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Abstract

In the post-genomic era, an exponential number of biological data are being
produced at an accelerating pace by high-throughput technologies and avail-
able via online databases on the Internet. Among these, binary relationship
data that can be described as sets of elements and 1-to-1 associations (connec-
tions) between them have become increasingly common. Co-expressed gene
pairs and protein-protein interactions exemplify this data type. Network
(graph) visualization, where nodes and edges correspond to the elements
and the connections respectively, is widely used for representing binary re-
lationship data because it is expected to be more interpretable than a long
list of associations. However, when network data are large and complicated
(e.g., >100 edges), the network representations often become cluttered with
jumbles of nodes and edges, known as “hair-balls”, and thus fail to convey
information effectively. Therefore, one of the key challenges is how to develop
network navigation approaches that can abstract data properly and interac-
tively, and visualize the data insightfully at a right level of detail. By such
methods, researchers would be able to explore and interpret their large-scale
networks much more effectively. Until recently, many studies have used var-
ious methods to tackle the cluttered-visualization problem, but still cannot
obtain satisfactory results–truly clean and intuitive visualizations.

Hierarchical clustering is a technique that meaningfully and recursively groups
data elements based on a similarity measure, thereby producing a hierarchy
or tree of clusters. This method works with many types of data, including
networks, to create groups of data elements in a multi-scale fashion. In the
hierarchy, higher levels contain fewer, larger clusters with more data ele-
ments, or nodes in case of networks, than lower levels. Such a hierarchy can
be applied to abstract the network visualization by showing only high-level
clusters, thereby reducing the number of elements on the screen. By show-
ing the actual members of each cluster at a certain level of the hierarchy,
detailed information can be displayed at a particular scale. However, exist-
ing network visualization methods that offer such multi-scale navigation still



have some drawbacks that hinder scientists from effectively and interactively
exploring large biological network data, namely, (1) uses of clustering that
depends upon user-provided information about hierarchies, (2) long running
time (e.g., minutes to hours) required to abstract large networks, (3) inflexi-
bility in navigation beyond fixed cluster boundaries, and (4) insufficiency of
data abstraction, which leads to still cluttered network drawings.

In this dissertation, I present the first interactive, multi-scale navigation
method for large and complicated biological networks and demonstrate its
application to two types of functional genomics data, a yeast protein net-
work dataset and an Arabidopsis gene co-expression dataset. The method
is mainly composed of an ultrafast graph clustering technique that rapidly
abstracts networks of about 100,000 nodes by recursively grouping densely
connected portions and a biological-property-based clustering technique that
uses property information provided for biological entities (e.g., Gene On-
tology (GO) terms). It can rapidly and automatically abstract any re-
gion of large network data and produce biologically meaningful visualiza-
tion with a manageable amount of information at all levels of detail. Apart
from untangling large and complicated biological networks, it can be used
to discover hidden knowledge in the networks readily and effectively as
well. The method was first implemented as a stand-alone Java Swing ap-
plication named NaviCluster (http://navicluster.cb.k.u-tokyo.ac.jp)
and then integrated with Cytoscape as a plug-in, named NaviClusterCS
(http://navicluster.cb.k.u-tokyo.ac.jp/cs/), to gain benefits from its
usability and abundant useful features. I believe that the presented method
will aid modern biologists in discovering knowledge from massive binary-
relationship datasets more efficiently. In the final chapter, I anticipate the
prospects for this research as four main directions: (i) clustering and imple-
mentation optimization, (ii) enhancement of functionalities, visualization,
and user experiences, (iii) application to multiple types of networks, and
(iv) integration with text mining toward interactive, systematic knowledge
discovery.
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Chapter 1

Introduction

In the post-genomic era, an exponential number of biological data available via many
online databases or high-throughput experiments are being produced at an accelerating
pace. Among these data, binary relationship data, which can be described as sets of
elements and 1-to-1 associations (connections) between the elements have become in-
creasingly common. Genetic regulatory relationships, co-expressed gene pairs, protein-
protein interactions (PPI) exemplify this data type. Conventionally, network (graph)
visualization, where nodes (vertices) and edges denote the elements and the connections
respectively, is widely used for representing binary relationship data because it is as-
sumed to be more interpretable than a long list of associations [1, 2]. However, when
networks become larger, such as those with >100 edges as shown in Figure 1.1 (the net-
work consists of 331 nodes and 362 edges and was derived from [3], mainly involved with
galactose utilization pathway), researchers have to face more difficulties in investigating
such data and each individual element and connection. To make matter worse, when
large and complicated networks, such as the human interactome as shown in Figure 1.2,
are visualized, their representations often become cluttered with jumbles of edges and
nodes, known as “hair-balls” [2], and hence fail to convey information effectively. The
large size of the data and ineffective visualization approaches are considerably inhibiting
scientists from making sense of the data and communicating them to others in a mean-
ingful way [4]. To avoid such complicated network visualization, a great challenge is
to devise network navigation approaches that can abstract data properly, and visualize
them insightfully at a right level of detail [5–7], so that researchers can interactively
explore and interpret their networks much more efficiently.

Hierarchical clustering is a technique that groups data elements based on a similarity
measure meaningfully and recursively, thereby producing a hierarchy or tree of clusters
[8] (Figure 1.3). This method works with many types of data, including networks, to
create groups of data elements in a multi-scale fashion. In the hierarchy, higher levels
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Figure 1.1: A sample molecular interaction network file bundled with Cytoscape v2.8
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Figure 1.2: The human interactome obtained from www.cytoscape.org
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Figure 1.3: Hierarchical clustering adapted to visualization

contain fewer, larger clusters, each of which contains more data elements (or nodes, in
case of networks), than lower levels. To solve the hair-ball problem, some methods [9–13]
apply hierarchical clustering and display only the high-level clusters of the hierarchy to
reduce the number of objects shown on the screen and abstract the network (the top
panel of Figure 1.3). Descending the hierarchy and showing the members of each cluster
at a particular level of the hierarchy can illustrate detailed information of the data at a
certain scale (e.g., dotted arrows and regions in Figure 1.3). A recent study reported that
natural networks possess hierarchical properties [14], so employing hierarchical clustering
in abstracting biological networks thus makes sense and auspicious.

In spite of the advantages of hierarchical clustering, existing network visualization
methods that offer multi-scale navigation via this technique still have some drawbacks
that hinder scientists from effectively and interactively exploring large biological net-
work data. First, some methods [10, 13, 15] need researchers to provide information
on hierarchies or clustering, which usually not known to them in advance. Second, ex-
isting methods demand such long time that it is not suitable for interactive, real-time
navigation. In the course of biological investigation, researchers often change their fo-
cus to generate different hypotheses, and thus require visualization of different sets of
nodes/clusters. Existing methods that need long running times (minutes to hours) to
produce each abstraction are therefore unacceptable in this regard [9, 11, 12, 16–19].
Methods that can provide appropriate abstractions of any given portion of the network
rapidly and automatically, such as those that can abstract networks of 100,000 nodes in
seconds, are thus crucial for efficient biological investigation. Third, existing visualiza-

3



tion systems do not allow for flexible navigation across fixed cluster boundaries; that is,
researchers can explore members of only one cluster at a time [9–13]. Actually, members
of interest to biologists may reside in different high-level nodes in the hierarchy (e.g.,
nodes in the light blue area in Figure 1.3). Those methods, which do not support flexible
visualization of members of different clusters at the same time, are thus too limited to
be used as an effective navigation approach. Last but not least, the clustering tech-
niques exploited by existing methods are not sufficient for abstracting network data to
a level that is clean and intuitive enough for immediate interpretation and investigation
[9–12, 19, 20]. Recent investigations have revealed that for some common datasets, hub-
like (high-degree) nodes tend to connect to low-degree nodes and most nodes interact
with only few partners (e.g., yeast PPI networks) [21]. Large, densely connected regions
of such networks are therefore quite few, but small, densely connected regions are rather
frequently found. As a result, even if existing methods visualize the most abstracted
view—the highest level of the hierarchy, which probably contains over 100 clusters, re-
sulting representations still contain too much information and are difficult to manage.
Therefore, means for further abstraction are needed to allow for intuitive visualization
and navigation of large networks.

In this dissertation, I present an interactive, multi-scale network navigation method
developed with three objectives: (i) the method can abstract network data without using
a user-provided hierarchy; (ii) the method can rapidly, automatically, and interactively
produce abstractions of any region of the network, including nodes/clusters belonging
to different ancestral clusters in the hierarchy; (iii) the method can reliably produce
intuitive visualization with a manageable amount of information at every step of nav-
igation. Moreover, the effectiveness of this method was confirmed using two types of
functional genomics data, namely, a real yeast protein network dataset and a Arabidop-
sis gene co-expression dataset, whose results are presented in Chapter 4. This approach
will aid modern biologists in interpreting and analyzing large and complicated biological
networks toward effective hypothesis generation and knowledge discovery.
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Chapter 2

Methods

The method is composed of three main components, two clustering components (an
ultrafast graph clustering component and a property-based clustering component) and
one visualization component, which are executed in sequence (Figure 2.1).

2.1 Ultrafast Graph Clustering Component

Given an input network, the method firstly abstracts the entire network based on an
ultrafast graph clustering method, named the Louvain clustering. It iteratively groups
topologically densely connected portions of the network, which may be equivalent to
biologically meaningful clusters, such as protein complexes, with rapid speed. For net-
works of about 100,000 nodes, the component can finish clustering within a few seconds,
thus it is especially imminent to be used to solve the problem of interactive navigation of
large and complicated biological networks [22]. Besides, this ultrafast graph clustering
technique brings another advantage if the next component, the property-based cluster-
ing, has to be executed afterwards, in that it can considerably reduce the number of
input clusters of the slower property-based clustering.

2.1.1 Graph Clustering and Modularity

Graph clustering detects clusters (communities) in networks by identifying topologically
densely connected sets of nodes where weighted connections of nodes within the sets
are stronger/denser than weighted connections between nodes inside and outside of the
set. This metric is called the modularity or Q function [23]. Its definition is Q =

1
2m

X

i,j

h
Aij � kikj

2m

i
� (ci, cj), where Aij is the weight of the edge between node i and node

j, m =

1
2

P
ij Aij, ki =

P
j Aij is the sum of the weights of all edges connected to node i,

ci is the community to which node i is assigned and � (u, v) = 1 if u = v and 0 otherwise,
that is, only nodes within the same cluster are considered. In words, the weight of real
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Figure 2.1: A diagram of the presented work. Both clusterings aim for producing
biologically meaningful clusters.
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edges connecting any two nodes in each cluster minus the probability of edges connecting
the two nodes in a random graph is computed. The sum of these quantities of all clusters
yields the modularity.

2.1.2 Modularity-Based Graph Clustering Algorithms

Numerous algorithms for identifying clusters have been developed based on modularity
optimization [22–26]. A survey about application of clustering algorithms to biological
problems can be obtained via [8].

The Newman-Girvan (NG) algorithm is a well-known, pioneering one that iteratively
removes edges most likely to lie between clusters (edges with high “betweenness”), split-
ting the clusters into two, until no edges remain [23]. “Edge betweenness” used in this
algorithm is derived from “vertex betweenness” originally used in the social network
analysis. The betweenness of a given edge is described as the number of shortest paths
between pairs of nodes running through the edge. In this regard, the algorithm tackles
the clustering problem with different strategies from others, which usually consider edges
that are most central to clusters first. A resulting dendrogram is used to identify the
best partition of the given input network dataset. In particular, the split that yields the
highest modularity value is selected as the solution. This algorithm requires a traversal
of all remaining edges at every step. As a result, it demands a high computational cost,
thus apparently it is not appropriate to be applied to large networks. The dendrogram
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itself can be used to generate hierarchical clusters but the hierarchy would be deep with
two members at each level. The time complexity of the NG algorithm is O (m2n) in
general case and O (n3

) for sparse graphs, where m = number of edges and n = number
of nodes. Dunn et al. have employed this algorithm to find clusters of interconnected
proteins in PPI datasets [27]. They also reported the distribution of Gene Ontology
(GO) terms used to annotate proteins within each cluster and confirmed the significant
correlations to functional annotations.

After this work [23], many studies about finding communities in graphs are being
conducted progressively. A number of them improved the NG algorithm in aspects
of performance (speed) [24, 25] or quality (modularity) [28, 29] or both [22, 26]. The
Newman Fast (NF) algorithm [25] greedily optimizes the modularity function directly
and works in a bottom-up style. It demands the time complexity of O (n2

) for a sparse
graph as compared to O (n3

) of the NG algorithm. CNM [24] improves the NG algorithm
in the same way as NF [25] did by optimizing modularity function but they used more
elaborate data structures and some shortcuts in implementation, thereby boosting the
speed of the algorithm to O

�
n log

2 n
�
. The more delicate implementation makes the

algorithm more practical with larger networks, but no improvements in the aspect of
theory were achieved.

