k) positive eigenvalues at
any point on P(E*). The metric h can be regarded as the function F} on the
total space of Opg)(—1) defined by

Fy: Opipny(—1) — R,  t+— [t]3.

Here |t|; is the norm of ¢t € Op(g~)(—1) with respect to h. Since the total
space of Op(g+)(—1) is equal to the blow-up of the total space of E along the
image of the zero section, we have the isomorphism

By this isomorphism, the functlons on Op( g+ (— )\IP’(E*) can be identified
with the functions on F\ X. In particular, F}, can be regarded as the function
on F\ X. A given section s of E can be seen as a holomorphic map from
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X to the total space of E. We denote by &, the pull-back of F} by the
holomorphic map s: X \ § — E\ X. Then ®; can be written as

Dp: X\S =R, z+ |7 s(z))2.
The function ®,, satisfies the following properties:

Claim 3.2.3. The function ®, : X\ S — R satisfies the following properties:
(1) @4, is a positive-valued smooth function on X \ S.
(2) The Levi-form /—100®;, has at least (n—1—k+1) negative eigenvalues
at a critical point of Py,

Proof. The first property is obvious by the definition of ®;. It is sufficient
to (locally) confirm the second property. In the proof, we denote by [s(z)] €
P(E*), the line through a point s(z) € E,. Recall that P(E*) — X has the
space of the lines in F, as the fibre of z € X. Thus we have the natural
projection £\ X — P(E*).

Fix an arbitrary point p € X \ S. Let W be a small open neighborhood
of p and W the image of s(W) by E\ X — P(E*). Now we take a local
frame ¢ of Op(g+)(—1) |3 adapted at [s(p)] with respect to the restriction hlw
of h. (For simplicity, we denote by the same notation h, the restriction h|y.)
That is, ¢ is a non-vanishing (holomorphic) map from W to Op(g«(—1)lw
such that

[t(ls(@lr =1 and d([e([s(@)])]z) =0 at [s(p)]-

Notice that W is isomorphic to W. Therefore 7=! o s can be seen as a
non-vanishing section of Op(g+)(—1) on W. Since t is also non-vanishing
on W, there exists a non-vanishing holomorphic function g on W such that
771 (s(x)) = g([s(z)])t([s(z)]) on W. Then by the definition of ®,, we have

Or(z) = |g([s@D)PlE([s(@))]z on W.
Let us compute the Levi-form of ®,. A simple computation yields

V—180®, =v/—1|t|209 A Og — v/—1g0g A O|t|2
+ /=109 A B|t|2 + |g|*V/—100]t[2.

The second and third term are equal to zero a [s(p)], since ¢ is adapted at
[s(p)]- Moreover it is easy to see that the first term is also equal to zero at
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[s(p)] if p is a critical point of ®. In fact, we have

d®n(z) = |tlhdlg|* + |gI*d|t]3
= |t|3d|g|? at [s(p)].

The second equality follows since ¢ is adapted at [s(p)]. Thus if p is a critical
point of @y, then dg = 0 at [s(p)]. From the argument above, we have

V—180®(z) = |g|*/—100|t|?

if p is a critical point of ®p.

For the proof of the claim, we need to compute the number of negative
eigenvalues of the Levi form 1/—183|t|?. Since t is a frame adapted at [s(p)],
we have

V—=189log|t([s(2)])[; = V=190lt([s(x)])l; at [s(p)).

By the definition of the Chern curvature, /—10; = —/—1001log |t| for
any frame ¢ of Op(g+)(—1). Therefore —/—1901log |t|? has at least (n — k)
positive eigenvalues. Since W is a (local) submanifold of codimension (r — 1)
on P(E*), the restriction of —/—1981og |¢|2 to W has at least (n—r —k+1)
positive eigenvalues. Therefore \/—190|t([s(z)])|? has at least (n —r —k+1)
negative eigenvalues at [s(p)]. It completes the proof of the claim. O

We shall construct a non-degenerate function with a suitable index by
using this claim. First we choose sufficiently small neighborhoods U, V C X
of § such that V is relatively compact in U. Further we choose a smooth
function py such that py is identically 0 on V' and identically 1 on X\U. Then
the function py @, is a smooth function on X. By applying the approximation
theorem (Theorem 3.2.2) to py®, for an arbitrary positive number &, we

obtain an (g, 2)-small function 7. such that py®; + 7. is non-degenerate on
X.

Claim 3.2.4. For a sufficiently small € > 0, the Levi-form of py®y +n. has
at least (n — r — k + 1) negative eigenvalues at a critical point of py®p + ne
on X \U.

Proof. Remark that py®p, = &, on X \ U, since py is identically 1 on X \ U.
Thus, it follows the Levi-form of py®p + 7. has at least (n —r — k + 1)
negative eigenvalues at a critical point of ®, on X \ U for a sufficiently
small ¢ from Claim 3.2.3. Since this is an open condition, there exists an
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open neighborhood W of the critical points of ®; such that the Levi-form of
pv®n + e still has at least (n — 7 — k + 1) negative eigenvalues on W. It
is easy to see that the critical points of py®y + 7. is contained in W for a
sufficiently small € > 0. In fact, if p is not a critical point of ®;, then p is
not also a critical point of py®j + 7. for a small &. O

Now we take a positive number § with
0 <d <inf{ pv(z)®h(z) +n.(z) | z € X \ V}.

Then
Ws ={z € X | py(z)@u(z)+n.(z) < 6}

is contained in U. Since py®; + 7. is non-degenerate, we can apply the
standard Morse theory (Theorem 3.2.1). (Note that the index of the Hessian
of a smooth function is equal to the number of the negative eigenvalues of
its Levi-form. ) Then X is obtained from Wy by successively attaching cells
of dimension > n — r — k + 1. In particular, the natural map m;(Ws, S) —
(X, S) is an isomorphism for i < n — r — k. On the other hand, since W
is contained in U, we have the following commutative diagram

7T,,;(X, S)

\

mi(Ws, S) m(U, S).

IR

The diagonal map on the left is an isomorphism for ¢ < n —r — k. Now we
can choose U which retracts onto S, since X can be triangulated with S as a
subcomplex. Then 7;(U, S) = 0 for any ¢. Therefore we obtain m;(X,S5) =0
fori<n-—r—k.

3.3 The weak Lefschetz type theorems

3.3.1 On the key estimates

The methods of the proofs of Theorem 3.3.6, 3.4.1 are based on the technics
established in [NR98]. (Corollary 3.1.4 follows from Theorem 3.3.6.) In
their paper [NR98], Napier and Ramachandran showed that the image of the
fundamental group of a submanifold with ample normal bundle is of finite
index. The strategy of the proof may be divided into two steps. In first step,
they consider a suitable covering space and construct L2-sections of an ample
line bundle, which separate sheets of the covering. In second step, they study
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the finite dimensionality of the space of sections on the formal scheme, which
gives a bound on the index.

For our purpose, we need to construct L2-sections of a big line bun-
dle. The following proposition is a slight generalization of [NR98, Theorem
2.2]. The proof is based on a standard application of the J-method with
L%-estimates (which is established in [Dem82]), and is parallel to the proof
of [NR98, Theorem 2.2]. For the readers’ convenience, here we give details
of the proof. ‘

Proposition 3.3.1. (cf. [NR98, Theorem 2.2]). Let X be a projective variety
of dimension n (not necessarily smooth), U an open set such that U does not
intersect with the singular locus Xgngof X, and R a nowhere dense analytic
subset on X such that R O Xgng. We denote by M the complement X \ R.
Letw: M — M be an étale covering of degree d (1 < d < 00). Fiz a big line
bundle L on X and a hermitian line bundle (F,k) on X. Then there exist
positive numbers ¢y and vy (depending on X, L and F ) with the following
properties :

(1) For any v > vy,

cov"d < dim HY gy (M, O3 (* B, @ K37)).
(2) For any v > vy,
co™(d—1) < dim H% g py (M, Ogz(n" B, @ Kg7)) —dim H°(X, Ox (B, 80%)).

Here K37 is the canonical bundle on M , By is LY ® F, and Q% is the du-
alizing sheaf of X. See [NR98, Lemma 1.2] for the definition of the dualizing
sheaf. Moreover

HY>ynmy (M, Og(n*E, @ K7))

is the space of holomorphic n-forms valued in 7* F,, with L2-condition (*) on
UNR.

(x) For a point r € U N R, there exist a neighborhood V. of r and trivi-
alizations of L and I’ on V, such that

/__\/—1 2s/\§<c>o

for any connected component V, of 771(V;). Here we regard s as a holomor-
phic n-form on 7~(V;,) under the fixed trivialization of 7*E,,.
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Remark 3.3.2. A hermitian line bundle (F, k) does not necessarily have semi-
positive curvature. In [NR98, Theorem 2.2], (F, k) is assumed to have semi-
positive curvature. However, we need to remove this assumption for our
purpose.

Proof. Since L is a big line bundle, some positive multiple L™° of L can be
written as the tensor product of an ample line bundle A and an effective
line bundle F. Now we take a smooth metric hy of A whose curvature is
a Kahler form on the regular locus X, of X. Further we take a singular
metric hr of F' obtained from a section of £. Then the curvature current
associated to hp is (semi-)positive as a (1,1)-current on X,,,. We denote
by w, the Kéhler form mio\/—_l@h (A) on X;es. Then the curvature current
v —10,(L) associated to h satisfies v/—104(L) > w > 0, since the curvature
current of F' is semi-positive. Here h is the metric on L which is defined by

(hA ® hE)l/mO.
Now we fix a point p in M such that A is smooth on a neighborhood of p.
Further we take a local coordinate (z1,. .., 2,) centered at p, and a function

p on X with the following properties:

(a) The support of ¢, is contained in a (small) neighborhood of p.
(b) ¢p = log(|z1]* + - - + |24]?) on a smaller neighborhood of p.
(c) ¢, is smooth except p.

Since v/—104(L) is strictly positive, there exists a sufficiently large integer
ag with the following properties on Xig:

%w + V—10y(F) > w,
aoV—104(L) + vV—180¢, > %w.

The regular locus is not compact. However, we can take ag with the proper-
 ties above since ¢, has a compact support. We fix local trivializations of L
and F' on a neighborhood of p. Since 7 is an étale covering, the coordinate
(z1,...,2n) also becomes a local coordinate on a neighborhood of a point in
the fibre 771 (p) of p. This coordinate gives the local trivialization of K37. Un-
der these trivializations, a n-form s valued in 7*FE, can be seen as a function
on a neighborhood of 771(p). Thus for a multi-index a = (a1, ..., an) € Z%,,
the differential (8!%//02%)s can be defined on a neighborhood of 77 1(p).

Fix an integer vy with vy > nag. Then we construct holomorphic n-forms
valued in 7*E,, for any v > v by solving 0-equations with L?-estimates. From
now on, we denote by |a| the norm of o which is defined by |a| = Y0 | o
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Claim 3.3.3. Forv > vy, a multi-indezr o = (o, . . ., &) with |a| < v/ag—n
and a point q in w1 (p), there exists a holomorphic n-form s, , valued in m E,
with the following properties:

(1) For any multi-index B with |8| < v/ag— n and a point v in 7= 1(p),

8|'BIS - _{1 ifr=qand B8 = q,
a,q -

28 0 others.

[M |Sag

Proof of the claim. First we take a smooth n-form u valued in 7*E, with

©)

2 v, £ \7
(b @k),m* (w) P ( B a_oﬂ. @p) (7T w) < 0.
the following properties:

(a) For a multi-index 8 and r € 771(p),

_8l_ﬁ|u o 1 ifr=gqandf=aq,
028 "1 0 others.

(b) The support of u is contained in a (small) neighborhood of ¢.
(c) wu is holomorphic on a smaller neighborhood of g.

Now we consider a O-equation 0n = Ou. In order to obtain a solution of
the equation by applying [Dem82, THEOREM 4.1], we need to compute the
curvature of 7*E, and confirm the L?-boundedness of du with respect to the
suitable metric.

From the choice of ag and 1, we have

V=10 (hek) exp (~ Zr0) (T E)
= VUV —=10pspe (T" L) + /=10 i (7" F) + 5—\/——185#*%,
0
> %W*w + V=10, (7" F) > 7w,

for any v > 1. Thus it is sufficient to see the L?-boundedness of du. The
support of du does not contain the pole of T, since u is holomorphic on a
neighborhood of ¢g. Further n*h is smooth at ¢ by the choice of p. Therefore

we obtain
/ Bu
M

Since X is projective, M = X \ R admits a complete Kahler metric (see
[Dem82]). Therefore the étale covering M also admits a complete Kahler

2 v .
(b k), m* (w) P (- a" “p) (1*w)" < oo
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metric. (Remark that 7*w is not complete.) Thus by applying [Dem82,
THEOREM 4.1], we obtain a n-form 7 valued in 7*E,, such that

on = o,

L

Then sy, = u — 7 is a holomorphic n-form valued in 7*E, with L%
condition (2) in the claim. The L?-condition and the choice of ¢, yield n

2 V * %
(v @k) 1t (w) EXP (- a_oﬁ p) (m*w)" < oo

vanishes at any point in 77(p) to an order (v/ag) — n. Thus s, , satisfies
condition (1) in the claim by the choice of . 0

We shall see that s, satisfies condition (%) in Proposition 3.3.1. Note
the function exp (—¢,) is bounded below. Fix trivializations of L and F on
a neighborhood V. of r € U N R. Then under these trivializations, h is also
bounded below function on V., since the curvature associated to h is positive.
Here we implicitly used the known fact that an almost plurisubharmonic is
always upper semi-continuous. Thus Claim 3.3.3 yields

/ [Sevgleus (7)™ < 000,
(V)

Here we regarded s,4 as a holomorphic n-form on 71(V;). Recall

~n

2
|Saqlw % =v-T Sag N\ Sang
for any hermitian form w. Therefore s, satisfies condition (x).

Finally we show estimates (1}, (2) in Proposition 3.3.1. Let V,, be the C-
vector space which is spaned by {sq4}a,, Where o runs through multi-indices
with |a| < (v/ae) — n and q runs through the fibre 7~(p) of p. Since sq,
satisfies condition (x), we have

V., C H]gz(UmR) (M, OM(’]T*EV &® KA’;I'))

We can easily show that {s44}a,4 is linearly independent from property (1)
in Claim 3.3.3. Thus the dimension of V, is equal to the number of pairs
of multi-index « with |a| < (v/ag) — n and ¢ € 7~1(p). It implies that the
dimension is greater than or equal to cov"d for some number ¢y depending
only on ag and n. Therefore conclusion (1) in Proposition 3.3.1 holds.
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It remains to show conclusion (2). The pull-back 7*s of a holomorphic
n-form s valued in F, on X satisfies condition (x) since s is globally defined
on X. Thus we have

m*H*(X,0x(E, ® %)) C Heynp) (M, O(n*E, ® Kz7)).

Fix a point gy in the fibre of p. Let W, be the C-vector space which
is spaned by {saq}agzgq- It follows any section in W, is orthogonal to
™ H°(X,0x(E, ® V%)) from property (1) in Claim 3.3.3. Further the di-
mension of W, is greater than or equal to cov™(d — 1). Therefore we obtain
estimate (2). O

3.3.2 On the formal schemes

In the proofs of Theorem 3.3.6, 3.4.1, we consider a formal scheme (a formal
completion). In this subsection, we explain notations of a formal scheme and
give the proof of Proposition 3.3.4. This proposition and its proof are often
applied.

Let X be an irreducible analytic space (not necessarily compact) and YV
an analytic subspace on X and let Z be the ideal sheaf associated to Y. Note
that Y is not necessarily irreducible and reduced. Then we denote by Y3,
the k-th infinitesimal neighborhood of Y which is defined by Z*. That is, Y;
is the analytic space with structure sheaf Oy, := Ox/Z*. The ringed space
defined by N

(X,05) = (¥:lim Ox /T¥)
. k

is called the formal completion with respect to Z. For a given coherent sheaf
F on X, the formal completion F with respect to Y is defined to be

7= 1(1%&@0)(/1’2

which is a Og-module sheaf. The cohomology groups of the formal com-

pletion F may be infinite dimensional space even if Y is compact. However
under a suitable condition on Y, the cohomology groups are finite dimen-
sional.

Proposition 3.3.4. Let X be an irreducible analytic space (not necessarily
compact), Y a compact analytic subspace on X, I the ideal sheaf associated
toY and E a locally free sheaf on X. Assume that there exists a positive
winteger ko such that

HY(X,0x(E)QI*/T*™) =0 - for k> k.
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Then HO(X, @)) injects into H*(Y, Oy, (E)). Moreover for a sufficiently
large k we have o
H(X,0x(E)) = H(X, Oy, (E)).

Remark 3.3.5. When Y is a locally complete intersection, we have the iso-
morphism Z¥/Z*+1 = S’“N}*,/ « as a Ox-module. Then, if the normal bundle
Ny, x satisfies some positivity conditions (such as ample), the assumption in
Proposition 3.3.4 is satisfied (for instance see [Laz, Proposition 6.3.14]).

