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OrganizAation of this thesis

This thesis is consisted of six chapters as follows. In Chapter 1, 2, 3 and 4, we
study proper actions on some pseudo-Riemannian non-compact homogeneous
spaces. In Chapter 5, our interesting is in real minimal nilpotent orbits in
certain simple Lie algebras. The theme in Chapter 6 is to construct designs
on compact homogeneous spaces.

We give an abstract for each chapter below:

Chapter 1: For a semisimple symmetric pair (G, H), we show that G/H
admits a non virtually abelian discontinuous group if and only if G/H
admits a proper SL(2,R)-action. Furthermore, we also classify (G, H)
satisfying the equivalent conditions above.

Chapter 2: For a semisimple Lie algebra g, we show a kind of prodigality
of sly-triples in g. The main result of Chapter 2 is used in Chapter 1.

Chapter 3: The claim of the main theorem in Chapter 1 does not holds for
non-symmetric (G, H) in general. We give an example of it.

Chapter 4: Let (G, Hy) and (G, Hy) be symmetric pairs with simple G. We
classify (G, Hi, Ha) with proper diagonal G-action on G/H1 x G /Hs.

Chapter 5: Let g be a simple Lie algebra isomorphic to su*(2k), so(n—1,1),
sp(p, q), fa(—20) O eg(—26) (kK =2, n > 5, p> g >1). Then it is known
that the complex minimal nilpotent orbit in gc = g + +/—1g does not
meets g. We show that there uniquely exists a real minimal nilpotent
orbit in g and determine the complexification of it.

Chapter 6: We show a new construction of spherical designs on S? from a
given design on S%2. We also generalize it to a construction of designs
on a compact Lie group G.
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Chapter 1

Cla351ﬁcat10n of semlslmple

symmetric spaces with proper
SL(2,R)-actions

We give a complete classification of irreducible symmetric spaces for which
there exist proper SL(2,R)-actions as isometries, using the criterion for
proper actions by T. Kobayashi [Math. Ann. ’89] and combinatorial tech-
niques of nilpotent orbits. In particular, we classify irreducible symmetric
spaces that admit surface groups as discontinuous groups, combining this with
Benoist’s theorem [Ann. Math. ’96].

1.1 Introduction

The aim of this chapter is to classify semisimple symmetric spaces G/H that
admit isometric proper actions of non-compact simple Lie group SL(2,R),
and also those of surface groups 71 (Z,). Here, isometries are considered with
respect to the natural pseudo-Riemannian structure on G/H.

We motivate our work in one of the fundamental problems on locally
symmetric spaces, stated below:

Problem 1.1.1 (See [20]). Fiz a simply connected symmetric space M asa
model space. What discrete groups can arise as the fundamental groups of
complete affine manifolds M which are locally isomorphic to the space M?

By a theorem of E;Cartan, such M is represented as the double coset -
space I'\G/H. Here M = G/H is a simply connected symmetric space and
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Chapter 1

I ~ 7r1(M ) a discrete subgroup of G acting properly dlscontmuously and
freely on M.

Conversely, for a given symmetric pair (G, H) and an abstract group I'
with discrete topology, if there exists a group homomorphism p : I' —» G
for which I" acts on G/H properly discontinuously and freely via p, then the
double coset space p(T')\G/H becomes a C*°-manifold such that the natural
quotient map

G/H — p(T)\G/H

is a C°-covering. The double coset manifold p(I')\G/H is called a Clifford—-
Klein form of G/H, which is endowed with a locally symmetric structure
through the covering. We say that G/H admits T' as a discontinuous group
if there exists such p.

Then Problem 1.1.1 may be reformahzed as:

Problem 1.1.2. Fiz a symmetric pair (G, H). What discrete groups does
G/H admit as discontinuous groups?

For a compact subgroup H of G, the action of any discrete subgroup of G
on G/H is automatically properly discontinuous. Thus our interest is in non-
compact H, for which not all discrete subgroups I' of G act properly discon-
tinuously on G/H. Problem 1.1.2 is non-trivial, even when M = R regarded
as an affine symmetric space, i.e. (G,H) = (GL(n,R) x R",GL(n,R)). In
this case, the long-standing conjecture (Auslander’s conjecture) states that
such discrete group.I' will be virtually polycyclic if the Clifford-Klein form
M is compact (see [1, 3, 11, 43]). On the other hand, as was shown by E. Cal-
abi and L. Markus [7] in 1962, no infinite discrete subgroup of SOy(n +1,1)
acts properly discontinuously on the de Sitter space SOg(n+1,1)/S0q4(n,1).
More generally, if G/H does not admit any infinite discontinuous group, we
" say that a Calabi-Markus phenomenon occurs for G/H.

For the rest of this chapter, we consider the case that G is a linear semisim-
ple Lie group. In this setting, a systematic study of Problem 1.1.2 for the gen-

eral homogeneous space G/H was initiated in the late 1980s by T. Kobayashi »

[15, 16, 17]. One of the fundamental results of Kobayashi in [15] is a criterion
for proper actions, including a criterion for the Calabi-Markus phenomenon .
on homogeneous spaces G/H. More precisely, he showed that the following
four conditions on G/ H are equivalent: the space G/H admits an infinite dis-
continuous group; the space G/H admits a proper R-action; the space G/H
admits the abelian group Z as a discontinuous group; and rankg g > rankg b.
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Furthermore, Y. Benoist [5] obtained a criterion for the existence of infinite
non-virtually abelian discontinuous groups for G/H.

Obviously, such discontinuous groups exist if there exists a Lie group
homomorphism @ : SL(2,R) — G such that SL(2,R) acts on G/H properly
via ®. We prove that the converse statement also holds when G/H is a
semisimple symmetric space. More strongly, our first main theorem gives
a characterization of symmetric spaces G/H that admit proper SL(2; R)-
actions:

Theorem 1.1.3 (sece Theorem 1.2.2). Suppose that G is a connected linear
semisimple Lie group. Then the following five conditions on a symmetric
pair (G, H) are equivalent:

(1) There exists a Lie group homomorphism ® : SL(2,R) — G such that
SL(2,R) acts on G/H properly via ®.

(i) For some g > 2, the symmetric space G/H admits the surface group
m1(2y) as a discontinuous group, where £, is a closed Riemann surface

of genus g.

(111) G/H admits an infinite discontinuous group T' which is not virtually
 abelian (i.e. T has no abelian subgroup of finite indez).

Gc
nilp

(i) There exists a complex nilpotent orbit O7F in g¢ such that OS¢ N g#0

nilp
and (’)Si“fp N g® = 0, where g° is the c-dual of the symmetric pair (g,h)

(see (1.2.1) for definition).

(v) There ezists a complex antipodal hyperbolic orbit OSC

i hyp
nition 1.2.3) such that O,CL’;‘CP Ng#0 and O Ngt = 0.

hyp

in gc (see Defi-

The implication (i) = (ii) = (iii) is straightforward and easy. The non-
trivial part of Theorem 1.1.3 is the implication (iii) = (i).

By using Theorem 1.1.3, we give a complete classification of semisimple
symmetric spaces G/H that admit a proper SL(2,R)-action. As is clear
for (iv) or (v) in Theorem 1.1.3, it is sufficient to work at the Lie algebra
level. Recall that the classification of semisimple symmetric pairs (g, §) was
accomplished by M. Berger [6]. Our second main theorem is to single out
which symmetric pairs among his list satisfy the equivalent conditions in
Theorem 1.1.3:
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Theorem 1.1.4. Suppose G is a simple Lie group. Then, the two conditions
below on a symmetric pair (G, H) are equivalent: '

(1) (G, H) satisfies one of (therefore, all of) the equivalent conditions in
Theorem 1.1.3.

(i) The pair (g,bh) belongs to Table 1.3 in Appendiz 1.A.

The existence problem for compact Clifford—Klein forms has been actively
studied in the last two decades since Kobayashi’s paper [15]. The properness
criteria of Kobayashi and Benoist yield necessary conditions on (G, H) for the
existence [5, 15]. See also [24, 28, 30, 33, 45] for some other methods for the
existence problem of compact Clifford-Klein forms. The recent developments
on this topic can be found in [21, 22, 27, 31].

We go back to semisimple symmetric pair (G, H). By Kobayashi’s cri-
terion [15, Corollary 4.4], the Calabi-Markus phenomenon occurs for G/H
if and only if rankg g = rankg b holds. (see Fact 1.2.6 for more details). In
particular, G/H does not admit compact Clifford—Klein forms in this case
unless G/H itself is compact. In Section 1.2, we give the list, as Table 1.2,
of symmetric pair (g,5) with simple g which does not appear in Table 1.3
and rankg g > rankg b, i.e. (g,h) does not satisfy the equivalent conditions
in Theorem 1.1.3 with rankg g > rankg . Apply a theorem of Benoist [5,
Corollary 1], we see G/H does not admit compact Clifford—Klein forms if
(g, b) is in Table 1.2 (see Corollary 1.2.8). In this table, we find some “new”
examples of semisimple symmetric spaces G/H that do not admit compact
Clifford—Klein forms, for which we can not find in the existing literature as
follows:

g b

su*(dm+2)  sp(m+1,m)
su*(4m) sp(m, m)

€6(6) faca)

€6(~26) 5p(3,1)

€6(—26) Fa(—20)
so(dm +2,C) so(2m + 2,2m)
¢6,C €6(2)

- Table 1.1: Examples of G/H without compact Clifford—
Klein forms
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We remark that Table 1.1 is the list of symmetric pairs (g, ) in Table 1.2
which are neither in Benoist’s examples [5, Example 1] nor in Kobayashi’s
examples [17, Example 1.7, Table 4.4], [19, Table 5.18].

The proof of the non-trivial implication (iii) = (i) in Theorem 1.1.3 is
given by reducing it to an equivalent assertion on complex adjoint orbits,
namely, (v) = (iv). The last implication is proved by using the Dynkin—
Kostant classification of sls-triples (equivalently, complex nilpotent orbits) in
gc. We note that the proof does not need Berger’s classification of semisimple
symmetric pairs.’

The reduction from (iii) = (i) to (v) = (iv) in Theorem 1.1.3 is given
by proving (i) < (iv) and (iii) & (v) as follows. We show the equivalence
(i) < (iv) by combining Kobayashi’s properness criterion [15] and a result
of J. Sekiguchi for real nilpotent orbits in [38] with some observations on
complexifications of real hyperbolic orbits. The equivalence (iii) < (v) is
obtained from Benoist’s criterion [5]. ‘

As a refinement of the equivalence (i) < (iv) in Theorem 1.1.3, we give
a bijection between real nilpotent orbits Og’;lp in g such that the complex-
ifications of Og’;lp do not intersect the another real form g°¢ and Lie group
homomorphisms ® : SL(2,R) — G for which the SL(2,R)-actions on G/H -
via ® are proper, up to inner automorphisms of G (Theorem 1.10.1).

Concerning the proof of Theorem 1.1.4, for a given semisimple symmetric
pair (g,b), we give an algorithm to check whether or not the condition (v)
in Theorem 1.1.3 holds, by using Satake diagrams of g and g°.

The chapter is organized as follows. In Section 1.2, we set up notation
and state our main theorems. The next section contains a brief summary of
Kobayashi’s properness criterion [15] and Benoist’s criterion [5] as prelimi-
nary results. We prove Theorem 1.1.3 in Section 1.4. The proof is based on
some theorems, propositions and lemmas which are proved in Section 1.5 to
Section 1.8 (see Section 1.4 for more details). Section 1.9 is about the algo-
rithm for our classification. The last section establishes the relation between
proper SL(2,R)-actions on G/H and real nilpotent orbits in g.

The main results of this chapter were announced in [34] with a sketch of -

the proofs.
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1.2 Main results

Throughout this chapter, we shall work in the following:

Setting 1.2.1. G is a connected linear semisimple Lie group, o is an invo-
lutive automorphism on G, and H is an open subgroup of G° := {g € G |

og=g}.

This setting implies that G/H carries a pseudo-Riemannian structure g
for which G acts as isometries and G/H becomes a symmetric space with re-
spect to the Levi-Civita connection. We call (G, H) a semisimple symmetric
pair. Note that g is positive definite, namely (G/H, g) is Riemannian, if and
only if H is compact. ‘

Since G is a connected linear Lie éroup, we can take a connected com-
plexification, denoted by Gg¢, of G. We write gc, g and § for Lie algebras of
Ge¢, G and H, respectively. The differential action of o on g will be denoted
by the same letter 0. Then h ={X € g | cX = X }, and we also call (g,h)
- a semisimple symmetric pair. Let us denote by q:={X €g|ocX =-X1},
and write the c-dual of (g, h) for

g =h++—1q. | (1.2.1)

Then both g and g€ are real forms of gc. We note that the complex conjuga-
tion corresponding to g° on gc is the anti C-linear extension of ¢ on gc¢, and
the semisimple symmetric pair (g°, b) is the same as (g, §)*%* (which coincides
with (g, §)%4; see [35, Section 1] for the notation).

-For an abstract group I' with discrete topology, we say that G/H admits
I’ as a discontinuous group if there exists a group homomorphism p: "' = G
such that I' acts properly discontinuously and freely on G/H via p (then p
is injective and p(I') is discrete in G, automatically). For such I'-action on
G/H, the double coset space I'\G/H, which is called a Clifford—Klein form
of G/H, becomes a C*®-manifold such that the quotient map

G/H — p(T\G/H

is a C*°-covering. In our contexf, the freeness of the action is less important
than the properness of it (see [15, Section 5] for more details).
Here is the first main result:

Theorem 1.2.2. In Setting 1.2.1, the following ten conditions on a semisim-
ple symmetric pair (G, H) are equivalent:

12
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(1)

(4)

" that OF¢

There ezists a Lie group homeomorphism & : SL(2,R) — G such that
SL(2,R) acts properly on G/H via ®.

For any g > 2, the symmetric space G/H admits the surface group
m1(Zg) as a discontinuous group, where X, is a closed Riemann surface

of genus g.

) For some g > 2, the symmetric space G/H admits the surface group

m1(Xg) as a discontinuous group.

G/H admits an infinite discontinuous group ' which is not virtually
abelian (i.e. ' has no abelian subgroup of finite index).

G/H admits a discontinuous group which is a free group generated by
a unipotent element in G.

There ezists a complez nilpotent adjoint orbit OFS
Ng#0 and O°C Nge=0.

of G¢ in gc such

nilp

nilp nilp

There exists a real antzpodal hyperbolzc adjoint orbit C’)hyp of G in g
(defined below) such that OF N = 0.

There exists a complex antipodal hyperbolic adjoint orbit Occ
gc such that O%C Ng # 0 and OS¢ Nge = 0.

hyp hyp :
There exists an sla-triple (A, X,Y) in g (i.e. A, X,Y € g with [A, X] =
2X, [A,Y] = =2Y and [X,Y] = A) such that OG nh= (Z) where O
18 the real adjoint orbit through A of G in g.

of Ge n

hyp

There ezists an sla-triple (A,X, Y) in gc such that Of‘c Ng# 0 and
Ofc Ng® =0, where (’)ic 18 the complex adjoint orbit through A of G¢
mn gc- .

Theorem 1.1.3 is a part of this theorem. ,
The definitions of hyperbolic orbits and antipodal orbits are given here:

Definition 1.2.3. Let g be a complex or real semisimple Lie algebra. An
element X of g is said to be hyperbolic if the endomorphism ady(X) € End(g)
18 diagonalizable with only real eigenvalues. We say that an adjoint orbit O
in g s hyperbolic if any (or some) element in O is hyperbolic. Moreover, an
adjoint orbit O in g is said to be antipodal if for any (or some) element X
in O, the element —X is also in O.

13
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A proof of Theorem 1.2.2 will be given in Section 1.4. Here is a short
remark on it. In (i) = (ix), the homomorphism ® associates an slp-triples
(A, X,Y) by the differential of ® (see Section 1.4.1). The complex adjoint
orbits in (viii) and (x) are obtained by the complexification of the real adjoint
orbits in (vil) and (ix), respectively (see Section 1.4.3). In (x) = (vi), the
sly-triple (A, X,Y) in (x) associates a complex nilpotent orbit in (vi) by
O5e := Ad(Gg) - X (see Section 1.4.4). The implication (i) = (ii) is obvious
if we take m(%,) inside SL(2,R). The equivalence (iv) < (vii) is a kind of
paraphrase of Benoist’s criterion [5, Theorem 1.1] on symmetric spaces (see
Section 1.4.2). The key ingredient of Theorem 1.2.2 is the implication (iii) =
(i). We will reduce it to the implication (viii) = (x). The condition (viii) will
be used for a classification of (G, H) satisfying the equlvalence conditions in
Theorem 1.2.2 (see Section 1 9).

Remark 1.2.4. (1) K. Teduka [40] gave a list of (G, H) satisfying the con-
dition (1) in Theorem 1.2.2 in the special cases where (g, ) is a complex -
symmetric pair. He also studied proper SL(2,R)-actions on some non-
symmetric spaces in [41]. :

(2) Y. Benoist [5, Theoreml1.1] proved a criterion for the condition (iv) in
a more general setting, than we treat here.

(3) The following condition on a semisimple symmetﬁc pair (G, H) is weaker
than the equivalent conditions in Theorem 1.2.2:

. There exists a real mlpotent adjoint orbit OF,
mlp N h - (Z)

For a discrete subgroup T of G, we say that a Clifford—Klein form I'\G/H
is standard if T is contained in closed reductive subgroup L of G (see Defini-
tion 1.3.1) acting properly on G/H (see [14]), and is nonstandard if not. See -
[13] for an example of a Zariski-dense discontinuous group I for G/H, which
gives a nonstandard Clifford—Klein form. We obtain the following corollary
to the equivalence (i) < (iil) in Theorem 1.2.2.

nilp

of G in g such that

Corollary 1.2.5. Let g > 2. Then, in Setting 1.2.1, the symmetric space
G/H admits the surface group m(Z,) as a discontinuous group if and only
if there exists a discrete subgroup I' of G such that ' ~ m(3,) and I\G/H
1s standard.

14
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Theorem 1.2.2 may be compared with the fact below for proper actions
by the abelian group R consisting of hyperbolic elements:

Fact 1.2.6 (Criterion for the Calabi-Markus phenomenon). In Setting 1.2.1,
the following seven conditions on a semisimple symmetric pair (G, H) are
equivalent:

(i) There exists a Lie group homomorphism ® : R — G such that R acts
properly on G/H via ®.

(11) G/H admits the abelian group Z as a discontinuous group.
(i5) G/H admits an infinite discontinuous group.

(iv) G/H admits a discontinuous group which is a free group generated by
a hyperbolic element in G.

(v) fankR g > rankg .

(vi) There exists a real hyperbolic adjoint orbit Ofyp of G in g such that
o5, N0h=0.

(vit) There exists a complex hyperbolic adjoint orbit (’)hGyi, of G¢ in g¢ such

that Oyc Ng # 0 and O Ng° = 0.

The equivalence among (i), (ii), (iii), (iv) and (v) in Fact 1.2.6 was proved
in a more general setting in T. Kobayashi [15, Corollary 4.4]. The real rank
condition (v) serves as a criterion for the Calabi-Markus phenomenon (iii)
in Fact 1.2.6 (cf. [7], [15]). We will give a proof of the equivalence among
(v), (vi) and (vii) in Appendix 1.B.

The second main result is a classification of semisimple symmetric pairs -
(G, H) satisfying one of (therefore, all of) the equivalent conditions in The-

- orem 1.2.2. , .

If a semisimple symmetric pair (G, H) is irreducible, but G is not simple,
then G/H admits a proper SL(2, R)-action, since the symmetric space G/H
can be regarded as a complex simple Lie group. Therefore, the crucial case
is on symmetric pairs (g, ) with simple Lie algebra g.

To describe our classification, we denote by '

S:={{(g,bh) | (g,h) is a semisimple symmetric pair .
with a simple Lie algebra g}

15
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The set S was classified by M. Bérger [6] up to isomorphisms. We also
put . ’

A:={(g,h) € S| (g,b) satisfies one of the conditions in Theorem 1.2.2 },
B:={(g,h) € S| rankgg > rankg h } \ 4,
C:={(g,h) € S|rankg g =rankgh }.

Then ANC = @ by Fact 1.2.6, and we have
S=AuUBLUC.

One can easily determine the set C in S. Thus, to describe the classification
of A, we only need to give the classification of B.

Here is our classification of the set B, namely, a complete list of (g, b)
© satisfying the following:

g is simple, (g, b) is a symmetric pair with rankg g > rankg b
but does not satisfies the equivalent conditions in Theorem 1.2.2. (1.2.2)

g h

sl(2k,R) sp(k,R)

sl(2k,R) so(k, k)

sl(2k — 1,R) so(k,k—1

su*(4dm + 2) sp(m+1,m)

su*(4dm) sp(m,m)

su*(2k) s0*(2k)

s0(2k—1,2k—1) so(i+1,i) ®s0(j,j+ 1)
- (t4+7=2k-2)

€6(6) faa)

€6(6) : sp(4,R)

6(~26) s5p(3,1)

€6(—26) - fa—20

sl(n,C) so(n,C)

sl(2k,C) sp(k,C)

sl(2k,C) su(k, k)

s0(4m +2,C) s0(i,C) @ s0(4,C)

(i+j=4m+2, 4,5 are odd)
16 '
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so(4m + 2,C) s0(2m + 2, 2m)
6,C 5p (47 (C)

€6,C fac

¢6,C €6(2)

Table 1.2: Classification of (g, ) satisfying (1.2.2)

"Here, k> 2, m>1andn > 2. ‘

Theorem 1.1.4, which gives a classification of the set A, is obtained by
Table 1.2. '

Concerning our classification, we will give an algorithm to check whether
or not a given symmetric pair (g, f) satisfies the condition (viii) in Theo-
rem 1.2.2. More precisely, we will determine the set of complex antipodal
hyperbolic orbits in a complex simple Lie algebra g¢ (see Section 1.6.2) and
introduce an algorithm to check whether or not a given such orbit meets a
real form g [resp. g°| (see Section 1.7). Table 1.2 is obtained by using this
algorithm (see Section 1.9). -

Remark 1.2.7. (1) Using [5,Theoreml.1], Benoist gave a number of ex-
amples of symmetric pairs (G, H) which do not satisfy the condition
(iv) in Theorem 1.2.2 with rankgg > rankgb (see [5, Ezample 1]).
Table 1.2 gives its complete list.

(2) We take this opportunity to correct [34, Table 2.6), where the pair (sI(2k—
L,R),s0(k, k — 1)) was missing.

We discuss an application of the main result (Theorem 1.2.2) to the exis-
tence problem of compact Clifford—Klein forms. As we explained in Introduc-
tion, a Clifford—Klein form of G/H is the double coset space I'\G/H when
T is a discrete subgroup of G acting on G/H properly discontinuously and
freely. Recall that we say that a homogeneous space G/H admits compact
Clifford-Klein forms, if there exists such I' where I'\G/H is compact. See
also [5, 15, 16, 17, 19, 23, 24, 28, 30, 33, 39, 45] for preceding results for the
existence problem for compact Clifford—Klein forms. Among them, there are
three methods that can be applied to semisimple symmetric spaces to show
the non-existence of compact Clifford—Klein forms:

17
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e Using the Hirzebruch-Kobayashi-Ono proportionality principle [15, Propo-
sition 4.10], [23].

e Using a comparison theorem of cohomological dimension [17, Theorem
1.5]. (A generalization of the criterion in [15] of the Calabi-Markus
phenomenon.)

e Using a criterion for the non-existence of properly discontinuous actions
of non-virtually abelian groups [5, Corollary 1].

As an immediate corollary of the third method and the description of the
set B by Table 1.2, one concludes:

Corollary 1.2.8. The simple symmetric space G/H does not admit compact
Clifford-Klein forms if (g,b) is in Table 1.2.

1.3 Preliminary results for proper actions

In this section, we recall results of T. Kobayashi [15] and Y. Benoist [5] in a
form that we shall need. Our proofs of the equivalences (i) < (x) and (iv)
& (viii) in Theorem 1.2.2 will be based on these results (see Section 1.4.1
and Section 1.4.2).

1.3.1 Kobayashi’s properness criterion

Let G be a connected linear semisimple Lie group and write g for the Lie
algebra of G. First, we fix a terminology as follows:

Definition 1.3.1. We say that a subalgebra by of g is reductive in g if there
exists a Cartan involution 8 of g such that by is §-stable. Furthermore, we say
that a closed subgroup H of G is reductive in G if H has only finitely many
connected components and the Lie algebra b of H is reductive in g.

For simplicity, we call b [resp. H] a reductive subalgebra of g [resp. a
reductive subgroup of G] if § is reductive in g [resp. H is reductive in G].
We call such (G, H) a reductive pair. Note that a reductive subalgebra b of
g is a reductive Lie algebra.

We give two examples relating to Theorem 1.2.2:

18
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Example 1.3.2. In Setting 1.2.1, the subgroup H is reductive in G since
there exists a Cartan involution 6 on g, which is commutative with o (cf.

[6])-

Example 1.3.3. Let [ be a semisimple subalgebra of g. Then any Cartan in-
wolution on [ can be extended to a Cartan involution on g (cf G. D. Mostow
[82]) and the analytic subgroup L corresponding to | is closed in G (cf.
K. Yosida [44]). Therefore, | [resp. L] is reductive in g [resp. GJ.

In the rest of this subsection, we follow the setting below:

Setting 1.3.4. G is a connected linear semisimple Lie group, H and L are
reductive subgroups of G.

We denote by g, § and I the Lie algebras of G, H and L, respectively.
Take a Cartan involution 6 of g which preserves ). We write g = € + p,
b = £(h) + p(h) for the Cartan decomposition of g, b corresponding to 8,
8y, respectively. We fix a maximal abelian subspace ay of p(h) (i.e. ayis a
maximally split abelian subspace of §), and extend it to a maximal abelian
subspace a in p (i.e. a is a maximally split abelian subspace of g). We write
K for the maximal compact subgroup of G with its Lie algebra £, and denote
the Weyl group acting on a by W(g,a) := Nk(a)/Zk(a). Since [ is also
reductive in g, we can take a Cartan involution &' of g preserving [. We write
[ =¥(l) + p'(!) for the Cartan decomposition of [ corresponding to #'|;, and
fix a maximal abelian subspace af of p’(l). Then there exists g € G such that
Ad(g)-ay is contained in a, and we put a; := Ad(g)-a;. The subset W(g,a)-a
of a does not depend on a choice of such geQG.

The following fact holds:

Fact 1.3.5 (T. Kobayashi [15, Theorem 4.1)). In Setting 1.3.4, L acts on
G/H properly if and only if

ag N Wi(g,a)-a = {0}.

The proof of Fact 1.2.6 is reduced to Fact 1.3.5 (see [15]). However, to
prove the equivalences between (v), (vi) and (vii) in Fact 1.2.6 we need an
additional argument which will be described in Appendix 1.B.
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1.3.2 Benoist’s criterion

Let (G, H) be a reductive pair (see Definition 1.3.1). In this subsection, we
use the notation g, b, 8, ay, a and W(g, a) as in the previous subsection.

Let us denote the restricted root system of (g,a) by ¥(g,a). We fix a
positive system X1(g, a) of £(g, a), and put

ay ={Aca|{X)>0forany £ € X7 (g,a)}.

Then a, is a fundamental domain for the action of the Weyl group W (g, a).
We write wq for the longest element in W(g, a) with respect to the positive
system X7 (g,a). Then, by the action of wy, every element in a, moves to
—a; :={-A| A € a;}. In particular,

—wp:a-+a, A —(wp-A)
is an involutive automorphism on a preserving a,. We put
bi—{Aca|-wp- A=A}, b, :=bNa,.
Then the ne);t fact holds:

Fact 1.3.6 (Y. Benoist [5, Theorem in Section 1.1]). The following conditions -
on a reductive pair (G, H) are equivalent:

(4) G/H admits an infinite discontinuous group which is not virtually abelian.
(i) by € w-ay for any w € W(g,a).
(i) b, ¢ W(g,0) - o,

Remark 1.3.7. Benoist showed (i) < (ii) in Fact 1.3.6. The equivalence (ii)
< (iii) follows from the fact below (since by is a convex set of a and w - ay
15 a linear subspace of a for any w € W (g, a)).

Fact 1.3.8. Let Uy, Us, ..., U, be subspaces of a finite dimensional real
vector space V and Q a convez set of V. Then Q is contained in ., U; if
and only if Q is contained in Uy for some k € {1,...,n}.
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1.4 Proof of Theorem 1.2.2

We: give a proof of Theorem 1.2.2 by proving the implications in the figure
below:

(i) == (i) == (i}
e ﬂ
® )

; (vii) (iv)

(vi) = (x) == (viii)

In this section, to show the implications, we use some theorems, proposi-
tions and lemmas, which will be proved later in this chapter.

Notation: Throughout this chapter, for a complex semisimple Lie al-
gebra gc and its real form g, we denote a complex [resp. real] nilpotent,
hyperbolic, antipodal hyperbolic adjoint orbit in g¢ [resp. g] simply by a
complex [resp. real| nilpotent, hyperbolic, antipodal hyperbolic orbit in g¢
[resp. g].

141 Proof of (i) & (ix) in Theorem 1.2.2

Our proof of the equivalence (i) © (ix) in Theorem 1.2.2 starts with the next
theorem, which will be proved in Section 1.5:

Theorem 1.4.1 (Corollary to Fact 1.3.5). In Setting 1.3.4, the following
conditions on (G, H, L) are equivalent: ’

(1) L acts on G/H properly,

(1) There do not exist real hyperbolic orbits in g (see Deﬁm’tioh 1.2.3) meet-
ing both | and b other than the zero-orbit,

where g, b and U are Lie algebras of G, H and L, respectively.

By using Theorem 1.4.1, we will prove the next proposition in Section
1.5: :

Proposition 1.4.2. Let (G, H) be a reductive pair (see Definition 1.3.1).
Then there exists a bijection between the following two sets:
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e The set of Lie group homomorphisms & : SL(2,R) — G such that
SL(2,R) acts on G/H properly via ®,

o The set of sla-triples (A, X,Y) in g such that the real adjoint orbit
through A does not meet §. ‘

In Setting 1.2.1, the subgroup H of G is reductive in G (see Example
1.3.2). Hence, we obtain the equivalence (i) < (ix) in Theorem 1.2.2.

1.4.2 Proof of (iv) & (vil) in Theorem 1.2.2

We will prove the next theorem in Section 1.5:

Theorem 1.4.3 (Corollary to Fact 1.3.6). The following conditions on a
reductive pair (G, H) (see Definition 1.3.1) are equivalent:

(1) G/H admits an infinite discontinuous group that is not virtually abelian.
(#) There exists a real antipodal hyperbolic orbit in g that does not meet .

In Setting 1.2.1, the equivalence (iv) < (vii) in Theorem 1.2.2 holds as a
special case of Theorem 1.4.3.

1.4.3 Proofs of (x) & (ix), (viil) & (vii) and (x) = (viii)
in Theorem 1.2.2 |

Let gc be a complex semisimple Lie algebra. We use the following convention
for hyperbolic elements (see Definition 1.2.3):

H :={A€gc|Ais ahyperbolic element in gc },
H®:={ A € H | The complex adjoint orbit through A is antipodal },
H" :={ A € gc | There exist X,Y € gc
such that (A4, X,Y) is an sly-triple }.
We also write H/Gc, H*/Gc for the sets of Complek hyperbolic orbits and
complex antipodal hyperbolic orbits in g¢, respectively. Let us denote by

H™/Gc the set of complex adjoint orbits contained in H™.
The next lemma will be proved in Section 1.6.3:

Lemma 1.4.4. For any sly-triple (A, X,Y) in gc, the element A of gc is
hyperbolic and the complex adjoint orbit through A in gc s antipodal.
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By Lemma 1.4.4, we have .
H" C H CH.

Hence, the implication (X) => (viii) in Theorem 1.2.2 follows.
Further, for any subalgebra [ of gc, we also use the following convention:

H:= { A € | The complex adjoint orbit through A meets [},
HE =H*NH,,
{L = Hn N H[.

Let us write Hi/Gc, Ht/Ge, HP/Ge for the sets of complex adjoint orbits
contained in ‘H, H°, ‘H" meeting [, respectively.
Here, we fix a real form g, and set

H(g) := {A € g| Ais a hyperbolic element in g}, :
H(g) := { A € H(g) | The real adjoint orbit through A is antipodal },
H"(g) :={A € g| There exist X,Y € ¢

' such that (A, X,Y) is an sly-triple }.
We also write H(g)/G, H%(g)/G, H"(g)/G for the sets of real adjoint orbits
contained in H(g), H*(g), H™(g), respectively.

Then the following proposition gives a one-to-ore correspondence between
real hyperbolic orbits and complex hyperbolic orbits with real points:

Proposition 1.4.5. (i) The following map gives a one-to-one correspon-
dence between H(g)/G and Hy/Ge:

H(g)/G — Hy/Ge, OF — Ad(Ge) - OF

hyp hyp>
Hy/Ge = H(9)/G, OrS — 05 Ng.

hyp hyp
(#3) The bijection in (i) gives the one-to-one correspondence below:
1(9)/G <5 HE/Ge.

(i55) The bijection in (i) gives the one-to-one correspondence below:

H"(g)/G <5 H!/Ge.
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The proof of Proposition 1.4.5 will be given in Section 1.7.

In Setting 1.2.1, recall that both g and g€ are real forms of g¢. In Section
1.8, we will prove the following proposition, which claims that a complex
hyperbolic orbit meets b if it meets both g and g°:

Proposition 1.4.6. In Setting 1.2.1, Hy N\ Hye = Hy.

The equivalences (x) < (ix) and (viii) ¢ (vii) in Theorem 1.2.2 follows
from Proposition 1.4.5 and Proposition 1.4.6.

1.4.4 Proof of (vi) & (x) in Theorem 1.2.2

The equivalence (vi) & (x) in Theorem 1.2.2 can be obtained by the Jacobson—
Morozov theorem and the lemma below (see Proposition 1.7.8 for a proof):

Lemma 1.4.7 (Corollary to J. Sekiguchi [38, Proposition 1.11]). Let gc be a
complex semisimple Lie algebra and g o real form of gc. Then the following
conditions on an sly-triple (A, X,Y) in gc are equivalent:

(i) The complex adjoint orbit through A in gc meets g.

(i) The complex adjoint orbit through X in gc meets g.

1.4.5 Proof of (vii) = (ix) in Theorem 1.2.2

Let g be a semisimple Lie algebra. In this subsection, we use H(g), H*(g)
and H"(g) as in Section 1.4.3. '

To prove the implication (vii) = (ix), we use the next proposition and
lemma:

Proposition 1.4.8. We take‘ '
b:={Aca|—w-A=A}, b,:=bnNa,
as in S’ection 1.3.2. Then the folloiuing holds:
(i) b= R-span(a+ NH"(g))-
(zz) 'H“(g) = Ad(G) - b..
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Lemma 1.4.9. Let (g, b, 0) be a semisimple symmetric pair. We fiz a Cartan
involution 6 on g such that 8o = o8 and denote by g = £+ p the Cartan
decomposition. of g with respect to 8. Let us take a and ay = aNh as in
Section 1.3.1. We fix an ordering on ay and extend it to a, and put ay to the
closed Weyl chamber of a with respect to the ordering. Then

a+ NHy(g) C ap,

where Hy(g) is the set of hyperbolic elements in g whose adjoint orbits meet
b.

Postponing the proof of Proposition 1.4.8 and Lemma 1.4.9 in later sec-
tions, we complete the proof of the implication (viii) = (x) in Theorem 1.2.2.

Proof of (viii) = (x) in Theorem 1.2.2. We shall prove that .H“(g) C Hy(g) |
under the assumption H"(g) C Hy(g). By combining Proposition 1.4.8 (i),
Lemma 1.4.9 with the assumption, we have '

b C ap(Ch).
Therefore, by Proposition 1.4.8 (ii), we obtain that H%(g) C Hy(g). O

We shall give a proof of Proposition 1.4.8 (i) in Section 1.7.5 by comparing
Dynkin’s classification of sly-triples in g¢ [10] with the Satake diagram of the
real form.g of gc. The proof of Proposition 1.4.8 (ii) will be given in Section
1.5.1, and that of Lemma 1.4.9 in Section 1.8.

1.4.6 Proofs of (i) = (ii), (iii) = (viii) and (i) < (v) in
Theorem 1.2.2

The implication (i) = (ii) in Theorem 1.2.2 is deduced from the lifting theo-
rem of surface groups (cf. [26]). The implication (iii) = (viii) follows by the
fact that the surface group of genus g is not virtually abelian for any g > 2.

The equivalence (i) < (v) can be proved by the observation below: Let Iy

be the free group generated by <(1) 1) in SL(2,R); Then, for any free group

I" generated by a unipotent element in a linear semisimple Lie group G, there
exists a Lie group homomorphism ® : SL(2,R) — G such that () =T
(by the Jacobson-Morozov theorem); Furthermore, by [18; Lemma 3.2], for
any closed subgroup H of G, the SL(2,R)-action on G/H via ® is proper if
and only if the I'-action on G/H is properly discontinuous.
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1.5 Real hyperbolic orbits and proper actions
of reductive subgroups

In this section, we prove Theorem 1.4.1, Proposition 1.4.2, Theorem 1.4.3
and Proposition 1.4.8 (ii).

1.5.1 Kﬁobayashifs.properness criterion and Benoist’s
criterion rephrased by real hyperbolic orbits

In this subsection, Theorem 1.4.1 and Theorem 1.4.3 are proved as corollaries
to Fact 1.3.5 and Fact 1.3.6, respectively. We also prove Proposition 1.4.8
(ii) in this subsection.