Until recently, the best known algorithm developed to overcome the shortage of high
computational cost was presented by Wakita and Tsurumi (WT) [26]. Their algorithm
has a near-linear time complexity, much improved from the NG algorithm. The algo-
rithm is devised based on the observation that CNM tends to produce very large clusters
and this behavior slows down the process much. Instead, the WT algorithm thus tries
to balance cluster sizes in each step, resulting in about seven-time faster speed than
CNM. However, the speed of this algorithm was still insufficient and the modularity of
the produced clusters still had room for improvement when incorporated into an inter-
active navigation of large networks (e.g., human gene networks of > 20,000 nodes) [22].
Recently, Blondel et al. developed a breakthrough algorithm for rapidly finding com-
munities (clusters) with high modularity in huge networks of about 100,000 nodes [22].
The authors called this algorithm the “Louvain” method, named for their institution. As
shown in Table 2.1, the performance of this algorithm overwhelms many existing cluster-
ing algorithms, such as the CNM and WT algorithms. It goes beyond the work of WT,
by capable of handling graphs with up to 118 million nodes and 1 billion edges, as com-
pared with the 5.5-million-node scale of the WT algorithm. Blondel et al. also pointed
out that balancing the cluster sizes as done in the WT algorithm actually deteriorates
the modularity. I found that this algorithm for finding meaningful communities in large
and complicated networks could be applied to the problem of interactive navigation.
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Table 2.1: Comparison of the Louvain clustering with others. Each cell shows the mod-
ularity of the resulting partition and the time used for each dataset and each algorithm.
Column and row headers stand for datasets and algorithms, respectively. This table is
derived from [22, Table 1]. See [22] for details about the datasets.

Dataset Name Internet Web nd.edu Phone Web WebBase 2001
(#Nodes/#Edges) (70k/351k) (325k/1M) (2.04M/5.4M) (118M/1B)

CNM [24] 0.692/799 s 0.927/5034 s -/- -/-

WT [26] 0.667/62 s 0.898/248 s 0.553/367 s -/-

Louvain [22] 0.781/1 s 0.935/3 s 0.76/ 44 s 0.984/152 min.

2.1.3 The Louvain Algorithm

The Louvain algorithm consists of two phases running in sequence, resulting in one pass,
which are repeated until no additional changes of modularity are made.

Phase 1 Let each node belong to a cluster different from every other node. For each
node the algorithm considers its neighbors’ clusters and see whether it should
move the node to a neighboring cluster. It moves the node only when there are
movements to neighboring clusters that result in a positive gain in modularity. Or
else, the node is left in its own cluster. The cluster to be joined is determined by
choosing the movement that results in the highest positive modularity gain among
all possible movements to the node’s neighboring clusters. This process is repeated
until no members are added to/removed from any clusters and yields clusters with
the maximum local modularity.

Phase 2 Every cluster from phase 1 is then treated as a new node. For each pair of
new nodes, an edge connecting them exists if there is at least one edge between
any member of one of the new nodes and any member of the other. Edge weights
are determined based on the number of previous edges. Self-loops are drawn on
new nodes to represent corresponding edges between the members of the nodes.

The output of phase 2 is then fed back to phase 1 and the algorithm iteratively runs
these two phases (one pass) until no additional changes are made. Using a graph of seven
nodes as an example, a diagram of this algorithm is shown in Figure 2.2. More details
of this algorithm and its application to many types of huge networks can be found in
[22]. The Louvain algorithm can finish clustering networks of 70,000 nodes in one second
[22]. Thus, it works swiftly on many biological networks that generally contain less than
100,000 nodes (e.g., yeast or human PPI networks). The ultrafast speed of the algorithm
is essential for accomplishing the goal of truly interactive navigation of large networks.
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Figure 2.2: A diagram of the Louvain algorithm, composed of Phase 1 and Phase 2
using a graph of seven nodes as an example. Circles in gray represent nodes and letters
inside nodes represent node names. Circles in yellow represent clusters and numbers
besides nodes are cluster names. (A) Initially, each of seven nodes belongs to a cluster
different from others. (B) After node a is considered, it is moved to cluster 2 of node
b, its only neighbor. (C) The state of the graph after considering node a to node f.
(D) The state of graph after considering all nodes in one round. The algorithm starts
from node a again and iterates through all nodes. (E) This procedure is repeated until
no further changes, thereby reaching the maximum local modularity (F) The algorithm
steps to Phase 2, which creates a new graph by using the clusters from Phase 1 as new
nodes in the new graph. A meta-edge is drawn accordingly between the two new nodes,
as there are edges between node c of cluster 2 with node e of cluster 6, and between
node d of cluster 2 and node f of cluster 6. Self-loops are drawn on new nodes as well
to denote edges between the members of the new nodes. According to the algorithm,
self-loop weights need to be doubled.
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As for the quality of the resulting clusters, the algorithm produces clusters (called
Louvain Clusters or LCs in this presented work) with high modularity. It has been shown
that clusters characterized by high modularity in biological networks correspond to bi-
ologically functional units (e.g., protein complexes in PPI networks and transcriptional
modules in gene regulatory networks [27]). Thus, the LCs are expected to be intuitive
to biologists and meaningful groups in navigation of biological networks.

Note that another feasible means for decreasing the number of clusters on the screen
is to continue the Louvain algorithm, even if the gain in modularity becomes negative.
However, in such cases, the biological intuitiveness of the resultant clusters would be
lowered due to the low modularity [27]. Thus, it would be better to adopt another
reliable source of information at this stage, in addition to the topology of the networks.

To confirm the robustness and efficiency of the Louvain algorithm, Wallace et al.
[30] applied it to co-citation networks and argue that the resulting clusters are coherent
and unambiguous. At the time of this writing, according to my empirical survey, there
are more than 100 publications both in physical sciences and life sciences citing, using,
or modifying the Louvain algorithm [31–35]. In addition, Newman, one of the authors
of the NG algorithm and also an expert in the field of community detection research,
mentioned the Louvain algorithm in his recent review about communities and modules
in networks published in Nature Physics, stating that this is one of the best available
algorithms tested against computer-generated benchmark problems [34].

2.2 Property-Based Clustering Component

In case the abstraction is insufficient due to the characteristics of the biological network,
the property-based clustering further groups the resulting clusters from the ultrafast
graph clustering component (LCs) to a degree that can be visually interpreted. It
automatically groups clusters with similar biological properties defined by the property
information often assigned to biological entities, such as Gene Ontology (GO) terms
(Figure 2.3). The new resultant clusters generated by this component are used instead
of the previous ones to reduce the number of clusters on the screen, thereby decreasing
the visual complication of the network representation and allowing for more effective
navigation. Notably, VisANT works similarly to our property-based clustering and offers
integrated visualization of the GO hierarchy and user-specified networks, but it requires
the user to manually create clusters containing the same GO terms [36]. In contrast,
the presented property-based clustering automatically generates clusters having similar
properties to achieve interactive navigation.

10



Figure 2.3: a diagram of the property-based clustering

There are two main advantages of the property-based clustering: (i) the property-
based clustering lets researchers control the number of clusters shown on the screen
freely via a parameter K of its underlying algorithm, thereby allowing them to decrease
the number of clusters on the screen to an extent they can manage to interpret. Fur-
ther, as the preferred numbers of clusters on the screen might differ according to the
circumstances, it is important that biologists be allowed to adjust the number of clus-
ters displayed; and (ii) the generated clusters from this component are supposed to be
highly intuitive, as they are formed using the property information that carries biological
meaning.

In short, property vectors are created for LCs based on all property terms annotated
to all nodes in the LCs. Then, the Farthest First Traversal K -center or FFT algorithm,
the variant of K -means algorithm, is run using dot products between property vectors
of LCs as a similarity measure to achieve new K clusters. The definitions of property
vectors and the pseudocode of the FFT algorithm are given below.

2.2.1 Basic Definitions (Node, Term, Weight)

Number of Nodes Let N be the number of nodes of an input graph processed by the
ultrafast graph clustering component.

Number of LCs Let L be the number of LCs.

Node For each n, where 1  n  N , node vn has a set of terms T (vn).

Term T (vn) denotes the properties of node vn (e.g., a set of GO terms).

11



Weight A weight w (t), is given to a given term t to quantify its importance (e.g.,
properties that are rare and/or of particular interest to researchers may be given
higher weights).

Set of Terms Let Tall be the set of all terms appearing in all nodes of the given input
graph, so Tall ⌘

S
1nN T (vn) and Tall = {tj|1  j  |Tall|}.

2.2.2 Property Vector and Related Definitions

Proportion Factor Let Prop (t,LCl) = |{v 2 LCl|t 2 T (v)}| / |LCl|, for each LC, LCl,
1  l  L.

Property-Term Score The score of term tj is calculated as w (tj)Prop (tj,LCl), where
1  j  |Tall|.

Labeling In the current implementations (see Chapter 3), a property term to be used
for labeling final clusters on the screen is the term th which w (th)Prop (th,LCl) �
w (tj)Prop (tj,LCl), 8j, 1  j  |Tall|.

Property Vector of LC The property vector for LCl or PV(LCl) is a |Tall|-dimensional
vector whose j-th element is the property-term score of term tj.

Similarity of LCs or PVs The similarity between two LCs, Sim (LCa,LCb), is given
as a normalized dot product of the two property vectors; that is Sim (LCa,LCb) =

PV(LCa)·PV(LCb)/ |PV(LCa)| |PV(LCb)|. Interchangeably, Sim (PV(LCa),PV(LCb)) =

Sim (LCa,LCb).

Similarity of PV to set of PVs The similarity of a PV, PV(LC�), to a set of PVs,
⌃, is defined as Sim (PV(LC�),⌃) = max (Sim (PV(LC�),PV(LCl))), for all
PV(LCl) 2 ⌃

Similarity of LC to PC The similarity of an LC, LCl, to a PC, PCk, or Sim (LCl,PCk),
is given as a normalized dot product of the property vector of LCl and of the center
of PCk, which in turn is an averaged vector among the property vectors of all LCs
inside PCk.

Then LCs having similar property vectors are grouped by the FFT algorithm [8] modified
for generating property clusters.
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Algorithm 2.1 Farthest First Traversal K -Center Algorithm

Input: A set of L Louvain clusters, XLC = {LC1, . . . ,LCL}; A set of corresponding
property vectors of LCs, ⌥ = {PV(LC1), . . . ,PV(LCL)}; The number of
property clusters K

Output: A set of K property clusters, XPC = {PC1, . . . ,PCK}

Steps:
1: Arbitrarily choose a vector PV(LCm) and move it from ⌥ to an empty set ⌃

2: Construct a property cluster PC1, assign LCm to be the center of PC1, and add PC1

to XPC
3: while |⌃| 6= K do
4: Let LCm be a Louvain cluster whose property vector PV(LCm) is least similar to

⌃, i.e., m = argmin� (Sim (PV(LC�),⌃)), PV(LC�) 2 ⌥

5: Move PV(LCm) to ⌃

6: Construct a new property cluster PCk, assign LCm to be the center of PCk, and
add PCk to XPC

7: end while
8: /*Assign the rest of LCs to suitable property clusters, judged by their similarities*/
9: for all the rest of PV(LCl) in ⌥ do

10: Assign LCl to PC where  = argmaxk (Sim (LCl,PCk)), PCk 2 XPC
11: end for
12: return a set of K property clusters XPC

2.2.3 The FFT algorithm

The Farthest First Traversal K -center (FFT) algorithm is a complexity-reducing variant
of the K -means algorithm, where initial K cluster centers are chosen as follows. The first
center (vector) is chosen randomly and each remaining center is determined by greedily
choosing a vector farthest from the set of already chosen centers. The rest of the vectors
are assigned to the cluster to which they are most similar. The FFT algorithm that is
modified to use with property vectors is shown in Algorithm 2.1.

2.3 Visualization Component

Thirdly, the resulting clusters/nodes are instantly displayed with meta-edges and prop-
erty edges, which represent the number of edges that exist between any members of
the two clusters and the similarities between their properties, respectively. In the case
that the number of clusters is less than the parameter K, the biggest cluster is greedily
selected and split in order of decreasing size. This is repeated until either the number of
clusters is equal to K or breaking only one more cluster makes the cluster number larger
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than K. While showing the abstracted view, the researcher can interactively zoom, move
laterally beyond cluster boundaries, focus on a particular set of clusters/nodes, etc. Any
portions of the whole network of interest to the researcher can be fed into the clustering
processes and the abstracted view of that cluster is displayed. The overall processes
finish in a few seconds on a typical PC with a CPU of about 2 GHz and a memory of
about 1 GB for datasets with 100,000 nodes, allowing for truly interactive navigation of
large biological networks.
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Chapter 3

Implementations

I implemented the proposed method as two types of applications, a Java Swing ap-
plication named NaviCluster (http://navicluster.cb.k.u-tokyo.ac.jp/) and a Cy-
toscape [15] plug-in named NaviClusterCS (http://navicluster.cb.k.u-tokyo.ac.
jp/cs/). The basic concepts of these two versions are the same. As for the Java Swing
application, the user interface was created using the Swing framework and the JUNG
(Java Universal Network/Graph Framework) library (http://jung.sourceforge.net)
was employed to create network drawings. It can be run on any computers with Java
version 6 or later installed. On the other hand, the Cytoscape plug-in version can be run
on any computers that have Cytoscape v2.8.x installed. The advantage of this version is
that it can make use of useful functions of Cytoscape, such as import-export functions,
and flexibly utilize extended features via other plug-ins in the future.

