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CHAPTER 1

Introduction

1. Overview

1.1. Background. An approach to geometry of smoothly bounded strictly pseudo-
convex domains is studying its relation to that of the Caucl/iy—Riem'ann (CR) structure
of the boundary. There is a clear-cut theorem, which is now classical, that describes
an aspect of this correspondence. Let €, Q) C C*ln>1, be s‘mbqthly bounded
strictly pseudoconvex domains. Usiﬁg the Hartogs-Bochner Theorem [Bo], or more
precisely a version of this theorem proved by Kohn-Rossi [KR] , one can easily show (see
[BSW1) that if there is a CR-diffeomorphism f: 9, —» J€, between the boundaries, *
then it nécéésarily extends to a diffeorhorphism F: Q; — Q, which is biholomorphic
in Q. Conversely, a celebrated work of Fefferman [F1] shows that, if F: ; —> (),
is biholomorphic, it extends to a diffeomofphisrn‘ Q, — 0, and thus induces a CR-
diffeomorphism between the boundaries.

Since Fefferman’s proof of the latter direction is based on the analysis of the bound-
ary behavior of the Bergman metric, one is naturally lead to a more detailed research
of the Bergman kernel: It was Fefferman’s idea (see [F3, BFG]) that one can study the
asymptotic expansion of the Bergman kernel as an analogue of the heat kernel expansion
in Riemannian geometry. The actual work of expressing the singular parts of the ex-
pansion in terms of boundary CR invariants was carried out by Fefferman himself [F3],
Bailey-Eastwood-Graham [BEG], and Hirachi [Hi]. This direction keeps being studied
as the “Fefferman’s‘program,” and nowadays it is enlarged for a wider class of pafabolic
geometries (see [éSl] and the forthcoming second volume).

The Laplacian of the Bergman metric g is undoubtedly one of the most interesting
objects associated to g. A basic study of this operator is given by Epstein~Melrose-
Mendoza [EMM], who showed the meromorphicity of the resolvent of the Bergman
Laplacian. In their work, the importance of the Bergman metric g lives in the fact that

the singularity of g at the boundary is in some sense controlled and that the leading
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1. OVERVIEW ' 2

part of the singularity recovers the CR structure naturally given to the boundary—the
higher-order asymptotics is not crucial. We say, after Biquard [Bi], that a metric with a
similar property is asymptotically complex hyperbolic (ACH). Epstein—Melrose—Meridoza
took a géometric-appréach to state what we call the ACH condition: they defined the
notion of O-structures on manifolds-with-boundary, and formulate the ACH condition
as a condition on fiber metrics of the associated ©-tangent bundle.

The advantage of considering ACH metrics is, apart from the fact that it is a natural
setting for the study. of the Laplacian, that the class of CR structures at the boundary
can now be broaden to partially integrable structures. Let M be a (27 + 1)-dimensional
C*-manifold, and suppose that T2/ is a subbundle of the complexiﬁe’d’ tangeﬁt bundle
CTM of rank n that giveé an aln‘iost CR structure, i.e., such that 70 NTYM =0.

Then it is partially integrable if and only if
(1) [C=(, TM), C=(M, T*M)] € C=(M, T"*M & T*M).

Partially integrable CR structures are somewhat mysterious objects, in the sense that ‘
there are no known situations in which CR structures that are only partially integfable
are induced naturally on real hypersurfaces (unless they sit at the boundaries at infinity as
in our case). However, partially integrable CR structures are at the same time orthodox
geometric objects because they are natural generalizations of usual integrable CR struc-
tures that fall in the class of parabolic géometries, and the existence of a canonical Cartan
connection is established in [CSc]. Moreover, a lot of examples of partially integrable
CR structures that are not integrable are easily constructed by modifying integrable CR
structures (see Subsection 3.7). Our claim behind the work presented in this thesis is
that the space of partially integrable CR structures has a significance at least as the place
where integrable CR structures are modified.

We study the Einstein equation for ACH metrics in this thesis to generate CR invari-
ants on the boundary. The idea of using the Einstein equation for such a purpose is again
originally due to Fefferman >[F2]. He considered the zero boundary value problem of the
complex Monge-Ampére equation on strictly pseudoconvex domains, which is the equa-

tion for the Kihler-Einstein potential function. Fefferman’s finding was that the lower

Precise definitions of the ACH condition depend on authors. What they mean are essentially the same,
but one must be careful to the technicality of each definition. For.example, Biquard’s definition in [Bi] is well

understood if compared to our Corollary 4.13.



1. OVERVIEW 3

terms of the asymptotic expansion of the solution can be easily related to the geometry of
the boundary. The existence of the unique exact solution is proved by Cheng-Yau [CY],
and Lee-Melrose [LM] proved that it admits an asymptotic expansion containing 1oga-
rithmic terms. Graham [G1] completely identified the locally-determined and undeter-
mined terms, and this enabled to produce more CR invariants. Actual’ly,‘th‘e invariants
built based on these works are the ones that are used in [F3, BEG, Hi] to describe the
singularity of the Bergman kernel. ‘

We also nete that, as for ACH metrics, a perturbation resulf on the existence of
solutions of the Einstein equation is obte}inéd by Biquard [Bi]; and the existence of as-

ymptotic expansions is studied by Biquard-Herzlich [BH2].

1.2. Brief outline. In this thesis, we study asymptotic ACH solutions of the Ein-
stein equation. As an application, two CR invariants are constructed: the CR obstruc-
tion tensor 0 _ 5 which is a local one, and the total CR Q-curvature 6, which is global.
Finally, 6 s is characterized as the variation of Q with respect to modifications of par-
tially integrable CR structure. Here we explain some more idea about what is discussed,‘
along with the relations to other works. For precise statements of the main theorems,
see the next section. ,

In Chapter 2, basic materials and preparatory discussions on partially integrable CR
structures, ©-structures and ACH metrics, and Bergman-type metrics in the sense of

-[EMM] are presented.

In Chapter 3, we first construct an approximate solution to the Einstein equation
that should be compared to Fefferman’s approximate solution to the Monge-Ampére
equation. Since there is no notion of potential functions for ACH metrics, our approach
to the equation is direct. In order to compenséte for the shortage of un‘kn.own functions
due to the diffeomorphism invariance of the Einstein equation, we need a technical use
of contracted Bianchi identity in Riemannian geometry. An obstruction -ﬁa,é for nonex-
istence of logarithmic singularities occurs in the order a little bit lower than that of the
Monge-Ampére obstruction. As it is discussed in the next section and proved in Chap- |
ter 3, this obstruction, Whi_ch we call the CR obstruction tensor, is a new CR invariant
that occurs only in the nonintegrable case. On the other hand, the coﬁnterpart for the

Monge-Ampére obstruction does not appear in the ACH-Einstein expansion. This is

.



1. OVERVIEW . . 4

not contradictory because an ACH metric may not be regarded as a Kahler metric even
if it induces an integrable CR structure on the boundary. k
After that, we discuss what happens if we introduce logarithmic terms into ACH
metrics. We will formulate a sjstem of partial differential eq’uations‘ on the boundary
that should be solved to construct an expansion that solves the Einstein equation. We do
not know if this system can be solved globally, or even locally, but the formal solvability
at a given point is guaranteed by Cauchy-Kovalevskaya Theorem. All the locally unde-
termined terms are sp;:ciﬁed. A technical difficulty here is that the form of induction
changes compared to the construction of non-logarithmic approximate solutions. We
have to determine certain different-order terms at the same induction step. ‘
 There are similar results to the ones explained so far in even-dimensional conformal
geometry. In the conformal case, one considers the Einstein equation for asymptotically
hyperbolic (AH) metrics®. Then, as briefly explained in [FG1] and detailed in [FG3] by
| Fefferman-Graham, an obstruction 0’” appears and an AH-Einstein expansion can be.
constructed if a certain system of PDE can be solved. The obstruction tensors in confor-
mal and CR geometries has a similarity that the both are symmetric 2-tensors. The CR
obstruction tensor moreover has a property that it takes values in Sym?(7%°M)*, which
makes sense only in CR geometry, and it is preferable when one considers deformations
of partially integrable CR structures as described below.

We also remark that, in the 4-dimensional ACH case (hence with 3-dimensional CR
boundary), the asymptotics is investigated by Biquard-Herzlich [BH1] to some extent
for the purpose of obtaining a Burns-Epstein type formula.

In Chapter 4, we discuss the CR Q-curvature, which integrates to a global CR-
invariant real/number called the total CR Q-curvature. This is constructed by using the
terms of ACH-Einstein expansions appearing before the CR obstruction tensor occurs.
Our construction is the ACH version of a work of Graham-Zworski [GZ] for AH met-
rics. Namely, we consider eigenvalue problems for the Laplacian of the non-logarithmic
approximate ACH-Einstein metric. Depending on the spectral parameter, the form of
asymptotic expansions of possible solutions is strongly controlled, and we can define a
Dirichlet-to—Neumann-like operator P, for each & € Z,, which is a differential operator

2They are special class of conformally compact metrics, and a conforrnally compact Einstein metric is

necessarily AH. The term “Poincaré metrics” is also used for these metrics, but the usage of this term is not

_ fixed.



2. MAIN THEOREMS . 5

of order 2k. It turns out that P, is a CR-invariant operator for £ <7 + 1. Among them,
P, ., has a special property that P, ;1 =0, ie., there is no zeroth-order term in P,
This is why the CR Q;curvature appears: \

Section 9 has some overlap with a work of Guillarmou-S3 Barreto [GS]. And also,.
the case of strictly pseudoconvex, domains is due to Hislop-Perry-Tang [HPT].
" The final several pages of Chapter 4 is devoted to the first variational formula of the
total CR Q-curvature. Here deformations. of partially integrable CR structure are consid-
ered, which are inﬁnit(esyimally represented by symmetric 2-tensors of the type that allows
taking the pairing\with the CR obstruction tensor & ’E It is shown tha;c the derivative of
the total CR Q-curvature is given by this pairing. Since &, 5 vanishes for integrable CR
structures, one concludes that the total CR Q-curvature takes critical values at integrable
structures. The proof is parallel to the case of even-dimensional conformal structures
by Graham-Hirachi [GH]. In conformal geometry, conformally flat and conhformally
Einstein structures are large classes with vanishing Fefferman-Graham obstruction ten-
sor, and one can say that int’egrable CR structures resémble. to such conformal structures

from the viewpoint of the total Q-curvature.

2. Main theorems.

" Here we summarize important results that are shown in Chapters 3 and 4. Basic

notions and facts that will be described in the next chapter are freely used.

. 2.1. Smooth approximate Einstein metrics. A large portion of Chapter 3 is de-
voted to a discussion on the existence of an approximate solution of the Einstein equa-
tion in the ACH category. By Proposition 4.4, the Levi-Civita connection of a ©-metric
is a ©-connection, so the Riemann curvature tensor and the Ricei tensor are naturally

regarded as O-tensors.

THEOREM 2.1. Let ()_( ,[©1]) be a (2n+2)-dimensional ©-manifold and T'°M a com-
patible partially integrable CR structure on the boundary M = 9X. Let p € C=(X) be
anj/ boundary defining function. Then there.exists a C*™-smooth ACH metric g that induces

T M on the boundary whose Ricci tensor satisfies, as a ©-tensor,

2.1 Ric= —5(n+2)g + O(p*"+2).
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Up to the action of boundaryfixing ©-diffeomorphisms on X, such an ACH metric g is

. unique modulo O(p**+2) ©-tensors.

There is beauty in the simplicity of this statement, and it is also remarkable that
the condition (2.1) is sufficient when we later define the CR obstruction tensor. On
the other hand, for some purposes we will need a more improved metric. Note that
2.1 ,mean; that Ric—l—%(n +2)g vanishes to (2n + 2) order at dX as a 2-O-tensor, not
as a usual 2-tensor. It is automatic from (2.1) that the scalar curvature satisfies Scal =

—(n+ 1)(n +2)+ O(p*"*?), but actually, (2.2) is possible.

THEOREM 2.2. Under the assumption of Theorem 2.1, there exists a C*-smooth ACH °
* metric g that induces T'°M on the boundary for which (2.1) and

@ - Scal =—(n+ 1)(7% +2)+ O(p* %)

are satzsﬁed Up to the action of boindary-fixing ©-diffeomorphisms on X such an ACH

metric g is unigue modulo O(p2”+2) ©-tensors with O(p***?) trace.

Theorems 2.1 and 2.2 reduce 1o Theorem 6.1 by using the normalization of ACH
metrics, and it is finally proved in Subsection 6.6. If we introduce the evenness condition

in Subsection 6.7, then the solution automatically improves a bit more.

. THEOREM 2.3. Under the assumption of Theorem 2. 1, there exists an even C*-smooth
ACH metric g that induces TY°M on the boundary for which (2.1) and

(23) Scal = —(n + 1)(n +2) + O(p*"*)

are satisfied. Up to the action of boundary-fixing @-diffeomorphﬁms on X, such an even

ACH metric g is unique modulo O(p*"+2) even ©-tensors with O(p?+*) trace.

Although it is not strictly necessary, a systematic use of the evenness simplifies vari-
ous arguments. Chapter 4 can be seen as an example.

We introduce the following notions for the subsequent description.

DEFINITION 2.4. Let (X,[©]) be a (212 + 2)-dimensional ©-manifold and T OM a
compatible partially integrable CR structure on the boundary. An ACH metric g with
properties described in Theorem 2.1 is called a smooth approximate ACH Einstein metric.
An even ACH metric g with properties in Theorem 2.3 is called a smooth approxihate

even ACH-Einstein metric.
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2.2. CR obstruction tensor. Construction of better approximate solutions is ob-
structed in general. From the proof of Theorem 2.1, one simultaneously observes the

following. For a smooth approximate ACH-Einstein metric g, we set
4 Ric = —E(n+2)g + p*"+28.

Let ®TX |, = R® K, ® L be the orthogonal decomposition (4.2) and A H— L
the isomorphism given in (4.5) associated to a choice of a boundary defining function
/2 where H is the underlying contact distribution for 7M. Consider /\;S , which isr a

C*-smooth section of Sym?> CH*. The decomposition CH = T*M & T'°M induces
2.5) symZ'CH* =Sym*(T°M)* & <(T1’°M)* o (T1’°M)*'> ® Sym? (7MY,

where ® denotes the symmetric product. Using the abstract index notation (see Subsec-

tion 3.3), the components of /1;5 with respect to (2.5) are written as

S (A5 and  (S)

Since A*S is a real tensor, the first and the third ones are related: (A8) - =(A*S) .. So"
I (-7 ] plaf

there are only two independent components. Our claim 1s that (/1;5 ), 5 is determined
only by (M, T**M). The following result is proved in Subsection 7.1. The notion of

admissible boundary defining functions is given in Subsection 4.2.

THEOREM 2.5. Let (X,[©]) be a (2n + 2)-dimensional ©-manifold, T'°M a compat-
ible partially integrable CR structure on M = 3 X, and 0 any fixed contact form on M. Let
g be a smooth approximate ACH-Einstein metric. -Take an admissible boundary defining
function p € F g and define S by (2.4). Then, the tensor

e g=S),

does not depend on the choice of g. Moreover, there exists a universal expression of 0{1 asa

4

local psendohermitian invariant.

The last statement of Theorem 2.5 means that there is a polynomial representing
o 5 which depends only on the dimension, of (the components of) the Levi form,
its dual, the Nijenhuis tensor, the pseudohermitian torsion tensor, the pseudohermitian
curvature tensor, and their first and higher-order covariant derivatives. Actually more is

true—instead of the full curvature tensor, we only need the Ricci tensor.
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In particular, @, is determined only by the local geometry of (M, T°M, 6). So we

o

define as follows.

DEFINITION 2.6. The tensor & , € é’(a = C®(M,Sym*(T°M)*) is called the

B
CR obstruction tensor of (M, T M, 6).

£)

Returning back to Theorem 2.1, one notices that the condition on g has nothing to
do with choosing contact forms. So it is natural to considér another scale 8 = ¢?* 0 for
(2.6) keeping g fixed. Then, since F; = ¢ F, (where T is an arbitrary smooth extension

of Y), it is immediate that the CR obstruction tensor é’a 5 for § is given by

- . 5 _ _—2aY
@7 v ﬁaﬁ =e ﬁaﬁ .

In other words, if we define the density-weighted version & s by

(2.8) : ‘ 0.5:= ﬁaﬁ ®0" e &) (—n,—n),

then this is a CR-invariant tensor. Here 8 is regarded as a density in §(—1,—1) by (3.23).

"DEFINITION 2.7. The density-weighted tensor ﬁaﬂ € é’(aﬁ) (—n,—n) is called the
CR obstruction tensor of (M, T °M). .

The CR obstruction tensor actually is a nontrivial local invariant as we will see in
Subsection 7.2. Nevertheless we can prove the following remarkable fact here, which
shows that it is essential for our study to broaden our scope to partially integrable CR

structures. -

THEOREM 2.8. The CR obstruction tensor of a nondegenerate integrable CR manifold

always vanishes.

- PROOF. Since 7, P admits a universal expression as a local pseudohermitian invari-
ant, the value of &, pata point p € M depends only on some finite jets of TYOM and
6. It is known that any nondegenerate integrable CR structure 71°M can be formally
embedded at a given point p (see [K]), in the sense that, for any given N € N, one can
take a C**-embedding (not a CR embedding) of a neighborhood U .C M of p into C**1
so that the N-jet of the induced CR structure is the same as that of 7M. Therefore the
claim reduces to the case where the CR structure is induced by some embedding into a

domain of C**1. For such type of integrable CR structures, by Proposition 5.6, one can
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always construct a smooth approximate ACH-Einstein metric such that E = O(p*"**).

Hence 0{25’ =0 o ‘ [ |

REMARK 2.9. When 7 = 1, the integrability condition for almost CR structures is

automatically satisfied, so the obstruction tensor does not appear in this dimension. This

fact was observed by Biquard-Herzlich [BH1, Corollary 5:4].

There is also an interesting property of the CR obstruction tensor that should be
compared ’to the fact in co/nforrnal geometry that the Fefferman-Graham obstruction
tensor is divergence-free [FG3]. Let D*?: éa( ﬂ)( n,—n) — E(—n—2,—n—2)bea
differential operator defined as follows. For any choice of a contact form 8, the trivializa-
tion D é"(aﬁ) —> & is given by the féllowing formula in terms of the Tanaka-Webster
connection: _ :

D*F :=v*VP —ia®f —N7eF v, - (VyNW ).
One can check that this gives a well-defined operator by using the transformation formu-

lae in'Subsection 3.5.
THEOREM 2.10. The imaginary part of D*P 0 . ﬂ;‘alfwﬂys vanishes.

This is, as becomes apparent in Subsection 7.1, a consequence of the so-called con-

tracted Bianchi identity in Riemannian geometry.

2.3. Einstein metrics with logarithmic singularities. We shall also investigate
how well the solution can be improved if we introduce logarithmic terms. A contin-
uous O-tensor § on X that is C*-smooth in X is said to have logarithmic singulariry if it

admits an asymptotic expansion of the form

2.9) S~ i S@(log ), where §@ are C®-smooth in X.
=0
By this we mean that, for any m >0, it holds that qu sufficiently large N,
N ::S—iS(q)(loglo)q eC™X) and 7y = O(p™).
4=0
The set of O-tensors with logar1thm1c singularities is denoted by .o/ (X ) (suppressing the
type of the tensors). If § € .o/ (X ), then $@ is unique modulo O(p°°)

If g is a ©-metric with logarithmic singularity, then its Ricci tensor also has only

logarithmic singularity.
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THEOREM 2.11. Let (X,[0O]) and T °M be as in Theorem 2.1, and p € dX. Then
there exists an ACH metric g with logarithmic singularity that induces T°M for which
E := Ric+3(n +2)g formally vanishes at p, i.e., the Taylor expansion of each coefficients

E@ wvanishes at p.

Theorem 2.11 is a consequence of Theorem 8.1 and its proof. On the other hand,
even if we introduce logarithmic singularities, there might be a global obstruction to the
existence of asymptotic solution to the Einstein equation. This point is also discussed in
Theorem 2.11, and it should be compared to the asymptotically hyperbolic case.

In the langﬁage of logarithmic singularity, the CR obstruction tensor is “the first log-
arithmic term,” or “the first obstruction to the existence of non-logarithmic solutions.”
It turns out that this is the first and last obstruction in the local sense. The following

result is shown in Subsection 8.5.

THEOREM 2.12. Let (X,[©]) and T"°M be as in Theorem 2.1, and p € IX. If
o, [),( p) = O, then there exists a smooth ACH metric that induces T'°M for which E :=
Ric+3(n +2)g formally vanishes at p. ‘

Recall from [G1] that, in the case of the zero boundary value problem for the com-
plex Monge-Ampére equation on boundéd strictly pseudoconvex domains, there is an
obstruction to the existence, which is one real scalar-valued function on JQ. Our ré-
sult says that in the ACH category, at any given point on J§2, we can always erase the

logarithmic terms.

' 2.4. Dirichlet-like problems. Next we consider the following Dirichlet-like prob-
Jem on a C*®-smooth ACH manifold (X,[©], g). Let £ be a positive integer, and suppose

a real-valued function f € C*°(#) is given. We want to find a solution # to
(8= 54172k ) w0
4
in the form ,
w=p"E, FeC™(X),  Fly=f.

Here A, is the Laplacian with positive spectrum..
This problem is not solvable in general, even if we consider in formal level. So, to

construct a formal solution we introduce logarithmic terms. For simplicity we restrict.
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to the case of even metrics, and the situation is summarized in the following theorem,

which is proved in Subsection 9.2.

THEOREM 2.13. Let (X,[©]) be a O-manifold and g an even C®-smooth ACH met- |
ric. Suppose T™OM is the induced partially integrable CR structure, 8 is a fixed contact form,

and p € F g is an admissible boundary defining function. Then, for any real-valued function
1 € C®(M), there exists a function u € C °°()_( ) of the form

(2.10) w=p"MRE 4 " 0gp G, F,GEC™(X),  Flayx=f
7 that solves o 7 |
o 1
et (8= 317 -8 u=0(™).

The function F is uniquely determined modulo O(p*), and G is unique modulo O(p™).
Moreover, there exists a differential operator P,, determined by g and O such that

(-1)F

(212) . GIM:_ZCkPkf? Ck:k—!(]—e-——m.

The principal symbol o(P,) of Py, is equal to O'(AIZ ), where A\, is the sublaplacian. |

The condition (2.10) itself is independent of the boundary defining function p. So if
we take another contact form 6 = ¢?Y8, then the function # is considered as a solution

associated to the Dirichlet datum f=ent1-hY g . Therefore we obtain
Pk(e—<n;|-1—k)Tf) — e_(n+1+k)TPkf.

This means that, even if we do not specify 0, P, is well-defined as an operator between
appropriate densities: ‘

The operator P, actually extends to a family Py , of differential operators for which

Py sr144)/2 = Pp- The family Py ; appears when we consider a similar problem for equa-

“tion (2.14). In Subsection 9.2, we also prove the following theorem. Note that, although

" s is not allowed to be (7 4+ 14 £)/2 in this theorem, if we formally put s = (n+1+£)/2

into (2.14), then we get eciuation (2.11).

"THEOREM 2.14. Let s & (n+ 1+ Z,)/2 be a real number. Suppose (X,[0]) and g
are as in Theorem 2.13. Then, for any real-valued function f € C™(M), there is a function
neC®X) oft/oeform‘

2.13) L u=pIE FeC®(X),  Flyx=f
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that solves
@.14) (A, —s(n+1-s)u e CO(X).
The functién Fis uniquely determined modulo O(p™).