Proof. For every positive integer k, we have the exact sequence
0 — Ox(E) @ I¥/TF — Oy, ,(E) — Oy, (E) — 0.
By the assumption, the map
H°(X, Oy,,,(E)) - H(X, Oy (E))
is injective for k > kq. It implies that the map
H°(X, Oy, (E)) = H(X, Oy, (E))

is injective for k > kg. Therefore we have
H°(X,0x(E)) = lim H°(X,0y,(E)) C H(X, Oy, (E)).
k
The first equality follows from the general fact on the formal scheme (see
[Har77, Proposition 9.2]).
Finally we prove the latter conclusion. By the argument above, we have
already known that the dimension of the cohomology groups

{H°(X, Oy, (E))}kzko

is decreasing for k > kg. The dimension of the cohomology groups above
is finite, since Y is compact. Therefore the cohomology groups must be
isomorphic for a sufficiently large k. It implies

—

H'(X,0x(E)) = im H(Y, Oy, (E)) = H(Y, Oy, (E)).
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3.3.3 Proof of Theorem 3.3.6

In this subsection, we prove the following theorem. Corollary 3.1.4 follows
from this theorem.

Theorem 3.3.6. Let Y be a connected analytic subset on a smooth projective
variety X of dimension n, U a connected open neighborhood of Y, and R a
nowhere dense analytic subset on X. Assume that the cohomological dimen-
sion of the complement X \'Y is smaller than or equal to (n — 2). Then the
map j. : m (U \ R) — m(X \ R) s surjective. In particular, if R = ¢, the
map J. : m(Y) — w1 (X) is surjective.

Before the proof, we confirm the definition of the cohomological dimen-
sion.

Definition 3.3.7. Let Y be an analytic subset on a projective variety X.
The (algebraic) cohomological dimension of X \'Y is the smallest integer g
such that H*(X \ Y, F) = 0 for any 4 > ¢q and any coherent sheaf F on X.
We denote by c¢d(X \ Y) the cohomological dimension of X \ Y.

Let us begin to prove Theorem 3.3.6. We denote by M the complement
X \ R and by d the index of the image of m(U \ R) by 7. in 71(X \ R). Let
7+ M — M be an étale covering with mo(m(M)) = 5. (m (U \ R)). From the
construction, the degree of 7 is equal to d. Since U is connected and smooth,
U\ R is also connected. Thus, there exists a holomorphic map j with the
following commutative diagram:

Fix a big (or ample) line bundle L on X. By applying Proposition 3.3.1, we
obtain positive numbers ¢q and 14 such that

cov*(d—1) < dim Hpz(ynp (M, Os(m*E,@Ky;)) —dim H* (X, Ox(E,®Kx))
for any v > vq.

Lemma 3.3.8. In the situation above, we have

e ——

dim H gy (M, O¢(n* B, © K37)) < dim H(T, Oy(B, ® Kv)).
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Proof. If s is a section in H22(UnR) (M, O7(7*E, ® K37)), the pull-back 7*(s)
is a holomorphic n-form valued in E, on U\ R. By the L*-condition on UNR
(condition (%) in Proposition 3.3.1), j*(s) is L2-bounded on a neighborhood
of a point in U N R. Therefore j*(s) can be extended to the holomorphic
section on U by the Riemann extension theorem. It implies that

dim H g (M, Ogz(n* B, ® Kz7)) < dim H(U, Oy (B, ® Kv)).

Now E, ® Ky is a locally free sheaf on a smooth U and Y is connected. Thus
the map o

HO(U, OU(E,,) X KU) — HO(U, OU(E,, &® KU))
is injective. It follows from the general fact on a formal completion. (For

instance, see [BS76, Proposition V1.2.7].) O

From [Har77, Proposition 9.2], we have
H(T, 0y(E, © Ky) = lim H(U, Ov, (B, ® Kv)),
k

H(X,0x(E, ® Kx) = lim H*(X, Oy, (B, ® Kx)).

k
Since the supports of the sheaves which appear in the right hands is contained
in U, the left hands coincide. These arguments and Lemma 3.3.8 yield
cor™(d — 1) < dimH*(X, OX(E/yaKx))
—dim H%(X, Ox(E, ® Kx)). (3.2)

From now on, we estimate the right hand (3.2) by using the formal duality
theorem.

Claim 3.3.9. The right hand of (3.2) is estimated from above by the dimen-
sion of H" 1 (X \ 'Y, Ox(E})).

It follows d = 1 from this claim. In fact, H" (X \ Y, Ox(E})) is zero
since ¢cd(X \'Y) < n — 2. By inequality (3.2), we obtain d = 1. Thus it
sufficient to see the claim above for the proof of Theorem 3.3.6.

Proof. In the proof, we use the theory of a local cohomology. See [Har68] for
the local cohomology. Consider the long exact sequence of a local cohomology
- = Hy (X, Ox(Ey)) — H" (X, Ox(E}))
—H" X\ Y, 0x(E})) — Hy (X, Ox (E}))
—H"U X, Ox (B))) — H" X\ Y, Ox\y (E})) — -
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Let us investigate the local cohomology Hy “tH( X, Ox(E})). Now we have

Hy (X, Ox () = lim Ext™™*(Oy,, Ox (Ey))

k

= limp Ext"""*(Oy, (E, ® Kx), Ox(Kx)).

k

The Serre duality theorem on X implies
Ext" " (Oy, (E, ® Kx),Ox(Kx))
is equal to the dual space of
H'(X, 0y, (B, ® Kx)).

Note that we can apply the Serre duality theorem since X is smooth. The
inverse limit of the cohomology above is equal to the cohomology of the
formal completion with respect to Y. Therefore we obtain

H (X, Ox(B})) = H (X, Ox(E, ® Kx))"
On the other hand, by using the Serre duality theorem on X again, we have
H™ (X, O0x(E})) = H™'(X, Ox (B, ® Kx))"

Thus, the long exact sequence corresponds with

——

S HYYX\ Y, Oxy (B2)) = HY(X, 0% (B, ® Kx))*
—H"YX,0x(E,® Kx))* — -+

The conclusion follows from taking the dual spaces of this exact sequence. [

3.3.4 Proof of Corollary 3.1.4

In this subsection, we give the proof of Corollary 3.1.4. By Theorem 3.1.1, we
know that S is connected under the assumption that F is ample and r < n. It
is sufficient to prove cd(X \ S) < n—2. A section s € H*(X, Ox(E)) induces
the morphism s* : Ox(E*) — Ox. This morphism is a surjective map to
Zs C Ox since the codimension of S is equal to the expected codimension 7.
By taking symmetric powers and Proj, we have the embedding

i: Proj(éfé) — Proj(g.ESymk(E*)).
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The left hand is equal to the blow-up Blg(X) of X along S and the right hand
is equal to P(E*). Then we can easily check that Op x)(F) = ¢*Opz+)(—1),
where F is the exceptional divisor of Blg(X) — X. '

Since E is ample, Op(g=)(—1) is (r—1)-ample (see [DPS96, Example 2.7]).
It follows this line bundle is (n — 2)-ample from r < n. Thus, the restriction
Ogig(x)(F) is also (n — 2)-ample. Note the restriction to a subvariety of a
g-ample line bundle is also g-ample. In general, the cohomological dimension
of the complement of the zero locus of a g-ample line bundle is smaller than
or equal to ¢g. (For instance, see [Ott1l, Proposition 5.1].) Thus, we have
cd(Blg(X) \ F) < (n —2). Since Blg(X) \ F' is isomorphic to X \ S, we
obtain c¢d(X \ §) < n — 2. Thus the conclusion of Corollary 3.1.4 follows
from Theorem 3.3.6.

Remark 3.3.10. (1) The same conclusion in Corollary 3.1.4 holds under the
weaker assumption that Op(g+)(—1) is (n — 2)-ample by the proof.

(2) If X\ S is g-complete, then it follows 7;(X,S) =0 for i < n—q—1 from
the same argument in Section 3.2.2. Here (non-compact) complex manifold
is called g-complete if the manifold admits a (smooth) exhaustive function
whose Levi form has at least (n — ¢) positive eigenvalues at any point.

(3) If a complex manifold Z is g-complete, then cd(Z) < ¢. (It follows
from the Andreotti-Grauert vanishing theorem.) But in general the converse
is failed even if Z is a quasi-projective manifold. Therefore Theorem 3.3.6 is
worth.

3.4 The weak Lefschetz type theorems for ef-
fective divisors

3.4.1 Applications of the key estimates

The aim of this section is to give the proof of the following theorem. This
theorem have been already proved in [Nor83, Section 2]. It nevertheless
seems to be worth to display another proof with the Napier-Ramachandran’s
method.

Theorem 3.4.1. LetY be a connected effective divisor on a projective variety
X of dimension n (not necessarily smooth), U a connected open neighborhood
of Supp(Y') such that U does not intersect with the singular locus Xgngof X,
and R a nowhere dense analytic subset on X such that R O Xgns. Assume
that the Kodaira dimension of Y is larger than or equal to 2. Then the map
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Jx :m(U\ R) — m (X \ R) is surjective. In particular, when X is normal
and R is the singular locus Xging, the map j. : m(Y) — m1(X) is surjective.

Remark 3.4.2. The latter conclusion of this theorem follows from Corollary
3.5.4.

If the normal bundle Ny,x is ample, the image of j, : m(U \ R) —
71 (X \ R) is of finite index in 71 (X \ R) by the result of [NR98]. However the
normal bundle Ny, x may not be ample, even if the Kodaira dimension of ¥’
is larger than or equal to 2. Therefore we do not know whether the image of
the map is of finite index in 71(X \ R). In oder to overcome the difficulty,
we need to establish the slight generalization (Proposition 3.3.1) of [NR9S,
Theorem 2.2].

The proof have been divided into 3 steps. In first step, we prove the
theorem when Y is nef and big divisor. In this step, we apply Proposition
3.3.1. For the proof of the general case, we use the induction on the dimension
of X. In second step, we consider the case where X is a projective surface.

“In third step , we use the induction hypothesis on the dimension for the proof
of the general case. Throughout this section, we use the same notations in
the proof of Theorem 3.3.6. For example we denote by d, the index

d=[m(X\R): 5.m(U\ R).

Notice that our purpose is to prove d = 1.

3.4.2 The case where Y is nef and big

In this step, we assume that Y is a connected nef and big divisor. Then we
shall prove d = 1.

By applying (2) in Proposition 3.3.1 to a big line bundle L and a line
bundle £ on X, we obtain positive integers ¢y and vy (depending on X, L
and F') such that

cor™(d—1) < dimng(UnR) (M, O3 E, @ K37))
—dim H°(X, Ox(E, ® 0%))

for any v > 1. Now X may have singularities, however, a neighborhood of
Y is smooth. Thus Lemma 3.3.8 yields

dim H: gy (M, Of(n* B, ® K3p)) < dim HY(T, 0u(E, @ Kv)).

These estimates above hold for an arbitrary big line bundle L. In order to
estimate the right hand, we take the big line bundle Ox (Y) associated to the
big divisor Y as L. Then we can prove the following claim since Y is nef.
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Claim 3.4.3. Put L := Ox(Y). Then there exists a sufficient negative line
bundle F (which is independent of k,v ) such that

H(Y,0y(E,) @ IF /") =0 for k> w.
Here T is the ideal sheaf associated to'Y . |

Proof of the claim. Since Y is an effective divisor on a smooth variety U,
the ideal sheaf 7 is a locally complete intersection. Therefore we have the

isomorphism (Z*/Z¥1)* & Oy (kY). Tt yields
HY(Y,Oy(E,) @ TF /T*) = HY(Y, Oy ((v — £)Y) ® Oy (F ® Q%)). (3.3)

Here we used £, = L ® F = Ox(vY) ® F. We shall show the right hand is
equal to zero under a suitable choice of F'.

Since Y is a nef divisor, Oy(Y) is nef. That is, Oy,(Y) is nef for an
irreducible component Y; of Y. It implies Oy ((k — v)Y') is a nef line bundle
for k > v. Therefore for the proof, it is sufficient to show that there exists
a negative line bundle F' such that H*(Y, Oy (—P) ® Oy (F ® Q%)) = 0 for
any nef line Pon Y.

If Y is irreducible and reduced, it is easy to see the existence of such
negative line bundle F'. If fact, if we take a line bundle F' such that FF @ Q%
is negative on Y, then Oy (—P) ® F ® % is also negative for any nef divisor
P. It implies the right hand in (3.3) is equal to zero.

In general, Y is not irreducible and reduced. For the precise proof, we
need the following argument: Let ¥ = Zfil a;Y; be the irreducible decom-
position. A section in the right hand in (3.3) can be seen as the family of
sections

si € H'(Y;, Ouyi (v = K)Y) ® Ou; (F © Q%))

satisfying suitable gluing conditions on Y; N'Yj. Therefore it is sufficient to
show the existence of F' such that H°(Y;, Og,y;(—P) @ Op,y;,(F @ O%)) = 0
for any nef divisor P. Since Y; is irreducible and reduced, we can take a
line bundle F' such that H(Y;, Oy, (—kY — P) ® Oy,(F ® Q%)) = 0 for any
t=1,...,N and k with a; > k£ > 0. Then from the same argument as
Lemma 3.3.4, we can easily show H°(Y;, O,,v;(—P) ® Oq,v,(F ® Q%)) = 0 for
any nef divisor P. The choice of F' does not depend on nef line bundles P.
It competes the proof.

O

By this claim and Proposition 3.3.4, we have

dim H(T, 0y(E, ® Ky)) < dim H(Y, Oy, (E, ® Ky))
= dim H'(Y, Oy, (E, ® O%)).
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It follows the last equality since the support of Oy, (E,) is contained in U.
Then we consider the following exact sequence:

0 —72"QOx(E, ® Q%) — Ox(E, @ 0%) — Oy, (E, ® Q%) — 0.

The long exact sequence (induced by this sequence) and the inequalities
above yield

cov™(d—1) < dim H'(X,Z" ® Ox(E, ® O%))
for any v > 1. It follows
dim H'(X,7I" @ Ox(E,)) = dim H'(X, Ox(F ® 0%))
from Z = Ox(-Y) and L = Ox(Y). By this argument, we obtain
cov™(d — 1) < dim H} (X, Ox(F ® Q%)) for any v > w.

The right hand of the inequality does not depend on v. Letting v — oo, we
conclude that co(d — 1) must be zero. Hence d = 1 when Y is a connected
nef and big divisor.

Remark 3.4.4. If X is Cohen-Macaulay, the right-hand is equal to zero for
a sufficiently negative F. However we do not suppose that X is Cohen-
Macaulay.

3.4.3 The case where X is a surface

In this section, we consider the case where X is a surface (and Y is not
necessarily nef). Then, by the assumption of Theorem 3.4.1, Y is a big
divisor. If Y is nef, it follows d = 1 from Section 3.4.2. However Y may not
be nef even if Y is a big divisor. To overcome the difficulty, we use Lemma
3.4.5. This lemma says that Y can be assumed to be a nef and big divisor
by changing the coefficients of irreducible components of Y.

Lemma 3.4.5. Let Y be an effective divisor on a projective surface X and
Y = Zfil a;Y; the wrreducible decomposition of Y. Assume that Y is a big
divisor, its support is connected and does not intersect with Xgng. Then there
exzist positive integers b; (1 < i < N) such that the effective divisor Zf\i L bY;
is nef and big.

Remark 3.4.6. This proposition does not hold without assuming that Y is
connected. In fact, we consider the one point blow-up 7 : Bl,(P?) — P? of P2
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and Y = H+F', where H is the pull-back of a line on P? which does not pass
through p and F' is the exceptional divisor. Then Y is a big divisor. However
even if we change the coefficients of H and F', the intersection number with
F is negative (that is, not nef ).

Proof. First we prove the following claim:

Claim 3.4.7. If there exists a connected nef and big Q-divisor Y such that
0 <Y <Y, then the conclusion holds in Lemma 8.4.5.

Proof of the claim. Let {Yg}gez>0 be the family of Q-divisors defined as
follows: Yy := o, Y::=Y and Yg = the sum of those irreducible components
of Y which do not intersect with Yg_g but intersect with Yg_l for £ > 2. Put
m = sup{/ | Y, # ¢}. Note that every irreducible component Y; of YV is
contained some Q-divisor 3721.. It follows since Y is connected. We give the
proof by the induction on m.

When m = 1, the support of Y coincides with that of Y. Therefore, by
changing the coefficients of the irreducible components of Y, we may assume
that Y = Y. Then Y may not be a Z-divisor. However, some positive
multiple m0}7 is a Z-divisor since Y =Y is a Q-divisor. On the other hand,
mO? is nef and big by the assumption. It leads to the conclusion in the
claim.

