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Chapter 1

Introduction

1.1 Problem

Ultradiscrete integrable systems are integrable systems where independent variables
take values in Z, and dependent variables in the max-plus algebra R, = RU{—o0}.
Among them is the famous box-ball system [17], represented by the equation

n—1 n—1
U =min [1-UE, Y UE— ) UE|. (1.1)
k=—o0 k=—00
Defining St = 3 3° 51 UL, we obtain
SN+ S =max [SIZh + S5 — 1,88 +SEL0 ], (1.2)
which is ultradiscretization of the discrete KdV equation
(1+8) ot ol =505 ol + otot . (1.3)

Ultradiscretization [18] is a systematic procedure to obtain ultradiscrete systems
from discrete systems. The fundamental formula of the procedure is

el—lg:o elog (e™/€ + €B/¢) = max[A, B], (1.4a)
A/s  ,B/s —
e1_120 elog (e e®/*) = A +B. (1.4b)

This may be understood as transformation of addition into max operation and of mul-
tiplication into addition. Setting 8 = e~'/€ in (1.3) and applying ultradiscretization,
we obtain (1.2).

The problem is, however, that ultradiscretization cannot be applied to subtraction,
which is of course contained by many discrete integrable systems. This is because the
equation

max[x,al =b ' (1.5)

for x has no solution in R,,,, when a > b.
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1.2 Contents of the thesis:

We focus on the symmetrized max-plus algebra [16, 1], denoted by uR in this thesis,
in order to solve the problem. This algebra is an extension of R, and looks natural
in the sense it traces the construction of Z from N2. Linear algebra over uR is also
possible [16, 1], and ultradiscretization with uR is presented in [3]. These theories of
uR are mainly developed in the field of discrete event systems and seems little known
to the field of integrable systems. Several other attempts [15, 6, 19, 9] have also been
made to solve the problem, and ultradiscretization with parity variables [13] is of
special interest. We compare this method and ultradiscretization with uR.
The discrete sine-Gordon equation [5, 2] '

m-__m+1 _ _m _m+1 m m+1
m+1 _ m m+1 m+1
(1=8)ot" o] = o o — &1y} (1.6b)

has not been ultradiscretized until recent years because soliton solutions include sub-
traction or even complex numbers. The first attempt is made by [7, 8] where a T™-
only trilinear equation is exploited to exclude subtraction. Here we propose another
method to ultradiscretize the sine-Gordon equation which utilizes uR. Both the equa-
tion and the solutions are ultradiscretized keeping subtraction and complex numbers
in a highly direct fashion.

Noncommutative integrable systems have been drawing more interest in the last
two decades. It is difficult to point out the first appearance of such systems, but the
noncommutative KdV equation is already mentioned in [11]. The first discrete non-
commutative integrable system is probably the noncommutative discrete KP equa-
tion [14, 10]. Along this line, we propose the noncommutative discrete sine-Gordon
equation, explore relations to other integrable systems, and construct multisoliton so-
lutions by the Darboux transformation. Moreover, we also propose the noncommu-
tative ultradiscrete sine-Gordon equation and explicitly derive 1-soliton and 2-soliton
solutions by ultradiscretization with ulR. As a result, we have a complete set of com-
mutative and noncommutative versions of the continuous, discrete, and ultradiscrete
sine-Gordon equations.

The rest of the thesis is organized as follows.

In Section 2.1, the construction and properties of uR and matrices over uR are
reviewed in some detail. Ultradiscrete complex numbers are also introduced. In Sec-
tion 2.2, ultradiscretization with these algebras is reviewed. Ultradiscretization with
uR and that with parity variables are compared.

_In Section 3.1, the discrete sine-Gordon equation and 1-soliton and 2-soliton so-
lutions are reviewed. Special solutions such as the traveling-wave and kink-antikink
solutions are explicitly presented. In Section 3.2, the ultradiscrete sine-Gordon equa-
tion is proposed and the solutions are obtained. Because of ultradiscretization with



uRR, correspondence between the discrete and ultradiscrete systems are direct, which
is also supported by figures.

In Section 4.1, the noncommutative discrete sine-Gordon equation is proposed.
Relation to other integrable systems including the noncommutative discrete KP equa-
tion is explained, and multisoliton solutions are constructed by repeating the Darboux
transformation. In Section 4.2, the noncommutative ultradiscrete sine-Gordon equa-
tion is proposed and 1-soliton and 2-soliton solutions are derived. Also figures of
solutions for both equations are displayed.

In Chapter 5, concluding remarks are presented.



Chapter 2

Symmetrized max-plus algebra and
ultradiscretization

In this chapter, we review the construction and properties of the symmetrized max-
plus algebra uR and matrices over uR in some detail [16, 1]. Ultradiscrete complex
numbers are also introduced. Ultradiscretization with uR [3] is then reviewed. Most
of the results are already known, but we dare explain them because they are important
and seem little known to the community of integrable systems. Lastly, we compare
ultradiscretization with uR and that with parity variables, using two simple examples.

2.1 Symmetrized max-plus algebra
2.1.1 Dioids
A semiring is a set R with addition @ and multiplication ® such that
* @ is associative and commutative with null element 0,
* ® is associative with unit element 1,
* Q is distributive over @,
¢ and O is absorbing, thatis, 0 ® x =x ® 0 = 0 forany x € R.

An idempotent semiring, also called a dioid, D is a semiring where addition is idem-
potent, that is, x @ x = x for any x € D. A subset C of D is called a subdioid
if

* Cincludes O and 1,

¢ and is closed under @ and ®.



A dioid is called commutative if multiplication is commutative.
Most of the time, ® is omitted in expressions for brevity. €D and ) are used like

n T
@X1=X1@Xz@"'@xm ®Xi:X1®X2®"'®Xn-
i=1 i=1

Multiplicative inverse of x, if exists, is denoted by x™', and powers of x by

™ (n<o0).

1

In commutative case, fractions like x/y = xy~' are also used.

2.1.2  Pair of the max-plus algebra
Let Ryox = R U{—00}. Ry has the obvious total order. Define @ and ® by
x®Yy =max(x,y), xQ@Y=x+y (2.1)

for X,y € Rpux. With these operations, R, becomes a commutative dioid called
the max-plus algebra. The null element is —oo and the unit element is 0. We extend
® and ® over R2_ by

(x1,%2) ® (Y1,Y2) = (x1 BY1,%2 DY2), 2.2)

(x1,%2) ® (Y1,Y2) = (X1Y1 D X2Y2,X1Y2 D X2Y1). (2.3)

Then R2__is a commutative dioid with null element (—o00, —00) and unit element
(0, —00). Ry is embedded into R2_ by x — (x, —00).
Define minus sign © by

O(x1,%2) = (x2,%1) (2.4)
for x = (x1,%2) € R2_ . We have
olox)=x, okxey)=(ox)®(ey), oy)=(ex)y [2.5)

and therefore write x © Y for x @ (6y), which is regarded as subtraction.
Define absolute value | | : R2_ — Ry by

I(XHXZN@ =X; D X2 (2.6)
We have

le@ == |ex|@ ) |X @91@ = |X[€B S5 |y|@) |X1J|@ = |X[@ |y|@ . (27)
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Define balance operator ® by
(x1,%2)* = (x1,%2) © (%1,%2) = (%1 B X2, %71 D x2). - (2.8)
We have

Xt =(ex)% (x)*=x* (x@y)" =x"0y", xy*)=(y). 29

2.1.3 Symmetrized max-plus algebra

It is natural to consider balance relation V defined by
(x1,%2) V (Y1,Y2) <= x1 B y2 =% @ y1. (2.10)

V is reflexive and symmetric, but #ot transitive: if X; > %3, then (x1,%2) V (x1,%1)
and (x1,%1) V (x2,%7) hold, but (x1,%2) V (x2,%1) does not hold since x1 ®x; =
X1 757(,2 = X2 © X3.

Therefore, we introduce another relation R defined by

(x1,%2) R (u1,U2) = {(thz) V (y1,yz2) (when xi # X2 and Y1 # y2),
(x1,%2) = (Y1,Y2)  (otherwise).
(2.11)
R is an equivalence relation compatible with the operations @, ®, &, ||, *, and the
relation V. Thus, we can define the quotient structure

uR=R2 /R. (2.12)

This is called the symmetrized max-phis algebra [16, 1]. Usually this is denoted by
S, but we use uR to imply it is somehow a whole set of ultradiscrete real numbers. We
~will also introduce uZ, uC later.

Proposition 2.1. We have three kinds of equivalence classes:

(x,—00) = {(x,t) : t € Ry and x > t},
(—oo,x) ={(t,x) : t € Ry and t < x},
0, %) ={(x,%)}.