3.1 Requirements for Running Applications

Three input files are required to run the applications: a node list file, an edge list file,
and a property information file. (1) The node list file describes node names, property
terms annotated with the nodes, and database names and IDs used in those databases
(e.g., SGD for yeast proteins and TAIR for Arabidopsis). The database information
is used to provide URL links. (2) The edge list file contains connected pairs of node
names and the weights of connections (weights describe how strongly the nodes are
connected). (3) The property information file describes the property terms in the node
list file: terms’ IDs, names, display names (used in labeling clusters in abstracted views),
namespaces, default weights, and their parent terms. In the case of the GO property
information files bundled with the tools, the default weights are terms’ depths in the GO
hierarchy. This treats more specific terms as more important properties. In addition,
each term belongs to one of three namespaces (biological process, molecular function, or

15

http://navicluster.cb.k.u-tokyo.ac.jp/
http://navicluster.cb.k.u-tokyo.ac.jp/cs/
http://navicluster.cb.k.u-tokyo.ac.jp/cs/
http://jung.sourceforge.net


Figure 3.1: An example of zooming on a network. Nodes and clusters are represented
by hexagons and round rectangles, respectively. The left view is an initial network
consisting of four clusters and five nodes. Selected two clusters are highlighted in pink.
After the zooming function is invoked, their members composed of seven nodes are
displayed altogether.
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cellular component). By using the namespace information, for instance, researchers can
put heavier weights on all biological process terms at once if they want to group nodes
having similar biological process terms, rather than other namespace terms. If parent
terms are provided for each term, they are automatically assigned to the nodes that the
term annotates as well. The is_a and part_of relationships in GO are handled by this
entry. Examples of these three files can be found in Appendices A and B. The programs
have a minimum memory requirement of 1 GB for networks of about 100,000 edges and
1.5 GB-memory is recommended for running the programs smoothly.

3.2 Features and Functions

3.2.1 Main Features

The presented method provides zooming and re-centering functions, which imitate the
functions of common Web mapping services such as Google Maps. The zooming func-
tion, as reflected by its name, shows the details (members) inside selected clusters. It
executes the two-stage clustering instantly, using all node members of the selected clus-
ters as input, and displays the abstracted network afterwards (Figure 3.1). Note that
the zooming operation can be run on more than one cluster at a time, useful for cases
where the nodes of interest belong to different clusters.

Because zooming is always performed on all members of selected clusters, it alone is
insufficient to provide flexible enough navigation for researchers to explore relationships
between some nodes that may belong to different clusters. To fulfill this requirement,
the re-centering function was designed and implemented. Given researcher-selected
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Figure 3.2: An example of re-centering on a network. Nodes and clusters are repre-
sented by hexagons and round rectangles, respectively. The left view is an initial network
consisting of two clusters and five nodes. Selected cluster and node are highlighted in
pink. After the re-centering function is invoked with a threshold of one hop, their six
direct neighbors are displayed altogether, as shown in the top right view. Note that
nodes y and z, which were not in the initial view, are gathered in this view as well. The
bottom right view shows the result from re-centering the network in the left view with
a threshold of two, composed of eight direct/indirect neighbors.
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nodes/clusters, it runs the clustering on all nodes in the entire network whose geodesic
distances to the selected clusters/nodes are less than/equal to a provided value (Figure
3.2). The neighbor nodes do not need to be in the current view to be included and
clustered. This function corresponds to the panning function that Web mapping ser-
vices provide to see surrounding regions. The resulting view shows the clusters/nodes of
interest in the center of the display, as well as the nearby "neighbors". By changing the
geodesic distance value, both fine and rough visualization centered on the clusters/nodes
of interest can be obtained. Both functions correspond to seeing a map of several cities
in different countries in Web mapping services and were not possible with previously
existing methods.

3.2.2 Additional Functions

In addition to the highlighted features, both implemented tools have many additional
functions designed for interactive network navigation. Users can finely create views con-
taining only nodes/clusters they want to explore as well. Undo/Redo functions allow
users to easily move backwards and forwards between previously created network views.
As previously mentioned, users can adjust the namespace factors to change their im-
portance, which changes the weights of all terms in the same namespaces, as long as at
least one namespace weight is not zero. Furthermore, the number of clusters resulting
from the property-based clustering, 12 by default, can be freely changed to match the
individual preferences of the user and the view will be adjusted accordingly to show the
result with the new number of clusters. The user can trace a node of interest easily
with the search function; the cluster in the current graph view that contains the node
of interest can be highlighted. In addition, users can customize the view according to
their preferences in many ways; for example, the property edges can be filtered based
on the similarity value of property vectors. Besides, visual appearances are designed
to intuitively describe the different characteristics of the nodes/clusters and edges (e.g.,
node/cluster labels, cluster sizes, and edge thicknesses). Context-specific popup menus,
which contain links to external databases, are also available to accelerate knowledge dis-
covery and hypothesis generation as much as possible. See Section 3.3 for User Interfaces
of the two implementations and Appendices A and B for User Manuals.
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Figure 3.3: User Interface of NaviCluster, composed of two panels and one canvas. The
left panel allows for network loading, export as images, graph view navigation, zooming,
re-centering, and searching. The right panel allows for property information file loading,
namespace weight adjustment, network re-clustering, property edge filtering, and custom
graph view generation.

3.3 User Interfaces

3.3.1 NaviCluster - Java Swing Application

NaviCluster is mainly composed of three parts, the left and right panels, and the center
canvas (Figure 3.3). The left panel allows users to load networks, export the canvas as
image files, navigate views back and forth, zoom in on selected clusters, re-center the
network on clusters/nodes of interest, and search for and highlight a node of interest
via its name (see Appendix A for details). After loading NaviCluster, the program
automatically loads and generates abstracted visualization of the default network data,
YeastNet v.2 (Section 4.1), bundled with the tool. The right panel allows users to load
property information files, adjust namespace weights, re-cluster the network based on
new weights and preferred numbers of clusters, refine the filtering threshold of property
edges, and create custom graph views.

To load a new network, ones start with loading a node list file and an edge list file
via the Load Network button of the left panel. Then, the network is clustered by the two
clustering components (Chapter 2) and visualized immediately. A resultant abstracted
view is illustrated in Figure 4.1. When the clustered network is displayed, the users can
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navigate the network in many different ways. Double-clicking on a cluster zooms in on
the cluster. Selecting clusters and clicking the Zoom In button zooms in on those clusters
at once. Selecting nodes and/or clusters and clicking the Run button of Re-Centering
re-centers the network on the selected nodes/clusters (see Section 3.2.1). Apart from
that, the users can go back and forth between the network views created in the past by
using the “< ‌<”, “<” and “>” buttons. The resultant networks on the canvas can be
exported as EPS, JPG, SVG, PS and PNG via the Save As button.

Besides, when users right-click on clusters/nodes/edges, context-sensitive menus ap-
pear. For nodes, users can see top ten property terms assigned to the nodes and open
web pages containing related information on the nodes. For clusters, apart from prop-
erty terms annotated to the node members of clusters, users can investigate the names
of node members with their highest score terms, and information on the edge density of
the clusters. As for edges, users can see details of the edges, which vary according to
the types of edges (edge, meta-edge, or property edge). See Appendix A and the online
manual at http://navicluster.cb.k.u-tokyo.ac.jp/ for details.

3.3.2 NaviClusterCS - Cytoscape Plug-In

The control panel of NaviClusterCS comprises two buttons, the Load Network button
and the Start button, and two tabs, the basic tab and the extra tab (Figure 3.4). The
Load Network button is used to load new network data and the Start button invokes the
two-stage clustering on the network. The basic tab allows users to navigate views back
and forth, zoom in on clusters of interest, re-center the network on clusters/nodes of
interest, and search for a node of interest (see Appendix B for details). In the extra tab,
users can adjust namespace weights, re-cluster the network, refine the filter of property
edges, and create new custom views. Data Panel of Cytoscape is hidden by default to
give more space for resultant networks generated by NaviClusterCS.

Users can start with loading a node list file and an edge list file via the Load
Network button of the basic tab or via the import functions of Cytoscape. Besides,
users can use their networks loaded onto Cytoscape as well, provided that there ex-
ist all required attributes attached to the nodes and edges of the networks, such as
an attribute named “weight” for edges. For detail, see the online manual at http:
//navicluster.cb.k.u-tokyo.ac.jp/cs/. After loading, the users can run the two-
stage clustering on the network by clicking the Start button (Figure 3.4). A resultant
abstracted view is illustrated in Figure 4.6. When the clustered network is displayed,
the users can navigate the network in many different ways. Double-clicking on a cluster
zooms in on the cluster. Selecting clusters and clicking the Zoom In button zooms in on
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Figure 3.4: User Interface of the control panel of NaviClusterCS, which consists of two
buttons for loading network data and starting clustering the network (A), and two tabs
for performing various operations on the network. The basic tab allows for graph view
navigation, zooming, re-centering, and searching (B). The extra tab allows for namespace
weight adjustment, network re-clustering, property edge filtering, and custom graph view
creation (C).
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those clusters at once. Selecting nodes and/or clusters and clicking the Run button of
the Re-Centering panel re-centers the network on the selected nodes/clusters (see Sec-
tion 3.2.1). Apart from that, the users can go back and forth between the network views
created in the past by using the “<‌<”, “<” and “>” buttons. The resultant networks on
the canvas can be easily saved as image via Cytoscape’s Export menu.

Furthermore, users can configure the settings of NaviClusterCS and switch between
domains of interest via the NaviClusterCS menu. General Settings allows for changing
the directory that contains domain information (e.g., property information file used in
the property-based clustering), a VizMapper file (a file used by Cytoscape to describe
visual appearances of nodes, edges, background, etc.), and a graph layout algorithm used
when loading networks. Switch Domains allows for selecting domain of interest, changing
a property information file, and specifying information about external databases used
to create context-specific menus for nodes. See Appendix B and the online manual at
http://navicluster.cb.k.u-tokyo.ac.jp/cs/ for details.
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Chapter 4

Results

In this chapter, the results from applying the proposed method to interactively navigate
two types of functional genomics datasets are presented and discussed. The first one is
a protein network dataset of Saccharomyces cerevisiae, named YeastNet v.2 [37]. The
second one is a gene co-expression dataset of Arabidopsis, named ATTED-II [38]. The
two network datasets were loaded, visualized, and analyzed in the implemented tools,
NaviCluster and NaviClusterCS, respectively. Mainly shown here are the revelation of
hierarchical structures of both networks and the use of the proposed method to uncover
interesting elusive facts about genes/proteins of interest embedded in the networks.

4.1 Application to YeastNet v.2

YeastNet v.2 [37] is a probabilistic functional gene network that integrates heterogeneous
functional genomics and proteomics data, e.g., direct physical interactions, regulatory
interactions, protein complex membership, into objective models of cellular systems of
yeasts. It was developed as a version 2 with the improvements over the previous version
in that (1) the bias toward the prevailing gold standard reference during training was
reduced, (2) a probabilistic model for calculating confidence in protein physical inter-
action and genetic interaction datasets was employed, and (3) thresholds for improving
the derivation of functional linkages from DNA microarrays were imposed. Compared
to 4,681 nodes and 34,000 linkages of the first version, YeastNet v.2 covers 5,483 yeast
proteins (nodes) and 102,803 linkages (edges) . The log-likelihood score (LLS) scheme
was assigned to each linkage to standardize the contributions from each genomic dataset
to reflect different utilities for inferring functional linkages. High positive LLS scores
indicate that rich information for discovering functional linkages can be found in the
genomic dataset; a score of zero means that the dataset is not informative than random
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Figure 4.1: An abstracted view for the entire network of YeastNet v.2, a probabilistic
functional network containing 5,483 yeast proteins and 102,803 linkages. The associ-
ated log-likelihood scores were adopted as edge weights and used in the ultrafast graph
clustering. NaviCluster directly generated this drawing with the preferred number of
clusters on the screen set at 12.

expectation. This section shows the visualizations of YeastNet v.2, which were generated
by the stand-alone software NaviCluster.

4.1.1 Abstracted View of the Whole Network

Figure 4.1 illustrates the abstracted visualization of the entire Saccharomyces cerevisiae
protein network YeastNet v.2 of 5,483 nodes and 102,803 edges. The log-likelihood scores
indicating the probabilities of true functional linkages in YeastNet were adopted as the
edge weights for the ultrafast graph clustering component. Edges with high weights
connote that the protein pairs of the edges have strong relationships and thus highly
likely to be grouped in the same clusters in the ultrafast graph clustering. GO terms
assigned to the proteins in the SGD database (http://downloads.yeastgenome.org/
(access date: 29 March 2010)) were used as property information for the property-based
clustering. The property-based clustering was configured to focus only on the biological
process namespace, in order to group proteins involved in the same biological process.
This can be done by excluding all terms of the other two namespaces in the property-
based clustering—which can be easily performed using the namespace sliders in the tool
(see Appendix A.8).
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The numbers displayed above clusters represent the numbers of nodes within the
clusters. The labels following them are the abbreviated property terms that can best
describe the properties of the clusters, providing insight into the biological meaning of
the clusters. Such property terms are the ones that are shared by most proteins in the
clusters and meanwhile most specific (deepest in the GO hierarchy) among all terms
annotated to the proteins in the clusters (see Section 2.2.2 for details). In case there
are more than one cluster labeled with the same property term, the next highest score
term of each cluster is additionally displayed in brackets to discriminate the cluster from
the others. The display sizes of the clusters are proportional to linear normalizations
of the numbers of the clusters (nsize) over the interval from the minimum (nmin) and
the maximum numbers (nmax) among all clusters ((nsize� nmin) / (nmax� nmin)).
The color saturations of the clusters also reflect the number of proteins inside.

