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Introduction

Nilmanifolds are irnportant objects for symplectic geometry and complex ge-
ometry. Thurston suggested 4-dimensional nilmanifolds as the first examples
of complex and symplectic manifolds admitting no Kahler structure ([46]).
Until now, many mathematicians gave many results in complex geometry
and symplectic geometry on nﬂmamfolda We introduce some well-known
theorems.

Facts 1. Let G be a simply connected nilpotent Lie group with a lattice
{cocompact discrete subgroup) T' and g be « Lie algebm (the space of left-
invariant complex structure ). Consider the DGA \ g* of the leﬁ invariant
differential on G/T'. Then:

(1)The inclusion A\ g* C A"(G/T) induces a cohomology isomorphism.
H*(g) = H*{G/T).
Thus the DGA N\ g* is Sullivan’s minimal model of A*(G/T).(Nomizu [32])

(2)Suppose GJT is symplectic. G/T satisfies the hard Lefschetz property if
and only if G/T is torus.(Benson-Gordon [5])

(8) GJT is formal in the sense ofbullw(m if and only if G/T is torus. (Hasr’gawa
[20])

(4)If G/T is cohomologically symplectic, then G/ I‘ is re’allu symplectic. (Corol-
lary of N. omzzu ’s theorem)

(5) Suppose G admits « left-inveriant complex structure. Consider the
Dolbeauit complex A** (C/F) and its sub-DBA N"" g of left-invar 'rmt C-
valued differential forms. Under some conditions, the mcluszon N g C
AY(G/T) induces a cohomologzj isomorphism

H* (ge) & H'(G/T)
(Sakane [42], Cordero-Fernindez-Gray- Ugarte [10] and Console-Fino [9])

Enlarging the class of nilmanifolds to solvmanifolds, geometry of solv-
“manifolds are more complicated than geometry of nilmanifolds. In this thesis
we consider how we extend the above facts to geometry of solvmanifolds or
how geometry of solvianifolds and geometry of nilmanifolds are different.
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Summary of main results

" (Chapter 1) We consider the space of differential forms on the solvmanifold
G/I' with values in certain flat bundle so that this space has a structure of
a differential graded algebra(DGA). We construct Sullivah’s minimal model
of this DGA. This result is an extension of Nomizu’s theorem for ordinary
coefficients in the nilpotent case. By using this result, we refine Hasegawa’s
result of formality of nilmanifolds and Beénson-Gordon’s result of hard Lef-
schetz properties of nilmanifolds. '

(Chapter 2) We consider aspherical manifolds with torsion-free virtually
polycyclic fundamental groups, constructed by Baues. - We prove that if
those manifolds are cohomologically symplectic, then they are symplectic.
'As a corollary we show that cohomologically symplectic solvmanifolds are
symplectic. :

(Chapter 3) We consider semi-direct products C* x4 N of Lie groups with
lattices I' such that N are nilpotent Lie groups with left-invariant complex
structures. We compute the Dolbeault cohomology of direct sums of holo-
morphic line bundles over G/I" by using the Dolbeaut cohomology of the Lie
algebras of the direct product C® x N. As a corollary of this computation,
we can compute the Dolbeault cohomology HP9(G/T) of G/I' by using a fi-
nite dimensional cochain complexes. Computing some examples, we observe
that the Dolbeault cohomology varies for choices of lattices I
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Chapter 1

Minimal models, formality
and hard Lefschetz
properties of solvmamfolds
with local systems

1.1 The Purpose of this chapter

The main purpose of this part is to compute the de Rham cohomology of
solvmanifolds with values in local coefficients associated to some diagonal
representations by using of the invariant forms and the unipotent hulls. The
computations are natural extensions of Nomizu’s computations of untwisted
de Rham cohomology of nilmanifolds by the invariant forms in [32]. The
computations give natural extensions of Hasegawa’s result of formality of
nilmanifolds ([20]) and Benson and Gordon’s result of hard Lefschetz prop-
erties of nilmanifolds ([6])

First we explain the central tools of this paper callcd the unipotent hulls
and algebraic hulls. Let & be a a simply connected solvable Lie group, there
exists a unique algebraic group Hg called the algebraic hull of G with an
injection 9 : G — Hg so that:
(1) ¥(G) is Zariski-dense in He.
(2) The centralizer Zg,, (U(Hg)) of U(Hg) is contained in U/ Hg).
(3) dimU(Hg) =dimG.
where we denote U(H) the unlpotent radical of an algebralc group H. We
denote Uy = U(Hg) and call it the unipotent hull of G.

We consider Hain’s DGAs in [19] which are expected to be effective
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6 CHAPTER 1. MINIMAL MODELS OF SOLVMANIFOLDS

techniques for studying de Rham homotopy theory of non-nilpotent spaces.
Let M be a C*°-manifold and p: 7(M,z) — (C*)™ a representation and
T the Zariski-closure of p{m(M,2)) in (C*)™. Let {V,} be the set of one-
dimensional representations for all characters o of T and (E,, D,) be a
rank one flat bundle with the monodromy o p and A*(M, E,) the space of
Ej-valued C*°-differential forms. Denote A*(M,0,) = @, A" (M, E,) and
D=, D,. Then (A*(M,0,), D) is a cohomologically connected(i.e. the
0-th cohomology is isomorphic to the ground field) DGA. In this paper we
construct Sullivan’s minimal model([45]) of such DGAs on solvmanifolds.
On simply connected solvable Lie groups, we consider DGAs of left-
invariant differential forms with local systems which are analogues of Hain’s
DGA’s. Buppose G is a simply connected solvable Lie group and g is the Lie
algebra of G. Consider the adjoint representation Ad : G - Aut(g) and its
derivation ad : g — D(g) where D(g) be the Lie algebra of the derivations
of g. We construct representations of g and & as following.

Construction 1.1.1. Let n be the nilradical of g. There exists . subvector
space (not necessarily Lie algebra) V of g so that g = V @ w as the direct
sum of vector spaces and for any A,B € V (ady)s(B) = 0 where (ady)s s
the semi-simple part of ads (see [14, Proposition II.1.1]). We define the
map ads : g — D(g) as adsarx = (ada)s for A€ V and X € n. Then
we have [ads(g), ads(g)] = 0 and ad; is linear (see [1/, Proposition II.1.1}).
Since we have [g, g] C n, the map ads : g — D(g) ts a representation and the
image ad;{g) s abelian and consists of semi-simple elements. We denote by
Ads: G — Aut(g) the extension of ad;. Then Ady(G) is diagonalizable.

Let T be the Zariski-closure of Ads(G) in Aut(ge). Then T is diag- -
onalizable. Let {V,} be the set of one-dimensional representations for all -
characters « of T. We consider V,, the representation of g which is the
derivation of o o Ad;. Then we have the cochain complex of Lie algebra
(A 9t ® Vi, dy). Denote A*(g¢, ads) = Py A g6 @V, and d = @B, do. Then
{A*(gc, ads), d) is a cohomologically connected DGA. In this paper we com-
pute the cohomology of this DGA by the unipotent hull Ug of G. Let u be
the Lie algebra of Ug and A uw* be the cochain complex of the dual space
u* of u. We prove the following theorem. '

Theorem 1.1.1 (Theorem 1.5.4). We have a quasi-isomorphism (i.e. a
morphism which induces a cohomology isomorphism) of DGAs

‘ /\u* — A" (gc, ads).

Thus A\ u* is Sullivan’s minimal model of A*(gc,ads). .
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Supposc G has a aftlcc Tie. a cocompact discrete subgroup of &. We
call a compact homogeneous space G/T a solvmanifold. We have =} (G/T") =
I". For the restriction of the semi-simple part of the adjoint representation
Ad,), on I', we consider Hain’s DGA AY(G/T, OAdslp)' By using Theorem
1.1.1, we prove: .

Theorem 1.1.2 (Corollary 1.7.5). Let G be a simply connected solvable Lie
group with ¢ lattice T' and Ug be the unipotent hull of G. Let 1 be the Lie
algebra of Ug. Then we have o quasi-isomorphism

Aw = A*(G/T, 044,,)-
Thus A\u* is Sullivan’s minimal model of A*(G/T, OAdSII‘)'

If G is nilpotent, the adjoint operatoi Ad is a unipotent representation
and hence A*(G/T',04q, ) = Az(G/T) and A%(gc,ads) = Age = A
In this case, Theorem 1. 1 2 reduco to.the classical theorem proved by No-
mizu in [32]. Moreover this result gives more progressed computations of
untwisted de Rham cohomology of solvmanifolds than the results of Mostow.
and Hattori (see Corollary.1.7.4 and Section 1.10).

We call a DGA A formal if there exists a finite diagram of morphisms

A——%Cl%-Og(—H%A\)

such that all morphisms are quasi-isomorphisms and we call manifolds M
formal if the de Rham complex A*(M) is formal. In 120] Hasegawa showed
that formal nilmanifolds are tori. By the results of this paper, we havé a
natural extension of Hasegawa’s theorem for solvmanifolds. '

Theorem 1.1.3 (Theorem 1.8.2). Let G be a simply connected solvable Lie
group. Then the following conditions are equivalent:

(A) The DGA A*(gc,ads) s formal.

(B) Ug ts abelian.

(C) G =R" xs R™ such that the action ¢ : R™ — Aut(R™) is semi-simple.
Moreover suppose G has a lattice T'. Then the above three conditions are
“equivalent to the following condition: '
(D) A*(G,/F:({)Adﬁgr) is formal.

In [6] Benson and Gordon showed that symplectic nilmanifolds with the
hard Lefschetz properties are tori. We can also have an extension of Benson
and Gordon’s theorem.
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Theorem 1.1.4 (Theorem 1.8.4). Let G be a simply connected solvable Lie
group. Suppose dim G = 2n and G has an G-invariant symplectic form w.
Then the following conditions are equivalent:
(4) | |

W] PA L HH (A (ge, ady)) — H* (A" (ge, ady))

is an isomorphic for any i < n.

(B) Ug is abelian. ‘

(C) G =R"xy R™ such that the action ¢ : R* — Aut(R™) is semi-simple.
Suppose G has a lattice I’ and G/T" has a symplectic form(not necessarily

G-invariant) w. Then the conditions (B) and (C) are equivalent to the

following condition:

(D)
] A HY (A (G/T, Opg,y)) = HT(AY(G/T, Oaq,,)

 is an isomorphism for any i < n

Remark 1.1.1. As a representation in an algebraic group, Ad, is indepen-
dent of the choice of a subvector space V in Construction 1.1.1 (see Lemma
1.2.5). By this, the structures of DGAs A*(ge,ads). and A*(G/T, @Adle:)
are independent of the choice of a subvector space V.

Finally we consider relations with Kahler geometries. We review studies
of Kéhler structures on solvmanifolds briefly. See [5] and [22] for more de-
tails. In [7] Benson and Gordon conjectured that for a completely solvable
simply connected Lie group G with a lattice I', G/T" has a Kahler metric if
and only if G/T is a torus. In [21] Hasegawa studied Kahler structures on
some classes of solvmanifolds which are not only completely solvable type
and suggested a generalized version of Benson-Gordon’s conjecture: A com-
pact solvmanifold can have a Kahler structure if and only if it is a finite quo-
tient of a complex torus that is a holomorphic fiber bundle over a complex
torus with fiber a complex torus. In [1] Arapura showed Benson-Gordon’s
conjecture and also showed that the fandamental g’rdup of a Kahler solvman-
ifold is virtually abelian by the result in [2]. In [1] a proof of Hasegawa’s
conjecture was also written but we notice that this proof contains a gap
and Hasegawa complement in [22]. We also notice that Baues and Cortés
showed a more generalized version of Benson-Gordon's conjecture for as-
pherical manifolds with polycyclic fundamental groups in [51.

By the theory of Higgs bundle studied by Simpson, we have a twisted
analogues of formality(seé [13]) and the hard Lefschetz properties of compact
Kéhler manifolds. We have:
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Theorem 1.1.5 (Special case of Thoerem 1.4.1}. Suppose M is & compact
Kihler manifoid with a Kihler form w and p : my(M) — (C*)* is a repre-
sentation. Then the following conditions hold:

(A) (formality) The DGA A*(M,0,) is formal.