The proof of Theorem 2.14 is based on the normalization of the ACH metric g.

One concludes that the function F in (2.13) is given as
(215) , F~ f + /Ozcl,spl,s + I04C2,5P2,5 + s s

where P, s are some differential operator determined by ( M, T*M,0) and

(2.16) | = (= 1)11—[ y

The construction shows that Py ; is actually polynomial in s, so the operator P,  itself

—n—l—z

makes sense for any s € R. The fact is that

(2.17) ‘ ' | Py =Py (ni11k)2-

There is a special case where the problem of Theorem 2.13 becomes trivial. Let
E=n+1,and take f =1 as the boundary datum. Then, since (2.11) reduces to A #=

O(p™), the constént function # = 1 solves (2.11). Hence we conclude:
(2.18) P, 1=0.

Then equation (2.17) implies that the zeroth-order term of P, ; has a factor s —z — 1.

We deﬁne

. 1
2.19) = |{—P 1
( ) ) Q <7’Z + 1—5 n+1,s >

Then Q satisfies the following remarkable transformation law..

s=n+1

THEOREM 2.15. Let g be an even ACH metric on (X,[0]). If 0 and 6 = *T6 are

two contact forms on the infinity (M, T °M ) then Q and Q are related by

(2.20) . AT = Q +P,,T.
* As a consequence of this transformation law, if M is compact, the integral

@.21) Q = jM QONdO)"
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does not deper-ld‘on 0. This follows from (2.18) and the self-adjointness of P, with
respect to the volume form 6 A (d8)". The proof of the self-adjointness can be given by
the idea of Graham~Zworski [GZ] or the one of Fefferman~Graham [FG2].

2.5. Invariance and first variation of total CR Q-curvature. In the previous sub-
section, we discussed general even ACH metrics. Now it is time to introduce the Einstein

condition.

- THEOREM 2.16. Let g be a smooth even approximate ACH-Einstein metric on a
©-manifold (X ,[O)) that induces T'°M on the boundary. Then the operator P, does not
depend on the ambiguity that lives in gifk < n+1, and Q is also independent of the
ambiguity. There are universal expressioﬁs of Pys and Q in terms of local pseudohermitian
invariants, and in the case of Pys, covariant differentiations by the Tanaka-Webster connec-

tzon.

The proof of Theorem 2.16 gi?en in Subsection 10.1 is based on a careful observation

of the Laplacian A,. This theorem allows us to give the following definition.

DEFINITION 2.17. The operator P, is called the k% CR-invariant power of the sub-
laplacian of (M, T*°M). The function Q is called the CR Q-curvature of (M,T'°M, ).
IfM is cdmpact,' then the integral Q given by (2.21) is the total CR Q-curvature, which is

a CR-invariant real number. -

In the case of integrable CR structures, there are other constructions of the CR-
invariant powers of the sublaplacian and the CR Q-curvature. In Subsection 5.3, we
discuss the fact that our P, and Q turn into the known ones for integrable CR struc-
tures. To prove th';is, we need to show that our Q vanishes for embedded CR structures
associated with an invariant contact form, and this will be given as Proposition 10.2.

As the final theorem in this thesis, we prove the first variational formula of the total

CR Q-curvature in Subsection 10.2.

THEOREM 2.18. Let (M, T"°M) be.a compact nondegenerate partiallyr integrable CR
manifold of dimension 2n+1. Let §_ 5 € e 5 (1,1), and j«;,o a smooth 1-parameter family
of partially integrable CR structures based ar T'O M, with fixed underlying contact structure,
that is tangentto ¢ _ 5 Let Q, bethe total CR Q-curvature of (M, Ttl 0, Then, the derivative
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of Q, at t =0 is given by

2.22 15

Here, the indices are raised by the weighted Levi form iba s of (M, T"°M), and O 5 is the
obstruction tensor of (M, T'°M). » \

N 8-(;15" -nY(n+ 1)!

::o_ n+2 M

Re(0%F ¢aﬂ)'

If this is combined with Theorem 2.8, then one can conclude that any nondegenerate

integrable CR structure is a critical point of the total Q-curvature.



CHAPTER 2

Preparations

3. Partially integrable CR structures

3.1. Partially integrable CR structures. Nijenhuis tensor. Recall that an almost
CR structure T°M on an odd-dimensional smooth manifold M with dimM = Zﬁ +1,
n > 1, is a rank 7 subbundle of the complexified tangent bundle CT'M such that 7°M N
TN = 0. If the space of smooth sections C*°(M, T1°M ) is closed under the Lie bracket,
then the almost CR structure T3°M is integrable. Even when T°M is not necessarily
integrable, we say that it is partially integrable if (1.1) is satisfied. |

It is customary to say that T10M is a CR structure when it is an integrable almost
CR structure. However, as we have two different integrability conditions, we refrain
from using this term in rigorous statements. Instead, we will say integrable CR structures
(resp. partially integrable CR structures) to call almost CR structures that are integrable
(resp. partially integrable); | ‘
 If TR0 is an almost CR structure, then the direct sum 7°M @ TN is invariant

‘under conjugation. Let H be the hyperplane distribution given by
H:=Re(T"M & T*M)Cc TM.

Then Tl’oM ® TYOM is equal‘to the complexification of H. We define a real endomor-
phism J € End(H) satisfying J> = —id,; by

]]TI,OM = iith,oM, ]lw: —Zldm

Conversely, if we are given a hyperplane distribution H and J € End(H) satisfying J* -
—id;, then we obtain an almost CR structure T°M by deﬁhing it as the subbundle of
CH that consists of i-eigenvectors of J. In this sense, we may consider such a pair (H,])
as the real presentation of an almost CR structure. The partial integrability condition is

equivalent to

6.) [X,Y]-UX.JY]€CPUL,H),  X,¥ € C¥(M,H),

15
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and the integrability holds if and only if the following is also satisfied:
(2  [XY]-UXJY]+]([UX,Y]+[X,JY])=0,  X,Ye€C%(M,H)

The left-hand side of (3.2) is C*°(M)-linear, and hence it defines a (1,2)-tensor over the
subbundle H. We call 1/4 times this tensor the Nijenhuis tensor of the partially integrable

CR structure and denote it by N. In comple); terms,
N(X,Y)=[X;0,Y10l01+ [X015Yo1]1,00 X,Y € C*(M,CH), ‘

where the subscripts “1,0” and “0,1” denote the projections from CH = T’ M & T'°M |

onto the each summand.

3.2. The Levi form. Nondegeneracy and strict pseudoconvexity. Let T0M be
partially integrable. If & is any,(pdssibly ldcally-deﬁned) 1-form on M whoéé kernel is H,
then the partial integrability condition (1.1) is equivalent to that its exterior derivative
d 0 vanishes on T"°M & T"°M (and hence also on W@W). The Levi form b is

defined as the remaining compdnent:

This is a hermitian form on 7'M in the sense that

WZ,W)=h(W,Z).

The real presentation is as follows: (3.3) is the restriction to T1°M ® T'M of the

C-bilinear extension of
(3.4) BX,Y)=dOX,]Y)=—6(X,]Y]),  X,YeC¥(M,H)

This real 2-form is actually symmetric by 3.1. When it is complexified, this has a chance

to have nonzero values only on T%°M ® TOM and T°M @ T*°M . So one can regard
(3.4) as the “real extension” of (3.3). This real symmetric 2-form is also.identified with
the Levi form.

The Levi form depends on &, but it is immediate from the last expression in (3.3) or

(3.4) that it just scales when we take another §. Invariantly, we define the C-linear map

’T}1’°M®_T1’°M" —C(TM/H), Z®W —>(i[Z, W] mod H).
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It is natural to call this C(TM /H)-valued hermitian form the weighied Levi form, be-
cause the comple}; line bundle C(TM/H) is the density bundle of biweight (1,1)—see
Subsection 3.6.

We say that a partially integrable CR structure 7'M is nondegenerate if the Levi
form is a nondegenerate hermitian form at each point on M. This is equivalent to that
H is a contact distribution. So, when T'OM is nondegenerate, any choice of & exactly
annihilating H is called a contact form for T*°M. Since @ defines a hermitian form 5 on
T™M, it is also called a pseudobermitian structure. From the Viewpoint of comparing CR

structures with conformal structures, choosing a contact form corresponds to choosing
a representative Riemannian metric from the given conformal class.

If the Levi form has definite signature, then TYM is strzctly (or strongly) psendocon-

vex. In this case, we can always take a globally defined pseudohermltlan structure & for

which 5 is positive definite.

3.3. index notation of tensors. A symmetry of the Nijenhuis tehsor. Let T1°M
be a partially integrable CR structure. If { Z_ } is a local frame of T'0M, we put Z_=Z,
and express various tensors over H by components with respect to { Z,, Z-} and its dual
frame. ‘For example, the Nijenhuis tensor N is a (1,2)-tensor over H, so N is represented
by the collection of (272)° functions, each of which.is denoted by N associated with two
Jower indices and a single upper index. In this case, because of an obvious property of the

Nijenhuis tensor, the only components that can be nonzero are N_,” and N_Ey, which
. . . [~4

af
- are defined by

z\z(za,zﬁ)zzvaﬁ?z7 and  N(Z;,Z5)= NaﬁyZy

Since N is a real tensor, these components satisfy

N7:N}’
a, E

£oaB
Moreover, since N(Z, W) =—-N(W,Z), the components has the following symmetry

N T . n T : Y _ Y
(3'5); Naﬁ = N,Ba , 01.‘ equwglently, Naﬁ = N[aﬂ] .

As we saw above, the tensor N has components only in (T M)*@(T M)y @ T'°M

and (TYOM)* @ (TOM)* ® TOM. The component with values in the first is sometimes ’

expressed as “the tensor N__7” This is an example of the abstract index notation [PR],

ap

and the idea is as follows. When this expression is used, the symbol N7 does not stand

aff
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- for a function anymore. Instead, it should be considered as representing the rule that

~ determines the coefficients of Z, ® Z 5® 67 in the expansion of N when a local frame
{Z,} 1is given. The characters @, /3, y have no special meaning—even if we write N;z, P v
“the tensor it refers to remains the same, although N 2 "and N B "' should not be directly

compared. The vector bundle (T"°M)* ® (T’ M) ® Th OM in which N 7 takes values

af
is denoted by E ﬁy The space of sections is denoted by & 5 7, so it makes sense to write
i Y
N, e 7.

/Equati’on (3.5) is regarded as an abstract expression of the skew—symrﬁetry of N rather
than a mere relation of specific components. The bundle of tensors with this type of sym-
metry, namely AX(T°M)* ®W, is denoted by E[a m?, $0 (3.5) can also be described
as
Ny €6
The abstract index notation is freely used inthe sequel. -
If 7'M is nondegenerate and a contact form 0 is given, then we have the Levi
form h. Because it is a hermitian form, we write it b — using indices. Since 4 is a
nondegenerate form, the dual of b is defined. This is : hermitian form on (T°M),
denoted by b, satisfying |
b hT =87,
where & is the Kronecker delta and the Einstein summation convention is observed. The

hermitian forms 4 7 and »%8 are used to lower and raise indices of other tensors. For
. a

example, we define N_ By = byENa ﬁ;.

PROPOSITION 3.1. Forany contact form 0, it holds that

(3.6) N

2By +N, +N

pra T Nyap =0.

PROOE. Let {5“} be a set of 1-forms on M annihilating T"°M such that its restric-
tion to T/ gives the dual frame for { Z, }. We set 67 := §°. Then, by the definition of

the Nijenhuis tensor,

|

dQV(Za,Zﬁ):—Naﬂ .

Therefore, by differéhtiating

do=ih zeaAeﬁ mod @
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and considering types we obtain N
a

By = 0. Then (3.6) follows by (3.5). O

In the case of tensors over TM, we specify one vector field T that is transverse to -
H by using a choice of a contact form &. This special vector field, called the Reeb vector

field, is characterized by
o(T)=1, T_Id@:VO.

By Cartan’s formula we obtain £76 = 0. In particular, T is a contact vector field. The

complexified tangent bundle is decomposed into the sum
(B.7) CTM=CTeT*MeT'*M.

If {Z,} is a local frame of T"°M, then the admissible coframe { 6%} is the collection of
- 1-forms vanishing on CT & T'°M such that {0% ] 710,,} is the dual coframe for {Z, }.
This makes {8,667} into the dual coframe for {7, Z.,Z=}. The index 0 is used for

components corresponding with 7" or 6.

3.4. Tanaka-Webster connection. Now we prove the existence theorem of the
Tanaka—Webster connection, which is a canonical connection in pseudohermitian geom-
etry. For partially integrable CR structures, this connection seems to be first considered
by Mizner [M]. A similar, but different, generalization of the Tanaka—Webster connec-
tion is given by Tanno [Tno], and this is used in [BaD], [BID], and [S]. Compared to it,

our connection has an advantage that it preserves J. Instead, there is an additional com-
Y
B

ponent of the torsion tensor that can be nonzero: Tor_,". But this is just the Nijenhuis

tensor as we shall see after the proof.

PROPOSITION 3.2. Let T M be a nondegenerate partially integrable CR structure
and 0 a contact form. Then there is a unique connection NV on T M satisfying the following

conditions:

0 H,T,],bareall pazmllel with respect to V; )
(1) The rorsion tensor Tor(X,Y):= VY — VX — [X,Y] satisfies

(3.8a) Tor(X,JY)—Tor(JX,Y)=2h(X,Y)T, X,YeTl(H),

(3.8b) Tor(T,]X)=—] Tox(T,X), X eTl'(H).

The conditions V] =0 and Vb = 0 make sense becanse H is parallel.
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We discuss in the samie way as in the integrable case, e.g., [Tnk]. Note first that,
since V preserves H, [, and T, it is necessary that the complex-linear extension of V'
respects the décomposition (3.7). The restriction of V to the first summand is determined
by VT = 0.. Moreover, since V is originally a connection on TM, its restriction to
T'°M automatically determines that to TYM. Therefore it suffices to prove that we can

| uniquely determine a compIeX-linear connection V on T 1041 so that Vb = 0 and (3.8)
are satisfied. In the following, Z, W, and V' denote arbitrary smooth sections of T%°M.

In terms of complex vector fields, (3.8) is rewritten as follows:

(3.92) . Tor(Z, W) _ ih(Z, W)T,

(3.9b) Tor(T,Z) € C(M, T™M).

7 PROOF OF PROPOSITION 3.2. We first discuss the uniqueness. We prove that, if V
satisfies Vb = 0 and (3.9), then it should satisfy

(3.10a) VoW =1[Z, W], ,
(3.10b) WV, W, V)= Z(h(W, V) — h(W, [Z, Vo)
(3.10c) VW =[T, W], |

where the subscript “1,0” (resp. “0,1”) denotes the projection onto T1OM (resp. THOM)
with respect to (3.7). Since Tor(Z, W)= —ih(Z, W)T = —6([Z, W))T,

VW~ VW7 =[Z,W]+Tor(Z,W)=[Z,W],o+[Z, W],,.

Therefore (3.10a) follows, and (3.10b) is an immediate consequence from (3.10a) and
Vh =0. Because VW = [T, W]+ Tor(T, W) by the definition of the torsion tensor,
(3.9b) implies (3.10c). | A |

‘Now we prove that, if we define V on T1°M by (3.10), then V5 = 0 and (3.9) follow.
* From (3.10a) and (3.10b), it is immediate that Vzh =Vzh =0. We compute V75 as
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follows using T 140 =0:
0=—id*0(T,Z,W)
=—i(T@AOZ, W) —dO([T,Z],W)—dO([W,T],Z))
=T(h(Z,W))=b([T,Z],0, W)~ b(Z,[T, W1y,
= T(W(Z, 7)) = h(Vy Z, W)= h(Z, Y, W)
| =(Vh)Z,W).
The torsion condition (3.9) is obvious from (3.10a) and (3.10¢). 0

Let us further examine thé torsion of the Tanaka-Webster connection. Equation
(3.92) shows that Tor(Z, W) is completely determined by the Levi form, and (3.9b) gives a
local invariant A = Tor(T, ) of pseudohermitian structure, which is the pseudobermitian
torsion tensor: ' .

Tor L’ =i

h—,
ap 2B

The remaining component Tor(Z, W) is actually what we already know. This can be

Torof =— Toxraoz = Aaﬁ.

seen from d26 = 0 as follows. First, by the partial integrability, it is immediate that

6(Tor(Z, W)) = 0. Moreover,
0=—id20(Z, W, V) |
= z(/a<W,’x7)) —-Wh(Z,V)-b([Z,W],V)+ b(vZ, [W,V]e1)—B(W,[Z,V],)
=h(V, W, V)= h(VyZ,V)~h([Z,W],V)
- b(Tor(Z, W), V),
from which we conclude that Tor(Z, W) € C*(M, T™1). This is actually the Nijen-

huis tensor because Tor(Z, W) = Tor(Z, W)y, = —[Z,W],; = —N(Z,W). In index

notation,

| e TN T
(3.11) Toraﬂ = Naﬁ .

The consideration above leads to the following first structure equation, where {64} is

the admissible coframe to { Z, } and { wa/B } is the connection forms:
G612 . d6=ib Eea/\eﬁ,

(3.13) A7 =0 Nao, T —ATOF NG — %N_EVGEA 0.

¢
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PROPOSITION 3.3. Let Z be a section of T'°M. Then, the Tanaka-Webster torsion

tensor A is given by
(3.14) ‘ AZ)==[T,Z]o,

In particular, A vanishes if and only if T defines a transverse symmetry, i.e., TY°M is invari-

ant under the flow generated by T. Furthermore, A has the following symmetry:

(3.15) | | Ayp=Agy

PROOE. Equation (3.14) is immediate from A(Z) = Tox(T,Z) = V+Z — [T,Z],
because we already know that it is a section of T/ Therefore, A vanishes if and only
if [T,Z] = %y Z isasection of T°M for any Z € C*°(M, T"OM),1.e., T*OM is invariant
by the Reeb flow. Moreover, |

A, =hAZ,),25)=—id6((T,2,1,2Zp),

‘and combining d?¢ = 0 and T 1df = 0 we obtain d0([T,Z,],Z5) ~ dO([T,Z4], Z,).
Hence we conclude that (3.15) holds. - | O

The following lemma is useful when we prove identities involving covariant deriva-
tives. This is a generalization of [L2, Lemma 2.1] to the partially-integrable case, and the

proof needs no modification.

LEMMA 3.4. Let TY°M be a nondegenerate partially integrable CR structure and 6 a
contact form. In a neighborhood of any point p € M, there exists a local frame {Z,} of

TYOM for which the Tanaka-Webster connection forms { a)aﬁ } vanish at p.

For example, the exterior derivative of a 1-form o = ¢_ 0% is given by
‘ a B @ a @ ¥ 1 a ¥ ¥
do=0,,0P NG —|-’0a’z€'5/\5 0,00 N6 — Az 0,60 NO— N5 o 0P NG

Here the covariant derivatives of tensors are denoted by indices after comsmas. In the case
of covariant derivatives of a scalar-valued function we omit the comma; e.g., Vu=u

and Vﬁvau =u 7 By Lee’s argument [L2], one can show the following lemma.
a . -

LEMMA 3.5. The second covariant derivatives of a scalar-valued function u satisfy the
following:

(3.16) Maﬁ_uﬁa,:ihaﬁuo’ ”aﬁ_”ﬁa:_N 147; w,o—u :Aaﬂu.ﬁ_./
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Next we study the curvature:

- RX,Y)=VxVy —VyVx —Vixy

If we set Haﬂ = da)aﬁ —w 'A a)yﬁ, we have R(X,Y)Z, = Haﬁ(X, Y)Zg. Let

_=R _ 6"/\6?+Waﬁy67/\<9+w__€7/\6

(3.17) af ‘ affoT afly
+V_ 0N+ V__ P AGT,
afot affor
where V =V 2_ —=0.Since Vh =0 we have IT _ +II. =0, and hence
a (o7) a (UT) af3 Ba
(3.18) R _=R._, W_ =-W._, V_ ==V .
affloT  f[BaTo . affy Bay afot Baot

We substitute (3.17) into the exterior derivative of (3.13) and compare the coefficients to

obtain -
, — — ¥
(3.19a) Raﬁa? Raﬁa? =-N__ Nﬁﬁ ,
(3.19b _ =A _—N_A°,
( ) aBy ar,B roa«

B
(3.19¢) V. =ib_A _—bh_A )+1IN

1
afor | 2V gf ar T a0 2 gz’
The component R _ _ is called the psendobermitian curvature tensor. The pseudohermi-
appo
tian Ricci and scalar curvatures are defined by

Rdﬁ ::Rayyﬁ and  R:=R°“
It is seen from the first identity of (3.1 8) that Raﬁ = Rﬁa' We should be very careful to
the indices that are contracted, because (3.19a) implies \
(3.20) R/aﬁ =R 5+ N, N.BT”.

3.5. Change of contact forms. A choice of a contact form ¢ defines the connection
and supplies various pseudohermitian invariants. If a certain pseudohefmitian invariant
is also preserved by any change of contact forfn, then it is called a CR invariant. To in- .
vestigate such invariants, we need the transformation law ‘of the connection and relevant -

quantities. As we do not need the full curvature tensor, we make the following summary.

PROPOSITION 3.6. Let 8 and 8 = e2X6, Y € C(M), be two contact forms for a non-

degenerate partially integrable CR structure T'°M. Then, the Tanaka-Webster connection



3. PARTIALLY INTEGRABLE CR STRUCTURES 24

forms, the torsions and the Ricci tensors are related as follows:

6,7 = f +2(X 00 ~ 190 )+28 P 67

(3.21a) ,
+2i(Y7 +27Y 17 428 PY 170,
G21b) A=A i+ ) — Y TN, g +N g Y7,
5 _ _ ) _ Y 7 14
6210 R =R o=(42T 5+ Y5 ) (L) + T +4(n+ DY T .

PROOF. The new Reeb vector field is T =e (T — 2:Y°Z_ +2iT%Z_) and the
- admissible coframe dual to { Z, } is { 6% = 9= +2iY*H}. To establish (3.21a) and (3.21b),

it suffices to check that

and ‘
d0r=0*nap 7 - %7@1_397/\ - %N_{@*ﬂ\ Zz

They are shown straightforward using (3.16). We compute 1:[7/7 =d CDVV modulo 4 A8 ,
67 A éﬁ, 4, or equivalently, modulo 6% A 62, 67 A 93, 6. By the first identity of (3.16)
we obtain, modulo 6% NGB , 6% A éﬁ, 9,

=TI ¥ 7 an 0B
17 STLY — ((r4 (X 5+ T )+ (X, + X +4(n+ T, T )67 A6

Be
This proves (3.21c). » ' o

—(R _— _ v G2 p OP
=Rz = 1+ D0 5+ T )= (T 4%, 4+ 1), Th 0% A 6P,

3.6. Density bundlés over CR manifolds. Here we sketch the concept of density
bundles following [GG] only in the case of integral biweights. Suppose that we can
take an (72 4 2)™ root of the CR canonical bundle K = /\”Jrl(}l_’oﬂ—i)L (which is always
possible locally). We fix such a line bundle, and write its dual £ (1,0). We set

E(w,'):=E(1,0®* ® E(1,00**, w,w €Z.