From now on, we consider the case where m > 1. Since every irreducible
component E of Y, intersects with Y3, the intersection number (E - Yl) is
positive. Therefore there exists a sufficiently large integer a such that (E -
(571 + a?z)) > 0 for every irreducible component E of Y. Then it is easy
to see that 571 ai}z is a connected nef and big divisor. In fact, let E be
an irreducible divisor (curve) on X. If E is not contained in the support
of ¥; + aYs, the intersection number (E - (Y; 4 aY3)) is semi-positive. If
E is contained in the support of 37'2, the intersection number is positive by
the choice of a. Further, when E is contained in the support of Yl, the
intersection number is also positive since Y1 is nef. Since Y1 is big, Y1 -+ aYg
is also big.

Putting 7, =Y, + aYg, we construct {Z }e by the same construction as
{Yg}g Then by the construction, we have Z1=Y,+aY, and Z, = Y,_; for

£ > 2. Thus sup{/ | Zy # ¢} = m — 1. By the induction hypothesis on m,
" we obtain the conclusion.

O
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Finally, we see the existence of Y in the claim by using the Zariski decom-
position of Y. Recall that any big divisor admits a Zariski decomposition
on a smooth projective surface. Now X may have singularities. However,
since Y does not intersection with Xin,, we can assume X is smooth without
changing Y, by taking a suitable resolution of singularities of X.

Let Y = P + N be the Zariski decomposition of Y. Note that P is a nef
and big Q-divisor and N is an effective Q-divisor such that 0 < PN <Y.
We consider the decomposition P = >, P; suct that the support of P; is
disjoint each other. Since P is a nef and big divisor, the self-intersection
number (P?) =37, (P?) is positive. Thus, the self-intersection number (P2)
must be positive for some ¢y. Since P is a nef divisor, P, is also a nef divisor.
In fact, for every irreducible component E of P, (E-F;) = (E-P) > 0. Here
the first equality follows since F; is disjoint each other. We knew that P,
is a connected nef and big divisor such that 0 < F,, < P. It completes the
proof of the lemma. O

By Lemma 3.4.5, we may assume that Y is a nef and big divisor by
changing the coefficients of the irreducible components of Y. Recall that d
is the index of the image of j, : m (U \ R) — m (X \ R). Therefore d is
invariant even if we change the coefficients of the irreducible components of
Y. When Y is a connected nef and big divisor, it follows d = 1 from Section
3.4.2. In this step, we proved that the theorem holds on a surface.

3.4.4 General cases

In this subsection, we prove the general case under the induction hypothesis.
Let X be a projective variety of dimension n. We may assume n > 2. By
the induction hypothesis, Theorem 3.4.1 can be assumed to hold when the
dimension of a projective variety is smaller than n. First we fix an embedding
of X to the projective space PV.

Proposition 3.4.8. Let X C PV be an embedded projective variety of di-
mension n > 2, U an open set in X which does not intersect with Xgyng and
Y a connected divisor whose Kodaira dimension > 2. Then a general hyper-
plane H in PV satisfies the following properties:
(1) X N H is an irreducible projective variety of dimension (n — 1).

(2) UnN H is smooth (that is, does not intersection with (X N H)sing)-

(3) The Kodaira dimension kxng(Y N H) > 2.
(4)

4) Y N H is a connected divisor.
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Proof. By applying the Bertini type theorem, conditions (1) and (2) are
satisfied for a general hyperplane H. We prove condition (3). The rational
map ® = Py ¢ X - = P(ImoY|) associated to the complete linear
system |mgoY| has the generic rank > 2. From the definition of the Kodaira
dimension, the tangent linear map d®, : T, X — T@(I)PN has rank > 2 at
a general point x € X. Therefore a general hyperplane H passes through
a general point and the restriction d®,|p( xn) has rank > 2. Therefore the
restriction of ®y,,,y| to a general hyperplane H has still rank > 2. It means
lanH<Y N H) Z 2.

Finally we check condition (4). Let H be a hyperplane in PV. Consider
the following exact sequence:

0 — Oy(—qH) — Oy — Oy /Ly = Ogryrmy — 0,

where ¢ is a positive integer and Zyng is the ideal sheaf associated to the ef-
fective divisor YN H on Y. Now since Y is a divisor on a smooth variety U, Y
is a locally complete intersection and equidimensional. Therefore Y is Cohen-
Macaulay (see [Har77, Remark 7.61.]). It implies that H (Y, Oy(—gH)) =0
for a sufficiently large q. Hence we have the surjective map

H(Y,Oy) — H'(Y N H, Oy /T¢ ) = HY(Y N H, Ownm),)-

Now dim H(Y,Oy) = 1 since Y is connected. If Y N H is not connected,
dim H°(Y N H, C’)(yﬂH)q) is greater than or equal to 2. It is a contradiction
to the subjectivity of the map. Therefore Y N H must be connected. O

Take a hyperplane H in PV with the conditions in Proposition 3.4.8.
Then we consider the following commutative diagram:

X\R +— (XnH)\R

I |

U\R +— U,

where U C (X N H) is a connected open neighborhood of (Y N H). By
Proposition 3.4.8, Y N U is connected. However we do not know whether
UNH is connected. Therefore we need to take such connected neighborhood

U. Then we have
(X \R) +— m((XNH)\R)

| [

m(U\R) +— m (D).
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By the induction hypothesis, the vertical map on the right is surjective. If
the horizontal map on the above is surjective, then the vertical map on the
left is also surjective. It completes the proof of Theorem 3.4.1.

It remains to show that the horizontal map on the above is surjective.
Note that X N H is an ample divisor on X. If X N H does not intersect with
Xsing, it follows this map is surjective in Section 3.4.2. (However X N H may
intersect with Xgns. ) Hence we have already proved Theorem 3.4.1 when
X is smooth.

The general case can be reduced to the smooth case as follows: Take a
resolution of singularities p : X — X of X. Then the pull-back p*H is a
nef and big divisor since H is an ample divisor. (Note the pull-back can
be defined since H is a Cartier divisor.) Now p : X — X is not a fibre
connected when X is not a normal variety. Therefore p~1(U) and p*Y may
not be connected. For this reason, we need to take a new connected nef and
big divisor and its connected open neighborhood. Let p*Y = Zf\] Y; be a
decomposition such that the effective divisors Y; is disjoint each other. Now
p*Y is nef and big, the self-inersection number

N
(Y =S (77
1
is positive. Therefore (?Z]) is positive for some 4. Since p*Y is nef, Y; is
also nef. In fact, for an irreducible curve C contained in Y;, the intersection
number (C -Y;) = (C - p*Y) is semi-positive. Now we take a connected
open neighborhood U such that ¥;, C U and U C p~}(U). Then the map

m(U\p~H(R)) = m (X \p~Y(R)) is surjective from Section 3.4.2. Note that
U is a sufficiently small neighborhood of Y;,. Hence the horizontal map on
the below is surjective in the following commutative diagram:

N |
m(F\pR) w7 R).

In order to show that the horizontal map on the above is surjective, it is
sufficient to check that the vertical map on the left is surjective. Now there
exists an analytic subspace Z such that p is an isomorphism on X \ Z, since
p is a birational morphism. Thus, the map

m(X\ (P (R)U Z)) & m(X \ (RUp(2)))
is an isomorphism. Moreover the map

m(X\ (RUp(Z))) = m(X \ R)
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is also surjective since X \ R is smooth and p(Z) is an analytic set. Here we
used Corollary 3.5.4. Therefore the following commutative diagram

m(X\R) —— m(X\(RUp(2)))

I [

(X \pH(R)) +— m(X\ (p " (R)UZ)).

implies the vertical map on the left is surjective.

3.5 Examples

In this section, we discuss on Theorem 3.5.3. It may be a well-known fact.
However for the readers’ convenience, here we give the sketch of the proof.
First we confirm the definition.

Definition 3.5.1. Let X be an irreducible analytic space (not necessarily
smooth) and Z an analytic subspace on X. Then X is called topologically
unibranch along Z, if for an arbitrary point p € Z and an open neighborhood
U of p, there exists a open neighborhood V such that V' C U and (V\(VNZ))

is connected.

Lemma 3.5.2. Let X be an (irreducible) normal variety. Then X is topo-
logically unibranch along any analytic subspace Z on X.

Proof. Take a point p on Z and an open neighborhood U of p. Then we
can easily show that (V' \ (V N Z)) is connected for any connected open
neighborhood V' of p, by the extension theorems of holomorphic functions.
In fact, we assume that (V' \ (V' N Z)) is a disjoint union of V4 and V; for a
contradiction. Then we consider the function F defined by F = 0 on V; and
F =1 on V;. Since F is a bounded holomorphic function on (V' \ (V N Z)),
F can be extend to V \ (V N Xing) by the Riemann extension theorem.
Further F' can be actually extended to V since X is a normal variety. It is a
contradiction. O

Theorem 3.5.3. Let Z be an analytic subspace on an (irreducible) analytic
space X. Assume that X is topologically unibranch along Z. Then the map
Jx (X \ Z) = m(X) is surjective.
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Proof. Let 7 : X — X be the universal covering of X. Since 7 is a local
biholomorphic, there exists an open covering {V;}22, of X such that V; \
(V:nn~1(Z)) is connected. Note that V; \ (V; N 7~1(Z)) is path-connected.
First we show that 771(X \ Z) is connected. Take arbitrary points p.and g in
71X\ Z). Since X is path-connected, there exists a path v : [0,1] — X such
that v(0) = p and (1) = ¢. Since the image of v is compact, the image of
7 is covered by finite members. Therefore there exist finite members {V;} &,
such that

(1) The image of v is covered by {V;}¥,.

(2) Vi contains p and Vi contains g.

(3) V; intersections with V;; for ¢ = 1,2,... (N —1).
Let p; be a point in V;NV;y; fori = 2,3,..., (N —2). Since V;\ (V;N771(2))
is path-connected, p; and p;;; can be connected by a path in Vi1 \ (Vig1 N
7=HZ)) for i = 2,3,...,(N —2). By the same reason, p and p, (g and py_s)
can be connected by a path in V1 \ (V, N771Z). By connecting these pathes,
we obtain a path in 771(X \ Z) connecting p and q. Thus, 773X \ Z) is
connected.

Let 7 : X — X be an étale covering with 7, (7,(X)) = j,m (X \ Z). Then

we have

Since 771X \ Z) is connected, 771(X \ Z) is also connected. Now T has a
section on X \ Z by the construction. Therefore the restriction 7|z—1(x\z) :
71X\ Z) = (X \ Z) has a section. That is, there exists a holomorphic
map s : (X \ Z) —» T YX \ Z) such that T o s = id. Therefore 7, :
m (T X\ Z)) = m((X \ 2)) is surjective. Thus 7, is surjective. O

As a corollary of Theorem 3.5.3, we obtain the following.

Corollary 3.5.4. Let X be an (irreducible) normal variety.

(1) Then the map m (Xreg) = m(X) is surjective.

(2) Let Z be an analytic subspace on a smooth variety X. Then the map
m (X \ Z) = 7 (X) is surjective.

Remark 3.5.5. In the setting of Corollary 3.5.4, if X is a smooth variety
and the codimension of Z is greater than or equal to two, the map is an
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isomorphism. In fact, it follows from the real codimension > 3, by using the
- van-Kampen theorem. However, the map is necessarily not an isomorphism
when X has singularities. See Example 3.5.6.

Example 3.5.6. (Landman’s example). (cf. [Laz, Example 3.1.33)).

This example implies that (1) in Corollary 3.5.4 does not necessarily hold
when X is not normal (even if codimx Xgng > 2).

Let Y be a smooth projective variety and distinct points p, ¢ on X.
Taking a sufficiently large projective embedding Y C PV, a general point on
the secant line through p, ¢ does not intersect with any other secant lines
of Y. We denote by X the image by the projection from a general point
of the line and by o the image of p, ¢. Then X has singularities only at o
and X \ {o} is an isomorphic to Y \ {p, ¢}. Note that X is not topologically
unibranch along 0. Then we have

o

m(X\ o) 2 m¥ \{p,q}) > m(Y)

by the remark above. On the other hand, 71 (X) is an isomorphic to 71 (Y) X Z.
It follows from the van-Kampen theorem. In fact, take an open neighborhood
U; in X such that

(1) Ui is a neighborhood of the image 7 of a path ~.
(2) U, is homotopic to a circle S*.

Here 7 is a path in Y connecting p and ¢ and % is the image of v by the
projection. On the other hand, U, defined by U, := X \ 7 is connected and,
homotopic to Y \ 7. Therefore we have

QL

m(Us) = m(Y \7) S m(Y).

Here we use codimg y7y > 3. Now the intersection Uy N U is equal to Uy \ 7.
Therefore U; N U, is homotopic to $?*~! x [0,1). Here n is the (complex)
dimension of Y. It impies 71 (U; NUs) = {1}. By the van-Kampen theorem,
71(X) is an isomorphic to m (V) x Z.
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4_

On the ample vector bundles on curves

4.1 Introduction

In algebraic geometry, there are various geometric results on the amplitude of
the normal bundle of a subvariety. In this chapter, we study the Hartshorne
conjecture on the normal bundle, which was first posed in his paper [Har70].

Conjecture 4.1.1. ([Har70, Conjecture 4.4]). Let S be a smooth subvariety
on a smooth projective variety X. Assume that the normal bundle of S in X
is ample. Then some positive multiple of S would move as a cycle in a large
family.

It is easy to see that this conjecture is affirmative when the codimension
of S'in X is one. In their paper [FL82], Fulton and Lazarsfeld constructed
a counterexample for the conjecture as follows: Let E be an ample vector
bundle on a smooth projective variety S = P2. Then we consider the pro-
jective closure P(Og @ E*) of E, which we denote by X. We identify S with
the zero-section P(Og) of X = P(Os @ E*). Then the normal bundle of S
in X is equal to E. When E is Gieseker’s ample vector bundle on S = P?,
this construction gives a counterexample for the Hartshorne conjecture. (See
[Gie71] for Gieseker’s ample vector bundle.)

For that reason, the conjecture is negative in general. However the con-
jecture still remains open when S is a curve. In this chapter, we give a
characterization of the amplitude of a vector bundle on a curve. As an ap-
plication, we give a partial answer of the Hartshorne conjecture for a curve

(Theorem 4.1.2).

Theorem 4.1.2. Let E be an ample vector bundle on a projective curve C.
Here we identify C' with the zero-section P(O¢) in P(Oc @ E*). Then there
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exist a positive integer ko and an algebraic family {Ci}ier of 1-cycles with
wrreducible T' such that

(1) Cy, = koC for somety € T,

(2) P(O¢ @ E*) = Uyer Ct.

This theorem assures that the counterexample of Fulton and Lazarsfeld
can never be modified into a counterexample for a curve. When the rank
of E is 2, this theorem have been proved in [BPS90]. Therefore Theorem
4.1.2 can be seen as the generalization of the result of [BPS90]. Barlet, Pe-
ternell and Schneider proved Proposition 4.1.3 when the rank of E is 2 by
using some geometric facts concerning the ruled surface. We shall gener-
alize this proposition to a vector bundle of an arbitrary rank, by applying
the properties of a g-ample line bundle and a numerical characterization of
the pseudo-effective line bundles (which was established in [BDPP04]). The
method of this chapter seems to be essentially different from that of [BPS90].

Proposition 4.1.3. Let E be an ample vector bundle on a smooth projective
curve C. Consider the tautological line bundle Opg~y(—1) on the projective
space bundle P(E*) associated to the dual vector bundle E* of E. Then for
an arbitrary point e on P(E*), there exists an irreducible curve D, on P(E*)
such that

(1) D, passes through e € P(E*),

(2) The restriction of Opg=)(—1) to D, is an ample line bundle on D,.

The main result of [CF90] implies Theorem 4.1.2. However the methods
in this chapter give a direct generalization of [BPS90] and do not need the
result of [CF90]. In the proof of the main result of [CF90], Campana and
Flenner constructed a curve with the properties in Proposition 4.1.3 when
E is a semi-stable and ample vector bundle. (See [CF90, Corollary (8) and
Lemma (9)].) Further for the main result, they used the Harder-Narasimhan
filtration of a vector bundle by semi-stables subbundles. Proposition 4.1.3
may give another proof of the main result of [CF90] without the Harder-
Narasimhan filtration and semi-stability of vector bundles.

4.2 Characterizations of the amplitude of vec-
tor bundles on curves

The main aim of this section is to prove Theorem 4.2.1 and Proposition

4.1.3. First we consider Theorem 4.2.1, which gives a characterization of the
amplitude of a vector bundle on a curve.
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Theorem 4.2.1. Let E be a vector bundle on a smooth projective curve
C. Consider the tautological line bundle Opg+\(—1) on the projective space
bundle P(E*). Then the following conditions are equivalent.

(a) E is ample.

(b) There exists a strongly movable curve D on P(E*) such that the degree
of Op=(—1) on D is positive.

In this section, we denote by X, the projective space bundle P(E*) as-
sociated to the dual vector bundle E* of E and by L, the tautological line
bundle Opg«y(—1) on X for simplicity.