Meta-edges are drawn between any two clusters that have at least one edge between
at least one member in each of the two clusters (solid lines in Figure 4.1). The gray
number next to each meta-edge is the total numbers of all edges existing between the
members of the two clusters, which are also reflected in the thickness of the meta-edge.
In addition, a property edge is drawn between every pair of clusters if the similarity
between their property vectors, represented by the associated gray number, is larger
than a specified threshold (dashed lines in Figure 4.1; the threshold is 0.1).

4.1.2 Revelation of the Hierarchical Structure of the Network
(Based on Cla4)

Figure 4.2 demonstrates how the zooming and searching functions of NaviCluster can be
employed together to lead researchers to the protein of interest, in this case Cla4. Cla4 is
a p21-activated protein kinase that acts as an effector of Cdc42. It has been implicated in
many important biological processes such as cell polarization [39–43], cytokinesis [42, 43],
and exit from mitosis [44–48]. In Figure 4.2, the clusters containing Cla4 are highlighted
in all views; the granularities of detail in the views vary from coarsest to finest. Each
zooming operation (a solid arrow) performs clustering on the member proteins of the
highlighted cluster and immediately shows 12 more detailed clusters.

In the first view, which abstracts the whole network, the clusters are labeled with
broad biological processes such as DNA repair, rRNA processing, and translation (Fig-
ure 4.2A). Cla4 is grouped under the protein amino acid phosphorylation cluster, which
is highlighted. The members of this cluster are mostly involved in phosphorylation pro-
cesses, which is also true for Cla4, whose function is to phosphorylate proteins. After
zooming in on the protein amino acid phosphorylation cluster, one can find clusters of
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Figure 4.2: The hierarchical organization of the clusters encompassing Cla4, a protein
of interest, which are highlighted in pink. The numbers by the arrows indicate the num-
bers of proteins contained in the processed sub-networks. Hexagons represent proteins
that are not contained in any cluster. (A) The most abstract view. Cla4 belonged to
the highlighted protein amino acid phosphorylation cluster. After zooming in on this
cluster, the clusters containing Cla4 of two deeper views were also the clusters labeled
protein amino acid phosphorylation and were excluded for conciseness. (B) At this level,
Cla4 was contained in the establishment of cell polarity cluster. Clusters labeled with
the same property terms as those of others are discriminated by additionally displaying
the next highest score terms in brackets. (C) Cla4 was contained in the regulation of
exit from mitosis cluster. (D) The most specific view. Cla4 was clustered together with
Ste20, Gic1, Gic2, Cdc24, Bem1, Skm1, Msb1, Msb2 and Tos2.
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more specific processes, such as mitotic cell cycle spindle assembly checkpoint, pseudo-
hyphal growth, and establishment of cell polarity (Figure 4.2B). In this view, Cla4 is a
member of the establishment of cell polarity cluster, which is consistent with previous
studies suggesting the role of the protein [39–41]. Some clusters found deeper in this
cluster are characterized by actin filaments or budding processes (Figure 4.2C); as ex-
pected, they are related to cell polarity. Cla4 is found in the cluster of regulation of
exit from mitosis at this level. After zooming in on this cluster to get the final view,
illustrated are the relationships between Cla4 and other proteins such as Gic1, Gic2,
and Ste20 (Figure 4.2D). In fact, these proteins were found to be implicated in mitotic
exit by three different mechanisms [48]. Cla4 was discovered to promote mitotic exit
and cytokinesis by activating a guanine nucleotide exchange factor, Lte1, which in turn
causes the activation of Tem1, thereby terminating the M phase of the cell cycle [46–48].
In addition, Gic1 and Gic2 were also proposed to be involved in stimulating mitotic exit
in parallel with Cla4 by inhibiting GTPase-activating proteins of Tem1, both of which
result in activation of Tem1 [45, 48], which in turn signals to terminate the M phase of
the cell cycle. Moreover, Cdc24 and Bem1, which play important roles upstream in the
regulation of mitotic exit [39–41, 48], are also clustered together with Cla4 in this most
detailed view.

4.1.3 Discovery of Unknown Roles of Nas6, Rpn14, Hsm3 as
Chaperones

Figure 4.3A shows the view resulting from selecting the proteins Nas6, Rpn14, and Hsm3
and invoking the re-centering function to gather all direct interactors. Recent studies
have reported that these three proteins, previously known to bind to regulatory particles
of proteasomes, actually function as chaperones, assisting in the regulatory particle
assembly in yeast [49–52]. In Figure 4.3A, the fundamental roles of the three proteins
as proteasome-related proteins are delineated explicitly; specifically, they interact with
many proteins involved in the ubiquitin-dependent protein catabolic process.

It is also possible to investigate the relationships between Nas6, Rpn14, and Hsm3
and other proteins that are farther from them, to understand their roles in a broader
aspect (Figure 4.3B; the abstracted view collecting all proteins within two hops from the
three selected proteins). This view discloses additional relationships with other clusters
of more general processes. Among them, the relationships with the protein folding and
cellular response to heat clusters actually suggest the recently reported roles of the three
proteins as chaperones. This is because proteins denatured due to heat are rescued by
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Figure 4.3: Re-centered views for discovering hidden facts from both direct and indirect
neighbors of proteins of interest, Nas6, Rpn14, and Hsm3. Edges not connected to the
center proteins are omitted for clarity. (A) Re-centered with the geodesic distance from
the central nodes set to one. Twenty seven of the 49 direct neighbors of the three
proteins form a ubiquitin-dependent protein catabolic process cluster, nine form a DNA
repair cluster and eight form a chromatin silencing at telomere cluster. (B) Re-centered
with the geodesic distance set to two. This view illustrates the more general functions
of the proteins (see the main text)
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chaperones, which help fold and assemble proteins. It should be noted that these clusters
were formed without using any property information from the three selected proteins.

4.1.4 Function Elucidation of Nsi1 (Ydr026c), a new rDNA Si-
lencing Factor

Figure 4.4 shows the hierarchical organization of the yeast protein network, focused upon
Nsi1 or Ydr026c. Previously known as Ydr026c, Nsi1 was very recently confirmed the role
as an rDNA silencing factor that contributes to rDNA stability and lifespan extension
in yeast [53]. Under normal conditions, rDNA silencing is one of the key mechanisms
to protect yeast cells from accumulating toxins, a major cause that leads to aging, so
this process is critical for the growth and survival of yeasts. By previous studies, Nsi1
was suggested to associate with ribosomes and physically interact with Fob1, which in
turn is required for rDNA silencing by recruiting other two proteins (Net1 and Sir2)
to participate in the mechanism [53–55]. Moreover, the association profile of Nsi1 with
rDNA is closely similar to that of Fob1 [56], meaning that their functions may be highly
similar. Confirmed by the experiments [53], Nsi1 was recently proved to really play a
role in rDNA silencing, partly because of the fact that the loss of Nsi1 decreases the
activity of the mechanism.

Figure 4.4 presents the results from zooming in on the YeastNet dataset, focused on
Nsi1 in the same way as of Figure 4.2—arrows denote zooming operations. In Figure
4.4A, Nsi1 is grouped under the rRNA processing cluster, relevant to the role of Nsi1,
whose function is related to the activities of rDNA in the nucleolus, where the synthesis
and processing of rRNAs take place. After zooming in on the rRNA processing cluster,
one can find clusters of other specific processes, such as RNA modification, tRNA methy-
lation, and transcription from RNA polymerase III promoter (Figure 4.4B). In this view,
Nsi1 is a member of the transcription from RNA polymerase III promoter cluster, sug-
gesting that the protein might be involved in this process. In Figure 4.4C, Nsi1 is found
in the cluster of transcription of nuclear large rRNA transcript from RNA polymerase I
promoter at this level, which is again consistent with the recently found role as involved
with rDNAs, the places where rRNAs are transcribed. After zooming in on this cluster
to get the final view, illustrated are the relationships between Nsi1 and RNA polymerase
proteins, namely Rpa34 and Rpa49, which all assist in the synthesis of rRNA transcripts
[57] (Figure 4.4D). Interestingly, all created views are very consistent in that the protein
of interest (Nsi1) might strongly relate to various mechanisms of DNAs and RNAs.

In addition, when investigating the relationships between Nsi1 and its neighbors
via the re-centering function, as shown in Figure 4.5, the view discloses relationships
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Figure 4.4: The hierarchical organization of the clusters encompassing Ydr026c (Nsi1),
a protein of interest, which are highlighted in pink. The numbers by the arrows indicate
the numbers of proteins contained in the processed sub-networks. Hexagons represent
proteins that are not contained in any cluster. (A) The most abstract view. Nsi1
belonged to the highlighted rRNA processing cluster. After zooming in on this cluster,
the cluster containing Nsi1 of a deeper view was also labeled the same as the first
view and was excluded for conciseness. (B) At this level, Nsi1 was contained in the
transcription from RNA polymerase III promoter cluster. (C) Nsi1 was contained in
the transcription of nuclear large rRNA transcript from RNA polymerase I promoter
cluster. (D) The most specific view. Nsi1 was clustered together with Rpa34, Rpa49,
Rpa14, Rpa43, and Rpa190.
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Figure 4.5: Re-centered view on Ydr026c (Nsi1) with a threshold set to two. The
re-centering function allows researchers to intuitively grasp what types of proteins exist
around the protein(s) of interest. Edges not connected to the center protein are omitted
for clarity. All of the proteins that are within two hops from Nsi1 were clustered to
a visually interpretable level. One can immediately see clusters related to chromatin
silencing at telomere, transcription from RNA polymerase III promoter, and nuclear
mRNA splicing, via spliceosome, around the protein of interest, implying that Nsi1 are
probably involved with RNA synthesis and processing.
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with clusters implicated in chromatin silencing at telomere, transcription from RNA
polymerase III promoter, and nuclear mRNA splicing, via spliceosome. Although the
total direct relationships of Nsi1 with other proteins are only five, this view can provide
a general idea of what kinds of processes Nsi1 get involved with, via the biological
meaning of the surrounding clusters. This makes researchers be able to focus on only
a few biological processes to start with and validate, instead of randomly formulating
hypotheses.

4.2 Application to ATTED-II

ATTED-II [38] or Arabidopsis thaliana trans-factor and cis-element prediction database
is an Arabidopsis gene co-expression network dataset deduced from microarray data and
predicted cis element. As a secondary database, it was designed to help researchers
retrieve information on gene-to-gene relationships. Originally, the database adopted
Pearson’s correlation coefficients (PCCs) to quantify the similarity of gene expression
profiles. Reported in 2009, however, the updated version of the database employs mutual
ranks (MRs) instead of PCCs, to resolve the problem that many functionally relevant
co-expressed gene pairs have low PCCs [58]. MR is calculated as the geometric mean of
the correlation rank of gene A to gene B and of gene B to gene A—a small MR value
means that the gene pair has high correlation.

I ran NaviClusterCS on a subset of ATTED-II, composed of 22,447 nodes and 189,546
edges, which correspond to genes and co-expressions, respectively. Because not all pairs
of genes are regarded as important co-expressions, only edges with small MRs enough
were included. Empirically, I used 30 as a threshold value as the authors of ATTED-II
also indirectly treat co-expressions with MRs more than 30 as not so important edges by
making them thin edges in their visualization system [58]. Furthermore, as the clustering
algorithms used in the proposed method regard high values of edge weights as highly
related connections, compared to the “low value, high correlation” scheme of MR, we
need to reverse the values of MRs before assigning them to edges. I accomplished this
by using 30 minus MR for each edge instead; again, 30 is the maximum value used for
filtering edges.