Proof. Forany (x1,%2) € R2_, only one of the three conditions x; > X2, X1 < X2,
and x; = x; hold. In the first case, we have

(x1,%2) V (x1,—00) = (x1,%2) R (x7,—00)

and thus (x1,x2) € (x1,—00). The second case is similar, and the third case is
trivial. [



R is embedded into uR by x — (x, —0c0). Define

ORx = {(—oo,x) X € Rmax}, Ry, = {(x, X):x € Rmx} . (2.13)
Then uR has a decomposition

uR =R, USSR UR? (2.14)

max?

and (—00, —00) is the only element which belongs to any two of the three sets. Thus,
we simply write x for (x, —00), ©x for (—oo, x), and x* for (x, x).

Example.

(3@ (-2)=-2, 302=3, 203=03, 202=2°,
2@3=5, o(-2)@(-3)=6(-5), 283 =5
Define sign function sgn x by
0 (x € R),

sgnx = ¢ 0° (x e R2_J, (2.15)
o0 (x € OR).

x € uR is said to be positive if sgnx = 0, negative if sgnx = S0, and balanced if
sgnx = 0°.

Define uRY = R, U OR,... X € uR is said to be signed if x € uRY. Itis
somewhat confusing that —co is a signed element, but this is a minor problem.

Proposition 2.2. Let uR® denote the whole set of invertible elements in uR. Then,
uR® = uRY \ {—oo} = uR \ R? . (2.16)

Proof. Forany x € R, we have x ® (—x) = (6x) ® (6(—x)) = 0. And for any
X € Ry and y € uR, we have (x*)y = (xy)® # 0. |

Define uZ,uZ" C uR by
uZ ={—cc}UZUSZUZ®, uZ" =uZNuRY (2.17)

with obvious notations. uZ is a subdioid of uR and can be regarded as a whole set of
ultradiscrete integers. x € uZ is said to be even if |x| o s even, odd if [x|g is odd. We
do not define whether —oo0 is even or odd. We have of course

uZ® = uZ" \ {—o0}. (2.18)
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2.1.4 Properties of balance relation

We make much use of V, rather than R, since members of R?__ can be regarded as a
kind of null elements by virtue of the following proposition.

Proposition 2.3. For any x € uRR,
xV—co<=xecR, . (2.19)
Proof. Assume X = (X1,%2). Then,
XV —00<=x10~—0=xX®—c0<=xecR_. [
Proposition 2.4. Foranyx € uR and t € R,
xVittandx g R} = [x[g <t (2.20)
Proof. Assume X = (x1,X2). Then,
xV t* andx¢R,‘nax<;>x1 Bt=x2@tand x; #x;
—x1 <tandxy; <t
= [xlg < t. |
Proposition 2.5. For any x,y € ulR, we have
xVy<=x6yV —c. (2.21)

Proof. Assume x = (X1,%2),Y = (Y1,Yz). Then,
xXVYy<=x1 @Y =%x2DVY;
= (x1®Y2) @ —00=(x2 Y1) P —00
< x0yV —ox. |
Proposition 2.6. For any X, Y, z,w € uRR, we have
xVyandzVw =x@zVyow, (2.22)
xVy = xzVuyz (2.23)
Proof. |
xVyandzVw<=x0yV —c0andzowV —
= x0ydzowV —o
—xPzVyodow
and
xVy<=xoyV —oco
= (x8yY)zV —0
<= xz V yz. [ ]
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Proposition 2.7 (Weak substitution).
xVy,cyVzandy € uRY = cx V z. (2.24)

Proof. Assume x = (x1,X2),y = (Y1,Yz2), etc. Wheny,; = —o0
X1 =%X20Y1, €1y Dz2 =cy; b zy.
Adding c1x2 @ c2%; to the both sides of the second equality, we have

C1Yy1 © C1X2 D C2X2 D 22 = Coy1 D X2 D Cax2 D z4
= C1X1 D C2Xx2 P zy = CaX1 DCiX2 D 27
= cx V z.

Similarly for the case y; = —o0. |
Corollary 2.8 (Weak transitivity).

xVy,yVzandyeuRY = xVz (2.25)
Proof. Set ¢ = 0 in the previous proposition. |
Proposition 2.9 (Reduction of balances).

x Vyandx,y € uRY = x =. (2.26)

Proof. Assume x = (x1,X2),y = (y1,Y2). When x; = —00, we have
X1 OYz =Y1 => Y = —coand xq =Y.
Similarly for the case x; = —o0. | |
Proposition 2.10. For any x,y,z, w € uR, we have
xVyandzVw=xzVyw. (2.27)

Proof. If both of xz and yw are signed, then x = y and z = w, which imply
xz V yw. If both of xz and yw are balanced, then xz V yw trivially holds.
For the remaining cases, we can assume Xz are signed and yw are balanced without

loss of generality. We have
xzVyz, xwVyw, xzVxw, yzVyw.

Ifyz € uRY or xw € uRY, then weak transitivity implies xz V yw. Otherwise,
we have Yy = s*,w = t* for some s,t € R,,,. Then, x| < s and |zl < timply
Ixzlg < st <= xz V yw. [ |
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2.1.5 Matrices and determinants

Let uMat(N, uR) denote the whole set of N X N matrices over uR. Define addition
@ by :
(ai;) @ (by) = (ay; ® by) (2.28)

and multiplication ® by
(ay) ® (by) = (cy5), ¢y = @ Ak ® by; (2.29)
x

forany (ay;), (bi;) € uMat(N, uR). Then uMat(N, uR) becomes a dioid, noncom-
mutative when N > 1. &, *, and V are of course defined by

Olay) = (0ay), (ay)® = (afj), (2.30)
(aij) \V4 (bij) < aij \v4 bij for any l,] (2.31)
respectively. (ai;) € uMat(N, uR) is said to be signed if all the elements are signed.

The whole set of signed elements in uMat(N, uR) is denoted by uMat(N, uR)V. uR
is embedded into uMat(N, uR) by '

X —00 -+ —00
X —» —?o x - : . (2.32)
. * *. . —00
—w PR -—w X

For any permutation 0 € Sy, define sgn(c) by

(o) 0 (when 0 is even), (2.33)
sgn(c) = .
& 60  (when ois odd).
And define the determinant of a matrix A = (ay;) € uMat(N, uR) by
detA = EB sgn(0) ® Qig(i)- (2.34)

det A is also denoted by |A| or |as;|. This satisfies some basic properties completely
analogous to that of ordinary determinants. Proofs are also quite similar, thus we
simply list the properties below.

Proposition 2.11.
‘Al = |A| (2.35)

where *A denotes transposition of A.

13



Proposition 2.12.

|V1 }\vJ@u \)NI
LR [ e

where v; = t(a1j, coyan;)andu = Yy ..., un).
Proposition 2.13. For any permutation o € SN

lais()] = sgn(o)|ayl. (2.37)
Corollary 2.14. If v; = vy for some j # k, then

|[vi o |V —oo. (2.38)

Let cofj;(A) denote the cofactor of aij in |A|, which by definition satisfies

Al = @D ai; ® cof5(A) (2.39)

for any j. Define the adjacent matrix of A by
adj A= (bij), bij ': cofﬁ(A). (2.40)

Theorem 2.15.
A®adjAVIA|, adjA® AV |A| (2.41)

Remark. A ® adj A and adjA ® A not necessarily coincide. For example, we have

L f 0 1 1 ol
adJ(-] 1):(9(—1) o)

and thus

ety (o Ty_( 1 2
o(=1) 0 1 1) = 1)
If|A| € uR®, define A~' by

A7 =|A| " adjA. (2.42)

This is not a multiplicative inverse in general, but plays a similar role with regard to
V. Therefore we use the notation A~!,

14



2.1.6  Ultradiscrete complex numbers

It is well known that we can construct complex numbers by 2 X 2 real matrices, using

. 0 -1
S \1 0
as the imaginary unit. We try to construct ultradiscrete complex numbers in a similar

way. :

Define I € uMat(2, uR) by

—oc0 0
I= ( 0 ) . (2.43)

We have
12=(_§° i‘l) (_(‘)x’ _90%)=(_90(l _e°§)=eo. (2.44)
Define uC C uMat(2, uR) by
uC ={xdyl|x,y € uR}. (2.45)
Proposition 2.16. uC is a commutative subdioid of uMat(2, uR).
Proof. Obviously uC includes —oo and 0. For any a @ bl,c & dI € uC, we have

(a@b)®(codl)=(adc)d (b d)I € uC,
(adbl)® (cddl) = (acobd) ® (ad @ be)l € uC.