(BY(hard Lefschetz) For any 0 < i < n the linear operator

WA« HH(ANM, 0,)) — B (A" (M, 0,))

4
is an isomorphism where dimp M = 2n.

Now by Theorem 1.1.5 formality and hard Lefschetz propérty of DGA
AYG/T,0 Adslp) are criteria for G/T" to has a Kihler metric. We will see
such conditions are stronger than untwisted formality and hard Lefschetz
property.

Remark 1.1.2. There exist examples of solvmanifolds G/T which satisfy
formality and the hard Lefschetz property of the untwisted de Rham complex
A*{(G/T,) but do not satisfy formality and the hard Lefschetz property of
A(GIT, 0n, ).

However we will see these criteria can not classify Kahler solvmanifolds
completely.

" Remark 1.1.3. There exist examples of non-Kiahler solumanifolds which

satisfy formality and the hard Lefschetz property of AYG/T,Opa, ).

sl

1.2 Preliminaries on algebraic hulls

Let G be a discrete group (resp. a Lie group). We call a map p : G —
GL,(C) a representation, if p is a homomorphism of groups (vesp. Lie
groups). : ‘

1.2.1 Algebraic groups

In this paper an algebraic group means an affine algebraic variety G over
C with a group structure such that the multiplication and inverse are mor-
phisms of varieties. All algebraic groups in this paper arise as Zariski-closed
subgroups of GL,(C). Let k be a subfield of C. We call G k-algebraic if G
is defined by polynomials with coefficient in k. We denote G{k) the k-points
of G. We say that an algebraic group is diagonalizable if it is isomorphic to
a closed subgroup of (C*)” for some n.
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1.2.2  Algebraic hulls

A group T is polycyclic if it admits a sequence
F:F()DF]_D---Dsz{e}

of subgroups such that each I; is normal in T';; and I';_1/T; is cyclic. For
a polycyclic group I', we denote rank I’ = ‘71 Ifrank I;o1/Ti Let G bea
simply connected solvable Lie group and I‘ be a lattice in G. Then T is
torsion-free polycyclic and dim G = rank " (see [40, Proposition 3.7]). Let
p: G = GLy(C), for g € G be a representation. Let G and G’ be the
Zariski-closures of p(G) and p(T') in GL,(C). Then we have U(G) = U(G)
(see [40, Theorem 3.2])."
We review the algebraic hulls.

Proposition 1.2.1. ([40, Proposition 4.40]) Let G be a simply connected
solvable Lie group (resp. torsion-free polycyclkic group). Then there exists
a unique R-algebraic group Hg uzth an ingective group homomorphmm N
G — Hg(R) so that:

(1) ¥(G) is Zariski-dense in Hg.

(2) Zu.(U(Hg)) C U(Hg).

(3) dimU(Hg)=dim G (resp. rank G ).

Such Hg is called the algebraic hull of G.

VVe denote Ug = U(Hg) and call UG the unipotent hull of G.

1.2.3 Direct constructions of a]gebraic hulls

Let g be a solvable Lie algebra, and n = {X € gladx is nilpotent}. n is
the maximal nilpotent ideal of g and called the nilradical of g. Then we
have [g, g] C n. Consider the adjoint representation ad : g — D(g) and the
representation ad; : g — D(g) as Construction 1.1.1.

Let § =Imad: X g and

A={X —adsy € §|X € g}.

Then we have [g, g] Cn C 1 and 0 is the nilradical of g (see [14]). Hence we
have g = Imad; X fi.

Lemma 1.2.2. Suppose g = R* x4 n such that ¢ is a semi-simple action
and n is nilpotent. Then i =R* G n. : ‘
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Proof. By the assumption, for X +Y € R¥ X¢ 1, we have adsx+y = adx.
Hence we have

[Xl + Yi - adsX1+Y1a X2 + Y'Q - adst—l—Yz] = [XQ; 1/72]
for X1 +Y1,Xo+ Y € R* X 4 1. Hence the lemma follows. ]

Let G be a simply connected solvable Lie group and g be the Lie algebra
of G. Let N be the subgroup of G which corresponds to the nilradical n of
g. We consider the exponential map exp : g — G. In general exp is not a
diffeomorphism. But we have the useful property of exp as following.

Lemma 1.2.3. ([12, Lemma 3.3]) Let V be'a subvector space (not necessar-
ily Lie algebra) V of g so that g =V & n as the direct sum of vector spaces.
We define the map F: g =V @n — G as F(A+ X) = exp(A) exp(X) for
A€V, X €n. Then F is a diffeomorphism and we have the commutative
diagram : :

1 N G G/N 2RF —1
exp F Texp:ide
0 n g g/n=RF——0

where dim G/N = k.

By this Lemma, for Ac V, X € 1‘1,' the extension Ad; : G — Aut(gc) is
given by

Adg(exp(A) exp(X))vyz exp((adA)s) = (exp{ada))s

and we have Ad,;(G) = {(exp(ada))s € Aut(gc)|4 € V}. Let G = Ad,(G) x
G. Then the Lie algebra of G is g. For the nilradical N of G, by the
spritting § = Imad, X i we have G = Ad(G) x N such that we can regard
Ad,(@) C Aut(N) and Ady(G) consists of semi-simple automorphisms of N.
By the construction of t we have G = G - N.

A simply connected nilpotent Lie group is considered as the real points
of a unipotent R-algebraic group (see [36, p. 43]) by the exponential map.
We have the unipotent R-algebraic group N with N(R) = N. We identify

Auta(N) with Aut(nc) and Auta(N) has the R-algebraic group structure -
with Aut,(N)(R) = Aut(N). So ‘we have the R-algebraic group Aut,(N) x
N. By Ads(G) x G = Ads(G) x N, we have the injection I : G — Aut(N) x

N = Auto(N) x N(R). Let G be the Zariski-closure of 1(G) in Aut,(N)x N.
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Proposition 1.2.4. Let T be the Zariski-closure of Ads(G) in Aut N. Then
we have G = Tx N and G is the algebraic hull of G with the unipotent hull
Ug = N. Hence the Lie algebra of unipotent hull Ug of G is

g ={X —adsx € gc|X € gc}.

Proof. The algebraic group T x N is the Zariski-closure of Ady(G) x N in
Aut(N)x N. By Ady(G)-I(G) = Ads(G)x N, we have T-G = T x N. Since
T is a diagonalizable algebraic group, we have N C G..- Otherwise since G C
T x N is a connected solvable algebraic group, we have U(G) = NNG = N.
Since we have Ads(G) x N = G- N, G is identified with the Zariski-closure
of Ads(G) x N. Hence we have G = T x N. By dimG = dim N, we can
easily check that T x N is the algebraic hull of G. O

By this proposition the Zariski-closure T of Ad,(G) is a maximal torus
of the algebraic hull of G. By the uniqueness of the algebraic hull (see [40,
Lemma 4.41]), we have: . '

Lemma 1.2.5. Let Hg be the algebraic hull of G and q : Hg — Hg/Ug
‘the quotient map. Then for any injection ¢ : G — Hg(R) as in Proposition
1.2.1, there ezists an isomorphism ¢ : Hg/Ug — T such that the diagram

He/Ug L—1
qoi/)T d
G

commautes.

Lemma 1.2.6. Let Hg = Hg(R) be the real points of the algebraic hull of
G. Let T be the Zariski-closure of Ads(G) in Aut(ge) and T = T(R) its
real points. Then we have a semi-direct product

Hg=TD<G.

Proof. By Im(ad,) x#i = Im(ad;) X g, we have Ady(Q)x N = Ady(G)x I(G).
‘Hence the lemma, follows from Proposition 1.2.4. , [

Proposition 1.2.7. ([26]) Let G be a simply connected solvable Lie group.
Then Ug is abelian if and only if G = R™ xg R™ such that the action
¢ : R™ — Aut(R™) is semi-simple. :
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Proof. Suppose Ug is abelian. Then by proposition 1.2.4, the Lie algebra
n is abelian. By n C 1, the nilradical n of g is abelian. By g, g] Ccn, g
1s two-step solvable. We consider the lower central series g° as g = g and
g' =[g,g" Y for i > 1. We denote n’ = NP,g¢. Then by [11, Lemma 4.1],
we have g = g/n’ x n’. For this decomposition, the subspace {X —adsx|X €
g/n'} C nis a Lie subalgebra of n. Since g/n’ is a nilpotent subalgebra, of
g, this space is identified with g/n’. Thus since @i is abelian, g/n’ is also
abelian. We show that the action of g/n on n is semi-simple. Suppose for
some X € g/n’ adx on n is not semi—simple . Then adx — adsx on n is not
trivial. Since we have n = {X — adsx|X € g}, we have [f,n] # {0}. This
- contradicts 0 is abelian. Hence the action of g/n on n is semi-sitnple. Hence
the first half of the proposition follows The converse follows from Lemma
1.2.2. . ) ; O

1.3 Left-invariant forms and the cohomology of
solvmanifolds

Let G be a simply connected solvable Lie group, g the Lie algebra of G

and p : G — GL(V,) a representation on a C-vector space V,. We consider

the cochain complex A g* with the derivation d which is the dual to the
Lie bracket of g. Then A g ® V,, is a cochain complex with the derivation

dp = d + p. where p is the derivation of p and consider p, € g¢ ® gli(V}).

We can consider the cochain complex (A g& ®V),,d,) the twisted G-invariant

differential forms on G. Consider the cochaln complex A% (G) ® V, with the

derivation d such that '

dw®v)= (dw) ®v weAxG), veV,

By the left action of G (given by (g f)(z) = f(g7 '), f€ C®(G), g G) 3
and p, we have the action of G on A%(G) ® V. Denote (4% (G) ® V,)€ the
G-invariant elements of A (G) ® V). Then we have an isomorphism

(Az(@) V)= \at®V,.

Suppose G has a lattice I'. Since m1(G/T") = T", we have a flat vector
bundle E, — with flat connection Dy on G /T whose monodromy is pj.
Let A*(G/T, Eplr) be the cochain complex of Ep, -valued differential forms
_ with the derivation Dy . Consider the cochain complex AL(G) ® V, with

derivation d such that ‘

dw®v) = (dw)®v we AL(G), veV,
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Then we have the G-action on AL(G) ® V, and denote (AL(G) ® V)T the
subcomplex of [-invariant elements of A% (G)®V,. We have the isomorphism
(AL(G) @ V,)F =2 A*(G/T, Ep,_). Thus we have

N6z @V, = (A:(G) © V)% C (4L(G) @ V,)" = A*(G/T, By,

and we have the inclusion A g ® V, = A*(G/T, El’lr)‘

We call a representation p I'-admissible if for the representation p® Ad : -
G — GL,(C) x Aut(gc), (p®Ad)(G) and (pdAd)(T) have the same Zariski-
closure in GL,(C) x Aut(gc). |

Theorem 1.3.1. ([28],[40, Theorem 7.26]) If p is T-admissible, then the
inclusion ' :
A\8:®V, = A*(G/T, B, )

induces a cohomology isomorphism.

Proposition 1.3.2. Let G be a simply connected solvable Lie group with a
lattice I'. We suppose Ad(G) and Ad(T") have the same Zariski-closure in
Aut(gc). We consider the diagonalizable representation Ads : G — Aut(G).
Let T be the Zariski-closure of Ads(G) and o be a character of T. -Then
ao Ad; is I'-admissible. ~ .

