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List of abbreviations 

A4N3 

 

Ac  acetyl 

BISBI 

2,2’-bis(diphenylphosphinomethyl)- 

1,1’-biphenyl 

 

Cp  cyclopentadienyl 

Cp* 

1,2,3,4,5-pentamethylcyclopentadienyl 

CO  carbon monoxide 

DFT  Density functional theory 

Diglyme 1,2-dimethoxyethane 

DMPE  

1,2-bis(dimethylphosphino)ethane 

DMA  N,N-dimethylacetamide 

DPPE  

1,2-bis(diphenylphosphino)ethane 

DPPP  

1,3-bis(diphenylphosphino)propane 

Et  ethyl 

equiv.  equivalent 

ESI  electrospray ionization 

GC  gas chromatography 

i
Pr  isopropyl 

IR  infrared 

M  mol per liter 

MCC 

Mitsubishi Chemical Corporation 

N. D.  not determined 

NMP  N-methylpyrrolidone 

NMR  nuclear magnetic resonance 

t
Bu  tert-butyl 

Ph  phenyl 

PPN  

bis(triphenylphosphoranilidene)-

ammonium 

 

R  alkyl or aryl 

r.t.  room temperature 
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S/N  signal-to-noise ratio 

TBS  tert-butyldimethylsilyl 

TCI Tokyo Chemical Industry Co., 

Ltd. 

THF  tetrahydrofuran 

THP  tetrahydropyranyl 

TOF  turnover frequency 

UCC  Union Carbide Corporation 

XANTPHOS 

4,5-bis(diphenylphosphino)-9,9- 

dimethylxanthene 
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Introduction 

1-1 Hydroformylation 

Mankind has been enormously benefitted from chemical industry over 100 years. Now, it is 

based on fossil resources such as petroleum oil, natural gas, or coal. One of the chief building 

blocks is carbon monoxide. Carbon monoxide is available in an admixture with dihydrogen, 

which is referred to as synthesis gas. As a mixture or after separation from dihydrogen, it is 

utilized in a number of syntheses of chemical compounds such as hydrocarbons (Fischer-Tropsch 

synthesis), esters, carboxylic acids, aldehydes, etc. Hydroformylation is a reaction giving 

aldehyde from an alkene and H2/CO in the presence of transition metal catalyst (Scheme 1-1). 

 

Scheme 1-1. Hydroformylation of an alkene 

 

 

This reaction was originally reported by Roelen in 1938,
1
 and commercialized as a method to 

produce aldehyde. Currently, hydroformylation is the most widely used method for aldehyde 

synthesis, and more than 10 million tons of aldehydes are annually produced in the world. 

Representative examples of industrial uses and consumptions of aldehydes are summarized in the 

Tables 1-1 and 1-2. Since normal-aldehyde is more desired than iso-aldehyde, extensive 

devotions have been paid on the development of normal-selective hydroformylation catalyst. 

Another target of hydroformylation is the enantio-selective hydroformylation since α-carbon of 

carbonyl of i-aldehyde could be a chiral center. That is potentially a useful tool for fine chemical 

synthesis.
2
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Table 1-1 Summary of industrial use of aldehydes produced by hydroformylation 
aldehyde Uses 

propanal
3
 Trimethylolethane 

butanals
4
 1-butanol

5
 for solvent, plastisizer etc. 

2-ethylhexanol
6
 for plastisizer 

pentanals
7
 1-pentanol for solvent, plasticizers, lubricants etc. 

C6 aldehydes
7
 alcohol, carboxylic acid 

C7 aldehydes
7
 α-amylcinnamaldehyde for perfume 

heptanoic acids or esters for lubricants 

C8 aldehydes
7
 citrus oils or α-hexylcinnamaldehyde for perfume 

alcohols for plasticizer 

N-(2-ethylhexyl)aniline for vulcanizing agents and antioxidants for rubber 

sodium 2-propylpentanoate for antiepileptic 

C9 aldehydes
7
 perfume 

intermediate for plasticizer 

C10 aldehydes
7
 intermediates for iso-decanol and iso-decanoic acid 

intermediates for perfume, medicine, polymer, and pesticide. 

C11 aldehydes
7
 intermediates for perfume 

intermediates for medicine, fungicides, plant growth regulators, 

bactericides, and disinfectants. 

C12-C18 aldehydes
8
 alcohols for detergent 

 

Table 1-2 Summary of consumption of aldehydes produced by hydroformylation in 1998 (10
3
 

t/y)
7
 

 Western Europe United States Japan 

Propanal 12 183 1 

n-butanal 1274 1178 622 

i-butanal 128 263 72 

Pentanals 12 35 105 

C6-C13 aldehydes 

(the amounts are those of alcohols for plasticizers) 

460 430 53 

C12-C18 aldehydes 

(the amounts are those of alcohols for detergents) 

174 215 53 

C7-C9 oxo fatty acids 12 44 - 

Others 80 20 - 

 

1-1-1 Industrially used catalyst for hydroformylation 

Rolen’s first discovery of hydroformylation was cobalt-based catalyst and chemical plant by 

using cobalt was initially commercialized. Since then, many kinds of transition metal elements 

such as rhodium,
9a

 iridium,
9b

 iron,
9c

 ruthenium,
9d

 osmium,
9e

 palladium,
9f

 and platinum
9g

 have 

been reported to have activity for hydroformylation. One of the most important advances was the 
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development of phosphine-modified cobalt and rhodium catalysts patented in 1966 by Shell Oil 

Company.
10

 It claimed that when a phosphine ligand was used as a catalytic additive with cobalt 

or rhodium, activities and selectivities of hydroformylation were significantly changed 

depending on the structure of the phosphine ligand. Importantly, phosphine-modified systems 

tend to exhibit higher selectivity to normal-aldehyde over iso-aldehyde (the ratio is defined as n/i 

ratio here), which meets industrial demand. Since the phosphine-modified rhodium system is 

superior to the cobalt system in terms of selectivity and activity, it became used more widely and 

partially replaced the traditional cobalt-based processes. Currently, phosphine-modified rhodium 

catalysts are most commonly used, but still some processes are operated by using cobalt-based 

catalysts.
11a

 

 

1-1-2 Mechanistic aspects of hydroformylation 

Reaction mechanism of rhodium catalyzed hydroformylation is illustrated in Scheme 1-2.
11

 As 

a precursor, Rh(I)XL3 (X: anionic ligand, L: neutral ligand) type complex is commonly used and 

tetracarbonylhydridorhodium is produced by losing HX and 3L under H2/CO pressure. 

Dissociation of one carbon monoxide molecule allows coordination-insertion of an alkene to the 

Rh‒H bond to form an alkylrhodium intermediate. Then, insertion of CO takes place and 

successive hydrogenolysis of the resulting Rh(acyl) species releases aldehyde and regenerates 

Rh‒H. 
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Scheme 1-2. Reaction mechanism of hydroformylation catalyzed by rhodium 

 

 

Under typical condition (PH2 and PCO ~1.0 MPa, temperature ~100 °C), initial loss of CO and 

coordination-insertion of an alkene is the rate-determining step. When the insertion of an alkene 

to the Rh–H bond takes place in 1,2-form as described in Scheme 1-2, the resulting aldehyde will 

be normal-aldehyde. On the other hand, when the insertion occurs in 2,1-form, iso-aldehyde is 

obtained (Scheme 1-3). With the unmodified rhodium catalyst, the n/i ratio is roughly one for 1-

hexene. 

 

Scheme 1-3. Mechanism to afford iso-aldehyde 
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On the other hand, in phosphine-modified systems with an excess amount of phosphine 

ligands to rhodium (2 to 100 equivalent to rhodium), n/i ratios are improved. This effect is 

roughly explained by the larger steric repulsion between the phosphorus ligands and iso-alkyl or 

acyl group on rhodium than normal-counterparts (Scheme 1-4).
12

 However, it is not clear which 

step in the catalytic cycle (Scheme 1-2) is the selectivity determining step.
11b

 

 

Scheme 1-4. Insertion of an alkene to rhodium hydride in the presence of phosphorus ligands 

 

 

Among the various phosphorus ligands, triphenylphosphine-modified hydroformylation was 

first commercialized in 1970s, and still now commonly used. Investigations for developing better 

normal-selective catalyst were still paid significant attention. As a result, two important scaffolds 

of bidentate phosphorus ligands were developed, namely, BISBI
12

 and XANTPHOS in 1987 and 

1995 respectively (Figure 1-1).
14

 

 

 

Figure 1-1. XANTPHOS and BISBI, and their preferred coordination geometry 
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When combined with rhodium, both of these ligands and their derivatives exhibited very high 

n/i ratio (> 50) and high reaction rate (TOF > 500 h
−1

). The high n/i ratios were found to be 

explained by introducing a parameter of “natural bite angle”,
15

 which represents a range of 

favorable chelating angle of bisphosphorus ligand. In exact definition, it is a computationally 

calculated most favorable P-M-P angle for bidentate phosphorus ligands, where M is a dummy 

metal atom having no preference for any coordination geometry. Casey et al. and van Leeuwen 

et al. independently reported correlation between the bite-angle and the n/i ratio.
13, 14

 A more 

stable coordination geometry of pentacoordinated hydridoRh(I) is generally trigonal bipyramidal 

(tbp) rather than square pyramidal (sp) geometry. Insertion of an alkene takes place via 

RhH(alkene)L3 (L = phosphine or CO). In this complex, the hydride ligand was always found at 

apical position and the alkene has to be at equatorial position to undergo insertion.
13b,14a

 For 

bidentate phosphorus ligands, two chelation modes are possible, which are equatorial-equatorial 

and equatorial-apical. The ideal angle of L-M-L is 120° in the former case and 90° in the latter 

(Figure 1-2). Casey et al. reported that BISBI, which has a natural bite-angle of 113° preferably 

coordinates with an equatorial-equatorial form.
13b

 With isotope experiments, they confirmed that 

coordination of an alkene to rhodium by ligand exchange and concerted migratory insertion of 

the alkene to Rh-H to give alkylrhodium intermediate (Scheme 1-2) were irreversible under 

typical conditions.
13c

 Therefore, the n/i ratio should be determined in this step. They proposed 

that when the bisphosphine is chelating with equatorial-equatorial form, both of the phosphorus 

atoms are close to the coordinating alkene and the hydride ligand. Therefore, steric effect to 

destabilize iso-alkyl Rh intermediate or transition state leading to iso-alkyl Rh intermediate is 

larger with equatorial-equatorial chelating bisphosphorus ligand (Figure 1-1).
13c

 However, they 

also reported that molecular mechanics calculations failed to support the proposal.
13c
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Figure 1-2. Two possible transition states of the insertion of an alkene into a rhodium hydride 

with a bidentate phosphorus ligand 

 

On the other hand, van Leeuwen et al. reported that equatorial-equatorial coordination is not 

the prerequisite for the high n/i ratio in the case of XANTPHOS and its derivatives.
14d

 Their 

conclusion was that high normal-selectivity was simply a result of the steric congestion induced 

by the large bite angle to form a sterically less demanding linear alkyl rhodium species. They 

also performed DFT calculations to prove that the difference of the relative energies of the 

transition states to give normal- and iso-alkylrhodium species from 

Rh(CO)(alkene)(diphosphine) agrees with the high n/i selectivity of XNATPHOS derivatives.
14f

 

In terms of catalytic activity, phosphite ligands are superior to phosphines. Since the 

dissociation of carbon monoxide is incorporated in the rate-determining step, acceleration of this 

step will increase the catalytic activity. Phosphite is more electron-withdrawing ligand compared 

to phosphine. Therefore, the electron density of the metal center coordinated by phosphites is 

relatively low compared to that of the phosphine complex. This results in weaker back donation 

from metal to carbon monoxide, which facilitates the dissociation of carbon monoxide. 