And uC is commutative because I® and I' are commutative. _ [ |

When z € uC is expressed as z = x + yI where x,y € uR, we write
uRez =%, ulm=uy. (2.46)

The whole set of signed elements of uC is denoted by uCV.
If det(x ® yI) = x* ®y? € uR®, we have

_ xSyl
D= 222
(x ®yl) oy
and (xu)
-1 _ xy)*
(xeyl)xeyl) —OEBXZ@yZIVO.
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2.2 Ultradiscretization with the symmetrized max-plus
algebra

2.2.1 Usual ultradiscretization
Let f(s) be a real function. For large s, assume f(s) > 0 and define f(s) by

f(s) = ef()s, | (2.47)
We write _ v
f(s) 25 F, F= lim f(s) (2.48)
if the limit exists. When |
f(s) 25 F, g(s) 2% G, (2.49)
we have ] ]
f(s) + g(s) — max(F, G), f(s)g(s) — F+G. (2.50)

This is the fundamental formula for ultradiscretization [18]. We want to drop the
requirement for positivity in order to widen applicability of the procedure.

2.2.2  Ultradiscretization with negative numbers
Let f(s) and g(s) be real functions. We say f(s) is asymptotically equivalent to g(s)
if there exists a real number s¢ such that g(s) # 0 for any s > s and

lim —= =1. (2.51)

We also say f(s) is asymptotically equivalent to 0 if there exists a real number s1 such

that f(s) = 0 for any s > s7. Asymptotic equivalence is an equivalence relation and
denoted by f(s) ~ g(s).

We are interested in asymptotic equivalence to exponential functions. If

f(s) ~ pre’s (up eR*,Fe R) :

we write _
f(s) 2% F, F=S(ur) ®F € uRY (2.52)
where
0 (n>0),
S = _ 2.53
(w) {90 (1< 0). (2.53)

— d .
We regard 0 ~ pe(=)s for some p € R* and 0 <5 —o0 as a convention.
It is very important here to notice that [ is 7oz restricted to positive numbers,
unlike the usual ultradiscretization procedure.
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Theorem 2.17 (Ultradiscretization of addition). Let f(s), g1(s), ..., gn(s) be real
functions satisfying

fs) = Y guls)
k=1

and ) ;
f(S) u—) F, gk(s) u—) Gk.

Then,

n

Proof. Assume f(s) ~ I.l]:e?S and gy (s) ~ queéks. We can also assume

Gi >G> =Gy

without loss of generality. The case 61 = —00 is trivial, so 61 % —00 below.
Let '
- n
. —~Gs
e = lim e™™ ng(S)-
k=1
We have é1 =...= éj > éj+1 for some j (1 <j < n, G, 1 = —00) and thus
j
UG = Z UG-
k=1
Ifall of pg;, .. ., 1g, have the same sign, g also has the same sign and

F=G =FVPGu
k=1

Otherwise, we have Gy = ©G, for some L, m (1 <1< m < j) and

k=1
WhenuG #O,
’ F=G =FVPGi
k=1
Whenug =0,
’ﬁ<’é1:>FV@Gk. |
. k=1

17



Remark. f(s) 2, Fand g(s) 4, G do not imply f(s) + g(s) 4, F® G because
f(s) + g(s) might be no longer asymptotically equivalent to exponentlal functions.

But if f(s), g(s) can be expressed by power series in § = up eDs where D < 0, this
is not a problem because f(s) 4+ g(s) can also be expressed by a power series in 8.

Theorem 2.18 (Ultradiscretization of multiplication). Let f(s), g(s), h(s) be real
functions satisfying

and
g(s) 25 G, h(s) 4% H.

Then,
f(s) “% F=G @ H.
Proof. Assume g(s) ~ ug %% and h(s) ~ },LHeﬁS. Clearly we have

f(s) ~ paune 6+

and thus . o :
f(S)u—)F=S(}.LGuH)®G®H=G®H. |

Corollary 2.19 (Ultradiscretization of polynomials). Let real functions f(s), g (s)
satisfy

n my
= Z gia(s)

k=1 1=1

and ; ;

f(S) u—) F, gkl(s) —l-l—> le.
Then,

n My

Py B E G
k=1 1=1

Proof. Let gi(s) = 12 gxi(s). Clearly we have

g ( —>Gk—®Gk1

and thus

Fvéé@. .

18



2.2.3 Ultradiscretization of matrices

Consider a matrix-valued function f(s) = (fy;(s)) : R — Mat(N,R). If

fi;(s) d, Fij,

we write

f(s) % F = (Fy;) € uMar(N, uR).

(2.54)

This is a componentwise property; there is no exponential functions of matrices.

Corollary 2.20. Let matrix-valued functions f(s), gx(s) satisfy

k

f(s) =) []gnls)

k=1 1=1
and . .
f(s) — F,  grls) = Gyt
Then,
T my
v Do
k=1 1=1

Proof. Apply Corollary 2.19 componentwisely.

2.2.4 Uleradiscretization of complex numbers

Considering 2 X 2-matrix construction of complex numbers, we have

. 0 -1 ud _ —0o0 @O
1“(1 0)_’1_(0 —oo>'
Let f(s) = u(s) + v(s)i where u(s), v(s) are real functions. If

u(s) 25U, v(s) 2L v,

we have of course

f(s) “L F=U® VI € uC.

Corollary 2.21. Let complex-valued functions f(s), gxi(s) satisfy

My

f(s) =) []guls)

k=1 1=1
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and . |
f(s) —F  guls) ~ Gu.

Then,
P D@6
k=1 1=1
Proof. This is immediate from Corollary 2.20. |

2.2.5 Comparison to ultradiscretization with parity variables

As stated in Chapter 1, several other attempts [15, 6, 19, 9] have been made to extend
ultradiscretization so that it can be applied to subtraction. Ultradiscretization with
parity variables [13], or p-ultradiscretization, is of special interest.
Let us illustrate p-ultradiscretization with an example from [13]. Consider the
simple recurrence formula
Xn4l = AQXn.- (2.57)

We want to ultradiscretize this including the signs of a, x,,. First, we separate signs,
or parities, and absolute values by

Xn

a
Yn=IXnl, on=—, b=la, p= 5 (2.58)
Second, rewrite signs as

on = h(on) — h(_o-n)) 0= h(p) —h(—p) (2.59)

where h is a step function defined by

1 (x > 0),

hi{x) = 2.60
) {o (x < 0). (2:60

Third, rewrite (2.57) without subtraction:
(h{on+1) = h{=0ni1))yns1 = (h(p) — h(—p))(h(on) — h(—0,)) by,
< h(o-n—H )yn—H + (h(p)h(_o-n) + h(_p)h(o-n))byn
= h(=0n11)yn+1 + (h(p)h(on) + h{—p)h(—0n))by. (2.61)
Last, by setting b = €%, y,, = e"~* and taking the limit s — 00, we obtain an
implicit formula

maX[H(Gn+1) + Yui y Max [H(p) + H(_Gn)) H(_p) + H(Gn)] +B+ Y]

= max[H(—=0n11) 4 Yni1, max [H(p) + H(own), H(—p) + H(—0m)] 4+ B + Yy
(2.62)
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where H is of course defined by

(2.63)

(2.62) is the p-ultradiscretization of (2.57). In this case, we can obtain the explicit
formula
On+1 = POn, Yn+1 =B+ Y, (2.64)

by enumerating the values of p; oy,.

Clearly p-ultradiscretization and ultradiscretization with uR have the same philos-
ophy: separate signs or coeflicients from absolute values or exponential parts. How-
ever, ultradiscretization with uR is much simpler in the sense that it enables straight-
forward replacement of +, —, X, =t0 @, ©, ®, V, respectively. In the above example,

ifa 2% Aand x, % X, simply we have
Xnt1 =A® X, (2.65)

by virtue of Theorem 2.18. Since we can write X, = (sgn X ) ®[Xn |, this equation
has the same information of (2.64).
We also give an example for addition. Consider the recurrence formula

Xnii = Xn + An. (2.66)
Defining
Xn an
Yn = Ixnl) On = y_n> by = IanL Pn = E (2.67)

and setting by, = e,y = e"%, we obtain the p-ultradiscretization

maX[H(Un+1 )+ Yni1 ) H('"o-n) + Yn, H(—pn) + By]
= maX[H(_o-n+1 ) + Yn-H ) H(o-n) =+ Yn) H(pn) + Bn]- (2068)

By enumerating the values of o, py,, we have

On (o-n = pPn or Yn > Bn))
On+1 = 4§ Pn (On = —pnand Y, < B.), (2.69a)
(indefinite) (O0n = —pnand Y, = B,)
and.
Yo = maX[Yn) Bl (On =pnorYy # Bn), (2.69b)
(less than or equal to Yy ) (0n = —pn and Y, = B,).
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In the case of ultradiscretization with uR, simply we have
Xnt1 VXa @A (2.70)

by virtue of Theorem 2.17, when x,, ud, Xny Qn ud, An. Considering the law of
@, Proposition 2.4, and Proposition 2.9, (2.70) has the same information of (2.69a),
(2.69b). :
From the above examples, we guess that the two methods of ultradiscretization
do not differ with regard to the information contained by resulting equations. But
the simplicity of ultradiscretization with uR enables us to manipulate complicated
expressions more easily. It is somewhat insightful that indefiniteness is unavoidable

in both methods.
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Chapter 3

Discrete and ultradiscrete sine-Gordon
equations

In this chapter, we first review the discrete sine-Gordon equation [5, 2] and several re-
sults around it. Explicit calculation of the traveling-wave, kink-antikink, kink-kink,
and breather solutions are perhaps presented for the first time. Then, we propose
the ultradiscrete sine-Gordon equation. The solutions are obtained in two ways: by
calculations completely inside uR, and by ultradiscretization with uR. The corre-
spondence between the discrete and ultradiscrete systems is quite clear. Similarity of
profiles of solutions is also visually confirmed by figures.