We call E(w, ) the density bundle of biweight (w,w'). The space of E(w, w') is denoted
by &(w,w’), and its elements are called densities. In particular, E(0,0) = C:=Cx M /
and &(0,0) = C*(M), which are also denoted by E and &. Since there is a specified
isomorphism E(—7 —2,0) = K, we can uniquely define a connection V on E(1,0) so

‘that the induced connection on E(w,w’) agrees with the Tanaka-Webster connection
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on K when w = —n — 2. The bundles and the spaces of density-weighted tensors is

indicated by adding the weight after the usual symbols. For example,

E_(w,w):=E _ @ E(w,w’ & _(w,v'):=6 _ ® &(w,w).
S =E eEw), 6 (wu)=6; 08w
If there is no fear of confusion, density-weighted tensors are just called tensors.

Suppose that the line bundle H+ C T*M of contact forms is oriented; in the rest of
this subsection, contact forms are positive with respect to this orientation. Farris [Fa]
observed that, if { is a locally-defined nonvanishing section of X, there is a unique contact

form 0 satisfying
(3.22)‘ (9/\((136’)”:i”zn!(—l)qﬁ/\(TJ()/\(TJE),

where g is the number of the negative eigenvalues of the Levi form. We say that this
is volume-normalized by { . If we replace { with A{, A eC *(M,C>), then 6 changes to
|AZ/ 426, We set /

lé’|2/(7z+2) — (1/(n+2) ®Zl/(n+2) c g(—l, _1)’

which is independent of the choice of the (7 + 2)™ root of ¢ and linearly corresponds
to 6. Let |{|~?*+2) € &(1,1) be its inverse. Then we obtain a CR-invariant section @ of

T*M ®E(1, 1) |
. 0 — 6 ® lg|—2/£n+2).

LEMMA 3.7. V0 =0, where V is the Tanaka-Webster connection for any 0.

PROOEF. The volume normalization condition implies V¢ = 0. Hence V|{|* =0,
and therefore V|{|~/*+2) should be zero. O

Since 8 determines a trivialization CH* ® E(1,1) — C, there is a canonical identi-

fication
(3.23) CH' = E(-1,-1).

This is compatible with the Tanaka-Webster connection because V& = 0. Dually, there
is an identification

(3.24) . C(TM/H)=E(1;1), (v'modCH)-;—aﬁ(v).
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We may as well be taking these isomorphisms as the definition of E (=1,~1) or E(1,1)
when H' is oriented. Then E(w, w) for w € Z is defined only by the contact distribu-
tion, and is globally defined if the orientation is given globally.

Since the Levi form » _ and 6 have the same scaling factor,
a

h_=bh_®0 cE_(1,1
af af ® a,@( )

is a parallel CReinvariant tensor, where @ is considered as a density in &(—1,—1) via
(3.23). Its dual is hefeg “B(—l, —1). Indices of density-weighted tensors are Jowered
and raised by » _ and b°F unless otherwise stated. ,

The weighot{ed versions of the Nijenhuis tensor, the pseudohermitian torsion and

_curvature tensors are defined by

N, =N, Ag=4,

B _ph
af Ra oT '_Ra

B’ o7

" When we deal with weighted tensoré, V_, V_and V denote the components of V
relative to 6%, 6% and 6. Since the transformation law (3.21a) of the Tanaka-Webster
connection forms does not contain the Nijenhuis tensor, that of covariant derivatives of

weighted tensors are just the same as in the integrable case. For completeness, we include

here the formulae from [GG].

PROPOSITION 3.8. Let f € &(w, w') and 0% € 8%, If0 and 6 = e 0 are two contact

forms, then the associated Tanaka-Webster connections V, NV transform as follows:
V=V f+wYf,
Vof =V f +w'Y.f,
Vof = Vof +iXTV_f ~iT'V f

+ 5 (w @)Y, + in; —iw'Y V +i(w - w)Y I7)f,
@aTﬁ:VdTIB—;TaTﬂ—TﬁTa, |
637,8 = VETﬁ +hﬁ5’f77y,
Yoty = Vo, +iXTVor, —iXTV 0y —i(X =T, 1)

. 3.7. Deformations of partially integrable CR structures. A partially integrable
" CR structure T1°M with underlying hyperplane distribution H is naturally regarded

as a section of the Grassmannian bundle of 7-dimensional subspaces associated to CH.
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Suppose 71 is another almost CR structure on the same distribution . If T19 projects
onto T'PM by the projection map CH = T°M & T*°M — T°M, then it is described
- by a C-homomorphism ¢: TOM — T™M as follows:

21,0 _ T Y 51,0 1,0 _ . " 1;0 ’
(¢.25) T ';,LEJIW»TP . kTp ={Z+9,(2)|ZeT)°M}.

In this sense, a sufficiently small almost CR deformation of T10M is described by pE-
Hom(T™°M ,W}. For the converse, let ¢: TWM — T be the complex conjuga-
tion. Then, if the pointwise eigenvalues of o o are all less than 1, then the subbundle
710 defined by (3.25) is an almost CR structure. Note that id + ¢: 74 — T10 s an

isomorphism under this condition on the eigenvalues.

PROPOSITION 3.9. Let T'OM be a nondegenerate partially integrable CR structure
and @ € Hom(Tl’oM , T M) a C-homomorphism such that the pointwise eigenvalues of
to @ are all less than 1. Then, 710 is partially integrable if and only if

Pap = P pa>

~ where :
Vop =hppe,” €6,5(L1)

and b 5 is the weighted Levi form of T°M.

PROOF. Let {Z,} be a local frame of the original partially integrable CR structure
TYOM.Then{Z,=7,+ ;ofzﬁ} isalocal frame of f”&. The latter almost CR structure
is partially integrable if and only if

(20 2]) = O 2o+ 9, 25 Zp+ 95" Z2)) =0,
where 0 is aﬁy contact form. Since & annihilates [Za,Zﬁ}] = [Z;,Z;] by the partial

integrability, this is equivalent to

(1 Zz, Zﬁ])%F +0([Z,, Z?])?”g?.: 0,
orgpaﬂ—goﬁazo. ‘ . ; |
Suppose T:’O is a smooth 1-parameter famvily of nondegenerate partially integrable
CR structures defined for small |z| sharing the same underlying contact distribution (this

condition for the underlying contact distribution is always implicitly assumed in the

sequel). Suppose ftl’o is based at T'°M, i.e., 7:01’01: T'OM. Then, after restricting for
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smaller |z| if necessary, j~1,o is described by a family ¢, € Hom(Tl’oM T M) such that
(¢,) op is symmetric. So we make the following definition. The CR i 1nvar1ance, and the

meaning, of the condltlon (3.26) will become clear in Proposition 3.11.

DEFINITION 3.10, Let T°M be a nondegenerate partially integrable CR structure.
Then any tensor (,b ,EE ﬂ)(l 1) is said to determine an infinitesimal deformation of
partially integrable CR structure. ¥ TYOM is Integrable, then ¢ of is called integrable if the
followmg holds:

(3.26) Vi =

When ftl’o is a smooth 1-parameter family of partially integrable CR structures based at
T'OM, then it is said to be tangent to ¢a s if o 5 =4, 5 where ¢° 5 is the derivative at
t=00f(¢,), 5 described in the last paragraph.

We want to qompute the variations of various tensors associated to‘ partially inte-
grable CR structure. In order to do this, we use the isomorphism id+ ¢: T"°M ~— 710,
-For example, the Levi form 5, \(With respect to a fixed 6) is a hermitian form on ftl’o,
so we consider the pullback of this form by id+ ¢,. Then 5, becomes a hermitian form
TN for all t (we still use the symbol b, for the pullback) If {Z,} is a local frame of
T1OM, then

(b)__zde(z Zg)=idO(Z, + 19,7 25,25 +t¢ 7 )+O(t2)

=1d0(Z,, E)-I-O(t ):ha-B-I-O(tz).

Hence we obtain

3.27 ‘_=0.
K .

Other tensors will be treated similarly in the sequel. If there is contravariant factors, then

we push them forward by (id+ ).

PROPOSITION 3.11. Let T M be a nondegenerate integmble CR structure and ftl’o :
is a 1-parameter family of partially integrable CR structures based at TYOM that is tangent

tog 5 Then the variation of the Nijen/mis tensor is given by

. 7’...
(3.28) N, 2v[a¢ P
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PROOF. Let {Z,} be a special local frame stated in Lemma 3.4, for which the
Tanaka-Webster connection forms {a)a/} } vanish at p € M. Recall that (N) [f' =
ON([Z,,25))=—d07(Z,,Z5). Because 7 = 67 — 1 767 + O(22),

(Nyg =0 ((Za Zg)) = 0, T6° (2 Zs)) + O,
' The second term vanishes at p because of (3.13) and that 67([Z,, Zy]) = —d0°(Z,, Zp).

The first term is computed at p as follows, again using (3.13) and the fact that 70M is

integrable:
0712, 2]) = 97<[za,251>+ (4,72 Zg]) + 107 ([Zor 7 Z1) + O(1)
| = t07($,7[Z5,Z5) — (Z59,7)Z5)
+t@7<¢[;[za,z?]+<za¢/;>z?>+0<z2>
= tZ ]~ 2 )4 OW) = (V4 T~V 4 1)+ O(E).
Therefore (3. 28) follows ‘ _, O

© 3.8. Deformations on the Helsenberg group Let M = 3¢ be the He1senberg

group of d1rnen51on 2n+1:
#={z=(2,w)eC"xC |Imw =|'}.

By setting t := Re w, we can identify 5 with C" xR = {(z/, £) }. If we write z’ = (z%) =
(z%,...,2"), the standard CR structure T1°M is spanned by
o _2 |
Z =—=—+t1z"—, a=1,..,n.

“dz° dt
The frame { Z, } is called the standard frame. The following is the standard contact form:

1 n |
0= 5 <dt —.ig(?’-dz" —z° dE")) :
The associated Reeb vector field T =23 /Jt and {§* =dz%} is the admissible coframe
for the standard frame {Z, }. The Levi form is given by

11, fa=p,
h = p
“ 0, otherwise.
Since d6* = 0, the Tanaka-Webster connection forms w_ P and the pseudoherm1t1an_

torsion tensor A B all vanish identically.
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~ PROPOSITION 3.12. Let M = ¢ be the (2n + 1)-dimensional Heisenberg group. Sup-
pose YA‘:’O is a family of partially integrable CR structure based at the stqndﬁrd CR structure
that is tangent to ¢ _ e Then, the variations of the ﬁseudohermitian torsion tensor A, 5 and

the pseudohermitian Ricci tensor Raﬁ associated to the standard contact form 0 are given by
(3.29) Ap="Vobp Rz= —VavwzE - vﬁvm”.
PROOF. We use the standard frame {Z, } for compufation. Then,
[T,2,] = o(Vod P12+ O(2%),
and hence, by (3.14), | o
(4),F =—0P(IT, 2,]) = —0P([T,2,)+ O(:) = =V ,¢ F + O(2?)
Moreover, because |
2025 = (9,412, ~ (V34,712 + O(#),
by (3.102)~(3.10¢) we have ‘ '
| (0,2 (Z5) =1V 4. +0(3),
(@),2(2,)=2VF ¢, +O(:),
(0),7(T)=0(s?).
Because the Nijenhuis tensor is O(t), from (3.20) we obtain
(R) =R, 2+0%) = (d(w), " NZ0s Z5)+ O()
=Z,(w,))(Z5) - 25 ),/ (Z,) = ()] ([2,,25])+ O(z?)
=—(V, VT +V V'Y, )+ O(2). |

This completes the proof. ‘ O

4. O-structures and asymptotically complex hyperbolic metrics

4.1. ©-structures. Here we introduce the notion of @-structure due to Epstein-
‘ Melrose-Mendoza [EMM]. The description in [GS] is also helpful.
Let X be a smooth manifold-with-boundary with dimension 27242, 7 > 1. Suppose

we are given a section of 7*X defined only along the boundary:

O e C®(IX,T*X|,5).
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We assume the f;)llowing conditions on ©, where (: X — X is the inclusion map:
(i) ¢*© is a nowhere vanishing 1-form on JX; _
(11) Moreover, the kernel of § = (*© is a contact distribution on dX, i.e., O A(d )"

is nowhere vanishing.

Some of the following discussion still works without (11), but for simplicity we take it for
granted from the beginning. ' |

A subset Ve of C®(X,TX) is defined as follows. Let © € C®(X,T*X) be any
smooth extension of @. Then, for an arbitrary boundary defining function p € C*(X),
avector field Ve C (X, TX) belongs to ¥, if and only if

VepCoX,TX),  O(V)ep’Cx(X).

By the first condition, whether the second is satisfied or not is determined only by ©.
Moreover, it is clear that ¥ depends only on the conformal class of ©. So, we define
the notion of ©-structure as follows; if a ©-structure is given, then ¥ is defined without

ambiguity.

DEFINITION 4.1. A ©-structure on a'smooth manifold-with-boundary X is a con-
formal class [©] of elements of C®(9X, T*X | ) satisfying conditions (i) and (ii) above.
A pair (X, [©]) is called a ©-manifold. Any contact form that belongs to the class *[©]

is called a compatible contact form on IX.

" There is a canonical smooth vector bundle ©TX of rank 27 +2 over X, whose
global sectioris are identified with the elements of ¥. Over the interior X, (°TX)|y is
isomorphic to the usual tangent bundle 7X. To illustrate the structure near p € 9 X, let
{N,T,Y;}={N,T,Y,,...,Y,, } bealocal frame of TX in a neighborhood of p dual to a
certain coframe of the errri {dp, 8,qa }, where © is an extension of some representative

© € [©]. Then any V € ¥ is, near p, expressed as
“4.1) 7 V =apN+ blozT-l—ci,oYi, a,b,&iGCM(X).

Hence { pN; 0*T, pY; } extends to a frame of ®TX near p € dX. One can also see from
this that ¥ is a Lie subalgebra of C®(X, TX).

DEFINITION 4.2. The vector bundle ®T'X is called the ©-tangent bundle, and its

dual vector bundle is the ©-cotangent bundle ®T*X. Their sections are called ©-vector
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elds and 1-©-forms, respectively. Sections of tensor products of ©TX's and ©T*Xs are
P Y- P

called ©-tensors in general.

For p € JX, let F, be the set of ©-vector fields that vanish at p. Then the fiber
: @TP)_( is naturally identified with the quotient vector space ¥ /F,. The point is that F,
is an ideal of ¥}, as it is verified using (4.1), and therefore G’TPX' is a Lie algebra. Thanks

to the contact condition (i1}, its derived series is
. o —
K,,cK,,C TPX,.

where
Kl,p = (lOZT’onl""’/OYZn)/F_ ’ K2,p = (IOZT)/FP

Collecting these subspaces, we obtain two subbundles of ®TX|,, which we write K,
and K,. The line bundle K, has a canonical orientation, with respect to which t, €
K, ,\{0} is positive if and only if O(F) > 0 near p, where © and f are arbitrary extensions
of ® and tys respectively. '

Any fiber metric g of ®TX is called a ©-metric. Since ®TX |y is canonically iden-
tified with 7X, g can be regarded as a Riemannian metric defined on X, and hence it
determines the Levi-Civita connection V. Actually, V has a property that is suitable for

manipulations involving ©-tensor bundles as follows.

DEFINITION 4.3. A ©-connection on a ©-manifold (X, [©]) is an R-linear mapping
V:C®(X,°TX) — C®(X,°T*X @ °TX) = C®°(X,End(®°TX)),

csuch that Vy(fY) = (Xf)Y + fVyY for f € C®(X), where we write (VY )(X) =
Vy . | o

PROPOSITION 4.4. Let g be a ©-metric on a ©-manifold. Then its Levi-Civita con-

nection V satisfies

X, YeVg=VyY V.

Therefore, ¥V is naturally regarded as a ©-connection.

PROOF. I Ik 1y i the Christoffel symbol for the Levi-Civita connection of g with

res;;ect to a local frame { ¥, } of ®TX, then Ty = 8z FL}] is a linear combination of

the derivatives Y,gx, and Cy;,, where [Y}, Y;]= CKU Y and Gy, = 8y CLU. Since



\
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Y is closed under the Lie bracket, the coefficients C KU are smooth up to the boundary

of X. : , ’ O

4.2. ACH metrics. Let g be a ©-metric with possibly indefinite signature. Recall -
' the canonical filtration K, ¢ K, € ®TX| ;5. We would like to consider the orthogonal

decomposition
4.2) °TX =R®K, K ,=K,0L;

this is always possible if g is positive definite. In the case of indefinite metrics, we assume
that this is possible. The 1-©-form dp/p is, if restricted to dX, independent of the
choice of a boundary defining function p. This (dip /©)|5x 1s a canonical section of the

liné bundle K iL C ©T*X. We assume that the following two conditions are satisfied:

dol" 1

(4.3) 2e =2 awdx,
P

(4.4) g 1s positive-definite on K,.

If we define 7 € C*®(dX,R) by (dp/p)(r) = 1, then (4.3) is equivalent to [r|?g = 4.
Note that if these conditions are satisfied then the orthogonal decomposition (4.2) is
automatically possible. - _ |

When we fix © € [©] and p, then (é/,oz)h-{2 is a well-defined section of Kz*.. It is also ,
true that this is determined by § = *© and p. Let ¢ be the section of K, given by the
condition (8/p?)(t) = 1. We say that p is an admissible boundary defining function for 0
if ¢ Iz =1. Let Z4 be the set of preferred boundary defining functions for &. Condition

(4.4) guarantees that & is not empty for any §.

LEMMA 4.5. Let.g be a fixed ©-metric satisfying (4.4). Then, the first jet of p € F, |
is uniquely determined by 0. This gives a one-to-one correspondence between compatible
contact forms and the first jets of boundary defining functions. Furthermore, for given 0, &,

' is determined only by g| 4.

PROOF. Two preferred boundary defining functions p1 and p; for the same 6 should
satisfy ©/ pr= 6/ p3 along 3X, and this is equivalent to that p; = p, + O(p?). The sec-
ond statement is because, for any boundary defining function p, there is a compatible
contact form @ for which p is preferred. The last assertion is obvious by the defini-

tion. o O
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Let H C T(JdX) be the contact distribution associated to [©]. Given a boundary

defining function p, there is a vector-bundle isomorphism
(4.5) . AjiH—L, Y, m,(p¥ modF,),

where ¥ € C®°(X, TX) is any extension of Y,€H,and 7,: K, , — L, is the projection

with respect to the decomposition (4.2). Again, A, depends only on the first jet of p.

DEFINITION 4.6. Let (X,[©]) a ©-manifold and M = 8X. An ACH metric is a
©-metric g satisfying (4.3), (4.4) and the following additional conditions:
" (i) Forany p € 9X, the map

0 =
(4.6) L,— X, Zpr—>[rp,Zp],
is the ideﬂtity map onto L ;
(i) There is a nondegenerate partially integrable CR structure 7%°M with un-
derlying contact structure H such that, for some (hence for any) compatible

contact form & on M, /1;( g|.) agrees with the Levi form, where p is a preferred

boundary defining function for 8.

If g is an ACH metric, then the triple (X, [©], g) is called an ACH manifold.

On condition (ii), the assumption of partial integrability is actually not restrictive
here, since if /1;( gl;) = (d0)|4(-,J-) holds for the endomorphism | giving an almost CR
structure T2°M, then (d0)|(-,]-) is symmetric, which implies that T*°M is partially
integrable. Furthermore, because of the contact condition, J is uniquely determined. So

we can define as follows.

DEFINITION 4.7. We say that (M, TYPM) is the infinity of the ACH manifold, or
that T*M is induced by the ACH metric g.

Here is a technical lemma used in the next subsection.

 LEMMA 4:8. Ler g be a ©-metric satisfying (4.3) and (4.4). Suppose that there is a local
frame {N,T,Y} of TX around p € X, which is dual to {dp,8,a}, such that

d6(N,Y;) = ~6([N,Y;)=0(p) and R,=(pN)/F,.

Then, the map (4.6) is the identity onto L, if and only if L, = (pY,..., pY3,) [F,.
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PROOF. Since 7, = (oN),, [va,,QZT] = 20T and [oN,pY;] = pY; modulo F,.
O

'4.3. Normalization of ACH metrics. Let (X,[©], g) be an ACH manifold and
M = JX. We have seen in Lemma 4.5 that a first jet of boundary defining functions is
uniquely determined for each 6. There is a canonical way to extend it to a germ along
JX as shown below. This (germ of) boundary defining function(s) is called the model
boundary defining function followmg the termmology of [GS].

LEMMA 4.9. Let g be a ©-metric sz,ztisfying (4.3), (4.4). Then, for any compatible con-
tact form 0, there exists a boundary defining function p whose first jet corresponds to 6 via

Lemma 4.5 that satisfies

“4.7)

The germ of p along 9X is unique.

PROOF. Take any admissible boundary defining function o’ as a reference, and set

p=e?p. Then |d/o/,o]§ = 1/4 is equivalent to

2 1(1
=—|--
4
g P

where X = H,(dp'[p") is the dual ©-vector ﬁeld of dp'/p’ with respect to g. If we

2X o

/

dy¢ dlo’ 2)
g .

(4.8) +IO n
/0

/

P

write

, X/‘o/:aloN—l—‘bpzT+ci,oYi, a, b,ciECm(E(-),
then the assumption (4.3) implies that (dp’/p’)(X »)=1/40nJdX,andhencea=1/40n
JX. Hence (4.8) is a noncharacteristic first-order PDE. The first-jet condition implies

that ¢ should be zero along 9 X, and thus we obtain a unique solution of (4.8) near

IX. | _ ‘ ' 0

Fix any compatible con‘_caét form 0. Let o be a model boundary defining function
associated to 0 and X = f,(dp/p). We consider the smooth map induced byxhe flow
Fl, of the vector field 4X_ /o, which is transverse to aX:

~ ®: (an open r;eighborhood of M in M x [0,00)) — X, (p, t)hr——> EL(p).
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Here M is identified with M x {0}. The manifold-with-boundary M x [0,00) carries a
standard ©-structure [@] «d» Which is given by extending the class of contact forms in
such a way that it annihilates J,. On the other hand, [©] annihilates 4X 1 p along X
because . ‘
O(X,/p)=4pg(dp/p,0/p%)=O(p).

Therefore, we conclude that & is a @;diffeomorphism, i.e., a diffeomorphism preserving
©-structures, onto its image. Since dp(4X,/p) = 4g(dp,dp/p®) =1, it holds that t =
9*p and that tJ is orthogonal to ker(dt/t) with respect to the induced ©-metric &*g.

Moreover, |t‘9:|<21>*g = 4X p|§ =4, and hence ¢t is the model boundary defining function

on (M x [0,00),,[O]4,2*g) for 6.

DEFINITION 4.10. Let (M, T'°M ) be a nondegenerate partially integrable CR ﬁan-
ifold and X := M x [0, 00) , equipped with the standard ©-structure. Let § a contact form
on (M, T'YM). Then a normal-form ACH metric g for (M, T°M,0) is an ACH metric
defined near the boundary of X satisfying the following conditions:
@) pd, is orthogonal to ker(d o/ o) with respect to g;
(i) p is a model boundary defining function on (X, [©],4, g) for 0;
(1) the induced partially integrable CR structure at infinity is the original one. -

The triple (X, [©],.4, g) is called a normal-form ACH manifold for (M, T*°M, 6).
The discussion so far in this subsection is summed up.as follows.