Let g be a semisimple Lie algebra. The next fact for real hyperbolic orblts
in g (see Definition 1.2.3) is well known:

Fact 1.5.1. Fix a Cartan decomposition g = €+p of g and a mazximally split
_abelian subspace a of g (i.e. a is a mazimal abelian subspace of p) Then
any real hyperbolic orbit (’)C’;Ip ng meets a, and the intersection Oh Naisa
single W (g, a)-orbit, where W(g,a) :== Nx(a)/Zx(a). In partzcular we have
a bijection

H(g)/G - G/W(g, a)7 Ohyp = Ohyp

where H(g)/G is the set of real hyperbolic orbits in'g and a/W(g, a) the set
of W (g, a)-orbits in a.

Let b be a reductive subalgebra of g (see Definition 1.3.1). Take a maxi-
mally split abelian subspace ay-of f) and extend it to a maximally split abelian

subspace a of g in a similar way as in Section 1.3.1. Then the following lemma,
holds:

Lemma 1.5.2. A real hyperbolic orbit Ohyp i g meets b if and only if it
meets ay. In particular, we have a bijection

Hy(@)/G = {0709 € a/W(g,0) | OVO9 Ny #0}, OF, 0%, N
where Hb( )/G is the set of real hyperbolic orbits in g meeting §.

Proof of Lemma 1.5.2. Suppose .that (’) o, meets b, and we shall prove that
(’)hyp meets ay. We write h = by + Z;, for the decomposition of §j by the
sem1s1mple part and the center of . If h is semisimple, i.e. if h = b, then
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(’)hyp N b contains some (in fact a unique) hyperbolic adjoint orblt in b.
Hence, our claim follows by Fact 1.5.1. Thus let us consider the cases where
Zy # {0} The Cartan involution 6 preserves b, Zy, respectively. Hence, b
can be decomposed as

h:bss®(zhmp) (thé)

where g = ¢ @ p is the Cartan decomposition of g correspondmg to 0. Let X
be an element in Ohyp N b and we put

X=X+ X, +Xe KXss€bhss, Xp €ZyNp, Xe € ZyNE.

By Fact 1.5.1, we only need to show that X is hyperbolic in b and X = 0.
First, we prove that X is hyperbolic in b, i.e. ady,, Xss € End(bgs) is
diagonalizable with only real eigenvalues. Since X, + X; is in Zy, we have

ady,, Xes = (adg X) Ibss-

Recall that X is hyperbolic in g, that is, ady X is diagonalizable with only real
eigenvalues. Then ady X is also diagonalizable with only real eigenvalues.
~ Finally, we show that X; = 0. By the argument above, there is no loss of
generality in assuming that X is in b N ay. In particular, X and X, are
in p. Thus, by Fact 1.5.1, X + X, is hyperbolic in g. Then

Xe=X — (Xes + X;)

is also hyperbolic in g since X and X + X, are commutative. It is known
that for any element Y in ¢, the element adyY; in End(g) has only pure
imaginary cigenvalues. Hence, we have ady; Xy = 0, and X; must be zero
since g is semisimple. ' O

We now prove Theorem 1.4.1 as a corollary to Fact 1.3.5.

Proof of Theorem 1.4.1. In Setting 1.3.4, by Fact 1.5.1 and Lemma 1.5.2, we .
have a bijection between the following two sets:

o The set of W(g, a)-orbits in a meeting both ay and a,
e The set of real hyperbolic orbi’ﬁs in g meeting both § and [.

Hence, our claim follows from Fact 1.3.5. O
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To prove Theorem 1.4.3, we shall show the next lemma:

Lemma 1.5.3. Let g be a semisimple Lie.algebra. Then a real hyperbolic
orbit in g s antipodal if and only if it meets b, (see Section 1.3.2 for the
notation). In particular, we have a bijection '

H(g)/G — {0V ¢ a/W(g,a) | OV Nb, £ 0}, OF — OF N
where H%(g)/G is the set of real antipodal hyperbolic orbits in g.

Proof of Lemma 1.5.3. By Fact 1.5.1, any real hyperbolic orbit (’)hyp in g
meets a, with a unique element Ag in Ohypﬂa+ It remains to prove that — Ay
is in Ohy if and only if —wp - Ag = Ag. First, we suppose that —4, € OF -
Then the element —Ag of — —a, is conjugate to Ap under the action of W(g, a)
by Fact 1.5.1. Recall that both a, and —a, are fundamental domains of

a for the action of W(g,a), and wg - a;. = —a;. Hence, we obtain that
—wp - Ag = Agp. Conversely, we assume that —Ay = wg - Ap. In particular,
—Ap isin W (g, a) - Ag. This implies that — A, is also in @hyp O

We are ready to prove Theorem 1.4.3.

Proof of Theorem 1.4.3. In the setting of Fact 1.3.6, by Fact 1.5.1, Lemma
1.5.2 and Lemma: 1.5.3, we have a bijection between the following two sets:

e The set of W(g, a)-orbits in a which meet by but not a.

e The set of real antipodal hyperbolic orbits in g that do not meet b.
Hence, our claim follows from Fact 1.3.6. O

Proposition 1.4.8 (ii) is also obtained by Lemma 1.5.3 as follows:

Proof of Proposition 1.4.8 (11) The first claim of Lemma 1.5.3 means that
an adjoint orbit O in g is real antipodal hyperbolic if and only if O is in
Ad(G) - by. Thus we have H%(g) = Ad(G) - b... O
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1.5.2 Lie group homomorphisfns from SL(2,R)

In this, subsection, we prove Proposition 1.4.2 by using Theorem 1.4.1.
Let G be a connected linear semisimple Lie group and write g for its Lie
algebra. Then the next lemma holds: '

Lemma 1.5.4. Any Lie algebra homomorphism ¢ : sl(2,R) — g can be
uniquely lifted to ® : SL(2,R) — G (i.e. ® is the Lie group homomor-
phism with its differential ¢). In particular, we have a bijection between the
following two sets:

e The set of Lie group homomorphism from SL(2,R) to G,
o The set of sly-triples in g.

Proof of Lemma 1.5.4. The uniqueness follows from the connectedness of
SL(2,R). We shall lift ¢. Let us denote by

qb(c :5[(2,@) — gc

the complexification of ¢. Recall that G is linear. Then we can take a
complexification G¢ of G. Since SL(2, C) is simply-connected, the Lie algebra ‘
homomorphism ¢¢ can be lifted to :

d¢ : SL(2,C) - Ge.

Then ®¢(SL(2,R)) is an analytic subgroup of G¢ correspbnding, to the

semisimple subalgebra ¢(s[(2,R)) of g. In particular, &c(SL(2,R)) is a closed
subgroup of G. Therefore, we can lift ¢ to ®¢|srr)- ‘ O

~ Let H be a reductive subgroup of G (see Definition 1.3.1) and denote by
b the Lie algebra of H. To prove Proposition 1.4.2, it remains to show the
following corollary to Theorem 1.4.1:

Corollary 1.5.5. Let & : SL(2,R) — G be a Lie group homomorphism, and
denote its differential by ¢ : sl(2,R) — g. We put

Then SL(2,R) acts on G/H properly via ® if and only if the real adjoint
orbit through Ay in g does not meet .
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Proof of Corollary 1.5.5. Since s{(2,R) is simple, we can assume that ¢ :
sl(2,R) — g is injective. We put

L:=&(SL(2,R)), [:=&(sI(2,R)).

Then L is a reductive subgroup of G (see Example 1.3.3). Since ¢ is injective
and the center of SL(2,R) is finite, the kernel Ker & is also finite. Therefore,
the action of SL(2,R) on G/H via ® is proper if and only if the action of
L on G/H is proper. By Theorem 1.4.1, the action of L on G/H is proper
if and only if there does not exist a real hyperbolic orbit in g méeting both
h and ! apart from the zero-orbit. Here, we take a; := RA; as a maximally
split abelian subspace of [. Then, by Lemma 1.5.2, for any real hyperbolic
orbits in g, if it meets [ then also meets a;. Therefore, the action of SL(2,R)
on G/H via ® is proper if and only if the real adjoint orbit through Ay in g
does not meet . ‘ |

1.6  Weighted Dynkin diagrams of complex
adjoint orbits

Let g¢ be a complex semisimple Lie algebra. In this section, we recall some
well-known facts for weighted Dynkin diagrams of complex hyperbolic orbits
and complex nilpotent orbits in gc. We also prove Lemma 1.4.4, and deter-
mine weighted Dynkin diagrams of complex antipodal hyperbolic orbits in

dc-

1.6.1 Weighted Dynkin diagrams of complex hyper-
bolic orbits
In this subsection, we recall a parameterization of complex hyperbolic orbits
in g¢ by weighted Dynkin diagrams.
Fix a Cartan subalgebra jc of gc. Let us denote by A(gc,jc) the root
system of (gc,jc), and define the real form j of j¢ by

ji={Ae ic | a(A) € R for any a € A(ge,ic) -

Then A(gc,jc) can be regarded as a subset of j*. We fix a positive system
A (gc, jc) of the root system A(ge,jc). Then a closed Weyl chamber

jy :={A€j|a(A) >0 for any a € A*(gc,jic) }
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is a fundamental domain of j for the action of the Weyl group W (gc, jc) of
Agc;ic)- .

In this setting, the next fact for complex hyperbolic orbits in g¢ is well
known.

Ge

hyp
tersection (’)fy‘cp Nj is a single W(gc,ic)-orbit in j. In particular, we have

one-to-one correspondences below:

Fact 1.6.1. Any complex hyperbolic orbit O.C in gc meets j, and the in-

' H/G(C <£) )/W(gCaJC) <1_1> j+7

'where'.’H/Gc is the set of complex hyperbolic orbits in gc andj/W(gc,jc) the
set of W(gc,jc)-orbits in j.

Let IT denote the fundamental system of A*(gc,jc). Then, for any A € j,
we can define a map
Uy IR, a— alA).

We call ¥4 the weighted Dynkin diagram corresponding to A € j, and a(A)
the weight on a node a € II of the weighted Dynkin diagram. Since II is a
basis of j*, the correspondence

U :j— Map(IL,LR), A Uy (1.6.1)

is a linear isomorphism between real vector spaces. In particular, ¥ is bijec-
tive. Furthermore, ’

\I/|j+ Zj+ — Map(H,RZO), A \I/A

is also bijective. We say that a weighted Dynkin diagram is trivial if all
weights are zero. Namely, the trivial diagram corresponds to the zero of j by
. .

The weighted Dynkin diagram of a complex hyperbolic orbit O}Cl’;,“; in ge¢ is
defined as the weighted Dynkin diagram corresponding to the unique element
Ap in O}?y‘% Njy (see Fact 1.6.1). Combining Fact 1.6.1 with the bijection
V|, the map

H/Ge — Map(TI, Ryg), OS¢

hyp = ‘IJAO

is also ‘bijective.
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1.6.2 Weighted Dynkin diagrams of complex antipodal
hyperbolic orbits

In this subsection, we determine complex antipodal hyperbohc orbits in ge¢
(see Definition 1.2.3) by describing the weighted Dynkin diagrams.

We consider the same setting as in Section 1.6.1. Let us denote by w§ the
longest element of W (ge, jc) corresponding to the positive system A*(gc, jc).
Then, by the action of w§, every element in j; moves to —j, == {—A| A€
j+}. In particular,

—wg i) =, Ar —(wg - A)

is an involutive automorphism on j preserving j,.. We put
;_wC A P C _ .—wg L oy
7O ={A€j|—wy- A=A}, jL 0 =307

We recall-that any complex hyperbolic orbit @ch in gc meets j. with

a unique element Ao in Ohyp Nijy (see Fact 1.6.1). Then the lemma below
holds:

Lemma 1.6.2. A complex;hyperbolic orbit 0,%% n ge 48 dmﬁipodal if and
—aC
only if the corresponding element Ao is in j+w°

one-to-one correspondence

. In particular, we have a

He/Ge < J_w°7
where H*/Gc is the set of complex antipodal hyperbolz'c orbits in gc. ‘
Proof of Lemma 1.6.2. The proof parellels to that of Lemma 1.5.3. a
Recall that the map
U:j— Map(I,LR), A &y

is'a linear isomorphism (see Section 1.6.1). Thus —w{ induces an involutive
endomorphism on Map(Il,R). By using this endomorphism, the following
theorem gives a classification of complex antipodal hyperbolic orbits in gc.

Theorem 1.6. 3 Let © denote the involutive endomorphism on Map(IL, R)
mduced by —wS. Then the following holds:
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(1)

A complex hyperbolic orbit Oh i n ge 18 antipodal if and only if the

weighted Dynkin diagram of Ohyp (see Section 1.6.1 for the notation) is
held invariant by v. In particular, we have a one-to-one correspondence

H?/Ge &L {U, € Map(IL, Rxq) | ¥4 4s held invariant by ¢ }.

Suppose g¢ is simple. Then the endomorphism ¢ is non-trivial if and
only if gc is of type An, Dagy1 or Eg (n > 2, k > 2). In such cases,
the forms of are :

For type A, (n > 2, gc ~sl(n+1,C))

a1 as Ap—-1  Qp Oyn Qn—1 ’ a9 a1

For type Dory1 (k> 2, gc ~ so(4dk +2,C))

O2k+1 ) ‘ Aok
ar Q2 A2k—1 ar Qg dog—1
O————0O—— s an |_) O—0— a2k+1
For type Eg (gc ~ ¢sc)
a1 a2 as Q4 as Y 2 S/ 7 as a2 3]
[e; O — O O

N N

It should be noted that for the cases where g¢ is of type Dox (kK > 2),
the involution ¢ on weighted Dynkin diagrams is trivial although the Dynkin
~diagram of type Do, admits some involutive automorphisms.

Proof of Theorem 1.6.3. The first claim of the theorem follows from Lemma
1.6.2. One can easily show that the involutive endomorphism ¢ on Map(II, R)

is induced by the opposition involution on the Dynkin dlagram with nodes
II, which is defined by

M-I, a——(wd* - a
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Suppose that gc is simple. Then the root system A(ge,jc) is irreducible. It
is known that the opposition involution is non-trivial if and only if g¢ is of
type An, Dogy1 or Eg (n > 2, k > 2) (see J. Tits [42, Section 1.5.1]), and
the proof is complete. O

As a corollary to Theorem 1.6.3, we have the following:

Corollary 1.6.4. If the complez semisimple Lie algebra gc has no simple
factor of type A, Dogy1 or Eg (n > 2, k > 2), then any complex hyperbolic
orbit in gc is antipodal. Namely, H/Gc = H*/Gec. :

By Corollary 1.6.4, in Setting 1.2.1, if g¢ has no simple factor of type A,
Dogy1 or Eg (n > 2, k > 2), then the condition (viii) in Theorem 1.2.2 and
the condition (vii) in Fact 1.2.6 are equivalent.

1.6.3 Weighted Dynkin diagrams of complex nilpotent
“orbits |

We consider the setting in Section 1.6.1, and use the notation H" and H"/G¢
as in Section 1.4.3. In this subsection, we prove Lemma 1.4.4, and recall
weighted Dynkin diagrams of complex nilpotent orbits in g¢.

First, we prove Lemma 1.4.4, which claims that H™ C H%, as follows:

Proof of Lemma 1.4.4. For any sly-triple (4, X,Y) in ge, it is well known
that ady.(4) € End(gc) is diagonalizable with only real integral numbers.
Hence, A is hyperbolic in gc. We shall prove that the orbit (95;'@ = Ad(Gc)-A
is antipodal. We can easily check that the elements

1 0 -1 0Y .
(O _1) and (0 1) in s(2,C)

are conjugate under the adjoint action of SL(2,C). Then, for a Lie algebra
~ homomorphism ¢¢ : 5/(2,C) — gc with

1 0
bc (0 _1>:A>

the elements A and — A are conjugate under the adjoint action of the analytic
subgroup of G¢ corresponding to ¢¢(sl(2, C)). Hence, the orbit O¢ in g is
antipodal. O
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Let \V be the set of nilpotent elements in gc and /G the set of nilpotent
orbits in g¢. For any sly-triple (A, X,Y) in g¢, the element A is in H"(C H?)
and the elements X,Y are both in . Let us consider the map from the
conjugacy classes of sly-triples in g¢ by inner automorphisms of g¢ to N'/Ge
defined by ‘
(A,X,Y)] - 0%

where [(A, X,Y)] is the conjugacy class of an sly-triple (4, X,Y) in g¢ and
Off the complex adjoint orbit through X in gc. Then, by the Jacobson—
Morozov theorem, with a result in B. Kostant [25], the map is bijective. On
the other hand, by A. I. Malcev [29], the map from the conjugacy classes of
sly-triples in ge by inner automorphisms of ge to H"/G¢ defined by

(A, X,Y)] — O5¢

- is also bijective, where C’)GC is the complex adjoint orbit through A in gc.
Therefore, we have a one-to-one correspondence

N/Ge &5 H™/Ge..

In particular, by combining the argument above with Fact 1.6.1, we also
obtain a bijection:

N/Ge =i NH*, OS¢

nilp = AO ’

where Ap is the unique element of j, with the properﬁy: there exist X,Y €
0% such that (Ao, X,Y) is an slp-triple in gc.

nilp

Remark 1.6.5. It is known that the Jacobson-Morozov theorem and the
result of Kostant in [25] also hold for any real semisimple Lie algebra g.
Therefore, we have a surjective map from the set of real nilpotent orbits in
g to H™(g)/G, where H"(g)/G is the notation in Section 1.4.3. However, in
general, the map is not injective.

The weighted Dynkin diagram of a complex nllpotent orbit (’)mlp in ge
is defined as the weighted Dynkin diagram correspondlng to Ap € jL NH™
Obviously, the weighted Dynkin diagram of OmI is the same as the weighted
Dynkin diagram of the corresponding orbit in 7—[” /Gc.

E. B. Dynkin [10] proved that any weight of a weighted Dynkm dia-
gram of any complex adjoint orbit in H"/G¢ is 0, 1 or 2. Hence, H"/G¢
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is (and therefore N'/Gc is) finite. Dynkin [10] gave a list of the weighted
Dynkin diagrams of H"/G¢ as the classification of sly-triples in g¢. This
also gives a classification of complex nilpotent orbits in g¢ (see Bala-Cater
[4] or Collingwood—McGovern [8, Section 3] for more details).

We remark that by combining Theorem 1.6.3 with Lemma 1.4.4, if g¢
is isomorphic to sl(n + 1,C), so(4k + 2,C) or esc (n > 2, k > 2), then
the weighted Dynkin diagram of any complex adjoint orbit in H"/G¢ (and
therefore the weighted Dynkin diagram of any complex nilpotent orbit) is

- Invariant under the non-trivial involution ¢.

Example 1.6.6. It is known that there exists a bijection between complex
nilpotent orbits in sl(n,C) and partitions of n (see [8, Section3.1and3.6]).
Here is the list of weighted Dynkin diagrams of complex milpotent orbits in
sl(6,C) (i.e. the list of weighted Dynkin diagrams corresponding to j; N H"
for the case where gc = s(6,C)):

Partition  Weighted Dynkin diagram

6 A S S S
S S S S S
w2y 2 9 2 J 3
w3 3 3 1 3
il o5 o 2
321 o 5 9 5 3
3 3 9 3 9 2
29 99 2 9 9
21 3 3 4 3
21 o3 3 3 3
19 o9 05 8 3
" Table 1.8: Classification of complex nilpotent orbits in

sl(6,C)
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1.7 Complex adjoint orbits and real forms

Let gc be a complex simple Lie algebra, and g a real form of g¢. Recall
that, in Section 1.6, we have a parameterization of complex hyperbolic [resp.
- antipodal hyperbolic, nilpotent] orbits in g¢ by weighted Dynkin diagrams.
In this section, we also determine complex hyperbolic [resp. antipodal hy-
perbolic, nilpotent] orbits in gc meeting g. For this, we give an algorithm to
check whether or not a given complex hyperbolic [resp. nilpotent] orbit in
gc meets g. We also prove Proposmon 1.4.5 and Proposition 1.4.8 (i) in this
section.

1.7.1 Complex hyperbolic orbits and real forms

We give a proof of Proposition 1.4.5 (i) in this subsection.
We fix a Cartan decomposition g = £+p, and use the following convention:

Definition 1.7.1. We say that a Cartan subalgebra iy of g is split if a :=j;Np
is a mazimal abelian subspace of p (i.e. a is a mazimally split abelian subspace

of g).

Note that such j, is unique up to the adjoint action of K, where K is the
analytic subgroup of G corresponding to &.

“Take a split Cartan subalgebra j, of g in Definition 1.7.1. Then jg can be
written as j; = t + a for a maximal abelian subspace t of the centralizer of
a in & Let us denote by jc := j; ++/—1j; and j :== /=1t + a. Then jc is a
Cartan subalgebra of gc and j is a real form of it, with

j={A€jc| a(4) eR for any a € A(ge,jc)},
where A(gc,jc) is the root system of (ge,jc). We put
X(g,a) :=={als | @ € Algc,jc)} \ {0} Ca”

to the restricted root system of (g,a). Then we can take a positive system
A*(gc,ic) of A(ge,je) such that the subset

2t (g, a) = {als | @ € A% (gc,jc)} \ {0}
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of ¥(g, a) becomes a positive system. In fact, if we take an ordering on a and

extend it to j, then the corresponding positive system A™(gc, jc) satisfies the

~ condition above. Let us denote by W(gc,ic), W(g,a) the Weyl groups of
A(gc,ic), (g, a), respectively. We put the closed Weyl chambers :

jir:={A€j|ald)>0for any @ € AT(gc,ic) },
o :={Aca|{(A)>0forany £ € 5¥(g,0)}.

Then j, and a, are fundamental domains of j, a for the actions of W(gc,jc)
and W (g, a), respectively. By the definition of A*(gc,jc) and Xt (g,a), we
have ay =j, Na. ;

We recall that any complex hyperbolic orbit O}Cl’;,“; in g¢ meets j, with

a unique element Ay in (Og,% Nj+ (see Fact 1.6.1). Then the lemma below
- holds:

Lemma 1.7.2. A complex hyperbolic orbit O%Cp i gc meets g if and only if
the corresponding element Ao is in ay. In particular, we have a one-to-one
correspondence

H,/Gc <= a,,
where Hy/Ge is the set of complex hyperbolic orbits in gc meeting g.

Lemma 1.7.2 will be used in Section 1.7.2 to prove Theorem 1.7.4. We
now prove Proposition 1.4.5 (i) and Lemma 1.7.2 simultaneously.

Proof of Proposition 1.4.5 (i) and Lemma 1.7.2. We show that for a complex
hyperbolic orbit Ofﬁ, in gc, the element Ap is in ay if Ofy‘; meets g. Note
that an element of g is hyperbolic in g (see Definition 1.2.3) if and only if
hyperbolic in gc. Thus any real adjoint orbit @’ contained in O}C;Cp Ngis
hyperbolic, and hence ' meets a,. with a unique element Ag € O’ Na,y by
Fact 1.5.1. Since ay is contained in jy, the element A is in Og,‘cp Njy. Thus,
Ag = Ao. Therefore, we obtain that Ao is in a; for any Ogﬁ, € H,/Ge,
which completes the proof of Lemma 1.7.2. : :

To prove Proposition 1.4.5 (i), it suffices to show that the intersection

O}Cl’;,cp N g becomes a single adjoint orbit. By the argument. above, we have
Ad(G) - Ao = 0% Ng,
and hence Proposition 1.4.5 (i) follows. \ ' O
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1.7.2 Weighted Dynkin diagrams and Satake diagrams

Let us consider the setting in Section 1.7.1. In this subsection, we determine
complex hyperbolic orbits in g¢ meeting g by using the Satake diagram of g.

First, we recall briefly the definition of the Satake diagram of the real form
g of gc (see [2, 36] for more details). Let.us denote by II the fundamental
system of At (gc,](c) Then

I:={al,|ael}\ {0}

is the fundamental system of $7 (g, a). We write I, for the set of all simple
roots in II whose restriction to a is zero. The Satake diagram S, of g consists
of the following data: the Dynkin diagram of g¢ with nodes II; black nodes
Iy in S; and arrows joining o € I\ Il and B € IT\ Il in S whose restrictions
to a are the same.

Second, we give the definition of weighted Dynkin dlagrams matching the
Satake diagram S; of g as follows:

- Definition 1.7.3. Let ¥4 € Map(II,R) be a weighted Dynkin diagram of
gc (see Section 1.6.1 for the notation) and Sy the Satake diagram of g with
nodes II. We say that U 4 matches Sy if all the weights on black nodes in Il
are zero and any pair of nodes joined by an arrow have the same weights.

Then the following theorem holds:

Theorem 1.7.4. The weighted Dynkin diagram of a complez hyperbolic orbit

(’)hycp in gc matches the Satake diagram of g if and only if O°C meets g. In

particular, we have a one-to-one correspondence

hyp

H, /Ge <=5 { U4 € Map(II, Rsg) | ¥4 matches S }.
g > 9

Recall that ¥ is a linear isomorphism from j to Map(II,R) (see (1.6.1) in
Section 1.6.1 for the notation), and there exists a one-to-one correspondence
between H,/Gc and a; (see Lemma 1.7.2). Therefore, to prove Theorem
1.7.4, it suffices to show the next lemma:

Lemma 1.7.5. The linear isomorphism U : j — Map(II, R) induces a linear
isomorphism

a—{¥seMap(ILR)| Ty maiches Sg}, A— Uy
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Proof of Lemma 1.7.5. Let A € j. By Definition 1.7.3, the weighted Dynkin
diagram ¥, matches the Satake diagram of g if and only if A sat1sﬁes the
followmg condition (x):

%) a(A) =0 (for any o € Ily),
a(A) = B(A) (for any o, f € IT\ IIj with a|, = Bq).

Thus, it suffices to show that the subspace
o :={A€j| Asatisfies the condition ()}

of j coincides with a. It is easy to check that a C . We now prove that

dimg a = dimga’. Recall that IIis a fundamental system of ¥ (g,a). In
particular, II is a basis of a*. Thus, dimg a = §II. We define the elenflentA’£

of & for each ¢ € II by

AN 1 (ifa|a:‘f)a
".‘(Aﬁ)‘{o (f ol ),

for any o € II. Then { 4; | £ € I} is a basis of o since
I={al.|aell}\ {0}
Thus, dimg o’ = #II, and hence a = o'. 0

1.7.3 Complex antipodal hyperbolic orbits and. real
forms

We consider the setting in Section 1.7.1 and 1.7.2. In this subsection, the
proof of Proposition 1.4.5 (ii) is given. Concerning to the proof of Proposition
1.4.6 (i), which will be given in Section 1.7.5, we also determine the subset b
of a (see Section 1.3.2 for the notation) by describing the Welgh’ced Dynkin
diagrams in this subsection.

First, we prove Proposition 1.4.5 (11), which gives a bijection between
complex antipodal hyperbolic orbits in g¢ meeting g and real antipodal hy-
perbolic orbits in g, as follows:

Proof of Proposition 1.4.5 (ii). Note that Proposition 1.4.5 (i) has been al-
ready proved in Section 1.7.1. Therefore, to prove Proposition 1.4.5 (ii), it
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remains to show that for any O ¢ Hy /Gc and any element A of O% N g,
the element —A is also in O N g. Since O%C is antipodal, the element —A
is also in @Y. Hence, we have —4 € 0% Ng. O

Recall that we have bijections between H*/G¢ and j;wbc (see Lemma 1.6.2)
and between H?(g)/G and b, (see Lemma 1.5.3). By Proposition 1.4.5 (i),
which has been proved above, we have one-to-one correspondences

by ¢ H(g)/G = He/Ge,

where Hg /G is the set of complex antipodal hyperbolic orbits in g¢ meeting
g. ’ '
—aC
To explain the relation between j +w° and b,, we show the following
[emma: : '

Lemma 1.7.6. Let w$, wy be the longest elements of W(gc,ic), W(g,a)
with respect to the positive systems A*(gc,ic), L1 (g, a), respectively. Then:

—nC
b=i""na b.=j " Na,

whereb={Aca|-—wy-A=A} andj ™ ={Acj|—u§-A=A}.

Proof of Lemma 1.7.6. We only need to show that wS preserves a and the
action on a is same as wp. Let us put 7 to the complex conjugation on g¢
with respect to the real form g. Then we can easily check that both II and
—II are 7-fundamental systems of A(gc, jc) in the sense of [36, Section 1.1].
Since (w§)*-II = —TI, the endomorphism w§ is commutative with 7 on j, and
w§ induces on a an element w) of W (g, a) by [36, Proposition A]: Recall that
T ={al,|aell}. Then we have (w})* - = —II, and hence w) = wy. O

Recall that we have a bijection between a and the set of weighted Dynkin
diagrams matching the Satake diagram of g (see Lemma 1.7.5). Combining
with Lemma 1.7.6, we have a linear isomorphism :

b — {¥4 € Map(IL,R) | ¥4 is held invariant by ¢ and matches Sg},
A \I’A, ’ .

where ¢ is the involutive endomorphism on Map(Il,R) defined in Section
1.6.2. Therefore, we can determine the subsets b and b, of a. Here is an
example of the isomorphism for the case where g = su(4, 2).
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Example 1.7.7. Let g = su(4,2). Then the complezification of su(4,2)
is gc = s1(6,C), and the involutive endomorphism ¢ on weighted Dynkin
diagrams is described by ‘

abc.d‘e e d ¢ b
O O O = O

o9

The Satake diagram of g = su(4,2) is here:

N

Suis) ¢ . 3

Therefore, we have a linear isomorphism

~]Ja b 0 b a :
b— < o o |a,beR

In particular, we have one-to-one correspondences below:

11 a b 0 b
O

1:1 : a .
’Hg/Gc< > by o |a,be Ry

1.7.4 Complex nilpotent orbits and real forms

Let us consider the setting in Section 1.7.1 and 1.7.2. In this subsection, we
introduce an algorithm to check whether or not a given complex nilpotent
orbit in gc meets the real form g. In this subsection, we also prove Proposition
1.4.5 (iii).

First, we show the next proposition:

Proposition 1.7.8 (Corollary to J. Sekiguchi [38, Proposition 1.11]). Let
(A, X,Y) be an sly-triple in gc. Then the following conditions on (A, X,Y)
are equivalent: )

(1) The complex adjoint orbit through X meets g.

(75) The complex adjoint orbit through A meets g.

(i43) The complex adjoint orbit through X meets pc, where pe is the com-
plexification of p. ‘
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(1v) The complex adjoint orbit through A meets pc.

(v) There exists an sly-triple (A', X', Y") in g such that A’ is in the complex
adjoint orbit through A.

(vi) The weighted Dynkin diagram of the complex adjoint orbit through X
matches the Satake diagram of g. '

Proof of Proposition 1.7.8. The equivalences between (i), (iii) and (iv) were
proved by [38, Proposition 1.11]. The equivalence (iv) < (ii) is obtained
by the fact that Hy = Ho = Hy, (cf. Lemma 1.7.2 and the proof of [38,
Proposition .1.11]). The equivalence (ii) < (vi) is obtained by combining
Theorem 1.7.4 with the observation that the weighted Dynkin diagrams of
the complex adjoint orbit through X is same as the weighted Dynkin diagram
of the complex adjoint orbit through A (see Section 1.6.3). The implication
(ii) = (v) can be obtained by the lemma below. ’ O

Lemma 1.7.9. Let (A, X,Y) be an sly-triple in gc. Then the following holds:
(1) If A is in g, then there erists g € G such that Ad(g) - A = A and
Ad(g) - X isin g.
(#) If both A and X are in g, then Y is automatically in g.
Proof of Lemma 1.7.9. (i): See the proof of [38, Proposition 1.11]. (ii): Easy.
g
Here is a proof of Proposition 1.4.5 (iii), which gives a bijection between

Hy/Ge and H™(g)/G (see Section 1.4.3 for the notation):

Proof of Proposition 1.4.5 (iii). We recall that Proposition 1.4.5 (i) has been
proved already in Section 1.7.1. Then Proposition 1.4.5 (iii) follows from the
implication (ii) = (v) in Proposition 1.7.8. O

Recall that we have the one-to-one correspondence
j_|_ ﬂ Hn &) N/G(C,

where A/Gc is the set of complex nilpotent orbits in g¢ (see Section 1.6.3).
Combining Lemma 1.7.2 with Proposition 1.7.8, we also obtain

ay NH™(g) = (i NH™ Na <2 N, /Ge,

where N;/Gc is the set of complex nilpotent orbits in gc meeting g. There-
fore, by Lemma 1.7.5, we obtain the theorem below:
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Theorem 1.7.10. Let g¢ be a complex semisimple Lie algebra, and g a real
form of gc. Then for a complex nilpotent orbit OZ‘fp in gc, the following two
conditions are equivalent:

(3) 0% Ng#0 (i.e. O° € N,/Ge).

nilp nilp

- (#) The weighted Dynkin diagram of O matches the Satake diagram Sy

nilp

of g (see Section 1.7.2 for the notation).

Remark 1.7.11. (1) The same concept as Definition 1.7.3 appeared ear-
lier as “weighted Satake diagrams” in D. Z. Djokovic [9] and as the
condition described in J. Sekiguchi [87, Proposition 1.16]. We call it
“match”.

(2) J. Sekiguchi [38, Proposition 1.18] showed the implication (ii) = (i) in
Theorem 1.7.10. Our theorem claims that (i) = (ii) is also true.

We give three examples of Theorem 1.7.10:

Example 1.7.12. Let g be a split real form of gc. Then all nodes of the
Satake diagram Sy are white with no arrow. Thus, all weighted Dynkin dia-
grams match the Satake diagram of g. Therefore, all complex nilpotent orbits
in ge meet g.

Example 1.7.13. Let u be a compact real form of gc. Then all nodes of the
Satake diagram S, are black. Thus, no weighted Dynkin diagram matches
the Satake diagram of w except for the trivial one. Therefore, no complex
nilpotent orbit in gc meets u except for the zero-orbit.

Example 1.7.14. Let (gc,g) = (sl(6,C),su(4,2)). The Satake diagram of
su(4,2) was given in Example 1.7.7. Then, by combining with Example 1.6.6,
we obtain the list of complex nilpotent orbits in gc meeting g (i.e. the list of
(+ NH™) Na) as follows:

Ny/Ge = {[5,1], [4,17%], [3%, [3,2,1], 3,1%), [2%,1%, 2,19, [19}.

1.7.5 Proof of Proposition 1.4.8 (i)

In this subsection, we first explain the strategy of the proof of Proposition
1.4.8 (i), and then illustrate actual computations by an example.
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By Lemma 1.5.3, we have
by D ay NH™(g).
Furthermore, in Section 1.7.4, we also obtained
o NHYg) = (+ NHY) Na.

Therefore, the proof of Proposition 1.4.8 (i) is reduced to the showing

b C R-span((j- NH™) Na) | (1.7.1)

for all simple Lie algebras g. .

In order to show (1.7.1), we recall that the Dynkin-Kostant classification
of weighted Dynkin diagrams corresponding to elements of j. N H™ (which
gives a classification of complex nilpotent orbits in g¢; see Section 1.6.3) As
its subset, we can classify the weighted Dynkin diagrams corresponding to
elements in (j;. N H™) N a by using the Satake diagram of g (cf. Example
1.7.14). What we need to prove for (1.7.1) is that this subset contains suffi-
ciently many in the sense that the R-span of the weighted Dynkin diagrams
corresponding to this subset is coincide with the space of weighted Dynkin
diagrams corresponding to elements in b. Recall that we can also determine
such space correspondiﬁg to b by the involution ¢ on weighted Dynkin dia-
grams (see Section 1.6.2 for the notation) with the Satake diagram of g (cf.
Example 1.7.7). '

We illustrate this strategy by the following example:

Example 1.7.15. We give a proof of Proposition 1.4.8 (i) for the case where
g = su(4,2), with its complezification gc = sl(6,C). , »

By Ezample 1.7.14, we have the list of weighted Dynkin diagrams corre-
sponding to elements of (i NH™) Na for g = su(4,2). Here is a part of
it

Partition Weighted Dynkin diagram

[22,12] 0 1 0 1 0

e, O

1 1
2,14 L9 9 0!

Table 1.4: A part of G+ NH™) N a for g =su(4,2)
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By Ezample 1.7.7, we also have a linear isomorphism

a b OV

b3S o 5 |a,be R

o o

Hence, we can observe that
b C R-span((j. NH") Na).

This completes the proof of Proposition 1.4.8 (i) for the case where g =
su(4,2).

For the other simple Lie algebras g, we can find the Satake diagram of g
in [2] or [12, Chapter X, Section 6] and the classification of weighted Dynkin
diagrams of complex nilpotent orbits in gc¢ in [4]. Then we can verify (1.7.1)
in the spirit of case-by-case computations for other real simple Lie algebras.
Detailed computations will be given in Chapter 2. ‘

1.8 Symmetric pairs

In this section, we prove Proposition 1.4.6 and Lemma 1.4.9.

" Let (g,h) be a semisimple symmetric pair and write o for the involution
on g corresponding to fj. First, we give Cartan decompositions on g, h and
g° (see (1.2.1) in Section 1.2 for the notation), simultaneously.

Recall that we can find a Cartan involution @ on g with o6 = 6o (cf. [6]).
Let us denote by g = €+ p and h = &(h) +p(h) the Cartan decompositions of
g and b, respectively. We set u := £4++/—1p. Then u becomes a compact real
form of ge. We write 7, 7¢ for the complex conjugations on g¢ with respect
to the real forms g, g° respectively. Then 7¢ is the anti C-linear extension
of 0 on g to gc, and hence 7 and 7¢ are commutative. The compact real
form u of g is stable under both 7 and 7¢. We denote by 8 the complex
conjugation on g¢ corresponding to u, i.e. 8 is anti C-linear extension of 6.
Then the restriction 8]y is a Cartan involution on g¢. We write

P (1.8.1)

for the Cartan decomposition of g¢ with respect to 8 ge-
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Let us fix a maximal abelian subspace ay of p(h), and extend it to a
maximal abelian subspace a of p [resp. a maximal abelian subspace a® of p°|.
Obviously, ag = a N a®. We show the next lemma below:

Lemma 1.8.1. [a,a] = {0}.