3.1 Discrete sine-Gordon equation

3.1.1 Discrete sine-Gordon equation
For any function f = f (‘i, m) over Z2, define shift operations by
fu=fl,m)=f1+1,m), fmn=~f(l,m)=Ff1m-+1). (3.1a)
Inverse operations are denoted by
fi=fl—-1,m), fm=Ff1lm-1). (3.1b)

Let T = 7(l,m), 0 = o(l, m) be functions Z?> — C. The discrete sine-Gordon
equation (dsG) [5, 2] is given by

(1—=38)TtTim =TT — 80101, (3.2a)
(1 —=8)001m = 010m — 8T1Tmm, (3.2b)

where § € C* is a parameter with small absolute value. The vacuum solution

T=0=1 (3.3)
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is the simplest solution, other than the null solution T = o = 0.
Calculating the cross product of the both sides of (3.2a), (3.2b), we have

TTm (010m — 0T T ) = 001m (T1Trm, — 807107,)
TmOm  TIO v <0‘m0' B TlmT1> _0

OmTm OOT TmT  OmOY

and thus 1
Wim Wi +9o (—— "'Wlmwl> =0, (3.4)
Wi w WmnWw
where W is defined by
T
W = —. (3'5)
(o)

If we introduce u defined by
2
u= 1 logw, (3.6)
we have

gilitim—um)/2 _ gimw)/2 | § (gllmn—u)/2 _ gilumtw)/2) = ¢

<= sin (ulm W U u) = §sin (ulm Tt U u) . 7

4 4

Each of (3.4) and (3.7) is also called the discrete sine-Gordon equation.
Assume U is also a function u(x,y) of continuum variables X,y € R and has an
expansion

1
u(x+1,y+s) =u+(rux-|—suy)-|—z (TP ex 4 278Uy + s%Uyy ) +- -+ (3.8)

where u, = 0u/0x, etc. Connect 1, m to X, via the Miwa transformation
u(x,y; L, m) =u(x+ la,y + mb) (3.9
where a,b € R* are parameters. Then we have
Uim — W — U + U = abu,y, + (higher—ordcr terms of a, b).

Setting & = ab and taking the limit a,b — 0 successively, we obtain the (continu-
ous) sine-Gordon equation

Uy =4sinu. . (3.10)
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3.1.2 1-soliton and 2-soliton solutions
As a 1-soliton solution, assume

T=1+1, o=1-1; f=cpjq" (3.11)
where ¢;,pj, 5 € C* are constants. By substitution, we find the dispersion relation

(1+8)p; —(1-19)
(1—-8)p; —(1+9)
is a necessary and sufficient condition for (3.11) to become a solution [7]. As a 2-
soliton solution, assume

(1=8)(1+p;q5) = (1 +8)(p; + q5) < q; = (3.12)

T=]+f1+f2+0€f1fz, O'=1—f1—f2—|‘06f1f7_ (3.13)

where o« € C* is a constant. This time, the pair of the dispersion relation (3.12) and

the relation 5
(x:__P1—P2 d1— 92 :(P1—P2> (3.14)
 T=pip21—1qiqz 1—pip2
is a necessary and sufficient condition [7].
Figure 3.1 shows the 1-soliton solution (j = 1) with -

5=0.04, c;=-1, p; =2

and the 2-soliton solution with
o= 004, Ci =Cy = —2125, P1=4q2= 2,

in the light-cone coordinates

(n,t) = (HT"”_T‘“> e (L,m)=(n+tn—t). (3.15)

3.1.3 Traveling-wave solution

Replacing ¢; by ic; in the 1-soliton solution, we obtain

t

1+ic:(p:a: )™ (0. g=!
W= +1c5(ps9y) (]D)q) )t, u=4arctan(Cj(ijj)n(piqj_])t) (3.16)

1—ic;(pyqs)™ (pia; ')
in the light-cone coordinates. This solution corresponds to a so-called traveling-wave

solution for the (continuous) sine-Gordon equation (if we restrict 8,¢c,p € RX).
Figure 3.2 shows the solution with

5=0.04, c;=1, p;=2
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Figure 3.1: 1-soliton solution (left) and 2-soliton solution (right) for dsG.
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Figure 3.2: Traveling-wave solution for dsG.
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3.1.4 Kink-antikink and kink-kink solutions
Set
P1=42 (3.17)

in the 2-soliton solution. Then

(1 +8)pa—(1—9) C(+8pi—(1-8)
A P T R i

(3.18)

and thus
P2 = 1. _ (3.19)
Rewriting in the light-cone coordinates, we have

n+t..n—t n+t..n—t

T=14cipT Py " + 2Py TP T + acica(prp2)™
= (prp2)" (aer1c2(prp2)™ + (Prp2) ™ + 1 (P1p7") + 2 (pips!) ™),

o= (pip2)™ (“sz(mpz)“ +(Pip2) M —cr (prp7') — 2 (p1p51)_t) '

We set _
b= i1p'1_p1];22’ ¢1=—c; =1p"" (3.20)
and define . . . .
o .
ch(p, 1) = %, sh(p,1) = p—zP——. (3.21)

Then

P ch(p1pz,n) +ish (p1‘p2_1,t)
B ch(p1p2,n) —ish (pip3',t)’

sh (p1p3 ' t)
B ch(p1pz,m)

w =

u = 4 arctan <

(3.22)
This corresponds to a symmetric kink-antikink solution. Figure 3.3 shows the solu-
tion with

5=0.04, ¢y =—cy=2125i, p;=2.

Similarly, setting
pPiqz =1 (3.23)

gives

P2q1 = 1. (3.24)
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Figure 3.3: Symmetric kink-antikink solution for dsG.

We have
T=P5""(p1p2)* <ff’>(P1Pz)t +BPp2) "t +i(pips")" —i (p1p2_1)—n) ,
0= B (prp2)* (B(p1p2)* + Blprpa) ™t — i (pipy")" +i (Prpz") ")

for the same 3, c1, ¢, defined above and

B ch(p1p2,t) +ish (p1p; ') sh (p1p3',m)
= - — y u=4arctan | —— 7
B ch(pip2,t) —ish (p1p3’,n) B ch(pip2,t)

(3.25) -
This corresponds to a symmetric kink-kink solution. Figure 3.4 shows the solution
with
6=0.04, c; =-c,=—-0470588i, p;=2.

3.1.5 Breather solution

Consider the kink-antikink solution where p1, P2 are complex numbers satisfying
pPip2 €Rso,  |prp3'|=1. (3.26)
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Figure 3.4: Symmetric kink-kink solution for dsG.

Such p1,p2 are complex conjugates of each other. If we write
P1=g+hi, pa=g-—hi
and substitute these into (3.18), we find g, h must satisfy

(1-8) (1+g¢*+h?) =2(1+8)g
= (1-8)g>—2(1+8)g+ (1-38) (1+h?) =0.

As a quadratic equation of g, the condition for the existence of real roots is give by

2
(1+5)2—(1—5)2(1+h2)>0<=>h2<(1%2) 1. 62
Such a real number h does exist if 5 > 0, and g is given by
1+6 148\°
- _ ) - 2
9=7"5 (1—6) (1 + h2). (3.28)
Rewriting p; = 1e'®,p, = re™ %, we have
. 2rsin 0 _ ..
f.)) =1y, 'Y::|Z1—_17, sh (‘p]'p21,t) = 1isin 2t0
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Figure 3.5: Standing breather solution for dsG.

and thus
_ v ch(r?,n) + isin 2t0
~ ych(r?,n) —1isin2t6’

(3.29)

< sin 2t0 >
u = 4 arctan

¥ ch(r?,n)
This corresponds to a standing breather solution. Figure 3.5 shows the solution with

o= 004, Ci =—Cr = 075, P1 = 0.75 + 0.251.