For the proof of Theorem 4.2.1, we consider the following proposition.
Theorem 4.2.1 follows from this proposition and Proposition 2.2.5.

Proposition 4.2.2. The following conditions are equivalent.
(a) E is ample.
(¢) L = Opg=y(—1) is cohomologically (r — 1)-ample on X = P(E*).

Proof. The following lemma asserts that it is sufficient to see the cohomology
groups vanish when F is a negative multiple of a fixed ample line bundle. It

may be known fact but we give the complete proof for readers’ convenience
(cf. [Ott1l, Lemma 2.1]).

Lemma 4.2.3. Let M be a line bundle on a projective variety Y. Fix an
ample line bundle A on'Y. Then M is cohomologically g-ample if and only
if for each k > 0 exists a positive integer mo = mo(k) > 0 such that

H(Y,A*®@M™) =0 fori>gq, m>m.

Proof. Let F be a coherent sheaf on Y. Then for a sufficiently large kg, the
sheaf F @ A% is generated by its global sections. Thus, there is a surjective
map & — F where &£ is a sum of line bundles of the form A~". Here r; is a
positive integer for each 7. Let G be the kernel of the map £ — F. Then we
consider the exact sequence

0—-G—=&—>F—0.

It follows that HY(Y, L™ ® ) = 0 for i > ¢ and m > 0 from the assumption
and the form of £. Thus, for a sufficiently large m, we have the isomorphism
HAHYY, L™ ® G) > HY(Y, L™ ® F) for i > q. Then we can easily see that L
is cohomologically g-ample by the induction on q. (]
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First we show that condition (a) implies (c) in Theorem 4.2.1. That is,
for any coherent sheaf F on X there exists a large integer mg (which depends
on JF) such that

H(X,L™"®F)=0 for m>me.

It follows from a formula on direct image sheaves of line bundles on the
projective space bundle and a simple computation of the spectral sequences.

Let X = P(E*) 5 C be the natural projection to C. We fix an ample
line bundle B on C such that 7*B ® L~ is ample on X. Note that we can
take such line bundle since the restriction of L™! to a fibre of 7 is ample.
We denote by A, the ample line bundle 7* B ® L~! on X. Thanks to Lemma
4.2.3, it is sufficient to show that for each k > 0, H{(X,L™ ® A~*) = 0 for
m > 0and i > q.

By a formula for higher direct images of line bundles, we have

7 (L™™) = Sym™(E*), R 'm.(L™") =Sym™(E)® detE

for a positive integer m and all other direct image sheaves vanish (see [Laz,
Appendix A)). By using the Leray spectral sequence, we obtain

Hi(C,Sym™(E) ® F) = H™H (X, L™ @ 7*(F ® detE"))

for a coherent sheaf F on C' and a positive integer m. For any k, by taking
F = B~ @ detE, we obtain

H(C,Sym™(E) ® B™* @ detE) = H™" (X, L™ @ n*B™%)
— ‘E['r‘—l-i—l()(7 Lm+'r—k: ® A—k)

The left hand is equal to zero for i > 0 and a sufficiently large m, since F is
an ample vector bundle on C. Thus, for any integer k there is a large integer
mo = m(k) such that H"(X, L™ ® A~%) = 0 for m > my. Therefore it follows
L is an (r — 1) line bundle on X from Lemma 4.2.3.

Conversely, we assume that L is cohomologically (r — 1)-ample. Then
by the same argument, for any coherent sheaf F on C, there is an integer
mg such that H'(C,Sym™(E) ® F) = 0 for m > mg. It implies that E is
ample. O

At the end of this section, we give the proof of Proposition 4.1.3 by
applying Proposition 4.2.1.
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Proposition 4.2.4. (=Proposition 4.1.3). Let E be an ample vector bun-
dle on a smooth projective curve C. Consider the tautological line bundle
Ope+)(—1) on the projective space bundle P(E*) associated to the dual vec-
tor bundle E* of E. Then for an arbitrary point e on P(E*), there exists an
irreducible curve D, on P(E*) such that

(1) D, passes through e € P(E*),

(2) The restriction of Opg~)(—1) to D, is an ample line bundle on D,.

Proof. By the definition of a strongly movable curve, we obtain a birational
morphism g : X — X and very ample divisors A; for i =1,2,...,r —1 such
that (u*L-A;---A._1) > 0.

Let e be a point in X. We can take a point & on X with w(€) = e since
W X > X is surjective. Then there exist a smooth curve C on X with the
following properties:

(1) 8; passes through é.

(2) The intersection number (L - C) is positive.
In fact, a general member of |A;|; is irreducible and smooth, since A; is very
ample (see [Zha09, Theorem 1.3]). Here |A;|s is the linear system passing
through € in the complete linear system of A;. Thus by taking a complete
intersection of general members of |A;|s;, we can obtain a curve C with the
properties above.

Let D, be the push-forward of C. Notice that D, is not a point by the
construction of C. Since C passes through & and 1(€) = e, the push-forward
D, passes through e. Further, we have (L-D,) > 0 by the projection formula
and property (2). It completes the proof of Proposition 4.1.3. O

4.3 Proof of Theorem 4.1.2

In this subsection, we give the proof of Theorem 4.1.2 by applying Proposition
4.1.3. Before the proof, we prepare the following lemma.

Lemma 4.3.1. Let S be a m-cyéle on a compact Kdhler manifold Y. Assume
that there exist analytic families {St}ier, of m-cycles with irreducible T; with
the following properties:

(1) For each i, there is t; € T; such that Stii is equal to some positive
multiple k.S of S.

(2) User Uer, St contains some open set onY .
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Then there ezists an analytic family {S;}her of m-cycles with irreducible
T with the following properties:
(1) St, is equal to some positive multiple kS of S for some to € T.

2) Uier St =Y.

Proof. Since Y is a compact Kéhler manifold, the Barlet space of m-cycles
has at most countable irreducible components. Further, each irreducible
component is compact (see [Lie78]). Remark that in general components of
the Barlet space may not be compact even if ¥ is compact. Let {Z,}2,
be the irreducible components of the Barlet space of m-cycles which contain
some positive multiple of S. Then for each ¢ € I there is ¢; such that Z,
contains 7;. Thus we have

JUsicUU s

i€l teT; i=11t€Z,

Now Usez, Sf is a closed analytic subset in Y since Z, is compact. In fact,
we consider the graph of the analytic family {Sf}cz,. The graph

{w,t) eY x Z, | y € Sf}.

is a closed analytic set in Y x Z,. Further, the first projection ¥ x Z, 2% Y
is a proper map since Z, is compact. Therefore the image of the graph by
the projection is a closed analytic set in Y by the proper mapping theorem.

By property (2), the countable union of closed analytic sets | J,. Z, S¢ con-
tains an open set on Y. Thus there is an integer ¢, such that UteZe0 Sko

contains the open set. Since {J;cy, S¥ is a closed analytic set and Y is con-
0

nected, we have (J,. 2 Sfo =Y. It follows that the analytic family {57} Za,
satisfies the conclusion of the lemma from the choice of Z,. O

Let us prove Theorem 4.1.2.

Proof of Theorem 4.1.2. Take a normalization v : C — C of C. Since v
is a finite morphism and F is ample on C, the pull-back v*E is also ample
on C. We assume that there is an algebraic family {C,}ier of 1-cycles on
C with the conditions in Theorem 4.1.2. Then the push-forward {v.Ci}tier
is an algebraic family of 1-cycles on C since v is a finite map (see [Bar75],
[Bar80-B]). Futher, this family satisfies the conditions in Theorem 4.1.2 by
the construction. Thus, we may assume that C is smooth curve.

We take an arbitrary point e # 0, in the fibre E, of E — C at c € C.
Now 7 : X = P(E*) — C has the space of lines of E, as the fibre of ¢ € C.
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Thus we can identify e with the corresponding point of X, which we denote
by the same notation e. By applying Proposition 4.1.3, for this e € X, we
take an irreducible curve D, with the following properties:

(1) D, passes through e € X.

(2) The restriction of L to D, is ample on D.
From property (2), there exist a positive integer k and a (holomorphic) sec-
tion s, € H%(De, L*|p,) such that the value of s, at e is not zero. We consider
the image of multi-section induced by s. and want to construct an analytic
family of 1-cycles from the homotheties. For this purpose, we consider the
following graph:

{(f,a) € Lip, x C | fk=a~se}.

This graph induced the analytic family {C%}aec on L|p, with the following
properties:

(1) C§ is equal to kD, as a cycle.

(2) The fibre of L|p, at e is covered by |J,ec Ce.

Now we have the natural injection 0 — L — #*FE and the natural pro-
jection 7*E — E. Then the composition L — E is equal to the blow-up of
the total space of E along the image of the zero-section. Thus by taking the
push-forward of the cycle above, we have an analytic family on {C¢},ec of
1-cycles on E with the following properties:

(1) C§ is equal to kC as a cycle.

(2) The line passing through e in E, is covered by |, C%.
By varying e € X, we obtain analytic families {C¢}4ec such that {C¢}
contains some positive multiple of C' and

Since E is a (Zariski) open set in X = P(O¢ @ E*), Lemma 4.3.1 yields the
conclusion of Theorem 4.1.2.

O

In the proof of Theorem 4.1.2, we have proved the following corollary.

Corollary 4.3.2. Let E be an ample vector bundle of rank r on a projective
curve C. Then there exists a positive integer ko and an algebraic family
{Cihier of 1-cycles with irreducible T such that

(1) Cyy = koC for someto € T,

(2) E= UteT Ct.
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Restricted volumes and
divisorial Zariski decompositions

5.1 Introduction

Throughout this chapter, let X be a smooth projective variety of dimension
n, D a (big) divisor on X and V an irreducible subvariety of dimension d on
X, unless otherwise mentioned. Then the restricted volume of D along V is
defined to be

, dim HO(X|V, Ox (kD))
volxv (D) = hﬁsolip Fd .

Here we denote by H°(X |V, Ox (kD)) C H°(V, Oy (kD)) the space of global
sections of Oy (kD) on V that can be extended to X. Roughly speaking,
the restricted volume measures the number of sections of Oy (kD) which can
be extended to X. The notion of the restricted volume first appeared in
[Tsu06]. The restricted volume has many applications in various situations
(see [HMO6], [Tak06]). The properties of the restricted volume are studied
in [ELMNP09], [BFJ09] and so on.

On the other hand, it is an important problem to determine when D
admits a Zariski decomposition. Here a decomposition D = P + N is said
to be a Zariski decomposition, if P is a nef R-divisor and N is an effective
R-divisor such that the following map is an isomorphism for any positive
integer k£ > O:

This map is the natural map induced by the section e, where e is the stan-
dard section of the effective divisor [kN]. Here |G| (resp. [G]) denotes the
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divisor defined by the round-downs (resp. the round-ups) of the coefficients
of an R-divisor G.

When D is an ample divisor, the restricted volume volxjy (D) of D along
V is equal to the self-intersection number (D?-V) of D on V. Therefore
the restricted volume voly v (D) along V depends only on the first Chern
class (the numerical class) of D when D is ample. In general, the restricted
volume has the same property if V' is not contained in the augmented base
locus By (D) of D (see [ELMNP09, Theorem A]). The augmented base locus
of D is a subvariety on X which measures how far D is from ample divisors
(see [ELMNPO06, Section 1] for the precise definition and the properties).

It is natural to ask whether the restricted volume volx|y (D) of D depends
only on the numerical class of V. In [BFJ09], the question is affirmatively
answered when the codimension of V' is one. In this chapter, we give a
necessary and sufficient condition for D, that the restricted volume volxv (D)
of D depends only on the numerical class of V. The condition is related to
the existence of a Zariski decomposition of D as follows:

Theorem 5.1.1. Let D be a big divisor on a smooth projective variety X.
Then the following conditions are equivalent.

(1) D admits a Zariski decomposition.

(2) volx|v (D) = voly (D) holds for any pair of subvarieties V' and 14
on X such that V=V and V,V' € B, (D).

(3) volx|c(D) = volx (D) holds for any pair of curves C' and C on X
such that C = C' and C,C" Z B, (D).

Remark 5.1.2. Tt is sufficient for the proof of Theorem 5.1.1 to show that
condition (1) (resp. (3)) implies condition (2) (resp. (1)) since condition (2)
clearly leads to condition (3).

When subvarieties V and V' are numerically equivalent, we write V = V.
Condition (2) means that the restricted volume volx|y(D) of D depends
only on the numerical class of V. Theorem 5.1.1 implies that the restricted
volumes along some numerically equivalent subvarieties are different when D
does not admit a Zariski decomposition.

When V is the ambient space X, the restricted volume of D is equal
to the usual volume volx (D) of D. The usual volume has been studied by
several authors. The general theory is presented in details in [Laz]. In his
paper [Bou02], Boucksom gave an analytic description of the usual volume
with positive curvature currents which represent the first Chern class of D,
by using a result of Fujita on the approximation of Zariski decompositions
and the singular holomorphic Morse inequalities. In other words, Boucksom
expressed the usual volume of D in terms of the first Chern class of D.

68



The restricted volume volx|y (D) along V depends only on the first Chern
class ¢1(D) of D if V is not contained in the augmented base locus B, (D) of
D. Then Boucksom’s description for the usual volume can be generalized to
the restricted volume as follows:

Theorem 5.1.3. Let D be a big divisor on a smooth projective variety X.
Assume that V' is not contained in the augmented base locus B (D) of D.
Then the restricted volume of D along V satisfies the following equality:

VO].X|V(D) = 8up / (Tlvreg)gc
Tea (D) Vieg

where T' ranges among positive (1, 1)-currents with analytic singularities in
c1(D) whose singular loci do not contain V.

Here we denote by T'|y;,, the restriction of 7" to the regular locus Vg of
V and by (T'|v;.)ac the absolutely continuous part of T'|y,,, (see Section 5.2.2
for the precise definition). Theorem 5.1.3 enables us to define the restricted
volume of a transcendental class on a compact Kéhler manifold in natural
way.

Definition 5.1.4. Let W be an irreducible analytic subset of dimension d
on a compact Kéhler manifold M and let a a class in H%(M,R). Assume
that W is not contained in the non-K&hler locus E,x(a) of a. Then the
restricted volume of o along W is defined to be

volyw (@) := sup / (T |Wreg )2
Wreg

Tex

where T ranges among positive (1,1)-currents with analytic singularities in
a whose singular loci do not contain W.

Here the non-Kéahler locus is an analytic counterpart of the augmented
base locus (see [Bou04, Definition 3.14] for the precise definition of the non-
Kéhler locus). When « is the first Chern class of some divisor D, the non-
Kéhler locus E,x (o) coincides with the augmented base locus B, (D). For
this extended definition, the properties of the usual restricted volume hold.
For example, the continuity, log concavity, Fujita’s approximations and so
on (see Section 5.4.2). Moreover, an analogue of Theorem 5.1.1 holds for the
extended definition as follows. The proof gives another proof of Theorem
5.1.1 by using analytic methods (see Section 5.4.3).
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Theorem 5.1.5. Let a be a big class in HY1(X,R) on a smooth projective
variety X. Then the following conditions are equivalent.

(1) & admits a Zariski decomposition.

(2) volx|v(a) = volyy(a) holds for any pair of subvarieties V and V'
on X such that V=V and V,V' € E,x(a).

(3) volxjc(a) = volx () holds for any pair of curves C and C' on X
such that C = C" and C,C' ¢ E.x(a).

Here we say that a big class admits a Zariski decomposition if the positive
part of its divisorial Zariski decomposition is nef (see Section 5.2.4). When
a is the first Chern class of some divisor D (that is, « is contained in the
Néron-Severi space), a Zariski decomposition of « coincides with that of D.
However, a class « is not necessarily contained in the Néron-Severi space of
X even if X is projective. Therefore Theorem 5.1.5 is essentially stronger
statement than Theorem 5.1.1.

5.2 Preliminaries

In this section, we prepare for the proofs. The propositions in this section
may be known facts. However we give comments or references for the readers’
convenience. Throughout this section, M denotes a compact Kahler manifold
of dimension 7.

5.2.1 Multiplier ideal sheaves and Skoda’s lemma

In this chapter, we often use the description of the restricted volume with the
multiplier ideal sheaf which was proved in [ELMNP09]. We denote by Z(T)
the multiplier ideal sheaf associated to a d-closed (1,1)-current 7. That is,
Z(T) is the sheaf of germs of holomorphic functions f such that |f|?e=2% is
locally integrable, where ¢ is a local potential function of 7. (Note that this
definition does not depend on the choice of a local potential function.) See
[DELO0], [Dem] for more details. Skoda’s Lemma gives a relation between
the Lelong number of T and the multiplier ideal sheaf Z(T'). Here the Lelong
number v(T, z) of an almost positive (1, 1)-current T' = dd°yp at z is defined

by v(T, z) := lim inf #(2)

where z is a local coordinate centered at z.
==z log|z — z

Lemma 5.2.1. ([Sko72]). Let ¢ be a potential function of an almost positive
current T'.
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(a) If v(T,z) < 1, then e~2% is integrable in a neighborhood of x. In other
words, the stalk Z(T), of Z(T) at z is equal to the stalk O, of the structure
sheaf of M at x.