The next proposition gives a Cartan subalgebra of g¢ which contains split
Cartan subalgebras of g, g¢ and h with respect to the Cartan decompositions.

Proposition 1.8.2. There exists a Cartan subalgebra ic of gc with the fol-
lowing properties:

8 jg = jcNg is a split Cartan subalgebra of g = €+ p (see Deﬁm’tz’on
1.7.1 for the notation) with j; NP = a.
® joc :=jcNg® is a split Cartan subalgebra of g¢ = £°+p¢ with jgeNp® = a®.
o iy := jcNb is a split Cartan subalgebra of b = £(h)+p(h) with jyNp(h) =
Qp. ‘
Proof of Lemma 1.8.1 and Proposition 1.8.2. We put
hP:={Xe€glbcX=X}, ¢“:={Xecg|boX=-X}.

Then (g, h®) is the associated symmetric pair of (g, §) (see [35, Section 1] for
the notation). Note that q% = p° N g+ v/—1(p N +/—1g) and p N q* = p(h).
Let us apply [35, Lemma 2.4 (i)] to the symmetric pair (g, ). Then we have
[a, a¢] = {0}, since the complexification of a, is a maximal abelian subspace of
the complexification of q* containing agy. This completes the proof of Lemma
1.8.1. Furthermore, let us extend a + a® to a Cartan subalgebra j¢ of g¢.
Then j¢ satisfies the properties in Proposition 1.8.2. o O

We fix such a Cartan subalgebra jc of gc, and put
ji=jc Ny —lu.

Throughout this subsection, we denote the root system of (gc,jc) briefly by
A, which is realized in j*. Let us denote by ¥, X¢ the restricted root systems
of (g,a), (g% a¢), respectively. Namely, we put

Yi={ala|aeA}\{0} Ca”,
Y :={ale | ae A} \ {0} C (a®)".

Then we can choose a positive system AT of A with the properties below:
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o X" :={al,|a € AT} \ {0} is a positive system of X. -
e )t :={a

1In fact, if we take an ordering on a, and extend it stepwise to a, to a + a°
and to j, then the corresponding positive system A* satisfies the properties
above (see [35, Section 3] for more detail). Let us denote by

jiv ={A€j|a(A) >0 forany o € AT},

ay = {Acal&A) >0 forany £ € BT},

al = {A€a’|¢(A) >0 for any £° € (T)* },

the closed Weyl chambers in j, a and a® with respect to A*, ¥+ and (£¢)7,
respectively. ,
Combining Fact 1.6.1 with Lemma 1.7.2, we obtain the lemma below:

e | @ € AT }\ {0} is a positive system of >¢.

Lemma 1.8.3. Let (’),f‘;cp be a complex hyperbolic orbit in gc. Then the fol-
lowing holds:

i) There exists a unique element Ap in O%C Nj,.
E hyp
(%) (9%‘; meets g if and only if Ao 1s in a,.
i) O%C meets g° if and only if Ap s in a°.
hyp +
We now prove Proposition 1.4.6 by using Lemma, 1.8.3.

Proof of Proposition 1.4.6. Let 0% he a complex hyperbolic orbit in ge
hyp

meeting both g and g°. We shall prove that (’)}C";Cp also meets h = g N g°. By
Lemma 1.8.3, there exists a unique element Ap € a. Na$ with Ap € O}icp,

and hence our claim follows. O
Lemma 1.4.9 is proved by using Lemma 1.8.3 as follows.

Proof of Lemma 1.4.9. Let us take A€ a, such that OF meets b, where O
is the adjoint orbit in g through A. To prove our claim, we only need to show
that A is in a,. We denote by OS® the complexification of O§. Then O4°
is a complex hyperbolic orbit in gc meeting h = g N g°. Let us extend a4 to
a maximal abelian subspace a¢ of p¢ (see (1.8.1) for the notation of p¢) and
take a Cartan subalgebra j¢ of g¢ in Proposition 1.8.2. We also extend the
ordering on a stepwise to a + a® and to j. Then by Lemma 1.8.3, the orbit
(’)iC intersects j. with a unique element Ao, and Ap is in ap Naf C ay.
Since A is also in Oﬁf‘c Nj4, we have A = Ap. Hence A is in ap. O
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1.9 Algorithm for classification

Let (g, 5) be a semisimple symmetric pair (see Setting 1.2.1). In this section,
we describe an algorithm to check whether or not (g, b) satisfies the condition -
(viil) in Theorem 1.2.2, which coincides with the condition (v) in Theorem
1.1.3. More precisely, we give an algorithm to classify complex antipodal
hyperbolic orbits Og,% in ge such that Og,cp Ng+# 0 and Og,% Ngt=0.

Recall that for any complex semisimple Lie algebra g¢, we can determine
the set of complex antipodal hyperbolic orbits in g¢, which is denoted by
H*/Ge, as t-invariant weighted Dynkin diagrams by Theorem 1.6.3. Further,
for any real form g of g¢, we can classify complex antipodal hyperbolic orbits
in gc meeting g by using the Satake diagram of g (see Section 1.7.3).

For a semisimple symmetric pair (g, §), we can specify another real form
g¢ of g¢ (see (1.2.1) in Section 1.2 for the notation) by the list of [35, Section
1], since the symmetric pair (g°, h) is same as (g, §)232. The Satake diagram of
the real form g [resp. g°] of g¢ can be found in [2] or [12, Chapter X, Section
6]. Therefore, we can classify the set of complex antipodal hyperbolic orbits -
in gc meeting g [resp. g°], which is denoted by Hg/Gc [resp. H./Gc]. This
provides an algorithm to check whether the condition (viii) in Theorem 1.2.2
holds or not on (g, h). '

Here, we give examples for the cases where (g,5) = (su(4,2),sp(2,1)) or

(s (6), 5p(2, 1)) |

Example 1.9.1. Let (g,h) = (su(4,2),5p(2,1)). Then gc = sl(6,C) and
g° = su*(6). We shall determine both Hg/Ge and Hi./Gc, and prove that
(g,h) satisfies the condition (viii) in Theorem 1.2.2.

The involutive endomorphism ¢ on weighted Dynkin diagrams of sl(6,C)
(see Section 1.6.2 for the notation) is given by

a b c d e e d c b a
[o; O O = O 0 .,
Thus, by Theorem 1.6.3, we have the bijection below:
. a b c b a
HG/GC (1'1> o— o I a,b,c€ RZO
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Here are the Satake diagrams of g = su(4,2) and g° = su*(6):

N

Ssu(4,2) B O 14 o, Ssu*(g) : ._O_._O_’-‘

Thus, by Theorem 1.7.4, we obtain the following one-to-one correspondences:

. a b 0 b a
H;/Gc(Ll} fo! —O O 0o |a7bERZO' ,

. 0 ‘
HSC/GC (Ll} o 0 leRZO

Therefore, the condition (viil) in Theorem 1.2.2 holds on the symmetric pair
(su(4,2),5p(2,1)).

Example 1.9.2. Let (g,h) = (5u*(6),sp(2,1)). Then gc = sl(6,C) and
9¢ = su(4,2). Thus, by the argument in Ezample 1.9.1, we have

b

) O

. 0 0
Hi/Ge 5§ o o |[beRyo ¢,

. 1:1 a a
H;C/GC — o 0 |a,b€R20

Therefore, the condition (viii) in Theorem 1.2.2 does not hold on the sym-
metric pair (su*(6),sp(2,1)). However, if we take a complex hyperbolic orbit
O’ in sl(6,C) corresponding to

0 b 0 4 0.
p : o (for some bt € Ryq, b#1),

then Q' meets g but does not meet g¢. Note that O’ is not antipodal. Thus the
condition (vii) in Fact 1.2.6 holds on the symmetric pair (su*(6),sp(2,1)). In
particular, rankg g > rankg b.

Combining our algorithm with Berger’s classification [6], we obtain Table
1.2 in Section 1.2. Concerning this, if g¢ has no simple factor of type A,
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Doyry or Eg (n > 2, k > 2), then the symmetric pair (g, h) satisfies the con-
dition (viii) in Theorem 1.2.2 if and only if rankg g > rankg § (see Corollary
1.6.4 and Fact 1.2.6). Thus we need only consider the cases where g¢ is of
type Ay, Dogy1 or Fg. .

We also remark that for a given semisimple symmetric pair (g, ), by
using the Dynkin—Kostant classification [10] and Theorem 1.7.10, we can
check whether the condition (vi) in Theorem 1.2.2 holds or not on (g, ),
directly (see also Section 1.10).

1.10 Proper actions of SL(2,R) and real nilpo-
tent orbits

In this section, we describe a refinement of the equivalence (i) < (vi) in
Theorem 1.2.2, which provides an algorithm to classify proper SL(2,R)-
actions on a given semisimple symmetric space G/H.

Let ¢ be a connected linear semisimple Lie group and write g for its Lie
algebra. By the Jacobson-Morozov theorem and Lemma 1.5.4, we have a one-
to-one correspondence between Lie group homomorphisms @ : SL(2,R) — G
up to inner automorphisms of G and real nilpotent orbits in g. We denote
by Of the real nilpotent orbit corresponding to ® : SL(2,R) — G. Then, by
combining Proposition 1.4.2, Proposition 1.4.6 with Lemma 1.4.7, we obtain
the next theorem:

Theorem 1.10.1. In Setting 1.2.1, the following conditions on a Lie group
homomorphism ® : SL(2,R) — G are equivalent:

(i) SL(2,R) acts on G/H properly via ®.

(45) The complex nilpotent orbit Ad(Gc)- OF in gc does not meet g°, where
' g¢ is the c-dual of the symmetric pair (g,h) (see (1.2.1) after Setting
1.2.1).

In particular, we have the one-to-one correspondence

{®:SL(2,R) = G | SL(2,R) acts on G/H properly via ®}/G
PN { Real nilpotent orbits OF in g | (Ad(Ge) - O°)Ngt=0}.

Here is an example concerning Theorem 1.10.1:
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Example 1.10.2. Let (G,H) = (SU(4,2),Sp(2,1)). Then (gc,8,8°) =
(sl(6,C),su(4,2),s5u*(6)). Let us classify the following set:

{ Real nilpotent orbits OF in su(4,2) ‘
N the complezifications of OF do not meet su*(6)} (1.10.1)

Recall that complex nilpotent orbits in s1(6,C) are parameterized by parti-
tions of 6 and these weighted Dynkin diagrams are listed in Example 1.6.6. By
Theorem 1.7.10, we can classify the complex nilpotent orbits in s1(6,C) that
meet su(4,2) but not su*(6), by using these Satake diagrams (see Example
1.9.1 for Satake diagrams of su(4,2) and su*(6)), as follows:

{ Complex nilpotent orbits O in sl(6,C)
| O Nsu(4,2) # 0 and O°C Nsu*(6) =0}
S5 {5,1), 14,17, 3,2,1), 3,17, [2,14}.

Il

It is known that real nilpotent orbits in su(4,2) are parameterized by signed
Young diagrams of signature (4,2), and the shape of the signed Young dia-
gram corresponding to a real nilpotent orbit OF in su(4,2) is the partition
corresponding to the complezification of OF (see Theorem 9.8.3 and a re-
mark after Theorem 9.3.5 in [8] for more details). Therefore, we have a
'~ classification of (1.10.1) as follows: '

Partition Signed Young diagymm of signeture (4,2)

5,1] +]=[+[=[+]
’ £
\ ] o e el e el
4, 17] 4] s
| -+
+ =4} [+[=]+]
3,2, 1] +—| =]+
sl ad
+|=[+] [=]+]-]
U =
E Y
— il

92



Chapter 1

+

®

A
| [+
V]

Table 1.5: _Classiﬁcatz'on of (1.10.1)

In particular, by Theorem 1.10.1, there are nine kinds of Lie group ho-
momorphisms ® : SL(2,R) — SU(4,2) (up to inner automorphisms of
SU(4,2)) for which the SL(2,R)-actions on SU(4,2)/Sp(2,1) via & are
proper.

Appendix 1.A Classification

Here is a complete list of symmetric pairs (g, h) with the following property:

g is simple, (g, h) is a symmetric pair
satisfying one of (therefore, all of) the conditions in Theorem 1.2.2.

(1.A.1)
g b
sl(2k,R) sl(k,C) @ s0(2)
sl(n, R) so(n —1,1)
“ (2t <n)

su*(2k) . sp(k —i,1)

(2i<k—1)
su(2p, 2q) sp(p, g)
su(2m —1,2m —1) so*(dm —2)
su(p, q) - su(i, 7) @ su(p —14,q — j) ® 50(2)

(min{p, ¢} > min{s, j} + min{p —i,¢ — j})
s0(p, q) s0(i,7) ®so(p — 4,9 — j)
(p + ¢ is odd) (min{p, ¢} > min{s, j} + min{p — i,q — j})

sp(n,R) su(n —1,1) ® s0(2)
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sp(2k,R) sp(k, C)
sp(p, q) sp(i,5) ©sp(p — t,9 — J) »
50(p7Q) 50(27])6950(17—?’7(1-.7)

~ (min{p, ¢} > min{s, j} + min{p — ¢,q — 5},
unless p=¢g=2m+1and |t — j| = 1)

(p+ q is even)

s0(2p, 29) su(p, g) @ 50(2)

50*(2k) su(k —14,1) ®s0(2)
(2i<k—1)

so(k, k) s50(2k,C) @ s0(2)

50*(4m) s50*(4dm — 40 + 2) @ s0* (43 — 2)
€6(6) sp(2,2) ’
€6(6) su*(6) @ su(2)

e6(2) 50*(10) @ s0(2)-

€6(2) su(4,2) @ su(2)

6(2) sp(3,1)

C6(—14) fa(—20)

€7(7) €6(2) ) 50(2)

e7(7) su(4,4)

e7(7) 50*(12) @ su(2)

er(r) su*(8)

e7(=s) e6(~14) D 50(2)

e7(—5) su(6,2)

€7(—25) eg(—14) D 50(2)

€7(—25) 511(6, 2)

s(s) e7(—5) ® 51(2)

€3(8) 50*(16)

faca) 5p(2,1) @ su(2)
sl(2k,C) su*(2k)

sl(n,C) su(n — 1,1)

(2i < n) _
s0(2k +1,C) so(2k+1—1,19)
- (1 < k)
sp(n,C) sp(n —1,17)
s0(2k, C) s50(2k — 1,1)

(t<kunlessk=i+1=2m+1)
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s0(4m, C) so(dm —2i+1,C) @ s0(2i — 1,C)
s0(2k,C) s0*(2k) |

€6,C €6(—14)

€6,C €6(—26)

er.C €7(—5)

erc €7(—25)

€s.C €g(—24)

fac fa(—20)

Table 1.3: Classification of (g, ) satisfying (1.A.1)

Here, k> 1, m>1,n> 2; p,g > 1 and 4,5 > 0. Note that so(p,q) is
simple if and only if p + g > 3 with (p, q) # (2,2), and s0(2k, C) is simple if
‘and only if £ > 3.

Appendix 1.B The Calabi—-Markus phehomenon
and hyperbolic orbits

Here is a proof of the equivaience among (v), (vi) and (vii) in Fact 1.2.6:

Proof of (v) & (vi) & (vii) in Fact 1.2.6. We take a and ay in Section 1.3.1.
The condition (v) means that a # W(g,a) - ay. By Fact 1.5.1 and Lemma
1.5.2, we have a bijection between the following two sets:

e The set of W(g, a)-orbits in a that do not meet ay.
e The set of real hyperbolic orbits in g that do not meet b.

Then the equivalence (v) < (vi) holds. Further, (vi) < (vii) follows from
Proposition 1.4.5 (i) and Propositon 1.4.6. O
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Chapter 2

On sly-triples in real simple Lie
algebras

We complete the proof of the claim in Section 1.7.5 in Chapter 1.

2.1 The purpose of this chapter

In Section 1.7.5 in the previous chapter, we claimed that for any simple Lie
algebra g over R, the following holds:

b = R-span((j+ NH") N a). (2.1.1)

However, the proof in Chapter 1 is sketchy. The purpose of this chapter is
to complete the proof of (2.1.1).

We recall the notation as follows. Let gc be a complex semisimple Lie
algebra and g a real form of gc. We fix a Cartan decomposition g = £ + p,
“and use the following convention: ’

Definition 2.1.1. We say that a Cartan subalgebraj of g is split if a :=)jNp
is a mazimal abelian subspace of p (i.e. a is a mazimally split abelian subspace

of g).

Note that split Cartan subalgebra j of g is unique up to the adjoint action
of K, where K is the analytic subgroup of G corresponding to £, and G is
the inner-automorphism group of g.

Take a split Cartan subalgebra j of g in Definition 2.1.1. Then j can be
written by j = t + a for a maximal abelian subspace t of the centralizer of
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ain . Let us denote by j¢ := j ++/—1j and j := v/—1t +a. Then jc is a
Cartan subalgebra of g¢ and j is a real form of it with

j={A€jc| a(A) eR for any a € A},
~ where A is the root system of (gc,ic). We put
Y:={al.|ac A}\ {0} Ca*

to the restricted root system of (g,a). Then we can take a positive system
AT of A such that the subset

* = {ale | a € A*}\ {0}.

of ¥ -becomes a positive system. In fact, if we take an ordering on a and
extend it to-j, then the corresponding positive system A™ satisfies the condi-
tion above. Let us denote by W€, W the Weyl groups of A, &, respectlvely
We put the closed Weyl chambers

jry={A€j|a(A) >0 forany a € AT},
a,:={Acal|f(A)>0 foranyE Xt}
Then j, and a, are fundamental domains of j, a for the actions of W¢ and
W, respectively. By the definition of A™ and ¥, we have ay =j; Na.
Let us put wg to the longest element of W with respect to the positive

system ©t. Then the linear transform z — —wyg - z on a leaves the closed
Weyl chamber a, invariant. Here, we put

bi={Aca|-w;-A=A}.

The definition of b is introduced by Benoist [3].
A triple (A, X,Y) is called an slo-triple in g¢ if 4, X,Y € gc with

[A4,X]=2X, [A,Y]=-2Y, [X,)Y]=A
Here, we denote by
H" :={ A € gc | There exists X,Y € g¢ :
such that (A, X,Y) is an sly-triple in gc }.

We should remark that j, NH™ does not depend on the real form g, and
Dynkin [5] gave the classification of j, N H™ for each gc (See Section 2.2.3
for more details).

The purpose of this chapter is to prove the next theorem:
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Theorem 2.1.2 (The claim in Section 1.7.5). For any semisimple Lie algebra
g over R, the following holds:

b =R-span(a; NH") (2.1.2)

Remark 2.1.3. Since a, = j, Na, the right hand side in (2.1.2) is eQuals to
the right hand side in (2.1.1).

We also denote by

H™(g) := { A € g | There exists X,Y € g
such that (A, X,Y) is an sl,-triple in g }.
Remark 2.1.4. By the results of Kobayashi [6], one can observe that the set

H"™(g) s important to find a proper SL(2,R)-actions on some homogeneous
space of G (see Section 1.5.2 for more details).

Then by using the results of Sekiguchi [10, Proposition 1.11], one can
prove that
: ay NH™ =a; NH"(g)

(see Section 1.7.4 for more details). Therefore Theorem 2.1.2 implies’ the
next corollary:

Corollary 2.1.5 (Proposition 1.4.8 (3) in Chapter 1). For any semisimple
Lie algebra g, the following holds:

b = R-span(ar NH"(g)).
Remark 2.1.6. Corollary 2.1.5 plays an impotant role z'ﬁ the proof of the
implication (i13) = (i) in Theorem 1.1.3 in Chapter 1.
2.2 Preliminary

Throughout this section, let us consider the same setting in Section 2.1. We
recall some facts to compute b and a,NH by using weighted Dynkin diagrams
of g¢ and Satake diagrams of g in this section.
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2.2.1 Satake diagrams and maximally split abelian sub-
spaces

Let us denote by II the fundamental system of A*. Then

M:={al,|aell}\ {0}
is the fundamental system of X*. The Satake diagram Sy of a semisimple Lie
algebra g consists of the following three data: the Dynkin diagram-of g¢ with
nodes IT; black nodes Il in S; and arrows joining o € II'\ Il and S € IT\ I,
in S whose restrictions to a are the same (see [1, 9] for more details).
For any A € j, we can define a map
U, TSR, a— ald).

We call ¥ 4 the weighted Dynkin diagram corresponding to A € j, and a(A)
the weight on a node o € II of the weighted Dynkin diagram. Since II is a
basis of j*, the correspondence

- U:j— Map(ILR), A Ty (2.2.1)

is a linear isomorphism between real vector spaces In partlcular ¥ is bijec-
tive. Furthermore,

\Ijll-l- ) — Map(H R>O) A \I/A

is also bijective. We say that a weighted Dynkin diagram is trivial if all
weights are zero. Namely, the trivial diagram corresponds to the zero of j by
.

Here, we recall the deﬁmtlon of weighted Dynkin diagrams matchmg the
Satake diagram S of g as follows:

Definition 2.2.1 (Definition 1.7.3 in Chapter 1). Let \IJA € Map(IL,R) be a
weighted Dynkin diagram of gc and Sy the Satake diagram of g with nodes
II. We say that ¥4 matches Sy if all the weights on black nodes in Iy are
zero and any pair of nodes joined by an arrow have the same weights.

Then the following lemma holds:

Lemma 2.2.2 (Lemma 1.7.5 in Chapter 1). The linear isomorphism ¥ : j —
Map(IL, R) induces a linear isomorphism

‘a—{¥4 € Map(IL,R) | U4 matches Sy}, A Uy
In particular, by this linear isomorphism, we have

a. <2 { U, € Map(IT, Rso) | U4 matches Sy }
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2.2.2 Tits involution and b

Let us denote by w§ the longest element of W€ corresponding to the positive
system A*. Then, by the action of w§, every element in j; moves to —j, =
{—=A| A €j;}. In particular,

iy, An —(uf - A)
is an involutive automorphism on j preserving j,. We put
T ={Aej|—uf-A=A}.

Recall that the map ¥ : j — Map(II,R) in Section 2.2.1 is a linear
" isomorphism. Thus —w$ induces an involutive endomorphism on Map(II, R),
which will be denoted by ¢. In particular, we have

T (j=8) = Map(IT, R)",

where Map(II, R)* denotes the set of all weighted Dynkin diagrams held in-
variant by ¢. For each complex simple Lie algebra ge¢, we determine ¢ as
follows: ’

Proposition 2.2.3 (Theorem 1.6.3 (i7) in Chapter 1). Suppose that gc is
simple. The involution v is not identity if and only if the complex simple Lie
algebra gc is of type An, Dopy1 or Eg (n > 2, k > 2). In other words, this
is the complete list of simple g¢ wzth) w§ o #£j. In such cases, the forms of ¢
are the following:

For type A, (n >2, gc ~sl(n+1,C)):

ap Q2 Qn-1 Gn Qp  Onp-1 as a1

For type Dory1 (k> 2, gc ~ so(4k +2,C)):

Q2k+1 A2k
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For type Egs (gc ~ ¢s):

a1 a2 a3 7 as as G4 as a2 ai
L. O— - o = O o
(273 l

ol

It should be noted that for the cases where g¢ is of type Doy, (k > 2),
the involution —w§ on j is trivial although the Dynkin diagram of type Do
admits some involutive automorphisms.

" Here, the following lemma holds:

Lemma 2.2.4 (Lemma 1.7.6 in Chapter 1). b = i~ N a. |
Thus, by combining Lemma 2.2.2 with Lemma 2.2.4, we obtain that |
U(b) = { ¥4 € Map(I, R)" | ¥4 matches Sy }. (2.2.2)
where Map(II, R)* denotes the set of all weighted Dynkin diagrams held in-

variant by ¢, and Sy is the Satake diagram of g (see Section 2.2.1).

2.2.3 Classification of a. NH"

Let us denote by Hom(sl(2,C), gc) the set of all complex Lie algebra homo-
morphisms from s{(2,C) to gc. For p,p’ € Hom(sl(2,C), gc), we also write
p ~ p if there exists ¢ € G¢ and | € SL(2,C) such that ‘

P = Adge(g) 0 po Adaze) (1),

where G¢ is a connected complex Lie group with LieGe¢ = g¢. Then ~
defines an equivalent relation on Hom(s((2, C), g¢c). In fact, we can omit the
adjoint action of SL(2,C) on sl(2,C), since for any p € Hom(sl(2,C), gc)
and any ! € SL(2,C), there exists g; € G¢ such that

po Adgec)(l) = Adg(g1) © p.

For p € Hom(sl(2,C), g¢), let us put A, to the unique element in j,. which
is conjugate to _
1 0
P (O _1) € gc
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under the adjoint action on ge. Then the correspondence [p] A, gives a

map from Hom(sl(2,C), g¢) / ~ t0jy N ’H" Malcev [8] proved that the map .

is bijective. That is,
Hom(sl(2, C), ac)/~ <5 j4+ N H™

Recall that ¥ in Section 2.2.1 induces a bijection between j.. and Map(II, Rxq).

Thus, a classification of U (jNH") gives a classification of Hom(s!(2, C), g¢)/~.

gc)/~

Dynkin [5] proved that any weight of an weighted Dynkin diagram in
U(jNH™) is given by 0, 1 or 2. Hence, ¥(j.NH™) (and therefore Hom(s((2, C),
is) finite. Dynkin [5] also gave a complete list of the weighted Dynkin dia-
grams in ¥(j; NH") for each simple gc.

Remark 2.2.5. By combining the Jacobson—Morozov theorem with the re-
sults of Kostant [7), we also obtain a bijection between Hom(sl(2,C), gc)/~
and the set of compler adjoint nilpotent orbits in gc. Thus, the classifica-
tion of U(jy NH™), done by Dynkin [5], gives a classification of complex
adjoint nilpotent orbits in gc (see Bala—Cater [2] or Collingwood-McGovérn
[4, Section 3] for more details).

By Lemma 2.2.2, we have that
U(a, NH") = {T4 € U(j, NH") | ¥4 matches S,},

where S, is the Satake diagram of g (see Section 2.2.1 for the notation).
Therefore, for each g, by using the classification of ¥(j; NH") and the Satake
diagram S, of g, we obtain a classification of ¥(a; NH™).

2.3 Proof of Theorem 2.1.2 |

First, we show the following:
Lemma 2.3.1. a+ﬂ'H”C b.

Proof of Lemma 2.3.1. One can observe that for any A € H", the element
—A € gc is conjugate to A under the adjoint action on gc (see the proof of
‘Lemma 1.4.7 in Section 1.6.3 for more details). On the other hand, for any
A € a, C g, one can observe that

(Ad(Ge)-A)Na=(Ad(G)-A)na=W A
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(see the proof of Proposition 1.4.5 (¢) in Section 1.7.1 for more details).
Hence, —A is conjugate to A under the adjoint action on g¢ if and only if A
is in b. This completes the proof. O

Recall that ¥ : j — Map(II,R) in Section 2.2.1 is a linear isomorphism.
Therefore, to prove Theorem 2.1.2, we only need to show that

U(b) C R-span¥(a; N 7—[") (2.3.1)

To prove our claim for each g, we only need to find some weighted Dynkin
diagrams Uy, ..., ¥, in ¥(j; Na) such that {¥y,...,¥,} becomes a basis of
U(b). .

We remark that our claim for g is reduced to that on each simple factor
of g. Furthermore, in the cases where g is a complex simple Lie algebra, our
claim is reduced to the cases where g’ is a split real form of g. Thus, it is
enough to show (2.3.1) for the cases where g¢ is simple and g is non-compact
real form of gc. : /

In the rest of this section, for each simple g¢ we give an explicit form
of. Map(IL, R)* (see Section 2.2.2 for the definition of ¢). Furthermore, we
give some examples from the list of ¥(j. N H") given by Dynkin [5] (we
will refer [4] for classifications of weighted Dynkin diagrams in U(j; N H")).
~ Then for each non-compact real form g of gc, we give the Satake diagram
S, of g, which can be found in [1], and the explicit form of ¥(b) by using
(2.2.2) in Section 2.2.2. Finally, for each g, we give an example of a basis
Uy,..., 0, of ¥(b) with ¥; € U(j; Na). Then the proof of Theorem 2.1.2
will be completed.

Remark 2.3.2. As in the following subsections, one can find such ¥4, ..., ¥,
as even weighted Dynkin diagrams, where even means any weight is 0 or 2.

2.3.1 For the cases where gc is of type A

Let us consider the cases where g¢ is of type A; for [ > 1, that is, g¢ .~
sl(I+1,C). Then we have ’

ay az ... Q-1 g : ‘
Map(II, R)* = { OO —0——0 | @y = Qg1 fOr i =1,... ,l}

By [4, Chapter 3.6], we can find some examples of weighted Dynkin dia-
grams in U(j. NH™) as follows:
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Symbol Weighted Dynkin diagram in ¥(j, NH")
1+1] s 223
2 + 1,12 2.2 20-7022:.2

Qs Ulp1—s

[(2s + 1)2, 1i-4-1] 0202 ..-0200-.- 0020 --- 2020

Let g be a non-compact real form of gc. Then the Satake diagram Sy and
U(b) are given as follows:

g Sy : ¥ (b)

: by by...by by
5[(1 +1, R) O——0—1—0—0 O—0—=0—0
« . 0b10ba.. 020010
e
a a, ( by by---by 0 )
su(p, q) o—o—~---—-o——o\. o———o—«o—\? 0
(p+g=1+1) b S
(p>q) s 020
67) Qi+1—q by by bq
. \ y,
| o b by b
su(k, k) I i i TR br,
(2k=1+1)
Qo1 [ b1 bo br_1

Therefore, for each g, we can find a basis of ¥(b) by taking some weighted

68



Chapter 2 ’ ‘

Dynkin diagrams in ¥(j; NH") as follows:

g Example of basis of ¥(b)

s[(2k,R) 2k =1+ 1) [3,12F73], [5,1265], ... | [2k — 1, 1], [2K]
sl(2k + 1,R) (2k =) [3,1%%=2] [5,126—4] ... [2k + 1]
su*(dm) (4m =1+1) [32,14m=6] [52, 14m=10] . [[(2m — 1)%,1%], [(2m)?]
su*(dm +2) (dm=1-1) (32,144, [52, 14m~8] .. [(2m + 1)?]
su(p,q) p+g=1+1p>q) I3, 1l_2]a [5, 1l—4}7 5 [2¢+ 1, 1l_2q]
su(k, k) 2k=10+1) [3,126=3] [5, 12675, ... [2k — 1, 1], [2K]

2.3.2 For the cases where g¢ is of type B;

Let us consider the cases where g¢ is of type B; for [ > 1, that is, g¢ =~
50(2] +.1,C). Then we have :

» al' as ... Q-1 ap
Map(II,R)* = Map(II, R) = { o o }

By [2, Chapter 5.3], we can find some examples of weighted Dynkin dia-
grams in ¥(j; NH") as follows:

Symbol Weighted Dynkin diagram in ¥(j, NH")

20 +1] 2 2 -2 2
22-.-20---00

[2s + 1,1%-2s] OO OO0

Let g be a non-compact real form of gc. Then the Satake diagram S, and
U(b) are given as follows:
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g S T (b)
so(p, g) biba b0 00
p+qg=20+1) o .. —p—e——e>e OO OO OO
(p>qg+1) . -
bl bz . bl—l bl
so(l+1,1) OO O=—=30 © ©

Therefore, for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in ¥(j. NH") as follows:

g Example of basis of ¥(b)
so(p,q) (p+g=21+1,p>q+1) [3,1%7°[5,17%,.., [2¢+ 1,1%7%]
so(l+1,1) [3,12-2),[5, 1274, ..., [21 + 1]

2.3.3 For the cases where g¢ is of type (]

Let us consider the cases where g¢ is of type C; for [ > 1, that is, gc ~ .
sp(l,C). Then we have ’

‘ ar Gy ... 01 @
Map(H,R)”:Map(H,R):{ oo o0 }

By [2, Chapter 5.3], we can find some examples of weighted Dynkin dia-
grams in ¥(j; NH") as follows:

Symbol Weighted Dynkin diagram in ¥(j; N H")

2/ 0.0- 99992



Chapter 2

[28 + 27 21—8] O reeens O e —0&=0

(25 4 1)2, 12-45-2] 0202 ..-- 0200 ---00 0

’ Qgs
[(2k)?) 0202 .- 0202 ---20 2
(Qk:l) OO0+ +r+200— OO0+ — OO0

Let g be a non-compact real form of gc. Then the Satake diagram S, and
¥(b) are given as follows:

g S T(b)
by by b1
sp(l,R) O—0——0&=0 OO O=0
sp(p,q) | 0610...50 0.--0 0
(P+a=1) oo ero-0—t-vce OO0 rer1—0—0—0—0KD
(»>9q) %2
sp(k, k) 0 b1 0. br-10 by
(2k = 0) *—0—0—- —o—o(:oa% 0—0—0———0—-0<ED

Therefore, for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in ¥(j. NH™) as follows:

o 7 Example of basis of W(b)

sp(l,R) 24, 4,22, [6,272), ..., [2]]
sp(p,q) (p+gq=1Lp>q) [3%,127,[5%,12710, . [(2g +1)2, 1~20~]]
sp(k, k) (2k = 1) [32, 1%6], [52, 14-10], (2K — 1)2,1%], [(2k)?]
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2.3.4 For the cases where g¢ is of type Dy,

Let us consider the cases where gc is of type Do, for m > 2, that is, g¢ ~
50(4m,C). Then we have

Map(I, R)* = Map(IL,R) = { oo

By [2, Chapter 5.3|, we can find some examples of weighted Dynkin dia-
grams in ¥(j, NH™) as follows:

Symbol Weighted Dynkin diagram in ¥(j,. NH")
| 0 |
ey 2220 0
’ 0

: 2
[4m —1,1] 2z 22 %
2
om 00 o0 0°0
[2 ]I O—O0—r—0—0O—
)

0
0202 ---0200---0

[(25 + 1)27 14m_4s_2} O—0—0—0—++:+1—O—O—O=Opmvevree 0

‘Let g be a_non—compact real form of gc. Then the Satake diagram Sy and
U(b) are given as follows:
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g S, T(b)
( 0
s50(p, q) . bib, bio 0
(p+q=4m) OO 00— =8 ﬁ OO =00
(p>q+2) q )
L 0
( b?m—l W
bl b2 b2m—3 .
@m+1,2m—1) o o o . > S — bom—2
: b2m—‘1 J
’ me—l
: bi by ...bom—3 '
50(27’”, 2m) O—O—0—-r -o-—o—c< { o—o—- me—2
. b2m
> Z
_ 0
. 0b0- bm 20
50*(4777‘) o—0—0—.. —o—o<j { o—o—0—- b1
bm

Therefore, for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in ¥(j. NH") as follows: :

Example of basis of U (b

©

so(p,q) (p+q=4m,p>q+2) [3,143] [5,145] ...,
50(2m—|—1 2m — 1) 3,14m=3], [5, 14m=5] ... [4m -1 ,1]

)

[2g + 1, 14m—2a-1]
[3, [

 s0(2m, 2m) %3 1em=1) [5.14m=3] 4 —1.1], [227];

50*(4m) 32 14m 6] [52 14m 10] ,[(27’)’1 _ 1)2’ 12], [22m]1
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2.3.5 For the cases where gc is of type Daomi1

Let us consider the cases where g¢ is of type Dane1 for m > 1, that is,
gc ~ s50(4m + 2,C). Then we have

Qom
. ar G -..02m— '
Ma’p(H7 R) = © O : Aom+1 l Q2m = Q2m+1

By [2, Chapter 5.3], we can find some examples of weighted Dynkin dia-
grams in ¥(j, NH") as follows: '

Symbol Weighted Dynkin diagram in W(j,. NH")
0
2s+1,14m2r) 22 20 0
S s 0

2
[dm +1,1] 22 22 %
- 2

, 0
[(2s + 1)2, 14m—%] 0202 --- 0200 --- 0
Qo 0
2
[(2m + 1)?] 93&&:::3@3&:&{%

Let g be a non-compact real form of gc. Then the Satake diagram S, and
U(b) are given as follows: :
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g Sy U(b)
| , [ 0
so(p, q) o bib, bg g 0/
(ptg=4m+2) oo oe . o’ { oo
P>q+2) 5 Ne 2
? 3
. ‘ b2m
. 61‘ b2 b2m—2
s0(2m + 2,2m) NN > { o—o—-- bom—1
> b2m J
b2m W
by by bam—2
Cm+1,2m+1) o o o AO_O_< oo o1
' b2m
’ bm
0b 0. 0
50* (4m + 2) —0—@—- - —@—O—@ D < O—0—0—~
b,

Therefore, for each g, we can find a basis of U(b) by takmg some weighted
Dynkin diagrams in ¥(j; NH") as follows:

g Example of basis

so(p,q) (p+g=4m+2,p>q+2) [3,1"71 [51%7%, . [2¢ + 1, 1%m720]
50(2m + 2,2m) [3,14m=1], [5, 193], ... [dm + 1,1]
50(2m +1,2m + 1) 3,14 5,148, [Am e+ 1,1
s0*(4m + 2) [32, 14m—4] [[52 14m=8] . [(2m +1)?]