4.2.1 Abstracted View of the Whole Network

Illustrated in Figure 4.6 is the abstracted view of the whole ATTED-II network dataset
composed of 22,447 nodes and 189,546 edges. The figure was generated by NaviClus-
terCS, the Cytoscape plug-in. The number of clusters to be displayed was set at 12.
The GO terms assigned to genes were obtained from TAIR (ftp://ftp.arabidopsis.
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Figure 4.6: An abstracted view of the ATTED-II dataset with 22,447 nodes and 189,546
edges. The rounded squares are clusters and the hexagon is a gene that is not contained
in any cluster. Because the gene AT5G59560 has no connections with any genes in
this network, it appears as an unconnected node. 30 minus Mutual Ranks (MRs) were
adopted as edge weights. The number of clusters/nodes to be shown on the screen was
set to 12. See the main text for details.
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org/home/tair/Ontologies/Gene_Ontology), a database of genetic and molecular bi-
ology data for Arabidopsis thaliana, and only biological process terms were used for the
property-based clustering in this visualization. The numbers shown above the clusters
represent the number of nodes within the clusters, and the labels following the numbers
are the abbreviated GO terms that get the highest score and, thus, best describe the
properties of the clusters. Meta-edges are drawn as blue lines between any two clusters
that have at least one edge between at least one member in each of the two clusters,
with the numbers next to each edge representing the total numbers of all edges existing
between the members of the two clusters. The total numbers are also reflected by the
thicknesses of the meta-edges. In addition, a property edge is drawn as a black line be-
tween every pair of clusters if they share significant numbers of GO terms; the similarity
can be adjusted as a filter.
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4.2.2 Revelation of the Hierarchical Structure of the Network
(Based on AT5G13320 (PBS3))

Similar to Section 4.1.2, this section demonstrates how the zooming function can lead
a researcher to the gene of interest (AT5G13320 (PBS3 ) in this case). PBS3 encodes
a member of an auxin-responsive GH3 family of acyl-adenylate/thioestor-forming en-
zymes, some of which have been shown to catalyze hormone-amino acid conjugation.
In Figure 4.7, the clusters containing PBS3 are highlighted in all of the views; the
granularities of detail in each view vary from coarsest to finest.

Figure 4.7A depicts the whole network, composed of the clusters that are labeled with
broad biological processes such as regulation of transcription, DNA-dependent, response
to heat, and embryo development ending in seed development. PBS3 is found under the
cluster of signal transduction, which is highlighted. Indeed, PBS3 is involved in a signal
transduction cascade of systemic acquired resistance or SAR, which is a systemic immune
response in plants against a pathogen [59]. Zooming in on the signal transduction cluster
reveals that the systemic acquired resistance cluster is highlighted, meaning that PBS3
is grouped under this cluster (Figure 4.7B). This result is in accordance with many
sources stating that PBS3 affects SAR [59, 60]. Zooming in on the systemic acquired
resistance cluster at this stage indicates that PBS3 is a member of the defense response to
bacterium cluster (Figure 4.7C), which obviously related to defense mechanisms. Finally,
Figure 4.7D illustrates the deepest view after zooming in on the defense response to
bacterium cluster. At this stage, the relationships between PBS3 and other genes related
to SAR, such as AT1G74710 (ICS1 ), AT1G33960 (AIG1 ), and AT1G19250 (FMO1 ),
are depicted [59, 61, 62]. This example illustrates that clusters comprising co-expressed
genes of similar functions are sensibly created and their roles are indicated informatively
and correctly.

4.2.3 Function Elucidation of WRKY28 and WRKY46, Key Play-
ers of Systemic Acquired Resistance

Shown in Figure 4.8 is a view centered on the genes of interest whose functions were
unknown (in this case, WRKY28 (AT4G18170 ) and WRKY46 (AT2G46400 )). By
invoking the re-centering function, a user can grasp what types of genes exist around
the genes of interest in this network. In Figure 4.8, the clusters related to the defense
response, such as response to chitin, response to salicylic acid, and response to abscisic
acid stimulus, surround the two genes, suggesting that these genes are also involved in
this function. Actually, they have recently been confirmed to be positive regulators of
ICS1 and PBS3, which are key players of systemic acquired resistance (SAR) [60]. It is
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Figure 4.7: The hierarchical organization of the clusters containing AT5G13320
(PBS3 ), a gene of interest, which are highlighted in light yellow. (A) The most ab-
stracted view. PBS3 belonged to the signal transduction cluster. (B) At this level,
PBS3 was found in the systemic acquired resistance cluster. (C) PBS3 was included
in the defense response to bacterium cluster. (D) The most specific view. PBS3 was
clustered together with ten other genes, such as AIG1, ICS1, and FMO1.
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Figure 4.8: Re-centered view on AT4G18170 and AT2G46400 with a threshold set
to two. The re-centering function allows researchers to intuitively grasp what types of
genes exist around the genes of interest in large networks. All of the genes that are
within two hops from these two genes were clustered to a visually interpretable level.
One can immediately see clusters related to response to chitin, response to salicylic
acid, and response to abscisic acid stimulus, around the genes of interest, implying that
AT4G18170 and AT2G46400 are involved in defense response mechanisms.
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extremely difficult to infer this kind of knowledge from huge network data if a cluttered
visualization is employed. This example clearly proves again how the proposed visual-
ization approach can provide meaningful and interpretable information for researchers.

4.2.4 Discovery of a New Role of AT2G15740 (GsZFP1) as a
Positive Regulator of Plant Tolerance to Cold Stress

Figure 4.9 shows some abstracted views at different levels of granularity of the Arabidop-
sis gene co-expression network in the case AT2G15740 is searched for. The clusters
containing AT2G15740 (GsZFP1 ) are highlighted in all views and the granularities of
detail in each view vary from coarsest to finest. AT2G15740 is one of the C2H2-type
zinc-finger proteins (ZFPs) that have been implicated in different cellular processes in-
volved in plant development and stress responses [63–65]. Specifically, it is an alkaline
(NaHCO3)-responsive ZFP gene, which was originally identified in soybeans, Glycine
soja. In [63], it was introduced as a transgene into Arabidopsis for testing under vari-
ous environments such as cold and drought. Overexpression of the gene in Arabidopsis
resulted in a greater tolerance to cold and drought stress and increased the expression
of many stress-response marker genes that play a role in response to cold and drought,
thereby indicating that AT2G15740 may be a positive regulator of plant tolerance to
cold and drought stress [63].

In Figure 4.9A, AT2G15740 is grouped under the regulation of transcription, DNA-
dependent cluster, the largest cluster in which most genes reside. After zooming in on
this cluster 14 times, one can find clusters of more specific processes, such as proline
transport, chiasma assembly, and response to auxin stimulus (Figure 4.9B). In this
view, AT2G15740 is still clustered under the regulation of transcription, DNA-dependent
cluster with an additional label as response to chitin, suggesting that the gene might
be involved in this process. In Figure 4.9C, AT2G15740 is a member of the cluster of
response to cold at this level, which is consistent with the recently found role as involved
with tolerance to cold stress [63]. After zooming in on this cluster, the final view reveals
property edges between AT2G15740 and genes implicated in various biological processes
(e.g., organ morphogenesis, cortical microtubule, and regulation of transcription, DNA-
dependent) and one cluster related to response to cold (Figure 4.9D). This shows that
zooming in on the network by searching for AT2G15740 can also suggest the role of the
gene interestingly and correctly.
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Figure 4.9: The hierarchical organization of the clusters focused on AT2G15740 or
GsZFP1, a gene of interest. The numbers by the arrows indicate the numbers of
gene contained in the processed sub-networks or the number of zooming operations.
Hexagons represent genes that are not contained in any cluster at a view. (A) The
most abstracted view. AT2G15740 belonged to the highlighted regulation of transcrip-
tion, DNA-dependent cluster. After zooming in on this cluster, the clusters containing
AT2G15740 of 13 deeper views were also the clusters labeled regulation of transcrip-
tion, DNA-dependent and were excluded for the sake of conciseness. (B) At this level,
AT2G15740 was contained in the regulation of transcription, DNA-dependent cluster
with response to chitin in a bracket. Clusters labeled with the same property terms
as those of others are discriminated by additionally displaying the next highest score
terms in brackets. (C) AT2G15740 was contained in the response to cold cluster. (D)
The most specific view. AT2G15740 was clustered together with the cluster of response
to cold, AT4G34650, AT1G53510, AT1G60270, AT5G11590, AT2G39250, AT2G28550,
AT1G01420.
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Chapter 5

Discussion

5.1 Comparison with Existing Network Visualization
Methods

Table 5.1 shows the comparison of the proposed method with related network visualiza-
tion tools in aspects of cluster generation means, multi-scale navigation support, pur-
pose of use, development architecture, measures for handling overwhelming visualization
(insufficient clustering), and support for flexible navigation beyond cluster boundaries.
Stand-alone applications (NaviCluster, BioLayout Express3D, jClust/Medusa, RobinViz,
VisANT) [10, 11, 20, 36, 66, 67], web-based tools (Cellular Overview) [68], and Cy-
toscape plug-ins (NaviClusterCS, CyOog, clusterMaker, CyClus3D, NeMo, MODEVO,
GenePro) [12, 13, 17–19, 69] are included here.

Most of them support automatic cluster generation using various underlying cluster-
ing or community identification algorithms, except for VisANT [36], Cellular Overview
[68], and GenePro [13]. VisANT [36] provides multi-scale visualization; however, the
user must manually create metanodes (equivalent to clusters) themselves. CyOog (Power
Graphs [12]) hierarchically visualizes power nodes (equivalent to clusters) created by the
Power Graph algorithm, but the speed is not fast enough to be used for interactive nav-
igation of large biological networks. Concerning the multi-scale visualization, GenePro
[13], BioLayout Express3D [10], and jClust [11, 67] can visualize only a single level of
clusters; they do not support visualization of recursive clustering.

Some provide multi-scale network navigation in each own way. For instance, in
contrast to the intuitive zooming style adopted by the presented method, clusterMaker
[69] support multi-scale navigation via dendrograms, whose parts, when selected by
users, are reflected in the network view of Cytoscape. Whereas most tools aim at
visualizing various types of biological networks, MODEVO [17], RobinViz [20], Cellular
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Overview [68], and GenePro [13], are tailored for specific types of networks, such as
interaction networks and metabolic networks.

Among all the tools shown in Table 5.1, only the proposed method and RobinViz
[20] offer flexible navigation across created clusters. RobinViz implements the 2-hop
neighborhood operation, where neighbors that are 2-hop far from selected nodes are
gathered and visualized. The proposed method, however, goes beyond this by allowing
for gathering and visualizing more than 2-hop neighbors, via the re-centering function.
This can be done without producing cluttered visualization, as it automatically clusters
the resultant networks after the re-centering function is invoked. Notably, adopting the
property-based clustering, the presented method is the only tool that imposes measures
for handling the case of hard-to-manage and complicated visualization of the overwhelm-
ing numbers of nodes and edges, due to insufficient clustering.

5.2 Utility of the Presented Method

The benefits of the main features, zooming and re-centering, are shown previously in
Chapter 4, via many examples. In this section, I summarize those use cases and clarify
the utility of the presented method. By the zooming function, as can be seen in Figures
4.2, 4.4, 4.7 and 4.9, proteins or genes of related biological processes can be clustered
together sensibly and their roles are indicated insightfully, correctly, and appropriately
based on the granularity of each view. The amount of information displayed is kept
tractable by showing coarse and fine information on the abstracted and detailed views,
respectively. Every searching-and-zooming step is rendered in a matter of seconds, which
allows researchers to gather interesting information at the desired degree of detail easily,
rapidly, and effectively, thereby fully supporting interactive biological investigation of
massive datasets.

In addition to the multi-scale navigation of large networks, the examples shown in
Figures 4.3, 4.5 and 4.8 indicate that the proposed method can also be used to intuitively
and effectively retrieve knowledge on nodes of interest from large and complicated net-
works. In Figure 4.3, abstraction of the three proteins’ neighbors is necessary because,
even if it is possible for biologists to manually investigate all 49 direct neighbors shown
in Figure 4.3A, it is not practical to do the same for the 1,443 indirect neighbors shown
in Figure 4.3B. In the same way, it is not trivial to manually investigate the relationships
between two WRKY genes and 501 neighbors, as shown in Figure 4.8. These two exam-
ples confirm the importance of the re-centering function, especially in the case of Nas6,
Rpn14, Hsm3, as it is the indirect information that suggested the chaperone role—only
information on relationships with the direct neighbors was not enough. However, it was
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not possible to interactively create these views using previous methods that depend on
fixed cluster hierarchies.

In the case of Nsi1 (Ydr026c), as discussed in [53], the protein was actually confirmed
to be a true player of chromatin silencing at rDNA. Notably, however, after getting the
results showing that Nsi1 is involved in chromatin silencing at rDNA, Ha et al. then also
proceeded to confirm whether it is involved in chromatin silencing at telomere [53] and
found a negative result. This seems to contradict with what are delineated in Figure
4.5. However, in the view shown in Figure 4.5, when ones hover the pointer over the
chromatin silencing at telomere cluster, they can see that additionally the second highest
score property term of this cluster is chromatin silencing at rDNA. In this case, although
the results from experiments are against the highest score property term, I argue that
instead, this in fact shows the presented method provides researchers with interesting
candidates that make sense enough to be picked up for verification by scientists. Besides,
the biological processes appearing as labels of the clusters of Nsi1 in each view, namely
rRNA processing, transcription from RNA polymerase III promoter, and transcription
of nuclear large rRNA transcript from RNA polymerase I promoter, shown in Figure
4.4, deserve validation as well, because of high probability that proteins residing in the
same clusters would be implicated in many overlapping functions (the so-called guilt-by-
association approach [70–72]). It should be noted that the surrounding clusters in Figure
4.5 were formed without using any property information of Nsi1; actually, in this dataset,
Nsi1 was annotated with only the “biological_process” term, ultimately illustrating that
the proposed method can really be used for suggesting unknown functions of poorly
annotated proteins.