PROPOSITION 4.11. Let (X,[©], g) bean ACH Mam'fold with C®-smooth ACH met-

“ric g, and (M, T°M) its infinity. Then, for any choice of a compatiblé contact form 0, a
sufficiently small neighborhood of the boundary of (X,[©],g) is identified with a normal- -
form ACH manifold for (M, T*OM ) via a boundary-fixing ©-diffeomorphism.

PROPOSiTION 4.12. Let (M, TY°M) be a nondegenerate partially integrable CR man-
ifold and X := M x [0,00) , carrying the standard ©-structure. Let {Z,,} be a local frame of
TYM, {6%} a family of 1-forms on M such that { 6% | 110, } is the dual coframe for { Z,,}.
Let 0 be a contact form on (M, T M). The I-forms 0, 6% and 6% are extended in such a way
that they annibilate 8, and are killed by .29/3. Then, a O-metric g onX is a normalform
ACH metric for (M, T'°M, ) if and only if it is of the form'

49 4<d'0>2+ ‘ <6>2+2 6 6Av+ o’
: o= ) e | ) Fus T T
,» o 500 P2 _OAPZ P AB o o
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where the indices A, B run { 1,..., m1,... , 71 }, and satisfies

(4.10) 8oolu=1 8o |1t =05 ga,_B_ = baf’ and 8up b =0,

where b 7 is the Levi form associated with 0.
o ‘

PROOF. The condition pé’P L, ker(dp/p), together with that p is a model bound-
ary defining function, implies that g is of the form (4.9). Because p is preferred for 0,
oo rﬁust be 1 at M. By Lemma 4.8, the condition (i) in Definition 4.6 is equivalent to
&, |l = 0in this situation. The given partially integrable CR structure 7'M is induced

bygifandonlyifgaﬁwzhaﬁ andgaﬂIM:O. : O

COROLLARY 4.13. Let (X, [©]) be a compact ©- manzfold and T'°M is a compatible
strictly pseudoconvex partially integrable CR structure on the boundary. Take a C*-smooth
ACH metric g, that is, after normalized by some contact form 0, written as follows, where

G and { 0%} on M x [0,00) are taken as in Proposition 4.12:
dp\* [0\’ 6% 68
4.11) ‘ L=4—] +{—= +2h _——.
. P P e p
Here b 7 is the Levi form of (M, TY°M,6). Then, a C*®-smooth @-metric g on (X,[O]) is
an ACH metric that induces TY°M if and only if

412 O lg- %k =0p)

PROOF. Suppose g is a C*-smooth ACH metric that induces 7M. Then, since
the normalization of g with respect to 0 is the fbfm (4.9) with (4.10), g — g, vanishes
at dX asa ‘@-tenso’r. Hence (4.12) holds. Conversely, if (4.12) is satisfied, then g — g4
vanishes at X as a ©-tensor (since g is positive definite in this case). Therefére; one can

check that g is an ACH metric directly by the definition. O

4.4. Complex hyperbolic metric. We close this section with a brief observation
on the complex hyperbolic space CH”. There are two popular models for this space,
namely, the ball model and the Siegel domain model. As a metric on the unit ball BcC

C™*1, the complex hyperbolic metric g is the Kihler metric given by

42 <1 : >d ‘d7’
= - - | lo z'az’,
o \ P I-ep
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where the constant factor is chosen so that g solves Ric,7 =—1(n+2)g-. If we consider
i if

this as a metric on the Siegel domain -

D:={z=(7,v)€C" xC|Imw > |Z']},
then :

d? 1 o
g=4———{log— — | dz'dz’.
997 Imw —|Z|

If we write » =Imw — |z/|?, then

Vi r= Y=
g-=4(—L-2
i r? r

Let us identify g with a Riemannian metric in the standard manner. We adopt the fol-

lowing convention: if V = V3, + V%} and W=W?3 + W’T% are real tangent vectors,
we set '
g(V, W)= %(gi7 Viws + g: W' Vo).

The symmetric 2-tensor that represents this Riemannian metric is &7 dz'dz’, where
dz'dZ’ is now regarded as the symmetric product of dz* and dz’. Note that the Ricci
tensor is Rici7 d Z:ide +Rici7 dz'dzi =2 R‘icl7 dz'd7, so this Riemannian metric solves
Ric= —%(n +2)g.

The boundary of the Siegel domain D is the Heisenberg group 5. Recall that we
can identify 5 with C” x R as we did in Subsection 3.8. We consider the following
identification of D and v x (0,00)=C” x R x (0,00):

D —C" xR x (0,00), (2, w)— (2, t,7) = (2/,Rew,Imw — |2']?).

Let ® be the inverse of this mapping: ®(z’,¢,7)=(2',t +i(r +|z]?)). Then,
o 7 1
& (r,dz')=%" | - > z°dz"+—d
tey=w (<37t s Lo

n. : 1 1, _
= —Zz“dz" —=dt+-dr+-= Z(z“dz“ +2z%dz%)
pory 2 2 2=

1 3 1&

= ~dr - %dr - 5;(5"012“ — 2%d7%)
1 .

=—dr—10,
2

where 6 is the standard contact form. '_Therefore we obtain
dr? 2 4.2 —
] g:l—2+4—2+-—217dz dz°.

v r Y=



5. BERGMAN-TYPE METRICS ‘ | 39
So, if we set p = (7 /2)!/2, thisis
(4.13) B —4fif— + 92 <+ 22 Z”:dz“dz
: y P’ P a=1

The final result (4.13) shows, by Proposition 4.12, that ®* g is a normal-form ACH met-
ric on S x [0,00) = {(2/,£, p) } for the Heisenberg group associated with the standard
contact form. Since g exactly solves Ric = —3(n +2)g, we can conclude from this that
the CR obstruction tensor &, 5 vanishés for the Heisenberg group. '

We remark that we had to take the square root of a boundary defining function.
* This means that the C*®-structure of D = D N3 2 # X [0,00) = {(z/,w, )} and that
of 5 x [0,00) = {(#', w, ,o)} are different. This generalizes to the square root construc-
tion, which will be described in Subsection 5.1, for an arbitrary complex manifold-with-

boundary.

5. Bergman-type metrics

5.1. Bergman-type metrics and square root construction. Let 2 be a sm\oothly
bounded strictly pseudoconvex domain'in C"*!. Fefferman proved in [F1] that the
Bergman kernel function B (z,Z) restricted on the diagonal admits the followmg asymp-

totic expansion at J€2, where » € C®°(£0) is an arbitrary boundary defining function:
B(z,Z)=r(z) " *F(z)+logr(z)-G(z), F,GeCQ).

The function logB(z,z) is strictly plurisubharmonic, and the Kihler metric associated
to it is called the Bergman fr_letric on ). Since F(z) > 0 for z € I by Hérmander [H3],
if we set ¢(z) = B(z,z)~/%*+2), this function is a boundary defining functioﬁ, which is
C**2¢_smooth for any ¢ € (0,1). The Bergman metric has (7 + 2)log(1/¢) as a Kzhler
potential function. We also remark that one can write
(5.1) g~ <<I>—I— 3 (r”"'zlogr)k@}e) , 8,8, eC(N).
k=1 .

We call (5.1) a conormal expansion of the function ¢.

Similarly, there is a function ¢y, called the solution to the complex Monge-Ampere
equation, which is discussed in the next subsection. Lee-Melrose [LM] proved that it
admits a conormal expansion (5.1). The metric g g1ven by the potential log(1/¢ya) is a

negatwely curved Kahler-Einstein metric.
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Now let Q be an'arbitrary complex manifold—with—boundary such that JQ carries
nondegenerate CR structure. Following Epstein-Melrose-Mendoza [EMM], we call a
Kihler nﬁetric g’ defined in the interior Q a Bergman-iyfe metric if g has, up to a posi-
tive constant factor, a potential function log(1/¢) if we choose some boundary defining
function ¢. If I is not strictly péeudoéonvex, ¢ should have indefinite signature—such
a situation is also taken into consideration. In fhe sequel we assume that ¢ is at least
C?-smooth up to the boundary, and fér simplicity, that the second derivatives of ¢ have
C*-smooth boundary values (as is the case when ¢ has conormal expansion).

We normalize g so that 4log(1/¢) is a potential for g. In a local chart

v ' Lo 32 1\ (e ¢35
(¢.2) g=g-dz’dz), g-=4—— <10g—> :4< 2] ——]>,
4 : 4 dz' 977 @ @ @

~ and this is continuous. This metric is identified with a Riemannian metric on (2 in the
manner described in Subsection 4.4. , |

We would like to see that g can be regarded as an ACH metric if properly recog-
nized. In order for that, we need to replace the C®-structure of Q and take a ©-structure
appropriately. ‘

Let 6 be the sheaf of germs of smooth ‘functions on Q. We define a presheaf
‘617’2)“ as follows. Take a set of boundary coordinate charts {(U A; (x5, y;))} that covers
N, where (xx,yi): U, — Ry, x R¥*! s the coordinate map. If V'C Q is an open

(V) is obtained by ad)ommg X 2 o E<(V).
is smooth on .U N U in the or1g1nal C®-structure, ‘61 T pr (V) is well—

T pr (W) is equal to €°(W). Let ‘@’1"/"2 be

the sheafification of G e W define a new C®-structure on 2 by € In other

subset of some U), then the ring 6 /2

Since (x)/x,, )1/2

defined. For any other open set W CYQ

words, a function £ in Q is smooth with respect to the new C®-structure if and only
if f is C*®-smooth in  with respect to the original structure and, for each boundary
coordinate chart (Uy; (x,l,yf{)), f is C*®-smooth as the function of (x;/z,yi). |

For a C*-smooth boundary defining function r of the original 2, we set 6 = %(9 r—
3r), and deﬁﬁc Ope = 4 2q- If 7 = e?Tr is another C*-smooth boundary defining

pre’

function, we get O, = e?TO ., where T = T|;q.

DEFINITION 5.1. Let Q be a complex manifold-with-boundary such that the in-
duced CR structure on J€ is nondegenerate. The sguare root of Q, denoted by Q, J22 18

.the manifold-with-boundary that is identical to £ as a topological manifold and equipped
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with the C®-structure given by ‘€1°/°2 The canonical O-structure on 0, /2 is defined to be

the conformal class of i i 12 ©pres Where 7y 5 Q, P Qis the identity map.

Let & the (1,0)-vector field near I characterized by
£198r=0 mod?r, Ir(E)=1.
If weset vi=Re& and T := 21@5 , then
dr()=1, dr(T)=0, 6()=0, and HT)=1

Let Z,, ..., Z, be (1 O)-QectOr fields defined near a point of I spanning kerdr C
CTY0Q, and Z_ = Z;. We take 6 65 so that {dr,0,6%,7} becomes the dual coframe.
for {v, T 7,722}, Where §7 .= .

Define O (resp. 02, 6%) as the pullback of 4 (resp 62, 0% by i iy);- H we set p = rl/
then p is a smooth boundary defining function of Q j2>and {dp/p, 0/0%,6%/0,67/ 0 }
isa local frame of the (complexified) ©-cotangent bundlev(CeT*ﬁ1 P . Since this s the pull-
back of {17~'d, r=14, r=11247, _1/29~E} (C@T*ﬁl/2 can be thought as the vector bun-
dle spanned by this set of 1-forms. One can also take { r='3 7,713 r, r 1/29“ r1247}
as a local frame of COT*(Q), /2 Systematic use of this special coframe was the approach

that Roth [R] took—in the current language, he computed on C®T*Q, /2 rather than on
CT*Q.

PROPOSITION 5.2. If g is a Bergman-type metric on S, then up to a constant factor,
i /2 g is an ACH metric on Q, J2 equipped with the canonical ©-structure. If g s deﬁned by

a boundary defining function ¢ and 0 = 2(5’gp 390)|T99, then p = (r [2)112 € Fy for any
C®-smooth boundary defining function r € C®(Q) such that ¢ = r 4 o(r2).

PROOE. By the smoothness aésumption for ¢, one can take a C*°-smooth boundafy
defining function 7 € C®(Q2) such that ¢ = r + o(r?). Using r, we take {v, T,Za, Z:}

and {dr, é, 6’~a, 6’~E} as above. We further define the real-valued function x as follows:
£188r=x3r, or x:8§r(§,g).
Then by [G1, Equation (1.4)], for some set of functions {i) 7 1,

(5.‘3) 557’=xc97/\§r—Zfa_ﬁ.é".’/\éﬁzz'xdr/\é—i)Eéa,/\é/_;.
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Since Qggo ~33riso(l) in local coordinates, we conclude that

’ (3rdr . 6B dri+402 . =4
G4 g=gto(l), g=4|—7+h- = +4h _ :

r aff oy

Here o(1) denotes a certain 2-tensor whose components with respect to the coframe
{r=13r,r 197, r-120", 7,—1/2(9%} are o(1). Let 8, ©%, and O as above, and here we
define p by p =(7/2)/2. Then it is immediate from (5.4) that

de* & . 6+6”

5.5 8 =Goto(l),  Gy=d—— 4t —42h _
( ) Z]/zg [¢] O() 0 /02 P4+ af PZ

This is a ©-metric on 51 J2- Condition (4.4) is trivially true, and it follows from (5.5) that
(4.3) and the second condition of Definition 4.6 are satisfied. Moreover, if { N, VA i Z}}
is the dual frame for {dp, 6,69, (:)E}, then (5.5) shows that

Ry={pN)[F, and  (L)c=(pZpsepLyrplysep i) IF,.

Therefore, by Lemma 4.8 we only have to check d O(N,Z,)= O(p) to prove that the first
condition in Definition 4.6 holds. Since it follows from (5.3) that d 6 does not contain

dr A6 term, dO(N, Za) is actually zero. O

5.2. Complex Monge-Ampére equation. Asymptotic solutions. Consider the
special case where C C™*! is a domain with smooth boundary carrying nohdegenerate
CR structure. Let g be a Bergman-type metric given by a boundary defining function ¢
that is at least C*-smooth so that the curvature tensor is defined. If we set G = 4log(1/9),
8z = 3157]—(? Let w = (i/2)gi7dzi A dZ’ be the associated Kihler form and dv, =
«"*! [(n41)! the volume form. We consider the following equation, where d Vi, is the

volume form of the Euclidean metric on C**+1:
(5.6) | ; e GV | = d V.

If this is satisfied, then

_ S a+2
R1ci7 = —Hi%log|det gl= &
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"Equation (5.6) is the complex Monge-Ampére eqmztibn that we consider here. If g is the

number of negative eigenvalues of the Levi form, we can compute |[dV,|/d Vg, as fol-

lows:
dV, vipr P
| ]_( 1)qdet(g Y=(- l)qdet< —i>
dVEuc . §9 4
-1
57) = (1) et AR
' 7o Tl
( — (_1)n+1+q§p-—n—v2 det ¢ 907 v
i 97
Since e ("G = »"+2 equation (5.6) is equivalent to
(5.8) Jle]l=1, where J{p] = (~1)"T""7det v
' ’ $i 97

There is a simple method given by Fefferman [F2] to obtain an approximate solution of

this equation.

LEMMA 5.3. Let ¢ € C®(Q) be a boundary defining function and n € C®(Q) an
arbitrary function. Tuke another boundary defining function r € C oo(ﬁ)

()]1p] >0 on 3%, and Jng] = 7" [9] + O(r).
(2) F][p] =14 O(rs~1) for some s >2, then

Tlp+79'1=1[p1+s(n+3—5)ng* " + O(r*).

PROOF. Leta €C, (b/) € C**!, and suppose that
O ¢-|[a ‘
I | =0 ondQ.
]' -
v Ps)\b
The fact that the first component is zero implies that @ b7 =0, so the nondegeneracy

implies that ¢ b7 is nonzero unless (b/) = 0. Therefore the matrix above is nonsingular

and thus J[¢ 76 0 on 9N As one can see from (5.7), on Q = {9 >0}, thesign of J[¢] is

. P07 ¢
(—=1)7 det <—2 - —’>
¢ ¢

equal to that of
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Since the hermitian matrix (¢~%¢; 7 — ¢~'¢;7) has signature (n+1-4g,9) near &"Q,
][9] > 0 near Q. Therefore J [¢] should be positive on J€1, too. The two equalities in -

‘the statement are proved by elementary matrix operations. See [F2] for details. a

* PROPOSITION 5.4. There exists a smooth boundary defining function ¢ € C % (0Y) such

that

69  Jlpl=14+ 00",

Such a ¢ is unique modulo O(r"+?). |

PROOF. By Lemma 5.3 (1), one can choose ¢, so that J[¢,] =14+ O(r). This
condition determines @; up to O(r?). Then we use () of the same lemma inductively
as follows. Suppose ¢_; satishes J[p,_;] = 1+ O(r*=1), and ¢,_, is unique modulo.
O(r*™1). Next we set ¢, = ¢,_; +7¢°_,. Then we obtain J[¢,] =][¢,_;]1+s(n+3—

i1 +O(r*). So, if s # n+ 3, one can uniquely determine the boundary value of 7
so that J[¢,] = O(7*). Thus ¢, is determined modulo O(r*). v O

A boundary defining function ¢ € C®(Q) satisfying (5.9) is called a Fefferman ap-
proximate solution to (5.8). This is the best possible C**-smooth approximation. A de-
tailed analysis of the obstruction, which is the boundary value of @,(z) in the expansion

(5.1) when € is a bounded strictly pseudoconvex domain, is given by Graham [G1, G2].

PROPOSITION 5.5. Let Q c C**! be a domain with smoof/o boundary whose induced
CR structure is nondegenerate. Take a Feﬁ%fmén approximate solution ¢ to the complex
Monge-Ampeére equation (5.8), and let g be the Bergman-type metric with Kiibler potential
4log(1/9). Then, if we consider the induced ACH metric on the square root 51 J2-equipped
with the canonical @-stmcture, which we also write g by abusing notation, then the tensor

E=Ric+i(n+2)g satisfies
(5.10) ; E =0(p™*)
as a O-tensor. Here p is an arbitrary boundary deﬁning function of P

PROOF. By the definition of /[¢], it follows that

AV, =97 [p]d Vi,
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Therefore, the usual formula of the Ricci tensor implies
2 ‘ 2
Ric - =

1.
2)p— =——(n+2)g- —
1= g e logl () =2+ 2)g g — ———p

Since (5.9) is satisfied, we can write log/(7) = »"**f with f € C *(02). Then,
’ N \ 2 ) .

logj (7).

PR —logJ(r)=(n+2)(n+1) ”frr +0(r n1y
zZ

and hence, as a ©-tensor, E is given by
E==2n+2)n+1)r"f 3rdr+0(c"*.

4Since {r=19r, 7_157, 7,—1/2(9”01, 7,—1/29”3} is a local frame of C® T*ﬁl/z, the first term on

the right-hand side is also O(p?"*+*) as a @-tensor. O

Since the construction of a Fefferman approximate solution 1s local, the following

proposition is also true. /

_ PROPOSITION 5.6. Let Q C C™*! be a domain, and M a nondegenerate smooth real
hypersurface of ¥ with induced CR structure TOM such that Q\ M is the union of two
connected open sets o, and Q_, Q. NQ_=0. Let X be the square root of O UM. Then there

- existsa C®-smooth ACH metric g on X that induces TYOM for which E = Ric+1 (n +2) g

satzsﬁes E = O(p**), where p is a boundary defining function of X.

5.3. CR Q-curvature. In the case of integrable CR structures, the original defi-
’ niti(;n‘of the CR Q-curvature used the so-called Fefferman construction. If M is a
(2n+ 1)—dimensi§nal nondegenerate integrable CR manifold with trivial CR canonical
bundle K, then this construction‘giveé a canonical conformal class on the Stbundle
(Kﬂ*l)l/ (*+2) /R, where K = " \(the ze’ro section). Moreover, there is a canonical way
to get an S'-invariant representative métric for any choice of a contact form &. There-
fore, the associated conformal Q-curvature on (KL)l/ (*+2) /R, descends to a function on
M. This is the CR Q-curvature of Fefferman-Hirachi [FH], which we write Q.
Compared to the Q-curvature in conformal-geometry, there is a special phenome-
non about the CR Q-curvature: QF always vanishes for a special class of coﬁtact forms
called invariant contact forms. SAuppose we are given a nondegenerate integrable CR
manifold (M, T*°M) together with an embedding M «— C"*!, Then, if we take a Fef-
ferman approximate solution ¢ to (5.6), which is highly dependent to the embedding,

6 =1(d ¢ — 39)|7y is called the associated invariant contact form.
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Fefferman—Hirachi’leR Q-curvature QFH is characterized by the following prop-

erties:

(Q1) QFH is determined by a finite jet of T1°M and 6; -
(Q2) QFF vanishes for any invariant contact form 8;

(Q3) If  and 6 = ?X 0 are two contact forms, then
(.11) ' 62(n+1)TQFH =Q™+ CnPn+1Y’

where ¢, is a certain constant depending on 7 and P, is the (z + 1) CR-
invariant power of the sublaplacian.
In [FH], the definition of P,., is given by ambient-metric construction. By [GG,
Proposition 5.4], this operator is equal to what we defined in Definition 2.17. Hence
(5.11) is the same as (2.20) up to the constant ¢,. The constant ¢, depends on the normal-
ization of P, +i and Q™ so we do not discuss this poinf in detail.

Since any nondegenerate integrable CR structure can be formally embedded at a
given point p € M, (Q1) reduces the computation of CR Q-curvatures to the case of
embedded CR structures. Since aﬁ embedded CR structure admits an invariant contact
form, by using (5.11), we can compute Q™! for any given 8. Therefore Q! is uniquely
determined by these properties. ‘

If one wants to prove that Q in the sense of Definition 2.17 generalizes QFH, it suf-
fices to check that Q satisfies (Q1)-(Q3) in the integrable case. Property (Q1) follows by
the fact that Q admits a universal expression as a local pseudohermitian invariant, while
(Q3) is true up to a constant as already m¢ntioned in Theorem 2.15. Therefore, it remains
to prove that Q vanishes for invariant contact forms when (M, T1°M) is embedded. This

will be done in Proposition 10.2.



CHAPTER 3
Asymptotic solutions of the Einstein equation

6. Construction of asymptotic solutions

'6.1. Choice of frame. Rule for the index notation. Let (M, TOM) be a non-
degenerate partially integrable CR manifold. We have seen in Subsection 4.3 that any
©-manifold with C®-smooth ACH metric can be, by fixing a contact form 6, identified
with a normal-form ACH manifold near the boundary. Therefore, to,prové Theorems
2.1and 2.2, it suffices to work on normal-form ACH metrics. Namely, we first prove the

following theorem in this section.

THEOREM 6.1. Let (M, T0M) be a nondegenerate partially integrable CR manifold.
Then, for any compatible contact form 0, there exists a C*°-smooth normal-form ACH metric
g for (M, T°M,0) on X = M x [0,00) that satisfies (2.1). Such ametric g is unique modulo
O(,o‘z”“‘). Moreover, g can be taken so that (2.2) is also satisfed. Then g is unigue modulo

- O(p**2) tensor with O(p**3) trce.

“In this section (and also when we deal with normal-form ACH metrics in the later
sections), X = M x [0,00) and p is always the coordinate for the second factor. Let {Z;}

be a local frame of the ©-tangent bundle ®TX given by

6.1) g 1Z;} ::{pap,pzr,pza,pza},

where T is the Reeb vector field and {Z,} is a local frame of T'9M, both extended
constantly in the p-direction. In other words, we define & and 6* to be the pullbacks
of corresponding 1-forms on M by the projection to the first factor 7w: X —» MandT,
Z, are defined so that {J,,T,Z,,Zz} is the dual frame to {dp,0,6%,6%}. The indices
corresponding to (6.1) are 00, 0, 1, ..., 7, 1, ..., 7. The following indexing rule is used
in the rest of this chapter: |

e o,B,y,0,rrun{1,...,n} andi,z,?,b_,?run {T,h...,ﬁ};

° z',j,/erun{O,l,..‘.,n,T,...,ﬁ}; ' ‘

47
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e I],K, L run {oo,O,l,...,n,T,...,ﬁ};
The index 0o is said to be 70rmal, while the other indices are tangential.