75



Chapter 2

' 2.3.6 For the cases where gc is of type Eg

Let us consider the cases where gc is of type Eg, that is, gc =~ ¢g,c. Then we
have

ay as as a4 -ay
L
Map(IL, R)" = © © | a1y =das, G2 = Gy

L

In [4, Chapter 8.4], we can find some examples of weighted Dynkin dia-
grams in ¥(j; NH") as follows:

Symbol Weighted Dynkin diagram in ¥(j, NH")
0 0 0 0 0

Ay 5 o
02

2000 2
0

R
L

Bl 222
L

Let g be a non-compact real form of gc. Then the Satake diagram S; and
U(b) are given as follows:
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g Sy T (b) .
: y }
b by bs by by
€6(6) o— o o o o CH
l L
( )
o by by by by b
26(2) o /\ o [} ‘o] g
| L
\ J
' b 0 0 0 b,
€6(-14) o——o——@ e— 0 © ’J: O o p
g b )
-
b 0 0 0 b
€6(—26) o——@ ) o— o | © ©

Therefore, for each g, we can find a basis of ¥(b) by taklng some weighted
Dynkm diagrams in ¥(j. NH") as follows:

g Example of basis of ¥(b)
€6(6) Ay, 249, Dy, Eg
€6(2) AQ; 2A27 D47 EG
€6(—14) Ay, 24,
es(—26) 2A2
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2.3.7  For the cases where gc is of type £

Let us consider the cases where gc¢ is of type Ev, that is, gc =~ ¢7c. Then we
have

.az as as a4 as ag
Map(Il,R)* = Map(ILR) = ¢ o o

e

In [4, Chapter 8.4], we can find some examples of weighted Dynkin dia-
grams in ¥(j. NH") as follows: :

| Symbol Weigﬁted Dynkin diagram in ¥(j, NH™)
(3141)'} 2 9 9 9 9 9
L
A, 8 0 0 0 0 g
’
” 02 0 0 o o
$0
b 0 9 90z
00.

As + Az + Ay
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As+ Ay g 0 0 2 0 (o)
o0
B 2 2 2 2 2 2

©2

Let g be.a non-compact real form of gc. Then the Satake diagram S, and
U(b) are given as follows:

g Sa ¥ (b) |

;

bi by by bs b5 be
O O

e7(7) o 0 o
| L,

27(-_5) o— o o <
| L

€7(—25) o—o0— 80— 08— 86— 0 l
0

Therefore, for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in ¥(j. NH") as follows:
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g Example of basis of ¥(b)

e7(7) 3AY, A3, 2A2,Dy, As + Ay + A, Ay + Ag, By
er—s)y Az, 249, Dy, Ay + A

€7(—25) 3Alll, AQ, 2A2

2.3.8 For the cases where gc is of type Ejg

Let us consider the cases where g¢ is of type Eg, that is, gc ~ egc. Then we
have '

a1 Q2 as 7 as Gg  ar

Map(II, R)* = Map(II, R) = o —5 —0
l as .

In [4, Chapter 8.4, we can find som‘e‘examples of weighted Dynkin dia-
grams in ¥(j, NH") as follows: '

Symbol ~ Weighted Dynkin diagram in ¥(j, NH")

4 20 0 0 0 0 0
40

24, 00 0 0 0 0 2
40

Dy g'z 0 0 0 00
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dray 90200 0 0
b

Dy + Ay g 0 0 0 0 0 (O)
o
2

Ds + Ay g 0 0 2 0 0 (C))
°0

Ey(a) o5 3 3 9 2 2
°2

joN g 2 2 2 2 2 g

Let g be a non-compact real form of gc. Then the Satake diagram S, and
U(b) are given as follows: '

g Sy U (b)

- )
by by b3y by bs bg 67}

€s(8) 4 o—o—o—o—I—o—o
I \ % .

4

b1 bp b3 0 0 0 ba

€3(—24) o—o—o—o—I—o—o 9 O—O—O—O—I—O—O
v 0

\ )
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Therefore, for each g, we can find a basis of ¥(b) by taking some weighted
Dynkin diagrams in ¥(j; NH"™) as follows:

g Example of basis of ¥(b)

€3(8) A9, 2A5, Dy, Ay + Ag, Dy + Ag, D5 + Az, Es(aq), Eg
eg(—24) A2,2A2, Dy, Ay + As ‘

2.3.9 For the cases where gc is of type Fy

Let us consider the cases where g¢ is of type Fy, that is, gc =~ fsc. Then we
have

. | ai a2 a3 Gy
Map(IL,R)* = Map(I[,R) =< o o——0

In [4, Chapter 8.4], we can find some examples of weighted Dynkin dia-
grams in ¥(j; NH") as follows:

Symbol . Weighted Dynkin diagram in ¥(j, NH")

o108 0
B0 0
332200

Let g be a non-compact real form of gc. Then the Satake diagram S; and
U(b) are given as follows:"
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g Sg ¥ (b)
b bo by by
faqa) o -0 o © ©

f4(—20) ®

v Therefore, for each g, we can find a basis of U(b) by taking some weighted
Dynkin diagrams in ¥(j, NH") as follows: \

g Example of basis of ¥(b)

Fa(a) As, Ay, By, Fy
fa—20) Az

2.3.10 For the cases where g(c‘is of type G,

Let us consider the cases where g¢ is of type G, that is, gc ~ gac. Then we
" have

Map(II, R)* - Map(II,R) = { 0:315%2 }

In [2, Section 6], we can find some examples.of weighted Dynkin diagrams
in j. NH" as follows:

- Symbol Weighted Dynkin diagram in ¥(j, NH"™)

Ga(a1) , gEg

G, 2 2
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Let g be a non-compact real form of gc. Then g is a spli’b real form of gc¢.
In particular, the Satake diagram S, and U(b) of g are the following:

g Sa ¥(b)

bi by
92(2) =0 =0

- Therefore, the weighted Dynkm diagrams Gs(a1) and Gs in ¥(j. NH™)
give a basis of U(b).
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Homogeneous space with non
virtually abelian discontinuous
groups without any proper
SL(2,R)-action

In Chapter 1, we proved that for a semisimple symmetric pair (G, H), if
G/H admits a discontinuous group which is not virtually abelian, then G/H
admits a proper SL(2,R)-action. In this chapter, we give an example of a
non-symmetric reductive pair (G, H) such that G/H admits a discontinuous
group which is not virtually abelian but does not admits proper SL(2,R)-

actions.

3.1 | Introduction and statement of main re-
sults.

For semisimple symmetric spaces G/H, we have proved in Theorem 1.1.3 in
Chapter 1 that G/H admit a non virtually abelian properly discontinuous
group if and only if G/H admit a proper action of certain subgroup L of G
which is locally isomorphic to SL(2,R).

In general, the letter condition implies the former condition because
SL(2,R) contains non virtually abelian discrete subgroups. We may ask
if these two conditions are equivalent for reductive homogeneous spaces in
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general.

The purpose of this note is to show that this is not always true. In fact
we give an example that admits a non virtually abelian discontinuous group
but does not admit proper SL(2,R)-actions.

Our main theorem is here:

Theorem 3.1.1. There ezists a 3-dimensional split abelian subgroup H of
SL(5,R) satisfying the following:

(1) There exists a non virtually abelian discrete subgroup T’ of SL(5,R) such
that the T'-action on the homogeneous space SL(5,R)/H is properly
discontinuous.

(#) For any Lie group homomorphism ® : SL(2,R) — SL(5,R), the action
of SL(2,R) on the homogeneous space SL(5,R)/H via ® is not proper.

3.2 Criterion of proper actions

- In this section, we recall results of T. Kobayashi [3] and Y. Benoist [1] in a
form that we shall need.

Let G be a linear reductive Lie group, namely G .is a real form of a
connected complex reductive Lie group G¢, and H a reductive subgroup of
G. We denote by g and b the Lie algebras of G and H, respectively. Let us
take maximally split abelian subspaces a of g. We denote the Weyl group
of (g,a) by W. Then any maximally split abelian subspace of § can be
transformed into a subspace of a by inner-automorphisms. We denote this
subspace by ay, which is uniquely determined up to the Weyl group W. An
analogous notation will be applied to another reductive subgroup L of G.

Let us denote the restricted root system of (g,a) by £. We fix a simple
system II of . We write a; and wy for the closure of the dominant Weyl
chamber and the longest element in W corresponding to the simple system
II, respectively. Then the linear transform z — —wy -z on a leaves the closed
Weyl chamber a, invariant. Here, we put ’

by ={Aca,|-w A=A}
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Example 3.2.1. For the cases where G = SL(5, ]R) we can take a, a, and
b, as

={diag(ai,.. as) | a1,...,a5 € R, Zaz—O}

ay = {diag(a1,...,as) €a|ar > ay > a3 > a4 > as},
b+ = {dia’g(blrb2707 _b27 _bl) € ot | bl7b2 € R; bl 2 b2} .

The Weyl group W is isomorphic to the symmetric group G5 and acts on a
as permutations of ay, ..., 0s.

A continuous action of a locally compact group G on a locally compact
topological space X is called proper if {g€ G | gSN S # @} is compact for
any compact subset S of X. Furthermore, it is properly discontinuous if L
is discrete.

The next fact is proved by T. Kobayashi in [3]:

Fact 3.2.2 (Theorem 4.1 in T. Kobayashi [3]). Let H, L be reductive sub-
groups of a reductive Lie group G. Then the following two conditions on
(G, H, L) are equivalent:

(i) The L-action on G/H is proper.
(i) ay MW - a; # {0}.
Let ¢ be a Lie algebra homomorphlsm ¢ :sl(2,R) — g We denote by
(’)hyp the adjoint orbit through ¢ ( 0 ) in g. Then it is known that Ogyp

-1
and a, intersect in one point.

Definition 3.2.3. For a Lie algebra homomorphism ¢ : sl(2)R) — g, We
denote by Ay the unique element in ay N Oy.

The next fact for the proper actions of SL(2,R) follows from Fact 3.2.2:

Fact 3.2.4 (Corollary to Fact 3.2.2). Let G be a reductive Lie group, H a
reductive subgroup of G, and ® :'SL(2,R) — G a Lie group homomorphism.
We denote by ¢ : sl(2,R) — g the differential of ®, and take the element A,
i ay described above. Then the following conditions on ® are equivalent:

(i) The SL(2,R)-action on G/H via ® is proper.
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(1) The element Ay is not in W - ay.

Let us denote by Hom(sl(2,R),g) the set of all Lie algebra homomor-
phisms from s{(2, R) to g. By Fact 3.2.4, if the subset { A4 | ¢ € Hom(sl(2,R), g) }
of a; is contained in W - ay, then for any Lie group homomorphism & :
SL(2,R) — G, the SL(2,R)-action on G/H via ® is not proper.

Remark 3.2.5. Let us define an equivalent relation on Hom(sl(2,R), g) by
& ~ ¢ if there exists | € SL(2,R) and g € G such that ¢ = Ady(g)o o
Adgam) (1) (in fact, we can omit the adjoint action of SL(2,R) on sl(2,R) in
this definition). Then we have a natural surjection from Hom(sl(2,R), g)/~
to the set { Ay | ¢ € Hom(sl(2,R),g)}. We remark that the map is not
ingective for general g (See [2, Chapter 9] for more details). However, by
Proposition 1.4.5 (iii) in Chapter 1, there exists a bijection below:

{Ag | ¢ € Hom(sl(2,R), g) } A
LN { Complex nilpotent orbits O in gc such that O Ng # 0}

The next fact for the existence of properly discontinuous actions of a non
virtually abelian discrete group is proved by Y. Benoist in [1]:

Fact 3.2.6 (Theorem 1.1in Y. Benoist [1]). Let G be a reductive Lie group, H
a reductive subgroup of G. The following conditions on (G, H) are equivalent:

(¢) There exists a non m'rtually‘ abelian discrete subgroup T' of G such that
the T'-action on G/H is properly discontinuous.

(n) b+ ¢ w . dp.

3.3 An example of SL(5, R)-spaces

Let G = SL(5,R) and take a, a, and b, as in Example 3.2.1. We write (, )
for the inner product on a induced by the Killing form on g. Namely,

5
(diag(as, ..., as),diag(ay, . .., a5)) := Zai -a; €R
i=1
/

for any diag(ay,...,as),diag(al,...,al) € a.
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Letustaké
b := {diag(as,...,as) € a|6as + 6az + a3 —4as —9%a; =0} C a.

That is, b is the orthogonal complement subspace of a for diag(6, 6,1, —4, —9).
‘Then '
H :=exph C SL(5,R)

“is a split abelian subgroup of SL(5,R) with H ~ R®. In this case, we take
ag as b itself (see for the notation in Section 3.2). By using Fact 3.2.4 and
Fact 3.2.6, to prove Theorem 3.1.1, we only need to show the following:

Claim A: b, ¢ W - qy.

Claim B: For any Lie algebra homomorphism ¢ : s[(Q,R) — sl(5,R), the
element Ay (see Definition 3.2.3 for the notation) is in W - ay.

First, we shall show Claim A as follows:

Proof of Claim A. Let us take r1,7s € R with r; > ro > 0 such that v, and
are linearly independent over Z. For example, we can take (r1,73) = (v/2, 1).
We shall prove that the element diag(ry, 72,0, =72, —r1) of by is not in W-ay.
If '

(dia’g(’rly Ta, 07 —T9, _TI)T dia’g(ala a2,0s3, 04, a5)> - 0

for some ai,...,a5 € Z, then we have a; = a5 and ay = a4 since r, and 79
are linearly independent over Z. Hence :

(diag('rl, T2, 07 —Ta, _Tl)’ o dla’g(67 6) 17 _47 _9)> 74‘ 0
for any o € &5 = W. Therefore, we obtain that

diag(rl,rg, 0, —T9, —7‘1) ¢ W - Cl.ih.

O

To describe the proof of Claim A, we use the next fact for the set { Ay |
¢ € Hom(sl(2,R),sl(5,R)) }, where Hom(sl(2, R), sl(5,R)) is the set of all
Lie algebra homomorphisms from sl(2, R) to sl(5,R): '

Fact 3.3.1. The set { Ay | ¢ € Hom(sl(2,R),sl(5,R)) } (see Definition 3.2.3
for the notation) is parametrised by partitions of 5 as follows:
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Partition of 5 Ay

[5] diag(4, 2,0, —2, —4)
[4,1] diag(3,1,0, 1, —3)
3, 2] diag(2,1,0, ~1, —2)
3,17] diag(2,0,0,0, —2)
[22,1] diag(1,1,0,—1,-1) ,
2,13 diag(1,0,0,0,—1)
[19] diag(0,0, 0,0, 0)

Fact 3.3.1 can be obtained by combining [2, Chapter 3.6] with [2, Theorem
9.3.3 and remarks after Theorem 9.3.5].

Proof of Claim A. By Fact 3.3.1, we can observe that A, can be written by a
scalar multiple of diag(3, 1,0, —1, —3), diag(2, 1,0, —1, —2), diag(1,1,0,—-1,—1)
or diag(1,0,0,0,—1) for any ¢ € Hom(sl(2,R),s((2,R)). Here, we compute
the inner-products that

(diag(3,1,0, —1, —3), diag(6, =9, —4, 6, 1

), ) =0,

(diag(2,1,0,—1, —2), diag(6, —4, -9, 6,1)) = 0,
(diag(1,1,0,—1,—1), diag(6,—9,6,—4,1)) =0,
(diag(1,0,0, O —1),diag(6,-9,-4,1,6)) = 0.

This means that these are in W - ay. This completes the proof. O
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Products of two simple
symmetric spaces with diagonal
proper actions

Let G be a simple Lie group and take two symmetric pairs (G, Hy) and
(G, Hy). We classify (G, Hy, Hy) such that the diagonal action of G on the
product of the symmetric spaces G/H; X G/Hy is proper.

4.1 Introduction and statement of main re-
sults

Let G be a Lie group. We define a relation rh on the power set of G as follows:

Definition 4.1.1 (T. Kobayashi [10]) For two subset Hy and Hy of G, we
write

'Hl th2 in G

if for any compact subset S of G, the subset HINSH,S™ is relatively compact
in G. ,

Through this chapter; we only consider the cases where Hy and H, are
both closed subgroups of G.
Then one can obtain the next observation:
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Observation 4.1.2 (cf. [8, Lemma 1] and [10, Observation 2.1.3]). Let
H, and Hy be closed subgroups of G. Then the following conditions on
(G, Hy, Hs) are equivalent:

® lemH2 mn G.
[ HthHl mnG. .

The diagonal G-action on G/Hy x G/Hy is proper
e The Hi-action on G/H, is proper.
e The Hy-action on G/H; is proper.

Remark 4.1.3. By [7, Lemma 2.3], for any uniform lattice T of G, the diag-
onal G-action on G/H; x G/ Hy is proper if and only if the diagonal T'-action
on G/Hy x G/Hs is properly discontinuous.

By the definiteion of m, if at least one of GG, L and H is compact, then
L H in G holds. In particular, in the cases where (G, H) is a Riemannian
symmetric pair, i.e. H is a maximal compact subgroup of GG, then any closed
subgroup L of G acts on G/H properly. However, in the cases where all of
G, L and H are non-compact, it is difficult to check whether L m H in G
holds or not in general. ,

Let us conseder the cases where G is linear reductive and L, H are both
reductive subgroups of G, Kobayashi [7, Theorem 4.1] gave a useful criterion
to check whether L m H in G holds or not in this setting (see also Theo-
rem 4.2.1 in Section 4.2). In particular, he gave a necessary and sufficient
condition for Calabi-Markus phenomena ([7, Corollary 4.4]).

Throughout this chapter, we shall work on the following:

‘Setting 4.1.4. G is a real form of a connected complex semisimple Lie group
Gc. 01 and o2 are involutive automorphisms on the Lie group G (possibly
non-commutative from each other). Hy and Hy are open subgroups of G :=
{9€G|oi(g) =g} and G2 :={g € G| 02(g) = g }, respectively.

- We write g, b1 and b, for the Lie algebras of G, H; and Hy, respectively.
The differential action of o; [resp. 03] on g will be denoted by the same letter
o1 [resp. o3]. Then for each i = 1,2, we have h; = {X € g | o;(X) = X }.
Now we obtain two semisimple symmetric pairs (g, §1, 01) and (g, h2, 02). For
eachi =12, weputq,:={X €g|o;(X)=—-X}Theng=0,9q; as a
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vector space. Let us define the c-dual g¢ of the symmetric pair (g, h;, 0;) for
each i =1,2 by -

o =h;®vV—lqg;. (4.1.1)

We remark that g¢ is a real form of g¢, and the complex conjugation corre-
sponding to gf on g¢ is the anti C-linear extension of o; on gc.
Here is our first main result:

Theorem 4.1.5. In Setting 4.1.4, the following conditions on (G, Hy, Hs)
are equivalent:

(i) Hih Hy in G.

(11) Without the zero-orbit, there does not exist a complex hyperbolic orbit
O in gc (defined below) satisfying that gN O # @, gsNO # 0 and
gsNO £0.

The definitions of complex hyperbolic orbits in g¢ given here:

Definition 4.1.6. Let gc be a complex semisimple Lie algebra. An element
X of gc is said to be hyperbolic if the endomorphism ady.(X) € End(gc) is
diagonalizable with only real eigenvalues. We say that an adjoint orbit O in
gc is complex hyperbolic if any (or some) element in O is hyperbolic.

A proof of Theorem 4.1.5 will be given in Section 4.2.

Remark 4.1.7. In Setting 4.1.4, we define the involutions o1 and oy on
g as the differential of involutive automorphisms on G, respectively. How-
ever, Theorem 4.1.5 holds even if the involutions o1 and o2 can not be lifted
to automorphisms on G. That is; Let G be a connected linear semisimple
Lie group, Hy and Hs closed subgroups of G; Assume that there ezists a
(possibly non-commutative) pair (o1,09) of involutions on g = Lie(G) such
that Lie(H;) = g2 :== { X € g | 0s(X) = X } for each i = 1,2; Then the two
conditions on (G, Hy, Hs) described in Theorem 4.1.5 are equivalent.

We remark that the second condition in Theorem 4.1.5 can be defined for
a general semisimple Lie algebra g and pair of two symmetric pairs (g, b1, 01)
and (g, b2, 02). In Section 4.3, we will give a criterion for checking whether a
given such (g, 01, 09) satisfies the second condition of Theorem 4.1.5 or not.
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Furthermore, we will give a classification of (g, 01,09) with g satisfying that
the second condition of Theorem 4.1.5 in Section 4.4.

Let G be a Lie group and H a closed subgroup of G. If there exists a
discrete subgroup I' of G such that the I'-action on G/H is properly discon-
tinuously and freely with compact quotient I'\G/H, then such the compact
manifold I'\G/H is called a compact Clifford—Klein form, and we say that
G/H admits a compact Clifford-Klein form.

.The existence problem for compact Clifford—Klein forms has been ac-
tively studied in the last two decades since [7]. The properness criterion
of Kobayashi [7] yield necessary conditions on (G, H) for this. See also
[2, 9, 8, 13, 14, 16, 17, 20, 23, 24] for some other methods and results on
the existence problem of compact Clifford—Klein forms. The recent develop-
ments on this topic can be found in [11, 12, 15, 18].

Let (G, Hy, Hy) be a triple in Setting 4.1.4 with H; h H, in G, and
assume that the double coset space H;\G/H, is compact. Then both of
G/H; and G/H, admit compact Clifford-Klein forms. For example, if we
take a torsion-free cocompact lattice I' of Hy, then I'\G/H, is a compact
Clifford—Klein form (the existence of a cocompact lattice of a reductive Lie
group was proved by Borel [4]).

By the classification in Section 4.4, we will obtain the next theorem:

Theorem 4.1.8. In Setting 4.1.4, suppose that G is simple and all of G, Hy
and Hy are non-compact. Then the following conditions on (G, Hy, Hs) are
equivalent:

') (i) Hy M Hy in G and the double coset space H\G/H; is compact.
(1) The triple (g, b1, b92) is in Table 4.1 below, up to ordering of h1 and bs.

In particular, if (G, Hy, Hy) satisfies the equivalent conditions above, then
both of G/Hy and G/Hs admit compact Clifford-Klein forms.

g b1 b2
su(2k—2,2) u(2k—2,1) sp(k—1,1)
50(2k —2,2) so0(2k—2,1) u(k—1,1)
50(4,4) s0(4,3) s0(4,1) ® s0(3)
50(6,2) 50(6,1) su(3,1) ® so(2)
s0(8,C) 50(7,C) s0(7,1)

(
Table 4.1: Classification 056(g,hl,b2) satisfying (i) in

Theorem 4.1.8
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We remark that any example of symmetric space G/ H admitting a Clifford—
Klein form obtained by Table 4.1 was already known by Kobayashi—Yoshino
[14, Table 2.2 in Section 2.2].

4.2 Proof of Theorem 4.1.5

In this section, we give a proof of Theorem 4.1.5.
First, as a corollary to the results of [7], we obtain the next theorem:

Theorem 4.2.1 (Corollary to T. Kobayashi [7, Theorem 4.1]). Let G be a
real form of a connected complexr semisimple Lie group G, and H, L are
both reductive subgroups of G. We write g, b and [ for the Lie algebras of
G, H and L, respectively. Then the following conditions on (G, H, L) are
equivalent: :

(i) Lth H inG.

(11) Without the zero-orbit, there does not exist a real hyperbolic orbit O°
in g (defined below) such that O° meets both b and |, respectively.

The definitions of real hyperbolic orbits in a real Lie algebra g given here:

Definition 4.2.2. Let g be a semisimple Lie algebra over R. An element
X of g is said to be hyperbolic if the endomorphism adg(X) € End(g) is
diagonalizable with only real eigenvalues. We say that an adjoint orbit O° in
g 1s real hyperbolic if any (or some) element in O° is hyperbolic.

We remark that an element X of g is hyperbolic in g if and only if X is
hyperbolic in g¢ in the sense of Definition 4.1.6 in Section 4.1.

A proof of Theorem 4.2.1 can be found in Section 1.5.1 as the proof of
“Theorem 1.4.1 in Section 1.4.1.

Remark 4.2.3. In Chapter 1, we assume that G is connected. However, the
proof of Theorem 1.4.1 given in Section 1.5.1 work even if G is a general real
form of a connected complex semisimple Lie group Ge.

Let us fix a complex semisimple Lie algebra gc, its real form g, and a
connected Lie group Gg with Lie Gy = g. ' '
We will use the following proposition for hyperbolic orbits in g:
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Lemma 4.2.4 (Proposition 1.4.5 (¢) in Chapter 1). For a complez hyperbolic
orbit O in gc if O meets g, then O N g becomes a single adjoint orbit in g,
i.e. Gy acts on O N g transitively.

Remark 4.2.5. In Lemma 4.2.4, we can not replace “hyperbolic” to “nilpo-
tent”. That is, for a compler semisimple Lie algebra gc and its real form g,
the intersection g N O™P of g and a complex nilpotent (adjoint) orbit in gc
split into finitely many real nilpotent (adjoint) orbits in g, in general.

Let us fix a symmetric pair (g,h, o), and denote by g¢ for the c-dual of
the symmetric pair (g, b, o) (see (4.1.1) in Section 4.1 for the definition of
c-duals of semisimple symmetric pairs). \ ‘

We also use the next proposition for a relation between complex hyper-
bolic orbits in gc and the c-dual of a semisimple symmetric pair:

Lemma 4.2.6. For a complex hyperbolic orbit O in g¢, the following two
~conditions are equivalent: '

(i) O meets both of g and g°.
(11) O meets gNg®=h.
We are ready to prove Theorem 4.1.5:

Proof of Theorem 4.1.5. By Theorem 4.2.1, we only need to show that the
following two conditions on (G, Hy, Hs) are equivalent:

o Without the zero-orbit, there does not exist a real hyperbolic orbit O°
in g such that O° meets both of h; and by, respectively.

o Without the zero-orbit, there does not exists a complex hyperbolic orbit
O in gc such that O meets all of g, g and g§, respectively.

By Lemma 4.2.4, for a complex hyperbolic orbit O in gc meeting g, the
intersection O N g becomes a real hyperbolic orbit in g. Thus, we obtain a
bijection between the set of complex hyperbolic orbits in gc meeting g and
the set of real hyperbolic orbits in g. Furthermore, by Lemma 4.2.6, in the
bijection given above, a complex hyperbolic orbit O in g¢ meets g$ [resp. g
if and only if the corresponding real hyperbolic orbit O N g in g meets b;
[resp. bha]. Therefore, we obtain a bijection between o

{ Non-zero complex hyperbolic orbits O in g¢ meeting all of g, g7 and g5}
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and

{ Non-zero real hyperbolic orbits O° in g meeting both of b1 and b }.

This completes the proof. ' . : O

4.3 Algorithm for classification

Recall that the condition (ii) in Theorem 4.1.5 can be defined for a triple
(g,01,02), where g is a semisimple Lie algebra and oy, o2 are both invo-
lutive automorphisms on g. We also remark that o; and o, may be non-
commutative from each other. In this section; for such a triple (g, o1, 02), we
give a criterion to check whether the condition (ii) in Theorem 4.1.5 holds or
not (see Corollary 4.3.6).

4.3.1 Complex hyperbolic orbits and weighted Dynkin
diagrams

Let gc be a complex semisimple Lie algebra. In this section, we recall some
well-known facts for weighted Dynkin diagrams of complex hyperbolic orbits
in ge. ’ )

Fix a Cartan subalgebra jc of gc. Let us denote by A the root system of
(gc,jc), and define the real form j of j¢ by

ji={A€jc|a(A) eRforany a € A}.

Then A can be regarded as a subset of the dual space j* of j. We fix a positive
system A™ of the root system A. Then a closed Weyl chamber

iy ={A€j|a(d) >0forany a € AT}

is a fundamental domain of j for the action of the Weyl group W of A.
- In this setting, the next fact for complex hyperbolic orbits in g¢ is well -
known: ‘

Fact 4.3.1. Any complex hyperbolic orbit O in gc meets j, and the inter-
section O Nj is a single W-orbit in j. In particular, we have one-to-one
correspondences below:

H/Ge &5 §/W 5 4y,
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where H/Gc¢ is the set of complex hyperbolic orbits in gc and j/W the set of
W -orbits in j.

Let II denote the fundamental system of A*. Then, for any A € j, we
can define a map
UM >R, a— ald).

We call ¥4 the weighted Dynkin diagram corresponding to A € j, and a(A)
the weight on a node o € II of the weighted Dynkm digdgram. Since II is a
basis of j*, the correspondence

U:j— Map(H,R), ATy (4.3.1)

is a linear isomorphism between real vector spaces. In particular, ¥ is bijec-
tive. Furthermore,

\I/|j+ : j+ -— Map(H,.]RZO), A \IJA

is also bijective. We say that a weighted Dynkin diagram is trivial if all
weights are zero. Namely, the trivial diagram corresponds to the zero of j by
v,

The weighted Dynkin diagram of a complex hyperBoliC orbit O in g¢ is
defined as the weighted Dynkin diagram corresponding to the unique element
Ap in ONj, (see Fact 4.3.1). Combining Fact 4.3.1 with the bijection ¥|;, ,
the map

H/GC — Map(H,Rzo), O H"I’AO

is also bijective. This gives a classification of complex hyperbolic orbits in
dc- '

Let us take other Cartan subalgebra j¢ of gc with a positive system (A’)*
of the root system A’ for (gc,ji)- Then we can also define weighted Dynkin
diagrams as an element in Map(IT',R), where II' is the simple system for
(A")*. It is well known that there uniquely exists a bijection ¢ : II' ~ II
induced by an inner-automorphism ge on gc such that ge(jz) = jc. We will
identify Map(II, R) with Map(Il', R) by ¢ :

Remark 4.3.2. In Dynkin—Kostant classification, which is the classification
of complex adjoint nilpotent orbits in gc, we use some weighted Dynkin dia-
grams such that any weight is given by 0, 1 or 2 (see Dynkin [5]). However, in
this chapter, we have to consider weighted Dynkin diagrams with any weights
to parameterize complex hyperbolic orbits in gc.
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4.3.2 Real forms and Satake diagrams

Let gc be a complex semisimple Lie algebra and g be a real form of g¢. In
this subsection, by using the Satake diagram of g, we give an algorithm to
classify complex hyperbolic orbits in g¢ meeting the real form g.

First, we recall briefly the definition of the Satake diagram of the real
form g of gc (see [1, 22] for more details).

We fix a Cartan decomposition g = £+p, and use the following convention:
We say that a Cartan subalgebra j, of g is split if a := j; N p is a maximal
abelian subspace of p (i.e. ais a maximally split abelian subspace of g). Note
that such j, is unique up to the adjoint action of K, where K is analytic
subgroup corresponding to £ of the inner-automorphism group on g.

Take a split Cartan subalgebra j; of g defined above. Then j; can be
written as j; = t + a for a maximal abelian subspace t of the centralizer of
a in £ Let us denote by jc = j, + v/—1jg and j ;= v/—1t + a. Then j¢ is a
Cartan subalgebra of g¢ and j is a real form of it, with

j={A€jc]| a(A) €R for any a € A},
where A is the root system of (9¢,jc). We put
Y={al.|]ae A}\ {0} Ca”

to the restricted root system of (g,a). Then we can take a positive system
AT of A such that the subset

Ti={als [ € AT\ {0}.

of ¥ becomes a positive system. In fact, if we take an ordering on a and ex-
tend it to j, then the corresponding positive system At satisfies the condition
above.

" Let us denote by II the fundamental system of A+ Then

I:={al.|a €1} \ {0}

is the fundamental system of ¥+. We write II; for the set of all simple roots
in II whose restriction to a is zero.

The Satake diagram S, of g consists of the following three data: the
Dynkin diagram of g¢ with nodes II; black nodes IIj in S; and arrows joining
a €I\ Il and B € II\ II; in S whose restrictions to a are the same.

Second, we give the definition of weighted Dynkin diagrams matching the
Satake diagram S, of g as follows:
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Definition 4.3.3 (Definition 1.7.3 in Chapter 1). Let ¥4 € Map(II,R) be
an weighted Dynkin diagram of gc (see Section 4.3.1 for the notation) and
S, the Satake diagram of g with nodes II. We say that ¥4 matches Sy if all
the weights on black nodes in Ily are zero and any pair of nodes joined by an
arrow have the same weights. '

Then the following theorem holds:

Theorem 4.3.4 (Theorem 1.7.4 in Chapter 1). The weighted Dynkin dia-
gram of a complex hyperbolic orbit O in gc matches the Satake diagram Sy
of the real form g if and only if © meets g. In particular, we obtain a bi-
jection between the set of complex hyperbolic orbits in gc meeting the real
form g and the set of weighted Dynkin diagrams in Map(II, Rso) matching
the Satake diagram Sg.

“ Theorem 4.3.4 gives a classification of complex hyperbolic orbits in g¢
meeting a given real form g.
We give an example of Theorem 4.3.4 as follows:

Example- 4.3.5. Let gc = 5l(6,C) and take a real form g = su(4,2) of
sl(6,C). By [1, Table in Section 5.11], the Satake diagram Sy of g = su(4,2)

18 given as follows:
,/,/‘_\\

Sg:c o —0.

Let us consider two ezamples of weighted Dynkin diagrams of s(6,C) as

23 0 3 2
Wy = o o,

1 1 1 2 3
o

\I/AZ =

Then one can observe that W4, matches Sy but U4, does not matches Sy (see
Definition 4.3.3 for the definition of “match”). Therefore, by Theorem 4.3.4,
the complex hyperbolic orbit Oy corresponding to U 4, meets g but the complex
hyperbolic orbit Oy corresponding to V4, does not meet g.

We also obtain a bijection between the set of complex hyperbolic orbits in
sl(6,C) meeting su(2,4) and

a b 0 b a
o O O |alyb€RZO
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4.3.3 Criterion

Let gc be a complex semisimple Lie algebra and g a real form of gc. We

take a (possibly non-commutative) pair of involutive automorphisms o; and

o, on g. Recall that the c-dual g of (g, 0;) is a real form of g¢ for ¢ = 1,2.
Then the next corollary follows from Theorem 4.3.4:

Corollary 4.3.6. In the setting above, the following two conditions on (g, o1, 02)
are equivalent: ‘

() Without the zero-orbit, there does not exist a complex hyperbolic adjoint
orbit O in ge satisfying that gN O # 0, gsN O #£0 and g5N O # .

- (48) There does not exist a non-zero weighted Dynkin diagram ¥ 4 matching
all of the Satake diagrams of g, 97 and g5.

-We give an example of Corollary 4.3.6 as follows:

Example 4.3.7. Let g = su(4,2) and consider the case where o1 and oy
defines b1 = su(4,1) & s0(2), h2 = sp(2,1). Then the complezification of
sl(4,2) is gc = sl(6,C). The c-dual of the symmetric pair (g,bh1,01) [resp.
(9,b2,02)] is g5 = su(5,1) [resp. g5 = su*(6)]. The Satake diagrams of the
three real forms g, g5 and g§ of gc are the following:
(,5’gy Sgtl:, SBE) : (o—@o—o, c—e—e—0—0, e—0—e—0—9)

Then one can easily check that there does not exists a non-zero weighted
Dynkin diagram on gc matching all of three Satake diagrams above. There-
fore, by Corollary 4.3.6, in this triple (g, 01, 02) satisfies the condition (ii) in
Theorem 4.1.5. ‘ ’

4.4 Classification

Throughout this section, we consider the following setting:

Setting 4.4.1. g is a simple Lie algebra over R. o1 and o, are (possibly
non-commutative) involutive automorphisms on g.

We denote by g the complexification of g, and write g for the c-dual
of the symmetric pair (g,0;) for ¢ = 1,2 (see (4.1.1) in Section 4.1 for the
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definition of the c-dual). Then all of g, g§ and g§ are real forms of gc. We also
remark that g¢ is a compact real form if and only if (g, o) is a Riemannian
symmetric pair, i.e. ¢ is a Cartan involution on g.

In this section, by using Corollary 4.3.6, we give a classification of triples
(g, 01, 02) satisfying the condition (ii) in Theorem 4.1.5. In particular, we give
a classification of (G, Hy, Hs) in Setting 4.1.4 with simple G and H 1 M Hyin
G, locally.

To give our classification of such (g, 01,02), we use the classification of
Satake diagrams in [1, Table in Section 5.11], the classification of symmetric
pair in [3] and the list of the ¢-dual of each symmetric pair in [21] and [6].
We remark that in [21] and [6], the c-dual of a symmetric pair (g, h,o) is
called the associate-dual g%

First, we observe that for a compact real form u of g¢, any element X of u
is not hyperbohc since any eigen-value of ad, X € End(u) is pure-imaginary.
Therefore, the next observation holds:

Observation 4.4.2. If at least one of g, g5 and g5 is a compact real form
of gc, then (g,01,02) satisfies the condition (ii) in Theorem 4.1.5.

In the rest of this section, we consider the cases where all of g, g1 and
g5 are non-compact real form of gc. That is, our setting in the rest of this
section is the following:

Setting 4.4.3. In Setting 4.4, we also assume that g is non-compact and
neither of o1 and o3 is not a Cartan involution on g.

We will give a classification of (g, 01, 02) in Setting 4.4.3 satisfying the
condition (ii) in Theorem 4.1.5 dividing into Proposition 4.4.4, Proposition
4.4.10, Proposition 4.4.12 and Proposition 4.4.13.

4.4.1 In the cases where gc is not of type Asggr1 nor Dy
In this subsection, we give a proof of the next proposition:

Proposition 4.4.4. In Setting 4.4.3, the following hold:

o Let us consider the cases where g has no complex structure and gc is
not of type Aggyy nor Dy for k > 1, 1 > 4. Then (g,01,01) does not
satisfies the condition (ii) in Theorem 4.1.5. :
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o Let us consider the cases where g admits a complex structure, i.e. g 15
a complez simple Lie algebra, but not of not of type Asi11 nmor Dy for
k>1,1> 4. In this case, g¢c is isomorphic to g @ g as a complex Lie
algebra. Then (g, 01,01) does not satisfies the condition (i) in Theorem
4.1.5.