Proof. Let G be the Zariski-closure of Ad(G) in Aut(gc). We first show that
T is a maximal torus of G. For the direct sum g = V @ n as Construction
1.1.1, the map F' : V@®n — G defined by F(A+X) = exp(A4) exp(X) for A €
V, X € nis a diffeomorphism (see [12, Lemaa 3.3]). For A € V, we consider
the Jordan decomposition Ad(exp(A)) = exp((ada)s) exp((ada)s). Then we
‘have exp((ada)s),exp((ada)n) € G. For X € n, we have exp(adx) € U(G).
Hence we have Ad(G) C TU(G) C G. Since G is Zariski-closure of Ad(G),
G = TU(G). Thus T is a maximal torus of G. ‘
We take a spritting G =T x U(G). We consider the algebraic group

G = {(at), (t,v)) € C* x G|(t,u) € T x U(G)}. .
Then we have \ |
(v 0 Adg @ Ad)(@) . ~
= {(a(exp((ada)s)),exp(ada) exp(adx))|A+ X € V & n} \
: : ' c G

Since G is Zariski-closure of Ad(G), (a0 Ad;®Ad)(G) is Zariski-dense in G'.
Since Ad(G) and Ad(T") have the same Zariski-closure, (o 0 Ads ® Ad)(G)
and (a o Ad; @ Ad)(T) have the same Zariski-closure G'. ‘ O
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1.4 Hain’s DGAs

1.4.1 Constructions

Let M be a C*°-manifold, S be a reductive algebraic group and p : 71 (M, z) —
S be a representation. We assume the image of p is Zariski-dense in S. Let
{Va} be the set of irreducible representations of S and (E,, D) be a flat
bundle with the monodromy o o p and A*(M, E,) the space of E,-valued
C°°-differential forms. Then we have an algebra isomorphism of @ o Va®Vy
and the coordinate ring C[S] of S (see [19, Section 3]). Denote

AY(M,0,) = @ A*(M,E,) @V
[o]

and D = @, Do. Then by the wedge product, (A(M, 0,)), D) is a coho-
mologically connected DGA with coefficients in C ..

Suppose S is a diagonal algebraic group. Then {V,} is the set of one-
dimensional representations for all algebraic characters o of T and (Fq; Dy,)
are rank one flat bundles with the monodromy « o p. In this case for char-
acters o and 8, we have the wedge product A*(M, E,) ® A*(M,Eg) —
A*(M, E.p) and Dop(tha A ¥g) = Datha A Yg + (=1)Pypq A Dgipg for ¢, €
AP(M, E,), g € AY(M, Eg) (see [30] for details in this case).

1.4.2 Formality and the hard Lefschetz properties of com-
pact Kahler manifolds ‘

In this subsection we will prove the following theorem by theories of Higgs.
bundles studied by Simpson. ‘

Theorem 1.4.1. Let M be a compact Kahler manifold with a Kdhler form
w and p: w1 (M) — S a representation to a reductive algebraic group S with
the Zariski-dense imaga. Then the following conditions hold:

(A) (formality) The DGA A*(M,0,)) is formal.

(B) (hard Lefschetz) For any 0 < i < n the linear operator

[WtA s HMH(A* (M, O,))) — H™F(A*(M, 0,)))
15 an isomorphism where dimgp M = 2n.

Let M be a compact Kéahler manifold and E a holomorphic vector bundle
on M with the Dolbeault operator 0. For a End(E)-valued holomorphic form
0, we denote D" = 0 + . We call (E, D") a Higgs bundle if it satisfies the

Leibniz rule: D"(ae) = d(a)e + (—1)PD"(e) for a € AP(M), e € AY(E) and
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the integrability: (D" )2=0. Let h be & Hermitian metric on E. For a Higgs
bundle (E, D" = §+6). We define D} = 0), + 0, as follows: 9y, is the unique
operator which satisfies ’

_h(567 f) + h(ea 6hf) = 5h(6, f)

and ), is defined by (fe, f) = (e,0,f). Let Dj, = Dy + D". Then Dy, is a
connection. We call a Higgs bundle (E, D", h) with a metric harmonic if Dj,
is flat i.e. (Dy)? =0. _

- For two Higgs bundles (E, D"), (F, D") with metric hg, hr, the tensor
product (EQ® F, D" ®1+1® D") is an also Higgs bundle and hg ® hr gives
the connection Dpyghy = Dppy ®1+1Q Dy, on EQF. If (E, D" hg) and
(F, D", hg) are harmonic, (E® F, D" ®1+1® D") is also a harmonic nggs
bundle with the flat connection Dy, @1+ 1® th

Theorem 1.4.2. ([44, Theorem 1]) Let (F, D) be a flat bundle on M whose
- monodromy is semi-simple. Then D is given by a harmonic Higgs bundle
(E, D", h) that is D = Dy, ‘ :

Theorem 1.4.3. ([44, Lemma 2.2|) Let (F,D" h) be a harmonic Higgs
bundle with the flat connection D = D' + D". Then the inclusion

(Ker D', D") — (A*(E), D)
and the quotient
(ex DI, D) (Hips (4" (E)), D) = (Hp(4"(E)),0)
induce the cohomology isomorphisms.

 Theorem 1.4.4. ([44, Lemma 2.6]) Let (E, D", k) be a harmonic Higgs
bundle with the flat connection D = D' + D”. Then for any 0 < i < n the
linear operator "

WI" ™A Hh(A*(E,)) = H (A% (Ep))
is an isomorphism.

Proof of Theorem 1.4.1.
By Theorem 1.4.2 and 1.4.4, the condition:(B) holds. By Theorem 1.4.2, for
(A*(Ey), Do), we have D, = D', + D’ such that D” is a harmonic Higgs
bundle. Denote D' = @, Dy, and D" = @, Dj. Then by properties of
Higgs bundle, (Ker D', D”) is a DGA, and the maps

(Ker D', D") — (A*(M,0,)), D) |
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and
(Ker D', D"y — (Hp(A*(M, 0p)),0)

are DGA homomorphisris, thus quasi-isomorphisms by Theorem 1.4.3. Hence
the condition (A) holds. O

1.5 Minimal models of invariant forms on solvable
Lie groups with local systems

Let G be a simply connected solvable Lie group and g the Lie algebra of G.
Consider the diagonal representation Ad as in Section 1 and the derivation
ads of Ad;. For some basis {X1,... X} of gc, Ad; is represented by diagonal
matrices. Let T be the Zariski-closure of Ads(G) in Aut(gc). Let {V4} be
the set of one-dimensional representations for all characters o of T. We
consider V,, the representation of g which is the derivation of xo Ad;. Then
we have the cochain complex of Lie algebra (A gf ® Vi, dq). Denote d =
P, da- Then (B, A gt ® Va,d) is a cohomologically.connected DGA with
coefficients in C as the last section. By Ad;(G) C Aut(gc) we have T C
Aut(gc) and hence we have the action of T on @, AgE ® Vo. Denote
(B, N\ gt ® V)T the sub-DGA of P, A g ® Vi, which consists of the T-
invariant elements of @, A g¢ ® Va.

Lemma 1.5.1. We have an isomorphism

H (@D N\t © Vo)) = B (@D Aoz & Va)-

« «

Proof. We show that the action of Ads(G) C T on the cohomology H*(A g&®
Vi) is trivial. Consider the direct sum g = V@&n as Construction 1.1.1. Then
" we have Ads(G) = Ads(exp(V)) by Lemma 1.2.3. For A € V, the action
Ad;(exp(A)) on the cochain complex A g& ® V, is a semi-simple part of
the action of exp(4) on A 9t ® V, via Ad ® a0 Ad,. Since the action of
G on the cohomology H*(A g% ® Va) via Ad ® a o Ad, is the extension of
the Lie derivation on H*(/\ g¢ ® Va), this G-action on H*(A g& ® V) is
trivial. Hence for A € V the action of Ad,(exp(A)) = (exp(ads))s on the
cohomology H*(/ g¢ ® Vo) is trivial. ’

Since T is the Zariski-closure of Ads(G) in Aut(gc) and the action of T
on A g¢ ® V, is algebraic, the action of T on H*(A g¢ ® V,,) is also trivial.
Since the action of T on A g ®V,, is diagonalizable, we have an isomorphism

H (N\gt®Va) = H*(\ st @ Vo)™ 2 B*((/\ 82 @ Va) ")
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Hence we have the lemma. ' O

Consider the unipotent hull Ug of G. Let u be the C-Lie algebra of Ug
and u* the C-dual space. We consider the DGA A u* with coefficients in C.

Lemma 1.5.2. We have an isomorphism of DGA -
Aw = @ Asceva)”
. 7

Proof. Let {x1,...,zn} be the dual of a basis {X1,...,X,} of g such that
Ad; is represented by diagonal matrices. We define characters o; as t- X; =
o;(t)X; for t € T. Then we have t - z; = a; !(t)z;. Hence the vector space
BN 95®V,)7T is spanned by {21®va,, - - - , £n@Uq,, } Where Vo, 3 vy, # 0.
For ' ‘

p

T

w = Z Gy, ip,aTiy N N Ti Vo € (@ /\gff: ®Va)",
11,...0p,0 o

since any &; A-- - AZi,Vq is an eigenvector of the action of T, if i, ..4,,a # 0

then z;; A--- A x,v4 is also a T-invariant element. Since we have

t:zi, /\.../\a:ip :ai:,l(t)"'a'_l(t)l'il /\.../\xip

ip
for t € T, we have
mil N /\xip ®'U04 = xilvail N /\xipvaip'

Thus the DGA (§,Age ® Va)ir is generated by {1 ® vay, ..., %n ® vq, }-
Consider the Maurer-Cartan equations :

dry = — ZCZCEZ N
A >
and denote adsx;(X;) = ai;X;. Since Adg,(Xx) = 0i(Adsy) X}, for g € G,
we have dvg, = > 1 adex; (Xk)ZivVa, = D iq QikTiVa,. Then we have

Aoy (T @ Vo) = — Z(cfjm,/\ Tj ® Voy, — Gikls N\ T @ Vg, )-
ij ‘
Hence the DGA (D, A g ® Vo)T is isomorphic to a free DGA generated
degree 1 elements {y1,...yn} such that ' ’

dyk) = =D (e Ay — asrys A i)

]



1.5. MINIMAL MODELS - | 19

Let b be the Lie algebra which is the dual of the free DGA (@, A gt ®Va)T
and {Y1,...,Y,} the dual basis of {y1,.--yn}. It is sufficient to show b = wu.
Then the bracket of b is given by

[Y;,Yj] = Z C%Yk —aiY; +a;Ys.
k

Otherwise by Section 2.3, we have u = {X — adsX|X €gc} C D(gc) X gg-
For the basis {X1 - adsxl, ..., Xpn —adsx, } of u, we have

[X — adsX X adsX Z C%Xk —aij Xj + i X;.

By [g; 8] C n, we have [u,u] C nc where n is the nilradical of g. By this we
have : '
v Z Ci‘chk - ainj + ajiXi € ng,

and hence we have
C”dsz:kc X~ a”X +a;5:X; =0.
This gives
[X —adsx,X adsx]

:ZCU (Xk — adsx,) — as(X; — adsx; )-I—aji(Xi—adin). ‘
k ‘ ,

This gives an isomorphism h = u. Hence the lemma follows. - g

Since Ady(G) is Zariski-dense in T, Ads(G)-invariant elements are also
T-invariant. In particular we have the following lemma.

Lemma 1.5.3. Let T = T(R) be the real pomts of T. Then we have.
D Noeove)=( EB/\%@@V e N

Later we use this lemma.
Denote A*(gc,ads) = @, A\ 96 ® Vo. By lemma 1.5.1 and 1.5.2 we have:

Theorem 1.5.4. We have a quasi-isomorphism of DGAs
/\u* — A*(gc, ads).

Thus A\ u* is the minimal model of A*(gc,ads).
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1.6 Cohomology of A*(G/T, OAdsh,)

Consider the two DGA A*(gc, ads) and A*(G/T, OAdslp)f For any character
a of an algebraic group T which is the Zariski-closure of Ads(G) in Aut(gc).
We have the inclusion

/\ 95 ® Va 2 (A5(G) ® Va)C C (A5(G) ® V)T A*(G/T, Baoa,,) -
Thus we have the morphism of DGAs | :
(b : A*(gc, ads) %)‘A*(G/F, OAdSIF)'

Proposition 1.6.1. The 7\norphism ¢ : A*(gc,ads) - A*(G/T, @Adsip) is
injective and the induced map

6" H'(4"(gc,d,)) - H'(4°(G/T, Ora,,)
is also injective.