3.2 Ultradiscrete sine-Gordon equation

3.2.1 Ultradiscrete sine-Gordon equation
We perform ultradiscretization of dsG through the parametrization
o= uDeﬁs, D<0. (3.30)

This can be regarded as an other aspect of continuum limit since &6 — 0 as s — 0.

. d d d .
Assuming 8 — D, T - T,0 2% S, we obtain

TThim VT, © DS1S1, (3.31a)
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We call the pair (3.31a), (3.31b) the ultradiscrete sine-Gordon equation (udsG). The

vacuum solution

T=S=0 (3.32)
is the simplest solution, other than the null solution T = S = —o00. We can also
ultradiscretize (3.4) to obtain .

Wi W oeWW ' @D (W, 'W™T @ Wi,nWy) V —o0 (3.33)
where
WS WV TS (3.34)

We also call (3.33) the ultradiscrete sine-Gordon equation. Ultradiscretization of (3.7)
is unclear.

3.2.2 Deterministic time evolution and class of solutions

It seems sensible to restrict ourselves to the class of signed solutions, that is,
T,S,W € uC" for any (1,m) € Z? (3.35)

since it permits basic properties like weak substitution. The null and vacuum solutions
are signed solutions. _

The problem is that udsG no longer admits time evolution, at least deterministic
one, in general, since balance relation is not equality. For example, if we have

f(t4+1) V (expression including f(t)) = 3°,

we cannot determine f(t + 1) from f(t), since this relation is satisfied whenever
[f(t + 1)l < 3. Strictly speaking, udsG is not an equation.

But in some cases, it actually becomes an equation, or furthermore, a determinis-
tically evolutionary form. Multiplying T~ to (3.31a) and S~ to (3.31b), we have

T ' TTim VT (T © DS1Sw),
ST'SStm VST (SiSm © DT ).

IfFT'T = S7'S = 0 and the right hand sides are signed, we obtain

Tim =T (T, © DS1S1), (3.36a)
Sim =S ($1Sm © DT, T) (3.36b)

by reduction of balances (Proposition 2.9). We call (3.36a), (3.365) the determin-
istically evolutionary form of udsG. If we replace D by 6D and restrict ranges of
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Figure 3.6: Positive (R) evolution of udsG.

D, T, S to R for example, the assumptions are satisfied, and we obtain the completely
ordinary-looking ultradiscrete equation:

Tim =max(Ty + T, D+ S1+ Sim) — T, (3.37a)

Stm = max(S; + SmyD+T1 +T) —S. (3.37b)
Deterministic time evolution is also possible in other settings, which are presented in
the following sections.

It might be natural to think we should consider (3.36a), (3.36b), or even (3.37a),
(3.37b) only. However, it scems that the former cannot capture the traveling-wave,
kink-antikink, and kink-kink solutions. And the latter does not even seem to contain
soliton solutions. Therefore, we consider (3.31a), (3.31b) primarily. Perhaps, some
indeterminacy is unavoidable (see Section 2.2).

For those who are interested, we show one example of positive (R) time evolution

by (3.37a), (3.37b) in Figure 3.6. Initial values are set as
T(1,=10) =1, S(-10,m)=m, —-10<1,m<10

with D = —1. It exhibits alternating (in the sense of £) nature.

3.2.3 1-soliton solution
Consider a signed solution T, S satisfying

TVO®F, SVOoF, Fj:CijlQ}“ (3.38)
where C; € uCY and Pj, Q; € uR®. Weakly substituting these into (3.31a), (3.31b),

we have
08 P;Q;F; @ (0& P;Q;)F; V 00 P;Q;F @ (P; & Q))F;, (3.392)
0@ P;Q;F; © (08 P;Q;)F; V0@ P;Q;F © (P @ Q;)F; (3.39b)
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where 0 @ D = 0 © D = 0 is used. The dispersion relation
0®P;Q; VP @ Q; (3.40)

is a sufficient condition for (3.39a), (3.39b) to hold, since we can construct them by
adding and multiplying same numbers to the both sides of (3.40). Rewrltmg (3.40),
we have

(P;00)Q; V (P e0)

and thus P; = 0 or Q; = 0. Obviously, (3.38) and (3.40) can be obtained by
ultradiscretizing (3.11) and (3.12), respectively, through

ud P:s ud ud
Cj = Hc; e S — Cj, P; = LLPJ.CP’S — Pj, q; — Qj (3.41a)
or
ud ud ud
=uc, e 25 G, p Py, gy =need Q. (B4lb)

The solution is, however, not completely determined yet, because balance relation
is not equality as stated before. So we try to utilize reduction of balances. If C; € uZ
is an odd number and P;, Q; € uZ are even numbers, then F; is always odd and
0 @ F;,0 © Fj can never be balanced since 0 is even. By reduction of balances, we
obtain

T=00F, S=060F, (3.42)

and W is also immediately determined since S~ is signed. This solution admits
deterministic time evolution since

ITlele; > 'Dslsm]g;) lSlSmI@ > IDTlel@
and thus

T (T ©DSS) = T_1T1Tm c uR®,
3_1 (SLSm ) DT[Tm) = 3_1 S[Sm € uR®.

Figure 3.7 shows the solution (j = 1) with
D=-1, C =061, P;=2

in the light-cone coordinates (3.15). It is somehow difficult to depict ultradiscrete
numbers in figures; here signs and absolute values are displayed separately, and signs
are mapped from ©0,0°, @0 to —1,0, 1, respectively (balanced elements do not ap-
pear in the figure, though). Observe that the form of the 1-soliton solution w for dsG
is preserved in the signs. Absolute values are always 0, corresponding to the fact that
w asymptotically behaves as +1.
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abs W

Figure 3.7: Signs (left) and absolute values (right) of 1-soliton solution for udsG.

3.2.4 Traveling-wave solution
If we replace C; by C;I and redefine F; = C;P;QI™ (C; € uR®), we obtain
T=00Kl, S=00HKI (3.43)

and

(0eF)eFl
0QF |

We choose odd Cj and even Pj, Q; so that 0 © sz is always signed and reduction of

balances can be applied. This solution no longer admits deterministic time evolution,

but is apparently ultradiscretization of the traveling-wave solution (3.16) for dsG.
Figure 3.8 shows the solution (j = 1) with

A (3.44)

D=-1, C;=1, P;=2

The uRe and ulm parts are displayed separately. The profile of the traveling-wave
solution for dsG is preserved well.

3.2.5 2-soliton solution

Assume
TV0OF ©oF, @AFF,, SVO0eF oF@AFF,  (3.45)
where A € uR®. We also assume
Pi #P2, Q1 #Qa.

By substitution, we find the pair of the dispersion relation(3.40) and the relation

A0S PiP2)(06Qi1Q2)® (P16P2)(Q1 ©Q3) V —cx. (3.46)
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Figure 3.8: Traveling-wave solution for udsG.

is a sufficient condition for (3.45) to become a solution. Obviously, (3.46) is ultradis-
cretization of (3.14). When P; =P, = 0 or Q; = Q2 = 0, any A satisfies (3.46).
When P; = Q2 = 0, we have

A(0SP)(06Q1)®(00P)(Q160) V —co = A =0. (3.47)

The case P, = Q; =.O is similar.
We can choose A, Cj, Pj, Qj € uZ such that 0 & AFF; is always positive, even
and F; @ F; is negative, odd. Then the solution is determined as

T=O@F1@F2€BAF1F2, S=06F 6F,® AFF,. (3.48)

This admits deterministic time evolution, of course. Figure 3.9 shows the solution
with
D=-1, C1=C2:91, P1=Q2:4.

3.2.6 Kink-antikink and kink-kink solutions
If we replace Cy by C11, C; by ©C31, and redefine F = C,-P}Qim (C; € uR®) in

the 2-soliton solution, we obtain

TVOoe AR F, d (F oF;) I, SVO@AF]FZG(H oF)I (3.49)
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Figure 3.9: 2-soliton solution for udsG.

and
WY (0@ AFF2)2 0 (F1 ©F2)?) @ (0® AFF)(F © FZ)I. .50
(0© AF1F2)2 @ (F; © F2)2
We choose Cj, P, Q; € uZ such that
[Filg =1, [Fag=3 (mod4) (3.51a)
or
IFilg =3, [Falg =1 (mod 4). (3.51b)

Then F16F; and (0D AFF,)2 S (F1 ©F,)2 are always signed and balance relations

become equalities.