Consequently, rhodium complexes bearing bisphosphite ligands with BISBI-type backbone 
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exhibit high n/i ratio and catalytic activity. Two examples
16

 
17

 are shown in Figure 1-3. With 

those systems, n/i ratio is higher than 50 and TOF is more than 1000 h
−1

. 

 

 

 

Figure 1-3. Representative examples of BISBI-type bisphosphite ligand 

 

In summary, hydroformylation has been paid significant attention for decades as a method to 

prepare aldehydes since the discovery by Roelen. Industrial application was accomplished more 

than 50 years, while the development of better catalyst systems is still desired. Now the 

selectivities normal-aldehyde and catalytic activities of recent systems are satisfactory for the 

industrial use. 
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1-2 Hydrogenation of carbonyl groups by metal–ligand bifunctional catalysts 

Metal-catalyzed hydrogenation of unsaturated compounds is among the most important 

synthetic reactions in view of not only academic interests but also industrial applications.
18

 One 

of the earliest example of transition metal-based hydrogenation catalyst is Adam’s catalyst 

derived from platinum oxide, which catalyzed the reaction in the solid-liquid surface.
19

 

Wilkinson introduced RhL3Cl (L = neutral ligand), well known as “Wilkinson’s catalysts”, 

which were reported as well defined homogeneous hydrogenation catalyst for alkenes and 

alkynes.
20

 Reaction mechanism was well investigated to establish the catalytic cycle drawn in 

Scheme 1-5.
20c, 20d

 

 

Scheme 1-5. Hydrogenation of an alkene catalyzed by Wilkinson’s catalyst 

 

 

 

Since then, a number of homogeneous catalysts utilizing various tansition metals have been 

reported for hydrogenation of a variety of unsaturated substrates and many kinds of reaction 

mechanisms have been proposed for these systems. Among them, one of the relatively new type 
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of hydrogenation catalysts is “metal–ligand bifunctional hydrogenation catalysts”, in which 

dihydrogen is cooperatively activated by the metal center and its ligand. This type of 

hydrogenation catalyst was first reported by Shvo et al. (Scheme 1-6).
21

 They reported that 

tricarbonyl(tetraphenylcyclopentadienone)ruthenium (1) affords 

dicarbonyl(tetraphenylhydroxycyclopentadienyl)hydridoruthenium (2) under dihydrogen 

pressure, and that mediates hydrogenation by transfer of its protic hydrogen on oxygen atom and 

hydridic hydrogen on the ruthenium center (Scheme 1-6).
21c

 As a resting state, isolable 

ruthenium dimer (3) is formed, which supported the proposed mechanism,
21c

 and this dimer is 

known as “Shvo’s catalyst”. The mechanism was thoroughly studied by Casey et al.
21e-21h

 They 

proposed that the hydrogen transfer from (hydroxycyclopentadienyl)hydridoruthenium to 

carbonyl takes place in a concerted manner as illustrated in Scheme 1-6. In this type of 

mechanism, coordination of the substrate to ruthenium center is not necessary to undergo 

hydrogenation, and thus it is referred to as “outer-sphere mechanism”. This mechanism was 

supported by various experiment. 

For example, Casey prepared deuterated 2 having deuteriam both or either on the oxygen and 

ruthenium center, and observed the difference of the rate of the hydrogen transfer to an 

aldehyde.
21e

 As a result, kinetic isotope effect was observed for both of the two hydrogen atoms. 

This fact indicates the concerted mechanism, where two hydrogen atoms are transferred to the 

aldehyde via single transition state. 
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Scheme 1-6. Proposed mechanism for the hydrogenation of an aldehyde by Shvo’s 

hydrogenation catalyst in an outer-sphere mechanism 

 

 

Scheme 1-7. Kinetic isotope effect on the hydrogen transfer from 2 to an aldehyde 

 

 

Another possible reaction mechanism is inner-sphere mechanism as drawn in Scheme 1-8. In 

this mechanism, aldehyde coordinates to ruthenium center with its oxygen and then the transfer 

of the two hydrogen atoms takes place. This mechanism was proposed by Shvo
21d

 and 

Backväll.
21i

 Backväll et al. supported this mechanism by the experiment indicated in Scheme 1-9. 

They performed stoichiometric reaction of 2 with imine having amino group. As a result, 

complexes 4 (mixture of isomers, cis- and trans- disubstituted cyclohexane, cis:trans ~ 1:1) 
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having coordinated amine was generated as the kinetic products at −80 °C. The coordinating 

nitrogen atoms were the ones originated from the imino nitrogen. When the solution was warmed 

up to −8 °C, another complex 5 (mixture of cis- and trans- disubstituted cyclohexane, cis:trans = 

1.2:1) was formed as the thermodinamic products, where the other nitrogen atom was 

coordinated to ruthenium center. The fact that the thermodinamically unfavorable isomers 4 

were obtained at low temperature indicated the initial hydryde transfer from the ruthenium center 

to the imino carbon is accompanied by the coordination of the imino nitrogen to the ruthenium 

center, which mean a inner-sphere mechanism. If the reaction was proceeded via an outer-sphere 

mechanism without coordination of the imino nitrogen, the thermodinamically favorable isomer 

5 should be initially generated. However, they failed to obtain the corresponding alcohol 

coordinated complex shown in the Scheme 1-8.  

 

Scheme 1-8. Proposed mechanism for the hydrogenation of an aldehyde by Shvo’s 

hydrogenation catalyst in an inner-sphere mechanism 
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Scheme 1-9. Stoichiometric reaction of 2 with imine having amino group 

 

 

Computational studies about the reaction mechanism were carried out by Lledós et al. at 

density functional theory level by means of the hybrid B3LYP functional (basis sets were 6-31 

for H, Lanl2dz for Ru, and 6-31(d,p) for other elements).
21j

 They calculated the energy profiles 

of the hydrogenation of formaldehyde by a model coumpound for Shvo’s catalyst (the phenyl 

groups on the Cp-ring were substituted with hydrogens) via an outer-sphere and an inner-sphere 

mechanism (Figure 1-4). 
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Figure 1-4. Computationally calculated energy profiles of hydrogenation via outer-sphere and 

inner-sphere hydrogen transfer in gas-phase or THF. 

 

The result clearly showed outer-sphere mechanism is the preferable pathway in hydrogen 

transfer. They also performed computational calculations for the hydrogenations of imine, ethene, 

and acetylene.
21k

 Outer-sphere mechanisms were suggested to be more favorable for these 

substrates. 

Metal–ligand bifunctional type catalysts played important roles as highly enantioselective 

hydrogenation catalysts for carbonyl compounds as developed by Noyori et al.
18,22

 They reported 

ruthenium complexes coordinated by a chiral diamine and/or a chiral bisphosphine, which are 

metal–ligand bifunctional type hydrogenation catalyst (Figure 1-5). Similar to Shvo’s 

Inner-sphere (in THF) 

Inner-sphere (gas-phase) 

outer-sphere 
(in THF) 

outer-sphere 
(gas-phase) 
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hydrogenation catalyst, the protic hydrogen on the nitrogen and hydridic hydrogen on ruthenium 

center were experimentally
23

 and computationally
24

 proven to be transferred to C=O of ketone in 

an outer-sphere mechanism. 

 

 

Figure 1-5. Examples of enantioselective hydrogenation catalysts reported by Noyori et al. and 

proposed transition state of hydrogen transfer 

 

As for chemoselectivity, hydrogenation catalysts of outer-sphere mechanisms are known to be 

more active for hydrogenation of polar double bonds such as C=O or C=N than C=C.
25

 For 

example, Noyori reported selective hydrogenation of carbonyl compounds bearing a C=C bond 

to corresponding unsaturated alcohols in high yields.
25a

 

 

Scheme 1-10. Chemoselective hydrogenation of C=O in the presence of C=C 
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The theoretical calculations by Lledós explained the chemoselectivity. Based on model 

complex for Shvo’s catalyst,
21j, k

 barrier of transition state of the concerted hydrogen transfer to 

formaldehyde, imine, ethene, and acetylene were calculated as 9.1, 11, 17.9, and 18.5 kcal/mol 

respectively (Figure 1-6). Altough it is not clearly mentioned in the literature, the lower 

activation energies for polar double bonds than less polar double bonds might be ascribed to 

dipole–dipole interactions between the H
δ+

 and H
δ−

 on 2 and the C
δ+

=X
δ−

 bond of substrates. 

 

 

Figure 1-6. Barriers for concerted hydrogen transfer to unsaturated double bond via outer-sphere 

mechanisms 

 

Another recent example of a metal–ligand bifunctional hydrogenation catalyst (not via outer-

sphere mechanism) is PNN-pincer ruthenium complex (4) developed by Milstein et al.
26

 The 

proposed catalytic cycle for hydrogenation of aldehyde is shown in Scheme 1-11. Activation of 

dihydrogen is cooperatively accomplished by the ruthenium center and the carbon on the ligand 

backbone. Coordination insertion of C=O bond takes place via dissociation of the tethered amino 

group from ruthenium center. Alcohol was released with deprotonation from methylene linker of 
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phosphinomethyl group and 4 is regenerated. This catalyst is effective for hydrogenation of 

ester,
26a

 amide,
26b

 formate,
26c

 and carbonate
26c

 under relatively mild conditions. 

 

Scheme 1-11. Proposed reaction mechanism of hydrogenation of carbonyl compounds by 

Milstein’s catalyst 

 

 

 

In summary, metal–ligand bifunctional-type hydrogenation catalysts exhibit unique activities 

and chemoselectivities. Close investigations on the reaction mechanisms have contributed to 

understand the origins of such features. Metal–ligand bifunctional hydrogenation catalysts are 

still paid much attention, and further applied to hydrogenation of other classes of unsaturated 

compounds such as carbon dioxide.
27
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1-3 Applications of Shvo’s catalyst in multiple catalyst systems for tandem 

reaction 

In the conventional organometallic catalysis, a single active species mediates one specific 

conversion. In contrast, combination of multiple catalysts for one-pot multistep conversion 

would provide more advantageous synthetic process by reducing required energy, processing 

times, and waste.
28

 In this purpose, Shvo’s catalyst and its derivatives are recently paid more 

attention as a good candidate. For example, Bäckvall et al. combined Shvo’s catalyst with 

enzyme for dynamic kinetic resolution of secondary alcohols (Scheme 1-12).
29

 In this catalysis, 

R and S enantiomers of a secondary alcohol are equilibrated by the racemization activity of 

Shvo’s catalyst, and the enzymatic acetylation takes place selectively to one of the enantiomers. 