Similar to Nsi1, we have little information about AT2G15740 too. In the ATTED-II
dataset used in Section 4.2, in fact, there existed no edges connecting gene AT2G15740
and other genes at all. Despite this, only unraveling the network via zooming could also
delineate and suggest the relationships of the gene to response to cold correctly in the
two most detailed views (Figure 4.9), showing that the proposed method is suitable for
both exploring the hierarchical organization of large networks and investigating unknown
functions of genes at the same time. Note that because the gene had no connections to
others, we cannot use the re-centering function with this gene, as this will result in a
view composed of only one node, AT2G15740 itself.

Interestingly, compared to the yeast dataset, the Arabidopsis network in this study
was clustered into a large number of levels due to the characteristics of the network. Most
of the genes were grouped under the regulation of transcription, DNA-dependent clusters.
Consequently, this resulted in cumbersome tasks for users to zoom in on the clusters
many times before reaching the lowest level. Whether to preserve the modularity of

41



clustering strictly or to balance the hierarchy of clusters for better organizations and the
subsequent ease of navigation is still be controversial and needs careful consideration[22,
26]. In my opinion, an obvious workaround is to devise a navigation approach that
lets researchers “jump” between graph views more freely without zooming in on clusters
in sequence or “skip” the clusters that are labeled the same as previous views. This
should be highly feasible, thanks to the speed of the Louvain algorithm. Nonetheless,
as one can see that users cannot get much information from zooming in on the clusters
labeled the same for fourteen times, I am also interested in the idea of compromising
the modularity of clustering up to an acceptable level, if that leads to graph views with
more informative and useful information, such as provision of overlapping clusters. Of
course, this issue partly depends on the dataset generation methods as well. Unlike PPI
networks, in many co-expression datasets, data values for all pairs are provided and
can be used to generate networks in numerous ways. In this research, I used mutual
ranks as suggested by the authors of ATTED-II and also filtered co-expressions whose
ranks are larger than 30. Generating alternative meaningful networks based on the same
original dataset may lead to different and easy-to-navigate abstracted views. Moreover,
in an empirical study, I was also faced with the similar issue, when applying the method
to networks of publications extracted from PubMed (http://www.pubmed.org) based
on a specific query, using MeSH (Medical Subject Headings) (http://www.nlm.nih.
gov/mesh/) terms from the MEDLINE database, as property information and cosine
similarities between publications as the similarity measure. In particular, the resulting
abstracted views were unfavorably deep and need a lot of zooming operations to unravel
the network. As future work, although not trivial, all of these issues will be researched
to find more satisfactory solutions.

5.3 Biological Validation of Clustering Methods

Up until now, research publications on biological data clustering have reported and
validated their results in various ways. Some emphasized the qualities of the results,
whose definition themselves are quite broad. Many studies focused on using well-defined
mathematical measures, such as modularity (Q), to evaluate their results [12, 28, 73–75],
whereas others used comparison against their designated gold standards, such as KEGG
(Kyoto Encyclopedia of Genes and Genomes) (http://www.genome.jp/kegg/) or GO
(http://www.geneontology.org) [10, 12, 27]. Some studies validated their results using
the speed of clustering as well [22, 26]. However, as stated in Chapter 1, none of the
existing methods are suitable to be incorporated into the interactive and multi-scale
navigation scheme, due to the limited speed and scalability problems.
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The validation of clustering biological data would still be controversial, actively dis-
cussed, and would have room for improvement for years. Each work commonly claimed
that it was better than others in its own benchmark. This is partly due to the var-
ious purposes of performing clustering and types of the data; for instance, expected
results from clustering DNA microarray data may be different from clustering protein
interaction networks. In addition, the undisputed standards for assessment still do not
exist; hence numerous distinct directions of research and validation methods are feasi-
ble to conduct. The goal of clustering has still being evolved in these recent years, as
the abundant amount of data is still being produced, thereby increasing the demand of
high-performance clustering and intuitive visualization of the data.

Above all, the interactive and multi-scale characteristics of the presented method
has never existed before in any existing studies. Although no one could claim that a
certain method completely overcomes all other approaches in all aspects, the utility and
benefits of the proposed method when applied to different types of functional genomics
data have been explicitly demonstrated in this dissertation. Thus, it is promising to be
used with various kinds of biological networks as well and I argue that the presented
method is indeed crucial to effective investigation of biological data in this big-data era.
Furthermore, as discussed in the last chapter, this kind of interactive navigation would
pave the road to interactive biological hypothesis generation, and finally accelerating the
pace of interactive knowledge discovery drastically.

5.4 Extendibility of the Method

It should be noted that the proposed method is highly extendable in several ways. First,
any type of property information, not just GO categories, can be used in the property-
based clustering. For example, if a researcher is interested in diseases, she/he can use
disease names associated with proteins derived from disease databases to investigate PPI
networks by clustering proteins related to similar diseases. Second, because the cluster-
ing components of the present method can abstract any sub-network very rapidly, any
interactive function for producing network views of interest can be achieved if modules
for selecting appropriate clusters/nodes are implemented. For example, it is easy to
devise a module that interactively produces networks of genes regulated by a selected
regulatory factor, given information on gene regulatory relationships. Third, the pre-
sented method is not limited to biological applications. In fact, it is general enough to
be tailored to network data from other sources as well, as long as information adequately
describing the properties of the nodes is provided. For example, citation networks of
biomedical publications can be explored with the MeSH (Medical Subject Headings)
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vocabularies that are stored in the MEDLINE database and friendship networks of uni-
versity students can be explored with information of class names they attend.
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Chapter 6

Conclusions and Prospects

To summarize, this dissertation presents the first method for interactive and multi-
scale navigation of large, complicated biological networks that displays appropriately
abstracted views at all levels of detail. The importance and novelty of the research
question raised in this dissertation have recently been confirmed by very recent pub-
lications citing this work [76–78]. The paper was referred to as an active, pioneering
research topic in bioinformatics, in almost the last part of Discussion of those publi-
cations, indicating that effective visualization and navigation of large and complicated
biological networks are still to be gained much attention by bioinformaticians in this
very near future.

Reflected in both implemented tools, the specially designed features and interfaces,
particularly the re-centering function, enable flexible navigation across cluster bound-
aries. Application to real functional genomics data, YeastNet and ATTED-II, demon-
strates how this research achieves the goal of providing effective, intuitive, and interactive
navigation and why the method is eminently suitable for large biological networks. As
shown by analysis of Cla4, Nsi1, PBS3 and GsZFP1, every time the researcher zooms in,
clusters were constructed on the fly and visualized immediately along with meaningful
labels. All views were informative as to the hierarchical structure of the network. As for
Nas6, Rpn14, and Hsm3, their roles as chaperones were suggested in the view created
by the re-centering function, which encompassed the indirect neighbors of these nodes.
Similar elucidations of functions can also be obtained in the case of WRKY genes and
Nsi1. This outcome indicates that, in addition to the usual network exploration ac-
complished by displaying direct interactors, the presented methods can also uncover
interesting hidden facts in large, complicated networks via both main features. These
will help researchers formulate new hypotheses more easily and systematically, even if
they possess little experience in bioinformatics. I believe that the presented method
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will aid modern biologists in discovering knowledge from massive binary-relationship
datasets, which are accumulating at an accelerating pace.

As stated previously, the research presented in this dissertation is comparatively new
to the field, thus there are various future directions and extensions of the work that can
be conducted. In this section, I raise four main directions that seem highly feasible and
promising to follow.

6.1 Clustering and Implementation Issues

To begin with, we can improve the proposed method in aspects of clustering processes
and implementation. (1) As the Louvain clustering is a greedy algorithm, the orders of
input nodes fed into the algorithm can affect the final results and their modularity, so it
is expected to see research on improving the results via input patterns. (2) The proposed
method sometimes works significantly slower than normal, when faced with some kinds
of networks, such as publication networks generated from PubMed. This is attributed
to the deteriorated performance of the property-based clustering. Currently, it depends
coherently on the FFT algorithm, whose performance can dramatically decrease when
used with ultimately high dimensional property vectors (data points), such as the case
of MeSH terms annotated to publication networks. Therefore, devising techniques for
evading from “the curse of dimensionality” is explicitly necessary. I plan to investigate
this issue more, starting from the survey about algorithms in the same family, such as
k -medoid, k -means++ [8, 79]. Furthermore, as performed by Clauset et al. [24], some
customization of data structures or implementation optimization might be an alternative
way to do first to improve the performance without developing new algorithms. (3)
Utilizing property information more during the course of clustering may be promising.
For instance, as the FFT algorithm is also greedy, the input patterns influence the
resulting clusters. Thus, when the property-based clustering is executed, the property
information may be taken into consideration to choose the first Louvain cluster to be
processed that gives more favorable results. In addition, as demonstrated in the previous
chapters, cosine similarity gives satisfactory results and is generally suitable for any
kinds of annotations. However, in life sciences where researchers heavily rely on GO,
this similarity scheme might be too simple. In fact, there are many studies and research
on similarity measures of GO published every year, showing that this is also a very hot
field [80–83]. Incorporating knowledge about the GO hierarchy should give rise to a
more sophisticated and appropriate similarity measure to be used with GO as property
information. (4) Stated in Chapter 3, NaviClusterCS was developed to make use of
abundant features of Cytoscape and it partly achieved the goal already. However, to
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make it even more compatible with other plug-ins and functions of Cytoscape, more
work is needed. I plan to improve it to run more smoothly and be compatible with the
new version (Cytoscape 3). Besides, as HTML5 has many powerful features and can be
seamlessly used in any platforms, it draws attention from developers around the world.
This is also the case for bioinformaticians and Cytoscape developers. In my opinion,
Cytoscape Web, developed based upon HTML5, will be the killer application of the field
in the near future—of course, especially if it is bundled with the presented method.

6.2 Enhancement of Functionalities, Visualization, and
User Experiences

Secondly, functionalities, visualization schemes, and user experiences still have room
for improvement. (1) As the clustering components of the method automatically split
clusters to fulfill the canvas, sometimes it is hard to quickly see what kinds of clusters
originally existed in the view—the user needs to investigate the property information of
each node one-by-one to get the overall picture. Therefore, it may be interesting to let
users manually expand/collapse some clusters in graph views, provided that the over-
all number of objects on the screen is still less than a threshold. (2) Although “Make
Custom Graph View” and zooming on more than one clusters can assist in flexibly gen-
erating new views based on user-selected clusters/nodes, it is sometimes not trivial to
pinpoint genes/proteins of interest residing in large clusters. Reforming the searching
and selecting functions obviously improve user experiences and let researchers do their
work more readily; for example, this can help them quickly search for multiple nodes
in different clusters before performing re-centering, through the improved method. (3)
According to some feedbacks from users, information on edges or relationships is unfor-
tunately less elucidated in visualization for now. Despite the fact that many researchers
are interested in how their proteins/genes of interest are located in the whole network or
how they form clusters with others, relationships or edges with other proteins/genes are
important for some researchers. In the current implementation, information on nodes
and clusters is predominantly visualized via labeling and context-sensitive menus; how-
ever, for example, showing the weights of property edges as cosine similarity values may
not be good enough to be truly user-friendly and informative for some researchers. (4)
There are usually more than one interesting property terms for each node or cluster.
Showing other reliable statistical values (e.g., p-value) along with those terms and/or
effectively showing multiple property terms at the same time should make biologists
more confident of using the information.
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6.3 Multiple Types of Networks, Different Kinds of
Requirements

Thirdly, up to now, I applied the method to only functional genomics datasets that
are undirected networks (graphs). It is undisputedly interesting to apply the presented
method to other kinds of networks, such as signal transduction pathways, metabolic
pathways and other omics data as well. Recently, the Louvain method has been success-
fully applied to homologous sequences already [32]. As a plan, I would like to apply the
method to integrated networks of multiple types of omics data (e.g., proteome, genome,
metabolome, and phenome). In my opinion, through interactive navigation, this would
stimulate better holistic understanding of organisms under study. However, much care
and improvements of the method are needed to handle with different types of networks,
because they may need distinct similarity measures, visualization schemes or knowledge
suggestion approaches. For instance, Ma et al. claimed that the guilt-by-association
method was not proper for gene-drug networks, as it was too coarse to make quan-
titative inference about drug effects at the system level [84]. On the other hand, in
publication networks, showing main keywords or important figures found in the papers
instead of their authors’ names or titles may be more practical and intuitive.

6.4 Toward Interactive, Systematic Knowledge
Discovery

Finally, my ultimate goal when conducting this research is to create interactive, sys-
tematic hypothesis generation and knowledge discovery systems in the future. Apart
from developing better function prediction or knowledge suggestion approaches for pro-
teins/genes, as an example, acquiring unknown subcellular localization (e.g., based on
the cellular component namespace of GO) is of interest as well, but cannot be done easily
for nodes with no annotations and connections. This is because they would be gath-
ered together in one separate cluster from others at first. Even when the re-centering
function is invoked, they will be visualized alone. To me, the most promising tech-
nique to be used here is integration of the implemented tools with knowledge bases
and text mining/processing engines, which have gained much popularity in biology and
biomedicine [85–91]. Specifically, those that store and extract information from full-text
articles are favorable [92–94], because of many studies reporting that the information
density and coverage of full texts are considerably larger than abstracts [95–97]. There
is much knowledge embedded in a great number of literatures that is still not discovered
and utilized by researchers. Using this information for suggesting new knowledge or
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formulating hypotheses are thus reasonable and more likely to succeed than using the
datasets provided by users alone. Not surprisingly, nevertheless, the bottleneck of the
overall workflow for now is the text mining/processing systems, which need dramatic
improvements in performance to come up with the rapid visualization method already
accomplished in this research. I believe that, when the improvements of both methods
successfully reach their peaks, truly interactive, systematic knowledge discovery systems
would enormously benefit a wide range of researchers and change the world of research
completely.
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Appendix A

NaviCluster User Manual

An online manual is also available and updated at http://navicluster.cb.k.u-tokyo.
ac.jp/.