The components of any ©-tensor on X are classified by the number of tangential
indices, and those in each class can be considered as representing a tensor on M, not on
X, with coefficients in C*(X). For example, if ¢ = ¢ is a symmetric 2-O-tensor on
X, then there are three “normal-tangential” types for its components. We introduce the
| symbol 0" by setting 6° = 6, and set B |

©.—

@ oo’ oM = @, &, o? = @, 601,
. Because of the tensorial transformati‘on law of the coefficients, these are well-defined
regardless of a partic'ﬁlar choice of {Z, }. Ther'eforev, @0, go(l), and go(z) are a O—teﬁsor, a
1-tensor, and a symmetric 2-tensor globally defined on M with coefficients in C*(X),
respectively. By abusing notation, in the sequel we just write Pos? Poni> @0d @,; to
represent these tensors on M. The Tanaka-Webster connection V can be applied to
them in the obvious way. Lowercase Greek indices and their complex conjugates in these
tensors can be raised and lowered by the Levi form. /

Let g' be a C®-smooth normal-form ACH metric on X. By Proposition 4.12, the

ACH condition is equiv'alenf to the following boundary value condition of the compo-

nents of g with respect to (6.1):

8 =1+0(0) 8, =0)  g5=h5+0()  g;=0()
Let ¢ be g minus the boundary values. That is, the symmetric 2-tensor ¢;; on M with
_ coefficients in C (X)) are defined by

62 g =14%% & =%u 85~ baﬁ + Yep 8ap = Pap

This tensor is exactly what we can use to control the Ricci tensor of g.

6.2. Extension of the Tanaka-Webster connection. In order to relate the Levi-
Civita connection of g and the Tanaka-Webster connection on the boundary, we need
some extension of the latter to X. In the case of bounded domains in C**1, Gfaham—Lee
[GL1] introduced such an extension, called the ambient connection, using the CR struc-
tures on the level sets of any given boundary defining funiction. However, on general -

©-manifolds this idea does not work because there is no complex structure, or not even
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almost complex structure, inside. So our approach here is more primitive. We define the

connection V of TX by setting
Vo = v — V., 7Z.=T*

where Fki]. is the Christoffel symbol of the Tanaka-Webster connection associated to &

with respect to { Z; }. Then we get

6,93/, (pd,) =PI, §7_pap (0°T)=2p"T, _pgp (0Zg)=pZp,

Verpd)=0  Varp'D)=0, VarlpZg)=pT' 42,
V,2.(03,)=0, Vo2, T)=0, V2. (025) _ ST 2,
%-PZE('O %) =0, gpzz(lo T)=0, $PZ;(/° Zg)= Pzryaﬁ.zy';

.we have omitted 6(/025) because this is just the complex conjugate of V( pZg). There-
fore gzKZ] is a linear combination of Z;s with coefficients in C ®(X), and hence we
are allowed to regard V as a ©-connection. The nonzero Christoffel symbols are, with
respect to the frame {Z; },

00 _ T° v 14

T~ =1, = T°_ =2, U _,=0,,

T = 2T Tr = 4 T = Y
I’Oﬂ_proﬂ, Faﬁ—proﬂ, raﬁ_loroﬂ'
~ Note that we again omitted the complex conjugates, and that I'* i denotes the Christoffel
symbol of V with respect to { Z; }.

The nontrivial components of the torsion of the connection V are

' o - T 24 7 7 —_ Y
(6.3) Taﬁ_lbaﬁ’ TO,B_/OA,B’ ; nglg_ ’ONa,B :

Of course, the torsion TK Iy is skew-symmetric with respect to I and J, so there are more
nonzero components than displayed above. Taking complex conjugates provides further
nonzero conﬁponents. The components which are not obtained in this way are all zero.
Let us describe the action of V on ©-tensors more closely. Suppose § = S 5y is a
2-O-tensor for example. As we did in the previous subsection, we classify the components
$i0015i)

which consists of a O-tensor, two 1-tensors, and a 2-tensor on M, all with coefficients in

by the normal-tangential type. Then S o7 is considered as a quadruple (S__,S

ooy ?

- C*°(X). We can consider their covariant derivatives with respect to the Tanaka—Webster
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connection: V.S oo Y, Soo]. V.S sV, Sij . On the other hand, ﬁKSI] is a 3-O-tensor,

and this can be considered as an 8-tuple of tensors on M. If

#(1,,...,1):= p + (the number of Os in the index list 7, ..., [p),

then we have -

(6.42) | V.o Sy =03, —#LINS,,
(6.4b) VS =Sy
(6.4¢) VS8, =pY,5,

This generalizes to an arbitrary ©-tensor as follows.

LEMMA 6.2. Let S =S, . /vl bean arbitrary ©-tensor. Then, its covariant derivative
-

Iy

VS with respect to the extended Tanaka-Webster connection is given by

(653.) 600811'"11,]1."111 = (logp - #(]1’ Tt ’]p) + #(]13 ves 3]17 ))Sjl...[ﬁ]r"]q ’
(6.5b) VOSII...II)]1 Yr = P Vosll...lpjl ]q,
(650) VaSIf..]p]l...]q = pvaSII‘.-.]pjl'.Jq'

I we decompose ©TX into the direct sum of the two line ibun,dles spanned by Z_,
Z,, and the two vector bundles spanned by { Z_ }, { Z-}, then the connection V respects
this decomposition. Clearly V is flat on the two line bundles, and hence the components
of the curvature E]] ;18 zero unless I and J are simultaneously lowercase Greek or
conjugate lowercase Greek. Here we compute the lowercase Greek case only becatse the
other is just its complex conjugate. Since 6(%1 Z;=0and iap,Zj] =0, ﬁaﬂ kg 1s zero if
at least one of K and L is co. So we only have to computé Eaﬂ Ll Because the covariant
differentiation in the direction of Z; with respect to V is just the trivial extension of
that with respect to the Tanaka-Webster connection V, the expression of the curvature

“tensor is the same. Paying attention to that we are using the frame {Z;} to define the

" components of R, we obtain
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Where R_ ,W_ and V. arethe curvature components of V defined in (3.17). In

afot " afy afBor

(3.19b), W and V are given explicitly in terms of the Nijenhuis tensor and the Tanaka-
defined by

- Wiebster torsion tensor. The nontrivial components of the Ricci tensor R U’

"Ry ::RI K],1s given by

Y
/30!)

66 R, p3Aﬁﬁ, Rl-é—“szaﬁ, R,5=piln 1)A +N

is zero despite of the first

o and R,

The tensor E is not necessarily symmetric. In fact, E
equation of (6_.6); The other components, namely R E are also zero.

6.3. Levi-Civita connection. Recall from Proposition 4.4 that the Levi-Civita con-
nection induced by a ©-metric is a ©-connection. Let D = DX be the 3-O-tensor rep-
resenting the difference between V and the Levi-Civita connection V¢ determined by g;
that is, if we write D(Z,Z;) = DKU Z,

V§ 2=V, Z,+D(Z,,Z)).
Then we obtain
ng'ngz =V, (V2,Z,+D(Z,,Z;)) +D(ZK,€Z Z,+D(Z,,Z)))
= VZ VZ Z,+ (VZ DX(Z,,Z;) +D(VZ Z,,Z;) -I-D(ZL,VZ Z;)
+D(Zg, VZL Z)+D(Zy,D(Z,,Z;))
and therefore the Riemann curvature tensor is
R(Zy Z,)(Z;)=(VE V5 — VEVE ~VE 7
= (VZK VzL - VZLVZK - s[zK,zL] )Z;
’ +D(_V—ZK‘ZL - %—ZLZK —[Zx,2,1,Z))
+(V, D)2y, Z;)~ (V2, D)2k, Z;)
+D(ZK’D(ZL’ Z;))—D(Z,,D(Zg, Z)))
=R(Zg, Z1 N Zp)+ D(T(ZK’ Z;),Z;)
+ (—V—ZKD)(ZL’ Z;)— (€ZLD)(ZK’ Z;)
+D(Zy,D(Z,;, Z]_)) — D(ZL,D(ZK,ZI)).

In the index notation,

bf < M M M
R +V D, vLD,]KI +D,KMD LI _D]LMD KI +T KLD]MI

IK IKL
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Since V¢ is torsion-free,
TM M Mo

6.7) T, +D"%, —D", =0
Hence the Ricci tensor of g is (using its symmetry) given by
: - 7 . pk _T pk L 1K L K
68)  Ric, =R, +V, D5 ~V, DX ~DL DX, +Dh DK,
Thus the computation of the Ricci tensor reduces to that of DKU. We set Dy, =

81 DLI]' Then, as in the case of the usual formula, one can derive

Vg +T +T

(6.9) " Dy, (V k&1 IJK : TKI])’

1§ T gIK -

where TKI] =g

(6.3), and (6.5).

TL One can write Dy, down explicitly in terms of P, using (6.2),

The computation of DX, the tensor D with indices in the original positions, in-

g
volves the inverse g/ of the metric. But in order to express g/ exactly, we have to use
infinite series of ¢, where ¢ is defined by (6.2), which is too complicated to handle. So
we give up the exact computation and are satisfied with an approximation. We omit any
term which contains ¢, asa factor, and other than that, an O(p) factor. Since @ itself is
an O(p) tensor, nonlinear terms in @;; can be all omitted, and moreover something like

PY;; is also negligible. Then g%/ is given by

o0

&

g¥=1—9y, ¥ =-p"  gF=hF -9, =g

[eelee)

A=
-

ge* =0,
(6.10)

This somewhat crude computation is enough for our purpose, namely, determining the
expansion of ;; inductively so that g satisfies the Einstein equation (to high order).
This is because, if ;; is perturbed by adding ¢ which is O(pm) then the change of the

omitted terms is O( ,o’”"'l)

LEMMA 6.3. The tensor DKU is, modulo ;; times O(p), as in Table 6.1. (Since we
know (6.7), we did not list Doo in the table iff D_ . is present and we bave also omitted

complex conjugates.)

PROOF. First we consider the case where oo appears as an index. A direct com-
putation shows D____ = —4. For the other 13 components (see the table), (6.5b) and

(6.5¢) 1rnphes that V is negligible unless I = oo, and is zero if only one of J and

181x
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Bype Value Type Value \ Type Value

D___ -4 ‘ D, O D7m 0
D__ o0 Dy, —24Mpd,—4p, Do o3~y
: Dooo;a o Do %(Pap_3)¢0a Die ~hzt 3ed, _2)%7

D_. 2——(pa 4oy Dy, 0 ’ Dz %(pa ~2)¢,

Dy ~Ye3-3p,  Dp O . Dy 0

D 5 hz=3pd=2¢- Dz ~ths=3hzew  Dp, $hy+ibzoen

Dooa,@ _%(Pap - 2)¢aﬁ DOa,B A _PZAa,a ‘ ‘ Dyoa 0
Drs by Popthg90,)
P “Hhgte Paty)
Dy—aﬁ F N?ﬁﬁ

TABLE 6.1. DKU , with ;i times O(p) omitted (Lemma 6.3)

K is 0o. The torsion component TKU is zero if co appears in the indices. Therefore,
D, = Doooo] =D_, =0, and

Doolj = _Dkoo] = —D] Too =~ 2(,0[7’ (I’]))glf‘

On the other hand, if co does’rylot appéar in the indices, DK]]

KI] - Z(TI]K - TKI])’

and this is computed on a type by type basis. The details are omitted. O

LEMMA 6.4. The tensor DKU'is, modulo p,; times O(p), as in Table 6.2 (again some

types are omitted becanse of synimetry and complex conjugacy).

PROOF. One just computes by the formula DKU = gKLDLU using Table 6.3 and
(6.10). The details are omitted. : O

6.4. The Ricci tensor. According to equation (6.8), we need to compute the follow-

ing to obtain a formula of the Ricci tensor:

S K S nK L K L K
V,D g v,D K] DKID 1 'and‘ DI]D K1
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Value

Type

© 54

Tpe Value ‘ Type Value
De . -1 Dowoc; 0 Dr . 0
D%, ©0° i, 2tledg, D Ned+Dp
Dooocza O . : Doocfa %(Pap - 1)%; D, —8)+ %P‘?P%r
D%, 1-3(pd,— oy, Do 0 D" . pde
D%, _%(108/3 3)?% Do(;a %%a Dyoo 0 |
Dwa? =43, ~ 2 3 D"J —gbdﬁ | D', 587+i8 79y
D=.p ~§(p8, - D¢up D 01,3 _PZAaﬁ I
Dya,B %(Sar%ﬁ + gﬁy%a)
. Draﬁ %3/%3
DYEE P Ny/ia
TABLE 6 2. DKI] , with i times O(p) omitted (Lemma 6.4)

Because we know in advance that Ric,, is symmetric in / and ], we only have to consider
the cases where (1,]) is either (00,00), (00,0), (c0,a), (0,0), (0,), (a,ﬁ), or (a,8). A

direct computation using Lemma 6.4 leads to

qar

(6.11a) DE =1,
(6.11b) v,D¥ =0 ;
(6.119) v,.DX =0,
(6.11d) VD¥ oy ==3 = 563, —3)(pF, = 7o
(6.11e) VDX =103, ~2)(pd, 3y,
©.11f) v, DX 7 z—% — 32, — 1)(pd,— 2)¢ B
6119 VDX =N "0 50— 500, ~ 1)(,09,7—2)%,3-

One can see from the same lemma that DKKI is

(6.122) DX, =-(2n+3)+ PP PP,
(6.12b) DX =0,
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(6.12¢) DX, =0,

and therefore

(6.13) V DX =2n+34 100,09, — Dy, +p3,(p3, — ),

all the other types of vIDKK] are negligible. The third term DLKIDKL] is computed

directly using Lemma 6.4, and is as follows:

(6.14a) DY DX, =2n+5-200,0, —200,0 %

(6.14b) ph,D¥ =0, |

(6:14c) DY D¥, 5 =500, + Dy

(6.14d) D" DX, = —Y(n +4)+ (0, —n— gy +9,%
(6.14¢) D,D%,, E—Io3NﬁﬁAF—l—%<3p5’p—2n—5)¢0ﬁ,
(6.14f) DLKaDKLﬁ =p’N° Naﬁ? +3(pd, - ¢, 5+ %ha_ﬁ. Poo>
6149  DhDN =ip’A st il

The fourth term DLI] DX, can be computed by Lemma 6.4 and equation (6.12). Since

DX, is nonzero only for L = 0o, we obtain DLI] DX . = D=, DX, and therefore

(6.153) DY DX, =2n+3—3p3,04 —papcpj,
(6.15b) Dt D, =0, |
(6.15¢) Dt _DF = 0,
(&isd) D' DX, =-3(2n +3) + %,oapgooo + %paﬁgpa“ ‘
| +52n+3)(pd, ~ )94,
(6.15¢) DL DX, =12n+3)(0d, -3,
(6'1'53 D DX, =—tan+ S s
' +3(2n+3)(pd, —g)gpaﬁ,
6159 D' DN, =3(2n+3)(pd, =g,

By combining all these results, we can compute the Ricci tensor. Since we are actually
interested in the difference of the Ricci tensor and —1(n+2)g, the result in the following

lemma is stated with respect to their difference.
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LEMMA 6.5. If g is a C*®-smooth normal-form ACH metric for (M,TM,0) whose
components are expressed as (6.2), then the components of E := Ric+%(n +2)g is given as

follows, where we omit s times O(p):

E oo —%/ng(pap—4)gpoo —/oap(/oap _2)§0aa>

E =0,
E, .= =53+ gy, |
Ey = _%((Pap)z —(2n +M4)/‘03P —4n)Pe + %(pé’p BELE
Eyy =450 + 0N PTAs — (08, +1Mpd, — 27 =gy,
- 2 8 AN T p_1 2. —
E;=p'R 5=2'N, p,NE g 1(p3,) (2n+2)33p 8)§éa3

+%baﬁ(’03/° ~4)Po, + %baﬁpﬁpgp/, |
E = i”/OZAa,B + /Oz(Nyaﬁ,y + Nma’?’) - P4Aaﬂ,0' - %pgp(,oﬁp —2n— Z)goaﬁ.
In particular, the tensor E is automatically O(p).

6.5, The Bianchi identity. While ¢ has (272 + 1)? compoﬁents, the Einstein equa-
tion is a system of (27 + 2)? differential equations between the components. However,
these equations are not all independent because of the contracted Bianchi identity:

(6.16) / d Scal = 28 Ric.

Here & is the divergence operator. In the case of ACH metrics, we can derive the follow-

ing useful lemma from (616)

LEMMA 6.6. Let m > 1 be a positive integer. Suppose that g is a C®-smooth normal-
form ACH metric for which E := Ric +1(n +2)g satisfies E = O(p™). Then we have

6.172) O(o™ )= (m — 4n —4)E__ —4(m —4)E,, —8(m —2)E °,
(6.17b) O(e"*")=(m—2n—4)E_,
(6.17¢) O(p" )= (m —2n—3)E_, —H4E, .

Here, E * = hePE _.
. af
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PROOF. Since the Levi-Civita connection V¢ kills the metric, from (6.16) we also

obtain d(tr, E) = —20E, or

Wi — 9,078
gVEE, =2¢"ViE, .

In terms of the extended Tanaka—Webster connection V and the tensor D, we can rewrite

this identity as

I L L L
g](VKEU—ZD KI ]L> 2¢" (VI TR Dl] ke~ D K ]L)

or equivalently,

_ T L L
- (6.18) 0=g"(V(E, — 2VIE]K+2D 1 Ex = 2T By

Since V is a ©-connection, E = O(p”’) implies VE ="0(p™) and so we obtain

O™ = AT E__ 9V _E_ +2D' _E ~9T*_E_)
(6.19) +1- (VK 00 ZvoEoK +2D Loo’ KL ZTLOKEOL)
2BV E o =V B =VoE g +(D oo+ DL )E,,
_TL,BK - TL_ Epg ).
Since V,E,; and V, E;  are O(o™*"), this further simplifies to
O™ =1(V,E _—2V_E_,+2D" E, —2T" E )
+ (VKEOO +2D Loo KL ZTLOKEOL) -
+ 2657, Eg +(D'y +DL)E,, ﬂKE_L T Ep)

Recall the boundary values of DKU from Table 6.4 and those of TX Iy from (6.3): on
M =M x {0}, they are

(6.20a) D® _=-—1, - D> =1, | Doo‘az - %haﬁ’
(6.;0b) D°  =-2, D°a? = ghaﬁ,
(6.20¢) DVO;a =-87, DIy =i87
and |
T° _=ih _;
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all the nontrivial components that are not shown are zero on M. Therefore, our equality

again reduces to

O™ =LV, E__ -2V _E_ —2E_ )+ (VKEOO—l—E x)

kEgy + 1hg7Eoox = T prcEoy = TecEop)

Substituting K = 0o, K =0 and K = « into this formula, by (6.4a) we find that

+2hPT(V E

(6.21a) O(pm+i) = ——(p3 —4n—4)E _+ (,Oap —4)E,, +2(pap —2)E %,

(6.21b) O(p™ ) ==3(pd, —2n—4)E_,

1
2

(6.21c) 0(p™ )= —%(,oé’lo —2n-3)E__ +2E,,
which imply (6.17).- , O

6.6. Construction of asymptotic solution. Now we prove Theorem 6.1. Let E :=
Ric+3(n +2)g. Recall from Lemma 6.5 that E = O(p) for any normal-form ACH
‘metric g. We shall inductively show that there exists a normal-form ACH metric g(mj
satisfyiﬁg E=0(p" ) for each m < 27 +2,, and for such g™ its components g< )
uniqﬁe modulo O(p™).

Suppose we have a normal-form ACH metric g(”‘) such that £ = O(p™). Consider
a new metric g given by g( m) — (Jm) +‘¢l.j, where gbij = O(p™). Then, By Lemma
6.5, the difference S E = E(m“) , E(m) modulo O(p™*1) is ‘

6222y SE__

_%m(m - 4)¢oo - m(m - 2)¢azz

(622b) SE_ =0,

6220 SE_ =—im+1)g,,

(é.ZZd) SEy = —2(m? —(2n+4)m —4n)d +3(m—2)¢ %,

(6.22¢) SE, = —3(m+ 1)(m —2n—=3)),

(6.22)  SE = —i(m? = (2n+2)m - 8¢ 5+ %haﬁ(m — o+ %baﬁmgb/,

(6225)  SE, E—%m(m—Zn—Z)gbaﬂ.
By taking the trace and the trace-free part of (6.221), we obtain
(6.23a) é‘E v = ——(m - (4n+2)m 8)¢ 7+ 2n(m— 4)¢00,

(6.23b) tf(SE )——%(m ,—(2n+2)m—8)tf(¢aﬁ).
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Look at (6.22¢), (6.22g), and (6.23b). Since the coefficients appearing in these equalities
are nonzero for m < 2n + 1, we can uniquely determine ¢Oa’ gba ﬂ,'and tf(¢ ,E) modulo
a

O(p™*) so that Eé;"H), Ei’;H), and tf(8E ﬁ) are O(p™*"). Next we regard (6.22d)

and (6.23a) as a system of linear equations for ¢, and ¢ *. The determinant of the

_coefficients
D e —g(mz‘— (én +)m—4n) Lm-2)
gnlm—4)  —i(m?—(4n+2)m —38)
1s actually
(6.24) D, = ém(m +2)(m —2n —4)(m —4n — 4),

which shows that this system is nondegenerate for 7 < 2z + 1. Hence we can determine
oo and ¢_%, both modulo O(p™ "), so that Eég”i"l) and E<”‘+1)y7 are O(p™*1). Thus we

have attained Ei(;"H) = O(Ibm+1), and if gl.(;”) are determined unique up to O(p™) at the
(m+1)
ij , |

To go to the next step, we have to check that Eég”;l), Ei:éﬂ), and Ec();’;rl) are also
O(p™*). This can be seen from Lemma 6.6. In fact, since EZ."H) = O(p™*!) is already
achieved, (6.17) shows that (m—4n—4)E("+D), (m—2n 44)E£$+1), and (m—2n—2)E(™+)

are O(p™*1). Therefore, for m < 2n+1, it follows that Eg”;l),,E%H), and Eég:"l) are

beginning of step 7z, then g are unique modulo O(p™*1).