"To prove Proposition 4.4.4, we show the next two lemmas:

Lemma 4.4.5. Let gc be a complex simple Lie algebra but not of type Aspia

nor Dy for k > 1, I > 4. Then there exists a non-zero weighted Dynkin
- diagram W4 of gc such that for any non-compact real form g, the weighted

Dynkin diagram V4 matches the Satake diagram of g. ‘

Remark 4.4.6. Let gc be a complex simple Lie algebra but not of type Aggr1
nor Dy for k > 1,1 > 4. By combining Theorem 4.3.4 with Lemma 4.4.5,
the complezx hyperbolic orbit ©@ corresponding to U4, defined in Section 4.3.1,
meets any non-compact real form of gc.

Lemma 4.4.7. Let g be a complex simple Lie algebra but not of type Aski1
nor Dy for k > 1,1 > 4. We denote by gc the complexification of g. Then
 there exists a non-zero weighted Dynkin diagram U4 of gc matching S, sat-
isfying that: For any involutive automorphism o on g without Cartan invo-
lutions on g, W4 also matches the Satake diagram Sz of g¢, where g° is the
c-dual of (g,0) (see (4.1.1) in Section 4.1 for the definition of the c-dual).

By combining Corollary 4.3.6 with Lemma 4.4.5 and Lemma 4.4.7, we
obtain Proposition 4.4.4. ' ,

As an example, we give a proof of Lemma 4.4.5 in the cases where g¢ is
simple and of type Eg as follows: ’

Example 4.4.8. Let gc be a complex simple Lie algebra of type Eg. Then
by [1, Table in Section 5.11], the list of Satake diagrams of non-compact real
-forms of ac are the following: :

oo, TN g ey
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Here we take the non-zero weighted Dynkin diagram V4 as

0 0 0 1
o .

p!
0

1
\IJA_: O

Then one can easily observe that U4 matches all of Satake diagrams given
above.

For other types in Lemma 4.4.5, by using the list of Satake diagrams in
[1, Table in Section 5.11], we can prove the claim of Lemma 4.4.5.

We also give a proof of Lemma 4.4.7 in the cases there g is a complex
simple Lie algebra of type As as follows:

Example 4.4.9. Let g be a complex simple Lie algebra of type Ay and put gc
to the complexification of g. Then the Satake diagram Sy of g is the following:

o——0

Let ¢ be an involutive automorphism on g and o is not a Cartan involution
on g. Then by using [6, Theorem 7.16] and [1, Table in Section 5.11), one can
observe that the Satake diagram Sy of the c-dual g° is one of the following:

O———OC/-\OC O O O
b =<

Oo——o0, &—=9, o——0, 0——=o0.

Here we take the non-zero weighted Dynkin diagram W, as

Vo= 1 1-

o——=o0

Then one can easily observe that ¥4 matches all of Satake diagrams given
above.

For other types in Lemma 4.4.7, we can prove the claim of Lemma 4.4.5
by using [6, Theorem 7.16]. We omit the details here.
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4.4.2 In the cases where g¢ is of type Agy1 or D

Let us consider (g, 01, 02) in Setting 4.4.3 in the cases where g¢ or g is complex
simple and of type Aoiy1 or D; for kK > 1,1 > 4. Since type Dy cases are
complicated, we first assume that [ > 5. Then by combining Corollary 4.3.6
with lists in [1, Table in Section 5.11], [21, Table I in Section 1] and [6,
Theorem 7.16] we obtain the following classification result:

Proposition 4.4.10. Let us consider (g,01,02) in Setting 4.4.3. Assume
that gc or g is complex simple and of type Aogyr or Dy for k > 1,1 > 5.
Then (g,01,02) satisfies the condition (ii) in Theorem 4.1.5 if and only if
(g, b1, b2) is in the Table 4.2 below, up to ordering of b1 and b, where b; ==
{Xeg|o(X)=X} fori=1,2.

Remark 4.4.11. In Setting 4.1.4, for each i = 1,2, we can take a Cartan
subalgebra 0, on g such that fo; = 0,0 (proved by Matsuki [19)). Let us
denote by

g=tp;, bi==tb)@ph),
the Cartan decompositions of g, b; with respect to 8;. Here, we put

Let us assume that (G, Hy, Hy) satisfies the equivalent conditions in Theorem
4.1.5 and

dim p(h1) + dim p(h2) = d(g). (4.4.1)

Then the double coset space H1\G/H2 becomes a compact Hausdorff space
(proved by Kobayashi [7]). In Table 4.2 above and Table 4.5 below, we check
that the cocompact condition (the equation (4.4.1)) holds or not for each
(9,b1,b2), (See also Theorem 4.1.8 in Section 4.1.)

g b1 b2 cocompact
sl(2k,R) so(2k—1,1)  sl(k,C) No
' .y 9% — 25, 1)
su(2k — 25,2 su(2k — 27, N N
(1u(< i< 13—]1)) @su(2j —1) sp(k—7,7) Yesifj=1
T ®so(2)
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50(2k — 27,27) 502k — 25,1) su(k—J,7)

Yes if j = 1
G<kl<j<k—1) @so(2j—1) @so(2) " I7°
s0(2m, 2m) s0(2m, 1) s0(2m, C) No

(3<m) @so(2m—1)  Pso(2)
sl(2k,C) su(2k —1,1)  su*(2k) No
5(0;2;’]? s0(2k—1,1) s0*(2k)  No

Table 4.2: Classification of (g, b1, ho) satisfying (ii) in
Theorem 4.1.5 without type D, -

Finally, we consider the cases where g¢ or g is a complex simple Lie
algebra of type Dy. Then by combining Corollary 4.3.6 with lists in [1, Table
in Section 5.11], [21, Table I in Section 1] and [6, Theorem 7.16] we obtain
the followmg classification results:

Proposition 4.4.12. Let us conszder (g,01,09) in Setting 4.4.3. Assume
that gc 1s simple and of type Dy. Then (g,01,02) satisfies the condition (ii) .
in Theorem 4.1.5 if and only if the triple of Satake diagrams (Sj, Sge, Sgs) s
in the Table 4.3 below, up to ordering of Sye and Sye, where g5 1s the c-dual of
(g,0;) fori=1,2 (see (4.1.1) in Section 4. 1 for the definition of the c-dual).

c

N

N

}kf

Sge
o—=e
O——

/
~——
"
~——

N1

}\.MX

|
/\
./K

Table 4.3: Classification of (9,01, 02) with g¢c ~ 50(8 C)
satisfying (ii) in Theorem 4.1.5
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Proposition 4.4.13. Let us consider (g, 01,09) in Setting 4.4.3. Assume
that g is complex simple and of type Dy. Then (g,01,03) satisfies the condi-
tion (ii) in Theorem 4.1.5 if and only if the pair of Satake diagrams (Sge, Sgs)
is in the Table 4.4 below, up to ordering of Sy and Sy, where gi 15 the c-
dual of (g,0;) fori=1,2 (see (4.1.1) in Sectzon 4.1 for the definition of the
c-dual). :

We remark that the Satake diagram of a complex simple Lie algebra g of
type Dy is

n
|

5"
N

Do

3!

./x NANAA

o_o<:§ .
D_O<Z§

).

Table 4.4: Classification of (g,01,02) with g ~ s0(8,C)
satisfying (ii) in Theorem 4.1.5
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Let us consider (g,01,02) in Setting 4.4.3 and assume that gc or g is
complex simple and of type D,. By Proposition 4.4.12 and Proposition 4.4.13,
if such (g, 01, 02) satisfies the condition (i) in Theorem 4.1.5 then (g, b1, h2)
can be found in the Table 4.5 below, up to ordering of h; and bs, where
b ={X €g|o(X) =X}

g b1 ho cocompact
s50(4,4) so0(4,1) ® so(3) - su(2,2) @ so0(2) No
(or 50(4,C) ®s0(2)) No
s0(4,4) s0(4,1) ®s0(3) s0(4,1) ®s0(3) No
s0(4,4) so0(4,3) 50(4,1) ®s0(3) Yes
(or 50(3,2) ® s0(1,2)) No
50(6,2) s0(6,1) su(3,1) @ s0(2) Yes
(or 50(5) @ s0(1,2)) No
50(8,C) s0(7,1) - 50(6,2) No
50(8,C) s0(7,1) s0(7,1) No
s0(8,C) s0(5,3) s0(7,1) No
50(8,C) s0(7,C) 50(7,1) Yes
(or 56(5,C) ® s0(3,C)) No

Table 4.5: list of (g, b1; h2) of type Dy satisfying (ii) in
Theorem 4.1.5

Remark 4.4.14. It should be noted that we can NOT claim that “if (g, b1, b2)
is 1somorphic to one of Table 4.5, then (g,01,02) satisfies the condition (ii)
in Theorem 4.1.5.”7 For example, let us take g = s0(4,4) and an involutive .
automorphism o on g such that b := g% ~ su(4,1) ® s0(3). Then (g,h,h)
can be found in Table 4.5. However (g,0,0) does not satisfies the condition
(ii) in Theorem 4.1.5, since the Satake diagrams of (g, g%, g°), where g° is the
c-dual of (g,0), are given by

L L
(S Sges Se) = | oo, o0, e,
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Smallest complex nilpotent
orbits with real points

Let g be a non-complex non-compact simple Lie algebra, and denote by g¢
the complexification of g. If the minimal complex nilpotent orbit ngn n ge
meets g, then the intersection OS€ Ng is the disjoint union of all real minimal

nilpotent orbits in g. It is known that the minimal complex nilpotent orbit
in gc does not meet g if and only if g is isomorphic to su*(2k), so(n —1,1),

" 5p(p, q), fa—20) oT eg(—26) (k> 2, n>5, p>gq>1). In this chapter, in the

cases where g is one of the 5 types given above, we show that there uniquely
exists a real minimal nilpotent orbit in g, and determine the complexification

(’)gﬁl’g of the real minimal nilpotent orbit in g by describing the weighted
‘ G

Dynkin diagram of it. Note that in such cases, Of . is not minimal in gc.

5.1 Introduction and statemeht of main re-
sults

Let g be a non-compact simple Lie algebra without complex structures. We
write gc for the complexification of g. Then, g¢ is a complex simple Lie
algebra. In this chapter, an adjoint nilpotent orbit in g¢ will be simply
called a complex nilpotent orbit. We put

N /G¢ := { Complex nilpotent orbits in gc¢ },

and consider the closure ordering on N'/Ge.
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Let Xy be a non-zero highest root vector of gc. Then, the complex
nilpotent orbit ‘
= GC - X¢
is called the minimal complex nilpotent orbit in gc, where G¢ is a connected
Lie group with its Lie algebra ge. It is well known that @S¢ does not depend
on a choice of Xy, and O, is minimum in A'/G¢ without the zero-orbit.
Namely, for any O’ € N'/Gg, the closure O’ contains (’)g‘fn if @' is not the
zero-orbit.

In this chapter, we set the subset N;/G¢ of N'/G¢ to

O%c

min

N, /Ge : = { Complex nilpotent orbits in g¢ which meets g }
= { Complex nilpotent orbits in g¢ which meets p¢ }

where g = 8@ p is a Cartan decomposition of g and p¢ is the complexification
of p.

Our first main result is here:

Theorem 5.1.1. Let A be a highest root of a restricted root system of g and
Xy a non-zero highest root vector in g,. Then, the complex nilpotent orbit

OGC = GC 'X,\

min,g °

wn gc does not depend on a choice of Xy, and (’)gfn’g is minimum in Ny/Ge
without the zero-orbit. Namely, for any O' € Ny/Gc, the closure O' contains
O° in gc if O is not the zero-orbit.

min,g

Corollary 5.1.2. The orbit Og;cn’g is a unique complex nilpotent orbit of

minimum positive dimension of Ny/Gc.

Let G be a connected Lie group with its Lie algebra g. Then G acts on
ngn,g Ng. Let us also denote an adjoint nilpotent orbit in g simply by a real
‘nilpotent orbit. We say that a real nilpotent orbit OF in g is minimal if its
closure OF is the union of OF itself and the zero-orbit in g. In general, real
minimal nilpotent orbits are not unique for real simple g.

By the next theorem, we obtain that

(@

min,g

N g)/G = { Real minimal nilpotent orbits in g }.

Theorem 5.1.3. Let OF be an adjoint orbit in g. Then, the following two
conditions on OF are equivalent:
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(z) O€ is a real minimal nilpotent orbit in g.

(i) OF is contained in OS¢

min,g

ng.

By Theorem 5.1.1, one can observe that the minimal complex nilpotent
orbit OSC in ge meets g if and only if OS¢ = (’)gfw. It is known that OS¢
meets g if and only if g is not isomorphic to su*(2k), so(n — 1,1), sp(p, q),
fa(—20) DOT eg(—og) (K > 2,m > 5,p > q¢ > 1). (see Brylinski [3, Theorem
4.1]). In particular, if g is isomorphic to one of the 5 types given above, then
Oﬁfn’g # 0% . We remark that in such cases, (g, ) is of non-Hermitian type,
where g = £ 4 p is a Cartan decomposition of g.

We determine O%€ - for such g by describing the weighted Dynkin dia-

min,g
Gc

min g 88 follows: '

grams of O

Theorem 5.1.4. Let A be a highest root of a restricted root system of g and
denote by g the highest root space of g. Then the following hold:

(i) The following three conditions are equivalent:

G G
(a’) Om‘icn,g = AOm‘iCn’

(b) Ogi.Ng #0,
(C) ding)\ =1.

(i3) If dimg gy > 2, then g is isomorphic to one in the table below and

(QI%CH,E is described by the weighted Dynkin diagrams in the table:
g dimec OS5, Weighted Dynkin diagram of OS5,
) ses Q100 0 0010 oy
2
o o5 (k=2)
so(n—1,1) 2n—4- 200 - 00 (4450dd n>5)
0
g_g_g__9.<§ (n is even, n > 6)
sph—g0) -2 2328 0 30 (k23k2921)
- 0 2
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e6(—26) 32 i_g_(f_g_%
' 0
fa(—20) 22 9—2:)2)—2

Table 5.1: List of OF¢

min,g*

We will also prove the next theorem:

Theorem 5.1.5. If g is isomorphic to one in the table in Theorem 5.1.4,
then there uniquely exists a real minimal nilpotent orbits in g.

Theorem 5.1.5 follows from the next proposition:

Proposition 5.1.6. Suppose that G is linear and G¢ is a complezification
of G. Let a be a split mazimal abelian subspace of g. We write MA for the
centralizer of a in G. Take X for a highest root of the restricted root system
¥(g,a) for (g,a). Then, the following hold:

(i) The map ,
{ Non-zero M A-orbits in gA} — { G-orbits in Ommg Ng}
OMA 5 G.OMA

18 bijective.
(1) If dimg g) > 2, then gy \ {0} becomes a single M A-orbit.

Remark 5.1.7. By combining Theorem 5.1.5 with some known facts for real
minimal nilpotent orbits for the cases where the minimal complex nilpotent
orbit OSC meets g, we have that

min

1 if (g,%) is of non-Hermitian type,

‘H{ Real minimal nilpotent orbits in =
M inimal nilpotent orbits in g } {2 if (g,%) is of Hermitian type.

This works motivated by recent works [8], by Joachim Hilgert, Toshiyuki
Kobayashi and Jan Méllers, on the construction of an L*-model of irreducible
unitary representations of real reductive groups with smallest Gelfand-Kirillov
dimension; and [9], by Toshiyuki Kobayashi and Yoshiki Oshima, on the clas-
sification of reductive symmetric pairs (g,%) with a (g, K)-module which is
discretely decomposable as an (h, H N K)-module.
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5.2 Preliminary results

5.2.1 Weighted Dynkin dlagrams of complex nilpotent
orbits
Let g be a complex semisimple Lie algebra. In this subsection, we recall the
definitions of weighted Dynkin diagrams of complex nilpotent orbits in ge.
Let us fix a Cartan subalgebra ¢ of gc. We denote by A(ge, he) the root

system for (gc,Hc). Then, the root system A(ge, hc) becomes a subset of
the dual space §* of

h:={He€bhc|a(H)eR for any « EA(g@,h@)}.

We write W{gc, bc) for the Weyl group of A(gc, hc) acting on . Take a
positive system A*+(gc,he) of the root system A(ge, be). Then, a closed
Weyl chamber

br:={H €b|a(H) >0 for any a € A(gc, bc) }

becomes a fundamental domain of h for the action of W(gc, bc).
Let II be the simple system of A*(gc, hc). Then, for any H € §, we can
define a map '
Vg: IR, a- a(H).

We call Ty the weighted Dynkin diagram corresponding to H € b, and o(H)
the weight on a node a € II of the weighted Dynkm dlagram Since Il is a
basis of h*, the map

U:h— Map(ILR), H— Uy
is bijective. Furthermore,
by — Map(H,RZO), He Uy

is also bijective.
A triple (H, X,Y) is said to be an sly-triple in g¢ if

[H,X]=2X, [HY]=-2Y, [X,Y]=H (HX,Y €gc).

For any sly-triple (H, X,Y) in gc, the elements X and Y are nilpotent in g,
and H is hyperbolic in g¢, i.e. adgc H € End(gc) is diagonalizable with only
real eigenvalues.
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Combining the Jacobson—-Morozov theorem with the results of Kostant
[11], for any complex nilpotent orbit O%¢, there uniquely exists an element
Hp of b, with the following property: There exists X,Y € 0% such that
(Ho,X,Y) is an sly-triple in gc. Furthermore, by the results of Malcev [12],
the following map is injective: .

{ Complex nilpotent orbits in g¢ } < b4, O — Hp.

For each complex nilpotent orbit O%, the weighted Dynkin diagram corre-
sponding to Hp is called the weighted Dynkin diagram of ©O%c. Dynkin [6]
proved that for any complex nilpotent orbit O%, any weight of the weighted
Dynkin diagram of OC%¢ is given by 0, 1 or 2, and classified weighted Dynkin
diagrams of complex nilpotent orbits (see Bala—Carter [2] for more details).

In the rest of this subsection, we suppose that gc is simple. Let ¢ be the
highest root of A*(gc, bc). Then, the minimal complex nilpotent orbit in gc

can be written by
055 =G (g5 \{0}).
We define the element Hyv of h by '

a(Hgv) = 2<<(;’£> for any a€ b*,

where ( , ) is the inner product on h* induced by the Killing form on gc¢.
In other words, Hgv is the element of § corresponding to the coroot ¢Y of
¢. Since ¢ is dominant, Hyv is in §;. Furthermore, Hyv is the hyperbolic
element corresponding to C’)gm since we can find Xy € gy, Yy € gy such
that (Hgv, Xy, Ys) is an sly-triple. The list of weighted Dynkin diagrams of
O for each simple g¢ can be found in [4, Chapter 5.4 and 8.4] (see also

I

Table 5.2 in Section 5.4.2).

5.2.2 Sekiguchi—-Kostant bijection

In this subsection, we recall the Sekiguchi-Kostant bijection.

Let gc be a complex semisimple Lie algebra and g a real form of g¢ Wlth
a Cartan decomposition g = £ @ p. We put €, pc for the complexifications
of ¥, p, respectively. We take G¢, G, K¢ as a connected Lie group with its
Lie algebra gc, g, &, respectively.

Then, the next fact holds:
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Fact 5.2.1 (Sekiguchi [16, Proposition 1.11]). Let (H,X,Y") be an sly-triple
in gc. Then, the following three conditions on (H,X,Y) are equivalent:

(4} Gc- X meets pe.
(i) G- X meets g.
(#43) Gc - H meets pe.

In particular, for any complex nilopotent orbit ©@¢ in g¢, the orbit O
meets g 'if and only if it meets pc. In such cases the intersection @%c N g
[resp. O%C Np¢] split into finitely many G-orbits [resp. Kc-orbits]. For each
G-orbit OF in O% N g and each K¢-orbit O%c in O% N p¢, the dimension
can be written by . '

' 1
dimg OF = dimc ©°¢,  dime OF¢ = 5 dime O,

The following fact is well known:

Fact 5.2.2 (Sekiguchi-Kostant bijection [16]). For any complex nilpotent
orbit OF¢ in g¢, there exists a bijection

{ G-orbits in O% Ng} & { K¢-orbits in O% Npe}.
In particular, there exists a bijection

{ Nilpotent G-orbits in g } <24 { Nilpotent Kc-orbits in pe }.
G
5.3 Well-definedness of O

In this section, we prove Theorem 5.1.1 and Theorem 5.1.3.

5.3.1 Some properties of a highest root of a restricted
root system

To prove Theorem 5.1.1, we show some lemmas for a highest root of a re-
stricted root system of in this subsection. Proofs of the lemmas will be
described in the last of this subsection. ‘
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Let gc be a complex simple Lie algebra and g a non-compact real form
of g with a Cartan decomposition g = £ ® p. We fix a maximal abelian
subspace a of p, which is called a maximally split abelian subspace of g, and
write X(g, a) for the restricted root system for (g, a). For any restricted root
& of ¥(g, a), we define Agv € a by

n(Agv) = -2<£—’77> for any 1 € a*,

(€,€)

where ( , ) is the inner product on a* induced by the Killing form B on g.
The lemma below will be play an important role through this chapter:

Lemma 5.3.1. For any restricted root £ of ¥(g,a) and any non-zero root
vector X¢ in ge, there exists Yz € g_¢ such that (Agv, Xe, Ye) is an sly-triple
m g.

We fix an ordering on a and write X7 (g,a) for the positive system of
Y(g, a) corresponding to the ordering on a. We denote by A the highest root
of ¥t (g, a) with respect to the ordering on a. Next Lemma claims that the
highest root A depend only on the positive system (g, a) but not on the
ordering on a:

Lemma 5.3.2. The highest root A of ¥ (g, a) is a unique dominant longest
root of X.(g, a). ‘

The following lemma gives a charactorization of the highest root A of
Y+ (g,a):

Lemma 5.3.3. Let { be a root of ¥(g,a). If £ is not highest, then for any
non-zero root vector X¢ in ge, there exists a positive root 1 in ¥+ (g,a) and a
root vector X, € g, such that [X¢, Xy # 0. In particular, £ is highest if and
only if € +n € a* is not a root of (g, a) for any n € ¥ (g, a).

Proof of Lemma 5.3.1. By the definition of Agv, we have

() = 72 =2

Thus, we bnly need to show that for any X, € g, \ {0}, there exists Yz € g_¢
such that :
' [X£ ) Y&] = Agv.
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We write 8 for the Cartan involution of g corresponding to g = €@ p. Then,
0Xe € g—¢ and B(X¢,0X,) < 0, where B is the Killing form on g. We take
Y € g_¢ for

2

(€:€)B(Xe, 0Xe)

Then, [X¢, Ye] € a since [X¢, 0.X,] € a. Furthermore, for any A € a, we have
- B([Xe Y], A) = B(Xe, [Ye, A])

= &(4)B(Xe, Ye)

_ %4

| “ %0
Hence, [X¢, Ye] = Aev. O

ng = eXg € g¢.

Proof of Lemma 5.3.2. First, we prove that A is dominant. Let € be a positive
root of ¥*(g,a). Then; there exists an sly-triple (Agev, Xe,Ye) in g with
Xe € ge and Y € g_¢ by Lemma 5.3.1. Then, by the definition of Ayv, we
e 2\, €)
[Agv, Xa] = AM(Agv) X @0 X

Since A is the highest root, we also have [X¢, X,] = 0. Thus, X, is an eigen-
vector of ady(Agv) and in Kerady(X¢). Recall the theory of representations
of s1(2,C), we can show that A(Agv) > 0. In particular, (£, \) > 0 for any
¢ € ©7(g,a). Hence, A is dominant.

Second, for any dominant root A’ of X(g, a), we shall prove that [A] > ||
and the equality holds if and only if A = X. We take a maximal abelian
subalgebra t in Zy(a). Then, the complexification hc of a @ t becomes a
Cartan subalgebra of gc and § := a @ /—1t is the real form of h¢ with

h={H €bc|a(H) R for any o € Agc, he) }-

In particular, the root system A(gc, be) for (gc; he) becomes a subset of b*,
and the restricted root system (g, a) can be written by

%(g,0) = {al. € a” | o € Alge, be) }\ {0}

We extend an ordering on a to an ordering on f = a @ +/—1t and write
A (gc, be) for the positive system of A(gc, hc) corresponding to the ordering
on h. Let us denote by

M= {or,..,o}, T={&, .,6&)
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the simple system of A* (g, a), £* (g, a), respectively. Then, II can be written
- by

H={al,|aecll}\ {0}
We denote by ¢ the highest root of A™(gc, hc). Then, for any root ¢’ in
A(ge, be), we can find non-negative integers n; (¢ = 1,..., k) such that

. k-
p=¢'+) nio.

=1 ,
The highest root A in X7 (g, a) is written by A = ¢|, since the ordering on
b is an extension of the ordering on a. For any restricted root X in X(g, a),

there exists a root ¢’ of A(g,a) such that ¢'|, = X. Hence, A also can be
written by

i
A=X+) mgg;
j=1

where m; is the sum of the elements in {n; | a;|a = §; } for each j. Note
that m; is non-negative. Therefore, for any dominant root X' of £(g, a),

l l
A2 = INP+23 m(N, &) + 1D mgl

j=1 =1
!
> NP2+ ij§j|2 (.- X' is dominant).
Jj=1 '

Thus, || > |X| and the equality holds if and only if A = N. O

-Proof of Lemma 5.3.3. Let us put X to the highest root of ¥(g,a). Suppose
that [X¢, go] = {0} for any n € (g, a), and we shall show that { = A. We

put
m = Zy(a), n:= @ ge and n” = @ g—¢.

£ext(ga) £ext(g,0)
Then,
g=n" Omdadn.

Let us denote by ag, mc; ng, ng the complexiﬁcation of a, m, n, n~, respec-
tively. By the Poincare—Birkhoff-Witt theorem, the universal enveloping
algebra U(gc) of gc can be decomposed as

Ulge) = Ung)U(me)U(ac)U(ne).
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Since we are assuming that U(ng)Xe = CX¢, the ideal U(ge)Xe can be
written by
U(gc)Xg = U(n_)U(mC)(CX§

Thus, if £ # A, then we obtain that

ox ¢ Ulge) Xe.

In particular, U(gec)Xe is a non-trivial ideal of gc. This contradicts the
simplicity of gc. Therefore, £ = A O

5.3.2 Proofs of Theorem 5.1.1 and Theorem 5.1.3

Let gc be a complex simple Lie algebra, and g a non-compact real form of
gc. We use same notation in Section 5.3.1. We also fix connected Lie groups
Gc and G with its Lie algebras gc and g, respectively.

In this subsection, we give proofs of Theorem 5.1.1 and Theorem 5.1.3.
To this, we show the next two lemmas:

Lemma 5.3.4. Let Of be a non-zero real nilpotent orbit in g. Then, there
exists a non-zero highest root vector Xy in gy such that X, is in the closure

of 0.

Lemma 5.3.5. For any two highest oot vectors X, X} in gy, there exists
gc € G¢ such that gc X = Xj.

Theorem 5.1.1 follows from Lemma 5.3.4 and Lemma 5.3.5 immediately.

Proof of Lemma 5.3.4. There is no loss of generality in assuming that the
ordering on a is lexicographic. Let us put m = Z;(a). Then, g can be
decomposed as : :

g=moad @ Pe-
§€5(g,a)

For each X' € g, we denote by

X' =X, +X,+ > X, (X,em X, €a, X[€ge)
£€5(g,0) '

For a fixed X’ € O}, we denote by X the highest root of

Sx = {€€ 20,0 | X; #0)
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with respect to the ordering on a. Here we remark that if X’ # 0, then X x
is not empty since X' is nilpotent element in g. As a first step of the proof,
we shall prove that for any X’ € O}, the root vector X 4 is also in 0. We
take A" € a satisfying that

0 < XN(A) and €(A") < N(A4) forany & € Tx\ {N}.

Note that such A’ exists since )\ is the highest root of ¥x/ with respect to
the lexicographic ordering on a. Let us put ‘

1
X = pEvoD) exp(ad, kA')X' for each k € N.

Then, X/, is in O} for any k since O is stable by posmve scalars. Further-
more,

; "1 k(E(AN =N (AN) x7 — X
i Xio= fim D e Xe= X
EeSy
This means that X}, is in O' To complete the proof, we only need to show

that there exists X' € O} such that ) = A, where X is the highest root of
Y. Let us put

Y ={¢ €X(g,a) | there exists X' € Of such thaﬁ X #0}

We denote by Ay the highest root of 256 . Then, we can find a root vector

X3 In gx N (9_6 by using the our first claim proved above. We assume that
Ao # A. Then, by Lemma 5.3.3, we can find n € £*(g,a) and X, € g, such
that [X} ,Xy] # 0. Thus, for the element X" := exp(ady X, )X)‘0 € O, we
obtain that

Ao+1 € Xxn C EO"

Thls contradicts the definition of Ag. Thus, Ag = A. O

Proof of Lemma 5.3.5. Fix a non-zero highest root vector X,. Let A,v be
the element of a defined in Section 5.3.1. We put

(9c)2 = {X € gc | [Axv, X] = 2X }.
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By Lemma 5.3.1, we can find Y, € g¢ such that (Ayv, X),Y)) is an sly-triple
in gc. Note that X, € (gc)s. Thus, by applying Malcev’s theorem, for any
non-zero vector X' in (gc)z2, there exists gc € Ge¢ such that ge X, = X'
Since g C (gc)2, the proof is completed. O

The next proposition is also followed by Lemma 5.3.4.

Proposition 5.3.6. For any real nilpotent orbit Of in g, the closure 56 n

g contains some real nilpotent orbits in ngn,g Nng.

Theorem 5.1.3 follows from Proposition 5.3.6.

5.4 Complex nilpotent orbits and real forms

Let gc be a complex simple Lie algebra and g a non-compact real form of
gc- In this section, we will give a necessary and sufficient condition of g for
- 0% = ©f ie. we prove the first half of Theorem 5.1.4 in this section.

k We fix G, G¢ for the connected Lie group with its Lie algebra g, gc,
respectively. Let g = € @ p be a Cartan decomposition of g.- We fix a
maximal abelian subspace a of p and its ordering. Let A be a highest root of
a restricted root system X(g, a) for (g, a) with respect to the ordering on a.
Then, by Theorem 5.1.1, the complex nilpotent orbit

Oty = Ge - (3 \ {0})

is minimum in N;/G¢ without the zero orbit.
Our purpose in this section is to show the next proposition:

Proposition 5.4.1. The following conditions on g are equivalent (the last
condition will be explained in Section 5.4.1):

(i) 058 =05 ..
0% Ng # 0.

(%)
(115) OFS Npc # 0 (where pe is the complexiﬁcation of p).

(7v) dimg gy = 1. |

(v) The weighted Dynkin diagram of OFS matches the Satake diagram of

min
g.
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By the classification of simple Lie algebra g and the dimension of its
highest root space g, we obtain the classification of g such that OS¢ # 0% o
as follows:

Corollary 5.4.2. The minimal complex nilpotent orbit OFC, does not coin-
cide with ng‘ng if and only if g is isomorphic to

su*(2k), so(n,1), sp(p,q), es(—26) 0T fa(—20),
fork>2 n>5 ajnd.quZl.

Observation 5.4.3. If dimg gy > 2, i.e. oce Og‘fng, then (g,%) s of
non-Hermitian type.

Remark 5.4.4. By using Theorem 5.1.1, one can observe that ofe = Ot

mm min,g

if and only if OFS meets g. The classification of g such that 0% Ng #0
can be found in [3] without proofs. Thus, Corollary 5.4.2 was already known

in this sense.

5.4.1 Match

First, we recall briefly the definition of Satake diagram of a real form g of
gc. All facts will be used for the definition of Satake diagrams are showed
in Araki [1] or Satake [14]. Through Section 5.4.1 and Section 5.4.2, gc can
be general complex semisimple Lie algebra and g can be a general (possibly
compact) real form gc.

We fix a Cartan decomposition g = € @ p of g. Take a maximal abelian
subspace a in p, and extend it to a maximal abelian subspace h = v/—1t P a
in /=18 ® p. Then, the complexification, denoted by h¢, of PJ is a Cartan
subalgebra of g¢, and b coincide with the real form

{X €bhc | a(X) e R for any a € A(gc, bc)}

of hc where A(ge, be) is the reduced root system for (ge, hc). Let us denote
by )
%(g;0) :=={ofa | @ € Age, bc)} \ {0} C o

the restricted root system for (g,a). We will denote by W(g, a), (gc, be)
the Weyl group of (g, a), A(gc, be), respectively. Fix an ordering on a
and extend it to an ordering on h. We write £7(g,a), A*(gc, bc) for the
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positive system of (g, a), A(gc, hc) corresponding to the orderlng on a, b,
respectively. Then, ¥*(g, a) can be written by

£*(g.a) = {als | @ € A*(ge, he)} \ {0}
We denote by II the fundamental system of A*(gc, be). Then,
TI={a|aecI}\{0}

becomes the simple system of ¥ (g, a). Let Iy be the set of all simple roots
in II whose restriction to a is zero.

The Satake diagram S of g consists of the following three data: the
Dynkin diagram of g¢ with nodes II, black nodes Il in S, and arrows joining
a eI\ and B € II\ Iy in S whose restrictions to a are the same.

Second, we define that a weighted Dynkin diagram ¥y € Map(Il, R)
“matches” the Satake diagram S of g as follows:

Definition 5.4.5. Let ¥y € Map(II,R) be a weighted Dynkin diagram (see
Section 5.2.1 for the definition) and S the Satake diagram of g with nodes I1
defined above. We say that Yy matches S if all the weights on black nodes
are zero and any pair of nodes joined by an arrow has the same weights.

Remark 5.4.6. The concept of “match” defined above is same as “weighted
Satake diagrams” in Djocovic [5] and the condition described in Sekiguchi
[15, Proposition 1.16].

Recall that ¥ is a bijection from § to Map(Il, R) (sée Section 5.2.1).
The next proposition claims that the subspace a of § corresponds to set of

weighted Dynkin diagrams matching the Satake diagram of g by the bijection

Proposition 5.4.7. The bijection ¥ between b and Map(II, ]R) defined in
Section 5.2.1 induces a bijection below:

a <y {¥y e Map(H,R) | Ug matches S }.

Proof. See the proof of Lemma 1.7.5 in Section 1.7.2. ( O

The folloWing Lemma will be used in Section.5.5.2.
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Lemma 5.4.8. For each simple root o in II, we define the element Hyv of

b by

y(Hyv) = o, 5; for any v € h*.
Then, the set
{Hov | & is black in S I{ Hov—Hpv | a and B are joined by an arro@ in S}
becomes a basis of v/—1t.
Proof. We denote by

Q= {Hy | ais black in S }LI{ Hov—Hpgv | @ and J are joined by an arrow in S }.

It is known that there are no triple {a, 5,v} in II'\ Il such that al, = B, =
v|a (this fact can be found in [1, Section 2.8]). Thus, € is linearly independent
and ‘

HO = 1T — #TT.

By the proof of Proposition 5.4.7, dimga = #II. Since dimg h = #II and
v/ —1t is the the orthogonal-complement space of a in f for the Killing form
Bc on g, it remains to prove that '

Be(H',A)=0 forany H €Q, A€ a.
For any o € 1y, i.e. a is black in S, since al, = 0, we have

2a(A)
(@, @)

Be(Hgv, A) = =0 forany A€a..
Furthermore, by [7, Lemma 2.10], there exists an in{folution o* of h* such
that o*a = @ for all pair «, 8 € I\ Il such that a|, = B4, i.e. a and f is
joined by an arrow in S. In particular |a| = || for such pair. Thus, for any
A € a, we have ‘

=0 (. ale=Blcand o = |8]).

This complete the proof. O
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5.4.2 Complex nilpotent orbits and real forms

We prove the following theorem in this subsection:

Theorem 5.4.9. Let gc be a complex semisimple Lie algebra and g a real
form of gc. For a complex nilpotent orbit OFT in g, the orbit OF¢ meets g if
and only if the weighted Dynkin diagram of O%¢ matches the Satake dmgmm
of g (see Section 5.4.1 for the notation).

Remark 5.4.10. Sekiguchi [16, Proposition1.13] showed that if OC meets
g, then the weighted Dynkin diagram of OF¢ matches the Satake diagram of
g. Our theorem claims that its converse is also true.

By Proposition 5.4.7, the proof of Theorem 5.4.9 will be completed by
showing the next lemma:

Lemma 5.4.11. For a complex nilpotent orbit O% in gc, the orbit OFc
meets g if and only if the hyperbolic element Hy corresponding to O is in
a (see Section 5.2.1 for the notation).

Proof. We take an sl,-triple (Hp, X,Y) in gc with X, Y € 0% (see Section
5.2.1 for the notation). By Fact 5.2.1, we obtain that the orbit 0% = G¢- X
meets g if and only if G¢ - Hp meets pe. Thus, it is sufficient to show that
Hp € a under the assumption that G¢ - Hp meets pc. By [10, Theorem 1],

we have
pc = U k-ac

keK¢

where ac is the complexification of a. Since Hy is hyperbolic, i.e. ady. Ho €
End(gc) is diagonalizable with only real eigenvalues, and any hyperbolic
element in a¢ is in a, we can assume that G¢ - Hp meets a. Here we denote .
by

ar:={A€al|é(A) >0for any £ € X¥(g,0a) }.