A.1 Download & Run

Prerequisite: Java 6 or later must be installed in your computer.

1. Download and Install Java version 6 (with update later than 10) or later via
www.java.com. You can check the version of Java installed in your computer
by typing java-version in the Terminal (Mac OS X) or Command Prompt
(Microsoft Windows). You should get the message saying something like, java
version “1.X.0_YY”. X should be at least 6, meaning that your installed Java is
version 6 or above, and YY denotes numbers that represent the update version.

2. Download NaviCluster-bin.zip via http://navicluster.cb.k.u-tokyo.ac.
jp/download.html and decompress it. The compressed file contains NaviCluster.
jar, the lib folder (libraries necessary for running NaviCluster), a property in-
formation file (gene_ontology-100329-short.txt), and a sample dataset com-
posed of a node list file (yeastnet2-noIEA.node), which contains information
about nodes and an edge list file (yeastnet2-noIEA.edge), which contains a list
of edges and their weights.

(a) The property information file is Gene Ontology (GO) derived from the OBO
format available on its website (http://www.geneontology.org) at 29 March
2010.

(b) The sample dataset is the Saccharomyces cerevisiae protein network YeastNet
v.2 with 5,483 nodes and 102,803 edges.
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(c) GO annotations for nodes in the node list file are obtained from Saccha-
romyces Genome Database (SGD), http://www.yeastgenome.org/.

3. Double-click navicluster.sh (Mac OS X) or navicluster.bat file (Windows).
You can also run NaviCluster via the command

java -Xmx1024m -jar NaviCluster.jar

4. NaviCluster runs the two-stage clustering algorithms on the sample dataset and
shows the main window. At this stage, you can start navigating the network.

Note: For Linux users, please type -Dawt.useSystemAAFontSettings=on between java
and -jar in the above command to force Java to use anti-alias rendering for all GUI
components.

A.2 Network Loading

To load a new network, you need two files describing the network: a node list file and
an edge list file. See Sections A.2.1, A.2.2 for details about the node list file format and
edge list file format.

1. Click the Load Network button.

2. Click Browse... to select your node list file. Then, click Browse... to select your
edge list file. A node list file must have .node as its extension. An edge list file
must have .edge as its extension.
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3. Click OK. NaviCluster then loads, clusters, and visualize your abstracted network.

A.2.1 Node List File Format

A node list file contains a list of nodes and their information. Together with an edge list
file, they describe a network. To create a network that can be loaded in NaviCluster,
you have to make your node list file comply with the following guidelines:

1. The first row of the file must be the column header names: display_name,

source_db_name, source_db_id, and prop_info. Each name is separated by
"\t".

2. Node data starts from the second row. You can add your nodes in any order–they
are not needed to be in an alphabetical order of their names. Each data item is
separated by "\t".
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3. The meaning of each column:

(a) display_name: the name of node. This is used to label the node on the
canvas.

(b) source_db_name: the name of source database where the node relies on.
NaviCluster provides queries on the NCBI Entrez Gene database (www.ncbi.
nlm.nih.gov/gene) using the name of node as input. In case you specifies
the source database as SGD (Saccharomyces Genome Database), NaviCluster
alternatively links the node to the SGD website http://www.geneontology.
org.

(c) source_db_id: The identifier of node in the source database. In case of SGD,
the node is queried using this ID instead of its name.

(d) prop_info: a list of property terms’ identifiers annotated to the node. They
are separated by a vertical bar "|". Each property term must be described
in the property information file.

A.2.2 Edge List File Format

An edge list file contains a list of edges and their weights. Together with a node list file,
they describe a network. To create a network that can be loaded in NaviCluster, you
have to make your edge list file comply with the following guidelines:

1. The first row of the file must be the column header names: source_node,

target_node, and weight. Each name is separated by "\t".

2. Edge data starts from the second row. You can add your edges in any order–they
are not needed to be in an alphabetical order of their names. Each data item is
separated by "\t".
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3. The meaning of each column:

(a) source_node: the first node of the edge (specified by the name that exists in
the node list file).

(b) target_node: the second node of the edge (specified by the name that exists
in the node list file).

(c) weight: the weight of the edge (can be any nonnegative number).

A.3 Basic Network Navigation

Once your network is loaded, you can start navigating the network in several ways, click,
shift-click, double-click, and right-click. Apart from these, you can go back and forth
between the created views by using the set of Graph View Navigation buttons in the
left panel (Figure 3.3).

Click: You can click to select a node, a cluster, or an edge/meta-edge/property
edge. You can then drag the node/the cluster freely to rearrange the network in the
current graph view to, for example, reveal an edge weight which might have been hidden
on the canvas (Figure A.1). Once you select a node or a cluster, only edges/meta-
edges/property edges that directly connect to the node or the cluster are keep shown
(Figure A.2).

Figure A.1: Dragging a cluster to reveal hidden objects. Before dragging a cluster
shown on the left, the weights of two edges were hidden. After dragging the cluster to
the right, the weights of two edges are revealed.

Shift-Click: To select more than one object at a time, press SHIFT key and then
click to select items (nodes, clusters, edges/meta-edges/property edges) one by one. Or
you can drag your mouse at the canvas space to create a rectangle that covers objects
you want to select.

Double-Click: Double-click on a cluster in NaviCluster means zooming in on the
cluster to reveal its members. You can alternatively select the cluster and click the
Zoom In button located in the left panel. To zoom in on more than one cluster, selecting
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Figure A.2: When selecting a cluster, the tool shows only directly connected edges.
After selecting the establishment of cell polarity cluster, only edges connecting to the
members of the cluster are shown.

multiple clusters (by shift-click) and click the Zoom In button. Double-click on other
items that are not currently selected has no effects.

Right-Click: Right-click shows a context-sensitive menu depending on what are
currently selected (Figure A.3). For detail, see Section B.4.1.

A.3.1 Context-Sensitive Menus

Nodes:

1. Top 10 Propery Terms: Show the ten highest-score property terms of node

2. Show Information from Relevant Online Database: Retrieve and show in-
formation from the online database using a node name as a query. The database
name is obtained from the node list file. If NaviCluster does not know the database
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Figure A.3: Right-click shows a context-sensitive menu.

name specified in the node list file, it uses the NCBI Entrez Gene database
(www.ncbi.nlm.nih.gov/gene) instead.

Clusters:
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1. Top 10 Propery Terms: Show the ten highest-score property terms among all
the terms annotated to the node members of cluster.

2. Node List(s) w/ Top Score Property Terms: Show the members of the
cluster followed by their highest score terms.

3. Edge Density: Provide information about edge density of the cluster: (A) the
number of edges within the cluster, (B) the number of edges connecting the nodes
within the cluster and nodes outside the cluster, (C) the ratio between (A) and
(B), (D) edge density calculated as the ratio between (A) and N(N � 1)/2 where
N = the number of nodes within the cluster.

Edges, Meta-Edges, Property Edges:
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View Edge Details: Show the details of edge (a pair of end nodes and an edge
weight) with brief information about other types of edges existing between the two ends.

View Meta-Edge Details: Show the details of meta-edge (a pair of end nodes and
the number of edges bundled) with brief information about other types of edges existing
between the two ends.

View Property Edge Details: Show the details of property edge (a pair of end
nodes and the similarity value of property edge) with brief information about other types
of edges existing between the two ends.

A.4 Search & Highlight

To facilitate the navigation to your node of interest, NaviCluster provides the search-
and-highlight function. With this function, you can get to the node more easily and
quickly.

1. Type the name of your node of interest (case-insensitive).

2. Click Search or press ENTER on the keyboard.
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3. Nodes whose names or their parts match with your query are shown in the text
area below.

4. Double-click on the name of node you want to trace (or select the name, and press
Highlight Selected Node). The cluster in the current view containing the node is
then highlighted in pink.

A.5 Zoom

Zooming allows you to reveal members of selected clusters and navigate deep down to
a lower level of the hierarchy. In NaviCluster, You can select more than one cluster to
zoom in on. All the members of selected clusters will be fed into the two-stage clustering
(Chapter 2 and Section 3.2.1) before visualization.

1. Select a cluster or many clusters you want to zoom in on.

2. Click Zoom In. In case of one cluster, you can double-click on it directly as well.
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3. NaviCluster then clusters all nodes of the selected cluster(s) and visualizes the
result, which may be composed of only nodes, only clusters, or a mix of clusters
and nodes.

A.6 Re-Center

Re-centering runs the two-stage clustering (Chapter 2 and Section 3.2.1) on all nodes of
the entire network whose geodesic distances to selected nodes/clusters are less than or
equal to a value specified by users (number of hops).

1. Select nodes/clusters you want to re-center the network on.
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2. Specify the number of hops (geodesic distance) in the textbox (by typing or adjust-
ing the spinner on the right of the box) and click Run to execute the re-centering
function.

3. Re-centered nodes/clusters are displayed surrounded by their neighbors, organized
as clusters.

A.7 Property Information File Loading

The property-based clustering component of NaviCluster relies on the propery informa-
tion file, which describes properties annotated to the nodes of network. When loading a
new network, you can change the property information file to describe properties used
in the new network files accordingly.

1. Click the Load Prop. Info File button.
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2. Select a new property information file. Any text file complying with the format,
described in Section B.8.1, should be fine. Then, click OK to load the file.

A.7.1 Property Information File Format

As mentioned above, the property information file describes all property terms annotated
to the nodes of the input network. To create such a file, you have to make your property
information file comply with the following guidelines (Gene Ontology (GO) is used in
the figure):
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1. Data starts from the first row. There are six items per row needed. Each item is
separated by "\t". Each row is referred to by its ID (the first column), so you can
enter data rows in any order–there is no need to be in an alphabetical order.

2. The meaning of each word in the row: (The meaning in case GO is used are shown
in brackets.)

(a) ID: the identifier of property term [GO ID].

(b) name: the name of property term [GO term’s name]

(c) display_name: the name that will be used in labelling clusters in abstracted
views. [It is a short version of the term’s name, used to save the space.]

(d) namespace: the namespace (category) of term [GO namespace of the term:
Biological Process, Molecular Function, or Cellular Component]

(e) weight: the weight of term used in the property-based clustering. Terms
with higher weight affect the meanings (properties) of nodes more than terms
with lower weights. [the depth of the term in the GO hierarchies]

(f) parents: the list of parent of the term (in case the property information is
organized in a hierarchy). Parent terms are separated by vertical bars, "|".
[All parent terms of the term based on the GO hierarchies]

A.8 Network Re-Clustering

As the property-based clustering of NaviCluster (Section 2.2.1) makes use of namespace
weights, you can change the aspect of network navigation by adjusting the weights
differently and re-cluster the network.
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1. Adjust the sliders of namespace weights as you wish. The minimum value is on
the left (0.0) and the maximum value is on the right (1.0). The higher weight, the
more the terms belonging to the namespace contribute to the result of clustering.

NOTE: All namespace weights must NOT be set to zero at the same time. As
NaviCluster guarantees the manageable amount of information on the screen, in
case the number of clusters produced by the Louvain algorithm is not small enough,
property terms whose namespace weight is not zero have to be used. Therefore,
putting all weights to zero has no meaning in NaviCluster and is not intended to
produce a view generated by only the Louvain algorithm.

2. Specify the preferred number of clusters to be shown on the screen.

3. Click Re-Cluster. NaviCluster then re-clusters the network using the new values
you have adjusted.
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A.9 Make Custom Graph View

When clicking the Make Custom Graph View button located in the right panel (Figure
3.3), the dialog shown in the below figure appears. This function lets you select clus-
ters/nodes to be shown on the screen more specifically by choosing them from the lists
on the left and clicking the > ‌> button to move them to the list on the right. If you
want to cancel your selection, select the corresponding clusters/nodes on the right and
click the <‌< button to move them back.

75



Panel 1 shows the list of all clusters in the current view and the nodes appearing
explicitly in the view.

Panel 2 shows the list of all the nodes contained in the clusters of this view. This
assists you in selecting some nodes inside the clusters of interest.

Panel 3 shows other nodes in the input network that do not appear in the current
view.

Panel 4 shows the list of selected clusters/nodes to be used to create a new view.
After finishing the selection, press the OK button to create a new view from your

selected clusters/nodes. If you want to cancel this operation, press the Cancel button.

A.10 Export as Images

You can save a graph view you explore as an image via the Save As... button in the left
panel. Supported file formats are EPS, JPG, PNG, PS, and SVG.