Proof. Since G has a lattice I', G is unimodular(see [40, Remark 1.9]).
Choose a Haar measure du such that the volume of G / I'is 1. We define a
map ¢q : (AL(G) ® Vo)l = Age ®V, as

Wy o
X1,...X,) = X1,...X)du -
ol @)X, Ky = [ K)da-ve
for w ®ua € (AL(G)® Vo)F, X1,... , Xp € gc. Then each ¢, is a morphisin
of cochain complexes and we have goao¢|/\g*®v (see [40, Remark
Plaszeva

7.30]). Thus the restriction

=1dj, v,

¢* : H*(\ gt ® Va) — H*(A"(G/T, Ey))

is injective. By this it is sufficient to show that two distinct characters o, 8
with a0 Adg), = ,BOAdsh, satisfy g =0. Forw®uy € A g ®Va,

we have

o}
¢|/\ QE@VO{

Since w € A g¢, we(X1,.. Xp) is constant on. G/F Let X = Bd( ). Then
" A is a G-invariant form Choose n € A g¢ such that A An = du. Then we
have

d(%”):EM":Ed”-
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By ao Ady,. = 8o Ady, %7] is T-invariant and we can consider %n, a
differential form on G/I". Hence by Stokes’ theorem, we have

“®) oy [ )
/G/F e (X1, Xy ) = (Xl,...Xp)\/G/F o

=w(X1,,..Xp)/G/Fd (%n) = 0.

This prove the proposition. O

Corollary 1.6.2. Let G be a simply connected solvable Lie group with a
lattice I'. We suppose Ad(G) and Ad(T") have the same Zariski-closure in
Aut(gc). Then we have an isomorphism '

H*(A*(G/T, Oaq,,)) = H*(A*(gc, ady))-

Proof. Let T be the Zariski-closure of Ads(G). For any 1-dimensional rep-
resentation V,, of T given by a character o of T, we consider a flat bundle
Ey on G /T given by the representation avoAd, and the two cochain complex
A*(G/T, E,) and )\ g& ® V,, as above. Then since a o Ad, is [-admissible,
by Theorem 1.3.1 we have an isomorphism

H*(\ g* ® Vo) = H*(A*(G/T, Ea)).

By the definitions of A*(G/T", O Adslr) and A*(gc, ads) the corollary follows.
; ' D

1.7  Extensions

In this Section we extend Corollary 1.6.2 to the case of general sovmani-
folds. To do this we consider infra-solvmanifolds which are generalizations
of solvmanifolds.

1". 7.1 Infra—soleénifold

Let G be a simply connected solvable Lie group. We consider the affine trans-
formation group Aut(G) x G and the projection p : Aut(G) x G — Aut(@).
Let I' C Aut(G) x G be a discrete subgroup such that p(I') is contained in
a compact subgroup of Aut(G) and the quotient G/T" is compact. We call

G/I' an infra-solvmanifold.

Theorem 1.7.1. [4, Theorem 1.5] For two infra-solumanifolds G1/T'1 and
G2 /T2, if T'1 is isomorphic to Iy, then G1/T'1 is diffeomorphic to Go/Ts.
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1.7.2 Eitensions for infra—solvmanifolds

Let I' be a torsion-free polycyclic group. and Hr be the algebraic hull. Then
there exists a finite index normal subgroup A of T" and a simply connected
solvable subgroup G of Hp such that A is a lattice of G, and G and A
have the same Zariski-closure in Hr (see [4, Proposition 2.9]). Since the
Zariski-closure of A in Hr is finite index normal subgroup of Hr, this group
-is the algebraic hull Ha of A by the properties in Proposition 1.2.1. By
rankI’ = dim G, HAx is also the algebraic hull Hg of G. Hence we have the
commutative diagram : : :

G——>HA Heg) —>HP

//

Since A is a finite index normal subgroup of I', by this diagram Ha is a finite
index normal subgroup of Hr. We suppose Hr/Ur is diagonalizable. Let
T and T’ be maximal daiagonalizable subgroups of Hr and Ha. Then we
have decompositions Hr = T x Up, Ha = T x Ur. Since T/T' = Hp/Ha
is a finite group, we have a finlte subgroup T” of T such that T = T"T(see
‘ [8 Proposition 8.7]). -

Lemma 1.7.2. Hp =THA.

Proof. Consider the quotient ¢ : Hr — Hy/HA. Since T is Zariski-dense
in Hr, ¢(I') is Zariski-dense in Hp/Ha. Since Hyp/Ha is a finite group,
q(I') = Hr/HA. Thus we have

THAo =TT x Ur =TT x Upr = Hp.
Let Hr = Hr(R), T = T/(R) and 7" = T”(R). Then by Lemma 1.2.6
and Hg = Ha, we have Hr = T'T"” x G. Hence we have I' C Hr C
Aut(G) x G. Since A is a lattice of G and a finite index normal subgroup of

I', T is a discrete subgroup of Aut(G) x G and G/T" is compact and hence
an infra-sovmanifold. :

Theorem 1.7.3. Let T be a torsion-free polycyclic group and T' — Hp be
the algebraic hull of T'. Suppose Hr/Up s diagonalizable. Let u be the Lie
algebra of Ur. Let p be the composition

I'>Hpr > HP/UP.
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Then we have a quasi-isomorphism

[\u*— A*(G/T,0,).
Proof. In this proof for a DGA A with a group G-action, we denote (A4)%
the sub DGA which consists of G-invariant elements of A. Consider decom-
positions Hr = T x Up, Ha = T’ x Ur as above. Let {V,} be the set of

1-dimensional representations of T for all characters o of T. Consider the
DGA @, A*(G ) ® V, with the derivation d given by

d(w @ vy) = (dw) @ vq we AYG), vy €V,
and the products given by
(W1 ®a) A (w2 ®ug) = (w1 Awz) @ (Vs ® vg).

Then by the definition, we have
A*(G/T,0,) @ A*(G

Let {Vi} and {V,~} be the sets of 1-dimensional representations of T/ and
T” for all characters o’ of T/ and o of T" By T = T'T”, we have
{Vo} = {Vw ® Vu}. Then we have

o .al’

H*(A*(G/F7 @p)) = H* (@ A* Vo ® Va”))

Since A is a finite index normal subgroup of I, we have

T

H* @ A* a/ X Va//)
a/ a// .

- ' AN /A

o ¥ @ A* A Vi ®Va//))

\ a/ al’
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Since A C T' x Ur, for a character o” of T” A acts trivially on V. Hence
we have '

AN /A

H (@ A*(G)@(Va:®Vau)> ‘

le/,O{l/

. / A r/a
=H (@ (@ 4@ e va/) ® va,/> :

all

Since A is a lattice of G and we assume that Ad(G) and Ad(A) have the
same Zariski-closure, by Corollary 1.6.2 we have '

H*((?A*(G)@VQI)A) o H ((@A*(G)@Vwr) .

- By Lemma 1.5.1-and 1.5.3, we have

. G ‘ a\ T
H*((@A*(G)@Va/> ) ~ g ((@A*(G)@Va/) )

Hence we have

| o i
w(@(@roen) ow)
: i ' I/A

s a\T ‘
= A @((@A*(G)cava/)) ® Voo

all
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Since Ha = T' x G, we have

EB ((@ A4(@Q) @ Va/> G) ' ® Vo

a’’ )

T/A

T/A

=H* (@ <@ A*( G) ® Vaf>HA ®Va,,>

all

all I

( DD 4G oV ®VQII>FHA) :

By Lemma, 1 7 2, we have
(@ @ A*(G RVy ® Vau>
OC// a/
Hr
- ((@@r@swon)”).

all al

Since Hr = T"T" x G, as above we have

Hp
m* ((@@A*(G)@)Va/@van) )

o'’ o
T//

AT
= H* @((@A*(G)@Va/>) ® Vi

all

- Thus it is sufficient to show that the DGA
, T//’

. o T
@((@A*(G)@W) ) ® Vg

is isomorphic to A u*. By Lemma 1.5.3 we have
’ : i

N o :

a// al a//
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Now let Au* = Py Apr be the weight decomposition of 7" for characters
B" of T”. Then we have

DN V)™ = (@D A © Vel = @ A © Ve

all ﬁll all all

It is easily seen that

aII

B Ay 0 Var %\

. Hence the theorem fo/llows. ‘ O

Obviously a solvmanifold G /T is a infra-solvmanifold with polycyclic
fundamental group I'. Since T is the Zariski-closure of Ady(I') and diago-
nalizable, we have:

Corollary 1.7.4. Let G be a simply connected solvable Lie group with o
lattice T and Ug be the unipotent hull of G. Let u be the Lie algebra of Ug.
Then we have a quasi-isomorphism

A\ = A*(G/T, Opa,.)-
Thus \u* is the minimal model of A*(G/T', Oaq,_)-

Consider the injection ¢ : A*(gc, ads) = A*(G /IF, OAdle' By Theorem
1.5.4, Proposition 1.6.1 and above Corollary, ¢ : A*(gc,ads) — A*(G/T, OAdSh")
is a quasi-isomorphism. Hence we have: )

Corollary 1.7.5. Let G be a simply connected solvable Lie group with a
lattice I'. Then we have an isomorphism

H*(A*(G/T, OAdSh")) = H*(A*(gc, ady)).

We can apply this corollary to computations of the untwisted de Rham
cohomology of solvmanifolds by invariant forms. We have an extension of
Mostow’s theorem(=Theorem 1.3.1 ) for the untwisted cohomology.

Corollary 1.7.6. Let G be a simply connected solvable Lie group with a
lattice T'. Let T be the Zariski-closure of Ads(G) in Aut(gc). Denote Ar
a set of characters of T such that for a € Ar the restriction of oo Ads on
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T is trivial. Consider the sub-DGA EBaeAp Aot ®V, of A*(gc, ad s). Then
we have a quasi- zsomorphzsms

T

&P /\gz;;®va — P ot ® Va = AL(G/T).

aEAr a€Ar

. N T
Moreover the DGA (®aeAr ANge ® Va> “is a sub-DGA of \u*.

Proof. Since we can consider A%(G/I') = A*(G/T', Eq) for the trivial char-
acter 1, A5(G/T) is a sub-DGA of A*(G/T, OAdslp)‘ Then we have

o ARG/ = P N\ost @ Va.

a€Ar

Since we define A*(G/T, Oag,.) = D A*(G/T, Eqond, ) as a direct sum
of cochain complexes and ¢ : A*(gc,ads) — A*(G/T, OAdSh"') is a quasi-
isomorphism by Corollary 1.7.5, the restriction ¢ : ¢ 71 (AL(G/I)) — AL(G/T)

is also a quasi-isomorphism. By Lemma 1.5.1, the inclusion

(@/\gf{;éva - P /\gé@Va

aEAr acAr

T
is a quasi-isomorphism. By Lemma 1.5.2, (EB acAr AgE® Va) is a sub-
DGA of A u*. Hence the corollary follows. O

1.8 Formality and hard Lefschetz properties .

In [20], Hasegawa proved the following theorem.

Theorem 1.8.1. ([20]) Consider a DGA A\ n* which is the dual of a nilpo- -
tent Lie algebra n. Then \n* is formal if and only if n is abelian.

By Hasegawa’s theorem, Theorem 1.5.4, Proposition 1.2.7 and Corollary -
1.7.4, we have the following theorem.

Theorem 1.8.2. Let G be a simply connected solvable Lie group. Then the
following conditions are equivalent:

(A) The DGA A*(gc,ads) is formal

(B) Ug is abelian.
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(C) G =R" x4 R™ such that the action ¢ : R™ - Aut(]Rm) is semi-simple.
Moreover suppose G has a lattice T'. Then the above three conditions are
equivalent to the following condition:

(D) A*(G/T, OAad,.) s formal.
In [6], Benson and Gordon proved:

Theorem 1.8.3. ([6], see also [17, Section 4.6.4]) Consider a DGA An*
which is the cochain complez of the dual of a nilpotent Lie algebran. Suppose
we have [w] € H2(A\n*) such that [w]™ # 0 where 2n = dimn. Then for any
0 < ¢ < n the linear operator :

W™t s HY(\n*) = H™ (A n*)
is an isomorphism if and only if n is abelian.
By this theorem, we have:

Theorem 1.8.4. Let G be a simply connected solvable Lie group. Suppose
dim G = 2n and G has an G-invariant symplectic form w. Then the follow-
ing conditions equivalent: '

(4) , , _

[W] A« HY(A*(gc,ads)) — H? (A% (gc, ads))

48 an isomorphic for any i < n.