If we set
P1 = QZ) PZ = Ql) (352)
we have the kink-antikink solution. Similarly, setting
P1=Q;", P.=Q7" (3.53)

gives the kink-kink solution. These solutions does not admit deterministic time evo-
lution, but are ultradiscretization of (3.22), (3.25) except that they are not symmetric
since C1, C; can take different values. Ultradiscretization of the breather solution is
unclear, however.

Figure 3.10 shows the kink-antikink solution with -

D=-1, C =1, C=-1, P1=0Q;=4,
and Figure 3.11 shows the kink-kink solution with
D:“]a C1=@1, sze(-1)> P1:Q2_1:4'

Observe that in the ulm part two waves approach to each other for negative t, collide
around t = 0, and move away from each other for positive t. In the kink-antikink
solution, the two waves have the same sign and bump up by collision. In the kink-kink
solution, the two have opposite signs and reflect by collision.
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Chapter 4

Noncommutative discrete and
ultradiscrete sine-Gordon equations

In this chapter, we propose the noncommutative discrete sine-Gordon equation as
a compatibility condition of a certain linear system. This equation reduces to the
commutative version once the undetlying algebra turns out to be commutative and
one simple reduction condition is applied. Reduction from the noncommutative dis-
crete KP equation [14, 10] also gives the equation, and continuum limit of the equa-
tion gives the noncommutative (continuous) sine-Gordon equation, which is already
known in a different context [12]. We define the Darboux transformation, which
constructs new solutions from old ones, and obtain Casoratian-type solutions by re-
peating it. Explicitly setting the starting solutions for repetltlon, we derive so-called
multisoliton solutions. :

Along the construction of Casoratian-type solutions, quasideterminants [4] are
used, which is a noncommutative extension of determinants. The theory needs some
space for explanation, but it is not essential to the main story. Therefore, we only
briefly explain the definition and some properties of them in Appendix A. For detail,
see [4].

We finally propose the noncommutative ultradiscrete sine-Gordon equation. Non-
commutative ultradiscrete setting is probably one of the hardest environments for in-
tegrable systems to exist, but we manage to obtain 1-soliton and 2-soliton solutions
by ultradiscretization with uR.

Notations are slightly changed in this chapter because of the complemty of expres-
sions we are going to manipulate. Shifts are always indicated after 2 comma like f ;.
This is to distinguish indices and shifts. In addition, shift operators Ty, Ty, are also
used:

Tf =f=f(l+1,m), Tmf=fn,=Ff1Lm+1). (4.1)

Do not confuse these with the ultradiscretized T function of the previous chapter; in
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the noncommutative setting, T functions do not seem to exist. We also use super-
scripts for elements of matrices. For example,

WIN

w=(w") = : :
wN1 wWNN

4.1 Noncommutative discrete sine-Gordon equation

4.1.1 Linear system

Let w = w(l,m),v = v(l, m) be functions Z?> — Mat(N, C) and

ww™' —aA
Bl = ( ’_la}\ v 1‘\)_1 ) y (429.)
1 —bA v aw!
B, = (_m_1w o it ) (4.2b)

where a, b, A € C* are parameters. Consider the linear system

(§)n(2) ()l w

for ¢,V : Z* — Mat(N, C). Calculating shift operations in two ways, we have
g P y

o () = v (8) =5t (2).

N\ Ve

T <$) =BT, (f"lj) — BBy (fﬁ) .

These must coincide, so we require the compatibility condition

Bl,mBm = Bm,lBI- (44)

This is equivalent to
WimWo —wWw™ ' +ab (vmw™ —w v7') =0, (4.5a)
VimVm =V, 4+ ab (Wmv ! = v imwi') =0, (4.5b)

We call the pair (4.5a), (4.5b) the noncommutative discrete sine-Gordon equation

(ncdsG). When (w, v) is a solution for nedsG, t(d) ll)) satisfying (4.3) is called the
eigenfunction of (w, v) for eigenvalue A.
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Proposition 4.1. When N = 1, the reduction condition
wy =1 (4.6)
gives the (commutative) discrete sine-Gordon equation [5, 2]
1
—— ——>+ab|{ ———wiyw, ) =0. 4.7)
w %%

Proof. Under (4.6), (4.5a) is apparently equivalent to (4.7). Since

(LHS of (4.53)) x (w,mw _ #)

W imW1
1
= W’lmw + —_ W’lw,m -
W,]_mW w,lw,m
1
= (LHS of (45b)) X (—— — W,lmW,],) y
)mw
(4.5b) is also equivalent to (4.7). [ |
For any wy satisfying
Wo 1w
QbW 1y = T, (4.8)

ncdsG is solved by (w,v) = (wy, abwy 1, ), which is not an interesting solution.
We consider other types of solutions in the rest of this section.

4.1.2 Reduction from the noncommutative discrete KP equation
Let wi = wi(n,nz,n3) (i = 1,2,3) be functions Z> — Mat(N, C). The non-
commutative discrete KP equation [14, 10] is the set of equations

wijlei— Wi +wikle; —ciwi T+ wiilck —cwy ' =0 (4.9)

for any combination of i,j, k € {1,2, 3}. Here i, j, k can take same values, and shifts
are denoted like
w2 =wi(ng,nz + 1,ns).

ci € C* are parameters taking mutually different values.
We perform change of variables in such a way that new w;(n;,n,,n3) corre-
sponds to old w;(n; — ns,ny,n3). Then we have

—1 -1 —1
Wi oWy + (0 = Tjwy 13wy —dws w3 = 0,

—1 -1 -1 —1 —1 -1
Wi 2Wy " =W21W, y, W213W,  =W3 W3, W3 1W3 = Wi 13W]
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where
Ci1—¢C3

d=——. = (4.10)
Ci1—Co :
By imposing the reduction condition
Wi(n1 +2,T17_,Tl3) :Wi(TL],Tl.z,Tlg,), (411)
we obtain
1/\)1)‘21'\)1—1 + (5 - 1)V2,3W2_1 - 5V3W§1 = O, (4.1221)
v1,2v1_1 + (6 — 1)1/\)2’,3,\)2“1 — ZSW3\)3T1 =0, (4.12b)

—1 —1 —1 —1 —1 —1
Wi 2w, =Vw, ', V3w, =W32W3°, V3Ww; =V1,3W, (4.12C)

V1 ,zVT1 = Wz\’z_], Wz,3V2—1 = V3,2V3—1, W3v3_1 =W, ,3\11_1 (4.12d)
where v; = w; 1.
Proposition 4.2. For any wy,V; satisfying (4.12a)—(4.12d),
(w,v) = (w1, v1) (l=nz,m=mn3)
solves ncdsG with ab = 8.
Proof. Let us rewrite (4.12a) using only w1, v1. From (4.12b)—(4.12d),

(5 — 1)V2,3W;1 = W3,2V:9;’12 . (5 — 1)\)3)2\)51 . V3W3T1

_ —1 —1 —1 —1
=Wi1,23V1 5 (5W1,3V1 —V1,2V4 ) "VIW, 3
_ —1 -1
= dW1,23V7 5 — W1 23W7 3
and thus

0= W1’2W1_1 + (5 — 1)V2,3W51 — 5V3W;1

_ —1 —1 —1 -1
= Wi,2W;, —W1)23W1,3 +d (W1’23V1)2 —V1,3Wy ) .
Similarly,
-1 —1 —1 —1 '
0= V1,2V, —V1,23V1’3 + 0 (V1,23W1,2 — W1,3V, ) . [ |

Remark. The solution constructed here seems to be only a part of the whole solutions
of ncdsG, since it satisfies extra conditions

1 —1 —1 -1
WiaWp s vigvr =1, vigwy owy v =1,
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4.1.3 Continuum limit

Assume W is also a function w(x,t) of continuum variables x,t € R and has an
expansion

1
w(x+r,t+s) = w-l—(rwx—l—swt)—i-z (TP Wx + 2rsWit + $*Wee) - (4.13)

where Wy, = dw/0x, etc. Connect 1, m to X, t via the Miwa transformation
w(x,t;1,m) = w(x + la, t + mb). (4.14)

Assume similarly for v = v(x, t; |, m). Then we have

o2
Wi ’—_W-l-an-l-?Wxx—l—"‘ )
1
Wim =W+ (aw, + bwy) + 5 (@®Waxx + 2abwy + bwy) + -
w,_nl =w ! —bw lww™!
bZ
) (VV—1VVttW_1 —Zw_1wtw“1wtw_1) + ey
vi=--

M

and from (4.5a), (4.5b)

_ ~1 1 1 1
O=WimW, —ww ' +ab(V,w ' — W imV7 )

=ab (Wxew ' —ww Twew T v — wv™ ') + (higher-order terms),
1

0=ab (Veev ' = Vv vy fwy —vw ™) + (higher-order terms).