As a result, both enantiomers of the starting secondary alcohol are converted to the single 

enantiomer product. The requirements for the metal catalyst is exhibiting racemization activity 

under suitable conditions for enzymatic acetylation, which is relatively neutral, at low 

temperature, in the presence of water, etc., and Shvo’s catalyst meets these requirements. One of 

the examples utilizing Novozym,
30

 which is a enantioselective acetylation catalyst, is shown in 

Scheme 1-12.
 29b
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Scheme 1-12. Dynamic kinetic resolution of racemic secondary alcohol to enantiomerically pure 

acetate 

 

Very recently, Grubbs et al. combined palladium and copper-based Wacker oxidation catalyst 

and Shvo’s catalyst for one-pot tandem Wacker oxidation/transfer hydrogenation of alkenes to 

alcohols (Scheme 1-13).
30

 Since this catalyst system selectively gives normal-alcohols, it is 

formally a catalytic anti-Markovnikov hydration of an alkene, which is a very important 

challenge facing transition metal catalysis. The key to success was that Shvo’s catalyst was 

compatible with the oxidizing condition for Wacker oxidation. 

 

Scheme 1-13. Tandem aldehyde selective Wacker oxidation/hydrogenation of an alkene to 

normal-alcohol 

 

 

Similarly, Herzon et al. combined ruthenium-based aldehyde selective hydration catalyst for 

alkyne
32

 and Shvo’s catalyst to achieve one-pot tandem hydration/transfer hydrogenation of 

alkynes to n-alcohols (Scheme 1-14).
33
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Scheme 1-14. Tandem aldehyde selective hydration/hydrogenation of alkyne to normal-alcohol 

 

 

In these examples, Shvo’s catalyst hydrogenates aldehydes, but did not react with alkenes or 

alkynes, which represents the chemoselectivity of hydrogenation towards polar unsaturated 

bonds, mentioned in the previous section. 

In summary, Shvo’s catalyst is a promising candidate for multiple catalyst system for tandem 

reactions including a hydrogenation step. This utility is ascribed to the better chemoselectivity to 

C=O hydrogenation over C=C and C≡C, independency from base, robustness against water or 

oxidant, relatively high activity at low temperatures, etc. Further investigation of Shvo’s catalyst 

would provide a new synthetic method superior to conventional ones. 
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1-4 Research subjects of this dissertation 

For hydroformylation, the selectivity to n-aldehyde and reaction rate are almost saturated by 

Rh/bisphosphine or bisphosphite systems, and thus, recent research interests are more focused on 

the improvement of other aspects. For example, recent increase of global demand for rhodium 

metal is enhancing the price of this already expensive metal. Therefore, hydroformylation 

catalyst employing other metal is desired. The use of cobalt has longer history than rhodium. 

Although the selectivity to n-aldehyde and the reaction rate is generally lower than rhodium, it is 

still industrially used. As for other metals, ruthenium,
9d

 iridium,
 9b

 and palladium
9f

 are recently 

paid more attention than before. Iron, platinum,
9b

 and osmium
9e

 were also reported but activities 

are low. 

Another issue is simplification of the process operation. As mentioned above, parts of 

synthesized n-aldehydes by hydroformylation are converted to n-alcohols via successive 

hydrogenation (Scheme 1-15). This hydrogenation step is performed by copper or nickel 

heterogeneous catalyst using dihydrogen as a hydrogen source. One-pot conversion of an alkene 

to n-alcohol by the reaction with two equivalents of dihydrogen and carbon monoxide, namely, 

tandem normal-selective hydroformylation/hydrogenation would be advantageous in two 

reasons; 1) the number of reactor and distillation tower for hydrogenation will be reduced. 2) 

membrane separation of dihydrogen from synthesis gas will be omitted.
34

 Although there has 

been many reports on such catalyst systems, none of them are efficient enough for industrial 

application. 
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Scheme 1-15. Research subjects of dissertation 

 

 

In this dissertion, the author developed three catalyst systems to solve these problems using 

cyclopentadienylruthenium as a key structure.  

1) The author developed cyclopentadienylruthenium/bisphosphine or bisphosphite systems for 

normal-selective hydroformylation (Chapter 2).
35

 

 

Scheme 1-16. Normal-selective hydroformylation catalyzed by 

cyclopentadienylruthenium/bisphosphine systems 

 

 

 

2) The author found hydroxycyclopentadienylruthenium/bisphosphine system for tandem 

normal-selective hydroformylation/hydrogenation (Chapter 3).
36b
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Scheme 1-17. Tandem normal-selective hydroformylation/hydrogenation catalyzed by 

cyclopentadienylruthenium/bisphosphine systems 

 

 

3) The author established rhodium/ruthenium dual catalyst system for high yielding and more 

facile tandem normal-selective hydroformylation/hydrogenation (Chapter 4).
36

 

 

Scheme 1-18. Tandem normal-selective hydroformylation/hydrogenation catalyzed by Rh/Ru 

dual catalyst system 

 

 

Mechanistic investigations for these systems were performed to obtain a clue for further 

improvement of the catalyst system. 
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2 Hydroformylation of Terminal Alkenes Catalyzed by Ruthenium-Based Catalyst 

Systems 

 

2-1 Background 

As introduced in Chapter 1, hydroformylation catalysts not based on rhodium is desired. 

Among the other metals, there are relatively many reports about ruthenium-based system. 

However, in the previously reported systems, activities and selectivities of ruthenium catalysts 

are significantly lower than those of rhodium catalysts. Representative catalysts are summarized 

in Table 2-1.
1
 The first well-defined ruthenium-based hydroformylation catalyst was 

Ru(CO)3(PPh3)2,
1a

 which was reported in 1965 by Wilkinson et al. In this report, 1-pentene was 

converted to a mixture of n- and i-aldehydes in 80% yield. There was no description about n/i 

ratio and side products. This discovery was followed by Shell Oil Company’s patent, which 

claimed P
n
Bu3-modified ruthenium catalyst dominantly gave alcohols with low n/i ratio (93.6% 

conversion, n/i = 2).
1b

 Although cyclopentadienyl ruthenium complexes were reported as a 

catalyst for hydroformylation, low yield of aldehyde (12%) and predominant formation of 

isomerized alkenes (53%) were reported.
1c

 Most investigated scaffold of ruthenium 

hydroformylation catalyst was multinuclear ruthenium carbonyl complex. When 

dodecacarbonyltriruthenium (Ru3(CO)12) was used as a catalyst precursor, n/i ratio was increased 

up to 4.3, accompanied by hydrogenation of the alkene to the alkane in 12.8% yield.
1d

 For 

propene, one of the most normal-selective catalysts is [NEt4][HRu3(CO)11], which affords n-

butanal almost quantitatively.
1e

 On the other hand, for the substrates having a longer alkyl chain 

(>C4), isomerization of the C=C bond to internal alkenes is problematic with this type of anionic 

complexes. Among the previously reported systems, [PPN][HRu3(CO)11] (PPN = Ph3P=N
+
=PPh3  
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Table 2-1. Representative ruthenium-based hydroformylation catalysts 
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bis(triphenylphosphoranylidene)ammonium)
1f

 is the most effective (total aldehyde 60.6%, n/i = 

18), but accompanied by formation of 22.8% of isomerized alkenes. Exclusive formation of n-

aldehyde was reported for K[Ru(edtaH)Cl] • H2O (edta = ethylenediaminetetraacetate).
1g

 

However, the author could not replicate the result. Another important system is RuO2/2,2’-

bipyridyl/Bu4PBr, which mediated normal-selective hydroformylation/hydrogenation under 

somewhat harsh condition (for 1-octene at 180 °C, 79.6% alcohols yield, n/i = 6.1).
1h

 

Ru3(CO)12/phenanthroline exhibits high n/i ratio of 19 for propene and 32 for 1-octene 

respectively.
1i

 

 

2-2 Design of the catalyst system of this work 

Our design of Ru-based normal-selective hydroformylation catalyst is described in Figure 2-1. 

 

 

Figure 2-1. Comparison of rhodium and ruthenium hydride species 

 

In the conventional rhodium-catalyzed hydroformylation, monohydridorhodium(I) (A) 

mediates the reaction (Scheme 2-1), by the insertion of an alkene to produce alkylrhodium 

species. Successive coordination insertion and hydrogenolysis give aldehyde as a product and 

regenerate A. On the other hand, corresponding hydride complex for ruthenium is 

dihydridoruthenium(II) (B). Catalytic cycle could be drawn for B similarly to 

monohydridorhodium(I) as described in Scheme 2-2. However, reductive elimination of alkane 

from alkylhydridoruthenium intermediate is a problematic side reaction in this cycle. 

Hydrogenation of aldehyde via similar mechanism is also a problematic side reaction when the 
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desired compound is aldehyde. Although active species in hydroformylation using multinuclear 

carbonylruthenium(0) as precursor were not well characterized, oxidative addition of dihydrogen 

to ruthenium(0) to form RuxHy(CO)z was proposed.
1j

 

 

Scheme 2-1. Hydroformylation catalyzed by monohydridorhodium(I) (A)  

 

 

Scheme 2-2. Hydroformylation catalyzed by dihydridoruthenium(II) (B) 
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On the other hand, cyclopentadienylhydridoruthenium(II) (C) is expected to be less active in 

hydrogenation of an alkene because there is only one hydride on the ruthenium center. This 

effect was implied in the previous report utilizing [CpRu(CO)2]2 for hydroformylation, where the 

yield of alkane was as low as 4.7%.
1c

 Expected catalytic cycle is drawn in Scheme 2-3. Since 

CpRuHL2 is coordinatively saturated 18-electron complex, two mechanisms are possible to 

afford open coordination site for substrates. One is the slippage of cyclopentadienyl ring from η
5
 

to η
3
-coordination mode shown in the cycle. Another possibility is dissociation of one of the 

ligands L as shown in the dotted box in Scheme 2-3. 

 

Scheme 2-3. Expected reaction mechanism of hydroformylation by cyclopentadienylruthenium 

 

 

In the rhodium catalyzed hydroformylation, bulky bisphosphine or bisphosphite ligands are 

known to enhance the selectivity to normal-aldehyde by inducing sterically crowded 

environment around rhodium center (summarized in Chapter 1). Similar effect could be expected 

for ruthenium-based system (Scheme 2-4). When the species formed after insertion was 
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compared between 1,2- and 2,1-insertion of an alkene to Ru‒H bond, steric repulsion between 

the substituent on the phosphorus atom and the alkyl group on ruthenium is expected to be larger 

in 2,1-inserted complex. 