(B) Ug-is abelian. . -

(C) G =R" xg R™ such that the action ¢ : R — Aut(R™) is semi-simple.

Suppose G has a lattice I and G/T" has a symplectic form(not necessarily

G-invariant) w. Then the conditions (B) and (C) are equivalent to the
following condition: ‘

(D)

[WI" A : H (A*(G/T, Ona,)) — H?""H(A*(G/T, Opq,,))

is an isomorphism for any i < n

For infra—solvmanifolds, by Theorem 1.7‘.3 and Proposition 1.2.7 we have:

Theorem 1.8.5. Let M be a infra-solvmanifold with the torsion-free poly- |
cyclic fundamental group I' and I — Hr be the algebraic hull of T'. Suppose
Hr/Ur is diagonalizable. Let p be the composition - »

I' - Hr — HF/UP.
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Then following conditions are equivalent:

(A) A*(M,0,) is formal.

(B) Ur is abelian. ‘

(C) M is finitely covered by a solvmanifold G/I" such that G = R™ x4 R™
with a semi-simple action ¢ : R™ — Aut(R™) and I' is a lattice of G.

If dim M = 2n and M has a symplectic form w, the conditions (A), (B) and
(C) are equivalent to the following condition: :

(D) |
- W™ ™'A L HY(A* (M, 0,)) — H*"(A*(M, 0,))

is an isomorphism for any i < n.

1.9 Examples and remarks

Let G be a simply connected solvable Lie group with a lattice T'. Suppose
Ug is abelian. In [26] the author showed that G/T is formal and if G/T has
a symplectic form, then G/T" is hard Lefschetz. But the converses of these
results are not true. See the following examples.

Example 1. ([45])
We consider a 8-dimensional solvable Lie group G = G’1 X R such that G1
is the matriz group as

et 0 0 0 e~ By, 2 )
0 e (0 e ulgg 0 0 22

0 0 east 0 e %2ty 0 23

0 0 0 et 0 0 ] 2tz €R B
0 0 0 . 0 g2t 0 -z

0 0 0 0 0 et g

0 0 0 0 0 -0 1/ - )

where dl, a2, 03 are distinct real numbérs such that a1 + as +agz = 0.
Let-g be the Lie algebra of G and g* the dual of g. The cochain complex
(A g*,d) is generated by a basis {a, B8,(;,mi} of g* such that:

da =0, dB =0,

dG = a0 A G,
dn = —aia A — (2 A (3,
dng = —aga Ana — (3 A (1,
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dnz = —aza Ang — (1 A Ga.

In [43] Sawai showed that for some a1,az2,a3, G has a lattice T’ and G/T -
satisfies formality and has a G-invariant symplectic form

Cw=aAB+p(G A —CAN) +q(—C Ane+ (s Ans)

satisfying the hard Lefschetz property where pg# 0 and p+ q # 0. We have

( /et 0 0 0 0 0 00 )
0 et 0 0. 0 0 00
0 0 e®t 0 0 0 00
0 0 0 eut o 0 0 0

Ads(G) = 0 0 o0 0 e@t o oo |tER

0 0 0 0 0 e 00
0 0 0 0 0 0 10

(\ o o0 o 0 0- 0 01 )

ey

Let T is the Zariski closure of Ads(G). Then for some characters ai, 2,03
of T, the cochain complezes () g* @ Va,, do;) are given by:

da; (vai) = —0;0 ®Q Vg,

for vg, € Vy,.
We have

Aoy (€2 ® Vgy) = a2 A (2 @ Vg, + (2 A aso @ vazb‘z 0,
da; (C3 ® Vo) = a3 A (3 ® Vo + (3A 430 ® Vo = 0,
dazas (M ® Vagas)

= —(a1 +as + a3)a A ® Vasas — (2 A (3 @ Vasas
= _CZ A C3 X Vasas-

Hence in H*(A gt ® Vasas)s
[CQ ® 'Uaz] : [CS ® va3] =0

and we have the Massey triple product .

([CQ ® 'Uaz]a [C3 &® 'Uag], [C3 ® vaa]) = [771 NG ® vazag]
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in the quotient of
/\ gC ®V, azas
by
([C2®Ua2 'Hl /\g?&@Vz) [C3®'Ua3 /\9((:®Va2a3)) :

This Massey product is not zero. Hence the DGA @, N\g*®V, has a non-
zero Massey product and it is not formal. -

Remark 1.9.1. In [30], Narkawicz gave examples of complements X of
hyperplane arrangements which are formal but for some diagonal represen-
tations of w1 (X, x) the DGA A*(X O,) is non-formal.

We hate day ((16ay) = 0 and the cohomology class [(1Bva,] € HY (A gi@
Vay) 1s not zero. We have

w? = —6p(g+p)a ABACG ANLA G Ang
—6(p+q)ga ABAG AN NG Ans
+6pga ABAGATLIA G AN ,
—6pg(p+ )L AM A A2 A3 Ans,

and

WP A ®Vpy = =6+ q)gaeABACAGANAC AN ® Va,.
Othe@ise we have .
Aoy (@ ABAGAMANR AN ®Vay) = —aABACTAC AN AC AN ® V.-
Hence [w]3 A ([G1 ® Vay]) =0 and the operator [W]3A is mot injective.

~ Theorem 1.9.1. For G/T', the DGA A*(G/I‘ Oag,,.)) is not formal and
the linear opemtor

[W]®A - HY(A*(G/T, (DAdslr)) — H'(A*(G/T, OAdSh“))

is not an 1somorphism. Thus UG is not abelian. In particular G/T' is not
Kidhler.

As above examples, comparing with untwisted versions, formality and
the hard Lefschetz properties of the DGA A*(G/T', Opq olp ) are useful criteria, .
' for formal and hard Lefschetz solvmanifolds to be not Kahler. But we have
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a non-Kahler symplectic solvmanifold such that A*(G/T, Oad,,.) is formal
and hard Lefschetz. In [1] Arapura showed that for a simply connected
solvable Lie group G with a lattice I if a solvmanifold G/I" admits a Kahler
structure then I' is virtually abelian. In [3] it was proved that a lattice of a
simply connected solvable Lie group G is virtually nilpotent if and only if G
is type (I) i.e. for any g € G the all eigenvalues of Ad, have absolute value
1. Thus by Theorem 1.8.2 and 1.8.4, we have:

Corollary 1.9.2. Let G = R™x 4R™ such that the action ¢ : R® — Aut(R™)
is semi-simple. Suppose G is not type (I) and has a lattice T'. Then
A*(G/T, OAdslp) is formal but G/T' has no Kdhler structure. If G/T has
.a symplectic form w, then the operator »

[w]”—iA : H'(A*(G/T,Onaq,, ) = H™(A*(G/T, OAgslr))
is an isbmorphz’sm for any i < n where dim G = 2n.
We give complex examples.
Example 2. (/29]) /
e 0

Let G = C x4 C? with ¢(x) = 0 e

symplectic form. In [29], it was shown that G has a lattice T'. Thus G/T is
a non-Kdhler complex solvmanifold but A*(G/T, OAdSh") 18 formal and hard
Lefschetz. :

Then G has an invariant

1.10 On isomorphism H*(G/T',C) = H*(g¢)

Let G be a simply connected solvable Lie group with a lattice I" and g be the

Lie algebra of G. We give new criteria for the isomorphism H*(G/T',C) &
H*(gc) to hold by using Corollary 1.7.4. Take a basis X7,..., X, of gc such
that Ad, is represented by diagonal matrices as Adsy = diag(ai(g), ..., an(9))-
For {i1,...,ip} C {1,...,n} write a;,.. s, as the product of characters o, . . ., Q.

Corollary 1.10.1. Let G be a simply connected solvable Lie group with a
lattice I and g be the Lie algebra of G. Suppose (G,T") satisfies the following
condition :

(Cer): For any {i1,...,ip} C {1,...,n} if the character o, s, is non-
trivial then the restriction of oy, i,r on T is also non-trivial.

Then an isomorphism H*(G/T',C) = H*(gc) holds.
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Proof. Let z1,...,z, be a basis of g¢ which is dual to X1, ..., X,. Consider
AT .
the DGA (@ae N Va> as Corollary 1.7.4. By AdZ,-z; = a;(g) "1z

we have

T

@ /\g?{;@Va

‘aEAp

1< << <ip <, \

= g N ATy o = ..
<aCzl ' ip ® Variy ip the restriction of aj; i, on I is trivial

as the proof of Lemma 1.5.2. Suppose (G,I") satisfies the condition (Cg r).

Then we have
T

.@/\g?&@Va =</\gE>T.

a€Ar

\

Hence by Corollary 1.7.4, we have an isomorphism

H* ((/\ gff:)T) ~ [*(G/T, C).

This implies that the inclusion A(gc)* C Ag(G/T') induces an isomorphism
H*(gc) = H*(G/T,C).
0

Remark 1.10.1. We have examples such that we can apply of this corollary
but can not use Mostow’s theorem(=Theorem 1.3.1 ).

cosTt —sinwt

Example 3. Let G = R x4 R? with ¢(t) = ( sinmt  cost

) . Then

G has a lattice T' = Z x Z2. In this case G is not completely solvable and
(G,T) does not satisfies the Mostow’s condition. But diagonalization of Ads
is given by Ads(t, z,y) = diag(l,e’rt‘/__l,e_”t‘/_—l) and hence (G,T") satisfies
the condition (C g r). Thus we have an isomorphism H*(gc) = H*(G/T, C).

For a character o of G, if the restriction of o on T is trivial, then the
image a(G) = a(G/T") is compact and hence « is a unitary character. Hence
the above corollary reduce to the following corollary.
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Corollary 1.10.2. Let G be a simply connected solvable Lie group with a
lattice I' and g be the Lie algebra of G. Suppose G satisfies the following
condition : , \ '

(Dg): For each {i1,...,ip} C{L,...,n} the character a, s, is not a non-
trivial unitary character. ) .

Then an isomorphism H*(G/T',C) =2 H*(gc) holds.

Since the condition (Dg) does not concern with I', this corollary is more
. useful than the above corollary. Clearly a completely solvable Lie group
satisfies the condition (Dg). Hence this corollary is a generalization of
Hattori’s result in [24]. ’

Example 4. Let G = R® x4 (R® x C) such that

er 0 ... 0 , 0
0 AR : I
‘qﬁ(tl,...,ts) =1 7 . gt 0 0 ,
0 ... 0 e z(itetdeggy —em 3ttt ging,
0 ... 0 e altatts) sin ¢ e_%(fl“"'“ts) COS @

where ‘(p =ity + - -+ + cgts. Then a diagonalization of Ads is given by
Ad; = diag(e™, ... ,éts,e_%(tﬁ'“ts)%‘p\/—_l, e_%(tﬁ“‘ts)_""\/__l, 1,...,1).
By this, G satisfies the condition (Dg) for any.

Proposition 1.10.3. For any lattice I'; we have by(G/T) = basya_p(G/T) =
sCp for 1 <p < s and bs11(G/T) = 0.

" Proof. For a coordinate (ty,...ts 1, .. .5, 2) € R® X4 (R® x C), the cochin
complex A g¢ is generated by

{dt1,...,dts, e‘tldxyl, et e%(tﬁ“'ts)“‘p\/__ldz, e%(t1+"'ts)+¢\7__ld2}.

Since G satisfies the condition (Dy,g), we have an isomorphism
. B » T
HP(G/T',C) = H* (/\BE)

We have

P T
</\g?{:> :(dtil/\-~~/\dtip|1§i1<-~-<ip§s>
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T ,
for 1 < p<sand (/\erl g(’g) = 0. Since the restriction of the derivation
on (APgz)T is 0 for 1 <p < s+ 1, we have

T
Y4 .
H* (/\g:g> S (dtyy A Adtiy |1 < iy < -o- < iy < 8).