O(p™*1) and hence so is the whole E*1). Hence the induction is complete and the first
 part of Theotem 6.1 is proved.
To obtain the second part, now we consider g with components & = gi(]?”“)‘—i— ¢ij ,

¢ij = O(p?**2). Equations (6.22a), (6.22d), and (6.23a) imply

tréE =Scal+(n+1)(n+2)= %anooo £ 3500 +23Eyy + O(lozéﬂ)
= -;-(n +2)(¢oo +2¢yy) + O(P2n+3)-

Therefore we can take ¢ so that tr, E = O(p*"+). Suppose g and g; are chosen in this.

way and let (g,), =g, +¢,,- Then ¢o+2¢ ¥ =tr, (g, — g)+O(p?"*), s0 tr, (g, — g)
should be O(p*"+3). ‘

6.7. Evenness.. Here we introduce the evenness condition to C*®-smooth ACH
- metrics. To define the evenness, it is more appropriate to see an ACH metric g as a

usual Riemannian metric on X rather than a ©-metric. Let us start with the case where



6. CONSTRUCTION OF ASYMPTOTIC SQLUTIONS ' 60

g is a normal-form ACH metric for (M, T°M, §). As a Riemannian métric, it is defined
on M x (0,00), and can be written as '
4dp*+h . |

2 >

P

where , is a family of Riemannian metrics with parameter p. The family b o i divergent

(6.25) ‘ g=

in the direction of the Reeb vector field when p tends to 0. If we consider p?h - then it
is convergent and admits an asymptotic expansion at p = 0 in the (nonnegative) powers

of p with coefficients in the space of symmetric 2-tensors on M.

DEFINITION 6.7. A C®-smooth normal-form ACH metric g is even if the as-
. . - 2 _ . -
_ymptotic expansion of e hp at p = 0 contains even-degree terms only. An arbitrary

C*®-smooth ACH metric is ever if its normalization is even.

The well-definedness of the evenness for the general case is due to the remark made

in the last paragraph of [GS, §3.2].

PROPOSITION 6.8. For any ©-manifold and a compatible partially integrable CR
structure TYOM on the boundary, one can always take a C*®-smooth ACH metric g that

- indunces Tl’oM so that it satisfies (2.1), (2.2) and is even.

PROOF. Takea normal form ACH metric g = p~?(4dp?+ b ) sat1sfymg (2.1) and
2.2). Although /7 is defined for p > 0, we can smoothly extend pzb to—e < p<e.
Making ¢ smaller if necessary, we can define a Riemannian metric g_ on M x (—¢,0)
by setting g_ = e (4dp*+h ). Then the tensor E_ := Ric(g_) + H(n +2)g_ also
satisfies (2.1) and (2.2). If we consider the pullback of g_ by the inversion ¢: (x e)—
(x,—p), then the metric g’ = *g_ on X again fulﬁlls (2.1) and 2. 2) If we write g’ =

e (4dp?+ b;), then the odd—degree terms of the expansions of 4, and /op have opposite
signs, while the even-degree ones are the same. Hence, by the uniqueness result stated
in Theorem 6.1, the determined odd-degree coefficients in the expansion of 5 , must be
zero. Therefore, putting the undetermined terms as zero for example, we obtain an even

normal-form ACH metric satisfying (2.1) and (2.2). /’ ‘ O

Let C2° be the space of C *_smooth functions on M x [0, 00). Since the vector field
pd, preserves, as an operator on smooth functions, preserves CZ , the components

of the Riemann curvature tensor of an even normal-form ACH metric with respect to
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{ ,o&’p', T, ZQ;ZE} are all belong to C2° . Therefore, if g is an even normal-form ACH

metric that satisfies (2.1), then it is moreover true that
Eooa :vO(P2f1+3), an — O(p2n+3) B and trgE — O(P2n+4)’

where the components of E = Ric+3( -+ 2)g are now with respect to { Z; }. Thus we
obtain Theorem 2.3. Furthermore, we can go ahead with the induction in the proof of -

2n+4-2

Theorem 6.1 a bit more: we can determine all the p***+*-coefficients of €y 2nd g — s0
a

that the p2”+2 coefficients of E__, £, and E 7 vanishes. By (6.17b), E_, = O(p**?).
a . .

By the evenness,

[e @)

E - — O(p2n+4), Eooo — O(P2n+4)’

Eoo — O(P2n+4)’ ' Eaz — O(P2n+4)‘
Let us summarize the result—this will be used in Subsection 7.1.

PROPOSITION 6.9. For any (M, TYM,6), one can take an even C*®-smooth normal-
form ACH metric g so that E =Ric+1(n +2)g satisfies

6.26) . - : EI] = O(p2”+2+ﬂ(”)),

where

| ; 2, (i,7)=(c0,00), (00,0), (0,0, (2, B), -
(6.27) ALD)=X1,  (i,j)=(c0ra) (0a),

0, (i’j):(a’ﬂ)'

"The components g;; are uniquely determined modulo O(p?+2+4(:1)),

7. CR obstruction tensor

7.1. CR obstruction tensor. Recall the proof of Theorem 6.1 given in Subsection

6.6. In spite of the success of the inductive determinatioh of the coefficients of g; upto
the (2241)™ order, the next step cannot be executed. This is because of (6.22g)—although
the metric g’ in‘ Theorem 6.1 has O(p***?) freedom, no matter how we determine g,

2n+2

there is no effect on the p*”*+2-coefficient of Ein_ 5 So we get the well-defined tensor

— —én—Z
@.1) O, =" E,p)| -
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This is the CR obstruction tensor o, s of Definition 2.6. It follows that 0, 5 1s given
by a universal formula in terms of the Levi form and its aual, the Nijjenhuis tensor, the

pseudohermitian torsion tensor, the pseudohermitian Ricci tensor, and their covariant

M

derivatives. To see this, we take ¢(!) so that g+ are constant in 0. Then, by Lemma 6.5
) g at g;. np. Y

D _ () ) _ ) _
E() =E=E{) =Ey) =0,

) _ 34 B 3n Br

E,,. =p Aa,ﬁ, "—i—,o N7 Aﬁ?’
CEW =R _ 20N 7 NP,

B L e e gy

W _. 2 277 4
Eaﬁ_znp Aaﬂ+2/0 Vv Nr(éﬁ) P Araﬂ,O'

Hence, if g(zv)rsolves E® = O(p?) then it must be equalvto gV modulo O(p?), and g®
solving £ ®) = 0(p%) should be taken as follows:

(7:3a) 8o =14+ 0(0°),

(7.3b) 8oa = 0(103)’

7.3 —=h_ 29 _ 4 0(p%),
7.3¢) ‘ 85 =h 1P 5+0()
(7.3d) ' &5 -_-Pz‘I’a/j+O(P3),
where

2 1
(742) B _i=— R_-2N __N_"— (R=2N_ _N'"%)h _ |,
aff n+2\ aB T g 2(n+1) ror af

2
tA
a

(74b) @aﬁ = ;(

Y
s+ 2VIN,

(dﬁ))' .

£ . : : : m+1 . : —-m
If, in each step in the induction, we construct g( ) by taking ¢ij for W_hlgh J gbl.].
is constant in p, then it is obvious that the components of ¢ij‘ ‘As a result, o 5 is also

given by such a formula. Thus we have proved Theorem 2.5. \

PROOF OF THEOREM 2.10. Let g be a normalform ACH metric satisfying the
condition of Proposition 6.9. We would like to compute the right-hand side of (6.18)
modulo O(p?"+%) for K =0 and modulo O(p****) for K = a.

Let first K = a. Since v = O(p?) by the evenness, it is immediate that the right-
hand side of (6.19) is actually O(p****). Since _fLoo] =0 and _V—anooo , gaE §0E0a,

00°



7. CR OBSTRUCTION TENSOR 63

V E, ,and V E__areall O(p**),

a”py fTra
' 2nvdy _ = ‘ L L 7L
O™ ™) = 1(=2V E, +2D" __E )+ (2D" E, —2T" E)
By L L __—L _—L )
+2h (=ViEg, +(D'y +D% )E,, ~T seFp =T 7pr)-

By Table 6.4, in the current situation (6.20) actually holds in M x [0,00) modulo O(p?).

If we also recall (6.3), then the equality above simplifies to

BT (_V.
‘+2/7 (V7E5a+2hﬁ_5 +ION,B E“‘+ZhayEo,3)

~3(pd,~2n—3)E_ ~20VFE_, -—‘2,oNa/37Eﬁ_f +2iE

= —2pVPE, - 2N, TE_ +2iE,, + O(p™+).
Y

aB

Therefore we obtain

@75 E‘:

. _.iP2n+3(V/f @a/j +Naz7ﬁj7 Y+ O(P2n+4).
Let us again recall (6.18), and next we consider the case K = 0. This time note
that £, = O(p***?) it 0 € {1,] }, and also that —V—LEU = O(p*")if0e{I,],L}is0.

Moreover, TE s at least O(p?) whatever I and L are. By these facts and ;= O(p?),

I0

we conclude

O(p2n+5):1(§E _2§ "E +2DL> E —2?1“ OEooL)

L L

+1 (VO 00 2V'OEOO +2D 00 OL ZT 00 OL)
Br(v - 3

+2b v, ,5‘ V/j,E V7E +(D +D ,6)

TL
= o = VOE,BL)"

Sinf:e TE o=TF,=0and -V—OEoo voEoo , VOE 5 2re O(p*"*°) (in fact O(p?***)),

O(p™*) = F(V E o +2D"Ey )+ 2D" wFor

,87__ L
+2b (vﬁ V_Eﬁ+( ﬂ_+D ﬁ)E

L
-T E, -

0 70E,8L )-
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This implies, because of (6.3) and the fact that (6.20) holds in M x [0, 00) modulo O(p?), |
O(p™ ) =4~2V_E _ —2E_)+E_, |
| 21 g 2
sEor V_Eﬁ+2bﬂ_E - PAS B~ P4 Ey)
=—1(od, — 2 —4)E_ ~2p(V°E, +V7E,)

+2hﬁY( V.E

920 4af3 EE
2p"(AE, 5 +AVE )
= —ZP(Vana + VEEOE) - ZIOZ(A(Z/BEQB +AEIBE5E) + O(P2n+5)'
Therefore,
(7.6) V“\EOQ + VEEO.D% =23 (4% ﬁaﬁ +AEE0‘E )+ O(p2 ).
Combining (7.5) and (7.6), we obtain
p*#g,, -D¥ g =o,
. a 7g
where D% =vevP — A48 — Nya'gvy - (VyNJ’mB). ' ‘ O

7.2. First variation of CR obstruction tensor. In this subsection, we compute a -
part of the first-order term of the obstruction tensor with respect to a variation on the
Heisenberg group M = 5 from the standard CR structure 7M. Let ¢,: T0M —
T"°M be a C-homomorphism representing a smooth 1-parameter family 7° based at

1,0 '
T'M. Let ;€6

» @
Let g = g, be a smooth normal-form ACH-Einstein metric that satisfies (2.1) for

1,1) be its derivative at ¢ = 0. Let { Z, } be the standard frame.

each (M, Ttl’o, ). This can be taken smoothly with respect to . We set

go.o = ‘IJOO’ g(;a = _\IIOG’ gaﬁ - \Ild.ﬂ" ga,B = \deﬂ’
where ( gt)ijs are the components with respect to {2 =Z,+9,(Z,)}. Then, g;js are

uniquely determined modulo O(p?**?), and so are @, s. Let \I/(l;") be the uniquely deter-

mined coefficients. Because of (3.27), we can write

241 -
m
‘I/i]' — Z pm\yl] + O(p2n+2).
m=1
~Since g, can be taken so that it is even, \I/g:), ‘I/(’;) and \I’(’Z) are zero for m odd, and
‘I/g ) is zero for m even. Since each ( gt) admits a universal expression as a local pseu-

dohermitian invariant, by (3.28) and (3.29), each \I/Ej ™) is given as a linear combination of

covariant derivatives of ¢ij (trivialized by 6).
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If we consider a new contact form 6 = e?T§ for constant Y, then the formula that

gives QE]m) as a linear combination will not change because (3.28) and (3.29) remain valid
for such §. On the other hand, 4 used for the normalization with respect to 0 is eTp,
and hence -
ﬁzf:pT, IéZa:eTIoZa.

Therefore,

amE m ~mg, T ;

Py =), Y =),

~imag,(m) — 2T m (m) . Am\ij(m) _ 2 m\I/(m)

P \Ilaﬁ e p \Ilaﬁ’ I of e oY g

)

Consequently, \IIE;" must satisfy

\ijgg?) — e—mT\I/(m)

F(m) . —(m—1)Tq,{m)
00 * Wou =7y

Oa > |
P = (=2 g (m) ) (=) g (m)
af af’ af aff’

Thus we conclude all the possible terms in ‘I/E;n) are as-shown'in Table 7.1. Similarly,

the variation o: 5 of the CR obstruction tensor should be a linear combination of the

following terms:

Ak n:l-l—/e Eon—k o

o7 ALV af? ALVe V(av ¢ﬂ)a’

' R i JR—— T
Abvo V, VYV ¢ and AV VaV[zV Vig__.

These terms are linearly independent if 7 > 2.

Type Terms

D kygl—l-kyya bygl-1-kgagh
Ty  ASVTEVEVAY e AV V“V‘ngaﬁ

bol-ibg GroT,
Oa (a4 Abvo ! Vav v ¢Tﬁ"

@+1)  Akgi-koB, kgl-1-k oot
4 NAYS vﬁ¢aﬁ, AbGIEITRY VOV,

@h b l-1—k 7 kol-1-k -
LA A A

A’;vé-z-kvﬁvav?vﬂpﬁ,

b

ol

kx7l-2—-k TNTT
A SR A

kxgl-1-k T v/ via v
ETAD mkyeved b 58 V% VIV

o’

@h Exgl—k kyyl-1-ky o
lIlarﬂ‘ Ab o '¢aﬁ’ Ah 0 {(« ¢ﬂ)a’
kal— —'/ev \vAAviavi ﬁkV" —kv \VAAvGAvid
bOz a’ f8 T¢ bOZ aﬁUvT¢aT
(m)
i

o’

TABLE 7.1. Terms that can appear in ¥
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We determine the coefficient of AZ"'lgba P n ’@:,B' For this purpose, it suffices to

| compute \I/E;") neglecting Vo¢a,é’ vh ¢, 5 Vﬁgbaﬁ and their coyariarit derivatives, be-
cause these terms cannot contribute to the final (AZ+1¢a ﬁ)-'coefﬁcient. This means, as
can be seen from Table 7.1. that we can compute as if \I/gg) , \I/g:), and ‘I/i"f.) are zero.
By (7.4b), modulo these terms

)
(7.8) W ==A0,,
‘ n

Moreover, by computing E = Ric+1(7 4 2)g again using this technique, one can prove

that \IJS;) satisfy

0=1(1—n— )W) - AW forl>2,
and hence, for 1 <[ <, ‘
, 2_(_1)l+1

@h_ _Z\T Al
g S I b

Then, by a similar computation, one can derive

ALpP) = (=1
b af T (n!)z

1
n+1
> ALY

Thus we have shown the following.

PROPOSITION 7.1. Let n > 2. If we express 0:,6 as a linear combination of the terms

in (7.7), then the coefficient of AZ'H ¢, 5 is equal to (—1)"+ /(n!).
COROLLARY 7.2. Let n > 2. Then there is a partially integrable CR structure on the

(2n + 1)-dimensional Heiseﬁberg group, arbitrarily close to the standard one, for which the

obstruction tensor does not vanish.

8. Formal solutions involving logarithmic singularities

8.1. ACH metrics with logarithmic singularities. In this section; we are going to
prove Theorems 2.11 and 2.12. Let (X,[©]) be a ©-manifold. Recall that a contirﬁious
©-tensor § belongs to ./(X) if § admits an expansion of the form (2.9). We write § €
L™ if §@) = VO(,om) forall g >0, and set .o/ :=(""_ .&/™. The symbol .o/ will be
used similarly to O(p™)—for example, f = f,+ .9/ means that f — f; € /™. Moreover,
* the symbol ™ is used also for the respective components (we make this agreement s

that equation (8.5), for example, makes sense).
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Again in this section, we set X =Mx [O,oo), where (M, T°M,0) is a nondegenelj-
ate partially integrable CR manifold with fixed contact form. We consider ACH metrics
of the form (4.9) with 8 satisfying (4.10), Whi;h we call normal-form ACH metrics with

logarithmic singularities for (M, T*°M,8). All the computations regarding the Ricci ten-
sor go in the same way as in Section 6 except thét, while o0, acts on the space of smooth .
O(p™) functions as a mere “m times” operator modulo O(p™*1), it is no longer the case
when O(p™) and O(p™*") are replaced by .o/ and ™+,

Let us consider a normalform ACH metric given in Proposition 6.9. For speci-
ﬁ;ity, let g be such a metric with the property that each component ;i is (at least near’
M = M x {0}) given by a polynomial of p. Then the tensor E = Ric + Hn+2)g is
unambiguously defined by (M, T1°M, ). We set

= P2n+4Foooo 4 O(p2n+5)’

(8.1a) : foooo

8.1b) ‘ Eooo — P2n+3Fooo + O(P2n+4),
619 Eope ="M E, +0(™ ),
(8.1d) ' : . Eoo _ Pzn+4F00 + 0™,
(8.1¢) : an _ P2n+3 ch 10 (pZ"H),,
(8.‘1f) v Ea,"é — p2n+4 F'aﬁ s (P2n+5)=
818 E,p=p""F,, +0(6™%),

where F,, is constant in the p-direction. We already know that F_, = 0. andF. =
i : a af O

—i(VA @;zﬁ +N, 'E?ﬁ__ )- We define
; 14

B

1 . s
8.2) ‘u ::_n—-l—l(F"oo —iVPF__ +zV”FwE).

THEOREM 8.1. Let x be any smooth function and A 54 smooth symmetric 2-tensor

satisfying
8.3) - ’DéﬁAaﬁ—D?@Eﬁzm.

Then there is a normal-form ACH metric with logarithmic singularity g satisfying E =
A and

1 1 :
4 (2_”—"1'7)' <9P2”+4gég)> |M :.X’ (2n+2)! <ap2n+2 gi%) |M - Aaﬁ’



~ 8. FORMAL SOLUTIONS INVOLVING LOGARITHMIC SINGULARITIES . 68

o]

where 8; ™ Zq:O gi(]fi)(log p)? is the asymptotic expansion of 8- The components 8;; are

uniquely determined modulo .o/ *° by the condition above.

As is clear from the proof below, Theorem 8.1 also holds in the following formal
sense. Let p € M, x a smooth function and /1&[6 a tensor satisfying (8.3) to the infinite
order at p. Then there exists a normal-form ACH metric with logarithmic singularity
g satisfying (8.4) and E =40 the infinite order at p;~and the Taylor expansions of
gi(;l) at p are uniquely determined by those of x and A, s On the other hand, there is
a formal power series solution to (8.3) by the Cauchy-Kovalevskaya Theorem. Hence,

by Borel’s Lemma, we have A, s solving (8.3) to the infinite order at p. Thus we obtain
Theorem 2.11.

REMARK 8.2. The appearance of a formally undetermined term A, 5 the (2n+2)™ .

order generalizes a result of Biquard-Herzlich fBHl, Corollary 5.4] in the case .= 1.

8.2. Non-logarithmic part. The following result can be obtained by following the

argument in Section 6 again.

PROPOSITION 8.3. There exists a normal-form ACH metric with logarithmic singu-

larity g for which E = Ric+3(n +2)g satisfies

- 2n+2+a(l,]
(8.5) & E, = ),

where a(1,]) is defined by (6.27). The components g; are uniquely determined modulo

2460, and do not contain logarithmic terms up to this order.

PROOF. Let g be a normal-form ACH metric with logarithmic singularity. If we
define ;i by (6.2), then the Ricci tensor of g can be computed as we did in Subsections
6.3 and 6.4, and as a result, Lemma 6.5 is again valid for g, where the omitted terms are
now those of the form i times ./ 1. In particular, the contributions of ./?**2.terms in

¢, o Eis .o 2142 Take a large N so that ?;i and E,; for given g are of the form
o Do @ e co(X
2n+2 ' o]
T
4= B
and

N _
E, =Y EP(logp)t + ., EP e C¥(X).
9=0
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Our intermediate goal is proving that it is necessary for E, =.d 2712 that 995?) =0
(modulo O(p?**2)) for g > 1. Then goS.)s are determined modulo O(p***?) by Theorem
6.1. \ '

We obtain from Lemma 6.5 that, if we set g’i]. =g,;+t¢,; with¢, = .4 and
8E = E' — E, then the following equalities hold modulo .&/™*!: |

(8.62) - OE_ = ——%,oap(pap — o= PP, = 2)) 5,
(8.6b) SE_, =0,
(8.6¢) SE = —é p&’p + 1),

(p3, = (2n+4)03, ~4n)o + 4(p3, = 204

@6d)  SE,=-1

(860) SE,, =—1(od, +1)(p8,—2n—3)¢y,,

(860 BE 7 =—1(p3,} ~(4n+2)pd, - 8)4 T + in(ed, —4)dy,
869  H(OE )=—H(edf ~(@n+2)pd, ~ k(Y o),
(8.6h) OE,; =—% pap(pap ~2m=2)¢ s
Therefore, if ¢, = Zf;;o, ¢E,‘]7.)(log o)+ /™1, then the following holds for g=N
modulo O(p™*1): ' |
872)  SEW =—lm(m— 4)¢<4) — m(m —2)¢D 2,
(8.7b) -~ SEY =d ‘
(8.7¢) 35@ =—im+1)4%,
7d)  SED =—}m®—2n+4ym—4n)gD + 4 (m—2)gD 2,
(8.7¢) SESD = —L(m +1)(m — 20— 3)¢2), \
8.79) | SED Y =—{(m® —(4n +2)m — 8)JD) T + dn(m — 4y,
(8.7¢) tf(é\in‘%) =—Lm?—(2n+2)m - 8)tf(¢f:%),

(8.7h) aEi’g =—lm(m~ 2n— 2)¢i’2.

In particular, consider the case where &; does not contain logarithmic terms at all. In
this case E does not contain logarithmic terms either. Hence, if 1 <m <2n+1, (8.7)
implies that (E')N) necessarily has a nonzero component at m™ order as soon as some

N .
component of ¢E’j) becomes nonzero modulo O(p™*!). This shows that we cannot
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~ introduce ¢( ) that is not O(p***) while keeping logarlthrmc terms away from E. The
same argument is also possible forg =N —1,N—-2,...,1,s0 we conclude that g cannot-
have logarithmic terms modulo .of?"+2.

Moreover, setting 7 = 21+3 we similarly obtain that there are no légarithmic terms
0 gy s &, 20nd g = % modulo <f 2143 and by moving forward to the case m =2n -|-4 00

and g  cannot have logar1thm1c terms modulo .o/ "+, , O

8.3. Computatién on Ricci tensor. For the discussion that follows, we need afor
* mula for the behavior of the Ricci tensor that is different from (8.‘6)‘. Let g be a fixed
‘normal-form ACH metric with logarithfnic singularity such that E =Ric+3(n +2)g is
at least .of>. The proof of Proposition 8.3 shows that such g cannot contain logarlthmlc
terms modulo 2>, Soits components are determined as (7. 3) For an integer m > 3, we-

consider another metric g’ given as follows:

o . _ m—+a(i,j)
®.8) 8y=8 ey b=
Let SE:=E'—E.