Taking the limit a,b — 0 successively, we obtain

1 1

W =W, w  wew ™ vw T —wy T =,
VetV = vy vy T v —yw =0,
Since —w lwow™! = (W), these are transformed into
(wxw_1),£ =wv ! —ww T (4.15a)
(wew™! 4w v, =0. (4.15b)

We call the pair (4.15a), (4.15b) the noncommutative sine-Gordon equation. A quite
similar equation with the same name has been derived in a different context [12,

(3.10)].
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Proposition 4.3. When N =1, vthe reduction condition

wv =1 . (4.16)
 gives the (commutative) sine-Gordon equation
r'Lth =4sinu, (4.17)

where u is defined by
) ‘
U=z logw. (4.18)

Proof. Under (4.16), (4.15b) clearly holds. And (4.17) is immediate from (4.15a)

since _
2WatW —WyWy w? — w2
Uyt = — > , sinu=-——, [ |
i w 2i

4.1.4 Darboux transformation

Let t(cl)x Da), t((l)FL Py.) be eigenfunctions of (w,v) for cigenvalues A, u, respec-
tively. Define the Darboux transformation of (w, v), t(d);\ 1]);\) by t(d)PL ll)u) as

Wzlbud);]W) Vzd)ulb?\), <$i) =K (?i)?;\’) (4.19)

where -
—Hbdy A >
K= " 1. 4.20
( A —ubay (420
tro
Theorem 4.4. (W, V) is a solution to ncdsG and (d);\ 1|);\) is an eigenfunction of

(W, V) for eigenvalue A.

Proof. From the linear system (4.3), we can write

VV,WV_1 = (d)u,l + au‘l’u)d);1) V’1V_1 = (wu,l + a”d)u) ;1’
Wy =07 Wby — GumbE’, VT =D, — by )by

43




Then we have

W™ =1 (b + and,))
=vv ' +ap(ud —dudy'),
VIV =dp (bn + amby)
=wiw ' +ap (G b — b)),
17\'),qu — b W m ( :m . ¢;1)
=W+ b U (P mby —budy '),
v’qu —b! by m ( :m . lb;1)
=W v ' 4+b T (Puymbyn — duby)
which imply
W™ =W +ab (VW — (W) ) =0,

G5 =T 4+ ab (B — G ) ) =0.

b

Define By, By, by
E’ . W)1W_1 —aA ’B’ _ 1 eb?\_jvT),mV_1
U —ad vy ) P T oA ! 1 '
Then we have

and thus

SO RENGENAG) .

4.1.5 Casoratian-type solutions

Let Ax (k =1,2,...) be mutually different eigenvalues and t((bk ll)k) be eigenfunc-
tions for Ay. Define repetition of the Darboux transformation by

w™ = (M) WD), (4.21a)
v = ol () v, (421b)
(D 2 A — A ™ ($) T o, (4.21¢)
E =M = Andl () 4219
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and
1 1
W(O) =W, V(o) =V, l(< ) = d)k) lbl(c ) = 1I)k- (4'216)

For notational convenience, we introduce reduced shift operator T defined by

Tf(d)1 y Uy y d)Z) 11)2) .. ) = f(}\1ll)1 ’ A1 (oF ) 7\211)2)}\2(1)2) .. -)> (4.22)

where f(x1,%2,...) is any rational function of noncommutative variables x;. For
example, we have

Thr =M, Tk =Aedy, T2dy = A2y

Lemma 4.5.
Proof. By induction. Obviously, ](<n+1 ), ]((nH) are rational functions of ¢j, ;.

Assume Td)](:l) = 7\k1|)](<n) , T1|)1(<n) = 7\kc|)l(<n) for certain n.. Then,
n n n g )y ] n n+
TOE = M (Aebf™) = An (A7) (Antbl) ™ Mabl = Aap 1),

Similarly, ™) = A o1, |
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Theorem 4.6.

o1
Tor
™19,
™6,
b,
T,

L

T,
03]

To,
T T g,
T,
Py
T,
Ty Ty,
T,

¢2
To:
T“"1 b2
T2

L)
T,
LR
T,

$n
Ton

Tn—] d)n Tn—1 d)k
T"¢n

Un
TPy

T, Ty
T,

bn 1
Thn 0
T“—.1 bn O
¢, [0]
Yn 1
Tin 0
T“*.1 v 0
™, [0]
b

Tox

b

i
T

w, (4.24a)

v, (4.24b)

(4.24¢)

(4.24d)

Here, quasideterminants [4] are used (see Appendix A). When n. = 0, (4.24a) and

¢4
Ty
¢](<n+1) — .
T4
Py
T,
Py =]
Ty
(4.24b) read
respectively.

WO =1 [T, v =1,

Proof. By induction. The case n = 0 is trivial. Assume w(™~1) y(n=1), (I)(n) (n)
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have the above expressions for certain . > 0. Then,

W(‘n.) — 7\;1 (Td);'n)) (¢$1n))_1 W(n—~1)

n Tor - Tohn o

j=1 Tn-¢1 Tn—1d)1
d1 o bn 1

Tor o Tons 0

X Ww.

T T [0

By the column homological relation (Proposition A.3),

n T¢1 e Td)n (l)]

w(“)z—H(—Aj—1)- : : :

j=1 - . T“d)] T‘rL—1d)1
b1 o dar (1]

Tor o Tons 0

—

. B . . W,
Ty o Tl 0
and by Sylvester’s identity (Proposition A.4),
. T
w=TT(=A") | .
=1
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Tor -+ Ton O

Ty -+ Thdn [0]

Ww.

$n

Tn—1 ¢n

Tn—1 d)n




Similarly for v(™ . Next,

n n n (n —1 n
= Tol - (Tol) (o) 61
Ty - Thnr Thi T -+ Ton1 Ton

T+ T s T+ T

—1

¢1 et d)n—I d)n
T -+ Thn- Ton
X : .. : :
Tn_]¢1 Tt Tn—1 d)n-—1 Tn_1¢n
(O e bn_1 dx
Ty - Thn Ty
X : .. : o
Ty oo T oy [TV oy

By the column homological relation and Sylvester’s identity,

¢ - bn dr
oMt =1 : : )
T o Tn [T
Similarly for ¢£n+1 ), |

4.1.6 Multisoliton solutions

The simplest solution for ncdsG is the vacuum solution (w,v) = (1, 1). The linear
system of the vacuum solution is

(W) e
Y [ 1 oA\ (¢ |
w(@)-(h () e

which has two basic solutions

¢\ _ ((1—aA) (1—bA )™ (T+an) (1 +ba )™ 426
(11)) - ((1—aA)1(1—b?\”‘)m)’(—(1+a?\)1(1+b}\_‘)m)' (426
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Let Ax (k= 1,2,...) be mutually different eigenvalues and define

b =(1—ad)' (1T=bA )" + (1 + A (1 + A ) M ek, (4272)
be=(1—-aA)" (1= )" = (1 +ar) (T+0A. ) M ew,  (427b)

. . .. t .
where ¢, € Mat(N, C) are parameters introducing noncommutativity. (d)k ll)k> is
of course an eigenfunction of the vacuum solution for eigenvalue Ay. Repeating the

. t . 9. .
Darboux transformation by (d)k Il)k) , we can construct multisoliton solutions.
A 1-soliton solution is given by

w=y1¢y =1 —F)(1+f)", (4.282)
v=o1y = (1+6)(1—F)7, (4.28b)
where fy is defined by
C(THan )\ T\
he= (1 - aAk) <1 —wA ) (429

As a concrete example, Figure 4.1 shows the behavior of

wll w12
W= <Wz1 sz) (N =2)
with ' 2 4 5

C1=b:0.2, C1=<ﬁl __;5), A1=§

in the light-cone coordinates (3.15). A 2-soliton solution is given by

w= (A2 =M1 P2) Az — 7\111’14)1_14)2)_] V17!

= (A20203" = A1 107") (217" — A dob") ™

= A0+ )0 =) =M +£)(1—1F)7T)
1

X A1 +£1)(1—F) =M1+ H)(1-F)"") ", (4.30a)
v= A1 =F)(T+F)" = A (1 =) +F1)7")
x M —f)+f)" =M1 -f)1+£)7")".  (430b)

Figure 4.2 shows the solution with

25 —0.8 1.5 1.2 5
a:bzo'z) C1:<2 1.8)’ CZZ(_-I 0.5)> }\12?\21:§.
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Figure 4.2: 2-soliton solution for nedsG.
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4.2 Noncommutative ultradiscrete sine-Gordon equation

4.2.1 Ultradiscretization

We perform ultradiscretization of ncdsG by the parametrization

a= uAe’is, b= uBe’is, A,B <0. (4.31)
Assuming
aHA, b B, whw, vy (4.32)
we obtain .