 

Scheme 2-4. Expected steric effect of phosphorus ligand 

 

 

2-3 Hydroformylation of propene catalyzed by ruthenium complex in this work 

Based on these speculations above, hydroformylation of propene using 

(acetylacetonato)(1,2,3,4,5-pentamethylcyclopentadienyl)ruthenium dimer ([Cp*Ru(acac)]2) and 

phosphorus ligand as precursor was investigated. Results were summarized in Table 2-2. When 

the reaction was performed with [Cp*Ru(acac)]2/A4N3,
2
 aldehydes were obtained with a total 

conversion rate (to liquid product observed by gas chromatography) of 1.7 h
−1

, with 78% 

selectivity to aldehydes, and n/i ratio of aldehyde was 17 (run 1). On the other hand, use of 

Ru3(CO)12/A4N3 resulted in predominant formation of alcohols (48%) and other side products 

(50%) (run 2). Those results could be interpreted that the cyclopentadienyl moiety is essential for 

suppressing side reactions. When the result by only [Cp*Ru(acac)]2/A4N3 is compared with that 

of only [Cp*Ru(acac)]2 (run 3), sharp increase of n/i ratio is evident (17 compared to 1.8). This 

fact indicates A4N3 is required for higher n/i ratio. The reaction rate with only by Ru3(CO)12 
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(run 4) is much higher (TOF = 19.8 h
−1

), but low selectivity to aldehydes and n/i ratios were 

problematic (42% aldehyde selectivity and n/i = 1.7). Effect of phosphorus ligands is 

demonstrated in runs 5-10. XANTPHOS
3
 (run 5) and BISBI

4
 (run 6) exhibited similar selectivity 

to aldehydes and slightly lower n/i ratios compared to A4N3 (97%, n/i = 13 and 94%, n/i = 14 

respectively). Use of triphenylphosphine resulted in lower activity and n/i ratio (TOF = 0.3, n/i = 

5.4, run 7). Bisphosphines having small bite angle gave relatively larger amounts of alcohols 

(runs 8-10). When the reaction was performed at 120 °C using [Cp*Ru(acac)]2/A4N3, selectivity 

to aldehyde and n/i ratios were increased up to 89% and 43 respectively at the expense of 

reaction rate (TOF = 0.54 h
−1

, run 11). The n/i ratio obtained in run 11 is comparable to that of 

the previously reported most normal-selective hydroformylation catalyst under its best condition 

(run 12). Sharp increase of reaction rate was observed when indenyl and trimethylindenyl 

ruthenium complexes were used as catalyst (runs 13 and 14, TOF = 2.3 and 4.4 h
−1

 respectively). 

Since indenyl derivatives are known to have lower barrier to give the η
3
-Cp type intermediate, 

this acceleration effect suggestes involvement of this intermediate in the reaction mechanism.
5
 

 

Table 2-2. Hydroformylation of propene catalyzed by ruthenium based catalysts
a
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run catalyst 
temp. 
(°C) 

conv. to liquid 
product (TOF, 

h
−1

) 

aldehydes 
(%), (n/i) 

alcohols 
(%), (n/i) 

others 
(%) 

1 [Cp*Ru(acac)]2/A4N3 160 1.7 78 (17) 17 (14) 5 

2 Ru3(CO)12/A4N3 160 1.8 2 (8.0) 48 (8.0) 50 

3 [Cp*Ru(acac)]2 160 1.1 86 (1.8) 7 (2.5) 7 

4 Ru3(CO)12 160 19.8 42 (1.7) 43 (1.9) 14 

5
b
 

[Cp*Ru(acac)]2 

/XANTPHOS 
160 1.8 97 (13) 3 (> 100) trace 

6
b
 [Cp*Ru(acac)]2/BISBI 160 0.6 94 (14) 6 trace 

7 
[Cp*Ru(acac)]2 
/PPh3 (100 µmol) 

160 0.3 66 (5.4) 20 (8.7) 14 

8 [Cp*Ru(acac)]2/DPPE 160 1.2 38 (56) 45 (17) 17 

9 [Cp*Ru(acac)]2/DMPE 160 0.4 5 (0.5) 46 (16) 49 

10 [Cp*Ru(acac)]2/DPPP 160 0.9 29 (0.8) 64 (9.1) 7 

11
c
 [Cp*Ru(acac)]2/A4N3 120 0.54 89 (43) 11 (>100) trace 

12 [NEt4][HRu3(CO)11]
d
 70 0.11 100 (45) trace trace 

13 [(indenyl)Ru(CO)2]2/A4N3 120 2.3 94 (32) 6 (12) trace 

14 
[1,2,3-trimethylindenyl 
Ru(CO)2]2/A4N3 

120 4.4 97 (41) 
0.14 

(>100) 
trace 

a
The molar quantity of Ru complexes are based on the total mol of Ru atoms. TOF = (mol of 

products observed by GC)/[(mol of Ru atom)×(reaction time)]. The amounts of charged H2 and 
CO were so high that the changes of their partial pressure during the reaction time were 
negligible. The amounts of other side products were roughly estimated by the integration of the 
signals on the GC chart compared to that of n-aldehyde. Those side products were probably 
dimers or trimers of aldehydes and alcohols by aldol reaction of acetalization.

b
1,4-dioxane was 

used as solvent. 
c
 120 °C 

d
The condition was the same as the best one reported in literature (ref. 

1d). Ru complex (102 μmol), propene (0.5 MPa), H2 (0.17 MPa), CO (0.34 MPa) in 
dimethoxyethane (2 mL), 70 °C, 66 h. 

 

2-4 Hydroformylation of 1-decene  

Next, the system was applied for hydroformylation of 1-decene. Results are summarized in the 

Table 2-3. When the reaction was performed by [Cp*Ru(acac)]2/A4N3 or 

[Cp*Ru(acac)]2/XANTPHOS (runs 1 and 2), n-aldehyde was obtained with moderate yield and 

high n/i ratio of 79 and 29 respectively. However, low reproducibilities of those reactions were 
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problematic because the amount of formation of isomerized alkenes was fluctuating. In the 

reaction using [Cp*Ru(acac)]2 as a catalyst precursor without ligands, rapid isomerization of 

decene was observed (run 3). It suggests that ruthenium species without phosphorus ligands can 

catalyze rapid isomerization of decene. This problem was avoided by using well-defined 

complex (1,2,3,4,5-pentamethylcyclopentadienyl)hydrido(xantphos)ruthenium (1), which was 

prepared as shown in Scheme 2-5. The intermediate Cp*Ru(xantphos)Cl was characterized by 

X-ray crystallographic analysis, which proved that XANTPHOS can coordinate ruthenium center 

as a bidentate ligand to form three legged piano-stool structure (Figure 2-2). With this complex, 

isomerization of 1-decene was suppressed, and the reaction was performed with better 

reproducibility. As a result, the yield of n-aldehyde reached to 60% with n/i ratio of 29 (run 4). 

Notably, hydrogenation of the alkene to the alkane and that of the aldehydes to the alcohols were 

suppressed as low as 3.2% and trace respectively. Although the yield of isomerized alkenes and 

n/i ratios were similar to those in the case using in-situ generated system from 

[Cp*Ru(acac)]2/XANTPHOS, the reaction rate was slower (conv. 40% in 24 h in run 5 versus 

86% in 21 h in run 2). Therefore, the real active species may not be Cp*Ru(xantphos)H for in-

situ generated system. However, characterization of such species was not successful. It could be 

expected that internal alkenes would be isomerized back to the terminal alkene and converted to 

n-aldehyde. However, this pathway was confirmed to be negligibly slow by the fact that (Z)-2-

decene did not afford aldehyde at all (run 6). The reaction was also performed with 

Ru3(CO)12/XANTPHOS and RuH2(CO)(PPh3)3/XANTPHOS (run 7, 8). Both of them resulted in 

rapid isomerization of the alkene and slow hydroformylation. 
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Table 2-3. Hydroformylation of 1-decene by ruthenium-based hydroformylation catalyst
a
 

 

a
The molar quantity of Ru complexes are based on the total mol of Ru atoms. Yields were 

determined by gas chromatography by using dodecane as internal standard otherwise mentioned. 
b
Yields were determined by using calibration curve for normal-isomer. 

c
Yields were determined 

by using calibration curve for 1-decene. 
d
100 °C, 18 h. 

e
48 h. 

f
(Z)-2-decene was used as substrate. 

g
18 h. 

 

Scheme 2-5. Synthesis of (pentamethylcyclopentadienyl)hydrido(xantphos)ruthenium 

 

run Cat. conv. 
Aldehyde 

n/i 
alkane 

(%) 

isomerized alkenes 

(%)
c
 n(%) i(%)

b
 

1
d
 [Cp*Ru(acac)]2/A4N3 87 65 0.8 79 1.5 19 

2 [Cp*Ru(acac)]2/XANTPHOS 80 61 2.1 29 2.5 9.0 

3 [Cp*Ru(acac)]2 100 11 2 5.5 81% in total 

4
e
 Cp*Ru(xantphos)H/XANTPHOS 77 58 2.1 28 3.2 8.4 

5 Cp*Ru(xantphos)H/XANTPHOS 40 28 0.9 31 1.2 8.5 

6
f
 Cp*Ru(xantphos)H/XANTPHOS 14 trace trace - 1.4 4.6 

7
g
 Ru3(CO)12/XANTPHOS 92 19 1.3 14 10 56 

8
g
 RuH2(CO)(PPh3)3/XANTPHOS 97 33 1.5 22 3.2 47 
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Figure 2-2. Ortep drawing of Cp*Ru(xantphos)Cl (50% thermal ellipsoid, hydrogen atoms and 

solvent molecule C6H6 were omitted for clarity) 

 

 

2-5 Discussion of the effect of cyclopentadienyl ligand 

As for activity of hydrogenation, comparison of [Cp*Ru(acac)]2/A4N3 and Ru3(CO)12/A4N3 

(supposed to form RuH2(CO)2(A4N3) under H2/CO) clearly indicates suppression of 

hydrogenation activity for aldehyde with [Cp*Ru(acac)]2 (runs 1 and 2 in Table 2-2), which 

supports our initial assumption that dihydride intermediate is responsible for hydrogenation of 

aldehyde. However, when the hydroformylation of 1-decene performed by 

[Cp*Ru(acac)]2/XANTPHOS and RuH2(CO)(PPh3)3/XANTPHOS were compared, the yields of 

alcohol were trace in both cases. Therefore, introduction of Cp ligand is not be the only way to 

suppress hydrogenation of aldehyde. 

As for n/i selectivity, Cp* improves the ratio. For example, n/i ratio in the hydroformylation of 

propene catalyzed by [Cp*Ru(acac)]2/A4N3, Ru3(CO)12/A4N3 were 16 and 8.0 (total of 

aldehydes and alcohols) respectively. Similarly considered to the effect of bidentate phosphorus 
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ligand on rhodium catalyzed hydroformylation, this increase of n/i ratio by introducing Cp* 

could be interpreted as the steric effect, which is more destabilizing iso-alkylruthenium 

intermediate than n-alkylruthenium intermediate. 

Indenyl and trimethylindenyl ruthenium complexes exhibited higher catalytic activity than 

Cp* derivatives. These results imply that an η
3
-Cp type intermediate is involved in the catalytic 

cycle. Such effects have been reported as the acceleration of ligand substitution reactions in 

coordinatively saturated η
5
-indenyl metal complexes compared to η

5
-Cp.

5
 The extent of 

acceleration is dependent on systems employed (acceleration is 10 – 10
10

 times). 

 

2-6 Discussion of the effect of phosphorus ligand 

As for n/i selectivity, phosphorus ligand made difference. Similar to rhodium catalyst, bulky 

bisphosphite or bisphosphine such as A4N3, XANTPHOS, and BISBI led to higher n/i ratio 

(runs 1, 5, 6 in Table 2-2). Also, the isomerization to internal alkenes was suppressed in the 

presence of XANTPHOS. This is probably because of the suppression of 2,1-insertion by the 

steric bulk of XANTPHOS. 