Then a, is a fundamental domain of W (g, a)-action on a. Thus, G¢ - Ho
meets ay with just one element Ay € (G¢ - Hp) Nay. Since

S (g,a) = {ale | @ € A*(ge, be)} \ {0},

we obtain that ay = hNa. Thus, Ap isin 4 and Ge-conjugate to Hp € b
Therefore, Ag = Hp € a. O
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We give examples for Theorem 5.4.9 as follows:

Example 5.4.12. If g is a split real form of gc, then all nodes of the Satake
diagram of g are white with no arrows. Thus, oll complex nilpotent orbits in
gc meets g since all weighted Dynkin diagram matches the Satake diagram
of g. ~

Example 5.4.13. If u is a compact real form of gc, then all nodes of the
Satake diagram of u are black. Thus, any non-zero complex nilpotent orbit
in gc does not meet u since any non-zero weighted Dynkin diagram does not
matches the Satake diagram of u.

By the list of the weighted Dynkin diagrams of the minimal complex
nilpotent orbit @S¢ for simple g¢ (cf. Collingwood-McGovern [4, Chapter
5.4 and 8.4]) and the list of Satake diagrams of non-compact real forms g,

we can easily check that O% meets g or not as follows:

Example 5.4.14. Here is the table checking wheter the minimal complex
nilpotent orbit Og;cn in a complex simple Lie algebra gc meets a non-compact

real form g or not :

g Weighted Dynkin diagram -of Og;cn Offn meets g7
on the Satake diagram of g
SI(N,R) t 0o 0.0 0 1 Yes
aN-1
su*(2k) 1 9 9 9 0 1 No
] Qrok—1
1 0 0 0 v
O—————O——iireee —_——e es
o D \9
su(N —p,p) - |
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1 0 i 0 . Yes
su(k, k) alI ’[ ak_l[ 0
(673
1 0 -0
B ra—
s0(2k+1-pp) 6 o o llg o Ul o .8 Noifp=1
4
so(k+1,k) 8_})_8_ ................................... _QEEQ Yes
k
sp(k, R) (1)_3_8_ ................................... _g(=.£k Yes
sp(k —p,p) L9909 _9<=9 No
Qop k
sp(m,m) L S 23 ag No
0
o O
s0(2k — p, p) g_g_L.;,Tg_Q_:;_r_Q/ Noifp=1
D .
\0
e Qg
0
(47
so(k+1,k—1) g_%_g_ ................ 0 0 0 > Yes
0
-1
0
Qe
so(k, k) g_i_g_ ............... 0 0 ¢ Yes
0
-1
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s50%(d4m) 019 - 00 9 Yes
/> G2m+1

s0*(4m + 2) 9___41}__9_ ............... _9_2__9\ Yes

e6(6) 2 9 0 0 g Yes
’

€6(2) ¥ Y™ N0 Yes
§

26(—14)‘ ng Yes
!

' O 0 0 0 0

€6(—26) o—e ® e— 0o No
L

¢7(7) g 0 0 0 0 % Yes
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1
e7(—5) 9 g 9 0 9 ° Yes
L
0 0 0 0 0 1 ve
¢7(—25) o——0——8 . o— o - Yes
L,
" L0 00 00 0y
L
1 0 0 0 0 0 0
€8(—24) : o—o0—o0—e ° e— o Yes
L,
f4(4) i 9 9 9) Yes
1
Fa(—20) ° 9=>9_——(o) ' No
1 0
82(2) o==0 Yes

Table 5.2: List of the weighted Dynkin diagram of (’)ﬁ;cn
and the Satake diagram of g.

5.4.3 Proof of Proposition 5.4.1

We consider the same setting on Section 5.4.1 and suppose that g¢ is simple
and g is not compact. In this subsection, we give a proof of Proposition 5.4.1.

In Proposition 5.4.1, the equivalence between (i) and (ii) can be proved
by using Theorem 5.1.1; The equivalence between (ii) and (iii) is followed
by Fact 5.2.1; The equivalence between (ii) and (v) is obtained by Theorem
5.4.9. To complete the proof of Proposition 5.4.1, we show the equivalence
between (ii) and (iv) by using the following lemma.

Lemma 5.4.15. In the setting of Section 5.4.1, suppose that gc is simple
and g is not compact. Then, the highest root ¢ of Agc,bhc) is a real root
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(i.e. ¢l =z = 0) if and only if dimp gy = 1, where X is the highest oot of
3(g, a).
Proof of Lemma 5.4.15. Recall that

dimg gy = f{ @ € A(ge, be) | ala = A}

If ¢ is a real root, then for any root o € A(gc,he) without ¢, we have
algs # A (= é|a) since ¢ is the longest root of A(ge, hc). Thus, dimg gy = 1
in this case. Conversely, we assume that ¢ is not a real root. The anti C-
linear involution 7 corresponding to gc = g ® v/—1g, i.e. T is the complex
conjugation of gc with respect to the real form g, induces the involution 7*
on b*, and it preserves A(gc, bic). Since ¢| /=3 # 0, we obtain that 7*¢ # ¢
and (7*¢)|s = ¢|la = A. Hence, dimpg gy > 2. , O

Here is a proof of equivalence between (ii) and (iv) in Proposition 5.4.1.

Proof of equivalence between (ii) and (iv) in Proposztzon 5.4.1. Recall that Hyv €
b is the hyperbolic element correspondmg to (’)mm (see Section 5.2.1 for the
notation). Thus, by Lemma 5.4.11, O meets g if and only if Hyv is in a.
By the definition of Hyv, the hlghest root ¢ is real if and only if H¢v isin a.
Combining the claims above with Lemma 5.4.15, we obtain that (9 ¢ meets
g if and only if d1m]R gr=1. ’ |

5.5 Welghted Dynkm diagrams of occ

min,g

Let g¢ be a complex simple Lie algebra and g a non—compact real form
of gc. In this section, we determine O for each g by describing the

min,g

weighted Dynkin diagram of OS¢ Recall that Proposition 5.4.1 claims

min,g*
that O% = 0% if and only if dimg g» = 1. Thus, our concern is in the

min min,g

cases where dimg gy > 2 i.e. g is isomorphic to su*(2k), so(n, 1), sp(p,q),

®6(~26) OT fa(—20)-
We use same notation in Section 5.4.1 (with simple gc and non-compact
g). Let us denote by

a,:={A€al|&(A) >0 for any £ € X¥(g,a) }.
Then a;L is a fundamental domain of a for the action of W (g, a). Since

Y g,a) ={al.|a € A(gc, bc) 1\ {0}, ,
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we have ay = h Na.

Recall that A is dominant by Lemma 5.3.2. Thus, A,v defined in Section
5.3.1 is in a+(C b+). Therefore, Ayv is the hyperbolic element correspond-
ing to Ommg since we can find X, € gy, Yo € g_, such that the triple .
(Axv, X, Y)) is an 5I2 triple in gc. Therefore, to determine the weighted
Dynkin diagram of Of¢  we shall compute the weighted Dynkin diagram
corresponding to Ayv.

QOur first purpose is to show the following proposition which claims that

Ayv can be written by Hgv which is the hyperbolic element correspondmg to
0% (see Section 5.2.1).

min

min,g*

Proposition 5.5.1. We denote by 7 the anti C-linear involution correspond-
ing to gc = g @ V—1g, i.e. T is the compler conjugation of gc with respect
to the real form g. Then,

A _ [Hy ifdimggy =1,
A H¢V>+TH¢V if dimg gy, > 2.

_ In particular, if dimg g > 2, then the weighted Dynkin diagram of Omm o
can be computed by the sum of the weighted Dynkm diagrams corresponding
to Hyv, i.e. the weighted Dynkin diagram of ©% . and that corresponding
to THgv.

We will compute the Welghted Dynkin diagram corresponding to A,v for
each g with dimg g, > 2 in Section 5.5.2.

min’

5.5.1 ertil’lg A)\v by H¢v

Recall that Lemma 5.4.15 claims that dimg gy = 1 if and only if the highest
root ¢ of A(gc, be) is real, ie. ¢| =, = 0. We give a proof of Proposition
5.5.1 as a sequence of the following two lemmas:

Lemma 5.5.2.

Ay = <g\ ¢§\>> (H¢v +TH¢V)

In particular, if ¢ is real, then Ayv = Hyv.

Lemma 5.5.3. If ¢ is not real, then (¢, ¢) = 2(X\, A).
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Proof of Lemma 5.5.2. We consider h* as a* @ /—1t*. Theri, for any £ € a*,

ik (Ho 4 7)) = R elHo) (- 6(Ho) = (7o)
= 2(&5’ ¢>> (by the definition of Hyv)
260 ).
=Ty (. 8la=A).
Thus, the element 2<()”\ (Hgv + THyv) of a is equals to Ayv. O

Proof of Lemma 5.5.3. We write 7* for the involution on §* induced by 7. It
is enough to show that (¢, 7*¢) = 0 since A = (¢ +7*¢). By [1, Proposition
1.3], 7* is a normal involution of A(gc, be), i-e. for any root a € A(gc, be),
the element oo — 7*e is not a root of A(gc, hc). In particular, for any root
a € A(ge, be) with 7*a # a, we have (o, 7*a) < 0. Recall that we are
assuming that ¢ is not real. Thus, ¢ # 7%¢, and then (¢, 7*¢) < 0. The root
T*¢ is in A*(gc, be) since the ordering on h is an extension of the ordering
on a. Then, we also obtain that (¢, 7*¢) > 0 since the highest root ¢ is
dominant. Therefore, (¢, 7*¢) = 0. O

5.5.2 Weighted Dynkin diagrams of e

min,g

We now determine the weighted Dynkin diagram of (’)mm for each g with
dimgp gy > 2, i.e. g is isomorphic to su*(2k), so(n,1), 5p( ,q), €s(—26) OF
fa(—20)- By Proposition 9.5.1, our purpose is to compute the weighted Dynkin
diagram corresponding to Ayv = Hyv + 7Hyv.

. We only give the computation for the case g = eg(_g) below. For the
other g with dimg gy > 2, we can compute the weighted Dynkin diagram
corresponding to A,v by the same way.

Example 5.5.4. Let (gc, g9) = (es,c, e6(—26)). We denote the Satake diagram
of eg(—26) by

] Qg Qi3 Qg Qg
o—e—0—0—0

(873
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By Table 5.2, the weighted Dynkin diagram corresponding to Hyv s

00 000

| I 1
We now compute the weighted Dynkin diagram corresponding to Ay = Hyv+
THyv. By Proposition 5.4.7, the weighted Dynkin diagram corresponding to

 Ayv matches the Satake diagram of eg_g6). Thus, we can put the weighted
Dynkin diagram corresponding to Ayv as ‘

a 0 0 0D

o—o—I—o—o fora,beR.
0 ,

To determine a,b € R, we also pvut _
 HJ:=Hgp ~THy € V-1t

Since Ayv+H ;76‘ = 2Hyv, the weighted Dynkin diagram corresponding to HE%
can be written by
| —a0 0 0 —b

[

Namely, we have

Oll( §) =~

o (HI) = oz3(H¢v) = O[4(H¢v) =0,
as(H) =

ag(Hy ) =

By Lemma 5.4.8, the set { Hay, Hoy, Hyy, Hoy } becomes a basis of +/—1t.
Thus, Hi% € /=1t can be written by :

HY = CgHaéf + CgHag/ + C4Ha>1/ + CGHO%/ fOT' C2,C3,C4,Cq € R.

By comparing the Dynkin diagram of e c, we can compute

i Hay) = N0 )
) = o )
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for each i, 5. Thus, we also have

O!l(H;v) = —cy,

aQ(H;TC‘) = 2¢y — C3,

ag(H;”v”‘) = —cy +2c3 — ¢4 — Cg,
ay(HT) = —cs + ¢4,

as(H) = —c,

a6(H;’3) = —c3 + 2c4

Then, we obtain that a = b= 1. Therefore, the weighted Dynkin diagram of
0% for g = eg(_g6) 1S

min,g

10 0 01
i0

The result of our computation for all g with dimg g, > 2 is in Table 5.1
of Theorem 5.1.4.

. . G

5.6 G-orbits in O3 Ny
Let gc be a complex simple Lie algebra and g a non-compact real form of
gc. Through this section, we take G for the connected linear Lie group with
its Lie algebra g and G¢ the complexification of G. We prove Thorem 5.1.5
in this section. ‘

We fix a Cartan decomposition g = £ © p of g, and write K for the -
maximal compact subgroup of G with its Lie algebra €. Take a maximal
abelian subspace a of p and fix an ordering on a. Let A be the highest root
of (g, a) with respect to the ordering on a. Let us denote by M := Zk(a)
and A := expa. Then, the closed subgroup M A of G is coincide with Zg(a).
Thus, M A acts on the highest root space gy by the adjoint action.

Our first purpose in this section is to show the following two propositions
(namely, Proposition 5.1.6 in Section 5.1.6):

Proposition 5.6.1. Suppose that dimg g > 2. Then gy \ {0} becomes a
single M A-orbit.
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Proposition 5.6.2. The map

{ Non-zero M A-orbits in gy } — { G-orbits in Ommg Ng}
oMA . G.oMA

15 bijective.

Theorem 5.1.5 is foHowed by Proposition 5.6.1 and Proposition 5.6.2.

5.6.1 M A-orbits in g, in the cases where dimg gy > 2

In this subsection, we focus on the cases where dimg gy > 2, i.e. g is isomor-
phic to su*(2k), 5o(n —1,1), sp(p,q), es(~26) OF fa(-20)-

We write My for the identity component of M. Then, My, MyA are the
analytic subgroups of G with its Lie algebra m = Ze(a) mea = Zya),
respectively.

~ We will use the next lemma to prove Proposition 5. 6 1.

Lemma 5.6.3. Suppose that dimg gy > 2 and g has real rank one, i.e. dimg a =
1. Then gy \ {0} becomes a single MyA-orbit.

Here is a proof of Proposition 5.6.1 by using Lemma 5.6.3:

Proof of Proposition 5.6.1. Let us put §' := [gx,g-2] C m @ a. Then g :=
g-» D b @ g, becomes a subalgebra of g since £2) is not a root. We shall
prove that g’ is a simple Lie algebra of real rank one. ]

Let 6 be the Cartan involution of g corresponding to g = ¢ @ p. Then, b’
is f-stable. Therefore, b’ can be written by ' = m’ & ¢ with m’ C m and
o’ Ca. For any X, € g, X_» € g_» and A € a, we have

B([X)\,X_)\],A) = B(X>n [X"')\)A])

= MA)B(X>, X_»)
(AN
2

= B(X», X_2)"22L B(Ayv, A).

Thus, ' can be written by o’ = RA,v since B(gy,g-») = R, where A,v is
the element of a corresponding to A defined in Section 5.3.1 and B is the
Killing form on g. Let us fix any non-zero ideal J of g’, and we shall prove
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that J = g. First, we prove that JNg_y # {0}. We take a non-zero element
X in J. The element X can be written by - '

X =X +cAyw +- X\ + X_, (Xml em,ce R,X)\ € gA,’X_)\ € g_)\).

We now construct a non-zero element in J N g_x dividing into the following
cases: ‘

The cases where X, # 0. In this case, by Lemma 5.3.1, there exists Y, e
g-» such that (A,v, X),Y)) becomes an slo-triple. Recall that —2A is
not a root of £(g, a). Thus we have

Yy, [Va, X]] = —2Y,

and hence Yy € TN g_,.

The cases where X, =0 and c # 0. In this case, for any non-zero vector
Y in gy, \ '

[Y, X] = [Y, X + CA)\V] = [Y, Xm/] +2cY € g_,

is not zero since ady X has no non-zero real eigen-value. Thus, [V, X]
" is a non-zero vector of I N g_j.

The cases where X =0, ¢ =0 and X,y # 0. In this case, we shall show
that [g-x, Xuw] # {0}, and then we can find Y € g_, such that [Y, X] =
[Y, Xw] is a non-zero element of J N g_,. Since Xy # 0, we have
m’ # {0} in this case. We now assume that [g_x, Xu] is zero. Then,

B(Y, Xur) = B([gx, 9-2], Xor) = B(gx, [8-3, Xm]) = {0}.

In particular, B(m’, X,,v) = {0}. This contradicts the non-degenerateness
of B on &.

The cases where X = X_,. In this case, X € TN g_y.

Thus, we obtain that J N g_, # {0}. We fix non-zero element Yy in TN g_,.
Then, by using Lemma 5.3.1, we can find X, € gy such that (Axv, X),Y))
becomes an sls-triple in g (since we can find X, € g, such that (—Ayv, Y3, X3)
is an sly-triple in g by Lemma 5.3.1 for £ = —)\). Hence, Ayv € J, and
this implies that gx,g-» C J. Since b’ = [ga,8-»], we have J = g’. This
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means that g’ is a simple Lie algebra. Since g’ is §-stable, 8|y is a Cartan
decomposition of g’ and ' = RA,v is a maximally split abelian subspace
of g’. In particular, ¢ = m’' @ o’ @ g, is a root space decomposition of g'.
Therefore, g is a simple Lie algebra of real rank one with dimg) > 2. In
particular, g’ has no complex structure or isomorphic to s{(2, C).

We denote by M] the analytic subgroup of G with its Lie algebra m’ and
put A’ = ExpRA,v. If ¢’ has no complex structure, then by Lemma 5.6.3,
we obtain that gy \ {0} becomes a single M{A"-orbit. If g’ is isomorphic.
to sl(2,C). one can also observe that g \ {0} becomes a single MjA’-orbit
directly. Since any adjoint My A’-orbit is contained in an adjoint MyA-orbit,
gx \ {0} also becomes a single MyA-orbit. O

To complete the proof of Proposition 5.6.1, we shall prove Lemma 5.6.3.

Proof of Lemma 5.6.3. Let Ayv be the element of a defined in Section 5.3.1.
Since g has real rank one, a = RA,v and g can be written by

g=0,Dg, OMDadgy O

(possibly 913 = {0}). Let us denote by g¢, me, ac, (g+a)c, (gi%)c the
complexification of g, m, a, g+, g, 25 respectively. We set

(8c)i = {X €gc | [Ar, X]=1iX} for each i€ Z.

Then, ;
(8c)o = me ® ac, (9c)+1 = (9x3)c, (9c)+2 = (9aa)c-

By Lemma 5.3.1, for any non-zero highest root vector X in gy, there exists
Y, € g_, such that (A, X,,Y)) is an sl-triple in gc. By the theory of
representations of sl(2, C), we obtain that [X), (gc)o] = (g¢)2. In particular,

Mm@ a, X5] = ga.
Therefore, for the MyA-orbit OMeA(X,) in g through X, we obtain that
dimg OMA4(X,) = dimg g5.
This means that the MyA-orbit OMe4(X,) is open in gy for any X € ga\{0}.

Recall that dimg gy > 2. Then, g, \ {0} is connected. Therefore, g, \ {0}
becomes a single MyA-orbit. O
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5.6.2 Bijection between the set of non-zero M A-orbits
in g, and the set G-orbits in _C’)GC Ng

min,g

We prove Proposition 5.6.2 in this subsection. v
By Theorem 5.1.1, the orbit @%¢ can be written by

min,g

oge .= Ge- (g \ {0}).

Thus, the map in Proposition 5.6.2 is well-defined and surjective. Thus, the
proof of Proposition 5.6.1 is completed by showing that: For any X, X} € ga,
if there exists g € G such that g X, = X}, then there exists m € M anda € A
such that ma X, = X}. '

We prove the claim above dividing into two lemmas below:

Lemma 5.6.4. For any Xy, X} € g, if there exists g € G such that X, =
X34, then there exists m’ € Nk(a) and a € A such that m'a X = Xj.

Lemma 5.6.5. For any X, X € gy, if there exists m' € Nk(a) such that
m' Xy = X4, then there exists an element m € M (= Zg(a)) such that
Proof of Lemma 5.6.4. Since Ng(a) = Nk(a)A, it is enough to find ¢ € G
such that ¢’X) = X} and g’a = a. There is no loss of generality in assuming
that X, and X} are both non-zero elements in gy. Let A,v be the element of
‘a defined in Section 5.3.1. Then, by Lemma 5.3.1, there exists Y, Y, € g_»
such that (Ayv, Xy, Y)) and (Axv, X}, YY) are both sly-triples in g. Since g
is an automorphism of g and gX, = X}, the triple (gA,v, X}, gY)) is also
an sly-triple in g. In particular, (Ayv, X},Yy) and (gA,v, X}, gYs) are both
sl,-triples in g with same nilpotent element. Therefore, by Kostant’s theorem
for sly-triples with same nilpotent element in a semisimple Lie algebra, there
exists an element g; € GG such that

91(gAw) = Ay, X5 = X} and g1(gY>) = V5.
Write g2 := g1 - g. Then,
g2 Ay = Ayv, 62Xy = X) and g,¥) =Y.
Recall that a = RA,v @ Ker A. If we find g3 € G such that

g3(g2 Ker \) = Ker ), gsAyv = Ayv and g3 X} = X3,
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then we can take ¢’ as g3 - go. We shall find such g3. Let us denote by I =
R-span({A,v, X},Y;) the subalgebra spaned by the sly-triple (A,v, X},Y7).
Then, there exists a Cartan involution # on g preserving I' by Mostow’s
theorem [13, Theorem 6]. We set

go : = Zy(V) .
={X eg|[X, Av]=[X,X}] =0},

where the second equation can be obtained by the representation theory of
sl(2,C). We note that go is a reductive subalgebra of g since the Cartan
‘involution 6§ preserves go. Since [Ker A, I'] = {0}, the subspace Ker X of a
is contained in gy and becomes a maximally split abelian subspace of go.
Furthermore, we have '

[g92 Ker X, Axv] = ga[Ker A, Ayv] = {0},
(92 Ker )\, X3] = go[Ker ), X,] = {0}.

Thus, the subspace go Ker A of goa is also contained in gqg and becomes a max-
imally split abelian subspace of gqg. Let us write Gy for the analytic subgroup
of G with its Lie algebra go. Since any two maximally split subalgebras of
go are Gy-conjugate, there exists g3 € Gg such that

93(g2 Ker A) = Ker A.
Since g3 is in Gy, we obtain that gsAyv = Ayv and g3 X} = X}. O

To prove Lemma 5.6.5, we also show the fdllowing lemma for Weyl groups
of root systems:

Lemma 5.6.6. Let X be a root system realized in a vector space V with an
inner product { , ), and W(X) the Weyl group of & acting on V. We fiz a
positive system Lt of X, and write II for the simple system of ¥+. Let v
be a dominant vector, i.e. {a,v) > 0 for any o € BF, and w € W(X) with
w-v = v. Then, there exists a sequence s1,...,8; of root reflections with
Csirv=w foranyi=1,...,l such that

W= 8§18+ 85;.

Proof of Lemma 5.6.6. Let n := |T+ \ wX*|. We prove our claim by the
induction of n. If n = 0, then ¥* = wX*. Thus, wll = Il and w = idy... We
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assume that n > 1. Then I\ wX+ # 0. It suffice to show that any simple
roots o € II \ wE* satisfies that (o, v) = 0 and |1\ (sqw)EF| < n—1.°
Since w™la & =, that is, w™a is a negative root, we obtain that :

(w™la, v) < 0.
Combining (a,v) > 0 with w - v = v, we obtain that
(a,v) = 0.
To coxﬁplete the proof, we shall show the following:
e For any f e wXt NXT, fhe root s,f is also in 7.
e There exists v € wXt \ £ such that s,y is in X7.

In general, for any positive root 8 € X1 without o or 2«, the root s,/ is
also positive. Thus, for any 8 € wXt N T, the root s,8 is in L+ since o
and 2« are both not in wX™. Thus, the first one of our claims holds. We
take v := —a. Then, ~y is in wX* \ ©* since o is in ¥t \ wE*. Furthermore,
8oy = a is in &F. Thus, the second one of our claims also holds. Combining
- the claims above, we obtain that /

IZt NwEt| < | N (sqw)Xt,
and hence |EF\ (saw)EH| < n — 1. ‘ O
Here is the proof of Lemma 5.6.5.

"Proof of Lemma 5.6.5. There is no loss of generality in assuming that X
and X} are both non-zero vectors in gx. Then, m’ € Nk(a) acts on a as an
element w € W(g,a) = Ng(a)/Zx(a) such that wA = X since m'gy = gun.
By Lemma 5.6.6, w can be written by ~

W= 8182+ 8

where s; are root reflections of W(g,a) with s;)\ = A. We write & for the
root of X(g, a) corresponding to s; for each ¢ = 1,...,l. Let g; be the root
space of §;. Since s;A = A, each & is orthogonal to A in a*.- We can and do
chose X; be a non-zero root vector of g; such that >
B(X;,0X;) = 2
v ' . <§$7 §’L>
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where 6 is the Cartan involution of g corresponding to g = £ ® p. Then, the
element k; = exp Z(X;+ 0X;) in Nk(a) acts on a as the reflection s;. Thus,
m = m'kk;_1 -+ -k acts trivially on a. That is, m € Zk(a) = M. It remains
to prove that k; X, = X). Since X is longest root of X(g, a) by Lemma 5.3.2,
and §; is orthogonal to A, the element & £ A of a* is not a root of (g, a).
In particular, [X;, X,] = 0 and [0X;, X,] = 0. Hence, k; X, = X, for any 1.
Therefore, we obtain that mX, = m'X, = X}. - |
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Relation between spherical
designs through a Hopf map

In this Chapter, for a given spherical t-design Y on S%, we show an algorithm
to make a spherical 2t-design X on S® with | X| = (2t+1)|Y| and n(X) =Y,
where 7 : 8% — S? is a Hopf map. We also prove that if X is an antipodal
spherical (2t 4 1)-design on S®, then there exists o € SO(4) such that (o X)
is a spherical t-design on S with |m(0X)| = 1|X|. Moreover, our theorems
are generalized to relations between designs on a compact Lie group G and
that on a compact homogeneous space G/K.

6.1 Introduction

“The purpose of this chapter is to show an algorithm to make designs on a
compact group G from a given design on a closed subgroup K of G and that
on the quotient space G/K. In particular, we give an algorithm to make a
spherical 2¢-design on §2 from a given spherical ¢-design on S2.

6.1.1 Spherical designs

We write ¢ for the unit sphere in the (d + 1)-dimensional Euclidean space
R¥1, The concept of spherical designs on S¢ were introduced by Delsarte—
Goethals—Seidel [8] in 1977 as follows: For a fixed ¢ € N, a finite subset X of
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5¢ is called a spherical t—deéign on S¢if

L Z f(;z) = Ld fd/,l,sd (6.1.1)
X1 22 = 171 g,

for any polynomial f of degree at most t. Note that the left hand side and
the right hand side in (6.1.1) are the averaging values of f on X and that
on S9 respectively. (see Definition 6.2.1 for more details). We also remark
that any spherical (¢+ 1)-design on S is also a spherical ¢-design on S¢. The
development of spherical designs can be found in Bannai-Bannai [3].

A spherical ¢-design X on S¢ is better if the cardinality | X| is smaller. We
motivate our work in one of the fundamental problems on spherical designs,
stated below:

Problem 6.1.1. What is the smallest cardinality of a spherical t-design on
See

Let us denote by Nga(t) the smallest cardinality of a spherical ¢-design on
'S?. We remark that for the case where d = 1, one can prove that Ngi(t) =
¢t + 1 for any ¢, by taking regular (¢ + 1)-gon on S!. Thus, our interesting is
~ in the cases where d > 2.

Delsarte-Goethals—Seidel [8] gave lower bounds of cardinalities of spher-
ical designs as follows:

Fact 6.1.2 (Delsarte-Goethals—Seidel [8]). Any spherical t-design X on S¢
satisfies

s[5+ () 020 5 v,
= Q(dje) ift=2e+1 is odd.

A spherical t-design X on S¢ is said to be tight if the equality in Fact
6.1.2 holds. As an example of a spherical tight design, it is known that
(normalized) 196560 minimal vectors of the Leech lattice gives a spherical
tight 11-design on S?*. We remark that the uniqueness, up to the 0(24)—
action on S$23, of spherical tight 11-designs on S?* was proved by Bannai-
Sloan [5].

Obviously, if a spherical tight t-design X on S¢ exists, then Nga(t) = | X|.
For example, we obtain Ngs(11) = 196560. However, Bannai-Damerell [2]
proved that if d > 2 and ¢ > 12, then spherical tight t-design on S¢ does not
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exists (see [3, Section 2] for more details). We should note that Nga(t) are
unknown for d > 2 with large ¢.

In this chapter, our interesting is in the asymptotic behavior of the func-
tion Nga(t) for the cases where d > 2. Here, we remark that the existence
of a spherical ¢-design on §¢ was proved by Seymour—Zaslavsky [18].in 1984.
Hence, Nga(t) < oo for any d and ¢.

One of available ways to give upper bounds of Nga(t) is to construct
interval ¢-designs defined below: Let us fix d > 2 and denote by wy(s) =
v/ (1 — $2)4-2 the weight function on the interval [—1, 1]. We say that a finite
subset Y of [—1,1] is an interval ¢-design with respect to wy if

P @ = o [ et

for any polynomial f(s) of degree at most t. Wagner [20] and Rabau-Bajnok
[14] proved the following theorem:

Fact 6.1.3 (See [14, Theorem 4.1] for more details). If an interval t-design
Y on [—1,1] with £1 € Y and a spherical t-design T' on S%* are given,
then we can construct a spherical t-design on S such that M(X) =Y and -
| X| = |T|-|Y|, where h: S* — [=1,1] is the hight function on S9. ‘

Let us ‘denote by N[O_- 11jwq(t) the smallest cérdinality of an interval ¢-
design Y on [—1, 1] with respect to the weight function wy such that £1 € Y.
Then by Fact 6.1.3, we have

Nga(t) < Nga-1(t) - N 13,0, (E)- (6.1.2)

Kuijlaars [11] proved that for a fixed d > 2, there exists a positive constant
K; such that ’
N[O—l,l],wd(t) < K4t? for any t.

In particular, by (6.1.2), there exists a positive constant Cy; such that
Nga(t) < C’dtd(d2+1 for any ¢ > 0.
Yudin [21] mentioned that the conjecture

Nga(t) < 19, (6.1.3)
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has been made by many authors, where f(t) < g(t) means that there exists
a positive constant C' such that f(t) < C’g(t) for any ¢ > 0. This problem is
still open for any d > 2. '

Let us denote by 7 : S — S? a Hopf map. Then (5%, 52, 7) is a principal
S1-bundle (see Section 6.2.2 for more details). In the first half part of this
chapter, we focus our study a relation between Ng2(t) and Ngs(t) through
the Hopf map 7 : % — S2.

The first main theorem of this chapter is the following:

Theorem 6.1.4 (See Theorem 6.2.4). Let Y be a spherical t-design on S2.
Then we can construct a spherical 2t-design X [resp. (2t + 1)-design X'| on
S% with | X| = (2t + 1|Y] and n(X) =Y [resp. |X'| = 2(t + 1)|Y] and
(X)) =Y]. In particular, for any t, we have

N53(2t) < (2t + 1)N52(t) and N53(2t + 1) S Z(t + 1)N52(t)

By combining Theorem 6.1.4 with the result of Kuijlaars mentioned above
for d = 2, we obtain
Ngs(t) < t.

Furthermore, if the conjecture (6.1.3) for d = 2 is true, then that for d =3
is also true.

In the cases where ¢ < 100, Chen—-Frommer-Lang [6] constructed spheri- .
cal t-designs on S with (¢ + 1) nodes for each £ < 100. Thus, by Theorem
6.1.4, we also obtain

. Ngs(2t) < (2t +1)(t+1)? and Ngs(2¢t +1) < 2(t+1)* for ¢ < 100.

- We also remark that Theorem 6.1.4 is constructive. That is, if we can
construct a spherical t-design on S? explicitly, then we also obtain a spherical
2t-design [resp. (2t+1)-design] on S explicitly. (see Theorem 6.2.4 for more
details). Kuperberg [12] gives an algorithm to construct explicitly an interval
t-design Y’ on [—1, 1] with respect to wy such that +1 ¢ Y’ by using roots
of a certain polynomial of degree [£]. Thus, by Fact 6.1.3, we obtain a
spherical t-design on S? explicitly, and hence we also obtain a spherical 2¢-
design [resp. (2t + 1)-design] on S® explicitly. This gives an algorithm to
construct a spherical t-designs on S for each t.
Theorem 6.1.4 gives an algorithm to make spherical 2¢-designs on S* from
a given spherical ¢-design on S?. As a kind of converse claim, we will prove
_the following theorem: ' ‘
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Theorem 6.1.5 (See Corollary 6.2.8). Let X be a spherical 2t-design on S3
and fix p € N. If ‘

I XNrn(z))|=p foranyze X, (6.1.4)

then X maps to a spherical t-design on S? with %|X| nodes by the Hopf map
m: 8%~ 8% de. Y i=n(X) is a spherical t-design on S* with [Y] = | X|.

Furthermore, we will also prove the following:

Theorem 6.1.6 (See Theorem 6.2.10). If X’ is an antipodal spherical (2t +
1)-design on S3, then there exists 0 € SO(4) such that the antipodal spherical
(2t 4+ 1)-design 0 X' on S? satisfies (6.1.4) for p = 2. In particular, Y’ :=
m(cX’) is a spherical t-design on S* with |Y'| = 1| X"|.

6.1.2 Designs on a compact'homogeneous spaces

Throughout this subsection, let G be a compact Lie group and K a closed
subgroup of G. We denote by 7 : G — G/K the quotient map.

The purpose of the last half part of this chapter is to generalize our
results in Section 6.1.1 to relations between designs on a compact Lie group
G and that on a compact homogeneous space G/ K through the quotient map
7:G—= G/K. ‘

Let us consider a finite-dimensional representation (p, V') of G. For each
Q =G, K or G/K, we will define finite-dimensional functional spaces H§, on
Q) (see Section 6.5.1 for the definition of H5). Then we define an Hg-design
on  as follows: Let O = G, K or G/K. A finite subset X of  is called an .

Hf-design on 2 if
' . 1 1
e > @) = [ fan
x] 2 7@ = g J, Fdkn

for any f € Hg. In fact, we will give a more general definition of designs on
a measure space. in Section 6.3. ,

As a generalization of Theorem 6.1.4 and Theorem 6.1.5, we will prove
the following two theorems:

Theorem 6.1.7 (See Theorem 6.5.8). Let Y be an 'H’(’;/K—design on G/K -

and T' an Hb-design on K. Then we can construct an He-design X on G
with | X| = |T| - Y| and 7(X) =Y.
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Theorem 6.1.8 (See Corollary 6.5.13). Let X be an HpG—design on G and
fizp € N. If | X n7n~Yn(z))| = p for any z € X, then X maps to an
'H”Gm-design on G/K with %|X| nodes by the quotient map 7 : G — G/K,
i.e. Y= m(X) is an H i -design on G/K with |Y| = 1| X].

In the cases where (G, K) is a symmetric pair with some certain con-
ditions, we will also prove a generalization of Theorem 6.1.6 (see Theorem
6.5.18). |

It is well known that a Hopf map S® — S? can be regarded as the quotient
map SU(2) — SU(2)/T, where

SU(2):={g€SL2,C)|F=9""},
T .= {diag(z,%z) € SU(2) | z € C with |z| =1}.

Here for each [ = 0,1,2,..., we put (p;, V}) to the unique irreducible (I + 1)-
dimensional representation of SU(2), and denote by p(t) = @;_, p; for each ¢.
Then we obtain that the functional spaces Hg(é)@) resp. H5) on SU(2) ~ §°
[resp. on T' =~ S'] is a space of polynomial functions on S* [resp. on S?] of
degree at most ¢, and the functional space Hg(é)(z) ;pon SU@2)/T = 8% is
a space of polynomial functions on S? of degree at most [£]. Recall that
regular (¢ -+ 1)-gon is a spherical ¢t-design on T' ~ S'. Therefore, the theorem
in Section 6.1.1 follows from the theorems given above.

To prove the results in this subsection, we will use some well-known facts
for the representation theory of compact Lie groups.

6.1.3 Organization of this chapter

This chapter is organized as follows. In Section 6.2, we set up notation and
state our main theorems for relations between spherical designs on S® and
that on S% through a Hopf map = : S — S2. In Section 6.3, we give a
definition of designs on a general measure space and prove some propositions
for them as a preliminary. Main theorems in Section 6.2 -will be proved in
Section 6.4 by using propositions in. Section 6.3. In Section 6.5, we give a
statement of a generalization of the results in Section 6.2 to relations between
designs on compact Lie group G and that on a compact symmetric space
G/K through the quotient map G — G/K. The results in Section 6.5 will
be proved in Section 6.6.
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6.2 Main results for spherical designs on S°

6.2.1 Notation for spherical designs,

We fix terminology for spherical designs as follows.

Let us denote by S¢ the unit sphere in the (d+ 1)-dimensional Euclidean
space R, and denote by pgs the spherical measure on S¢. We put |89 :=
/,Lsd(Sd) For each ¢ € N, we write

P,(R*) := { f | f is a polynomial over C on R¥"* with deg f < t¢}.

Any element in P;(R%) can be regard as a C-valued function on Rd“ Here,
we put

Py(8%) i={flsa | f € RR™)}.

Then P,(S%) is a finite-dimensional functional space on S%. It is well known

that t+d t+d—1
img P(S%) = :
ame Py = (1) + (137)
We define spherical designs on S¢ as folloWs:

Definition 6.2.1 (Delsarte-Goethals—Seidel [8]). A finite subset X of §¢ is
called a spherical t-design on S¢ if for any f € P,(S%), the averaging value
of f on X is equals to the averaging value of f on S¢, that is,

1
1 2760 = g, e

Remark 6.2.2. In Definition 6.2.1, we can replace polynomials over C to
that over R. In fact, the original definition of spherical designs in [8] con-
sidered polynomials over R. In this chapter, we consider polynomials over C
since the representation theory over C is easier then that over R.