WinW oW W' @ AB (VW W inVi') V—co, (433
VimVin OVAVT @ AB (W V' © VW) V —co.  (4.33b)

We call the pair (4.33a), (4.33b) the noncommutative ultradiscrete sine-Gordon equa-
tion (ncudsG). Because uMat(N, uC) can be realized by uMat(2N, uR), we use
uMat(N, uR) as the underlying algebra for simplicity.

4.2.2  1-soliton solution

In order to ultradiscretize solutions for ncdsG, we introduce

_ T+ a) _ T+bA
P =1 a,’ q; = EAJT] (4.34)
These solve the dispersion relation
(1 —ab)(1 +pjq;) = (1 + ab)(p; + qj), (4.35)

and any solution of (4.35) is parametrized by A; through (4.34) unless ab = 1. As

in the commutative case, (4.35) is ultradiscretized to
0 P;Q; VP Qj ' (4.36)

where p; -, P;, q; u, Q;.
We can directly discretize the 1-soliton solution (4.28a), (4.28b) to obtain

w2 LWV 0eF)0aF) ", (4.372)
v VYV 0eF)0oF)! (4.37b)

where
F; =PIQ"C;, ¢ % Cj € uMat(N, uR). (4.38)
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This relation is valid, but inadequate to determine W, V in many cases. For simplicity,
we assume N = 2 hereafter. If we write W = (W“‘),Fj = (Fj“‘), the (1,2)-th
element of (0 © F1)(0 & F1)™ is given by

oF2((0eF) e (0@Fl")) oFi2(0a (F]')")
det(0® Fy) - de(l0®F)

- and |F]! ' o €xceeds O for large &1 or &=m. Then this element is balanced and W2
cannot be determined. Therefore, we need more precise expressions to ultradiscretize.
Define

g =(1+6)1—-F)7" hy=(0—£)01+f)". (4.39)

Of course, w = hq;v = gy is a 1-soliton solution for ncdsG. Writing f; = (fj”‘),
we have

(1+617) (1—722)+#]2¢2" 212
_ dec(1—1;), der(1=15)
9 = 2§21 (]+f22)(1_f]1)+fg1f]2 ) (4.40a)
} )] ) l )
det(]—fj) det(1—f}-)
(1—]1) (1422 ) 4] 227 _2f12
L det(1+5) dec(1+F;) (4.40b)
n —2f21 (1—£22) (14611 ) +£21£]2 '
det(T+f;) det(1415)
By ultradiscretization, we obtain
(00F") (06F22)oF 2R 72
ud | det(0OF;) det(0OF;)

. . j j ( \
g] 7 G) \Y F21 (O@szz)(OeF;1)®Fj2‘F;2 ) \4.413.}
det(0OF;) det(06F;)

(07" (0F)ar2r2! oF)?
. _u_d_.> . det(O@F;) det(0F;)
dert(OBF;) dec(0BF;)

We can choose Cj, Pj, Q; € uZ such that (0 &) F)] 1) (0 e szz) is always even and
FJ]ZF}ﬂ odd. Then all the elements on the RHS of (4.41a), (4.41b) are signed and
Gj, Hj are completely determined. Figure 4.3 shows W = H; with

A=B=-1, C‘:@EIQ g?) Pi=2, Q;=0.

52




e e

e

TR T s
P

e N
P s
L A 77

A7 "l.’~’~
2 7777 =7
77
L7777

NN

Y
2N
P i N
RSN
22

x
= =
e =N
=N
7z 2NN =
S
T

N2z

i

=
0
o
W
0..0
N
)

X
W
)
i

"
i
W

i
il
)
W
i
i

J

W
J

N
N
i
G

)
0
.
0
)
G

o
(]
i
Wi
0
..'0.

O
i
QU
Qi
!
X
i

i
Qi. J
..'0

T

53




4.2.3 2-soliton solution

Ultradiscretization of (4.30a), (4.30b) gives

WV (L,G;811G) (LG 6 11G,) ™, (4.42a)
V V (L;Hz 8 LiH;) (LHy © LyHy) ™! (4.42b)

where
A S L | (4.43)

In order to determine the value of L;, we examine the relation

o~ Ppi=1 _blg+1)
" alpy 1) gy

(4.44)

By the dispersion relation (4.36), we have P; = 0 or Q; = 0. When Q; = 0,
qj behaves like a constant with regard to the ultradiscretization parameter s and p;
cannot behave like one. Therefore, we have

P; Al P; 0
j=———’90 ={ iy (1Pslg > ). (4.45a)
AP;@0)  |eA (IPslg < 0) .
Similarly, when P; = 0, we have
. B :
Qo0 ~\eB  (Ql.<0).

If we choose P, = Q7 = 0, we have |L; l¢ > IL2lg and thus

WV GiGy', VVHH;. (4.46a)
Similarly, if P = Q2 =0,

WV GGy, VVHH. (4.46b)

Figure 4.4 shows behavior of W = GG with parameters A = B = —1,

o2 o(-13) -3 o(-15)
C‘:<en 15 ) CZ:(@(—n e(—]s))’ Pr=Q =4

These are chosen so that every elements involved are signed.
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Chapter 5

Conclusion

We have reviewed the construction and properties of the symmetrized max-plus al-
gebra uR and related algebras. Ultradiscretization with uR, which enables ultradis-
cretization of subtraction, is also reviewed. Comparison to ultradiscretization with
parity variables shows the simplicity of ultradiscretization with uR.

We have proposed the ultradiscrete sine-Gordon equation and constructed signed
1-soliton and 2-soliton solutions utilizing uR. The traveling-wave, kink-antikink,
and kink-kink solutions, which contain ultradiscrete complex numbers, do exist and
their correspondence to those for the discrete sine-Gordon equation is quite clear.
When the range of solutions are restricted to uR, even deterministic time evolution
is possible.

We have also proposed the noncommutative discrete sine-Gordon equation and
revealed its relation to other integrable systems including the noncommutative dis-
crete KP equation. Also, multisoliton solutions are constructed by repetition of the
Darboux transformation. And finally, the noncommutative ultradiscrete sine-Gordon
equation and its signed 1-soliton and 2-soliton solutions are derived by ultradiscretiza-
tion with uR.
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Appendix A
Quasideterminants

Quasideterminants [4] are noncommutative extension of determinants, or, more pre-
cisely, determinants divided by cofactors. Here we describe the definition and some
properties required for Theorem 4.6. See [4] for more detail.

Let R be a ring and Mat(N, R) be the whole set of N x N matrices over R. R is
not commutative in general. For any (ay;), (bi;) € Mat(N, R), define addition by

(ai;) + (by;) = (as; + by) . (A.1)
and multiplication by
N
(ay)(by;) = (cy), cy = Z ik byj. (A.2)
k=1

Ordering of multiplication is important here.
For any A = (ay;) € Mat(N, R), define the (p, q)-th quasideterminant |Alpq
by
|Alpq = apgq -1 (AP9)~! ch : (A.3)
where T is the p-th row of A without the g-th element, ch is the g-th column of A

without the p-th element, and AP9 is A without the p-th row and the g-th column.
|Alpq is also written as

ar amN

Alpg =1 Fol. (A4)

any - aNN

For example, we have

a12

az1 a2

-1
=012 —0a17a,7 Q22
az; daz

-1
=171 — a120a,, A7,
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and

-(111 a2 a3 —1
(azz 023) <C121>

Q27 dz2 az3z|=0aj; —(ajz a3
( ) Qs> aszsz asq
az; Q32 ass
—1 —1
=aj;1 —ag2 (Clzz — Q23033 032) azq
-1 —1
— a3 (023 — az20d3, 033) azi

—1
— a2 (asz — Q33053 azz) asq

1 -1
—as (033 — a320Q;; (123) aszi.
Proposition A.1. If we write A~! = (byj), we have
by = AL | (A.5)

Proposition A.2. Quasideterminants are invariant under row and column permuta-
tions. (If the row or column contains the box, it is moved together.)

Proposition A.3 (Homological relations). For p1 # P2, 41 # q2,1 # p,j # q, we

have the row homological relation

Alpg, AP + Alpas A7 o= (A6)
and the column homological relation
AP AL o 4 AP AL = A7)

Proposition A.4 (Sylvester’s identity). Forany A = (aij) € Mat(N, R), define (N —
k) x (N — k) matrix A by

Ao = (ai;) (k+1<14,j<N)

and k x k matrix C by

aij Ai(k+1) - GiN
A(14+1)j
C= (Cij)) Cl] - .
. Ao
aNj
Then

[Alpq = ICIpq- (A.S)
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