LEMMA 8.4. Let g be a normal-form ACH metric with logarithmic singularity such
that E = >, For the pertﬂrba;ion (8.8) of g, the tensor S E is given by

8E s =—300,(03, = Do = p3(00, = D)9,
(8.92) 1.2/ 9\2/& 7B 3
p*(0d,) (cpa/?¢aﬂ+¢“ﬁ¢ﬁ)_+w"+ -

. SE, 5 = 3p(p3, + 1N(V* 4y, +v?sfoa> |
, — 307 pa (AP Y, + AT ¢aﬁ)+ o™,
69)  OE, =—i(pd,+ 1)y, +10 08,0y, + 10N, FTpd, Jot ™,
| (8.‘%) 8y, =—}(pd,F — 2n+4)p3,—4n)fy+ 103, — D)9 °
;+zf,o(V“¢Oa—V“¢0a - 10 pd (@aﬁsbaﬁmaw )+ﬂ’”+3
(8.9¢) 8E,, =—5(p9, +2)(p8 —2n—2)¢0a+,e¢‘mf2,
SE,% = Ln(pd, ~ 2, — H(pa,Y — (4n ~ 2p3, —8n —8)9,*

(8.99)
' + (/™" terms depending on bo, and ¢ ﬁ) + g™,
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tf(aEaB) = —%((pap)z —2np0,—2n— 9)tf(¢aﬁ)

+( "2 terms depending on ¢ and §_ ﬂ) + .,

8.9g)

(8:9h) 35a,@ = ~%pap(pap—2n—2)¢aﬁ+ﬂfm+l,
where we define @ P by (7.4b).‘

Lemma 8.4 is proved by the following idea. In Subsection 6.4, we used (6.8) to com-
pute the Ricci tensor itself. However, if we try to show Lemma 8.4 again on this plan, '
then it will demand too much complicated computation. So we take the difference from
the start: (6.8) implies that ‘

T K _T (AP L K L K
. 8 Ric,, =V (8D),, ~V (D), — D%, - DX — D -8DF
' L . pk. L K et
+8D%, D% +D% - 0D+
We omitted the quadratic terms of 8 D. This is allowed because any & DKU 1s /™ and
we assumed that 7 > 3. To compute the femaining part modulo ./ ™*2, it suffices to

compute DKU modulo i¢/° and & DKU modulo .&/™+3.

LEMMA 8.5. If g is a normal-form ACH metric with logarithmic singularity for which
E =Ric+i(n+ 2)g is >, then DKU modulo o is given by Table 8. 1

Type  Value Tipe  Valwe  Tpe Vialue Tpe  Value
p*_ -1 D_ 0  Dr_ 0 D, 0
D=_ 0 Do, -2 D, 0 D o
b=, 0 D%, o0 Dlge —07+p%%7  Dlp pNT
D=, i D% O D roo'E\ pre; : : -
D% 0 D 0;a 0 , Dy, 0

D=4 %]’az D°aﬁ _gbaﬁ D', 38,7

Dx, 0 D%, —pA, Dy ip'®]

Pk 3
TABLE 8.1.-D 17 modulo .of (Lemma 8.5) |

PROOF. Since ;= 22, this follows by Lemma 6.5 if we modify it for metrics

with logarithmic singularities. \ O
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LEMMA 8.6. ]f g 1s a normal-form ACH metric with logarithmic singularity for which
E =Ric+i(n+2)g is o 3, then for the perturbation (8.8) of the metric, & DKU modulo
2 ™3 is given by Table 8.2. ’ ‘ o

PROOF. Since we can read & DX 17 off from Table 6.1 only modulo .&/™*!, we have
to take a roundabout route as follows. We first compute § D, ;y modulo .o/ m+3 by using
(6.9). For this we need &( = 6]{%]’ which is zero if oo € {1,]}, and 3_7—“]{]] =
TLI] ¢K ;» which is zero fooe{l,],K }.‘By (6.4), the components of the first tensor is

&8y )

as given in Table 8.3. On the other hand, by (6.3), those of the second one is as in Table
8.4. As aresult, » .

8DK1] = %(8(61%1{ )+ 8<€]gn< )= 8(61{81] )+ 871]1{ + 37]11{ - 871(1]) '

is given by Table 8.3. ,
Then we compute & DKU by the formula

(8.11) 8D, =g 8D, +8 gD, + 7,
Here we need
g00;1+o(p3)’ gOa:O(PB)’
gaﬁ = },al_g_ _/Pzéaﬂ + O(P3>’ gaﬂ = _chpa,ﬁ + O(,O3)
“and
3g°° — _¢oo 4 .,Qf‘m—”,
. é\go? — _’¢0a+u‘2{m+3,
8gaﬁ — _¢aﬁ+l02(®a7¢ﬁ7+@ﬁy¢ay)+Vdm+3,
8gaﬂ — _sbaﬁ +P2<¢ay¢ﬁy +q)ﬁy¢dy)+ .,Qfm+3.

I modulo .¢7” is read off from Table 6.1 as Table 8.6, We put all these into
(8.11). The details are omitted. O

Moreover, D

We remark one more thing here: for metrics with logarithmic singularities such
that £ = & ") e need a version of Lemma 6.6. A similar use of the contracted

Bianchi identity now leads to the following lemma, whose proof is again omitted.
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Type : Value

oD 0

0000

dD® - 0

[eSle]

8D* 0 , ,

ooa

8D> —% Ioap -4

00

8D= —g(pap =30,

O

8D® . —Y(pd, 2 5

0D=,,  —3(pG-24,5

8D° 0

0000

8D° %papgboo

o0

SDoooa %(PQP - 1)¢011

8D° 0

) é\DOOa _%¢Oa

8D° o 3PV b pt Vb )= 10 AT s +ATY,)

é\DOzzﬂ %P(vasboﬁ +V[B¢0tz) - %P(N7aﬂ +N7ﬁa )¢07 - %P2V0¢aﬁ

8Dr 0

000 %(Pap + 1)¢07

8D ipa g —1p?pd, 8¢, — %8, 417

S Y R TN A Sy o

aDVOO :o

a\D},Orz %é\ay¢00 - %¢ay + %p(vasbor - VY(AO:Z) - %PZ(AKIU ¢YU _A70¢ag) + %Pz(¢70¢aa + q)ao¢yg)

SDYOE %¢EY + %P(VE¢0r - VY¢OE _NEYU ¢Oy) + %P2V0¢EY - %Pz(érg(ibﬁ-l_ éﬁa ¢Yl7)

SDyaﬂ %‘é\a}fsbcﬂ + %8ﬂy¢oa - %Pvrséaﬂ - %P(N;aﬁ +N?ﬂa )¢FV

oD’ - %8ay¢oz+%€(va¢ﬁr_Nzrq¢aa)

D" _ YV g T4V -V _
:/(Vabg +V54 45

TABLE 8.2. & DKU modulo @™+ for perturbation (88) (Lemma 8.6)
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Type Value Type Value Type  Value Type Value
Vit =Dy  3(Voeyn) 0 S(V-Dy) © 5F.D,,) pY.4,,
Vet (p9,=3), a“(:ﬂgm,) 0 8(57003) PVt 8. D) 0
Vogs (h-0 SF.s,) O ST D) PV SFTD) #Vids

6oogaﬁ (% =25 3(—V—ogaﬁ) P'Volap

) modulo &/ ™** (Lemma 8.6)

TABLE8.3. §(V Kg]]
Type . Value Type Value Type Value
Tyo © ] T7oo 0 72 TP Naﬂ ’ ¢7_¢7
TOOa PzAa7¢07 T?Oa IDZAanb?E ‘ T?a—ﬁ haﬂ ¢0y

0z ih B oo T?OE 0 Ty—aﬁ 0

023 —PNa,B ysbo?

TABLE 8.4. TKU modulo-.&/* (Lemma 8.6)

LEMMA 8.7. Let m > 1 be a positive integer. Suppose that g is a normal-form ACH

metric with logarzthmzc smgularzty for which E :=Ric+> (n +2)g satzsﬁes

VQ{m+a(1J)

Then we have

o = (Ioap —4n — 4)Eoooo - 4(,09/.7‘ - 4)Eoo - 8‘(lo>ap - 2)Ea0’

(8.122)

+16pRe(V°E_ ) +8p%(0d, — 2)Re(®* E 25 )
(8.12b) A" = (03, —2n —4)E_| o +8pRe(VIE,, )+8p° Re(A*PE 25
(8.12¢) A" =(pd,~2m—3)E_ —4E, +4pVPE IB+410N FTE E._.

8.4. Construction of the full expanswn To construct expansions of & that
solves E = /™, the first point where a loganthrmc term comes into is the (27 + 2)nd
order. This is due to (8.9h). Moreover, (6.17) and (6.24) indicate that the following orders
also need some special care: 27 + 3, 272 +4, and 4% + 4. We first discuss the (2r + 2)*

and two more orders that follow.



8. FORMAL SOLUTIONS INVOLVING LOGARITHMIC SINGULARITIES »

Type Value

8D 0

Doy ©

8D . 0

8D —3(pd,— e

8D, —1pd,~3),,

5D —%(papl—zypaz

5Dmﬂ _%(IoaP_z)(ﬁaﬁ
’ 8D, .. O

8Dy, 33, =Ny :

8Dy,  Hed, -3,

8D, 0 ’

8D, 0

g bt 1PVt Vb~ AT o AT,

0Dy, g %Pﬁva¢oﬂ +V o, — Naﬁy%y)’_ AL
8D O | o

8D, Hpd,~3)y

aDm Ypd, -2,

3157&; ;(,gap—z)%

8D, O

8Dz, bt 3PV o= Voto )~ 3P AT b+ ADT)
8D701 %P(Vs‘ibo?_vy‘ﬁo; 7 “Yo,)t 3P’V ¢—
R g L 2P(v‘¢aﬁ+ V)
D 5 PBabgtidabgtipVadg —Na7d0)
SD vi %P(V;‘/’E? + VE¢T}/ - V7¢Eﬁ)

TABLE 8.5. SDKU

modulo .&/™*? for perturbation (8.8) (Lemma 8.6)
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Type Value  Type - Value Type = Value. Type Value

D —4 D, 0 D_ 0 D_ 0
00000 0000 Foooo vaf
DooooO 0 DOooO -2 ’ D?ooo 0 D_faﬁ 0
D 0 D, 0 D —h_ D __ pN_
©000a } Qoo yooa ay 7’_‘118 ?ﬂE
D‘ooOO 2 : DOOO 0 D?ooﬁ 0
. DooOa 0 DOOa 0 D?OO 0
D _ h_  D_ =ih_ D ih_
cca S «f3 0zf3 2748 70 2%ay
) 2
Dogaﬂ 0 DOaﬂ -P Aaﬂ DTOE 0

TABLE8.6. Dy, modulo o> (Lemma 8.6)

LEMMA 8.8. Let u be as in (8.2) and assume that there is a solution A 5 Lo the differen-

tial equation (8.3). Then there exists a normal-form ACH metric with logarithmic singnlar-

ity g for which E = Ric+3(n + 2)g satisfies
E = o/ t5,

Such a metric g is necessarily of the form

(8.13a) ' 8o = Top + I,
(8.13b) - 8oy = 8op + A,

(8.130) : 8,7 =85+ o4,

(8.13d) 8=t 4,

where g is the metric described in Subsection 8.1. For a particular choice of A, s that solves
*(8.3) and any smooth real-valued function x on M, we can take g so that it satisfies (8.4).

Such g is unique modulo o/ *"*>.
PROOF. We set

2 N .
®.14) g =&+t ZZ(Xa>§?)f)2”*2+“(logp)q,+ A

a=0 g=0

where (y, )Eg)s are tensors on M, and we shall determine when g satisfies the condition

- E = f**5. The symbol SE will be used in various ways in this proof—this always
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denotes some change of the tensor E, but we will consider many different perturbations
of the metric. The situations will be made clear every time when 8 E is used.

We first determine the terms with 2 = 0 so that E = .o/?"*> is satisfied. Since g is

already chosen so that —]:: = g ?#+2+40J)  an easy argument shows that ( Xo)g%), ( Xo)gi],),

)(q )(q)

must be zero for all g. For (y,)", we need the following formula of 8 E

and (¥,

when these coefficients are introduced, which follows from (8.9h):
~88E,,=(q +1><2n+2>2<xo><"“> *#2(log p)’

+<q+1><q+2>Z<xo>§fg”,o2"+2<1ogp>qmzw.
q=0

Since Ea 5 has no logarithmic’ term, ( Xo)f,q,; ‘must' be zero for ¢ > 2. The next coefficient
( )(O)S;j is determined so that the p*"**-coefficient of E_ 5 vanishes as a result. Namely,

we set

4 4

k - 0 —
8.15 ; F o .
(8.15) _ (Xo) 17 e = 11 aB

By Lemma 8.7, E_, are automatically .o/ 2243 The remaining coefficient ( Xo)g% does

not controlled by any restriction so far.

Next we determine the terms with 2 = 1 so that E = .&/?"+* holds. We have intro-
duced the (potentially) nonzero logarithmic coefficient ( Xo)(l) , and this is now reflected
in the tensor E. However, by applymg Lemma 8.4 with m = 21 + 2, there is no effect

of this term in £, E — 7 modulo &2+, So E, and E 7 4T already .o/ 24 ,as E and

)(q) )(q)

E - o7 are from the beginning. Hence (y;).2 and ()Y must be zero for all g. Lemma 8 7

implies that E, =" Moreover, since we already achieved E = /2" , the same
lemma implies that E_, = .&/*"**. The remaining components of E to be considered
areE_ ,E _, and Ea,B . .
&7 5o ( Xl)gi) should be zero for ¢ > 2, because (8.9¢) implies

Equation (8.9¢) shows that £ has no logarithmic term modulo

~88E, —(q+1)(2n+4)2(x1)("+1) 43 (log p)?
q= . .

N-=2

+(g+1)(g+2) D () o™ (log p)T + .2/,
q=0 .
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We introduce (y, )g? tokill £, :

(8.16) ‘ ()()(1)2—4— :_'4i (vﬂﬁ +Nﬁ7@_ ).
: N R A

Since (8.12c) cannot be used to prove that £ = ./ n+4 we need another means to kill -

E_ in this order. Note that, since F,, = —i(VﬁFa s + NQIE?FB_ ), (8.15), (8.16), and
- A

(8.9¢) imply that E__ _ has no logarithmic term modulo .&/*"** so far. By (8.9¢) again, if

we can take ( )(1)5)?. and ( XO)SZOI; so that the following holds, then E_, becomes .o It _

—i(n+ 2, + 0+ DV (o) + (05 DN, T ()3
—F 12 2 PF +NFE )
T Tem 070t af " T

8.17)

Now suppose (8.17) can be satisfied. As for E_ 8 Lemma 8.4 shows that, because of the

©) IRy
af and €

nonzero coefficient ( XO)S;’,Ea 5 can be written as follows by using tensors ¢
onM: |

9) 1 n n+4
Ea[J’ — EE,,;PZ”H "fEEz,;Pz +3logp+ﬂ2 +4

(9)
\ . af
( Xl)s,;” ( )(1)?[)3 are uniquely determined by the condition E_ 5= 2,

So we conclude, by using (8.6h) for 7 = 27 43, that (y,)?) must be zero for ¢ > 2, and

Finally we consider « = 2 to achieve E = .&/*"*®. The effect of the existence of

(n )Ezl/)i and( Xo)(;/; may appear in £, and Eaﬁ., s0 we write

Eoo — gg%)lozn+4 +Eglo)lozn+4 log,o+,,d2”+5,

E _ =9 e () 2n+4 5,
B o +8aﬁ/0 oge+.4
It follows from (8.9g) that tf(( )(2)(’%) must be zero fo,r\q, > 2, and tf(( )(2)(%), tf(( )(2)((%)
are uniquely determined by requiring t(E 5) = .o/ "+, For the determination of ( Xz)g%)
and (y,)4 )VV, the following equality for the perturbation (8.8), which follows from (8.9d)

and (8.9f), is important:

1By —28E T =~{(pd,+2)(pd, — 22 ~4)nge~2¢))

+(&/"*? terms depending on ¢ - and ¢aﬁ> + ™, |
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Therefore, in the current situation, the effect of (y, )g%) and ( )(2)(‘1)/ onnE, — 2E 7 is
—8(n8E,,—25E 7)

—(g+1)n + 6)Z<n ()5 = 200,)7 7)o" +H(log o)
q=

. N—
+ (q + 1)(q + Z)Z(n()(z)(q+2) 2()(2)(q+2)/)PZ”H(lOgP)q + %2n+5.
‘ 4=0

Hence n( )(2) =2( )(2)(‘7) ¥ must be zero for g > >3, and we unlquely determine 7( )(2)(4)

2(y,)D ¥, for g =2,1to kill nE_ —2E_¥ modulo .&/*"*>. Another linear combination
2y 0o r

of ()

For example, E, itself will do. By equation (8.9d), we see that the following holds for
g=N:

and ( Xz)(q)/ is determined by considering another combination of E and Ey v

BES = ( s+ (4 1><x2><q>;) +0(™ ).

) Therefore, 10 2)(q) +(n+ 1)()(2)(‘1)77 should be zero for ¢ = N. The same thing is
true for g = N—1, ..., 2. Then %n()(z)g%) +(n+ 1)()(2)(’?)}/7 for g =1, 0 are set so
that E | becomes .e/>"+°. Thus ( XZ)E;(])) and (y,)4 )yV are all determined except one linear
combination: 7( )(z)g%) -2 )(2)(0))/7. By (8.12a), E___ is automatically .o/ *"+>.

- It remains to consider E ,E_E,,andE . It follows, by using (8.9¢) and (8.9h),

S Tapr
that we can determine ( Xz)g? and (y, )SZ;, forallgsothat E| and E_ 5 are ?"+3_ Then,
by 8.12¢), E__ is .&/***>. We try to control E_; by using ( )(1)8 and ( Xo)io) , which are

already subject to (8.17). What we need is the following relation:

| (14 2V + V) — (- DA (o) + 47 (o))
(8.18) :

F 2 (vE +VOF_) 2 (4PF 4 AP
=—F_, — 2( oa o +n—+1( 2 Eﬁ)'

n+

If this is satisfied, then we get E_ | = .o/ ***>,

Under the condition (8.18), (8.17) reduces to the following equation on ( Xo)%:

Do)y = D (ol = iy

where # is given by (8.2). If we have a solution A, 510 (8.3), then we set ( Xo)(ao; =A, 5

and suitably determine (y, )gz by (8.18).
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We still have one undetermined real-valued function n(x, )é%),__ 2( )(2)(0)/, which can
be arbitrarily prescribed. Since there is another linear combination of (y, )g%) and ( )(2)(0)/ ’

that is determined, this is still equivalent if we state as (8.4). O

Now we finish the proof of Theorem 8.1. The only point that we need extra atten-

4n+4

tion is where we determine the p****-coefficient of &,

PROOF OF THEOREM 8.1. Let m > 2% +5 and supposé that g is a normal-form

- ACH metric with logarithmic singularity for which E = .o/ ™. We set
o 4@ 0_
/ ;
& =8 +Z¢i3 (logp)?, ¢5‘ =0(p")-
q=0

and shall prove that ¢E~‘]I») modulo O(p™*!) may be uniquely determined so that E/ =
.2/™+! holds. Then the induction works and we obtain the theorem.

. By (8.6), we can express 0E = E' —E as
o 5 £ @) '
SE, = Z SEI}I (logp)? + o™ *.
’ gq=0

Modulo O(p™*), (8.7) holds for g = N. It follows from (6.24) that if m # 4n +4 then
¢g\1) is uniquely determined modulo O(p™**), and inductively, ¢E‘]].) for0<g<N-1
are also determined modulo O(p™*!) by the condition E’ ;= ™1, By Lemma 6.6
/s are also .of ™t

If 7 = 4n + 4, instead of the pair of (8.6d) and (8.6f), we use that of (8.6a) and (8.6d)
to determine %%) and ¢(‘?)y7 modulo O(p****). Then we can determine 9&5?1)’ ¢$[_1), S
¢E(]).) inductively so that £/, E'  E' | tf(E//aﬁ) and E’ ; are all .o/ s, B}; Lemma

H 00° ﬂ
6.6, we obtain that £/ *, E’__ ,and E’__ arealso L 47, O

modified to the case of metrics with logarithmic singularities, E__

0

8.5. Logarithmic-free solutions. Finally we discuss the construction of a com-

pletely logarithmic-free solution when @, 5= 0. We set

n(n+2)

] b 7 NTEPY F
+VVPE L + NPV F p + NTFVF

2 1 _ . _ ‘
0= —Fp +~F, "= ~(VF_, +V°F )+ i(V2F,_ —V°E_)

: VevAF
n(n+ 1)( o

rafs 7575 '
HVNE, +H(VNTAE )
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and define the differential operator D' = (D’ )"‘ﬁ by
(D' :=D%F +2NTPY +2 <1 += > v, NPy,

 THEOREM 8.9. Suppose that O 5= 0. Let x be a smooth function and A_ 54 smooth

symmetric 2-tensor satisfying

, D“/B,{aﬁ — Daﬁ/l__-_ =
- (8.19) b

Nef (DHas —
(D" /10(,6+(D) )Eﬁ_v.

Then there is a normal-form ACH metric g, which is free of logarithmic terms, satisfying
Eih]] = O(p*>°) and

1 1
620 o (g27g,,) IM =% o < ot ) |M =i

The components g;; are unique modulo O(p™).

Again this theorem also holds in the formal sense. Since the principal parts of D%
and (D')* agree, the system (8.19) is formally solvable at any given point; in fact, if

one arbitrarily prescribes the components of A _ except A, ., for example, and writes
ap

1
Ay, = p+1iv where g and v are real-valued, then (8.19) can be regarded as a system of
PDEs for y and v and the Cauchy—Kovalevskaya theorem can be applied to this system

Thus we can show the second statement of Theorem 2.11.

PROOE. If O, 5 = 0, then a (potentially) singular normal-form ACH metric g satis-

fying the conditions in the statement of Lemma 8.8 is of the form (8.14). By the proof

)(4)

of Lemma 8.8, (yo):? and (y; )(q) for g > 1 are zero if G g =0 The remaining potential

log-term coefficients appears in 7( )(2) -2( )(2)(1 7, so let us look at the dependence of

nES) = 2EO ¢ on (3) and (y,)1?. Using (8.9d) and (8.9f), we obtain
p-?”-“(ﬁ SED -2 35<°>a“)k
= —%(n +2)(n()(2)g? _2()(2)(1)[;:) .
T iln 4+ 2V () — V)2 — 1n(@ P ()0 + 07 3, LY
= (V9 () + VYA, o+ N Y (s O+ NPV e

(7 N) )%+ (VNP g, )+ 0()
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So we impose another equation to (,)(0)(:; and ( xl)g;) to kill n( )(2)210) -2 )(2)(1)79’. ¥

the following is satisfied, then we do not have to introduce the logarithmic coefficient
n()(z)ét) - 2()(2)(1)/3

i+ (V7 G )e) = Vo)) = 370 o)y + 97 (1))

(VY () + VIV ol 4 NPV (1) + NPV (0)2)
B aB 4 B Tat-T]
12BY( YO 7aBY(,, \O
+ (VyN )(Xo)afg + (V7N )(XO)EE)
=—nF, +2F °.
‘Combined with (8.18), the equation above is equivalent to
DGy + OV ol =
So we set ( Xo)% =A, 5 and determine (y; )gg by (8.18). Thus we obtain an' ACH metric »
g without logarithmic singularity that satisfies £ = ./*"** in a unique way.

No logarithmic terms occur in the remaining process of constructing a metric for

which E = /. ' ' O -



CHAPTER 4
CR Q-curvature

9. Dirichlet problems and volume expansion

"9.1. Laplacian. Let g be a (27 + 2)-dimensional C*®-smooth ACH metric on a
'©-manifold (X,[©]). Then, as we saw in Proposition 4.11, for any choice of a con-
tact form 0, we can identify g with a normal-form ACH metric on M x [0, 00) near the
boundary. In this sense, by abusing the notation we write |
g= 4dp? 2—I— h, .
2
Here, b, is a 1-parameter family of Riemannian metrics on M defined for p €(0,00). Let

T be the Reeb vector field and 4 the Levi form for 8, both extended constantly in the
direction of [0,00). We define the parabolic dilation M,: TM = H ® RT — TM by

MT=pT, MY=pY (YEH)
and set
=2 g%
9.1) k,=p?M}h,.