 

2-7 Mechanistic investigations 

In order to get information about selectivity-determining step and rate-determining step, the 

reaction mechanism was investigated with well-defined complex Cp*Ru(xantphos)H (1). 

 

2-7-1 Stoichiometric reactions of 1 and 1-decene 

First, reversible insertion of 1-decene to the Ru‒H bond in 1 was studied by 
1
H and 

31
P NMR 

spectra by treating complex 1 with 1-decene in toluene-d8 under 1 atm of Ar or CO (Schemes 2-
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6 and 2-7). Under Ar, 1 did not give any other ruthenium species by the reaction with 1-decene. 

On the other hand, irreversible formation of 2-decenes (E/Z = 85/15) was observed. No further 

isomerization to 3-decenes was detected. This isomerization is explained by coordination-2,1-

insertion of 1-decene into the Ru‒H bond and successive C3-β-H-elimination. Intermediates such 

as Ru‒alkene or alkyl complexes that supposed to be involved in the catalytic cycle was not 

detected. 

 

Scheme 2-6. Stoichiometric reaction of 1 and 1-decene under Ar 

 

 
Under CO, no isomerization of 1-decene took place and slow dissosiation of XANTPHOS was 

observed in the 
31

P NMR spectrum. It suggested that at least at this temperature competetive 

coordination of CO prohibits the coordination of 1-decene. When only 1 was treated under 1.0 

MPa of CO at room temperature, no change was observed. 
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Scheme 2-7. Treatment of 1 under CO in the presence or absence of 1-decene 

 

 

Next, stoichiometric reaction of 1 with C1-dideuterated 1-decene (1-decene-d2, D content 

96%) under Ar was followed by 
1
H and 

2
H NMR spectroscopy (Scheme 2-8 and Figure 2-3) to 

determine the relative rate of 1,2- and 2,1-alkene insertion and β-H elimination. The time course 

of integral of each proton indicated in Scheme 2-8 are plotted in Figure 2-3b. Similarly to the 

previous experiment, alkylruthenium complex was not observed during the reaction. 

 

Scheme 2-8. Stoichiometric reaction of 1 with 1-decene-d2 and monitored protons 
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(a) 

 

 

 

(b) 

 

 

Figure 2-3. (a) Possible mechanism for insertion/β-H elimination of 1-decene-d2 and (b) integral 

ratio of each proton in 1-decene in 
1
H NMR spectra during the course of the reaction 
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Following 2,1-insertion of 1-decene-d2 to 1, there are two potential β-elimination pathways 

(Figure 2-3a, 2-4). One is β-elimination on C1 to reform 1-decene. The other is β-elimination on 

C3 to give 2-decenes. In the initial stage of the reaction, increase of H
b
 + H

c
 (0.10 µmol h

−1
) 

corresponds to the formation of 1-decene-d1 and increase of H
d
 + H

e
 (0.41 µmol h

−1
) corresponds 

to the formation of 2-decene-d2 (incorporation of deuterium on C2 and C3 of 2-decene was 

confirmed to be negligibly slow. Therefore, the increase of H
d
 + H

e
 exactly represents the 

amount of 2-decenes). The integral ratio of these signals gave the ratio between the rates of the 

C1-β-D-elimination and the C3-β-H-elimination to be k−2D:k3 = 0.8:1. Taking into account the 

reported kinetic isotope effect for β-H-elimination as 1.0~3.3,
7
 k−2H:k3 could be corrected as 

0.8:1 ~ 2.6:1 showing that the two pathways are comparable to each other. 

 

 

Figure 2-4. 2,1-insertion-β-elimination process. 

 

On the other hand, the ratio of 1-decene-d3 to Cp*Ru(xantphos)D (1-D) remained constant at 

1:1 during the reaction. The decrease of H
a
 was ascribed to the conversion of 1-decene-d2  to 2-
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decene-d2 or 1-decene-d3 assuming that the participation of 1-decene-d1 to this process was 

negligible at the initial stage of the reaction (Figure 2-5). Thus, the rate of formation of 1-decene-

d3 was calculated as 0.04 µmol h
−1

. During the increase of H
b
, H

c
, H

d
, and H

e
, the ratio of 1-

decene-d3 and 1-D was constant at 0.9:1.0. This implies the much faster 1,2-insertion-β-H(D)-

elimination than the 2,1-insertion-β-D-elimination so that 1-D plus 1-decene-d2 and 1 plus 1-

decene-d3 are equilibrated. Otherwise the ratio of 1-decene-d3:1-D would have increased as the 

reaction proceeded; namely, the concentration of 1-D could have first increased, and then 1-

decene-d3 could have gradually formed. Therefore, the rate of 1,2-insertion (k+1) represents the 

rate of 1,2-insertion-β-H-elimination. In the same way, k+2 represents the  rate of 2,1-insertion-β-

H-elimination. In conclusion, 1,2-insertion estimated to be much faster than 2,1-insertion. 

 

 

Figure 2-5. Figure for the comparison of 1,2-insertion and 2,1-insertion process.  

 

2-7-2 Hydroformylation of 1-decene-d2 by 1 

Hydroformylation of 1-decene-d2 in the real conditions clarified reversibility of insertion-β-

elimination process. The hydroformylation of 1-decene-d2 catalyzed by 1/XANTPHOS afforded 
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product n-aldehyde-dn, 2-decene-dn, and decane-dn as well as recovered 1-decene-dn. Deuterium 

contents of those compounds were determined by the 
1
H and 

2
H NMR spectra shown in Figures 

2-6 and 2-7. By 
1
H NMR spectrum, the deuterium contents of H

a
-H

e
 were determined as 

described in Figure 2-6. In the 
2
H NMR spectrum, the signals on the spectrum were assigned 

according to the literature,
4b

 and the deuterium contents of D
a
-D

j
 were determined as illustrated 

in Figure 2-7. The contents for D
a
-D

e
 were consistent with the value for H

a
-H

e
 determined by 

1
H 

NMR. In the recovered 1-decene-dn, the deuterium content was 88% on C1 and 3% on C2. In the 

obtained n-aldehyde-dn, deuterium was incorporated in <1% on C1, 79% on C2, and 5% on C3. 

The decrease of terminal D content in 1-decene-d2 indicates that 2,1-insertion/C1-β-D-

elimination took place to some extent. Since 1,2-insertion was estimated to be much faster than 

2,1-insertion as mentioned in the previous paragraph, the 1,2- insertion step should occur 

reversibly at a rate much faster than that of 2,1-insertion. Therefore in the catalytic cycle drawn 

in Scheme 2-3, either coordination-insertion of CO or hydrogenolysis is irreversible step. 

 

Scheme 2-9. Hydroformylation of 1-decene-d2 
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Figure 2-6. Vinylic region of 
1
H NMR spectrum for the crude product obtained from  

hydroformylation of 1-decene-d2 (1,3,5-trimethoxybenzene 0.360 mmol was used as internal 

standard) and deuterium contents determined by 
1
H NMR.  

Ha 

Hd + He 

Hb + Hc 

trimethoxybenzenee 
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Figure 2-7. The partial 
2
H NMR spectrum of the crude product obtained from hydroformylation 

of 1-decene-d2. (The integration was normalized with setting the deuterium on C1 of 1-decene 

D
b
+D

c
 as 0.300 mmol (0.171 mmol× 2 (mmol of terminal H+D) – 0.042 mmol (mmol of 

terminal H)) and deuterium contents determined by 
2
H NMR. 

 

Exchange of deuterium of 1-D with H2 gas is implied by the fact that total D content of all 

products was decreased. This process was thought to interfere in the transfer of terminal D onto 

Da 

Dd + De 

Db + Dc 
 

Dg Dh  
 

Di  
 

Dj  
 

toluene 
 

Dk  
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internal carbons by releasing deuterium as HD to the gas phase. Possible mechanisms are 

described in Scheme 2-10. 

 

Scheme 2-10. Exchange process of H‒H to H‒D 

 

 

2-7-3 Effect of initial concentration of 1-decene on the rate of hydroformylation 

Finally, effect of initial 1-decene concentration ([1-decene]0) on the reaction rate was 

examined (Figure 2-8). Reaction was performed with various initial concentrations of 1-decene, 

and average TOFs in initial 24 h were plotted. Linear relationship between TOF and [1-decene]0 

was indicated. Assuming there was no induction period and the amounts of H2 and CO were 

enough excess, and the reaction rate is first-order with respect to concentration of 1-decene, the 

rate equasion could be expressed as 

 

d/dt [1-decene]t = − k[1-decene]t (t: reaction time (h), k: rate constant (h
−1

)) 

Therefore,  

[1-decene]t = [1-decene]0(exp(− kt)) 

When t = 24 h (const.), 

[1-decene]24 = [1-decene]0(exp(− 24k)) 
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Therefore, concentration of 1-decene after 24 h should correlate with initial concentration of 1-

decene if the reaction is first order on 1-decene concentration. Actually, [1-decene] after 24 h 

could be linearly plotted against [1-decene]0. 

 

 

 

Figure 2-8. Dependency of average rate of hydroformylation on the initial concentration of 1-

decene 

 

2-7-4 Effect of pressure of dihydrogen on the rate of hydroformylation 

The hydroformylation of 1-eicosene was examined under various H2 pressure. As a result, 

average TOF (h
−1

) was positively correlated with the pressure of H2 (Figure 2-9). This fact 

indicated that in the proposed catalytic cycle (Scheme 2-3), hydrogenolysis of the acylruthenium 

intermediate is the rate-determining step. 
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Figure 2-9. Dependency of average rate of hydroformylation on the initial pressure of H2 

 

2-7-4 Summary of mechanistic investigations 

The mechanistic considerations obtained in this section are summarized in Scheme 2-11. First, 

coordination of an alkene takes place, being accompanied by phosphine dissociation or Cp-ring 

slippage. Insertion takes place to give Ru(alkyl) intermediate. This coordination-insertion 

process is reversible (between D and E). Rate-determining step is supposed to be the 

hydrogenolysis of the acylruthenium intermediate. Higher concentration of 1-decene increases 

the amount of intermediate (E or F) by changing the pre-equilibrium (between D and E or D and 

F), which results in a higher reaction rate. High n/i selectivity observed in the presence of bulky 

bisphosphorus ligands could be attributed to destabilization of iso-acylruthenium species or 
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transition state of hydrogenolysis of acylruthenium intermediate with the larger steric repulsion 

between ligand of the ruthenium. As for the pathway to give open coordination site for the 

alkene- or CO-insertion and H2-coordination, higher activity by indenyl derivatives may suggest 

involvment of η
3
-Cp intermediate. However, dissociation of one of the phosphorus atoms is still 

possible. 