In Definition 6.2.1, the bd.esign X is a finite subset of S¢. We also define
spherical designs for a finite multi-sets on 5% as follows:

Definition 6.2.3. Let us denote by (S9N the direct product of N-times
copies of 8% For X = (x1,...,zn) € (SN, we say that X is a spherical
multi-t-design if

N
¥ 1@) = g [ fduss for any £ € RS,

i=1
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Here, we denote by

Nga(t) := min{ | X| € N| X is a spherical t-design on 5%},
NE(t) := min{ N € N | there exists a spherical multi-t-design in (S%)V }.
In Definition 6.2.3, if x1, ..., zy are distinct from each other, then X can be

regard as a spherical t-design on S with N nodes. Hence, N5'®(2) < Nga(t)
in general.

6.2.2 Main results

Throughout this chapter, let ué denote by

5% :={(a,b) | a,b€C, |afP +pP =1} Cc C* =R,

SP={¢n]teR neC, €+nfP=1} cRxC~R’

St:={2eC||z| =1} cC~R2 " '
We fix a Hopf map as follows: |

ri oS (ab) o (af? — b2, 2ab).
Let us denote by '
(a,b) -z := (az,bz) for any (a,b) € S and 2z € S*.
Then
SPx St~ 83 (z,2) >3- 2

defines a right action of S* on S® with respect to the usual group structure
on S'. The Hopf map 7 : S® — S? is a principal S'-bundle with respect
to the right S'-action. In particular, S* acts simply-transitively on a fiber
7~1(y) for each y € S2.

Here is our first main theorem:

Theorem 6.2.4. Let Y C S? be a spherical t-design and T' C S* a spherical

2t-design. For eachy € Y, we fix a base point s(y) on the fiber n=1(y). Then

the finite subset , '
X(Y,s,T):={s(y)-yeS®|yeY, yel}

is a spherical 2t-design on S* with |X(Y,s,T)| = |Y|-|[|. Furthermore, if '
is a spherical (2t + 1)-design, then X(Y,s,T) is a spherical (2t 4+ 1)-design
on S3. ’
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Theorem 6.2.4 will be proved in Section 6.4.2.
Let us denote by

[,={ze8"22=1}C S foreachg=1,2,....

In other words, I'; is the finite cyclic subgroup of S* of order ¢. It is well
known that I'; is a spherical t-design on S* if ¢ > ¢ + 1. Thus, we can
take spherical 2¢-design on S! with 2t + 1 nodes, explicitly. Furthermore,
for a given y € S2, we can choose a base point s(y) in 7 '(y), explicitly
(see Section 6.4.1 for details). Therefore, Theorem 6.2.4 gives an algorithm
to make a spherical 2¢t-design X on S® with |X| = (2t + 1)|Y]| from a given
spherical t-design Y on S?. Recall that the results of Kuperberg [12] gives a
construction of spherical ¢-designs on S2 for each ¢ (see also Bannai-Bannai
[3, Section 2.7] for more details). Thus, we obtain a construction of spherical
2t-designs on S for each t.

Remark 6.2.5. Cohn-Conway-Elkies-Kumar [7, Section 4] described that
one can construct a family of designs on S*™! from a design in CP" !,
where CP™™ Y denotes the complex projective space, i.e. the space consisted
of all complex 1-dimensional subspaces in C*. Theorem 6.2.4 is a kind of
formularization of it for the case where n = 2.

Theorem 6.2.4 holds even if Y is a multi-set on 5? (see Theorem 6.4.4
in Section 6.4.3 for more details). By using this, we will prove the corollary
below in Section 6.4.3:

Corollary 6.2.6. For any t, we have

NZE5(2t) < Ngo(2t) < (2t + DNE(0),
NZE8(2t +1) < Ngo (2t + 1) < 2(¢ + 1) N (t).

(see Section 6.2.1 for the notation of Nga(t), N3 (t) and the definition of
multi-designs).

As a kind of converse claim of Theorem 6.2.4, We will also prove the
following theorems:

Theorem 6.2.7. Let X = (z1,...,zy5) € (S*)N be a spherical multi-(2t)-
design on S3. Then Y = (7(x1),...,m(zn)) € (S?)V is a spherical multi-t-
design on S2.

157



Chapter 6

By the definition of multi-designs in Section 6.2.1, we obtain the following
corollary to Theorem 6.2.7:

Corollary 6.2.8. Let X be a spherical 2t-design on S* and ‘ﬁz p e N. If
| X N7=Y(y)| = p for any y € m(X), then w(X) is a spherical t-design on S?
with ]7T(X)|:Z%|X\. .

Let us consider the natural left SO(4)-action on S3. Recall that if X is
a spherical {-design on 5%, then 0 X := {oz | £ € X} is also a spherical
t-design on S® for any o € SO(4). We should remark that the left SO(4)-
action and the right S'-action on S® are not commutative (in fact, for each
z € S, we can find o, € SO(4) such that z - z = o,z for any z € S3).

For a given spherical 2¢-design X on S2, does there exist o € SO(4) such
that 0X satisfies the condition in Theroem 6.2.107 To state our results,
we setup notation of antipodal and antipodal-free as follows: We say that a
finite subset X of S is antipodal [resp. antipodal-free] if for each z € X, the
element —z of S is in X [resp. not in X]. The next lemma will be proved
in Section 6.4.4:

Lemma 6.2.9. Let X be a finite subset of S and U an open neighberhood of
the unit of SO(4). If X is antipodal-free, then there exists o € U such that
leX N7 t(y)| = 1 for any y € n(cX). If X is antipodal, then there ezists
o € U such that |cX N7~ (y)| = 2 for any y € m(aX).

| By combining Lemma 6.2.9 with Corollary 6.2.8, we obtain the next the-
‘orem: '

Theorem 6.2.10. Let X be a spherical 2t-design on S® and U an open
neighberhood of the unit of SO(4). Then the following hold:

(1) If X is antipodal-free (i.e. for any z € X, the element —z € S® is not
in X), then there exists o € U such that Y := n(c(X)) is a spherical
t-design on S* with |Y| = | X|. :

(49) If X is antipodal (then X automatically becomes a spherical (2t +1)-
design on S*), then there exists o € U such that Y := 7w(c(X)) is a
spherical t-design on S* with |Y| = $|X]|.

Remark 6.2.11. Cohn-Conway-Elkies—Kumar [7, Section 4] observed that
a certain antipodal spherical T-design on S§* maps to a spherical 3-design on
S? by a Hopf map.
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By combining Theorem 6.2.4 with Theorem 6.2.10, we will also prove the
next theorem in Section 6.4.4:

Theorem 6.2.12. For any ¢, we have
Ng2(t) < (¢ + 1) Ng“(t)
(see Section 6.2.1 for the notation).

It is well known that S® admits a compact Lie group structure and for
a maximal torus T of S3, the Hopf map 7 : S — S? can be regard as a
quotient map from the Lie group S® to the quotient space /7. In’Section
6.5, we will give a generalization of the results described in this section to
some relations between designs on a compact group G and that on a compact
symmetric space G/ K.

6.3 Preliminary

In this section, we define designs on a general measure space and prove some
propositions for them. Main results of this chapter will be proved by using
propositions in this section.

6.3.1 Designs on a general measure space

~ Let (©, 1) be a general (possibly infinite) measure space. We define (weighted)
designs for a finite-dimensional vector space consisted of Ll-integrable func-
tions on (£, i) as follows:

Definition 6.3.1. Let X be a finite subset of Q and A : X — Ryg be a
positive function on X. For an L*-integrable function f : O — C, we say
that (X, A) is an weighted f-design on (Q, ) if

S @) = [ i

For a vector space H consisted of L*-integrable functions on Q, we say that
(X, ) is an weighted H-design on (Q, u) if (X, X) is an weighted f-design on.
(Q, 1) for any f € H. Furthermore, if X is constant on X, then X is said to
be an H-design on (2, u) with respect to the constant A.
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Example 6.3.2. Let Q = 5S¢,y = |Sld‘/.asd and H = P(S%). Then a ﬁm’te
subset X of Q is an H-design on (Q, p) with respect to the constant 1z f
and only if X 1is a spherical t-design on S,

Let us consider the cases where u(Q) = 1, i.e. u is a probability measure,
and any constant function on {2 is in H. Then for any weighted #-design
(X, ) on (Q, ), we have ) . A(z) = 1. In particular, if X is an H-design
on (€2, u) with respect to a positive constant A, then A = ﬁ :

Remark 6.3.3. The concept of H-designs on (, 1) s a generalization of
that of averaging sets on a topological finite measure space (Q, 1) (see [18]
for the definition of averaging sets). In particular, by [18, Main Theorem],
if (2, 1) is a topological finite measure space and ) is path-connected, then
for any finite-dimensional vector space H consisted of continuous functions
on Q, an H-design on (9, 1) exists.

We give two easy observations for designs on (2, 1) as follows:

Observation 6.3.4. o If H C H, then any (weighted) H- deszgn on
(Q, 1) s also an (weighted) H'-design on (Q, ).

o Let X be a positive constant and X, X' are both H-designs on (2, 1)
with respect to A. If X N X' =0, then X U X' is also an H-design on
(Q, ) with respect to \.

We also define multi-designs on (, 1) as follows. Let us denote by Q the
direct product of N-times copies of ) as a set. For X = (z1,...,zy) € OV
and a vector space H consisted of L!-integrable functions on (Q @), we say
that X is a multi-H-design on (€2, ) with respect to a positive constant A if

N
A ) = dy f .
;f(x) /Qf,u oranyfe’H

We shall explain that multi-designs can be regard as weighted designs as
follows. Let us denote by X = {z1,...,z5} C Q. Note that |X| < N if
z1,...Zy are not distinct. For each element T E X we put

m(Z):=|{i|z; =T}
For any positive constant A > 0, we define a positive function A% on X by

M X = Rag, T A-m(Z).
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Then by the definition of multi-designs and weighted designs on (2, u), we
have the next proposition:

Proposition 6.3.5. Let us fix X € QF, a functional space H and a pos-
itive constant A as above. Then the following conditions on (X, H,\) are
equivalent:

(1) X is a multi-H-design on (Q, p) with respect to the constant A.
(i) (X, Xx) is an weighted H-design on (Q, p).

6.3.2 Ke.y propositions

Let (Q1, p1), (Q2, uo) be general measure spaces and 7 : 1 — Qs a map. For
each element w € (), we fix a measure p, on the fiber 771 (w).

Let us take an Ll-integrable function f : Q; — C. We say that the
function f satisfies the property (F') if the following hold:

e For any w € {dy, the restriction f|r-1(,, is also an L'-integrable function
on (77 (w), th)-

e The function ,
I.f:Qy — C, w'_)/ fdp,
7= {w) A

is also an L'-integrable function on Qp with

/Q = /Q (nfydn

Rémark 6.3.6. The property (F) for a function f means that we can apply
“Fubini’s theorem” for f.

Example 6.3.7. Let (1,p1) = (5'3,@#53), (Qa, p2) = (S2,|—SlT]uSz) and
7w S — S? be the Hopf map. For each y € S%, we put the S*-invariant
probability measure w, on the fiber = (y). Then any continuous function on
O, = S® satisfies the property (F). Furthermore, for any f € Py(S?), the
restricted function f|z-1¢,) can be regard as in Py(S') for each y € S?, and
we have I, f € PL%J(SQ) (see Lemma 6.4.2 and Lemma, 6.4.3 in Section 6.4.2

for-more details).

161



Chapter 6

Let Y be a finite subset of €25 and Ay a positive function on Y. For each
y € Y, we take a finite subset 'y of 77*(y) and a positive function Ar, on
I'y. We denote by '
Xy,r):=|]|r, (6.3.1)
yeY :

and define a positive function on X (Y, I") by

Ax : X(Y,T)=| |Ty = Rso, 2= Ar(y)-Ar,(a) ifzely.
yeY '

Then the next lemma holds:

Lemma 6.3.8. Let f be a L'-integrable function on Q with the property (F).
Suppose that (Y, Xy) is an weighted (I f)-design on (Qg, pa) and (I'y, Ar,) is
an weighted (f|-1¢,))-design on (m~(y), py) for eachy € Y. Then (X(Y,T), Ax)
18 an weighted f-design on (Q, p1). ;

Proof of Lemma 6.3.8. Let us compute > Ax(z)f(z) as follows:

D @@ =Y > W), (w)F(w)

zeX y€Y vy €ly
=3 2@ | X A, (Wi |
yeY Yy ETy
~Soww [ s,
er W_l(y)
=Y M@ I @)
yeyYy
= / (Ixf)du
Q2
= fdps.
7]
This completes the proof. , O

Lemma 6.3.8 claims that if we have V\}eighted designs on ), and that on
some fibers, then we have an weighted design on {2;. We also consider the
converse setting as follows. Let X be a finite subset of Q; and Ay a positive
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function on X. We also fix a positive function Arx) on m(X). For each
y € 7(X), let us denote by I, := X N7~ !(y) and

1 .
)\ry : Fy — R>'07 Yy = ﬁ)\x(’)’y)

)\TI‘(X) Yy
Then the next lemma holds:
Lemma 6.3.9. Let f be an L'-integrable function on Q0 with the property
(F). Suppose that (X, Ax) is an weighted f-design on (4, p1) and (Ty, Ar,)
is an weighted (f|z—1(y))-design on (771 (y), py) for each y € n(X). Then
(m(X), An(x)) 18 an weighted (I f)-design on (Qq, u2).

The following corollary follows from Lemma 6.3.9 immediately:

Corollary 6.3.10. Let (X, \x) be an deighted f-design on (Q1, p1), and we
put :

Ay 1 m(X) = Rsg, g > Ax(z)

z€ly,

Assume that (7 (y)) =1 for any y € n(X). Let f be an Ll-integrable
function on Q with the property (F), and suppose that f|—1(, is constant for
each y € n71(y). Then (m(X), An(x)) is an weighted (I f)-design on (Qq, pa).

Proof of Lemma 6.3.9. Let us compute >_, . vy Arx)(y)(Irf) () as follows:

> AN = 3 Ao [ i

yen(X) : yem(X)
= D Ao Y An(n)fw)
yen(X) Y€y

Z Z Ax (1) f ()

yEm(X) 1€ly

= Z Z Ax(z) f(x)

yem(X) zeXnNr—1(y)

—Z)\X f(ﬂU

zEX

= fdp

1931
- [ @efde
Q2
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This completes the proof. | O

Let us take a finite-dimensional vector space H consisted of bLl-integrable
functions on {2 with the property (F). Then, ‘

LH={Lf|feH}
Hlr-1(w) 1= {flemrwy | f€H} for each w € Oy

are also finite-dimensional vector spaces consisted of L!-integrable functions.
The next propositions will be used for proofs of our main results in Section
6.4.2.

Proposition 6.3.11. Let (Y, Ay) be an weighted (I;H)-design on (Qa, p2)
and (Ty, Ar,) an weighted H|z-1(,)-design on (77 (y), pty) for each y € Y.
Then (X (Y,I'), A\x) defined as (6.3.1) is an weighted H-design on (Q, p1).
In particular, suppose thatY is a (I;H)-design on (Qa, ua) with respect to a
positive constant Ay, and there exists a positive constant Ar such that I'y is
an Hlz-1()-design on (77 (y), py) with respect to Ap for any y € Y. Then
X(Y,T) is an H-design on (0, p1) with respect to the constant Ay - Ap.

Proposition 6.3.12. Assume that (77 (y)) = 1 for any y € Qo and
(I f) € H for any f € H, where 7*(If) is the pull back of I.f by 7. Let
(X, Xx) be an weighted H-design on (1, 41), and put

Arx) : M(X) = Rso, g Z Ax(z).

zen—1(y)

Then, (1(X), Ar(xy) is an weighted (IH)-design on (Qa, p2). In particular,
if X is a H-design on (Qq, p1) with respect to a constant Ax, and ¢ = | X N
7 (y)| is constant on y € w(X), then m(X) is an (I,H)-design on (s, us)
with respect to the constant q - Ax.

These propositions are followed by Lemma 6.3.8 and Corollary 6.3.10,
respectively. ‘ '

Remark 6.3.13. Fact 6.1.3 in Section 6.1.1 can be obtained by combining
Proposition 6.3.11 with some arguments for the hight function h : S% —
[—1,1].

By combining Proposition 6.3.5 with Proposition 6.3.11, we also obtain
the next corollary for an algorithm to make designs on £); from amulti-design
on y:
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Corollary 6.3.14 (Corollary to Proposition 6.3.11). Let Y € QF be a multi-
(IH)-design on (Qs, uz) with respect to a positive constant Ay. We use the
notation Y and m(y) for eachy € Y as in Section 6.3.1. Let us fix a positive
constant A\r. Assume that for each ¥ € Y, there exists an H| -1 -design
Iy on (771 (y), py) with respect to the constant )\p We take such 'y for

eachG €Y. Then
= u Ty
ey

is an H-design on (Qq, p1) with respect to Ay - Ar.

6.4 Proofs of results in Section 6.2

In this section, we prove Theorem 6.2.4, Theorem 6.2.7, Lemma 6.2.9 and
Theorem 6.2.12 by using the results in Section 6.3.2.

6.4.1 Local trivializations of the Hopf map

In this subsection, we recall local trivializations of the Hopf map 7 : 83 — 2
defined in Section 6.2.
Let us take an open covering {U,,U_} of > CR x C as

Then we have local trivializations of the Sl-bundle 7 : S8 — S2 as

‘U+><5’1:>7r‘1(U+), £,n),z <\/1+€ 2(115)02') ;
U x 8§ 3 a Y U.), <1/ 21 —¢ \/ _>

In particular, for any element y = (&, 7) € U,, the fiber 7 l(y) can be

written by
B Nye [ 1 _ |
_{( 5% 2(1+§)nz>|z€Sl}CS3.
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Similarly, for any element y € (&,m) € U_, we have

0 ={ (/g5 15 f e

Remark 6.4.1. In Theorem 6.2.4, we need to take a base point s(y) on
7~ (y) for a given y € S?. By using the explicit form of m*(y) above, one
can choose s(y) explicitly.

6.4.2 Proof of Theorem 6.2.4 and Theorem 6.2.7

Throughout this subsection, we denote by py, := ﬁﬂsd. Then Mo is the
O(d + 1)-invariant Haar measure on S¢ with pf,(5%) = 1.

Let 7 : S — 82 be the Hopf map defined in Section 6.2.2. For simplicity,
we fix a base point s(y) on a fiber 771(y) for each y € S%. Note that we do
not assume that the map s : 5 — % with s o 7 = idg2 is continuous (in
fact, such a continuous map does not exist). Then we have an isomorphism

b St =N y), 2z s(y) -2

For each y € 8%, we consider the induced measure z, on 7~'(y) by the
normalized measure pjg; on S*. Such the probability measure ty, ON 7 (y)
does not depend on the choice of the base point s(y) since p, is invariant
by the S*-action.

To prove Theorem 6.2.4 and Theorem 6.2.7, we show the next two lemmas.

Lemma 6.4.2. Any L'-integrable function on S® satisfies the property (F)
with respect to the Hopf map 7 : S — S2, the normalized spherical measures
Wgs, Mg and the measure p;, on w(y) for each y € S* defined above (see
Section 6.3.2 for the definition of the property (F)).

Lemma 6.4.3. For any t € N, we have

_ LZ(Pt(S3)|7r—1(y))b= P(SY) for anyy € S%;

(see Section 6.3.2 for the definition of I).

Theorem 6.2.4 follows from Proposition 6.3.11 and Lemma 6.4.3. Theroem
6.2.7 also follows from Proposition 6.3.12 and Lemma 6.4.3.
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Proof of Lemma 6.4.2. Let us denote by
S% = {((cos p)eY ™1 (sinp)eV™12) | 0 < o < g—,O < 6,0, <2n} CC?
S? = { (cost, (sinyp)eV ") |0< ¢ <m 0<$p<2r} CRXC,
St={e"Tl0<b<2r}CC.

Then the volume forms corresponding to the normalized measures pgy (d =
1,2,3) can be written by :

1, T
dpigs = 4_772(Sln 2p)dpdfidfs (0 < ¢ < bR
1
diss = —(siny))dypdg, (0<y<m 0<¢<2m)

dilys = %d& (0 <6< 2m)

0L 91,92 < 27'('),

Here we put
Uy = { (cos®, (singp)e’ ") [0<gp<m, 0<p<2n} C 57,
UL = { ((cos p)eV™ 1, (sin p)eV "2 | 0 < o < g,o <0,,0,<2r} C S

Then the isomorphism between U, x S* and 7=*(U,) given in Section 6.4.1
can be written by

‘U+ X Sl — W_l(U_i_),
(cos®, (sing)e’ ™™, eV™1%) 1 ((cos E02—)6\/39, (sin %)e‘/‘—l(‘i"e)).

Under this isomorphism, we have

@z%, 61=0, 6, = —86.

Thus,

1 . '
-1,y = m(sm 2¢)dpdh1d0

1.
=g (sinv)dydgpdd
= dulU+d/"‘fS‘17
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where d,u;r_l(U” = Aptlss |10y and duy, = dpee|u,. Therefore, we can
apply Fubini’s theorem for

W—l(U+) ~ U+ X Sl.

Here, one can observe that p/(S? \ Uy) = 0 and plgs(S* \ 77 H(U4)) = 0. In
particular, for any L'-integrable function f on S%, we have ’

fdpgs = / faptn
/SS > m1(Uy) )
- / £, 2)didsn (2)dily, (€,7)
(¢meUs Jze8!

= /U +(er)du'm
= /S (Unf)duisa.

This completes the proof. / O
Proof of Lemmia 6.4.3. First, we shall prove that

LZ(P,:(S?’)]W_l(y)) = P(SY) for any y € S?, (6.4.1)
I(P(8%) c PL§J(52)-

Let us fix any n and denote by f;;.(a,a,b,b) := a'@’ BB the monomial on
R* ~ C? of degree n =i+ j + k+[. We also denote by the same letter f;
the restricted function on S° of the monomial f;x:(a,a,b,b). By Lemma
6.4.2, the function f;;x; on S° satisfies the property (F). To prove (6.4.1)
and (6.4.2), we only need to show the following: '

o L;(fi,j,k,llw—l(y))« € P,(SY) for any y € S?,
] Iﬂfi,j,k,z € PL%J(SQ).

For each y = (§,7) ‘€ 52, by the explicit formula of the fiber 7~ (y) given in
Section 6.4.1, there exists a constant ¢; ;,(y) € C such that

Foina(ty(2)) = Cigpaly) 27,
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Thus, 3 (fijkilr1()) € Pa(S"). In the cases where n =14+ 3+ k+ 1 is odd,
we have i — j — k + [ # 0. Therefore,

2Tyl =0 for any y € S2.

(In figpe)(y) = Cijpa(y) /

Sl

Let us consider the cases where n =i+ 5+ k + 1 = 2m is even. Here for
0 < i,k < m, we define a polynomial F;.,(£,7,7) on R* ~ R x C by

Fiom(&,0,7) = {515(1 +E)ikEn ik <i<m,

L1 =&k igmmF ifi<k<m.

om

Then deg F, ., = m. For each y = (£,1) € S?, by using |n]?> = 1 — €2, one
can compute that

i.g, ke d Dby = o
/7r—1(y) Figwadpty {0 otherwise.

Hence, we have I fijr1 € Pn(S?) = Pa(S5%).

Let us take a monomial A, ;x(£,7,7) == &' on R® ~ R x C of degree
1+ j+k = n. We also denote by the same letter h; ;; the restricted function
on S? of the monomial A;;x(¢,7,7). Since (77 (y)) = 1, we have that
I (mhijx) = hyjp Therefore, to complete the proof of Lemma 6.4.3, we

only need to prove that
‘ W*hi’j’k .E PQn(S3) )

The function 7*h; ;; on S* can be written by
(7" hijk) (@, b) = hig(m(a,b)
= (laf* — [bI*)*(2ab)’ (2b)*

= 29+K(qg — bB)ial T LD .

— —

Hence, we have mh; ;; € Ps,(S®). This completes the proof. \ O

6.4.3 Proof of Corollary 6.2.6

By combining Corollary 6.3.14 with Lemma 6.4.3, we have a genelalization
of Theorem 6.2.4 as follows:
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Theorem 6.4.4. Let Y = (yi,...,yn) € (SN be a spherical multi-t-
design, and T' C S* a spherical 2t-design [resp. (2t + 1)-design]. For each
i=1,...,N, we fir a base point s(y;) on 7~ (y;), and denote by

Ti:={sy)-v|vyel}cn (v

Suppose that T'y,...,T'y are disjoint from each other in S®. Then
| N
X(Y,s,T) = Ty s®
=l

is a spherical 2t-design [resp. (2t+1)-design] on S® with | X (Y,s,T)| = N-|T.
We give a proof of Corollary 6.2.6 as follows:

Proof of Corollary 6.2.6. Let us fix a a spherical multi-t-design Y := (y1,...,yn) €
(S?)N. We only need to show that there exists a spherical 2¢-design [resp. (2t+
1)-design] X on S2 with |X| = (2t + 1)N [resp. |X| = 2(¢ + 1) N]. Recall
that the finite cyclic subgroup T'; of S* of order ¢ is a spherical t-design

~on S if ¢ > t+ 1. First, we remark that for any fixed g, one can choose
8q(y:) € 71 (y;) for each ¢ = 1,..., N such that

r %ﬂI‘ ;=0 for any 7,7 with 7 # 7,
g q)j

where .

_ (Tgi = {sq(ys) - v | v €T} C 77 (wa).
Hence, by Theorem 6.4.4, we obtain a spherical 2¢-design X (Y, sa;41, '2¢41) on
52 [resp. (2t + 1)-design X (Y, sot19, Dazra) on S%] with | X (Y, sosr1, Tosr1)| =
(2t 4+ 1)N [resp. |X (Y, satr2, otia)| = 2(¢ + 1)N]. : O

6.4.4 Proof of Lemma 6.2.9 and Theorem 6;2.12

Recall that 7 : 82 — 52 is an S'-principal bundle. Therefore, for each
z1,x2 € S3, w(z1) = w(z2) if and only if there exists z € S* such that
zy = x1 - z. We also note that z - 2 = *z if and only if z = £1 for each
z € S3. Therefore, to prove Lemma 6.2.9, we only need to show the following
lemma:

Lemma 6.4.5. For any open neighberhood U of the unit of SO(4), there
exists o € U such that m(c(z)) # n(o(x-2)) for any z € S% and z € ST\ {£1}.
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Proof of Lemma 6.4.5. For each 6 € R, we define 09‘ € SO(4) by
os(a,b) = (acosh — /—1bsinf, —v/—~lasinf +bcosh) for any (a,b) € S°.

Note that 111’1’(1) og = e, where e is the unit of SO(4). Then for any 6 € R,
(a,b) € 8% and any z € S, we have

m(o6(a, b)) — m(0p((a,b) - 2))
= 7T(0'9(a b)) — m(og(az, bZ))
—1sin26((1 — 2%)ab — (1 — Z2)ab, (2> — 1)a®> + (Z2 — 1)1?) e R x C

Let us fix any 6 with 0 < § < §. Then sin 26 # 0. Thus we have 7(0p(a, b)) #
7(oe((a,b) - 2)) if z# 1. This completes the proof. : O

Recall that Theorem 6.2.10 follows from Lemma 6.2.9. We give a proof ‘
of Theorem 6.2.12 by using Theorem 6.2.10 and Theorem 6.4.4.

Proof of Theorem 6.2.12. Let Y = (y1,...,yn) € (S?)V be a spherical multi-
t-design on S2. To prove Theorem 6:2.12, we show that there exists a spher-
ical ¢-design Y’ on S? with |Y’| = (¢+1)N. By Theorem 6.4.4 and the proof
of Corollary 6.2.6 in Section 6.4.3, we can find a spherical (2t + 1)-design
X = X(Y, sgt42, Tara2) on S? with | X| = 2(¢ + 1)N. Note that X is antipo-
dal on 52 since I'y9 is antipodal on S'. Hence by Theorem 6.2.10, there
exists ¢ € SO(4) such that Y’ := m(0cX) is a spherical ¢-design on S? with
Y| = 3|X| = (t+1)N. O

6.5 Generalization to compact symmetric spaces

In this section, we generalize our results in Section 6.2 to some relations be-
tween designs on a compact Lie group G and that on a compact homogeneous
space G/K.

6.5.1 Designs on a compact homogeneous space

We consider the following setting:

Setting 6.5.1. G is a compact Lie group. K 1is a closed subgroup of G.
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Let us denote by G/ K the quotient space of G by K, and write
7:G—G/K, g »—>bgK

for the quotient map. It is well known that the subgroup K is also a compact
Lie group and the quotient space G/ K has a C*°-manifold structure such that
the map 7 : G — G/K is a C*°-submersion. Furthermore, 7 : G — G/K
admits a K-principal bundle structure with respect to the natural right K-
action on G. Let us denote by pg, px the two-sided Haar measure on G and
K with pg(G) = pg(K) = 1, respectively. We also denote by ug/x the left
G-invariant Haar measure on G/K with pe/x(G/K) = 1. In other words,
for any continuous function h on G/K, we put

hduc)x = / (TRpe, (6.5.1)
G/K ¢

where 7* f is the pull back of f by .

Example 6.5.2. Let G = SU(2) and K =T be a mazimal torus of SU(2).

Then G, K and G/K are isomorphic to S, S* and S?, respectively. Fur-

thermore, the quotient map m : G — G/K can be regard as a Hopf map. The
measures g, px ond pe/kx correspond to the normalized spherical measures

Wes, Wer and ps. defined in Section 6.4.2, respectively (see Section 6.8 for

more details).

Let @ = G, K or G/K. We note that any continuous function on € is
L'-integrable since © is compact. Therefore, for a vector space H consisted
of continuous functions on (3, we can define (weighted, multi) 'H—de31gn3 on
(Q, ua) as in Section 6.3.1.

Let us assume that dimH < oo. If Q is connected, the existence of an
‘H-design on  follows from [18, Main Theorem in Section 1]. Even if © is
non-compact in our setting, the existence of an H-design on 2 will be proved
in Section 6.6.1 as the next proposition:

Proposition 6.5.3. Let Q:=G, K or G/K in Setting 6.5.1, and H a finite-
- dimensional vector space consisted of continuous functions on ). Then there -
exists an H-design on 2.

Let us put C°(@G), C°(K) and C°(G/K) to the space of C-valued con-
tinuous functions on G, K and G/K, respectively. To state our results, for
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a finite-dimensional complex representation (p, V') of G, we shall define sub-
spaces Hg, Hi and HE )y of C°(G), C°(K) and C°(G/K), respectively as
follows (cf. [19, Chapter I, §1]): :

 Definition of HZ Let us denote by V'V the dual space of V, i.e. VV is the
' vector space consisted of all C-linear maps from V to C. We define a
C-linear map @ : V@ VY — C%G) by

B(v R p)(g) = {p(g v, p) forveV, o€ V¥ andgeq.

We put
HE =d(VeVY).

| Definition of H% Let us denote by
Hy = {flx | f € HE } C C°(K).

Note that H% depends only on the representation p|x of K.

Definition of Hf, , We write
(Ve ={peV"|po(p(k))=¢:V = Cforany k€ K},
aﬁd define a C-linear map & : V & (VV)X — C%(G/K) by
(v ®Y)(9K) = (p(g™)v,9) forveV, pe (V) andgeG.
One can observe that  is well-defined and we put |

Hey e =2V @ (VV)5).

We give two easy observations for #H§, as follows:

Observation 6.5.4. e For two finite-dimensional representations (p1, V1)
and (ps, Va) of G, we have HG®? = HE+HP for eachQ = G, K and G/K.

o If (p1, V1) and (p2, Va) are isomorphic from each other, then HE = HE?
for each Q@ = G, K and G/K. In particular, HZ®? = HE}.

In the rest of this section, we consider H£-designs on 1 = G, K or G/K.
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Example 6.5.5. Let us take (G, K) = (SU(2),T) as in Example 6.5.2. Then
for any | = 0,1,2,..., there uniquely exists an irreducible representation
(o1, Vi) of SU(2) with dimcV, = 1 + 1, up to isomorphisms. For any t,
let us consider the representation p(t) = @fzo pi of G. Then, under the
isomorphisms G ~ S, K ~ S and G/K ~ S?, we have Hpg(t) = B(S?),
%f{(t) = P,(SY) and H”G(/t)K = PL%J(SQ) (see Section 6.B for more details).

Remark 6.5.6. Let us take (G, K) = (SO(d+1),80(d)). Then a spherical
t-designs on S can be regard as an Hi.-designs on 8% ~ SO(d+1)/5S0(d),
by taking a suitable p. For any rank one compact symmetric space Q = G/ K,
one can find a suitable representation p of G, such that a t-designs on §) can
be regard as an HE -designs on Q (see [4] for the definition of designs on rank
one compact symmiric space). For some higher rank compact symmetric
spaces and some homogeneous spaces Q = G/ K, definitions of designs on
were given by [1, 18, 15, 16, 17. We also remark that each of them can be
regard as HE-designs on Q for some p.

The following fundamental properties of H%-designs will be proved in
Section 6.6.2:

Proposition 6.5.7. Let (p, V) be a finite-dimensional unitary representation
of G. Then.the following hold:

(1) If X is an HpG-design on G, then for any g1, 92 € G, the subset
91:Xg ={quzg |z € X} CC
is also an HP,-design on G.
(1) If T is an Hi-design on K, then for any ki, ke € K, the subset
klsz ={kivks |yel}Cc K
is also an Hf-design on K.
(110) If Y is an Hg/.K—design on G/K, then for any g € G, the subset
g¥ ={gylyeY}CG/K

is also an Hg/K—design on G/K.
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6.5.2 Results for designs on a compact homogeneous
space

Throughout this subsection, let us fix a finite-dimensional complex represen-

tation (p, V) of G. Recall that we defined a functional spaces H§ on Q for

each Q) = G, K or G/K in the previous subsection.
We give a generalization of Theorem 6.2.4 as follows: -

Theorem 6.5.8. Let Y be an ’Hg/K—design on G/K, and T' an HY,-design
on K. We fir a map s: Y — G such that mo s = idy. Let us put ’

X(Y,s,I) ={sy)y|lyeY, vel}tCqG
Then X (Y, s,T') is an HE-design on G.

- Remark 6.5.9. Let G be a finite group, K a subgroup of G, and (p,V) a
finite-dimensional complez representation of G. Then K itself is an Hb-
design on K. Thus, by Theorem 6.5.8, for any ’Hg/K—design Y on G/K, the

finite subset X := n=1(Y) of G is an H&-design on G. This fact was already
proved by T. Ito [10)].

Theorem 6.5.8 will be proved in Section 6.6.3.
The next corollary followed from Theorem 6.5.8 immediately:

Corollary 6.5.10. For a fized finite-dimensional complex Tepreseﬁtation
(P, V) of G,
| Ne(p) < Nk(p) - No/k(p),

where No(p) denotes the smallest cardinality of an Hg-design on Q.
We also denote by
NEZW (o) .= min{ N € N | there exists a multi-H7-design in O }.

Then Nq(p) > N (p) in general.
Let us consider Setting 6.5.1 and suppose dim K > 1. In this case, we
obtain an improvement of Corollary 6.5.10 as follows:

Theorem 6.5.11. In Setting 6.5.1, we suppose that diim K > 1. Then for
any finite-dimensional complex representation p of G,

~ Ne(p) < Nx(p) - N} (p).
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We will prove Theorem 6.5.11 in Section 6.6.4.
As a generalization of Theorem 6.2.7, we will also prove the following'
theorem in Section 6.6.3:

Theorem 6.5.12. Let X = (z1,...,zy) € GV be a multi-HE-design on G.
ThenY := (n(z1),...,7(zn)) € (G/K)V is a multi-Hf, . -design on G/K.

. Hence, we obtain the foﬂowing corollary, which gives an algorithm to make
a HY, /x-design on G/K from an HZ-design on G with a certain condition:

Corollary 6.5.13. Let X be an Hp-design on G and fiz p € N. If | X N
77 H7(x))| = p for any x € X, then m(X) is an HE g-design on G/K with
[m(X)] = 1X].

6.5.3 Results for designs on a compact symmetric Space

To state a generalization of Theorem 6.2.10, we need more assumptions for
(G, K).

Throughout this subsection, we consider the following setting:

Setting 6.5.14. G is a connected compact semisimple Lie group. 7: G — G
is an involutive homeomorphism on G such that Lie G™ contains no simple
factor of Lie G, where G := {g € G| 1(g9) = g}. K is a closed subgroup of
G™ with Lie(K) = Lie(G).

Then G/K becomes a compact symmetric space with respect to the
canonical affine connection on G/K. Note that a connected compact Lie
group G is semisimple if and only if the center of Lie G is trivial. In this set-
ting, we give a generalization of Theorem 6.2.10 and Theorem 6.2.12 below.

We denote the center of G by

Zg:={go€ G| goggo ' =g forany geG}.

Let us put
Zx (@) := KN Zg.

Since G is semisimple, Zg and is finite, and hence Zx(G) too.

Definition 6.5.15. Let X be a subset of G. For p € N, we say that X has
p-multiplicity for Zx(G) if ‘

I X NzZg(G)|=p foranyzeX.
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Since z € zZg(K) for~any z € 8% wehave 1 <|X NzZx(G)| <|Zx(G)|
for any subset X of G. Hence, if X has a p-multiplicity for Zx(G) then
1<p < |Ze(K)|

Example 6.5.16. Let us take (G,K) = (SU(2),T) as in Ezample 6.5.2.
Then (G, K) is in Setting 6.5.14 by taking a certain involution 7 : G — G.
In this case, Zx(G) = *1,, where Iy is the unit of G = SU(2). Thus, a
finite subset X of G ~ S has 1-multiplicity [resp. 2-multiplicity] if X s
antipodal-free [resp. antipodal] on S* (see Section 6.B for more details).