(b) If v(T,z) > n+ s for some positive integer s, then e=2* > Clz —
z| 72725 in a neighborhood of x. In particular, we have I(T), C w}f, where

Mz 5 the mazimal ideal of Opry.

5.2.2 Lebesgue decompositions

A positive current T' can be locally regarded as a (1,1)-form with measure
coefficients. Thus it admits the Lebesgue decomposition into the absolutely
continuous part and the singular part with respect to the Lebesgue mea-
sure. Therefore we obtain the decomposition T' = T, + Tgng, Where T
(resp. Ting) is the absolutely continuous part (resp. the singular part) of
T'. This decomposition is globally determined thanks to the uniqueness of
the Lebesgue decomposition. Now T, is considered as a (1,1)-form with
L} -function coefficients. Thus we can define the product T of T, almost
everywhere. We have T,. > v if T > + for some smooth (1, 1)-form v. In
particular, the absolutely continuous part T,. is positive if T is a positive
(1, 1)-current (see [Bou02, Section 2.3] for more details).

5.2.3 Approximations of currents

Let T = 6 + dd°p be a (1,1)-current in a class @ € HY(M,R), where 6 is
a smooth (1,1)-form in « and ¢ is an L!-function on M. We assume that
T > ~ holds for a smooth form ~. Fix a Kéhler form w on M. Then we can
approximate 17" by smooth forms in the following sense:

Theorem 5.2.2. ([Dem82, THEOREME 9.1)). There ezists a decreasing
sequence of smooth functions ¢y converging to ¢ such that if we set T =
0 + dd°py € a, we have

(a) Ty, — T weakly and T, — T, almost everywhere on M.

(b) Tp > v— Chww, where C s a positive constant depending only on
(M,w), and {\e}32, is a decreasing sequence of continuous functions such
that A\x(z) \ V(T z) for allz € M.

Roughly speaking, Theorem 5.2.2 says that it is possible to smooth a given
current 7" insides the class o, but only with the loss of positivity controlled
by the Lelong numbers of T. By the proof of Theorem 5.2.2 in [Dem82], we
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may add the following property to Theorem 5.2.2. (Recall that T}, is obtained
from T by convolution with a regularized kernel.)
(c) IfT is smooth on a given open set U of M, then Ty converges to T
in C*(U). ‘
The following theorem asserts that it is possible to approximate a given
current with currents with analytic singularities. There is a loss of positivity
but it is arbitrary small.

Theorem 5.2.3. ([Dem92], [Bou02, Theorem 2.4]). There exists a sequence
of functions @y with analytic singularities converging to @ such that if we set
Ty = 0 + dd°py, € a, we have

(&) Ty — T weakly and Ty . —> Ty almost everywhere.

(b") Ty > v — exw, where e is a positive number converging to zero.

() The Lelong number v(Ty, z) increases to v(T,z) uniformly with
respect to x € M.

In the proof of [Bou02, Theorem 2.4], the convergence Ty ,c — Ty in
(a") was obtained from only property (a) in Theorem 5.2.2. Therefore we
may add the following property (d') thanks to property (c).

(d') IfT is smooth on a given open set U of M, then Ty . converges
to Toe 1n C(U).
It yields the following corollary.

Corollary 5.2.4. Let W be an irreducible analytic subset on M. Assume
that T|w,,, is smooth except some analytic set on Wieg. Then Ty, in Theorem
5.2.3 satisfies the following property:

(Tk[Wreg)ac — (T|ng)ac almost everywhere on Wieg.

5.2.4 Divisorial Zariski decompositions

In this subsection, we confirm the definition of the divisorial Zariski decom-
position of a class. The divisorial Zariski decomposition of a big divisor
coincides with its o-decomposition. The divisorial Zariski decomposition is
studied in [Bou04] and the o-decomposition is studied in [Nak].

Let « be a pseudo-effective class in H“(M,R). Then the effective R-
divisor N is defined to be

N := Z v(a, F)F.

F:prime div

Here v(a, F') denotes the Lelong number along a prime divisor F' which is
defined by inf,cr (o, ). The class { N} of N is called the negative part of the
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divisorial Zariski decomposition of a.. The class P defined by P :=a — {N}
is called the positive part. Then the decomposition @ = P 4 {N} is said
to be the divisorial Zariski decomposition of o. In general, the positive part
P is nef in codimension one (that is, the codimension of its non-nef locus
is strictly larger than one). We say that o admits a Zariski decomposition
if the positive part P is nef. If o is the first Chern class of a big divisor,
this definition coincides with that of the divisor (which was described in
Section 5.1). For example, if M is surface, any big class admits a Zariski
decomposition (see [Bou04, section 4]). By the construction of N, positive

currents in o and positive currents in P are identified by the correspondence
Tea—T—[N]eP.

5.3 Restricted volumes and Zariski decompo-
sitions

5.3.1 Positive parts and restricted volumes

The main aim in this section is to prove Theorem 5.1.1. Throughout this
section, let D be a big divisor on a smooth projective variety X of dimension
n. Then we consider the divisorial Zariski decomposition D = P + N of
D. We first establish Proposition 5.3.1 for the proof of Theorem 5.1.1. This
proposition asserts that the restricted volume of D can be computed with
the positive part P.

Proposition 5.3.1. Let W be an irreducible subvariety of dimension d on
X. Assume that W is not contained in the augmented base locus B, (D) of
D. Then the equality volx,w (D) = volx|w(P) holds.

Remark 5.3.2. In general, P is an R-divisor. Then volx w (P) can be defined
by the limit of the restricted volumes of QQ-divisors which converge to P in
the Néron-Severi space. Thanks to the continuity of the restricted volume
(see [ELMNPO09, Theorem 5.2]), volx|w (P) does not depend on the choice of
QQ-divisors which converge to P.

Proof. Since D is a big divisor, there is an effective Q-divisor which is Q-
linearly equivalent to D. Therefore we may assume that D is effective. (Re-
call that the restricted volume has the homogeneity.) Moreover we may
assume that the support of D does not contain W, since W is not contained
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in B, (D). In particular, W is not contained in the support of N nor in that
of P.

Since D = P + N is a divisorial Zariski decomposition, there exists the
natural isomorphism H°(X, Ox(|kP])) & H°(X, Ox (kD)) induced by the
section ey for a positive integer & > 0, where ey, is the standard section of the
effective divisor [kN] (see [Bou04, Theorem 5.5] or [Nak]). Then we consider
the following commutative diagram:

H(X,Ox([kP])) —— H°(X,0x(kD))

1| i
HOW, Ow([kP))) ~2% HO(W, Oy (kD))

where f and g are the restriction maps. The diagram induces the map

Im(f) —e’i‘L Im(g). This map is surjective since the horizontal map above
in the diagram is an isomorphism. Now e|w is a nonzero section since W
is not contained in the support of N. It implies that the map below in the
diagram is injective. Thus, the map Im(f) — Im(g) is an isomorphism. It

yields
0
volx|w (D) = lim sup (X |W, Ox ([kP)))

k300 ke/d!

When P is a Q-divisor, Proposition 5.3.1 follows from this equality and
the homogeneity of the restricted volume. However, we need the following
argument when P is an R-divisor.

Let P =) . a;D; be the irreducible decomposition of P. Note that a; is
positive for any ¢ since P is effective. We want to approximate the R-divisor
P with suitable Q-divisors. For this purpose, we define a Q-divisor P, by
Py ;= £71[£P]. Then, from the definition of the round-down, we obtain
|¢P| < LP < |{P] + F for any positive integer £, where F is the effective
divisor defined by F' := ), D;. These inequalities imply that P, converges
to P in the Néron-Severi space. For a sufficiently large ¢, B,.(P;) does not

(5.1)

contain W (see Proposition 1.6.3 (1)). Therefore we have
V01X|W(P) = ZEI&VOIX|W(PZ)

from the continuity of the restricted volume.
Now we prove the inequality volx|w (D) > volx|w(F;) for any £ in order
to show the inequality volxw (D) > volx|w(P). By the homogeneity of the

74



restricted volume and equality (5.1), we obtain the following equalities:

volg (D) = hﬁi‘ip hO(XlW];Cf;;(!(LkPJ)) _ hflil.}p hO(XWZkod);C(l !LZkP j))’
KO (X|W, Ox(k|£P]))

Layw (Py) = 1
volxw (F) = lim sup (7k4/d]

Note that |¢kP| — k[£P] is an effective divisor and its support is contained
in the support of D. Since W is not contained in the support of D, we have

RX|W, Ox([4kP])) | W(X|W, Ox (k|£P]))
0K/ = kAl ‘

It implies the inequality volx|w (D) > volx|w(F) for any £. Therefore we
obtain volxjw (D) > volx|w(P).

Finally we show the converse inequality volyjw (D) < volxw(P). For
this purpose, we shall estimate |¢kP| — k|£P] from above. By a simple
computation, we obtain

|0kP| — k|4P] = Z (L¢ka;| — k|4a;)) D
< Z (¢a; — [£a;])) Dy

< ZkDi = kF.

Since the support of F' does not contain W, the inequality above yields

. h(X|W, Ox (|4kP]))
lxjw(D) =1
voliw(D) = lim sup (7k7/d)
KO (X|W, Ox (k([£P| + F)))
o
< lim sup IZTZp

1

Now we have volx|w(|[{P] + F){~% = volxjw(P, + £7'F) from the homo-
geneity of the restricted volume. Further, P, + £~*F converges to P in the

Néron-Severi space when £ tends to infinity. The continuity of the restricted
volume implies that volxw ([£P] + F)£~¢ converges to voly|w (P). Hence we
obtain the converse inequality volx|w (D) < volx|w(P). O
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Corollary 5.3.3. Let W be an irreducible subvariety of dimension d on X
Assume that W is not contained in B (D). If D admits a Zariski decompo-
sition (that is, the positive part P of its divisorial Zariski decomposition is
nef), then the equality volxw (D) = (W - P%) holds.

Proof. By Proposition 5.3.1, we have volx|w(D) = volx|w(P). Since P is
nef, there exist ample Q-divisors Ay which converge to P in the Néron-Severi
space. Since Ay is ample, the restricted volume volx|w (A) of Ay along W
is equal to the self-intersection number (W - A%) on W. By the continuity of
the restricted volume and the self-intersection number, we obtain

VOl)(|W(D) = VOl)(|W(P)

= lim volx w (Ax)
k—o0

= lim (W - AY) = (W - P%).

k—o0

5.3.2 Proof of Theorem 5.1.1

This subsection is devoted to complete the proof of Theorem 5.1.1. First,
we shall see that condition (1) implies condition (2). We assume that D
admits a Zariski decomposition D = P + N (that is, the positive part P of
its divisorial Zariski decomposition is nef). Take. subvarieties V and V' on
X such that V =V’ and V, V' € B, (D). Then the restricted volumes of D
can be computed by the self-intersection number of the positive part P from
Corollary 5.3.3. That is, volxv (D) = (V - P%) and voly(D) = (V' - p%
hold. Since V and V' are numerically equivalent, (V - P%) coincides with
(V' - P?). Hence the equality voly|y (D) = voly v (D) holds.

We shall show that condition (3) implies condition (1). Let D = P+ N
be a divisorial Zariski decomposition of a big divisor D. We assume that P
is not nef for a contradiction. Since P is not nef, the restricted base locus
B_(P) of P is not empty. From this condition, we want to construct curves
C, C' such that the restricted volume volx|c(P) along C is different from
the restricted volume voly, o (P) along c'.

For a construction of such curves, we take a very ample divisor A on X
and a point zo in B_(P). Then there are smooth curves C and C' with the
following properties:

(1) C and C" are not contained in the augmented base locus B (D).
(2) C passes through zo € B_(P).
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(3) C' does not intersect with the restricted base locus B_(P).
(4) Cand O’ are complete intersections of members of the complete linear
system of A.

We can easily see that there exist such curves: A general member of
| Al is irreducible and smooth, where |A|,, is the linear system passing
through z in the complete linear system |A| of A (see [Zha09, Theorem
2.5]). Then by taking a complete intersection of general members of |Al,,,
we can take a curve C with properties (1), (2), (4). Now we construct a
curve C' with properties (1), (3), (4). By the construction of the divisorial
Zariski decomposition, the restricted base locus B_(P) of the positive part
P is the countable union of subvarieties of codimension > 2. Thus the
codimension of the intersection of B_(P) and H is greater than or equal to
3 for a “very” general member H of |A|. It implies that a curve which is a
complete intersection of very general members of |A| does not intersect with
B_(P).

Now C and C' are numerically equivalent since C' and C’ are complete
intersections of members of the same complete linear system. Thus, it follows
the equality volx|c(D) = voly| (D) from condition (3) in Theorem 5.1.1.
By Proposition 5.3.1, we have the equality volx|c(P) = voly(P). It is
sufficient for a contradiction to prove the following lemma. In fact, (C - P)
is equal to (C' - P) since C and C' are numerically equivalent. Therefore the
following lemma implies volx|c(D) < voly o (D). It is a contradiction.

Lemma 5.3.4. In the situation above, the followings hold.
(A) voly e (P)=(C"- P), (B) wvolx|c(P) < (C- P).

Proof. First we show equality (A). In general, P is an R-divisor. Thus we
should approximate P with Q-divisors. We take ample R-divisors A; with
the following properties: ‘

(i) P+ Agis a Q-divisor for a positive integer k > 0.

(i) P+ Ay converges to P in the Néron-Severi space.

Since Ay is ample, B, (P + Ax) C B, (P) for any k. Thus, it follows that

C’ is not contained in B, (P + A;) from property (1). We take a positive
integer ay such that ax(P + Ag) is a Z-divisor. Then the homogeneity and
the description of the restricted volume with the asymptotic multiplier ideal
sheaf (which was proved in [ELMNPOQ9, Theorem 2.13]) yields

1 /
v01X|C/(P+Ak) = lim sup = AL (C’ N (Zak(P+Ak))®j(||£ak(P+Ak)H)
—o00 k

c):

Here J(||L||) denotes the asymptotic multiplier ideal sheaf associated to
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a divisor L (see [DELO0O] for the definition). Further Z|,, denotes the ideal
T - Oy for aideal Z and a subvariety V on X.

We shall investigate the asymptotic multiplier ideal sheaf J(|[£ar(P +
Ap)|) along C'. Let Tiinx be a current with minimal singularities in the first
Chern class of ax(P + Ag). Then the restricted base locus of ay(P + Ag) is
equals to the set {z € X | v(Tiink, %) > 0} by Proposition 1.6.3 (3). On the
other hand, the restricted base locus of P+ A is contained in the restricted
base locus of P, since Ay, is an ample divisor. Further, C’ does not intersect
with the restricted base locus of P from property (3). Therefore the Lelong
number of Tiinx at z € C' is zero. Thus we have J ((Tming)|or = Oy for
every £ > 0 by Skoda’s Lemma. Thus, from Theorem 5.4.3 (which is proved
in Section 5.4), we have

’ hO O/ O (P P A
voly| o (P + Ag) = limsup (C', O (Car(P + k))
{—00 Eak

Since C" is not contained in B, (P), (P + Ay) is an ample divisor on C'.
By the Riemann-Roch formula, we obtain voly,q/ (P +Ax) = ((P+A4x)-C').
It follows voly o (P) = (P- C") from the continuity of the restricted volume.

Finally we show inequality (B). Consider the following commutative dia-
gram:

H°(X, 0x([kP]) @ J(ILkPII)) —— H*(C,Oc(|kP]) ® T([[|kP]I)c)

! J

H(X,Ox(|kP))) — H°(C,Oc(|kP))).

The vertical map on the left hand is an isomorphism (see [DEL00, Theorem
1.8]). Thus the vertical map on the right hand is surjective onto the image

of the horizontal map. It yields
RO (X|C, Ox (| kP RO(C, Op(| kP kP
tim sup L KIC Ox(RP) _ - hO(C, Oc(LkP) @ T (I [EP]DIc)

k—o0 k k—o00 k

We have already proved that the left hand is equals to volx|¢(P) in the proof
of Proposition 5.3.1. For the proof of inequality (B), we need to estimate the
right hand from above. For this purpose, we shall investigate the asymptotic
multiplier ideal sheaf J(|||kP]]|) along C.