 

Scheme 2-11. Proposed mechanism for hydroformylation of an alkene by CpRu complex 

 

 

2-8 Conclusion 

In this chapter, cyclopentadienylruthenium/bisphosphine or bisphosphite systems were 

developed as normal-selective hydroformylation catalysts. The cyclopentadienyl ligand was 

essential for suppressing side reactions. On the other hand, the bulky bisphosphorus ligand was 

required for high n/i ratio. Mechanistic investigations using an isolated catalytically active 

complex, Cp*Ru(xantphos)H, revealed the reversible coordination-insertion of an alkene to 
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Ru‒H bond under reaction conditions. The rate-determining step is considered to be the 

coordination of H2 and hydrogenolysis. Although normal-selectivities were comparable to the 

conventional cobalt and rhodium catalysts, the reaction rates of these catalysts needs 

improvement. One of the possible ideas to improve catalytic activity was to use indenyl 

derivatives to lower the barrier to give η3-cyclopentadienyl intermediate. It was successfully 

demonstrated by using indenyl and trimethylindenyl ruthenium complexes, which exhibited 5 

and 10 times higher activities respectively compared to pentamethylcyclopentadienyl ruthenium 

complex. 

As for catalytic activity, here is a question. Why is rhodium so active for hydroformylation? 

Under standard condition, coordination-insertion of alkene to Rh–H is the rate-determining step 

(Scheme 2-12). On the other hand, in the author’s ruthenium system, hydrogenolysis is the rata-

determining step. In the hydrogenolysis, dihydrogen needs to coordinate to metal center as a 

sigma-H2 ligand. However, dihydrogen is a so weak ligand that its coordination is disturbed by 

carbon monoxide and alkene, which are relatively stronger ligands. Considering the fact that the 

hydrogenolysis is not the rate-determining step in the rhodium catalysed hydroformylation, the 

formation of sigma-H2 complex and/or hydrogenolysis of acylrhodium intermediate is relatively 

preferred. This might be one of the possible reasons why rhodium is so active in the 

hydroformylation. On the other hand, in our system, hydrogenolysis is the rate-determining step. 
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Scheme 2-12. Consideration of the reason of high catalytic activity of rhodium-based system 

 

 

So far our ruthenium system is considered to be potentially more normal-selective than 

rhodium based system if the problem of low activity is overcome. Now the n/i ratio of 

hydroformylation of 1-decene by Cp*Ru/XANTPHOS is around 30 at 160 °C, which is probably 

much higher than rhodium catalysed hydroformylation performed at the same temperature (in 

chapter 4, hydroformylation of 1-decene catalysed by Rh(acac)(CO)2/XANTPHOS gave n/i of 

24 at 120 °C). Therefore, if our ruthenium catalyst system is active enough that the reaction 

could be performed at low temperature, n/i selectivity higher than rhodium system is expected. 
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Experimental section 

 

General 

All the manipulations involving the air- and moisture-sensitive compounds were carried out by 

using standard Schlenk technique or glovebox under argon purified by passig through a hot 

column packed with BASF catalyst R3-11. H2/CO mixed gas (H2:CO = 49.1:50.9) and liquid 

propene were purchased from Suzuki-Shoukan and used without further purification. 

Commercially available anhydrous methanol, ethanol, and 1,4-dioxane were used without further 

purification. Commercially available anhydrous toluene was passed through solvent purification 

columns prior to use. Commercially available 1-decene, dodecane, and 1,2-dimethoxyethane 

were distilled and degassed by freeze-pump-thaw cycling two times before use. RuCl3•H2O was 

purchased from Tanaka Kikinzoku. [Cp*Ru(acac)]2,
9
 Ru3(CO)12,

10
 [NEt4][HRu3(CO)11],

11
 

[(indenyl)Ru(CO)2]2,
12

 [(1,2,3-trimetyhlindenyl)Ru(CO)2]2,
13

 and [Cp*RuCl2]2
14

 were prepared 

by the literature methods. They were further purified by recrystalization before use of the 

catalytic reactions. XANTPHOS
3
 and BISBI

4
 were prepared by the literature methods. A4N3 

was provided by Mitsubishi Chem. Co.
15

 The mole of ruthenium complexes was based on 

ruthenium atom. 1-decene-d2
16

 (D content 96% on C1-position) and (Z)-2-decene
17

 (purity 95%, 

containing decane 1.6%, (E)-2-decene 2.5%, and other C10 alkenes 0.9%) were prepared by the 

literature method. 

The TOFs or yields of butanals, butanols, decane, isomerized decenes, undecanals, and 

undecanols were determined by Shimadzu-GC-2014 equipped with InertCap 5MS/Sil capillary 

column (0.25 ID, 0.25 μm df 30 m) with calibration curve using dodecane as an internal standard. 

The TOFs of unidentified high boiling products were determined based on the ratio of the area 
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on GC spectrum compared to n-aldehyde. NMR spectra were recorded on a JEOL JIN–ECP500 

or JEOL–ECS400 spectrometers. Chemical shifts are reported in ppm relative to the residual 

protiated solvent for 
1
H, deuterated solvent for 

13
C, and external 85% H3PO4 for 

31
P nuclei. 

1
H-

decoupled experiments were indicated with {
1
H}. Data are presented in the following space: 

chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), 

coupling constant, and signal area integration in natural numbers. Each signal on 
13

C NMR 

spectra was assigned as CH3, CH2, CH or 4° with 
13

C dept experiments. Melting points were 

determined on a SRS OptiMelt melting point apparatus. High resolution mass spectra are taken 

with JEOL JMS–T100LP mass spectrometer. IR spectra were recorded on Shimadzu FTIR-8400. 

X-ray crystallographic analyses were performed on Rigaku Mercury CCD or VariMax Saturn 

diffractometer. 

 

General procedure for the hydroformylation of 1-decene or (Z)-2-decene 

To a 50 mL stainless autoclave with a magnetic stir bar, Ru complex and bisphosphine were 

charged with 2 mL of solvent. To this, a mixture of 1-decene or (Z)-2-decene and dodecane (2:1 

by molar ratio, 300 μL, ca. 1-decene or (Z)-2-decene 1 mmol) was added and then the autoclave 

was pressurized with appropriate pressure of H2/CO. After completion of the reaction under 

conditions written on the tables, the autoclave was cooled to 0 °C with water/ice bath. The gas 

pressure was released and the resulting solution was analyzed by GC. Initial charges of H2 and 

CO were enough high to neglect the drops of their partial pressures. 

 

General procedure for the hydroformylation of propene 
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To a 50 mL stainless autoclave with a magnetic stir bar, an appropriate amounts of Ru 

complex  and bisphosphine were charged with 2 mL of solvent. The autoclave was pressurized 

with 0.8 MPa of propene. Immediately it was further pressurized with 2.0 MPa of H2/CO (total 

pressure was 2.8 MPa at r.t.). After completion of the reaction under conditions written on the 

tables, the autoclave was cooled to 0 °C with water/ice bath and kept for 30 min. The gas 

pressure was released and then dodecane (75 mg, 0.44 mmol) was added as an internal standard 

for GC analysis. Judging from the propene conversion to aldehydes, initial charges of H2 and CO 

were enough high that the drops of their partial pressures were negligible. 

 

Reproductive experiment of hydroformylation of propene using [NEt4][HRu3(CO)11] 

Reproductive experiment of hydroformylation of propene using [NEt4][HRu3(CO)11]
1e

 was 

done by decreasing the amount of catalyst and solvent to 1/5 of the original report using a 50 mL 

stainless autoclave (in the original report, 100 mL). 

 

Preparation of chloro(1,2,3,4,5-pentamethylcyclopentadienyl)(κ
2
-xantphos)ruthenium 

 

 
 

To a 80 mL Schlenk flask, bis(dichloro(pentamethylcyclopentadineyl)ruthenium) (200 mg, 

0.651 mmol) and XANTPHOS (452 mg, 0.781 mmol) were charged with ethanol (40 mL) and 

the mixture was stirred at 50 °C. During the reaction, yellow powder gradually precipitated. 

After 3 h, the Schlenk was kept at room temperature for 1 h. Filtration of the mixture gave the 

desired complex (498 mg, 89.9%). For the use of catalytic reaction, it was further purified by 
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recrystalization from CHCl3/hexane. Single crystals suitable for X-ray analysis was grown by 

slow diffusion of hexane into THF solution of the title compound. 
1
H NMR (CD2Cl2, 500 MHz) 

δ 0.88 (s, 15H), 1.52 (s, 3H), 1.91 (s, 3H), 6.56 (t, J = 7 Hz, 4H), 6.68 (t, J = 7 Hz, 3H), 7.08 (brs, 

4H), 7.17 (t, J = 8 Hz, 2H), 7.25-7.45 (m, 8H), 7.52 (dd, J = 1, 8 Hz, 2H); 
13

C{
1
H} NMR (CDCl3, 

101 MHz) δ 8.97 (s, CH3), 22.8 (s, CH3), 30.9 (s, CH3), 36.8 (s, 4°), 87.9 (s, 4°), 122.9 (s, CH), 

125.2 (s, CH), 126.0 (s, 4°), 126.2 (d, J = 4 Hz, 4°), 126.4 (s, 4°), 127.2 (s, CH), 127.4 (t, J = 15 

Hz, CH), 129.1 (s, CH), 129.7 (s, CH), 135.2 (s, 4°), 136.3 (t, J = 20 Hz, 4°), 137.2 (t, J = 6 Hz), 

138.8 (t, J = 16Hz, 4°); 
31

P{
1
H} NMR (CDCl3, 162 MHz) δ 34.8 (s); mp;261-265 °C (decomp.); 

IR (KBr, cm
−1

):690, 775, 1232, 1402, 1433; HRMS-ESI(+) (m/z) [M−Cl]+ calcd for 

C49H47OP2Ru, 815.21456; found, 815.21550. 

 

Preparation of hydrido(1,2,3,4,5-pentamethylcyclopentadienyl)(κ
2
-xantphos)ruthenium (1) 

 

 
 

To a 80 mL Schlenk flask, chloro(1,2,3,4,5-pentamethylcyclopentadienyl)(κ
2
-

xantphos)ruthenium (300 mg, 0.353 mmol) and NaOMe (67.7 mg, 1.25 mmol) were charged 

with toluene (30 mL) and ethanol (9 mL). The solution was stirred at 50 °C until the 
31

P NMR 

signal of starting material disappeared. After evaporation of the solvent, the resulting yellow 

powder was dissolved in toluene and cooled at −35 °C. Collection of the precipitated yellow 

powder and drying under vacuo gave desired product (75.6 mg, yield 26.3%). Single crystals for 

X-ray analysis was grown by cooling hexane solution of 1 at −35 °C. However disorder of 

solvent molecule was so significant that the obtained data could not be correctly solved. 
1
H NMR 
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(THF-d8, 500 MHz) δ −12.1 (t, J = 35 Hz, 1H), 1.11 (s, 15H), 1.71 (s, 3H), 1.94 (s, 3 H), 6.46 (s, 

4H), 6.53 (t, J = 5 Hz, 2H), 6.85 (brs, 4H), 7.11 (t, J = 5 Hz, 2H), 7.22 (s, 4H), 7.24 (t, J = 5 Hz, 

2H), 7.30 (brs, 2H), 7.51 (d, J = 5 Hz, 2H), 7.91 (s, 4H); 
13

C{
1
H} NMR (THF-d8, 101 MHz) δ 

10.09 (s, CH3), 22.09 (s, CH3), 29.93 (s, CH3), 36.92 (s, 4°), 90.60 (s, 4°), 122.04, (s, CH), 

124.29 (s, CH), 126.43 (d, J = 10 Hz, CH), 127.79 (s, CH), 127.99 (s, 4°), 128.15 (s, 4°), 128.26 

(s, CH), 136.06 (s, 4°), 136.36 (t, J = 6 Hz, CH), 140.71 (m, 4°), 156.10 (s, 4°); 
31

P NMR (THF-

d8, 202 MHz) δ 65.5 (t, JPH = 34 Hz); mp 266-272 °C (decomp.); IR (KBr, cm
−1

):1863.1 (νRu‒H); 

HRMS-ESI(+) (m/z) [M−H]+ calcd for C49H47OP2Ru, 815.21456; found, 815.21084.  