By the Poincaré duality, we have the proposition. . ’ O

We can construct a lattice of G by using of number theory. Let K be
a finite extension field of Q with the degree s + 2(s > 0). Suppose K ad-
mits embeddings o1,...0s,0541,0s4+2 into C such that o1,...,0s are real
embeddings and osy1,0s+2 are complexr ones satisfying og+1 = s12. We
can choose K admitting such embeddings(see [34]). Denote Ok the ring of
algebraic integers of K, O% the group of units in Ok and

Ot ={a€0f:0;>0forall 1 <i< s}
Deﬁne&:(’)K—> R® x C by

o(a) = (01(a), ..., 05(a), 0541(a))

for a € Ok. Then the image 0(Of) is a lattice in R® x C. We denote

a(a)-o(b) ;
= (01(a)o1(b), ..., 05(a)os(b), 0s+1(a)Tst1(b); - . -, s 4t(a)Ts44(h))

for a,b € Ok. Definel: O3 — R*L by

l(a) = (logo1(a)l, ..., loglos(a)l, 2log |ost1(a)])

for a € O3, Then by Dirichlet’s units theorem, [(O%T) is a lattice in the
vector space L = {z € Rt S5 o, = 0}. By this we have a geometrical
representation of the semi-direct product {O5) x4 0(Ok) with

Bt tsr1)(0(a) = o7 (t1, .. ., tss1)) - o(a)

for (t1,...,ts11) € LO}F). Since 1(O%F) and 0(Ok) are lattices of L and
R® x C respectively, we have a estension ¢ : L — Aut(R® x C) of ¢ and
1(O3T) X 0(OK) can be seen as a lattice of L Xg (R® x C). Since we
have ¢(t1,...tsp1) = diag(e®,... et 050117 (t1, ..., ts11))) and oey1 is a
complex embedding of K, for some ci, ..., cs € R, the Lie group Lxz(R*xC)
is identified with the Lie group G as above. ‘
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Remark 1.10.2. In [84], for each s Oeljeklaus and Toma constructed a
LCK (locally conformal Kahler) structure on the manifold G/1(O%F) x4
0(Ok) and showed that for s = 2 this LCK manifold is a counter example of
- Vaisman’s conjecture(i.e. Every compact LCK manifold has odd odd Betti
number). By the above proposition, for s = 2m the Betti number b, =
bam+2—p = 2mCp is even for odd number 1 < p < 2m. Hence for any even
s, G/I(O%") x4 0(Ok) is also a counter ezample of Vaisman’s conjecture.



Chapter 2

Cohomologically symplectic
solvmanifolds are symplectic

2.1 The Purpose of this chapter

A 2n-dimensional compact manifold M is called cohomologically symplec-
tic (c-symplectic) if we have w € H?(M,R) such that w™ # 0. A compact
" symplectic manifold is c-symplectic but the converse is not true in general.
For example CP2#CP? is c-symplectic but not symplectic. But for some
class of manifolds these two conditions are equivalent. For examples, nil-
manifolds i.e. compact homogeneous spaces of nilpotent simply connected
Lie group. In [32], for a nilpotent simply connected Lie group G with a
cocompact discrete subgroup I' (such subgroup is called a lattice), Nomizu
showed that the De Rham cohomology H*(G/I',R) of G/T is isomorphic
to the cohomology H*(g) of the Lie algebra of G. By the application of
Nomizu’s theorem, if G/I" is c-symplectic then G/T" is symplectic (see [17,
p.191]). Every nilmanifold can be represented by such G/T" (see [27]).

- Consider Solvmanifolds i.e. compact homogeneous spaces of solvable
simply connected Lie groups. Let G be a solvable simply connected Lie
group with a lattice I'. We assume that for any g € G the all eigenvalues
of the adjoint operator Ady are real. With this assumption, in [24] Hattori
extended Nomizu’s theorem. By Hattori’s theorem, for such case, without
difficulty, we can similarly show that if G/T" is c-symplectic, then G /T is sym-
plectic. But the isomorphism H*(G/I',R) = H*(g) fails to hold for general
solvable Lie groups, and not all solvmanifolds can be represented by G/T.
~ Thus it is a considerable problem whether every c-symplectic solvmanifold

is symplectic. : ' :

37
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 Let T' be a torsion-free virtually polycyclic group. In [4] Baues con-
structed the compact aspherical manifold Mp with m (Mr) = I'. Baues
proved that every infra-solvmanifold (see [4] for the definition) is diffeomor-
phic to Mr. In particular the class of such aspherical manifolds contains
the class of solvmanifolds. We prove that if Mr is c-symplectic then Mr is
symplectic. In other words, for a torsion-free virtually polycyclic group T'
with 2n = rankT, if there exists w € H2([',R) such that w™ # 0 then we
have a symplectic aspherical manifold with the fundamental group I'. '

2.2 Aspherical manifolds with torsion-free virtu-
ally polycyclic fundamental groups

Definition 2.2.1. A group T is polycyclic if it admits a sequence
FZFoDFID"'DFk={€}

of subgroups such that each I'; is normal in I';—1 and T';_1/T; is cyclic. We
denote rank ' = S = rank Ty, /T,

Proposition 2.2.2. ([40, Proposition 3.10]) The fundamental group of a
solvmanifold is torsion-free polycyclic. :

Let k£ be a subfield of C. Let I" be a torsion-free virtually polycyclic
group. For a finite index polycyclic subgroup A C T', we denote rankI’ =
rank A. ' ‘

Definition 2.2.3. We call a k-algebraic group Hr a k-algebraic hull of T
if there exists an injective group homomorphism ¢ : I' — Hp(k) and Hp
satisfies the following conditions: '

(1) %(T) is Zariski-dense in Hrp. '

(2) Zwur(U(Hr)) C U(Hr) where Zu.(U(Hr)) is the centralizer of U(Hr).
(8) dimU(Hr)=rankT. : :

Theorem 2.2.4. ([4, Theorem A.1)) There ezists a k-algebraic hull of T .
and a k-algebraic hull of I' is unique up to k-algebraic group isomorphism.

Let I be a torsion-free virtually polycyclic group and Hy the Q-algebraic
hull of I". Denote Hr = Hr (R) Let Ur be the unipotent radical of Hr and
T a maximal reductive subgroup. Then Hr decomposes as a semi-direct
product Hr = T x Up. Let u be the Lie algebra of Ur. Since the exponential

map exp : u — Ur is a diffeomorphism, Ur is diffeomorphic to R™ such
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that n = rankT. For the semi-direct product Hr = T x Up, we denote -
¢ : T — Aut(Ur) the action of T on Ur. Then we have the homomorphism
o : Hr — Aut(Ur) x Ur such that a(t, u) = (¢(t), ) for (t,u) € TxUp. By
the property (2) in Definition 2.2.3, ¢ is injective and hence « is injective.

In [4] Baues constructed a compact aspherical manifold My = o(T)\Ur
with 7 (Mp) = I'. We call Mr a standard I'-manifold.

Theorem 2.2.5. ([4, Theorem 1.2, 1.4]) A standard T-manifold is unique
up to diffeomorphism. A solvmanifold with the fundamental group I‘ is dif-
feomorphic to the standard T'-manifold Mr.

Let A*(Mr) be the de Rham complex of Mp Then A*(Mr) is the set
of the T-invariant differential forms A*(Up)Y on Up. Let (Au*)T be the
left-invariant forms on Up which are fixed by T'. Since I' € Hr = Ur - T, we
have the inclusion

(Aw)T = A*(Ur)™r ¢ A*(Ur)" = A*(Mr).

Theorem 2.2.6. ([4, Theorem 1.8]) This inclusion induces an: isomorphism
on cohomology.

By the application of the above facts, we prove the main theorem of this
paper.

Theorem 2.2.7. Suppose Mr is c- Symplectz'c Then Mr admits a sym-
plectic structure. In particular cohomologically symplectw solvmamfolds are
symplectic.

Proof. Since we have the isomorphism H*(Mp,R) & H*((/\ uw*)T), we have
w € (A?u*)T such that 0 # [w]® € H>((Aw*)T). This gives 0 # w" €
(Au*)T and hence 0 # w™ € A u*. Since w™ is a non-zero invariant 2n-form
on Ur, we have (w™), # 0 for any p € Up. Hence by the inclusion (A u*)T

A*(Up)T = A*(Mr), we have (w™)rp # 0 for any I'p € I'\Up = Mp. This
implies that w is a symplectic form on Mr. Hence we have the theorem. [

2.3 Remarks

Let G = R x4 U3(C) such that

1 z. z 1 emt.g z
pt)-1 01y |={0 1 ™.y |,
0 01 0
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and D = Z x4 D' with
1 xy4+ixs 21 +1i29
D'= 0 1 yi+iys | :x1,y2,2 €Z, x2,y1,721 ER 5.
0 0 1 : )

Then D is not discrete and G/D is compact. We have D/Dg = Z x, Us(Z)
such that

1z =z 1 (-z 2z
p®-1 01 y =10 1 (=) |,
0 01 ' 0 0 1

where Dy is the identity component of D. Denote I' = D /Dy We have the
algebraic hull Hr = {£1} x4 (Us(R) x R) such that

1 = =z ‘ 1 —z =z
¢(—1) ’ 01y it] = 0 1 -y it
' 0 0 1 0 0 1 /)

- The dual of the Lie algebra u of Us(R) x R is given by u* = (a, B, 7, 6) such
that the differential is given by :

do=dB =ds=0,

d,Y =—aA /Ba
and the action of {:I:l} is given by

(1) :a=—-a, (-1)-f= -5,

(1) 7 =7 (-1)-6=4.

"Then we have a diffeomorphism Mr2 G/D and an isomorphism H*(Mr, R)
=~ [ ((Aw*)#}). By simple computations, H2(( /\u JEH =0 and hence
the solvmanifold G/D is not symplectic.

Remark 2.3.1. The proof of the Theorem 2.2.7 contains a proof of the
Jollowing proposition. ’

Proposition 2.3.1. If My admits a symplectw structure then Up has an
invariant symplectic form.
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Otherwise for the above example, Ur = U3(R) X R has an invariant sym-
plectic form but Mr 1is not symplectic. Thus the converse of this proposition
is not true. If I is nilpotent, then T is trivial and any invariant symplectic
form on Ur induces the symplectic form on Mr. Hence for nilmanifolds the
converse of Proposition 2.8.1 is true.

Remark 2.3.2. I" is a finite extension of a lattice of Ur = Us(R) x R.
Hence Mr is finitely covered by a Kodaira-Thurston manifold (see [46], [17,
p.192]). Mr is an example of a non-symplectic manifold finitely covered by
a symplectic manifold.

Let H = G x R. Then the dual of the Lie algebra h of H is given by
b* = (o, 7, (15 (2, M1, M2, 01, 02) such that the differential is given by

do =dr =0,

d¢1 =71 Aoy dlo = —T A (4,
dm =7 Ang, dng = —7 A 11,
dbh =—C Am+ CAmna, diz = —Cl/\772*€2/\771'

By simple computations, any closed invariant 2-form w € /\2 h* satisfies
w* = 0. Hence H has no invariant symplectic form. Otherwise we have a
lattice A = 27Z x U3(Z +iZ) x Z which is also a lattice of R? x U3(C). Thus
H/A is diffeomorphic to a direct product of a 2-dimensional torus and an
Iwasawa manifold (see [18]). Since an Iwasawa manifold is symplectic (see
[18]), H/A is also symplectic. By this example we can say:

Remark 2.3.3. For a simply connected nilpotent Lie group G with lattice
I, if the nilmanifold G/T' is symplectic then G has an invariant symplec-
tic form. But suppose G is solvable we have an example of a symplectic
solvmanifold G/T" such that G has no invariant symplectic form.






Chapter 3

| Techniques of 'comput_ation's
of Dolbeault cohomology of
solvmanifolds

3.1 The purpose of this chapter

Let GG be a simply connected solvable Lie group and g the Lie algebra of G.
We assume that G admits a lattice I' and a left-invariant complex structure
J. We consider the Dolbeault cohomology H, =*(G/T) of the complex solv-
manifold G/T". We also consider the cohomology H *(g) of the differential
~bigraded algebra, (shortly DBA) A™™ g* of the complex valued left-invariant
differential forms with the operator 0.