Then, the ACH condition described in Proposition 4.12 can also be stated as follows: & o
should extend to p =0 and the restriction to the boundary, which we write &, must be
equal to 6% 4 h. Recall that any boundary defining function p that can be used for such

a normalization is called a model boundary defining function. Note that the following

holds:
0y (* &)l = 0%

If g is an even metric, then it means that p*A, admits an asymptotic expansion in
the even powers of o with coefficients in the space of symmetric 2-tensors on M. It is
convenient to define C° (M x [0, 00)) to be the space of smooth functions on 4 x [0, c0)
with even expansions.

83 .
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Since detk, = pdeth,, the volume forms satisfy 4V, = pthP. If the metric
) P
is even, then deth A also has even expansion, and so does detk o Therefore d V), has
B 7

expansion of the form
9.3) | dePNde.(l_,_vz)Pz 4)p4+__'),

where v, o™, ... are some smooth functions on M.
As stated in [GS, Equation (5.1)], the Laplaman of a normal-form ACH metric is

given by the formula

0.4) = __(pa P+

We want to express the Laplacian A, = (V, )*Vb of hp in terms of (bp)l.]., (h;l)ij,
: , » 2 °
the Nijenhuis tensor, the Tanaka~Webster connection V the associated pseudohermitian

torsion and curvature tensors. Let {Z,}y={T,Z,,Z;} be alocal frame, where Z,=T.

We define the tensor K =K, by

- 9.5)  (VR)Zi=V +K*.Z,.

Then we obtain, for a function £,

06 A, f ==V f = (K Y

where the upper index of K is lowered using h
Take any p € M. Then, by Lemma 3.4, one can take {Z,} so that the Tanaka-

Webster connection forms are zero at p. For such a frame, Kkij is nothing but the

Christoffel symbol Fkij of V- Therefore
1
Ky = E(Zi(hP)j/e +Zi(ho)iy = Ze(ho); i)
’ and because of our choice of the frame, |
O T WS ATR R SR AR
Since all the terms in (9.7) are tensorial, this is a frame-independent formula.

LEMMA 9.1. Let g be an even normal-form ACH metric. Then the tensor K smoothly
extends to p = 0. Moreover, the components of K with respect to the local frame {Z;} =

{T,Z Z—}areefven,andK ki =O0(p?) if0& {i,],k}.

YT Ta
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PROOF. If b A is even, then (9.7) shows that K k‘i].V is even. Since the Tanaka-Webster
connection V annihilates @, the p"z-term of (b ,o)oo does not contribute to K. Similarly,
there is no contribution from the p%-term of (b ) 3 because V annihilates the Levi form.

. ‘ i : ’ .

Therefore we conclude as stated. , S O

PROPOSITION 9.2. The Laplacian of an even normal-form ACH metric g is

n+1
2

1
PG, = g %(logldetk, Dod, +p°A, + 0" Y,

) 1
98 Agz-Z(p&’P)2+
Twhere ‘

A, =—bB(V V_+V_V
\p vV, 7T V3 2

and W is a differential operator of order at most two given by a polynomial of ;VO,‘ v,
V_ with coefficients in C22 (M x [0,00)) and with no zeroth-order term. In particular,

C:;n (M x [0,00)) is closed under the action of A\ g

PROOF. Since (bp_l)ij = O(1), and if at least one of 7, j is O then (/ap‘l)if = O0(p?),

by Lemma 9.1 we conclude (bp’l.)ij(/ap_l)lekij

from (9.6) that A, is of the form A, +p2\11; By (9.4), we obtain (9.8). O
(2 0

= O(p?) whatever [ is. Hence it follows

9.2. Dirichlet problems. In this subsection, we prove two theorems that are given

in Subsection 2.4 at once.

PROOF OF THEOREMS 2.13 AND 2.14. We may assume that our metric g is an
even normal-form ACH metric for some choice of a contact form 6 on (M, T*M), and

p 1s the associated model boundary defining function. Let
Ay =0y —s(n+1=5),
where s €R is arbitrary. We set
FSpf fecen)
j=0 |
and try to solve A g)s(pz(”“"‘)F )= O(p>) by determining fis- P-ropositioﬁ 9.2 implies

: , L. :
ey (L s+ gn, ).

where D; | is an even formal power series in p with coefficients in second-order linear

differential operators on M. This is used to determine the expansion of F. First, if we set
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Fo=fy=/f,then
Ag;s( Pz(n+;—s) F)= IOZ(n+1—s) 0+ P2 Dy, f5)=0( pz(n+1—s)+z)"
We inductively define £, a; farasj —4s +2n +2#£0,by
%](] —4s+42n+ 2)f] = (fhe =9 coefficient of Ag’s(pz(”"'l—s)F]i_l)),

and set F; := F;_; + o’ /;- Indeed, only even powers. of p can appear in F;, and the
coefficients is written as follows usmg linear differential operators p1s on M, where [ /2]

is a largest integer not greater than 7 /2:

©.9) F; =f+P2P1,sf+P4Pz,;f+"'+P2[j/2]?7[j/z],sf=
If we furthermore set py  :=1, then Pl,s is recursively given by

1 [—

(9.‘10) Prsi=— 1(2—1—-1—-2(th€ /oZI 22 ¢ oefficient of Dy, )Py s
s—n—1—

In view of this fact, we put

4 1
9.1 =1, q,=)]]———
( ) - Cos ls ( ) 2 i(2$—7’l—1—i)
and inductively define P, by Py, :=1and
[-1
(9.12a) - Zdl . (the P22 -coefficient of D2VS) s
v=0
(9.12b) dp g, =—=(- 1)’ —v-1 ]‘[ 1(25 —n—l—z)
. Cl-1,s i=y+1

Then P, , is polynomial in s (note that this is not the case for p; ;). Since the p°-coefficient
for any D]-,s is Ay plus some zeroth-order term, the principal part of Py ; is actually Alb.
Furthermore, comparing (9.10) and (9.12a), we obtain

: Pl,s = Cl,sPl,s'

So we can rewrite (9.9) as

013)  F=f4plePyf +pta Py 4t o e Pl S

When 25 —7 — 1 is not a positive integer, this construction does not stop and we get
a formally unique solution to A g’S(Ioz(’”'l"‘)‘F )= O(p*). Thus we have shown Theorem
2.14.. |
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f2s—n—1=keZ,ie,s= (n+1+k)/2, then the construction goes through until
j reaches 4s —2n —2=2k. Asaresult, Fy, _; is determined so that A | (p"+H'*F,,_ )=
O(p(n+1-k1+2k) = O(p"*+1+#) is satisfied. Even if we move on to the next step by setting
Fy, = Fy_; + p* f53, in general it cannot sol\}e A, Rl kFy,) = O(p" ' +++1). Here

we need the first logar1thm1c term. Since for g; € C (M) we have ‘,
A, iy log o - )
i 1.
= ,0"+,1+k+] logp- <— Z‘/ (7 +2k)gj + /02D2k+j,(n+1+k)/2gj>

#1901 (=2 kg, — B ogldet g ).
we set ‘
2 L
(9.14) &= zck—1,(n+1+k)/zp e nr1+k)y2f =P /ek,(n+1‘+k)/2f .
Here reflected is the fact that the o™ +'*#-coefficient of A 2 (k) /z(lo,”'H_szk_l)v is-equal
t0 i (np10k) 2Lk nt1ky2f - We arbitrarily choose f, € C*(M). By setting Fy, :=
Fy_i+p% f5, and G, == g,, we obtain Ag,s(P"+1—szk + "1+ g ) = O(p"+1+E). More

precisely, we can write
Ag)g(lon+1—kF _l_lon+1+/eG ): pn+1+k+lR _|_Ion+1+k+1 Iog,o . SO’

where Ry, Sy € C (M x [0,00)). What we want to do in the sequel is defining Fy,  ;

and G, which are polynomials in p of degrees 2k + j and j, réspectively, by adding

hlgher order terms to F,, and G, so that
Ag,s(PnH_szkﬂ' +Pn+1+kG]_) :lon+1+/eR_j +Pnf1+/e log,o . Sj

with some R S, eCs °°n(M % [0,00))suchthat R;, §; = O(p’). This is uniquely achieved

AR eve

by the following choice: we set sz+j = Fppyjmt +‘,02k+jf2k+]- and G; == G,_; +p! &>

where

g = (the ,oj ~Lcoefficient of § ]-_1),

j(j +2k)
4
(j +2k)

Thus we obtain F_ and G such that

S , 1 '
f2/e+] <(the o’ '-coefficient of\Rj_l) - E(] + k)g]-> .

Dy (p" 1B+ Go) = O(p%).
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The ambiguity lives only in where we determine f;,, which is the p?*-coefficient of F_. -
Thetefore the statement of Theorem 2.13 is true if we set Py =Py (,1148)2> 25 is clear by

9.14). ' | | O

In the proof, it is also observed that the operator P , is a polynomial with respect to

s. So we can construct the quantity Q as in Subsection 2.4.

9.3. Volume expansion. Let g be an even ACH metric on a compact ©-manifold
(X, [©]). From the expression g = (4dp? + bﬁ)/pz, we obtain
dV, = 2/0;271;261 Vh/, dp=2p0"""7d Vkpdp.

Therefore, (9 3) 1mphes, for some arbitrarily fixed e, that the volume of the subset

{e<p<eg } C X has the following asymptotic behavior when & — 0:
9:15) Vol,({e<p<e})= Coe T 4 ey ¢y, T2 + Llog(1/€) + O(1).
- The purpose of this subsection is proving the proposition below, which shows that the

logarithmic coefficient L is related to Q.

PROPOSITION 9.3. Let g be an even normal-form ACH metric for (M TYM,6),
where M is compact. Then the coefficient L in (9.15) is given by
: 1 ntl
9.16) (2—>
n!*(n +1)!

where Q is the integral of Q with respect to the volume form 6 A (dOY*:
6:=J QOO :n!f QdV,.
U M

- We prove this fact by rewriting the definition of Q as follows. This is the CR version

of the discussion given in [FG2].

LEMMA 9.4. Let g be an even ACH metric on (X, [©]) and T'°M the induced non-
degenemte partmlly integrable CR structure. If 0 is any contact form on (M TYOM) and
p € Fy, then there exists U € C°(X X)) of the form
(9.17) U=2logp+A+Bp*”* logp, A BeC:V"en(X) Aly=0

such that

(9.18) . A, U=n+1 mod O(,roz”"'4 log o).
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Moreover, A and B are unique modulo O(p**?) and O(p?), respectively, and

©.19) ‘ Bly==c,1Q,
where c,, 1 is the constant defined by (2.12).

PROOF. We may assume that g is an even normal-form ACH metric. By Proposi-
- tion 9.2, A (2log p) is smooth up to the boundary and A, (2log p)|;; = 7+ 1. Moreover,
if f€C2 (X), then again by Proposition 9.2,

(9.20) | Ag(PZZf) =—l(l—n~— 1),021f+ O(PZH%)

and

‘ 2l—-n—1
Ag(p"logp- f)=————p"f +0(p"*)

~logp-(I(l — n —1)p% f + O(p+2),

(9.21)

where the terms denoted by O(le+2)‘ are all smooth and even. By using (9.20) induc-

tively, we can show that there is a unique finite expansion
- /
Uy=2logp+> 0" fyy  faye C=()
=1

such that A, U isequal to 2 +1 modﬁlo O(p**%). The next thing to do is to introduce
a (p?"*?log p)-term so that A, applied to it kills the p?"*?-coefficient of A J—n—L
This is possible in view of (9.21) because 2/ — 7 — 1 is nonzero for [ = » + 1. Thus we
obtain '

Uy=2logp+ > 0% fin+0""logpgap  fuy 8oy € CZ(M)

I=1

withA U, =n+ 14 O(p*"**log p).

. To prove (9.19), let # be a solution of (2.14) to the Dirichlet datum f = 1. Recall the,,
asymptotic expansion of # is given by (2.15). The differential operator P, ; is polynomial
in s, and its zeroth-order term can be factored by 7 41— 5. We decompose as P; (1 =

H(n+1—5)Q;,. So the expansion of # has the following expression:

9.22) u~ ,02(”+1_s)(1 + 51,5,02Q1,s + 52,5P4Q2,s +eo0)s
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where we have written &, = (2 +1—s)¢;,. By (9.11), ¢;, has no pole at s = n.+1, and

hence & ,,. 1,5 €, 4, are zero. Note that

1
(923) ’ Cnttl il — ch+1'

Now we differentiate the equation A, .# =0by s, and put s =n + 1 into the result. |

Then we get

‘ "On
9.24) A, <—

> + (7’2 + 1)M|s=n+1V: 0.

s=n+1

-Here, (9.22) implies

Iu o0 .

_ ) ~ 2An+1+7)
- i~ 210g,0 14 E Cn+1'+j,n+1/0 Q”"‘H‘j’”'H
s=n+1 . jio

(9.25)

+ (non-logarithmic terms),

and hence if we choose U’ so that —U’ expands as the right-hand side of (9.25), then by
(9.24), o
-‘Ag U/ = (7’1 + 1)M|s:n+1 . .
:_n + 1 + (7’1 + 1)(6n+1,s |s=n+1)/02n+2(Qn+1,s |s=n+1) + O(/Ozn+4)

n+1
=n+4+1— _4"Cn+1,02n+2Q + O</02n+4).

For this we have computed as follows:

) ~ ' %(”"‘1_5)'(_1)”“ . .
Cntslsmnas = <(n +1)(2s —n—2)2s —n—3)---(25s —2n — 2)>
(_1)n+1 1

= =—=C, -
FTCEE T e

s=n-1

Therefore, if we put U := U’ — 1c,,,Qp?*logp, then this solves A, U = n + 1+
O(p*"+*log p). Thus we have constructed the solution to (9.18) in another way. Since
=36, Q is the (22 logp)—coefﬁcient of U’ by (9.23) and (9.25), we obtain B|,, =
—Cp1 Q- , - ‘ ' O
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PROOF OF PROPOSITION 9.3. We use Green’s formula. The outward unit normal

vector field aloﬁg {p=c¢e}is —%EQP, and so for any U € C*(X)

1 .
J A UdY, :J EE&’IOU . 5_2"‘1dV;,5 +O(1)
e<p=<z, p=z

) .

= 55—2" gUdv, +0(1) |
‘ p=¢

1

55—2"“1 FZAQPUdeE+O(1).

Now let U be a solution for (9.18). Then since AU=n+1+ O(p*"**logp), the

equality above reads
: . ~ |
(n+ 1)Volg({€ S p<le})= 55_2”_1 . QPUQZV/es +O(1).
Comparing the coefficients of log(1/¢) we can see

(_1)n+1

(n+1)L:—(n+1)JM(B|M)de= 3 J‘MQQ/\(d.Q)”.

Thus we obtain (9.16). ‘ O

10. CR Q-curvature of parrtially integrable CR manifolds

10.1. Invariance. Let (M,T"°M) be a nondegenerate partially integrable CR man-
ifold and @ a contact form. We will apply the results of the previous section to ACH
metrics with infinity (M, T1°M) that are appréximately Einstein to get CR-invariant ob-
jects. To carry out this idea, the dependence of the Laplacian on the ambiguity of g
may be problematic. So we first discuss this point. Suppose g is an even ACH metric
described in Theorem 2.3. If we moreover assume that this is normalized, then the ap-
proximate Einstein condition implies that the components of k, is determined modulo
the orders that are shown below: |

‘ (kj)g mod O(p™*2), (), mod O(o™*),
ted 242 ' ' _—
(k'o)aﬁ mod O(/O )> (kP)aﬂ mod O(P )’

moreover, the trace tr; &, is determined modulo O(p****). If we express in terms of / -

the followings are determined as well as tr;, 4, modulo O(p***?)

(hP)OO mod O(IOZn)’ (bp)oav mod O(P2n+2),
(10.2) - -
(bf’)aﬁ mod O(p™"™), (hp)a,ﬁ mod O(p”"*+*).
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LEMMA 10.1. Let g be an even ACH metric inducing (M, T'°M) satisfying the condi-
tions in Theorem 2.3. If f € C®(X), then A oJf 15 determined only by (M, TYOM) modulo
O(p*"**). Moreover, A ,(log p) is determined only by (M, TYM) modulo O(p*"**log p).

PROOF. We may work in the normal form relative to 8. Then, by (9.7) and (10.2),
K, is uniqu’ely determined modulo O(p?**?) if the indices 7, j, k are all different
from 0, and modulo O(p*") otherwise. So (19;1')’7' (la;l)le kij V,f is determined modulo
O(p***%). On the other hand, since the components of the cofactor matrix of (b F)ij is
determined modulo O(p??), the inverse (b;l)ij is determined modulo O(p?"+2). Hence
9.6) implies that Abp f is determined up to the error of O(p***2). Furthermore, (10.1)
~ and the trace condition implies that |det & | is determined modulo O(p***), and hence
so is pd,(log|detk,|). Therefore, by (9.4), A, f is determined modulo O(p?***). The

~ second statement is shown similarly. O

PROOF OF THEOREM 2.16. Recall the problem in Theorem 2.13. Lemma 10.1
shows that, if £ <2+ 1, then the correspondence of Flyy = f and G|, is invariant
_ as far as §ve impose (2.1) and (2.3). Therefore,. the operators Py, £ < 2+ 1, are defined
only by (M, T M). ‘

Likewise, the operators P, , that appear in relation with Theorem 2.14 are invari-

antly defined by (M, T°M,6)if [ <n+1, 50 Q is also well-defined. O

PROPOSITION 10.2. Let TYOM be the integrable CR structure induced by some em-
bedding M — C™*\, and 6 the associated invariant contact form. Then the CR Q-curvature
vanishes for (M, T°M, ). ‘

PROOF. Let ¢ be a Fefferman approximate solution to (5.6). Then, by Proposition
5.5, the Bergman-type metric g with a Kihler potential 4log(1/¢) is an even smooth
" approximate ACH-Einstein metric that induces T°M. If we take p = (¢/2)"/2, then p €
g as we saw in Proposition 5.2. Since A, = —2gi7&’i 37, we obtain A, (logg) =7+ 1.
Therefore, ‘
A, (2logp)=2logp=n+1.

This shows that 2]og p is a solution to (9.18). Hence Q =0 by Lemma 9.4. . O

10.2. First variation of total CR Q-curvature. We finally p1:6ve the first varia-

tional formula of the total CR Q-curvature. This is based on Proposition (9.3), which
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implies the equality between the total Q-curvature and the logarithmic coefficient of the
~ volume expansion of an even smooth approximate ACH-Einstein metric. We assume
that the,.metric is normalized for some choice of a contact form &, and moreover, that it
is taken so that the tensor E satisfies (6.26).

The key to the proof is introducing the first logarithmic term to our metric. Let
o~ 2(4d o +'h;m) be our metric (“sm” is for “smooth®), and @ 5 ‘the CR obstruction
tensor that is trivialized by 6. We consider the new ACH metric g on M x [0,00) given

by

4dp? + h;m +4(n +‘1)_1 0 - p*t? log,o
. 2 *

P

(103) g:=

Then the component of the tensor E with respect to the frame { T,Z,,Z=} satisfies the

Jf.ollovving:

(1043) Eoooo — O(P2n+2)a Eooo — O(P2n+1)’ Eooa — O(P2n+1),
(104b) . Eoo‘: O(/Ozn)3 . EOaf = O(/Ozn),

(10.4¢) Eaz = O(P2n+2)’ Ealg — O(P2n+2 logp)

Note that if we are given a smooth family of partially integrable CR structures (71°M),,
then we can take a family g, of metrics as above so that the coefficients of each compo-

nents of g, smoothly depend on the parameter z. This is clear from the construction of -

8.

PROOF OF THEOREM 2.18. Let f"tl’o be a smooth 1-parameter family of partially
integrable CR structures that is tangent to ¢_ 5 € é"(a ﬂ)'(l, 1). We choose a smooth
1-parameter family of normalform ACH metrics g, such that each g, is of the form
(10.3) with infinity (M ,/ftl’o). If we compute with a frame {T,Z,,Z=}, where {Z,}isa
frame of the original partially integrable CR structure 7*«01,0 =TWM, then the derivative

of the metric b - which we write hf:’ satisfles

(B =001, (B2), =O(D)

(1) 5=0():  (),5= 20,5+ 0,
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-and hence,

g, =072, g =0(),
g;ﬁ:O(l)_, g;ﬁ:P_2¢aﬁ+o(1)’ "

where ¢ s is trivialized by 6.

By (10.4), there is a uniform estimate on the scalar curvature R,:
R, =—(n+1)(n+2)+O0(c™*).
From this we see that

J R'dV,=0(1) ase—0.
e<p<e,

On the other hand, the well-known formula of the first variation of the scalar curvature
implies

L] o I o I .
Rg =g I],] / —Ric &y
(10.5) T
o I o I .
=&, /¢ I J] + 5(” +2)gUgU + O(p2”+4logp). ,
Since dVg = O(P—Zn—3) and dVg‘ = %glfg;]dvg, (10.5) inte,grates to

(10.6) f €, -8 AV +(n+2) dv* =0(1).
e<p<e, g

I .
J e<pse,

Letv (= —%55’/0) be the unit outward normal vector for g alohg {p=¢}. Then ’
(n +2)V01g({5 <p<e})

=— (g'U’l - g'/J)v’da +O(1)

=

(10.7) i 1 ’
' .:f (8.1],1 —&'/ ) 55800] ) E_Zn_zdvke +0(1)
. v

1 v
= 56_2”—1J, (g'Ioo’] - g'II’oo)des + O(1).
M

We compare the log(1/e)-terms of the both sides of (10.7). That of the left-hand side is
obviously (7 +2)L*. As for the right-hand side, we use ‘

g.loo,l - g.II‘,oo
— __(—1y —IN\klrz7 . =177 =1\ . _ =1\ . /
= =3OV ), 47 Y0, =), )

[
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where the primes denotes differentiations in p. Since (det/,)® is equal to deth, times
(b;l)ij‘(/a;)ij, we conclude that (b;1~)if (b;)i]_ contains no (p***?log p)-term, which im-
plies that the potential contribution to the log(1/¢)-term in the right-hand side of (10.7)
may come only from ——(b 1)‘](19 1)kl(/a’) (19 ) ‘

The logarithmic term that appears in the expan51on of (h ) is 8@ p2”+1 logp, and

hence, modulo smooth terms,
1 ..
f-—<b“5”<b‘5k%b’>.<h°) '

—40" Jog o- (/o 1)"‘ﬂ(h 1)7‘70 ( ;) + (the c’dmplex conjugate)
ay

:

+ O( 4 og )
= ;4/02n+1 log- (@*aﬁ(},;)aﬁ + ﬁaﬂ(h,;)a/_a) + O(p*** log p).

Moreover, (/7;) ﬂ ==2¢_ s +0O(p?). Therefore the log(1/ e);coefﬁcient of the right-hand
side of (10.7) is ‘ 7 , ’
' _ aff ap

4 JM(@ bog+ O )V
We conclude that '

. ‘ _
[*=— 0P 0P )V,
n+2JM( 9[’0,,5’*' ¢’dﬁ) k

By combining this with Proposition 9.3, we obtain (2.22). O
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