1. Click the Save As... button.

2. Select your preferred file type. The default selection is EPS, which is a vector
graphics format.

76



NOTE: Vector graphics can be expanded to any sizes while retaining the image
quality, which is in contrast to raster graphics

3. Type a name for the file.

4. Click OK. The canvas is then exported as an image and ready for use.
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A.11 Conversion from PSI-MITAB to Node & Edge
List files

PSI-MITAB format is a standard format supported by many databases, e.g., DIP, MINT,
IntAct, and BioGRID (http://www.psidev.info/). A script that converts a network in
the PSI-MITAB format to node and edge list files for NaviCluster is provided to support
users who want to import networks in PSI-MITAB.

Download: PsiMiTabConverter.zip from http://navicluster.cb.k.u-tokyo.
ac.jp/PsiMiTabConverter.zip

Instruction:

1. Extract the file into your favorite place in your computer

2. Type the following command in the terminal/command prompt:

java -Xmx1024m -jar PsiMiTabConverter.jar <PsiMitabFilePath>
<AnnotationFilePath> -needIEA

(a) PsiMiTabFilePath is the path to the network in PSI-MITAB format you
want to convert.

(b) AnnotationFilePath is the path to an annotation file that complies with GO
Annotation File Format Guide (http://www.geneontology.org/GO.format.
annotation.shtml).

(c) -needIEA (t or f): type t if you want to include annotations whose evidence
is IEA (Inferred from Electronic Annotation); Or else type f.
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Appendix B

NaviClusterCS User Manual

An online manual is also available and updated at http://navicluster.cb.k.u-tokyo.
ac.jp/cs/.

B.1 Download & Run

Prerequisite: Cytoscape v2.8 or later must be installed in your computer. Cytoscape
can be downloaded at http://www.cytoscape.org/download.html. User manual of
Cytoscape can be found at http://cytoscape.org/manual/Cytoscape2_8Manual.html.

1. Download NaviClusterCS.jar via http://navicluster.cb.k.u-tokyo.ac.jp/
cs/files/NaviClusterCS.jar.

2. Locate your Cytoscape folder. If you use Cytoscape v2.8.1 in Mac OS X, the
path to the Cytoscape folder should be /Applications/Cytoscape_v2.8.1/ by
default.

3. In Windows, this should be C:\Program Files\Cytoscape_v2.8.1 by default. If
you use other versions of Cytoscape, the version number in the Cytoscape path
varies accordingly.

4. Place NaviClusterCS.jar, which is a plugin file, into the plugins folder under
the Cytoscape folder.

5. Launch Cytoscape as usual and wait until the initialization is finished.

6. The NaviClusterCS panel appears as the first tab in the control panel of Cytoscape.
From now, you can load network files and start using NaviClusterCS.

Note: It is recommended to adjust the maximum memory that Cytoscape can use to
1024 MB or larger, depending on an available memory size of your computer:
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1. Open the file Cytoscape.vmoptions in the Cytoscape folder, e.g., /Applications/
Cytoscape_v2.8.1/ in Mac using any text editors.

2. In the file Cytoscape.vmoptions, change the number after the word "-Xmx" in
the second line to "1024m" or larger number.

Here, 1024m means the maximum memory that Cytoscape can use is 1024 MB or 1 GB.
If your computer has more memory, try a larger memory size, e.g., 2048m. This should
make NaviClusterCS run even more smoothly.

B.2 Sample Dataset

1. Download Sample.zip via http://navicluster.cb.k.u-tokyo.ac.jp/cs/files/
Sample.zip and decompress it. The compressed file contains a property informa-
tion file gene\_ontology-150411.txt, and a sample dataset composed of a node
list file (atted.node), which contains information about nodes and an edge list
file (atted.edge), which contains a list of edges and their weights.

(a) The property information file is Gene Ontology (GO) derived from the OBO
format available on its website (http://www.geneontology.org) at 15 April
2011.

(b) The sample dataset is the Arabidopsis gene co-expression network ATTED-II
with 22,447 nodes and 189,546 edges.

(c) GO annotations for nodes in the node list file are obtained from the TAIR
database, http://www.arabidopsis.org/.

2. In Cytoscape, click the Load Network button in the NaviClusterCS panel.

3. Select atted.node and atted.edge, downloaded in step 1, as node and edge list
files respectively and click OK. Cytoscape then loads the network dataset.

4. Click Start!. NaviClusterCS runs the two-stage clustering on the sample dataset
and shows the result on the canvas of Cytoscape. At this stage, you can start
navigating the network.

B.3 Network Loading

To load a network via NaviClusterCS interface, you need two files describing the network:
a node list file and an edge list file. See Sections B.3.1, B.3.2 for details about the node
list file format and edge list file format.
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1. Click the Load Network button on the NaviClusterCS tab of the Control Panel.

2. Click Browse... to select your node list file. Then, click Browse... to select your
edge list file. A node list file must have .node as its extension. An edge list file
must have .edge as its extension.

3. Click OK. NaviClusterCS then loads, clusters, and visualize your abstracted net-
work.
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B.3.1 Node List File Format

A node list file contains a list of nodes and their information. Together with an edge list
file, they describe a network. To create a node list file, follow the below guidelines:

1. The first row of the file must be composed of four column headesr: display_name,

source_db_name, source_db_id, and prop_info. Each name is separated by
"\t".

2. Node data starts at the second row. You can add your nodes in any order–they
are not needed to be in an alphabetical order of their names. Each data item is
separated by tab "\t".

3. The meaning of each column:

(a) display_name: the name of node. This is used to label the node on the
canvas.

(b) source_db_name: the name of source database where the node relies on.
NaviCluster provides queries on the NCBI Entrez Gene database (www.ncbi.
nlm.nih.gov/gene) using the name of node as input by default. Default
databases and their URLs, which are bundled with the sample file, are SGD,
TAIR, UniProt, FlyBase, HGNC, RGD, and Entrez Gene. You can specify
your new source databases and their URLs for queries by selecting "Navi-
ClusterCS" → "General Settings" from the menu bar.

(c) source_db_id: The identifier of node in the source database.
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(d) prop_info: a list of property terms’ identifiers annotated to the node. They
are separated by a vertical bar "|". Each property term must be described
in the property information file.

B.3.2 Edge List File Format

An edge list file contains a list of edges and their weights. Together with a node list file,
they describe a network. To create an edge list file, please follow the below guidelines:

1. The first row of the file must be composed of three column headers: source_node,

target_node, and weight. Each name is separated by "\t".

2. Edge data starts at the second row. You can put your edges in any order–they
are not needed to be in an alphabetical order of their names. Each data item is
separated by "\t".

3. The meaning of each column:

(a) source_node: the first node of the edge (specified by the name that exists in
the node list file).

(b) target_node: the second node of the edge (specified by the name that exists
in the node list file).

(c) weight: the weight of the edge (can be any nonnegative number).
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B.4 Basic Network Navigation

For the information about how to manipulate nodes and edges on the canvas of Cy-
toscape, see the Cytoscape User Manual (http://cytoscape.org/manual/Cytoscape2_
8Manual.html#Basic%20Network%20Navigation). You can select clusters generated by
NaviClusterCS as usual Cytoscape nodes. Note that when you select a node/cluster,
only edges/meta-edges/property edges connecting to that node/cluster are shown.

B.4.1 Context-Sensitive Menus

Nodes:

1. Propery Terms: Show the property terms of node

2. External DBs: Show link to the information stored in online databases with the
node’s name as a query.

Clusters:
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1. Propery Terms: Show the property terms among all terms of all the node mem-
bers of the cluster

2. Members: Show the members of cluster followed by their highest score terms.

Edges, Meta-Edges, Property Edges:
Edge Information: Show the details of edge (a pair of end nodes and an edge

weight) with brief information about other types of edges existing between the two
ends.

Meta-Edge Information: Show the details of meta-edge (a pair of end nodes and
the number of edges bundled) with brief information about other types of edges existing
between the two ends.
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Property Edge Information: Show the details of property edge (a pair of end
nodes and the similarity value of property edge) with brief information about other
types of edges existing between the two ends.

B.5 Search & Highlight

To facilitate the navigation to your node of interest, NaviClusterCS provides the search-
and-highlight function. With this function, you can get to the node more easily and
quickly.

1. Type the name of your node of interest (case-insensitive).
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2. Click the Search button.

3. Nodes whose names or their parts match with your query are shown in the text
area below.

4. Double-click on the name of node you want to trace (or select the name, and press
Highlight Selected Node). The cluster in the current view containing the node is
then highlighted.

B.6 Zoom

Zooming allows you to reveal members of selected clusters and navigate deep down to a
lower level of the hierarchy. In NaviClusterCS, You can select more than one cluster to
zoom in on. All the members of selected clusters will be fed into the two-stage clustering
(Chapter 2 and Section 3.2.1) before visualization.

1. Select a cluster or many clusters you want to zoom in on.
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2. Click Zoom In. In case of one cluster, you can double-click on it directly as well.

3. NaviClusterCS then clusters all nodes of the selected cluster(s) and visualizes the
result, which may be composed of only nodes, only clusters, or a mix of clusters
and nodes.
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B.7 Re-Center

Re-centering runs the two-stage clustering (Chapter 2 and Section 3.2.1) on all nodes of
the entire network whose geodesic distances to selected nodes/clusters are less than or
equal to a value specified by users (number of hops).

1. Select nodes/clusters you want to re-center the network on.

2. Specify the number of hops (geodesic distance) in the textbox (by typing or adjust-
ing the spinner on the right of the box) and click Run to execute the re-centering
function.

3. Re-centered nodes/clusters are displayed surrounded by their neighbors, organized
as clusters.
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B.8 Property Information File Loading

The property-based clustering component of NaviClusterCS relies on the propery infor-
mation file, which describes properties annotated to the nodes of network. When loading
a new network, you can change the property information file to describe properties used
in the new network files accordingly.

1. Select menu NaviClusterCS → Switch Domains... on the menu bar.

2. In the Switch Domains dialog, click the Browse.. button in the Property Informa-
tion panel.
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3. Select a new property information file. Any text file complying with the format,
described in Section B.8.1, should be fine. Then, click OK to load the file.

B.8.1 Property Information File Format

As mentioned above, the property information file describe all property terms annotated
to the nodes of the input network. To create such a file, you have to make your property
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information file comply with the following guidelines (Gene Ontology (GO) is used in
the figure):

1. Each row represents the information of each property term. There are six items
per row. Each item is separated by tab "\t". Each row is referred to by its ID
(the first column), so you can enter data rows in any order–there is no need to be
in an alphabetical order.

2. The meaning of each word in the row: (The meaning in case GO is used are shown
in brackets.)

(a) ID: the identifier of property term [GO ID].

(b) name: the name of property term [GO term’s name]

(c) display_name: the name that will be used in labelling clusters in abstracted
views. [It is a short version of the term’s name, used to save the space.]

(d) namespace: the namespace (category) of term [GO namespace of the term:
Biological Process, Molecular Function, or Cellular Component]

(e) weight: the weight of term used in the property-based clustering. Terms
with higher weight affect the meanings (properties) of nodes more than terms
with lower weights. [the depth of the term in the GO hierarchies]

(f) parents: the list of parent of the term (in case the property information is
organized in a hierarchy). Parent terms are separated by vertical bars, "|".
[All parent terms of the term based on the GO hierarchies]
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B.9 Network Re-Clustering

As the property-based clustering of NaviCluster (Section 2.2.1) makes use of namespace
weights, you can change the aspect of network navigation by adjusting the weights
differently and re-cluster the network.

1. Adjust the sliders of namespace weights as you wish. The minimum value is on
the left (0.0) and the maximum value is on the right (1.0). The higher weight, the
more the terms belonging to the namespace contribute to the result of clustering.

NOTE: All namespace weights must NOT be set to zero at the same time. As
NaviClusterCS guarantees the manageable amount of information on the screen, in
case the number of clusters produced by the Louvain algorithm is not small enough,
property terms whose namespace weight is not zero have to be used. Therefore,
putting all weights to zero has no meaning in NaviClusterCS and is not intended
to produce a view generated by only the Louvain algorithm.

2. Specify the preferred number of clusters to be shown on the screen.

3. Click Re-Cluster. NaviClusterCS then re-clusters the network using the new values
you have adjusted.
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B.10 Make Custom Graph View

When clicking the Make Custom Graph View button located in the right panel (Figure
3.3), the dialog as shown in the below figure appears. This function lets you select
clusters/nodes to be shown on the screen more specifically by choosing them from the
lists on the left and clicking the >‌> button to move them to the list on the right. If you
want to cancel your selection, select the corresponding clusters/nodes on the right and
click the <‌< button to move them back.
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Panel 1 shows the list of all clusters in the current view and the nodes appearing
explicitly in the view.

Panel 2 shows the list of all the nodes contained in the clusters of this view. This
assists you in selecting some nodes inside the clusters of interest.

Panel 3 shows other nodes in the input network that do not appear in the current
view.

Panel 4 shows the list of selected clusters/nodes to be used to create a new view.
After finishing the selection, press the OK button to create a new view from your

selected clusters/nodes. If you want to cancel this operation, press the Cancel button.
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