The purpose of this part is to prove that one can compute the Dolbeault
cohomology of certain class of solvmanifolds G/T" by using finite dimensional
DBAs. In this part we consider a Lie group G as in the following assumption.

Assumption 3.1.1. G is the semi-direct product C" x4 N so that:

(1) N is a simply connected mlpotent Lie group with a left-invariant comple;c
structure J.

Let a and n be the Lie algebras of C™ and N respectively.

"(2) For any t € C", ¢(t) is a holomorphic automorphism of (N, J).

(8) ¢ induces a semi-simple action on the Lie algebran of N. .

(4) G has a lattice I'. (Then I can be written by ' =T" x4 T such that r
and I are lattices of C" and N respectively and for any t € I the action
&(t) preserves T.)

43
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(5) The inclusion \™* n* C A* *(N/T") induces an isomorphism.

H* (v) 2 Hy" (N/T).

Let o : C* — C* be a character (i.e. a representation on 1-dimensional
vector space C,) of C* . By the projection C" x4 N — C", we regard «
as a character of G as in Assumption 3.1.1. We consider the holomorphic
line bundle Ly, = (G x C,)/T" and the Dolbeault complex (A**(G/T, Ly), 0)
with values in the line bundle L,. Let £ be the set of isomorphism classes
of line bundles over G/T" given by characters of C". We consider the direct

sulm
P A @, Lp)
Lgel - .

of Dolbeault complexes. Then by the wedge produCts‘and the tensor prod-
ucts, the direct sum ®L5€£ A**(G/T, Lg) is a DBA.

Theorem 3.1.2. There exists a subDBA A** of

P A6/, L)

Lgel

such that we have a DBA isomorphism v : A7 (a @ n)* = A and the
inclusion ‘ '
®: A% - @ A (G/T, Lg)
Lpec

induces a cohomology isomorphism.
See Section 3 for the construction of A**.

Corollary 3.1.3. We have the finite dimensional subDBA B** = ®~1(A**(G /T))
of A%*(G/TI") such that the inclusion @ : B%* — A**(G/T) induces a coho-
- mology isomorphism
HZ*(B*") = Hg’*(G/F);

See Corollary 3.4.2 for the construction of B**.

Remark 3.1.1. Let N be a simply connected nilpotent Lie group with a
lattice I and a left-invariant complez structure J. Like Nomizu’s theo-
rem ([32]) for the de Rham cohomology of nilmanifolds, it is known that
an isomorphism Hz"(N/T") & HZ"(n) holds if (N, J,T") meet one of the
following conditions:



3.2. HOLOMORPHIC LINE BUNDLES OVER COMPLEX TORI 45

(N) The complez manifold N/T" has the structure of an iterated principal
holomorphic torus bundle (/10]).

(Q) J is a small deformation of a rational complex structure i.e. for the
rational structure ng C n of the Lie algebra n induced by a lattice T” (see
[40, Section 2]) we have J(ng) C ng (/9]).

(C) (N, J) is a complex Lie group ([42]).

By using Corollary 3.1.3, we actually compute the Dolbeault cohomol-
ogy of some examples in Section 5. Unlike nilmanifolds, we observe that
in many cases the Dolbeault cohomology of solvmanifolds can not be com-
pletely computed by using only Lie algebras. Moreover we give examples of
non-Kahler complex solvmanifolds with the Hodge symmetry.

Remark 3.1.2. If N has a nilpotent complex structure (see [10]), then
(A™*(a & n)*,9) is the minimal model of the DBA ®L5€£ A*(G/T, Lg)

(see [31]).

3.2 Holomorphic line bundles over complex tori

Lemma 3.2.1. Let ' be a finitely generated free abelian -group and o :
I' = C* a character of I'. If the character a is non-trivial, then we have
H* (F, Ca) = 0.

Proof. First we assume I' =2 Z. Then we have.
H%Z,C,) = {m € Cala(g)m = m, for all g € Z} = 0.
Like the de Rham cohémology of S1, by the Poincaré duality we have
HY(Z,Cy) = H(Z,Cyr)* = 0,

and obviously H?(Z,C,) = 0 for p > 2. Hence the lemma holds in this case.
In general case, we consider a decomposition I' = A @ B such that A is a
rank 1 subgroup and the restriction of o on A is also non-trivial. Then we
have the Hochshild-Serre spectral sequence E,. such that

ER?=HP(T/A, HY(A,Cy))

and this converges to HPT4(T",C,). Since H%(A, C,) = 0 for any q we have
FE5 = 0 and hence the lemma, follows. SO
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We consider a complex vector space C" with a latticeI'. Let o : C* — C*
be a C'*°-character of C". We have the holomorphic line bundle L, =
(C*xCq)/T over the complex torus C*/I". We define the equivalence relation
on the space of C*®°-characters of C"* such that o ~ 3 if a3~ is holomorphic.

Lemma 3.2.2. Let o : C* — C* be a C®-character of C. There exists a
unique unitary character B such that a ~ 5. '

Proof. For a coordinate (z1 ++v/— yl, .y Tn++v/—1yn) € C", a character «
is written as

a(@ +V=Ty1, .- @n+V—Tyn) = exp(D_(aizi + bigi + V—=1(cizs + di)))

i=1
for some a;, b;, ¢;, d; € R™. Let o/ be the holomorphic character defined "by

n

o/ (214+vV=1y1, .., Tntv=1yn) = eXb(z(—ai(Ii+\/f_1yi)+\/—_16i(:ﬁi¥\/—_1yi))-

i=1

Then the character § = oo/ is unitary. If a unitary character is holomorphlc
then it is trivial. Hence such § is unique. o O

" Lemma 3.2.3. ([38]) Let §: C* — C* be a unitary C*®-character of C".
Then the holomorphic line bundle Lg is trivial if and only if the restriction
of B on I is trivial.

Proposition 3.2.4. Let o : C* — C* be a C*®-character of C*. If L,
is a non-trivial holomorphic line bundle, then the Dolbeault cohomology
HZ"(C"/T, La) with values in the line bundle Ly is trivial.

" Proof. Let B be the unitary character such that o ~ 8 as in Lemma 3.2.2.
.Then we have L, & Lg. Let D be the flat connection on Lg induced
by B. We have the decomposition D = 8 + 0 so that O is the Dolbeault
operator on Lg. Since § is unitary, we have a Hermitian metric on Lg
such that for a Kéhler metric on C"/T" we have the standard identity of
the Laplacians of D and 0 (see [?, Section 7]). Hence we have an isomor-
phism H}(C"/T', Lg) = H}(C"/T, Lg). If Lg is non-trivial, then we have
- HH(C"/T',Lg) = H*(I',Cg) = 0 by Lemma 3.2.1. Hence the proposition
follows. : v ‘ O
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3.3 The construction of A"f’*

Let G be a Lie group as in Assumption 3.1.1. Consider the decomposition
nc = n10 @ n%l. By the condition (2), this decomposition is a direct sum
of C"-modules. By the condition (3) we have a basis Y1, ..., Yy, of n19 such
that the action ¢ on nl'0 is represented by ¢(t) = diag(ai(t), ..., am(t)).
Since Yj is a left-invariant vector field on N, the vector field o;;Y; on C* x4 N
is left-invariant. Hence we have a basis X1,..., Xpn, a1Y1, ..., 0mYm of gt%.
Let xl,...,xn,aflyl,.'..,a#ym be the basis of /\1’0 g* which is dual to
Xi,.. s Xp,00Y1, ..., 0y Ym. Then we have

g p N S
ok -1 -1 = = =—1= ~—1-
/\g _/\<xla-"axn;a1 Yy oo o5 Oy ym)®/\(371,~--a17n7041 Y1050y ym)

Let a ;: C* — C* be a character of C". Let (4**(G) ® C,)' be the space
of Cy-valued I'-invariant differential forms on G. Then we can identify the
Dolbeault complex A**(G/I, Ly) with (4**(G) ® Co)F. Hence for w €
A" g* and vy € Cq, we have

we (a_lva) € A*(G/T, Ly).

Let £ be the set as in Introduction. By Section 2, we can regard L as
the set of isomorphism classes of line bundles over G/T" given by unitary -
characters of C". We consider the DBA ;.. A**(G/T', L,). We define
the DBA A™* to prove Theorem 3.1.2.

Definition 3.3.1. Let z1,... ,xn,al_lyl, oo yatym be the basis of /\1’0 g*

as above. By Lemma 3.2.2, we have the unitary character (; such that

aj ~ Bj. We consider the holomorphic line bundles Lg-1 over G/T. By
VS

A*(GT, Lg-1) = (A*(G) ® (Cﬂ—1)r, Jor Cg-1 3 vg-1 # 0 we consider
: b : J i b ]
aj_lyj ® (ﬁj’Uﬁj—l) e A*(G/T, Lﬂj—l). ’
Let A" be the subDBA of @y . A**(G/T, Lq) defined by
P : '
AP = /\(xl, e T, 0] Y1 ® (,Blvﬁl—l), e O Y ® (Bmvg-1))

q
® /\("Ela ooy I, a{1_1g1 ® (’Ylv,yl—l)a SRS d;zlgm ® (’Ymvfy;zl»-
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Lemma 3.3.2. Let ¢ : A\""(a @ n)* — A™* be the algebra homomorphism
defined by '
L(.Cltz) = Iy,
-1 -1
L(O‘j yj) = & Y ® ﬁjvﬁj—l'
Then we have a DBA isomorphz’sm_

* %k

v (\(a@n)*,8) = (4",5).
Proof. Since ozj_lﬁj is holomorphic, we have
5(02;1%- ® /J’jvﬁj—l) = aj_l(gyj) ® ,Bj'l)ﬁj—l.
r‘I‘his implies 0 0 v = ¢ 0 0. Hence the lemma follows. _ O
Let g be the left-invariant Hermitian metric on G defined by
g=T1T1+ F + Tpdp + 07 G Y1+ ) G Ym e

Let 8 : C* — C* be a unitary C*°-character of C"*. Take Cg > vg # 0. Then
B~ lug is a C°°-frame of the line bundle Lg = (G x Cg)/T". We define the
Hermitian metric hg on Lg such that hﬁ(ﬁ_lvg,ﬁ_lvﬁj = 1. Let *gzn, :
APA(G/T, Lg) — Antm—pntm—a(Q /T, L%) be the C-anti-linear Hodge star
operator of g ® hg on A**(G/I', Lg) and let

g = ;g®hﬁ (o] 5 o] ;g®h37 Dg@hﬁ = 85 + (58
and ‘
HPS(GT, Lg) = fw € A (G/T, Lg) Dgongo = 0.
We consider the d-Laplace operator ®ygp, on the direct sum €p Lé e A¥*(G/T, Lg).
We consider the basis 1, ...,%Zn, U1, --,ym of A"*(a @ n)*. Let ¢’ be
the Hermitian metric on a @ n defined by :
g =2F1+ + Talon + 101 + - + Y-

Let ¥y : AP (a@n)* — A" P4 (a @ n)* be the C-anti-linear Hodge
star operator of ¢’ on A**(a @ n)* and let

5:;91050191, Dg/=53+55

and
* 5 *

Hp’q(ﬁ@n) ={we /\(a@n)*“]g/w :‘0}.
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Lemma 3.3.3. We consider the isomorphism v : \™*(a @ n)* = A** as in
Lemma 3.5.2. Then we have

voOy = (&0ggh,) o ¢

Proof. Let ©*ggn,, be the Hodge star operator on ®Lﬁ€£ A**(GIT';Lg). Tt
is sufficient to show

Lo ¥y = (D¥gehy) O L
For a multi-index I = {41, ...,4,}, we write 7 = zy; A+ ALy, Y1 = Yiy A+ A
Yip, @ = 0y -+ o, and By = By, - B;,. For multi-indices I, K C {1,...,n}
and J,L C {1,...,m}, we have

*g (T NYys AT ANYL) = €xp Nyg AT AL

where I, J', K’ and L' are complements and ¢ is the sign of a permutation.
We also have '

D Fgoha (T1 A QT 'Y ATk NG GL ® 5J’YL05;17;1)
= exp A Qg yp ATx NG ® B g,y -
Hence we only need to show ‘
Brtart = Brw.