Take a positive current Sy in the first Chern class of |kP] such that
J(Sk) = T(|[lkP]||)- Let P = 3" a;D; be an irreducible decomposition of P
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and let F the divisor which is defined by F:=>.D;. Then kP— |kP|<F
for any positive integer k. Thus we obtain

v(kTmin, ) < v(Sk, z) + v([F], z)

by the definition of a current with minimal singularities. Here [F'] denotes the
positive current defined by the effective divisor F' and Ty,;, denotes a current
with minimal singular in ¢;(P). Since v(Tmn, o) is positive by property (2),
we can take a positive rational number p/q which is smaller than v(Tpin, Zo)-
For simplicity, we put ¢ := v([F],zo). Then we have kp — ¢ < v(Skq, Zo)-
Skoda’s Lemma implies J(|||[kP] ||)z, © m’j}f;j"”“, where my ;, is the max-

imal ideal in Ox ,,. Thus we obtain

R(C, Oc([kP)) ® T(ILEPIIDIc)

lim sup
k—o0 k
W (C, Oc(|kgP]) ® mig ™+
< tmng " (0 OcllkaP) © mze o)
k—oo kq
h(C, Ou(|kgP|) @ mZ
<« 1oy (G OcllaP)) B w7 )
k—oo kq
i h(C, Oc(lkqP] — (kp — ¢ — n + 1)[z0)))
= lim sup ka ,
k—oo

where [zo] is the divisor on C defined by zg. Now (|gkP|— (kp—c—n+1)[zq])
is nef on C. Thus the dimension of its first cohomology group converges to
zero when k tends to infinity. By using the Riemann-Roch formula again, we
obtain

h°(C, Oo(|kgP] — (kp — ¢ = n +1)[zd]))

volx|¢(P) < limsup

k—o0 kq
i s (G ([kaP] = (kp — e = n + V)[ao])
T e kg

g(c-P)—§<(c-P).

ad

In the proof of Lemma 5.3.4, we have already proved the following corol-
lary.

79



Corollary 5.3.5. Let C' be a smooth curve on X. Assume that C is not
contained in B (D). Then we have ,
volx|¢(D) < (C- D) — Z V(Tinin, T).

z€CNB_ (D)

5.4 An analytic description of restricted vol-
umes with positive curvature currents

5.4.1 Proof of Theorem 5.1.3

The main aim of this subsection is to prove Theorem 5.1.3. Before the proof
of Theorem 5.1.3, we need to show that the integral in Theorem 5.1.3 is
always finite.

Proposition 5.4.1. Let W be an irreducible analytic subset of dimension d
on a compact Kdhler manifold M and T a positive d-closed (1,1)-current on
M. Assume that the polar set of a potential function of T' does not contain
W. Then the integral fWreg (T|Wrep )% 15 finite.

Proof. In [Bou02, Lemma 2.11], it has been proved that [, S% is finite for
a positive d-closed current S on W when W is non-singular. Since T is a
positive d-closed current on M, the restriction T|w,,, is also a positive d-
closed current. Thus, Proposition 5.4.1 holds when W is non-singular. It
is enough to consider the case where W has singularities. Then we take an
embedded resolution u : WCM-—WCMofW C M. That is, p is a
modification from a compact complex manifold M to M and its restriction to
W gives a resolution of singularities of W. Then the following lemma, assures
that Proposition 5.4.1 holds even if W has singularities. In fact, we have

| enwi- [ (Tl

by this lemma. The left hand is finite since W is non-singular. Thus the
right hand is also finite. O

Lemma 5.4.2. Let i : 1% C M—W C M be an embedded resolution of
W C M. In the assumption of Proposition 5.4.1, we have

/W (T = /W (D))
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Proof. The map W —~— W is a modification. Therefore (w*T) |5 is iden-
tified with T'|w,,, by p on some Zariski open set. Now ((/,L*T)Iﬁ/')ac and
(TIWreg)ac are (1,1)-forms with L'-functions as coefficients. Since a Zariski

closed set is of measure zero with respect to the Lebesgue measure, we obtain
. d
fWreg (T[Wreg)gc = fW (('UI T)|W)ac' D

The rest of this subsection is devoted to prove Theorem 5.1.3.
Proof of Theorem 5.1.3.

(Stepl) In this step, we prove the inequality > in Theorem 5.1.3 by using
the singular holomorphic Morse inequalities (see [Bon98]) and Proposition
5.4.3. Proposition 5.4.3 is proved at the end of this subsection. Let T be a
positive d-closed (1,1)-current with analytic singularities in the first Chern
class ¢;(D) whose singular locus does not contain V.

First, we consider the case where V' is non-singular. Then we obtain the
following inequality:

. RO (V, Oy (kD) @ Z(kTmin)|v
volx|v (D) = 11225231) ( 57 )
> lim sup PV, Ov(ED) & (kD))
= oo k2 /d!
> lim sup hO(V’ OvlkD) & I(kT’V)) .
= oo ke/d!

Here T, denotes a current with minimal singularities in ¢;(D). The
first equality follows from Proposition 5.4.3 and the second inequality follows
from the restriction formula (see [DEL00, Corollary 1.3] for the restriction
formula). By using the singular holomorphic Morse inequality, we have

ho(V, Oy (kD) @ Z(kT
volx|y (D) > limsup (V. Ov (kD) ® Z(kT1v))

> [ @

Therefore the inequality > in Theorem 5.1.3 holds when V is non-singular.

Now we consider the case where V' has singularities. Then we take an
embedded resolution p : V C X — V C X. The augmented base locus
of the pull back u*D of D does not contain V, since p : V. — V is a
modification. By applying the singular holomorphic Morse inequality and
restriction formula to p*D, V and p*T again, we obtain

wlgp (D) 2 [ (0T) o)
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By Lemma 5.4.2, we obtain [,,(T|v,.. )% = [¢((w*T)|3#)%. On the other hand,
we have V01X|V(D) = volg 5 (u* D) from [ELMNP09 Lemma 6.7]. Thus the
inequality > in Theorem 5.1.3 holds even if V' has singularities.

(Step2) In this step, we shall show the converse inequality < by applying-
Fujita’s approximation theorem for the restricted volume (which is proved in
[ELMNP09, Proposition 2.11]). By applying [ELMNP09, Proposition 2.11],
for an arbitrary number ¢ > 0, we can find a modification 7, : X, — X and
the expression m.*D = A, + E. such that (4.%- V) > volx|v (D) — €. Here
A, is an ample Q-divisor and FE is an effective Q-divisor whose support does
not contain the strict transformation V. of V.

Let w. be a Kéahler form on X, in the first Chern class of A.. Since the
support of E. does not contain V;, we may restrict [E.] to V., where [E,]
denotes the current defined by the effective divisor E,. Then we obtain

(v = [ (el
- / ((we + [BDlw)
/reg { (Teu(we + [Ec]))

d
Vieg }ac'

The third equality follows from the same argument as the proof of Lemma
5.4.2.

Since 7. is a modification, its push-forward =.,(w. + [E.]) is a positive
current in the Chern class ¢; (D). However the push-forward may not have an-
alytic singularities. For the proof, we need to approximate the push-forward
by positive currents with analytic singularities. When we approximate a
given current by Theorem 5.2.3, the approximation sequence may lose pos-
itivity. Now (w. + [E]) is a Kéhler current but the push-forward may not
be a Kahler current. For that reason, we need to consider a Kéhler current
before we apply Theorem 5.2.3.

For simplicity, we put T; := 7., (we + [E¢]). Since V is not contained in
the augmented base locus B, (D), there is a Kahler current S in ¢;(D) with
analytic singularities whose singular locus does not contain V. By Fatou’s
Lemma, we obtain
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V01X|V(D) —e< (Aed : ‘/;:)

< [ tmint {0 - HTohe) + 58l
Vieg §—0 ac

< lim inf/ {1 =0)(Telv,,,) + 5(S|Vreg)}d :
6—0 V}eg ae

Hence there exists a sufficiently small number §; > 0 with the following
inequality:

volepy(D) =26 < [ {(1= ) (T + (S}

reg

Note that (1 — dg)T: + 605 is a Kéhler current in ¢;(D). By applying the
approximation theorem (Theorem 5.2.3 and Corollary 5.2.4) to (1 — &g)7T: +
905, we can find positive currents Uy in ¢;(D) with the following properties.

(1) Uy has analytic singularities for every integer k.

(2)  (Uklvieg)ac — {(1 = 60) T}y, + 5OS‘Weg}ac almost everywhere on
V}eg

(3) Uy is a positive current for a sufficiently large k.

Fatou’s Lemma and property (2) imply

V01X|V(D) —2 < {(1 - 50)(T6|Vreg)ac + 5O(Sl‘/}eg)a0}d
V}eg

=/ lim inf(Ug|v,., )%
Vieg k—oo

k—o00

gliminf/ (Uk’%eg)gc-
Vieg

Therefore we have

V01X|V(D) - 38 S / (Uk0|vreg)gc
‘/}eg

for a sufficiently large ky. Now ¢ is an arbitrary positive number and Uy,
is a positive current with analytic singularities in the Chern class ¢;(D). It
completes the proof of Theorem 5.1.3.

O
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At the end of this subsection, we prove the following proposition, which is a
variation of [ELMNP09, Theorem 2.13].

Proposition 5.4.3. Let V be an irreducible subvariety of dimension d on
X. Assume that V is not contained in B, (D). Then the following equality
holds.

hO(V, Oy (kD) & T(kTomin
V01X|V(D) = limsup ( V( ) ® ( )|V),
P k/dl

where Ty 15 a current with minimal singularities in c1(D).

Proof. By [ELMNP09, Theorem 2.13], we know

RO (V,0(kD kD
volx|v (D) = limsup ( (kD) © I (]| ||)|V)
ksoo k4/dl

In order to prove Proposition 5.4.3, we should compare the multiplier ideal
sheaf Z(kTmi,) with the asymptotic multiplier ideal sheaf J(||kD|). By
the definition of a current with minimal singularities, we have J(||kD|) C
Z(kTmm) for all positive integer k. Hence it is sufficient to prove the inequality
> in Proposition 5.4.3. For this purpose, we establish the following lemma.

Lemma 5.4.4. Let D be a big divisor on a smooth projective variety X.
There is an effective divisor E (independent of k) with the following proper-
ties:

(i) The support of E does not contain V.

(i) Z(kTmm) - Ox(—E) C J(|kD||) for a sufficiently large k.

Proof. This proof is essentially based on the argument in [DEL00, Theorem
1.11]. Fix a very ample divisor A on X. For an arbitrary point z € X,
there exists a zero-dimensional complete intersection P, of the complete lin-
ear system |A| containing x. The Ohsawa-Takegoshi-Manivel L2-extension
theorem asserts that, there exists an ample divisor B (which depends only on
A) such that for any divisor F' and a singular hermitian metric A on F' with
the positive curvature current T}, the following restriction map is surjective
(see [OT87], [Man93]):

H°(X,0x(F + B) ® I(Ty)) — H°(Py, Or,(F + B) @ Z(Th|p,)).
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Moreover, the Ohsawa-Takegoshi-Manivel L2-extension theorem claims that,
for a section on P,, the extended section satisfies an L2-estimate with a
constant which is independent of F. Further the L?-estimate depends only
on A. .

Since D is big and V is not contained in the augmented base locus of
D, we can take E € |koD — B‘ with property (i) by choosing a sufficiently
large kg. We apply the Ohsawa-Takegoshi-Manivel L?-extension theorem to
F := (k— ko) D+ E equipped with a singular hermitian metric h&* % @ hy.
Here hpm;, denotes a singular hermitian metric with minimal singularities and
hg denotes a singular hermitian metric defined by the standard section of the
effective divisor E. Then for a sufficiently large k£ and a given point z € X,
we obtain the global section s, of Fy+ B ~ kD with the following estimates:

9 n 2 —
/X |S$| h?&fn_ko@hE@th < ¢ and |Sz(ﬂ3)| hgfn_k()@hE@hB B 1,

where C is a constant depending only A and hpg is a smooth hermitian metric
on B with the positive curvature. Here w is a Kéhler form on X. From the
second equality, we obtain

|Sz (x)|26—2(k—k0)<ﬂmin—2tpE—2<pB =1,

where Y, ©E, @5 is the weight of the hermitian metric Apn,hz,hp respec-
tively. Since ¢p is a smooth function and X is compact, there is a constant
C’ such that

log |s.(z)| + C'.

1
. [ <
90m1n+k__k0QOE_ lﬁ—-ko

The evaluation map H°(X, Ox (kD)) —» C is a bounded operator on the
Hilbert space H°(X,Ox(kD)) with the L?-norm. Moreover the operation
norm is equal to the Bergman kernel

Ny
> i) |0 ghpehs
j=1

where {f; j-vz’“l is an orthonormal basis of H°(X, Ox(kD)). Therefore there
is a constant C" such that

Ni
log |s.(z)| < logz £l +C".

J=1
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These inequalities imply that the function ﬁ log>_; | f;| has less singulari-
ties than @myin + ﬁgoE. By the definition of the asymptotic multiplier ideal
sheaf, we obtain property (ii). O

We shall complete the proof of Proposition 5.4.3 by using Lemma 5.4.4.
From property (i) in the previous lemma, we may consider the following short
exact sequence: '

Since the dimension of the intersection V' N E is smaller than dimV = d, we
have

, R°(V N E, Ovngp(kD))
lim sup

e k7d] =0

Hence we obtain

, hO(V, Oy (kD) ® Z(kTwin)lv) _ .. ho(V, Oy (kD — E) ® Z(kTimin)|v)
lim sup k/d! < limsup k/d!

On the other hand, F satisfies property (ii) in Lemma 5.4.4. It implies
lim su hO(V') OV(kD - E) ®I(kTmm)lV> < lim su hO(V7 OV(kD) &® j(HkDH”V)
vt ke/dl = Mmoo ke/dl

These inequalities assert

i su hO (V, Oy (kD) ® Z(kTmin)|V)
koo ke/dl

S Vle|V(D).

5.4.2 Properties of restricted volumes

Theorem 5.1.3 enables us to define the restricted volume for a big class on
a compact K&hler manifold (see Definition 5.1.4). In this subsection, we
study the properties of the restricted volume of a class on a compact Kahler
manifold. Throughout this subsection, we denote by M a compact Kéahler
manifold and by W an irreducible analytic subset on M of dimension d and
by « a big class in H'1(M,R).

Proposition 5.4.5. Assume that o is a nef class and W is not contained in
the non-Kdahler locus Enx(a) of . Then the restricted volume volysw () is
equal to the self-intersection number (a®- W) on W.
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Proof. When W is non-singular, this proposition is proved by using the same
argument as [Bou02, Theorem 4.1]. By using Lemma 5.4.2, we can give the
proof even if W has singularities. O

The following proposition is the generalization of Proposition 5.3.1 to
a class on a compact K&hler manifold. The proof gives another proof of
Proposition 5.3.1 without the approximation of the positive part P by Q-
divisors.

Proposition 5.4.6. Let « = P+{N} be the divisorial Zariski decomposition
of a. Assume that W is not contained in E, k(o). Then W is not contained
in Enx(P) and the equality volpyw (o) = volpqw(P) holds.

Proof. The proposition is based on the following fact. Positive currents in «
and positive currents in P are identified by the correspondence T —— T'—[N].
First we show the following claim.

Claim 5.4.7. We have E,kx(a) = E,kx(P).

Proof. For a point x & E,x(a), there is a Kahler current T in o with analytic
singularities such that 7" is smooth at z. Note T'— [N] is a Kahler current
since T" is a Kahler current in a. In fact, T > w for some Ké&hler form w.
Then the negative part of the Siu decomposition of T' — w still contains [N].
It yields T — [N] > w. Therefore T'— [N] is a Kéahler current in P. We
can easily see that the support of NV is contained in F,x(a). Since z is not
contained in the support of N, the K&hler current 7' — [N] is smooth at z.
Thus z is not contained in E,x (P). ’

Conversely we take a point x & E,x(P). Then there is a Kahler current
S in P such that S is smooth at . We may assume that S > w. We shall
show that z is not contained in the support of N. To prove this, we consider
the surjective map:

{smooth real d-closed (1,1)-form} — H“'(M,R), 6+~ {6}.

We regard the space of smooth real d-closed (1, 1)-forms as the topological
space with the Fréchet topology. For a smooth (n — 1,n — 1)-form ~, the
integral |, o Ok Ay tends to [ s 0 A\ v if 0y converges to @ in the Frécht topology.
Hence it follows that the above map 6 — {9} is continuous from the duality
theorem. Thus the map is an open map from the open mapping theorem.
Since the map is an open map, for a positive number &, there is a
sufficiently small 6 > 0 such that dc;(IN) contains a smooth form 7 with
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—ew < 1 < ew. Since S is a Kahler current, S+n+ (1 —0)[V] is still a posi-
tive current for a sufficiently small e. Further the current belongs to the class
a. Now the Lelong number of S+ 71+ (1 —6)[NV] at z is equal to the Lelong
number of (1 — §)[N] since S and 1 are smooth at z. If v([N], z) is positive,
it is a contradiction to the construction of N. (Recall N = > v(Tyin, E)E,
where T is a current with minimal singularities.) Thus z is not contained
in the support of N. It implies that the Kéhler current S+ [N] is smooth at
z. Hence z is not contained in F,x (). O

Finally, we prove volyw (o) = volpw(P). Note that we can define the
restricted volume of P thanks to the claim above. Since the support of the
current [N]|w,,, is contained in N N W, the absolutely continuous part of
[N]lw,e, is zero. It implies that [N]|w,,, does not affect the integration on
W. Therefore it follows Proposition 5.4.6 from the correspondence between
positive currents in o and in P. 0

The following theorem says that Fujita’s approximation theorem for the
restricted volume of a class holds. It leads to the continuity of the restricted
volume.