As a generalization of Lemma 6.2.9, we will prove the next proposition
in Section 6.6.5: '

Proposition 6.5.17. We consider a symmetric pair (G, K) in Setting 6.5.14.
Let X be a finite subset of G with p-multiplicity for Zx(G). Then for any
open neighberhood U of the unit of G, there exists g € U such that | Xg N

Hy)| = p for any y € m(Xg).

Recall that by Proposition 6.5.7, for any H%-design X on G and any
element g of G, the finite subset Xg is also an ’H” -design on G. Therefore,
by combining Corollary 6.5.13 with Proposition 6.5.17, we obtain the next
theorem:

Theorem 6.5.18. We consider a symmetric. pair (G, K) in Setting 6.5.14
and fit a finite-dimensional complez representation p of G. Then for any HE-
design X on G with p-multiplicity for Zx(G) and any open neighborhood U
of the unit of G, there exists g € U such that Y := n(Xg) is an ’H”G/K—design
on G/K with Y] = 2| X|.

Recall that Zx(G) is closed in K. We denote by K/Zx(G) the quotient
space. For a finite-dimensional complex representation (p, V') of K, we define
the functional space Hf 1zx(c) On K/Zg(G) in the sense of Section 6.5.1.
In particular, for a finite-dimensional complex representation (p,V) of G,
we consider the representation p|x of K and put H% to the corresponding
functional space on K/Zk(G) for simplicity.

Then the next theorem holds:

Theorem 6.5.19. We consider a symmetric pair (G, K) in Setting 6.5.14
and assume that dim K > 1. Then for any finite-dimensional complex repre-
sentation (p,V) of G,

Ngyx(p) < Nrjzw(c)(p) - NG (p),
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where Ng(p) denotes the smallest cardinality of HE-design on ) and
NZ#(p) .= { N € N | there ezists a multi Hf-design in QV }.
Theorem 6.5.19 will be proved as a more general theorem in Section 6.5.4.

Example 6.5.20. Let us take (G,K) = (SU(2),T) as in Ezample 6.5.2.
Then K/Zx(G) = 8*/+1. We consider (p(2t),V(2t)) as in Ezample 6.5.5.
Then Ngjz,c)(p(2t)) means the half of smallest cardinality of an antipo-
dal 2t-design on S*, and hence Nz, (p(2t)) = t + 1. Therefore, Theo-
rem 6.5.19 is a generalization of Theorem 6.2.12 (see Section 6.B for more
details). :

6.5.4 Generalization of Theorem 6.5.19

Throughout this subsection, we consider the following setting:

Setting 6.5.21. GG is a connected compact semisimple Lie group. K is a
closed subgroup of G. (G, 7', K') is in Setting 6.5.14 in Section 6.5.3. Assume
that dim K > 1 and Zg(G) = Zx/(G), where Zg denotes the center of G and
Zy(G) :=ZgNH for H=K or K'. :

For simplicity, we denote by Q := G/K [resp. & := G/K'] and put -

m: G — Q resp. @ : G — ] the quotient map. Note that we do not
assume that K C K’ nor K C K’. Thus we do not take a canonical map
between Q and . Let us also put Z := Zx(G) = Zx/(G). We remark that
Z is finite, since G is semisimple. ‘

In Section 6.6.6, we will prove the next theorem as a generahzatlon of
Theorem 6.5.19:

Theorem 6.5.22. For any finite- dzmenswnal complez representation (p, V')
of G, we have
Nev(p) < Nigyz(0) NG*(p),

where Noi(p) [resp. Nkjz(p)] denotes the smallest cardinality of an ’H
design on Q) [resp. an Hy ,~design on K/Z] and

NZwWlt(p) .= { N € N | there exists a multi-’?—[é-design in QN }.

We give an example of Theorem 6.5.22:
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Example 6.5.23. Let us firm and !l withm > 1> 1. We put G = SO(2m+
1) and ' ‘

K= {(1 A) |Ac SOI(Zm)},

K = {(B B’) | B€ O(l),B' € O(2m + 1 — 1) with det B -det B’ = 1}.

Then we have G/K ~ S*™ and G/K' ~ GR 11, here G5 1 denotes the
- real Grassmannian manifolds of rank [, i.e. the space consisted of all real
I-dimensional subspaces of R*™ . Then we have

Z = ZK(G) = ZKI(G) - {j2m+l}

where Iomy1 is the unit of SO(2m+1). Let us fir a finite-dimensional complex
representation (p,V) of G = SO(2m+1). Then by Theorem 6.5.22, we have
that ' v

NglR

2m+1,1

(p) < Nsogamy(p) - NEsati( ).

‘Remark 6.5.24. In Ezample 6.5.23, if we take a suitable (p, V'), then H”, -

g]l;m+1,l
designs on G& .1, can be regard as t-designs on Gy, .., in the sense of
Bachoc—-Coulangeon—Nebe [1]. We omit the details here.

6.6 Prokofs of results in Section 6.5

We prove Proposition 6.5.3, Proposition 6.5.7, Theorem 6.5.8, Theorem 6.5.11,
Theorem 6.5.12, Proposition 6.5.17 and Theorem 6.5.22 in this section.

6.6.1 Existence of designs

By using the results of Seymour—Zaslavsky [18] ,and‘Pfoposition 6.3.11, we
prove Proposition 6.5.3 as follows:

Proof of Proposition 6.5.3. Since () is a compact manifold, the number of
connected components of {2 is finite. Let us denote by Qq,...,n—-1 the
connected components of 2 = |_|f:ol ;. Note that each component €; is
path-connected. In particular, if N = 1, i.e. Q is connected, then the exis-
tence of H-designs on (2 is followed by [18, Main theorem]. Therefore, we
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consider the cases where N > 2. We put y; to the measure on §2; obtained by
restricting uq on € to Q; for each ¢ =0,..., N —1. Then (€, i;) are isomor-
phic from each other as measure spaces. We put I' := {0,1,...,N —1} and
define a natural measure pr on T, i.e. up(IY) = || for any subset IV of T'.
Let us fix an isomorphism between (Q, u) and (2o X T, go X pr) as measure
spaces. We put 7 : Q ~ Qg x I' = g the projection and denote by I, H the
finite-dimensional functional space on {}; induced by H and 7 as in Section
6.3. Because g is path-connected, by [18, Main theorem]|, there exists an
(I H)-design Y on . Furthermore, since I' is fintie, for each y € Qp, 771 (y)
itself is an H|;-1(,)-design on 7~ (y). Then, by Proposition 6.3.11, the finite
subset 7 1Y) =Y xI' of Qp'x I' ~ ) is an H-design on 2. This completes
the proof. : O

6 6 2 Representatlons on functional spaces

Throughout this subsection, we consider (G, K) in Setting 6.5.1. Proposmon
6.5.7 is proved in this subsection.

Let us denote by G x G and K x K the direct product group of G and
K, respectively. For any g € G, we define

LS :C°(G) —» C°(G), f—IEf
RS :CG) = C°G), f—REf

by (LIf)(g) = f(g7'¢) and (RTf)(g) = J(gg) for any ¢’ € G. Note
that for any element k£ € K, both L¢ and R{ induce the maps LE and

RE from C%(K) to C°(K). These maps give the left (G x G)-action [resp.
(K x K)-action] on C°(G) [resp. C°(K)], which are denoted by L% x R®
[resp. L¥ x RX]. That is, for any (g1,92) € G x G and f € C°(G), we put

(LE x R®) (g0 f = (RS o L) f € C°(G).
We also define
LSK : C°G/K) = C*(G/K), fw LI/Xf

by (LG/K N@K) = f(g7'¢'K) for any ¢ € G. We denote by LG/K the
induced left G-action on C°(G/K).

-Let us fix a finite-dimensional complex representation {p, V') of G. Recall
that VV is the dual space of V. Then VV can be regard as a representation
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of G as follows:
pY(g): VY VY, prpo(p(g™)).

In particular, we obtain a representation (p K p¥,V ® VV) of G x G. Fur-
thermore, for m € N, let us denote by (p®™, V®™) the direct sum of m-th
copies of (p,V). Then V ® (VV)¥ can be regard as a representation of G
isomorphic to (p®dm(VV)¥ y&dim(V¥)Ly

Recall that in Section 6.5.1, we defined a C-linear map @ : V@ VY —
C%(@) [resp. @ : V@ (VY)" — C°(G)] and put H¢; [resp. H k] to the image

of @ [resp. 5] One can observe that the next lemma holds:

Lemma 6.6.1 (cf. [19, Chapter I, §1]). (i) ®:V VY — C%G) is (G x
G)-intertwining.

(i) ®:V ® (VV)E - C%G/K) is G-intertwining.
The next corollary follows from Lemma 6.6.1 immediately:

Corollary 6.6.2. For a ﬁnite-dimeﬁsional complex representation (p, V') of
G, the following hold: :

(i) G x G acts on the subspace HY of C°(G) by L€ x RC.
(1)) K x K acts on the subspace H5, of C°(K) by L¥ x R¥.
(#1) G acts on the subspace He i of C°(G/K) by LC/K,

We will give a formula of irreducible decompositions of representations
H?, by using the irreducible decomposition of (p, V) in Section 6.A.

By combining Corollary 6.6.2 with the definition of ug, ux and pg/x, we
obtain Proposition 6.5.7.

6.6.3 Proofs of Theorem 6.5.8 and Theorem 6.5.12

Throughout this subsection, we consider Setting 6.5.1. Recall that 7: G —
G/K is a K-principal bundle. For simplicity, we fix a base point s(y) of the
fiber 7~1(y) for each y € G/K. We should remark that the map s : G/K —
G, y — s(y) is not continuous in general. For each y € G/K, the map

b K =71 y), ke s(yk

181



Chapter 6

is an isomorphism between topological spaces. In particular, the normalized
two-sided Haar measure ug induces a probability K-invariant measure i, on
7~ Y(y) for each y € G/K. Note that p, does not depend on the choice of the
base point s(y).

Let us fix a finite-dimensional complex representation {p, V) of G. To
prove Theorem 6.5.8 and Theorem 6.5.12, we show the next two lemmas:

Lemma 6.6.3. Any f € H{ satisfies the property (F') with respect to the
~quotient map ™ : G — G/K, the normalized measures pg, pe/x and fy
(y € G/K ) defined above (see Section 6.3.2 for the definition of the property

(F))-
Lemma 6.6.4. The following hold:

L;(Hg]ﬂq(y)) = 'Hf( for any y € G/K,
I(Hg) = Hy i and m™(He k) C He-

(see Section 6.3.2 for the definition of I;).

Theorem 6.5.8 is followed by Lemma 6.6.3 and Proposition 6.3.11. Fur-
thermore, Theorem 6.5.12 is followed by Lemma 6.6.4 and Proposition 6.3.12.
Therefore, we shall prove Lemma 6.6.3 and Lemma 6.6.4.

It is well known that the complex vector space V admits a G-invariant
Hermitian inner-product ( , )y. That is, the representaion (p, V) can be
regard as a unitary representation of G with respect to the inner-product
(, )v. In the rest of this subsection, we fix such G-invariant inner-product
onV.

Let us put

Ve ={veV|plglv=v foranyge G},
VE . ={veV|pklv=v foranyke K}
Note that V& ¢ VE c V. We write pg : V — V¢ and pK .V — VE for the

orthogonal projections. We remark that pg o px = pg.
We will use the following well-known fact:

Fact 6.6.5. Let H be a compact Lie group and g the two-sided normalized
Haar measure on H. We take a finite-dimensional unitary representation
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(p, V) of H with respect to the Hermitian inner-product (, )y onV. Let us
denote by pg : V — VE the orthogonal projection on V' to the subspace

VB ={veV|phv=v}CV.
Then for each v € V, the vector pr(v) in VE is the unigue one with
spay = [, p(Bo)vdua(h) for any o € V.
heH
We are ready to prove Lemma 6.6.3 and Lemma 6.6.4:
Proof of Lemma 6.6.3 and Lemma 6.6.4. By the definition of ® and 5, we

have that

(@) =dv oY) e HY (6.6.1)
for any v € V and any ¢ € (VV)X. In particular, we also obtain that
L(®(v ® ) = B(v ® ¥) since py(r~1(y)) = 1 for any y € G/K. Thus we
have proved that ™ (Hg ) C Hg and HE ;o C Ir(He). Recall that we are

considering the G-invariant inner-product ( , )y on V. For each v € V', we
define 7 € VV by

7:V—oC, =, v)y.
Then the map

VsV, ve70

is an anti C-linear isomorphism. Let us fix any v;,v, € V, and put f :=
®(v; ® 7). To completes the proof of Lemma 6.6.3 and Lemma 6.6.4, we
only need to show the following:

o U(flr-1(y)) is in H for any y € G/K,

e I.fisin Hg/K and

/G fdua = /G (B

First, we remark that f(g) = (v1, p(g)v2)y for any g € G. Therefore, for
each y € G/K and k € K, we have

by (Fla-10) (k) = (v1, p(s(y)k)v2)v
= (p(s(y) ™)1, p(k)va)v
= ®(p(s(y) ™ )v @ 72) (k)
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In particular, ¢}(fls-1¢,)) € Hi for any y € G/K. Here we remark that
is in (VV)¥ for any w € V¥. Therefore, by using Fact 6.6.5 and 7(s(y))
s(y)K =y for y € G/K, we have

@ = [ s

B AEK<p<s<y>*1>v1, plk)v2)y duxc (k)

= (P(S(y)_l)UhPK(Uz))V
= B (v1 ® pr(v2))(¥).

Hence I f = ®(vy ® px () € He g~ Finally, by using the property (6.5.1)
of the measure ug/x in Section 6.5.1, Fact 6.6.5 and the equation (6.6.1)
above, we obtain that ‘

/ (wa)dMG/KZ/ B(v1 ® pre(v2))dpcyx
G/K G/K

tw

~ [ (80 © pilon))
Z/@(Ul ®pK(U2)))dHG
G

: :/GG(vl,p(é)bx(vz))vdHG(g)

= (v, (pc OPK)(Uz))V
= ("UlrpG('UQ))V

= / (v1, p(9)v2)vdpc(9)

This completes the proof. , O

6.6.4 Proof of Theorem 6.5.11

Let us consider (G, K) in Setting 6.5.1 and fix a finite-dimensional complex
-representation (p, V) of G. By combining Corollary 6.3.14 with Lemma 6.6.4,
we have a generalization of Theorem 6.5.8 as follows:
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Theorem 6.6.6. Let Y = (y1,...,yn) € (G/K)N be a multi—HpG/K'-design,
and I’ C K an H% -design. For each i =1,...,N, we fix a base point s(y;)
on mY(y;), and denote by

L= {s(y)y|yel}cr (w)

Suppose that Ty, ..., T'n are disjoint from each other in G. Then
» N
X(Y,sT):=| [Tic@G
i=1

is an HZ.-design on G with | X(Y,s,I')] = N - |T|.
To prove Theorem 6.5.11, we show the next lemma:

Lemma 6.6.7. Let K be a Lie group with dim K > 1. Then for any finite
subsetT' of K and m € N, there exists ky, . . ., kn € K such that k1T, ..., kI
are disjoint from each other in K. . :

Proof of Lemma 6.6.7. We only need to show that for any finite subset I of
K with T' C I, there exists k € K such that k' NIV = (. Since I" and I"
are finite, we can find an open neighborhood U of the unit of K such that
ky # + for any v € T and o € I with v # 4. Since dim K # 0, we can
take k € U \ {e}, where e is the unit of K.  Then we have kT NI =0. O

We are ready to prove Theorem 6.5.11:

Proof of Theorem 6.5.11. Let Y € (G/K)" be a multi-Hf, . ~design, and I'
an Hf-design on K. We only need to show that there exists an H%-design
X on G with |X| = N -|['|. By using Lemma 6.6.7, one can choose a base
point sp(y;) on 7 1(y;) for each y; such that

INT; =0 for any 4,5 with ¢ # j,

where T'; := {sp(y;)y | ¥ € I'}. Hence, by Theorem 6.6.6, the finite subset

is an Hg-design on G with | X|= N -|T'|. O
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6.6.5 Proof of Proposition 6.5.17

We consider (G, K) in the general setting 6.5.1 and suppose that G is con-
nected. Let us fix a finite-dimensional complex representation (p, V') of G.
Let us define the closed subgroup I¢ of K as follows:

={keK|gkg‘1€KforanygEG}.
Note that I is a normal subgroup of G.

Definition 6.6.8. Let X be a finite subset of G. Forp € N we say that X
has p-multiplicity for 1% if

IXNzI¢|=p foranyzeX.

Since I$ is a normal subgroup of G, if X has p-multiplicity for 1€, then
the finite subset- X g of G also has p-multiplicity for I£, for any g € G.
Proposition 6.5.17 is-followed by the three lemmas below:

Lemma 6.6.9. We consider (G, K) in the general setting 6.5.1. Suppose
that G 1is connected and (G, K) satisfies the following condition:

Condition (x) For any k € K \I¢ and any open neighberhood U of the unit
of G, there exists g € U such that gkg™' € K ..

~ Then for any finite subset X of G with p-multiplicity for I and any open
neighberhood U of the unit of G, there exists g € U such that

| XgNzgK| =
for any z € X.

Lemma 6.6.10. We consider (G,K) in the general setting 6.5.1. Suppose
that G is connected and there exists an involutive homeomorphism v on G
such that K is a closed subgroup of G™ with Lie K = LieG", where G :=
{g€G|7(g)=g}. Then (G, K) satisfies the condition (x) in Lemma 6.6.9.

Lemma 6.6.11. In Setting 6.5.14, 1% = Zx(G).

Proof of Lemma 6.6.9. Let us fix any finite subset X of G' and any open
neighborhood U of the unit of G. We only need to show that there exists
g € U such that

| XgNzgK|=|XNzI¢| forany z € X.
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We denote by my : G — G/1$ for the quotient map. Since I¢ is a normal
subgroup of G, for any g € G and any z,z’ € G with m(z) = m(a’), we
have my(zg) = mo(z'g). Furthermore, since I is a subgroup of K, for any
z,2' € G with mo(z) = mo(z’), we have 7(z) = 7(z’). Recall that both of the
quotient map 7 : G — G/K and the action map

GxG—=G, (z,9)—zg

are continuous. Since X is finite in GG, we can find an open neighborhood Uy

of the unit of G such that 7(zgo) # 7(2'go) for any go € Uy and z, 2’ € X with

7(z) # m(z'). Let us consider z,z’ € X with 7(z) = 7(z’) but mp(z) # mo(z’).

Then there exists k € K \ I such that ' = zk. In general, for z € G,

k € K and g € G, we have that w(zg) # m(xkg) if and only if g'kg & K.

Therefore, by the condition (%) of (G, K), we can take g € U N Uy satistying

that w(zg) # #(2'g) for any z,2’ € X with m(z) # mo(a’). That is, for
z,x' € X, we have that n(zg) = n(2'g) if and only if m(x) = me(z’), and

hence :

[ XgNagK|=|Xgnr (n(zg))| = |(X N mo™ (mo()))g] = |X N 2T ).
O

Proof of Lemma 6.6.10. Let us fix any &k € K. Suppose that there exists an
open neighberhood U of the unit of G such that

gkgt € K for any g € U.

Our claim is k € I¢. Since G is connected and K is union of some connected
components of G7, we only need to prove that gkg=! € G7 for any g € G.
Let us put

Ze(k) :={g € G| gkg™" = k}.

Then gkg™! € G7 if and only if 7(g)*g € Zg(k). Therefore, we have
7'(9)_19 € Zg(k) foranygeU.

Then by Lemma 6.6.12 below, we have G = Zg(k)G™. Hence, gkg™' € G™
for any g € G. O

To completes the proof o.f Lemma 6.6.10, we show the next lemma:
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Lemma 6.6.12. Let G be a connected compact Lie group, H a closed sub-
group of G and T an involutive homeomorpshim on G. Suppose that there
exists an open neighberhood U of the unit of G such that

(9)"'ge H foranygeU.
Then G = HG", where G™:={g € G| (g) =g }.

 Proof of Lemma 6.6.12. For simplicity, we denote by K’ := G" = {g € G |
- 7(g) = g} and write 7’ : G — G/K' for the quotient map. Our claim means
that the natural left H-action on G/K’ is transitive. It is known that the
H-orbit 7'(H) through egK is closed in G/ K’, where e is the unit of G (see
Helgason [9, Proposition 4.4 (b)]). Since G/K’ is connected, we only need to
show that the H-orbit 7'(H) is open in G/K'.

We write g and ¢ for the Lie algebra of G and K’, respectively. The
differential action of 7 on g is denoted by the same letter 7. Then ¢ = {X €
g | 7(X) = X}. We also denote by q = {X € g | 7(X) = —X}. Then
we have the decomposition g = € & q as a real vector sapce. We denote by
Pq © § — g the projection with respect to the decomposition g =£ @ q. It is
well known that g [resp. q] can be regard as the tangent space of G at the
unit eg € @ [resp. the tangent space of G/K’ at egK’]. Then the differential
of the quotient map 7’ : G — G/K' at the unit eg can be considered as
Dy 0 8 — q (see Helgason [9, Theorem 3.3 (iii)]). Let us denote by

0:G—G, g— (9 g.
Then, one can observe that the differential map dp g—gofpis
' dyo = 2p,.
Thus, the differential of the map
Top:G—=G/K', g~ 1(9) 9K’

at the unit eg is surjective. In particular, there exists an open neighborhood
U’ of the unit eg such that #(U’) is open in G/K’. By the assumption,
we have an open neighborhood U of eg such that ¢(U) C H. Therefore,
(7" o )(UNU') is open in G/K’ and included in 7'(H). Hence, the H-orbit
7/(H) in G/K’ is open. This completes the proof. O

To prove Lemma 6.6.11, we show the next lemma:
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Lemma 6.6.13. Let G be a connected semisimple Lie group and M a closed
normal subgroup such that Lie M contains no simple factor of LieG. Then
M is contained in the center Zg of G.

Proof of Lemma 6.6.13. Lie M is an ideal of Lie G since M is normal in G.
By the assumption that Lie M contains no simple factor of Lie G, we have
that Lie M = {0} and hence M is discrete. It is well known that any discrete
normal subgroup of a connected Lie group G is contained in the center Zg
of G. Thus, M C Zg. ‘ O

We are ready to prove Lemma 6.6.11:

Proof of Lemma 6.6.11. By the definition of I¢, one can observe that IZ is
the maximum closed normal subgroup of G contained in K. Recall that we
are assuming that Lie K containes no simple factor of Lie G, and Zx(G) :=
K N Zg is normal in G. Therefore, by Lemma 6.6.13, we have I = Zx(G).

' O

6.6.6 Proof of Theorem 6.5.22

In this subsection, we prove Theorem 6.5.22. To this, let us denote by w :
K — K/Z and o' : K' — K’/Z the quotient maps. Throughout this
subsection, we fix a multi-Hf-design ¥ € O and an 5 /z-design E on K/Z.
To prove Theorem 6.5.22, it suffices to show that there exists an Hg,-design
Y’ on (¥ with |Y'| =N - |E|.

First, we shall prove the next lemma:

Lemma 6.6.14. For any m € N, there exists ki,...,km € K such that
ki, ..., knE are disjoint from each other in K/Z. ‘

Proof of Lemma 6.6.14. Since Z is a finite normal subgroup of K, the quo-
tient space K/Z is also a compact Lie group with dim K/Z = dim K > 1.
Thus, our claim follows from Lemma 6.6.7. O

Since Z is finite group, Z itself is an Hz-design on Z for any functional
space Hz on Z. We put pz := |Z|. By using the observation above, we prove
the next lemma: :

Lemma 6.6.15. For any m € N, there exists an Hfy-design I'(m) on K with
IT(m)| =m-pgz - |E| such that vZ C I'(m) for any v-€ I'(m).
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Proof of Lemma 6.6.15. Let us take ki,...,kn € K as in Lemma 6.6.14.
Then by Observation 6.3.4, |

E(m) = |_| k=
i=1

is an My ,-design on K/Z with |Z(m)| = m|E|. Recall that Z itself is an
H-design on Z. Thus by applymg Theorem 6.5.8 for (K, Z), we obtain an
Hi~design

I'(m) := w‘l(E(m))
on K with |I'(m)| = |E(m)| - |Z] = m - pz - |=|. By the definition of I'(m),
one can observe that vZ C I'(m) for any v € I'(m). . O

We are ready to prove Theorem 6.5.22:

Proof of Theorem 6.5.22. We fix Y € QN B C K/Z as above. It suffices to
show that there exists an Hp,-design Y’ on Q' with |Y'| = N - |Z|. Here, we
use the notation Y and m(y) for 7 € Y as in Section 6.3.1. We put pz := |Z|.
By Lemma 6.6.15, for each 7 € Y, we have an H%-design T'(m(7)) on K with
IT(m(y))| = m(Y) - pz - |Z] such that vZ C I'(m(y )) for any v € I'(m(7)). For
each 7 € Y, we also fix a base point s(7) € 7~1(¥) and put

Iy:={s@yen @ |veT(m®@)}.
Then by combining Corollary 6.3.14 with Lemma 6.6.4, the finite subset
yey .

of G is an H&-design on G with | X| = pz- N -|E|. Recall that vZ C I'(m(7))
for any v € I'(m(7)). Thus, zZ C X for any z € X. This means that X has
pz-multiplicity for Z. Hence, by Theorem 6.5.18, there exists ¢ € G such
that Y’ := n(Xg) is an H%,-design on @’ with |Y'| = plZ[X| =N-|5|. O

Appendix 6.A Irreducible decomp051t10n of
pr

Let us consider (G, K) in the general setting 6.5.1, and fix a finite-dimensional
complex representation (p, V') of G. In this section, we recall some relations
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between the irreducible decomposition of (p, V) and that of the corresponding
functional space He [resp. HE, /K] defined in Section 6.5.1 (see Proposition
6.A.4 below). Note that the results for the relation between representations
(p, V) and HZ of G can be used for the relation between representations
" (p|x, V) and HE of K. '

By Lemma 6.6.1 in Section 6.6.2, the C-lienear map ® : V@ V"V — C°(G)
is (G x G)-intertwining and @ : V ® (VV)X = C°(G/K) is G-intertwining.
In the case where (p, V) is irreducible, the next fact is well known:

Fact 6.A.1 (cf. [19, Theorem 1.1 (1) and Theorem 1.3 (1)]). Suppose that
(p, V) is irreducible. Then, both® : V@VY — C%G) and ®: V@ (VV)X —
C°G/K) are injective. In particular, in this case, the following hold:

(1) As a representation of G x G, the functional space HZ, on G is isomor-
phic to the irreducible representation (p X p¥,V @ VV).

(i5) As a representation of G, the functional space ’Hpg/K on G/K . is iso-
morphic to the direct sum of (dim VE)-copies of the irreducible repre-
sentation (p,V).

Remark 6.A.2. In this case, we have dim VK = dim(VV)¥.

Let us consider the Hermitian inner-product ( , )q on C°(Q) for Q =
G or G/K as follows:

(f, ) = /Q f-Fdua for f,f € CO(Q),

where f is the complex conjugation of f’. Then (, )g [resp. (, )g/x] is
invariant by the (G x G)-action [resp. G-action]. '
The following fact is also well known:

Fact 6.A.3 (cf. [19, Theorem 1.1 (1) and Theorem 1.3 (1)]). Let {p1, V1)
and (pg, V2) be irreducible finite-dimensional complex representatons of G.
Suppose that (p1, V1) and (p2, V2) are not isomorphic from each other. Then
for each Q=G or G/K,

HEY L HE
with respect to the inner-product (, )q on C°(Q).
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Let us fix a finite-dimensional representation (p,V) of G with its irre-
ducible decomposition '

ppg™ @ @pP™,

where (po, Vo), . . ., (pr, V2) are irreducible representations of G not isomorphic
from each other, and pfem’ is the direct sum of m;-th copies of irreducible
representation p; of G for each I =0,...,t (where m; > 1).

By combining Observation 6.5.4, Fact 6.A.1 with Fact 6.A.3, we have the

next proposition:
Proposition 6.A.4. For the representation (p,V) of G above, we have

HE ~ (poRpY) @ -+ @ (0:Bp))  as representations of G X G,
: im V& im VE .
’HPG/K ~ pgad OO POy p?d s representations of G.
Finally, we give useful two lemmas below:

Lemma 6.A.5. Let us take a finite-dimensional complex irreducible repre-
sentation (p, V') and fiz a finite-dimensional irreducible (GxQ)-subrepresentation
" H of CUG). If (0 R pY,V @ VV) is isomorphic to (L€ x RE),H) as repre-
sentation of G x G, then H%: = H.

Lemma 6.A.6. Let us take a finite-dimensional complex irreducible repre-
sentation (p, V) and fiz a finite-dimensional irreducible G-subrepresentation
H of C°(G/K). Suppose that dimVE = 1 and (p,V) is.isomorphic to
(LG/X H) as a representation of G. Then Heyx =H.

These lemmas follows from Peter-Weyl’s Theorem (cf. [19, Theorem 1.1
(2) and Theorem 1.3 (2)]) :

Appendix 6.B Hopf map as a quotient map

In this section, we explain that Main results in Section 6.2 is followed by
results in Section 6.5. :
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6.B.1 Hopf map as a quotient métp :

Let us consider the group structure on §2 by
(a,b) - (@',b) = (ad’ — bV, abl +ba’) for (a,b), (a,¥) € S°.

Then S° is a 3-dimensional connected compact simple Lie group. Here we
put ‘
SU2):={ge GL(2,C) | g¢* = L5, det g =1}

where ¢g* is the conjugate transpose of g€ GL(2,C). Then we can identify
S3 with SU(2) by

S8 1>>SU(2), (a,b) — < \/f_ﬁ ‘/gb)

‘We remark that the center of the Lie group SU(2) ~ S° can be written by

za—{=(5 %) .

Let us consider the direct product group SU(2) x SU(2). Then SU(2) x
SU(2) acts on SU(2) ~ S3 as follows:

(SU(2) x SU(2)) x SU2) = SU(2),  ((91,92),9) = 91992~"

One can observe that the (S U (2) x SU(2))-action on S® induces a Lle group
homomorphism ¢ : SU(2) x SU(2) — SO(4) with

Ker ¢ — { (g0, 90) € SU(2) x SU(2) | go = + ((1) ?) } .

In particular, ¢ : SU(2) x SU(2) — SO(4) is double covering.
Recall that the spherical measure pgs on S® is an SO(4)-invariant Haar
measure on S°. The normalized spherical measure plg, = | ;slusa can be

regard as the normalized two-sided Haar measure Hsu(z) on SU@2) ~ $3
since ¢ : SU(2) x SU(2) — SO(4) is a covering. 3
We denote the Lie algebra of SU(2) by

su(2):={AeM2,C)|A+A*=0,Trd=0},
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and define the iﬁner—‘product (, )su2) on the 3-dimensional real vector space
su(2) by
(5 dougzy : 5u(2) X 5u(2) 2 R, (Ay, Ag) = Tr(A1Ay).
where A; A, is the product of the matrices A;, Ay € M(2,C). We denote the
adjoint action of SU(2) on su(2) by
’ SU(2) x su(2) — su(2), (g,A) — gAg™™.

Then it is well known that the adjoint action of SU(2) on su(2) preserves
the inner-product ( , )su2) on su(2). Here we give an isomorphisim

25 {Aesu) | (4 Aaxy =1}, (En)— (\/?é _\/77f1‘§> .

Then, SU(2) acts on S? by the adjoint action. Omne can observe that the
SU(2)-action on S? induces a Lie group homomorphism ¢ : SU(2) — SO(3)

with
Kery = {i ((1) (1)>} .

In particular, ¢ : SU(2) — SO(3) is double covering and SU(2) acts on S°
transitively.
Here, we put

T::{(é g) |zeC, |z|:1} c SU(2).

Then T is the isotropy subgroup of SU(2) at
o' 0 2
( 0 —=I € 5% Csu(2).

In particular, we have an isomorphism

SU@R)/TS 2, gT g (\/? _\(/)__1> gt

Recall that the spherical measure pgz on S? is an SO(3)-invariant Haar
measure on S?. The normalized spherical measure g, = |?12-|,udgz can be re-
gard as the normalized SU(2)-invariant Haar measure pigy (o) on SU(2)/T =~
52 since 1 : SU(2) — SO(3) is a covering. Furthermore, by the isomorphism’

T — S, (g g>b—)z,
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~ the normalized spherical measure pjg = ﬁﬂsl can be regard as the nor-

malized two-sided Haar measure 7 on T ~ S,

The natural right T-action on SU(2) can be regard as the right S*-action
on 5% defined in Section 6.2.2. Hence, the Hopf map 7 : S° — S? can be
regard as the quotient map 7 : SU(2) — SU(2)/T.

Let us put .

T: SU(2) — SU(Z), g 11,19—71,1

1 0
Il,l == <0 _1> .

Then SU(2)” = T. Therefore, (SU(2),T) is in Setting 6.5.14. Since Zgy(z)
is contained in 7', we have :

Z2(sU) = Zawe = { £ (5 9) }-

Hence we obtain the next proposition:

where

Proposition 6.B.1. (i) If a finite subset X of S* ~ SU(2) has p-multiplicity
for Zr(SU(2)), thenp =1 or 2. :

(11) A finite subset X of S® ~ SU(2) has 1-multiplicity for Zr(SU(2)) if
and only if X is antipodal-free, i.e. for any x € X, the element —x € 53
is not in X.

(117) A finite subset. X of S® ~ SU(2) has 2-multiplicity for Zp(SU(2)) if
and only if X is antipodal set on S°.

6.B.2 Harmonic analysis

It is well known that for any [ = 0,1,2,..., there uniquely exists an irre-
ducible complex representation (p;, ;) of SU(2) with dimV; =1+ 1.

Example 6.B.2. For [ =0,1,2,..., let us denote by Hom;(u,v) the set of
all homogeneous polynomial over C with variable u,v such that homogeneous
degree is . Then Homy(u,v) can be regard as an (I + 1)-dimensional rep-
resentation of SU(2). One can check that this representation is irreducible.
Therefore, we can take V; = Homy(u, v).
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Recall that for Q = SU(2),T or SU(2)/T, we defined functional spaces
HE on Q in Section 6.5.1. For d = 1,2,3, what is Hg,? To answer this
question, we introduce some notation as follows. For [ = 0,1,2,..., let us
denote by

Hom, (R%1) := {Homogéneous polynomials over C on R**! with degree [},
Harm, (R := { f € Homy(R*1) | Af =0},
Harm;(5%) := { f|se | f € Harmy(R*1) },

where A is the Laplacian. We remark that it is well known that
d-+1 d+1—
dim¢ Harm;(S9) = < —;— > - ( _ll_ 5 2)

and Harm;(S?) is irreducible representation of SO(d + 1) if d > 2.
Then the next lemma holds:

Lemma 6.B.3. For each 1 =0,1,2,..., we have
H?, = Harm(S°),
: ‘ Harmgo(S') 4f1 is even
H? = Harmy(S?) ® Harmy_o(SY) @ -+ - @ ° ’
st army(.5°) army—2(S°) Harm;(SY) if1 is odd,
o _ ‘Harm%(SQ) if 1 is even,
5 {0} ifl is odd, |
Sketch of the proof of Lemma 6.B.3. For each n € Z, let us denote by x, the
1-dimensional complex representation of T ~ 8! as
) % z 0 "
Xn i1 — C7, (0 E) — 2"

By Example 6.B.2, one can prove that H?f@x(‘"’ = Harm,(S*) for each n.
Here, one can also observe that the following holds: The restriction (p;)|r of
pto T ~ S can be decomposed by

(Pl)|T ~ X1 D Xa-2) D D X(~1+2) D X(-1)-

In particular,

Jim VT _' 1 if I is even,
10 iflis odd.
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Hence, we have

Harmg(S?) if [ is even
1% = Harmy(S") & Harm;_(S*) @ - -- ° ’
st army(§) & Harmy—o(55) & -+ & Harm, (S*) if { is odd,
Mo, = {0} if Lis odd.
If I is even, then Harm, (S8?) is an irreducible representation of SO(3) with

dimHarm%(SQ) =l+1

Recall that SU(2)-action on S? factors the double cover SU(2) — SO(3).
Thus, Harm, (5?).is an irreducible representation of SO(3) with its dimension
I+ 1. Therefore, Harm (8%) ~ V] as an irreducible representation of SU(2).
By Lemma 6.A.6, we have H; = Harm%(SQ) if [ is even.

Recall that for each I = 0,1,2, ..., there uniquely exists an complex ([ +
1)-dimensional irreducible representation p; of SU(2), up to isomorphisms.
By using Peter—-Weyl’s theorem (cf. [19, Theorem 1.1 (2)]), one can prove that
Harm;(5%) is the unique irreducible (I 4 1)?-dimensional (SU(2) x SU(2))-
subrepresentation of C°(S%) ~ C°(SU(2)). Hence, Harm;(S3) ~ V; @ V}" as
an irreducible representation of SU(2) x SU(2). Thus, by Lemma 6.A.5, we
also have g, = Harm;(S5%). : O

For each t € N, let us denote by p(t) := @715:0 pi- For simplicity, we put
Hiy = ’Hg,(;) for d = 1,2, 3. By combining Lemma 6.B.3 with the well-known
fact that '

t
P(8% = EB Harm;(S%) for any d and ¢,
1=0

we obtain the following proposition:
Proposition 6.B.4. For any t, we have
%tss - Pt(SS), ng = .Pt(Sl) and Hfgz = PI.%J (SQ)

Therefore, by Proposition 6.B.1 and Proposition 6.B.4, the results in
Section 6.2 follows from the results in Section 6.5.
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