 

Details for X-ray crystallography for complex Cp*Ru(xantphos)Cl, and 1 

Details of the crystalographic data, and the intensity data collection parameters for 

Cp*Ru(xantphos)Cl and 1 are listed in Table S1. In each case a suitable crystal was mounted 

with a mineral oil to a glass fiber and transferred to the goniometer of a Rigaku Mercury CCD or 

VariMax Saturn CCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 

0.71070 Å). The structures were solved by direct methods (SIR-97)
18

 and refined by full-matrix 

least-squares techniques against F
2
 (SHELEXL-97).

19,20
 The intensities were corrected for 

Lorentz and polarization effects or NUMABS program (Rigaku 2005). The non-hydrogen atoms 

were refined anisotropically. Hydrogen atoms were placed using AFIX instructions. Structural 

optimization of 1 could not be completed due to disordering of a co-crystallized hexane molecule. 

ORTEP drawings of Cp*Ru(xantphos)Cl and 1 are shown below in Figure 2-10. 
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Table 2-3. Crystallographic data and structure refinement details for Cp*Ru(xantphos)Cl and 1 

 Cp*Ru(xantphos)Cl 1 (preliminary) 

formula C49H47ClOP2Ru C49H48OP2Ru 

fw 850.37 815.92 

T (K) 103(2) 93 

 (Å) 0.71070 0.71070 

cryst syst monoclinic monoclinic 

space group P21/c C2/c 

a, (Å) 20.173(12) 41.60(2) 

b, (Å) 11.033(7) 17.746(9) 

c, (Å) 23.394(14) 12.812(6) 

, (° 90 90 

, (° 94.187(3) 102.235(7) 

, (° 90 90 

V, (Å
3
) 5193(5) 9244(8) 

Z 4 8 

Dcalc, (g / cm
3
) 1.364 1.296 

 (mm
-1

) 0.463 0.447 

F(000) 2240.0 3792 

cryst size (mm) 0.60 × 0.45 × 0.20 0.60 × 0.45 × 0.20 

2 range, (deg 3.17-25.00 3.05-25.00 

reflns collected 29445 38201 

indep reflns/Rint 8952/0.0882 8115/0.1079 

params 629 654 

GOF on F2 1.302 1.287 

R1, wR2 [I>2(I)] 0.1081, 0.1912 0.0957, 0.1500 

R1, wR2 (all data) 0.1265, 0.2002 0.1071, 0.1547 
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Figure 2-10. Ortep drawing of Cp*Ru(xantphos)Cl, and 1 (50% thermal ellipsoid, hydrogen 

atoms except for that bonded to Ru in 1 were omitted for clarity). 
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Stoichiometric reaction of Cp*Ru(xantphos)H and 1-decene 

 

 

To a toluene-d8 (0.5 mL) solution of Cp*Ru(xantphos)H (8.1 mg, 10 μmol) in an NMR sample 

tube, a 2:1 (molar ratio) mixture of 1-decene/dodecane (3.0 μL (ca. 1-decene 10 μmol)) was 

added and heated at 100 °C. After 19, 22, 26 and 39 hours, the mixture was analyzed by 
1
H and 

31
P NMR spectroscopy and after 6 days, it was analyzed by GC using dodecane as an internal 

standard. During the reaction, almost no change was detected for Cp*Ru(xantphos)H. 

Meanwhile, 1-decene was gradually consumed and (E)- and (Z)-2-decene were accumulated 

(Figure 2-11). 

 

  

Figure 2-11. Stoichiometric reaction of Cp*Ru(xantphos)H and 1-decene. 
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Attempted reaction of Cp*Ru(xantphos)H and 1-decene under Ar or CO atmosphere 

 
 

To a toluene-d8 (0.5 mL) solution of Cp*Ru(xantphos)H (8.1 mg, 10 μmol) in an NMR sample 

tube, a 2:1 (molar ratio) mixture of 1-decene/dodecane 3 μL (1-decene ca. 10 μmol) was added 

and heated at 100 °C under CO atmosphere. After 24 and 48 hours, the sample was analyzed by 

1
H and 

31
P NMR spectroscopy. Only Cp*Ru(xantphos)H and dissociated XANTPHOS were 

observed in the 
31

P NMR spectrum. No evidence for the formation of the acylruthenium complex 

was found in the 
1
H NMR spectrum (no signal was detected for the triplet at alpha to the 

carbonyl, Ru-C(=O)-CH2-CH2-). 
 

 

Attempted reaction of Cp*Ru(xantphos)H and CO 

 
Toluene-d8 solution of Cp*Ru(xantphos)H was treated with CO (0.1 MPa) at 100 °C or at 

room temperature. Ruthenium complexes coordinated by carbon monoxide were not detected. 
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Stoichiometric reaction of 1-decene-d2 and 1 

To a toluene-d8 (0.5 mL) solution of 1 (8.1 mg, 10 μmol) and 1,3,5-trimethoxybenzene (1.5 

mg, 8.9 μmol, added as an internal standard and inactive under the reaction condition) in an 

NMR sample tube, 1-decene-d2 2.1 μL (96% D on C1, ca. 10 μmol) was added and heated at 

100 °C. The sample was analyzed by 
1
H NMR spectroscopy with 60 seconds of relaxation delay. 

 

 

 

Representative spectrum is shown below. The isotopomers were not distinguishable. (For 

example, H on C2 of C8H17CH=CD2 and C8H17CH=CHD were integrated as one signal). 
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Figure 2-12. Vinylic region of 
1
H NMR spectrum after 7 hours. 

 

Figure 2-13. Time course for the integral ratio of vinylic protons in the stoichiometric reaction 

of 1-decene-d2 and 1. 

Ha 
Hd + He 

Hf 

trimethoxybenzene 

Hb + Hc 
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Figure 2-14. 2,1-insertion-β-elimination process. 

In the initial stage of the reaction, increase of H
b
 + H

c
 (0.10 µmol h

−1
) corresponds to the 

formation of 1-decene-d1 and increase of H
d
 + H

e
 (0.41 µmol h

−1
) corresponds to the formation 

of 2-decene-d2 (incorporation of deuterium on C2 and C3 of 2-decene was confirmed to be 

negligibly slow by 
2
H NMR). The integral ratio of these signals gave the ratio between the rates 

of the C1-β-D-elimination and the C3-β-H-elimination to be k−2D:k3 = 0.8:1 (0.1038 × 

3/2:0.4126/2 = 0.7547:1). Considering the reported kinetic isotope effect for β-H-elimination 1.0 

~ 3.3, k−2H:k3 could be estimated to be 0.8:1 ~ 2.6:1 showing that they are comparable to each 

other. 
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Figure 2-15. Scheme for comparison of 1,2-insertion and 2,1-insertion process. 

 

The decrease of Ha was ascribed to the conversion of 1-decene-d2  to 2-decene-d2 or 1-decene-

d3 assuming that the participation of 1-decene-d1 to this process was negligible at the initial stage 

of the reaction,. Thus, the rate of formation of 1-decene-d3 was calculated as 0.04 µmol h
−1

 

(0.2467 – 0.4126/2 = 0.0404). During the increase of H
b
, H

c
, H

d
, and H

e
, the ratio of 1-decene-d3 

and 1-D was constant at 0.9:1.0 (0.0404:0.0436 = 0.926:1.000). This implies the much faster 1,2-

insertion-β-H(D)-elimination than the 2,1-insertion-β-D-elimination so that there existed rapid 

equilibrium between 1-D plus 1-decene-d2 and 1 plus 1-decene-d3. Otherwise the ratio of 1-

decene-d3:1-D would have increased as the reaction proceeded; namely, the concentration of 1-D 

could have first increased, and then 1-decene-d3 could have gradually formed. Since any Ru-

alkyl species was not observed in the above experiment, any insertion steps of 1-decene to Ru‒H 

was considered to be much slower than β-elimination. Therefore, the rate of 1,2-insertion (k+1) 

represents the rate of 1,2-insertion-β-H-elimination. In the same way, k+2 represents the  rate of 

2,1-insertion-β-H-elimination. In conclusion, 1,2-insertion estimated to be much faster than 2,1-

insertion. 
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Hydroformylation of 1-decene-d2 

To a 50 mL stainless autoclave with magnetic stirring bar, 1 (20.4 mg, 0.025 mmol) and 

XANTPHOS (14.5 mg, 0.025 mmol) were charged with 2 mL of toluene. To the mixture, 1-

decene-d2 (96% D on C1, 143 mg, 1.00 mmol) was added and then the autoclave was pressurized 

with H2/CO (2 MPa). At 160 °C, after 48 h, the autoclave was cooled to 0 °C with water/ice bath.  

The gas pressure was released and to the resulting solution was added dodecane (82.1 mg, 0.482 

mmol, internal standard for GC) and 1,3,5-trimethoxybenzene (60.5 mg, 0.360 mmol, internal 

standard for 
1
H NMR). The resulting solution was diluted with C6D6 and the sample was 

analyzed by 
2
H and 

1
H NMR spectroscopy. The product solution was diluted by toluene and was 

analyzed by GC. 