Theorem 5.4.8. The restricted volume of a class o along W can be ap-
prozimated by self-intersection numbers of semi-positive classes. That is, the
following equality holds.

voluw (@) = TeBAiE] (5)*-W)

where the supremum s taken over all resolutions  : M— M of positive
currents T' € o with analytic singularities such that 7 is an isomorphism
at a generic point of W and W Z Supp(E). (Here W denotes the strict
transformation of W.)

Proof. Let T be a positive current with analytic singularities in the class «
whose singular locus does not contain W. Then we take a modification p
such that u*T" = B + [E] and u is an isomorphism at a generic point on W.
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Lemma 5.4.2 yields

/W Tl = /W(M*TIW)ZC
- | @+,
=/WBd=({B}d-W).

Therefore we obtain voluw () = SUp«r_p4 (g ({B }d-W) from the definition
of the restricted volume of o along W. O

In order to show the continuity of the restricted volume, we consider
the “domain” of the restricted volume for a given analytic subset W on
M. Further, we prove the convexity of the domain and log concavity of the
restricted volume.

Definition 5.4.9. For an irreducible analytic subset W on M, the domain of
the restricted volume is defined to be Big” (M) := {8 € H*(M,R) | W ¢

Proposition 5.4.10. (1) Big"' (M) is an open conver set in HY'(M,R).
(2) For By, 52 € Big" (M), we have

volyw (81 + By)Ye > VOIMIW(/BI)I/d + V01M|W(52)1/d-

Proof. (1) The convexity is easily proved from E,x(8+8") C Enx(8) U Eng (B)
and E,x(B8) = E.x (k) for k > 0. For a given class 3, we can see E,x(8) C
E,.x(B) for every class 8 in a suitable open neighborhood of 3 by using the
argument in Lemma 5.4.7. It asserts the domain is an open set.

(2) In his paper [Bou02], Boucksom showed the log concavity for the
volume of a transcendental class. Hence it follows the log concavity of the
restricted volumes of nef classes from Proposition 5.4.5. By using Proposition
5.4.8, we can conclude that the restricted volume has the log concavity on

Big" (M). O
Corollary 5.4.11. The following map is continuous.
volaw () : BigW(M) — R, B +— volyw ()

Proof. Tt is known fact that a concave function on an open convex set in R
is continuous. Therefore Corollary 5.4.11 follows from Proposition 5.4.10. [
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5.4.3 Proof of Theorem 5.1.5

In this subsection, we prove Theorem 5.1.5 by using the analytic description
of the restricted volume with currents. It gives another proof of Theorem
5.1.1. Let @ € HY(X,R) be a big class on a smooth projective variety X
and o = P + {N} the divisorial Zariski decomposition. We have E,x(a) =
E,.x(P) by Lemma 5.4.7. Hence we can consider the restricted volume of P
along V.

The strategy of the proof is essentially same as Theorem 5.1.1. From
Proposition 5.4.6, we have volx|y (o) = volx|y(P) for an irreducible sub-
variety V' on X such that V & E,x(a). Moreover, Proposition 5.4.5 says
that volx|y(P) = (V - P?) holds if P is nef. Hence when o admits a Zariski
decomposition, the restricted volumes along any cohomologus subvarieties
coincide.

Let us show that condition (3) implies condition (1). We assume the
non-nef locus E,,(P) is not empty for a contradiction and fix a very ample
divisor A on X. Then there are smooth curves C and C" with the following
properties:

(1) C' does not intersect with the non-nef locus E,(P).

(2) C and C’ are not contained in the non-Kahler locus Epx ().

(3) C intersects with the non-nef locus E,,(P) at o € X.

(4) C and C" are complete intersections of members of the complete linear
system of A.
Then we prove the following lemma for a contradiction.

Lemma 5.4.12. In the situation above, the followings hold.
(4) volge(@)=(C-P), (B) volxc(a)<(C-P).

Proof. From the definition of the restricted volume of P and Proposition
5.4.6, we obtain

volx|c(a) = volx|c(P) = sup/ (T|c)ac-

TeP Jo
Here T" runs through positive currents with analytic singularities in the class
P whose singular loci do not contain C. Now T'|¢ is also a positive current
with analytic singularities. In general, the Siu decomposition coincides with
the Lebesgue decomposition for a d-closed positive current with analytic
singularities. Therefore we have (T'|c)ac = T'|lc — D> ,cc ¥(T|c, 2)[z]. On the
other hand, we have

[ Tle=(c-P)
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In fact, we can easily see

/TIC: (C-P)+/ddcgo|c,
C C

where ¢ is an L!-function on X such that T = 6 + dd°p. Here § denotes a
smooth (1, 1)-form in P. By applying the approximation theorem (Theorem
5.2.2) to ¢|c, we obtain smooth functions ¢y on C such that ddp; weakly
converges to dd°p|c. Thus [, dd®py tends to [, dd°¢|c: On the other hand,
i) o @d°py is equal to zero for every k from Stokes’s theorem. (Note that dd®yy,
is smooth.)

Hence we obtain

volxic(e) = sup {(C-P)=> v(T|o,z)}

Tee(P) zeC

zeC

In general, the Lelong number of the restriction of a current is more than
or equal to the Lelong number of the current. Further, v (T, z) < v(T, z)
holds from the definition of a current with minimal singularities. Therefore
we obtain

volx|c(a) < (C-P) — Z V(Tin, ).
zeC
The curve C intersects with the non-nef locus E,,, (P) at zo from property (3).
Hence v(Tmin, To) is positive. It implies volx|c{a) < (C - P) — v(Trin, To) <
(C - P). Here Tpy is a current with minimal singularities in P. Therefore
inequality (B) holds.

Finally we shall prove equality (A). By the first half argument, we have
voly (@) < (C" - P). To prove the converse inequality, we take a Kahler
current S with analytic singularities in . We may assume S > w, where w
is a Kahler form on X. By applying the approximation theorem (Theorem
5.2.3) to a current Ty, with minimal singularities in P, we obtain positive
currents 7Tj with analytic singularities with the following properties.

(b') Ty > —erw and e eonverges to zero.

() The Lelong number v(T},z) increases to v(Tmm, z) for every point
z € X.

For every positive number d, there is k(8) such that (1 — 6)Ty + 65 is a
positive current. Since (1 — 6)Tys) + 05 is a positive current with analytic
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singularities, the inequality
voly g7 (@) > /C (1= 8)Ths) +0S)lr)..
holds by the definition of the restricted volume. The Lelong number of T}, at

every point in C' is zero by property (3). It implies T} is smooth on C. Thus
we obtain

volior(@) 2 (1= 9)(C - P) =5 [ (Sler),e

for every 6. When § tends to zero, we obtain voly,(a) > (C" - P). O
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An ampleness criterion with

the extendability of
singular positive metrics

6.1 Introduction

Throughout this chapter, let us denote by X a smooth projective variety of
dimension n, by L a line bundle on X. In the theory of several complex vari-
ables and algebraic geometry, it is fundamental to consider a singular metric
on L whose Chern curvature is a positive (1, 1)-current. A singular metric on
L with positive curvature current corresponds to a @-plurisubharmonic func-
tion, where 6 is a smooth d-closed (1, 1)-form which represents the first Chern
class ¢;(L) of the line bundle L. (For simplicity of notation, we will abbrevi-
ate “f-plurisubharmonic” to “f-psh”.) Here a function ¢ : X — [—00,00)
is called a 8-psh function, if ¢ is upper semi-continuous on X and the Levi
form 6 + dd°y is a positive (1, 1)-current. We will denote by Psh(X, 6) the
set of @-psh functions on X. That is, Psh(X, ) is the set

{¢: X — [~00,00) | ¢ is upper semi-continuous and 6 + ddp > 0. }.

It is of interest to know when a 6|y -psh function on a (closed) subvariety
V C X can be extended to a global §-psh function on X. Coman, Guedj and
Zeriahi proved that a 6|y -psh function on any subvariety V can be extended
a global §-psh function on X, if L is an ample line bundle (see [CGZ10,
Theorem B]). Note that a 8|y-psh function can be defined even if V has
singularities (see [CGZ10, Section 2| for the precise definition).

Theorem 6.1.1. ([CGZ10, Theorem B|). Let L be an ample line bundle on
a smooth projective variety X and let 0 be a Kdhler form representing c1(L).
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Then for any subvariety V. C X, any 0|v-psh function on V extends to a
0-psh function on X.

The following theorem asserts that the converse implication of Theorem
6.1.1 holds, which is a main result in this chapter. Theorem 6.1.2 gives an
ampleness criterion by the extendability of singular metrics (6-psh functions).

Theorem 6.1.2. Let L be a pseudo-effective line bundle whose first Chern
class ¢1(L) is not zero. Assume that L satisfies the following property : For
any subvariety V. and any 0|y-psh function ¢ € Psh(V,0|y), there ezists a
global 6-psh function @ € Psh(X, ) such that @y = . Here 6 is a smooth
d-closed (1,1)-form representing c1(L). Then L is an ample line bundle.

A line bundle L is called pseudo-effective if Psh(X, ) is not empty. We
can easily check that the definition of pseudo-effective line bundles does not
depend on the choice of § € ¢;(L). In the proof of Theorem 6.1.2, we consider
only the case when V is a strongly movable curve (see Section 6.3). Thus
for an ampleness criterion, it is sufficient to check the extendability from a
strongly movable curve.

It is important to emphasize that even if a given 8|y-psh function ¢ is
smooth at some point on V, the extended function ¢ may not be smooth at
the point. The fact seems to make the proof of Theorem 6.1.2 difficult.

Remark that the assumption that the first Chern class ¢;(L) is not zero is
necessary. Indeed, when the first Chern class ¢;(L) is zero and 6 is equal to
zero as a (1, 1)-form, a f-psh function is always constant, from the maximum
principle of psh functions. Hence any 6|y-psh function can be extended.
However L is not an ample line bundle. In other words, a line bundle which
satisfies the extendability condition in Theorem 6.1.2 must be ample or nu-
merically trivial (that is, ¢;(L) is zero).

This chapter is organized in the following way: In Section 6.2, we collect
materials to prove Theorem 6.1.2. Section 6.3 is devoted to give the proof of
Theorem 6.1.2. In Section 6.4, there are two examples which give ideas for
the proof of Theorem 6.1.2.

In this chapter, we use additive notation for tensor product of a line
bundles.

6.2 Preliminaries
In this section, we collect materials for the proof of Theorem 6.1.2. The

propositions in this section may be known facts. However we give comments
or references for the readers’ convenience.
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Theorem 6.2.1 ([Zha09, Theorem 1.3)). Let X be a smooth projective va-
riety of dimension at least two and p, q be points on X. Fix an ample line
bundle B on X. Then there exists a smooth curve C with the following prop-
erties:

(1) C is a complete intersection of the complete linear system |mB)| for
some m > 0.

(2) C contains points p and q.

Proof. Take an embedding of X into the projective space PY. Then two
points p, g are always in general position in PV (see [Zha09, Definition 1.1]
for the definition). [Zha09, Theorem 1.3] asserts that a general member of
|mB)|p 4 is irreducible and smooth, where |mB|,, is a linear system in |mB)|
passing through p and ¢. Then by taking a complete intersection of general
members of |mB|, 4, we can construct a curve with the properties above. [

Lemma 6.2.2. Let C be an irreducible curve on X and p be a non-singular
point on C. Assume that the intersection number (L - C) is positive (that is,
the restriction L|c is ample). Then there exists a function ¢ on C with the
following properties:

(1) ¢ € Psh(C,0]c)

(2) The function @ has pole at p (that is, ¢(p) = —o0) and is smooth except
.

Proof. By the assumption, L|c is ample on C. Therefore we can obtain a
smooth strictly 8|c-psh function ¢; on C. Even if C has singularities, we can
obtain such function. In fact, there exists an integer my > 0 such that the
complete linear system of myL|c gives an embedding of C to the projective
space PV, since L|c is ample. Now there exists a smooth strictly ;-psh
function + on PV. Here 6 is a (1, 1)-form representing the first Chern class
of the hyperplane bundle Opn (1) on PV. Since the restriction to C' of Opn (1)
is equal to moL|c, the function (1/mg)tY|c gives a smooth strictly 6|c-psh
function on C.

Let z be a local coordinate on C' centered at p. We define a function
w9 on C to be ¢y := plog|z|?, where p is a smooth function on C' whose
support is contained in some neighborhood of p. Then ¢ has a pole only
at p. Further ¢, is an almost psh function (that is, there exists a smooth
(1,1)-form 7 such that dd®py > 7). Then a function ¢ which is defined to be
© = (1—¢)p1 +ep, satisfies the condition above for a sufficiently small € > 0.
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In fact, property (1) follows from the strictly positivity of the Levi-form of
1. The function ¢ has a pole only at p thanks to ¢s. O

Lemma 2.2.7, 6.2.2 say that there exists many 6|c-psh functions on a
complete intersection of very ample divisors.

For the proof of Theorem 6.1.2, it is important to obtain strict positivity
from extended #-psh functions. The main idea for the purpose is to use
the volume of a line bundle and its expression formula in terms of current
integration, which is proved in [Bou02].

Definition 6.2.3. Let M be a line bundle on a projective variety Y of
dimension d. Then the volume of M on Y is defined to be

_ dim H°(Y, Oy (kM))
voly (M) = hxkriiljp W/

The volume asymptotically measures the number of global holomorphic
sections. The volume of a line bundle can be defined for a QQ-line bundle and,
depends only on the numerical class (the first Chern class) of the line bundle.
Moreover the volume is a continuous function on the Q-vector space N*(Y)g
of the numerical equivalent classes of Q-line bundles. (See [Laz, Proposition
2.2.35, 2.2.41] for the precise statement.) The properties above are used in
the proof of Theorem 6.1.2.

The following proposition gives a relation between the volume and curva-
ture currents of a line bundle. It is proved by using singular Morse inequali-
ties (which is proved in [Bon98]) and approximations of #-psh functions (see
[Bou02] for details).

Proposition 6.2.4. ([Bou02, Proposition 3.1]). Let M be a pseudo-effective
line bundle on a smooth projective variety Y of dimension d and n a smooth
(1, 1)-form which represents the first Chern class c1(M) of M. Then for any
n-psh function ¢ on'Y, we have

voly (M) > / (n+ ddcgo)zc.
Y

Here (n + ddcgo)ac means the absolutely continuous part of a positive

current (77 + ddcgo) by the Lebesgue decomposition. (See Section 5.2.2.) We
use only property that when ¢ is smooth on an open set, the equality

(n+ dd°p), = (n+ dd°)

holds on the open set.

96



Actually, the inequality above would be an equality by taking supremum
of the right-hand side over all n-psh functions (see [Bou02, Theorem 1.2]).
It is generalized to the restricted volume along a subvariety (cf. Theorem
5.1.3). These expressions of the volume and restricted volume with current
integrations give an example, which show us that there exists a #-psh function
on some subvariety which can not be extended to a global #-psh function even
if L is a big line bundle (see Section 6.4.2). |

In Section 6.3, we need to approximate a given #-psh function by almost
psh functions with mild singularities. For the purpose, we use Theorem
6.2.5. Theorem 6.2.5 says that it is possible to approximate a given almost
psh function with the same singularities as a logarithm of a sum of squares
of holomorphic functions without a large loss of positivity of the Levi form.

Theorem 6.2.5. ([Dem, Theorem 13.12]). Let ¢ be an almost psh function
on a compact complex manifold X such that dd°p > v for some continuous
(1,1)-form . Fiz a hermitian form w on X. Then there exists a sequence
of almost psh functions ¢ and a decreasing sequence 8, > 0 converging to 0

with the following properties:

(A) () < oula) < supe_yr 0O+ C(HED 47 15,)

with respect to coordinate open sets covering X.
(B) @k has the same singularities as a logarithm of a sum of squares of
holomorphic functions. In particular, @y 1s smooth except the polar set of .

(C) ddpy > v — drw.

6.3 Proof of Theorem 6.1.2

In this section, we give the proof of Theorem 6.1.2. Let L be a line bundle
with the assumption of Theorem 6.1.2 and 6 be a smooth d-closed (1,1)-
form which represents the first Chern class ¢;(L). According to the Nakai-
Moishezon-Kleiman criterion (cf. [Laz, Theorem 1.2.23]), in order to show
that L is ample, it is enough to see the self-intersection number (L¢-V) along
V' is positive for any irreducible subvariety V.