Since a Lie group with a lattice is unimodular (see [40, Remark 1.9]),
the action ¢ on n is represented by unimodular matrices. Hence we have
ajarapar = 1. This implies ﬁ;lfy}:l = Bpvyr. Hence the lemma fol-
lows. ‘ O
Corollary 3.3.4. The inclusion

oA — P A*(G/T Lg)

‘ Lgel
induces an injection

HEI(a @ n) = HPY(A™) — HEY(ED A™*(G/T, Lp)).
: Lgel -
Proof. We have isomorphisms #P4(G /T, Lg) = H2(G/T, Lg) and HP4(ad
n) = H2(a @ n) (see [41]). By Lemma 3.3.3, we have
(9o ) ¢ @) WG/, Ly).
Lgel

Hence the corollary follows. . ; g
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3.4 Prdof of the main theorerh

" Proposition 3.4.1. Let G be a Lie group as in Assumption 3.1.1. G/T is
a holomorphic fiber bundle over a torus with a nilmanifold as a fiber,

N/T" - G/T — C™/T’
such that the structure group of this fibration is discrete.

Proof. Consider the covering C" x (N/T") — G/ such that the covering
transformation is the action of IV on C" x (N/I") given by g - (a,b) =
(a+ g, ¢(g)b). Hence we have the fiber bundle G/T" — C"/T" with the fiber
N/T" and the discrete structure group ¢(I') C Aut(N). Since ¢(g) is a
holomorphic automorphism, .this fiber bundle is holomorphic. O

Proof of Theorem 3.1.2. For Lg € L, by Borel’s results in [25, Appendix
2], we have the spectral sequence (Ey,d,) of the filtration of AP4(G/T, Lg)
induced by the holomorphic fiber bundle p : G/T" — C"/T” as in Proposition
3.4.1 such that:

(1)E, is 4-graded, by the ﬁber—degree the base-degree and the type. Let
PAES" be the subspace of elements of E, of type (p,q), fiber-degree s and
base-degree t. We have pqET =0if p+q=s+torif one of p,q,s,t is
negative. ' \

(2) If p+ g = s+ t, then we have

pqut ~ ZHH s (Cn/l—\l Lﬁ@Hp 1,q— s—l—z(N/l—\/l)) '
120

where HP—4¢-5+i( N /T") is the holomorphic fiber bundle Usecn o Hy (071 (b))
(3)The spectral sequence converges to H5(G/T', Lg).
' By the assumption Hy™(n) = Hy"(N/T"), the fiber bundle HP~ 49— SH(N/I‘”)

is the holomorphic Vector bundle Wlth the fiber Hg e t(1n) induced by
the action ¢ of I" on Hg—i’q_s'” (n). Since the action ¢ on n is semi-simple,
the action of C™ on Hg_i’q_SH (n) induced by ¢ is diagonalizable. The fiber
bundle splits as HP~%4=5*(N/T") = @ Lj, for some Ls; € L. Hence we have

HZ™*(C™/T", Ly ® HP~H4=*T(N/T")) = H;"~*(C"/T, D) L ® Ly,).-
. 5; .

- By Pyoposition 3.2.4, we have HZ78(CMTY, Lg ® Ls;) = Hy'~(C™/T) it
Ls® L, is trivial and Hgl—s(C"/F’, Lg®Ls,;)) = 0if Lg® Lg; is non-trivial.
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Hence we have

H(Cr, @ Lg@HP~H4=5H(N/T")) = H' =3 (C"/T)@HE 1~ (n).
L,s eL ‘ : :

For the direct sum € Lger A*(GT, LB),' we consider this spectral sequence

FE,. Then we have ~ o

p,qE;,t o Z H(%,i—S(Cn/P/’ @ Lﬁ ® Hp-—i,q—s—l—i(N/F//))
i>0 LgeL »
| =% " HF~(C/T') @ HE 1~ (n)
i>0
~ This implies an isomorphism E; = P, , Hg’q(a@ n). On the other hand, by
Corollary 3.3.4, we have an injection k

H2(a®n) —» HY(EP A™(G/T, Lp) = Eo.
) LﬁEE . -

Hence the spectral sequence degenerates at E9 and the theorem follows. [

Corollary 3.4.2. Let B** C A**(G/T") be the subDBA ofA*’*(G/F) given
by -
e =p g

BP = St Tr A yLT . o
<xI Nay By «/\ Tr N Qg Ly the restriction of Byvz, on I is trivial

Then the inclusion B** C A**(G/T") induces a cohomology isomorphism
H*(B™*) = HL*(G/T).
Proof. By Lemma 3.2.3,
S(xr A a}lva/\ T N 542137[, & /BJ’)’LUﬁ;l,YI—Il) e AY(G/T)

if and only if the restriction of 85y on T is trivial. Hence we have ®~1(A%*(G/T")) =
B** ) O

Remark 3.4.1. Suppose ¢ : C* — Aut(n'?) is a holomorphic map. Since
each a; is holomorphic, B; is trivial. Hence we have B0 = /\p’0 g*. More-
over if N is a complez Lie group, then G = C™ Xy N is also a complex Lie -
group and any element of B0 = g9 is holomorphic and hence 0BPC = Q.
Hence we have an isomorphism

N p ‘
HPYG/T) = N\ g0 @ HY(B).
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Remark 3.4.2. We suppose the following condition:

(%) For multi-indices J, L, if the restriction of Bryr on T is trivial, then
Byvr itself is trivial.

Then we have B** C \®* g* and hence we have an isomorphism

H"(g) = Hy"(G/T).

3.5 Examples

3.5.1 Example 1

e 0

Let G =C ) C2? such that dlz + /—1y) = < 0 ot

). Then for some
a
, 0" e ®

for any 0 # b € R we have a lattice I = (aZ + bv/—1Z) x T such that I is

a lattice of C2. Then for a coordinate (z1 = &+ /=1y, 22, 23) € C x4 C? we
have :

a € R the matrix ( o 0 ) is conjugate to an element of SL(2,Z). Hence

. pa ‘
/\g = /\ dz1, € %dzg, €dz3) ® (dz1, e “dZa, €%dZ3).

Since we have e* ~ e_‘/‘_ly, the subDBA

A c P A (G/T, Lg)
Lgel

as in Definition 3.3.1 is given by

P,q ]
- Y V=T
Ai’l”q = /\(dzl, e Tdzm e Yu,y=1y, €dzz ® eV Yo, ogy)

®<d51, e %dzy ® 6_\/__17!1)6\/_—13,, edzz ® 6\/__1yve_\/_—1y>.

BP2 C APA(G/T) varies for a choice of b € R as the following.
(A) If b = 2nw for n € Z, then we have:

, g ' : |
BPA — /\(dzl, e_x_\/__ldeQ,em+\/__lde3>®<d21, e—x—/—_lydz2,ew+\/—_1yd23).

(B) If b = (2n — 1)7 for n € Z, then we have:
‘ C BlLo— <d21> BYl — <dzl>

B%0 — <d22 AN ng) BO 2= (dZQ A ng)
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BUl = <dz1/\d21, 6_2w_2\/__1yd22/\d22 e2x+2\/__1de3/\d23, dzaNdZzs, dZ37\d52>,

B30 = (dz1 A dzy A dzs),

B! = (dzg Adzz Adz1, €22V "Wz Adzg A dz, |
2tV A das A dZs, dzy A dzo A dZs, dzy A des A dZ),

BY? = (dzy A dZy A dZs, eV Wiz A d7) A dZ,
etV d00 A d7) A dZs, dzg A dEs A dZy, dos A dZ A dE),

B%3 = (d21 NdZs A d23>
B! = (dz1 Ndzg Ndzz Ndz), BV = (dz1 A dZa A dz3 A dz),

B%? = <d21 Adzo Ndzy N dZs,
e 222l Adzg AdZy A dZa, €222V WAz Adzs A dEy A dZEs,
dzo Ndzz Ndzy Adzz,dz1 A dzg A dz A dig),

B%? = (dzy Adz3 AdZ A dZE A dZs), B33 = (dz1 Adzy Adzs A dZa A dZs),

B33 — (dzl Ndzg A dZ3 ANdzZ1 A dZQ AN ng)
(C) If b # nr for any n € Z, then we have:
9= (dz), B® = <dz1)

B2%0 = (dzy A dz3), B%? = (dz; A dZ3),
BY! = (dz A dZy, dzo A dZs, dzs A dE),
= (dzoNdz3NdZ1, dz1 NdzoNdZs, dz /\d23/\d22)

B30 = ((:ézlAszAdzg) B!
(dzl AdZy /\ClZ3>

BY? = (dz) AdZaAdZ3, dzoAdZ3AdZ, dzzAdZaAdZ ), BY® =
B> = (doy N dzz Adzs Ndz1), B = (d21 A dZ2 Adzz A dz),
(dzl ANdzo NdZ AN dZs,dzo ANdzz ANdZa AdZzs,dz1 A dzg A dzl VAN dig),

B2’2 —
(dz1 A dzg A dzg A dZa A dZ3),

B%? = (dzy A dz3 A dz NdZEy A dzs), BYS =
B33 = (dz1 Adzy Adzz AdZy A dZy A dEs).
By Corollary 3.4.2, for each case we have an isomorphism H5%(G/T) =
BP9, Moreover considering the left-invariant Hermitian metric g = dz1dz; +
e~ 22 dz9dZs + e¥*dz3dzs, we have HP4(G/T") = BPA.
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Remark 3.5.1. In the case (A), the Dolbeault cohomology Hy™(G/T) is
isomorphic to the Dolbeault cohomology of complex 3-torus. But G/T' is
not homeomorphic to a complex 3-torus. Moreover considering the metric
g, the space of the harmonic forms does not satisfy Hodge symmetry (i.e.

HP(G/T) # HWP(G/T)). |

Remark 3.5.2. By Hattori’s result in [24], we have an isomorphism H*(G/T) &
H*(g) of the de Rham cohomology of G/T* and the Lie algebra cohomol-
ogy. Hence considering the space ’H’;(g) of left-invariant d-harmonic forms -
of the left-invariant Hermitian metric g, we have H%(g) = H5(G/T). By |
simple computations, in the case (C) we have the Hodge decomposition
HE(GT) = Dy g—r HPU(G/T). Hence G/T' has cohomological properties
(for example the Frélicher spectral sequence degenerates at E1) of compact
Kahler manifolds. But \by Arapura’s result (solving Benson-Gordon’s con-
jecture) in [1], G/T' admits no Kdhler structure.

Remark 3.5.3. In the case (C), an isomorphism Hg’;k(g) = Hg*(G/F)
holds. But in the other cases, this isomorphism does not hold.

3.5.2 EXample 2
Let G=C X C2? such that

» z++v/—1 \
¢z +V-1y) = ( ¢ 0 .y e—w—O\/—_iy )

Then we have a++/—1b, c++/—1d € C such that Z(a++/—1b)+Z(c++/—1d)
is a lattice in C and ¢(a++/—1b) and ¢(c++/—1d) are conjugate to elements
of SL(4,7Z) where we regard SL(2,C) C SL(4,R) (see [23]). Hence we have
a lattice I = (Z(a + +/—1b) + Z(c + v/=1d)) x4 I"-such that I’ is a lattice
of C2. For a coordinate (21, 22, 23) € C x C2, we have

. Pg q ' .
0" = \(dz1, e P dzo, € dzs) ® (d1, e P dzo, €7 dzZ5).

‘We have

" APA
p.q ) ~ -
= /\(dzb e sz’ e dZ3> ®<d§1’ e d22®6_2 —i Uo2v/=Ty; 7_eZ1 d§3®€2 — Ue—2\/f_1y1 >

for 21 = 71 + v—=1y;.
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If b,d € wZ, then we have

: p.a -
\Hp’q(G/P) ~ BPY /\(dzl, e_zleQ, 6Z1d23> & <d51, e Adzs, ezldzg,).

Ifb& 7Z or ¢ & wZ, then we have
B = (dz,), B®? = (d%, A dZ3), B®® = (dZ1 A dZy A dZ3)
and

.p’ '
HPY(G/T) = BP9 = /\(dz1, e " dzs, €™ dzs) ® B™.
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