For this purpose, we first show the following proposition which implies
that the self-intersection number along an irreducible curve is always positive.

Proposition 6.3.1. Let L be a line bundle with the assumption in Theorem
6.1.2 and V be an (irreducible) subvariety on X. Then

(1) The restriction Ly to V is pseudo-effective.

(2) The restriction L|y to V is not numerically trivial.
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Remark 6.3.2. When V is non-singular, property (2) means that the first
Chern class ¢;(L|y) is not zero.

Proof. First we take two different points p, g on Vies. Here Vi means the
regular locus of V. Then we can take a smooth curve C' on X such that
C contains p, ¢ by Theorem 6.2.1. By the construction, the curve C is a
complete intersection of the linear system of some very ample line bundles.
It follows that the intersection number (L-C') along C is positive from Lemma
2.2.7. Lemma 6.2.2 asserts that there exists a function ¢ € Psh(C, 8|¢) such
- that ¢ has a pole at p and is smooth at g. The 8|c-function ¢ on C can be
extended to a global §-function on X by the assumption of the extendability.
The extended function to X does not have a pole at ¢ € V. It means that
the restriction to V' of the function is well-defined (that is, the function is
not identically —oo on V). We denote by ¢ the restriction to V' of the
function. The function & gives an element in Psh(V,6|y). Hence L|y is
pseudo-effective.

From now on, we show that L|y is not numerically trivial. For a contra-
diction, we assume that L|y is numerically trivial. First we consider the case
where V' is non-singular. Then there exists a function on V such that

Oly + dd°G = dd°y.

from the 89-Lemma, since L|y is numerically trivial (that is, first Chern
class ¢1(L|y) is zero). Since the function ¢ is a |y -psh, 7 is a psh function
on V. It follows that 1 is actually a constant by the maximum principle
of psh functions. Therefore 8|y + dd°® is a zero current. We know that 6-
pluriharmonic functions are always smooth. Hence the function @ is smooth
on V. However ¢ has a pole at p by the construction. This is a contradiction.

- We need to consider the case where V' has singularities. Then we take an
embedded resolution

p:VCeX—VvCx

of V.C X. That is, i : X — X is a birational morphism and the restriction
of i to 1% gives a resolution of singularities of V. Since p is contained in the
regular locus of V, u is an isomorphism on some neighborhood of p. Further
the pull-back (u*L)|s is also numerically trivial since L[y is numerically
trivial. The same argument asserts that any function in Psh(V, (1 0)|) is
always smooth. Note that the pull-back p*® is a (u*@)|¢-psh function on
V. It shows that the pull-back *® is smooth on V. The function ¢ is also
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smooth at p since u is an isomorphism on some neighborhood of p. However
¢ has a pole at p by the construction. This is a contradiction. Thus L|y is
not numerically trivial even if V' has singularities. O

Corollary 6.3.3. Let L be a line bundle with assumption in Theorem 6.1.2.
Then the intersection number (L - C) is positive for any irreducible curve C
on X.

Proof. Any pseudo-effective line bundle on a curve which is not numerically
trivial is always ample. Thus, the corollary follows from Proposition 6.3.1.
O

In oder to show (L?-V) > 0 for any subvariety, we need only consider
the case where the dimension of V is larger than or equal to two from the
corollary above. Moreover the corollary above asserts that L is a nef line
bundle on X. It is well-known that the volume of L|y is equal to the self-
intersection number (L?- V') along V for a nef line bundle. (see [Laz, Section
2.2 C]). That is, the equality holds

voly (L) = (L*-V)

for any irreducible subvariety V' of dimension d. (Note the restriction of
a nef line bundle is also nef.) Therefore for the proof of Theorem 6.1.2,
it is enough to show that the volume voly (L) is always positive for any
irreducible subvariety V' of dimension d > 2. From now on, we will show
that the volume voly (L) is positive for a subvariety V of dimension d > 2,
by using Proposition 6.2.4.

We first consider the case where V is non-singular. Even if V has singu-
larities, the same argument can be justified by taking an embedded resolution -
of V. C X. We argue the case at the end of this section.

Fix a point p on V. Let (21, 29,. .., 2z4) be a local coordinate centered at
p. We consider an open ball B, which is defined by

B:={(z1,2,...,23) | |2]> < 1}.

Since dd®|z|? is a strictly positive (1, 1)-form on B, there exists a large positive
number A such that

Add®|z|*+ 6y >0 on B. (6.1)

For every point y on the boundary 0B of B, we can take a curve Cy on
V such that C, contains p and y. We can take such curve from Theorem
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6.2.1 and the assumption that the dimension of V is larger than or equal to
two. By Lemma 2.2.7 and property (1) in Theorem 6.2.1, the restriction of
L to Cy is ample. Therefore there exists a function ¢, on C, with following
properties:

¢y € Psh(C,,0]c,), (6.2)
py(p) = —oo, (6.3)
ey(y) =0, (6.4)

Indeed, we can take a function ¢, € Psh(Cy, 0|¢,) such that ¢, has a pole at
p and ¢, is smooth at y by Lemma 6.2.2. After replacing ¢, by ¢, — ¢, (y),
the function satisfies property (6.4). Note that the function is a 6]¢,-psh
function even if we replace @, by @y — @, (y).

Now the function ¢, on C, can be extended to a |y -psh function @, on
V by the assumption of Theorem 6.1.2. In fact, we can extend ¢, to a global
0-psh function on X by the assumption in Theorem 6.1.2. From property
(6.4), the extended function does not have pole at y. Thus we can restrict
the function to V. The function gives the extension of ¢, to V, which we
denote by ¢,. Then the function @, satisfies the following properties:

&, € Psh(V,8]y), (6.5)
Py(y) = 0. (6.7)

In the following step, we approximate the function ¢, with the same
singularities as a logarithm of a sum of squares of holomorphic functions. If
the extended function ¢, is continuous on some neighborhood of y, this step
is not necessary. However the function ¢, may not be continuous at y even
if ¢, is smooth at y on C,. Thus the following step seems to be necessary in
general.

Lemma 6.3.4. Fiz a hermitian form w on X. For every positive number €
and a point y € OB, there exist a neighborhood U, of y which is independent
of € and an almost psh ¢, . with following properties:

Oly + dd°Dy,e > —ew,
Dye(y) > 0 and Py is smooth on some neighborhood of v, (6.9)
—A>py,. onU, (6.10)

Proof. By applying Theorem 6.2.5 to ¢ = @, and v = —0|y, we obtain
almost psh functions {@, 1}, with the properties in Theorem 6.2.5. For a
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given ¢, by taking a sufficiently large & = k(e,y), property (6.8) holds from
property (C).

From the left side inequality of property (A) in Theorem 6.2.5 and (6.7),
we can easily check property (6.9) for every positive integer k. In fact prop-
erty (B) implies that if &y 5 does not have a pole at a point, @, x is smooth at
the point. In particular, @, is smooth on some neighborhood of y. In order
to show the existence of U, with property (6.10), we estimate the right hand
inequality of property (A). We can easily show that there exists a sufficiently
small r; > 0 which does not depend on ¢ such that

|log r1|

0 < C( Fri+6) <A forany k> [Tl}. (6.11)
1

1
Here [-] means round up of a real number. Indeed, for any & > |_;—-!, we
1

have
|log 4|

k
Now C' depends on the choice of coordinate open sets covering V. How-
ever C is independent of e. (We may assume that the coordinate open set
(B, (21, 22, - - - ,zd)) is a member of coordinate open sets covering V.) There-
fore inequality (6.11) holds for a sufficiently small r; which is independent of
E.

+ 71+ 0 < ri|logry| + 11 + Ok

On the other hand, @, has a pole at p by (6.6). Thus we have

sup  Py(z) < —24
lz—z(p)l<rz

for a sufficiently small 7o > 0. Here we used upper semi-continuity of @,.
Then we define Uy to be

Uy:={z€B ||z—z(p)| <73},

where 73 is min{r;,ro}. Then the right hand of property (A) in Theorem
1

6.2.5 is strictly smaller than A for any &k > [;—1 We emphasize that r; and
3

79 do not depend on €. Therefore we obtain U with property (6.10). O

By using these functions, we construct an almost psh function whose
value at p is smaller than values on the boundary 0B of B. From property
(6.9), there exists a neighborhood W, of y such that

Pye >0 on W,
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Since 0B is a compact set, we can cover OB by finite members {Wyz}@]il
Now we define a function ®, to be

Lemma 6.3.5. Then the function ®. satisfies the following properties:

Olv + dd°®, > —ew, (6.12)
®. > 0 on some netghborhood V. of 0B, (6.13)
— A > &, on some neighborhood U of p. (6.14)

Proof. The property (6.12) follows from Lemma 2.4.4 and property (6.8).
The property (6.13) is clear by the definition of ®. and property (6.9). If a
neighborhood U is defined to be U := N, U,,, property (6.14) holds from
property (6.10). Here U, is a neighborhood of p with the property (6.10) in
Lemma 6.3.4. (I

Remark 6.3.6. We can assume that a neighborhood U in property (6.14) does
not depend on €. It follows from the definition of U in the proof of Lemma,
6.3.5. The fact is essentially important in the estimation of the volume
voly (L) with current integrations.

We want to construct a almost psh function whose Levi-form is strictly
positive on some neighborhood of p. The integral of the Levi-form would
imply that the volume voly (L) is positive. For this purpose, we define a new
function ¥, on V as follows:

2 on V\B
Ve = { max {®., A|z|> — A} on B. (6.15)

Then the function U, satisfies the following properties:

Lemma 6.3.7. The function U, satisfies the following properties:

9|V + dd°V, > —cw, (6.16)
U, = Az~ A on U, (6.17)

where U 1is a neighborhood of p which is independent of ¢.

Proof. From property (6.14), we have ®. < —A for some neighborhood U of
p which is independent of €. Therefore the inequality

D, < —A<Al2)2— A
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holds on U. Thus property (6.17) holds.

Further by the choice of 4, the (1, 1)-form Add°|z|>+6|y is strictly positive
on the neighborhood B of p. In particular,

Add®|z|* + 0y > —ew
holds. Hence we have
0|y + dd° max {®., A|z]> — A} > —ew on B

from Lemma 2.4.4 and property (6.12).

On the other hand, we obtain

max {@E,Alz|2 — A} =,

on some neighborhood of 9B from property (6.13). Therefore the function
W, satisfies
9|V + ddc\IJE = 0|V -+ ddc(I)a > —Ew

on the neighborhood of 0B from property (6.12). Thus property (6.16) holds
on X. O

Finally, we estimate the volume voly (L) of L with current integrations
for the computation of the intersection number (L¢- V). The function ¥, is
a (0|y + ew)-psh function by property (6.16). Here w can be assumed to be
a Kéhler form which represents the first Chern class ¢;(B) of B, where B is
an ample line bundle on V. The d-closed (1, 1)-form (8| + ew) represents
the first Chern class ¢1(L) + ec1(B). Thus by Proposition 6.2.4, we have

voly (L +&B) > / (Olv + ew + dd°¥.)? .
14
Since (A|y + ew + ddC\IJE) is a positive current, the absolute continuous part
is (semi)-positive. It shows

voly (L + eB) > / (6ly +ew + dd°w,)°.,
U

where U is a neighborhood of p which satisfies the properties in Lemma 6.3.7.
If we let € tend to zero, the left hand of the inequality above converges to
voly (L) from the continuity of the volume. Thus we have

VolV(L) > lireri}glf/U (6|V + ew + ddc\I/E):C

d
ac

> / lim iglf (9|V +ew + ddcllla)
U £~

=/ (8] + dd°Al2|?) .
U
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The second inequality follows form Fatou’s lemma. Here we used the fact
that U does not shrink even if £ goes to 0, since U is independent of &, The
equality follows from property (6.17). By the choice of A (see (6.1)), the
right hand of the inequality above

/ 8]y + dd°Al2|)? = / (0v + dd°Alz)?)*
U U

is positive. Hence we proved the volume voly (L) is positive for a non-singular
subvariety V. L

When V has singularities, we take an embedded resolution : V C X —»
V C X. Then we can show that voly(u*L) > 0 by the same argument as
above. Note that we used only the following property on the line bundle L
in the argument above.

(%) For every point y € 0B, there exists a 0|y-psh function @, such that
5,(p) = —o0 and ,(y) = 0.

We can easily show that property (%) holds for the pull-back p*L of L as
follows: We first choose a point p on V such that L is an isomorphism on a
neighborhood B of p. For every point y € 0B, we consider a curve C, on
V which contains the points p and y. Since y is an isomorphism on B, the
push-forward u(Cy) is not a point. Therefore it follows that the intersection
number (L . u(C’y)) is positive from Proposition 6.3.1. Lemma 6.2.2 implies
that there exists a |,(c,)-psh function ¢, such that ¢, (u(p)) = —oco and
@y (1(y)) = 0. By the assumption of Theorem 6.1.2 on L, we can extend ¢,
to a global 6-psh function ¢, on X. Then the pull-back u*@, of ¢, satisfies
property (%) which we want to obtain. By the same argument as above,
we obtain volg (u*L) > 0. Since the restriction p|y a birational morphism
from V to V, voly (L) = voly (u*L) (see [Laz, Proposition 2.2.43]). Hence
we proved the volume voly (L) > 0 for any subvariety V, even if V has
singularities.

Since L is a nef line bundle, the volume of L on V coincides with the
intersection number (L? - V). Therefore L is an ample line bundle by the
Nakai-Moishezon-Kleiman criterion.

6.4 Examples

Example 6.4.1. (This example shows us that there exists a #-psh function
on some subvariety which can not extended to a global #-psh function even
if L is semi-ample and big.)
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Let  : X := Bl,(P?) — P? be a blow-up along a point p € P? and L the
pull-back of the hyperplane bundle by 7. Then L is a semi-ample and big.
(However L is not ample.) We denote by 8 the pull-back of the Fubini-Study
form on P2. Note that § represents the first Chern class ¢;(L) of L. By.the
definition of @, the restriction of 6 to E is zero (1,1)-form, where E is the
exceptional divisor. Therefore any 8|g-psh on E is constant by the maximum
principle of psh functions. It says that a global 8-psh function has the same
value along FE.

Now we denote by C an irreducible curve on X which intersects £ with
at least two points. Then C is not contractive by m. Therefore the degree of
L on C is positive by the projection formula (that is, L|c is ample on C).
It implies that there exist many 6|c-psh functions on C. In particular, there
exists a 0|c-psh function which has different values at intersection points
with E. Indeed, we can obtain such function by using Lemma 6.2.2. Such
function can not extend to a global #-psh function.

Example 6.4.2. (Relations between the restricted volume of a line bundle
and the extendability of #-psh functions.)

Recall the definition of the restricted volume of a line bundle. The re-
stricted volume of L along a subvariety V is defined to be

. dim H°(X|V, O(kL))
volx|v (L) = hgﬂ;solip w/d ,

where
HY(X|V,0(kL)) = Im (HO (X, Ox (kL)) — H(V, (’)V(kL))).

The restricted volume measures the number of sections of Oy (kL) which
can be extended to X. In Chapter 5, restricted volumes can be expressed
with current integrations as follows (see Chapter 5 for details).

Theorem 6.4.3. (=Theorem 5.1.3). Assume that V is not contained in
the augmented base locus B (L). Then the restricted volume of L along V
satisfies the following equality :

VOIX]V(L) = sup / (glvreg + ddcgohfreg)g,(:)
©€Psh(X,0) Vieg

for ¢ ranging among 6-psh functions on X with analytic singularities whose
singular locus does not contain V.
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The right hand integral measures Monge-Ampeére products of |y-psh
functions on V which can be extended to X. On the other hand, the volume
of the line bundle L|y can also be expressed with current integrations (see
Proposition 6.2.4 and [Bou02]). If any 8|y-psh function can be extended to
a global #-psh function, the restricted volume along V' and the volume on V
coincides. However there exists an example such that they are different even
if V is not contained in the augmented base locus.

For example, when X is a surface, a big line bundle L admits a Zariski
decomposition. That is, there exist nef Q-divisor P and effective Q-divisor
N such that

H(X, 0x(|kP])) — H(X, Ox(kL))

is an isomorphism. The map is multipling the section e, where ¢ is the
standard section of the effective divisor [kN|. Here |G| (resp. [G]) denotes
round down (resp. round up) of an R-divisor G. Let V be an irreducible
curve which is not contained in the augmented base locus B, (L). Then L|y
is an ample line bundle. Further, the restricted volume along V' is computed
by the self-intersection number of the positive part P along V when L admits
a Zariski decomposition (see Proposition 5.3.1). That is,

»Vle|V(L) = (P . V),
voly(L) = (L-V) = (P-V)+ (N -V).

Therefore, the volume and restricted volume may be different value unless
(N-V) is not equal to zero. When L is not nef (that is, N is non-zero divisor)
and V is an ample divisor, (N - V) is not zero.
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