 

Hydroformylation of 1-decene by 1/XANTPHOS under various initial concentration of 1-

decene 

To a stainless autoclave (50 mL) charged with Ru complex (25.0 µmol), XANTPHOS (14.5 

mg, 25.0 µmol) and magnetic stir bar under Ar, toluene (2.0 mL) and 2:1 mole ratio mixture of 

1-decene and dodecane (total 300 µL, 150µL , or 75µL, 1-decene 1.0 mmol, 0.5 mmol, or 0.25 

mmol) were added via syringe. The autoclave was pressurized with 2.0 MPa of H2/CO and 

stirred at 160 ºC, at 800 rpm, for 24 hours. Then the autoclave was cooled with water/ice bath for 

30 minutes, the pressure was released. Then the solution was analyzed by GC. 
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Chapter 3 

Hydroformylation/Hydrogenation of Terminal 

Alkenes Catalyzed by Ru-Based Catalyst 

Systems 
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3 Hydroformylation/hydrogenation of Terminal Alkenes Catalyzed by Ru-Based 

Catalyst Systems 

 

3-1 Background 

There has been relatively small number of reports about ruthenium-based 

hydroformylation/hydrogenation catalyst (Table 3-1). Some of them has already introduced in 

chapter 2. In general, strong electron donar ligands enables catalysts to mediate hydrogenation 

under H2/CO, which is also the case for rhodium and cobalt systems (detail explanation is in 

chapter 4). For example, ruthenium modified by tri-normal-butylphosphine catalyze this tandem 

reaction under relatively harsh conditions with low n/i ratio.
1
 Ru3(CO)12/2,2‘-bipyridyl/P

n
Bu4Br 

melt catalyst system gives alcohols with higher n/i selectivity up to 6.1 from 1-octene.
2
 

Polymeric carbonylruthenium catalyst is intreresting system, which can affords alcohol without 

assistance of phosphorus ligand.
3
 Recently, Beller et al. reported ruthenium modified by 2-

imidazolylphosphin ligand to facilitate this reaction with relatively high activity and n/i 

selectivity as a ruthenium-based catalyst.
4
 So far the problem of these systems is their low 

catalytic activities and n/i selectivities compared to rhodium and cobalt systems. In most cases 

the activity for hydrogenation is derived from high nucleophilicity of hydride ligand on the 

ruthenium increased by the strong electron donation from ligands. Also, such species can 

potentially react with alkene to give alkane, which is a problematic side reaction in this tandem 

reaction. Therefore, new design of catalyst that enables ruthenium center to proceed 

hydrogenation of aldehyde under H2/CO selectivly in the presence of alkene is desired. 
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Table 3-1. Previous examples of ruthenium-based tandem hydroformylation/hydrogenation 

 

 

3-2 Tandem normal-selective hydroformylation/hydrogenation of 1-decene 

In the previous chapter, cyclopentadienylruthenium/bisphosphine system was developed as 

normal-selective hydroformylation catalyst (A, in Figure 3-1). On the other hand, 

hydroxycyclopentadienylruthenium was known to be a hydrogenation catalyst, which preferably 

reacts with aldehydes over alkenes (B, in Figure 3-1, for detail, see chapter 1).
5
 This type of 

catalyst reacts with substrates in a concerted mechanism. In this mechanism, polar double bonds 

such as C=O bond are more rapidly hydrogenated than less polar double bond such as C=C 
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bond.
1d

 Then, it was assumed that (hydroxyCp)Ru(bisphosphine)H (C) is supposed to have 

feature of both of catalyst A and B, and capable of catalyzing tandem normal-selective 

hydroformylation/hydrogenation. In this work, ruthenium complexes 1-4 (Figure 3-2), which are 

known to generate hydroxycyclopentadienylruthenium under H2, were studied. 

 

 

Figure 3-1. Design of ruthenium-based hydroformylation/hydrogenation catalyst 

 

 

Figure 3-2. Ruthenium complexes investigated in this work 

 

When 1-decene was treated with a catalytic amounts of 1 and XANTPHOS,
6
 normal-

undecanol was obtained in moderate yield and with high n/i selectivity (58%, n/i = 35, run 1, 

Table 3-2). The major side product was isomerized alkenes. When 2 possessing phenanthrene 

fused cyclopentadienone was used, the n-alcohol was obtained in a yield similar to 1 (run 2). On 

the other hand, a ruthenium complex with ethoxycarbonyl substituted cyclopentadienone (3) 
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exhibited high activity towards isomerization of the alkene and was not effective either in 

hydroformylation or hydrogenation (run 3). The highest yield of alcohol was obtained with 4 up 

to 70% yield and n/i ratio of 29 (run 4). This value of n/i ratio is highest reported for ruthenium 

based tandem hydroformylation/hydrogenation and highest level if it is compared to those of 

cobal and rhodium systems. The difference of activity among complex 1–4 could be explained 

by the stability of these catalysts. Under high carbon monoxide pressure and temperature, 

cyclopentadienone can be replaced by carbon monoxide to generate ineffective 

carbonylruthenium multinuclear complex. In the case of 3, ethoxycarbonyl substituted 

cyclopentadienone is relatively electron poor diene. Therefore, the coordination to ruthenium is 

supposed to be weaker. On the other hand, trimethylsilyl substituted cyclopentadienone is 

relatively electron rich ligand. So the coordination to ruthenium is stronger. Actually, when the 

IR absorption frequencies of the stretch of C–O bond is compared, they are 2002, 2029, and 

2100 cm
−1

 for 3 and 2006 and 2070 cm
−1

 for 4 respectively. These values indicate the stronger 

electron donation from the cyclopentadienone makes ruthenium center of 4 more electron rich, 

that resulted in stronger backdonation to carbon monoxide, and weaker bond between C–O. Use 

of BISBI
7
 resulted in lower rate of hydroformylation and hydrogenation (run 5). This is probably 

due to relatively stronger electron donating property of BISBI compared to XANTPHOS 

(benzyldiaryl phosphine versus triaryl phosphiine). Stronger donation from BISBI to ruthenium 

center resulted in stronger backdonation to and coordination of carbon monoxide, and this 

disturbs the coordination of other substrate. On the other hand, isomerization of the alkene was 

predominant when A4N3
8
 was used (run 6). One of the possibilities is that A4N3 is so a weak 

electron donor that makes coordination of carbon monoxide relatively weak. That slows down 

the rate of insertion of carbon monoxide relatively slower than β-hydride elimination, which 
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resulted in rapid isomerization of C=C bond of alkenes. In summary, cyclopentadienone needs to 

be basic to maintain its coordination to ruthenium center. On the other hand, phosphorus ligands 

can’t be a too strong or weak base because of the balance of lability of carbon monoxide on 

ruthenium center and susceptibility to the isomerization of alkenes. 

 

Table 3-2. Tandem hydroformylation/hydrogenation catalyzed by ruthenium-based  systems.
a
 

 

run catalyst 
conv. 

(%) 

aldehydes alccohols internal 

alkenes 

(%) 

alkane 

(%) 
yield 

(%) 
n/i 

yield 

(%) 
n/i 

1 1/XANTPHOS 95 12 6.9 58 35 8 2.9 

2 2/XANTPHOS 100 17 29 50 26 24 3.0 

3 3/XANTPHOS 60 7.0 32 0.5 - 50 nd
b
 

4 4/XANTPHOS 98 1.2 - 70 29 12 2.3 

5 4/BISBI 87 43 24 18 19 14 1.9 

6 4/A4N3 96 0.5 2.3 10 26 77 nd
b
 

a
Reaction condition: 1-decene 1.0 mmol, Ru complex 25 µmol (based on Ru atom), phosphorus 

ligand 50 µmol, toluene 2.0 mL, H2 1.0 MPa, CO 1.0 MPa, 160 °C, 24 h. The yields in the table 

were determined by gas chromatography using dodecane as internal standard. n/i = (mol of n-

product)/(mol of i-products). 
b
Not determined due to peak overlapping of isomerized alkenes and 

alkane on GC spectrum. 

 

For the next stage, hydroformylation/hydrogenation of 1-eicosene was monitored by in-situ 

infrared spectroscopy (Figure 3-3). As a result, aldehyde was not observed as intermediate of this 

tandem reaction. This fact indicated that the rate of hydrogenation of aldehyde is much faster 

than the rate of hydroformylation of 1-eicosene. Alternatively, it could be interpreted that 

aldehyde is not an intermediate of this tandem reaction. Although it is not a direct evidence, 

hydrogenation of aldehyde under H2/CO was confirmed to be catalyzed by 4, which supports 

that aldehyde is produced as an intermediate. Another important fact is that the rate of 
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hydroformylation is zero-order to 1-decene concentration because the time course of 1-eicosene 

was linearly plotted versus time. This will be revisited in the discussion of the reaction 

mechanism. 

 

 

Figure 3-3. Time courses of 1-decene and alcohol in the hydroformylation/hydrogenation of 1-

eicosene 

 

3-3 Tandem normal-selective hydroformylation/hydrogenation of propene 

Finally, this system was applied to hydroformylation/hydrogenation of propene (Table 3-3). In 

the case of 1-decene, isomerization to internal alkenes was a problematic side reaction, which is 

not the case for propene. Aldehydes remained under 1.0 MPa of H2 and 1.0 MPa of CO. 

Hydrogenation was accelerated by lowering CO pressure down to 0.5 MPa. With this change, 

alcohols were obtained as major product with n/i ratio of 11. Catalytic activity and n/i ratios were 

similar to those of [Cp*Ru(acac)]2/XANTPHOS system. 

 

1-eicosene 

alcohols 
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Table 3-3. Hydroformylation/hydrogenation of propene by 4/XANTPHOS a 

 

run H2/CO 

(MPa) 

aldehyde alcohol 

TOF for 

aldehydes (h
−1

) 
n/i 

TOF for 

alcohols (h
−1

) 
n/i 

1 1.0/1.0 1.9 14 1.1 7.7 

2 1.0/0.5 0.05 - 3.1 11 
a
1,4-dioxane 2.0 mL, TOFs were determined by GC using dodecane as an internal standard. 

 

3-4 Proposed reaction mechanism 

The reaction mechanism is proposed as illustrated in Scheme 3-1. Under H2/CO, 

(cyclopentadienone)ruthenium(0) complex is equilibrated with 

hydrido(hydroxycyclopentadienyl)ruthenium. Similarly to the Cp*Ru system, insertion of an 

alkene to the Ru–H takes place to give an alkylruthenium complex. Sequential insertion of 

carbon monoxide and hydrogenolysis release aldehyde and regenerate 

hydrido(hydroxycyclopentadienyl)ruthenium. The aldehyde is successively hydrogenated via a 

concerted mechanism to affords alcohol accompanied by coordination of CO to form 

(cyclopentadienone)ruthenium(0). 
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Scheme 3-1. Proposed catalytic cycle for the tandem hydroformylation/hydrogenation catalysed 

by cyclopentadienoneruthenium  

 

 

Although it is not clear which step is the selectivity determining step, bulky bisphosphorus 

ligands supposed to make any of the intermediates or transition states for the normal-alkyl 

complexes more preferable than the iso counterparts with steric repulsion with their alkyl chain. 

The result of real-time IR monitoring indicated that the reaction rate is zero order on alkene 

concentration. One possible interpretation is that the rate-determining step is the generation of 

hydridoruthenium from (cyclopentadienone)ruthenium(0), which is independent of the 

concentration of alkene. The preferential hydrogenation compared to hydroformylation could be 

explained by the relatively lower barrier of hydrogenation of aldehyde than insertion of alkene to 

Ru–H. Lledós et al. reported DFT calculation for these processes (Figure 3-4).
9
 They proposed 

that the insertion of alkene proceeded via η
2
-Cp complex and the transition state barrier is 32.1 

kcal/mol in the case of the model complex (Ph of Shvo’s catalyst is replace by H) and ethylene. 

Therefore, the barrier to release aldehyde is at least the same or higher than 32.1 kcal/mol. On 
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the other hand, the highest barrier for the transfer of hydrogen atoms to formaldehyde via 

concerted mechanism to release methanol is 11.0 kcal/mol. This result supports the author’s 

explanation for the reason why hydrogenation takes place preferably to hydroformylation. 

 

 

Figure 3-4. Comparison of the computationally calculated barrier of alkene insertion and 

aldehyde hydrogenation by model complex of Shvo’s catalyst 

 

3-5 Conclusion 

In this chapter, based on the speculation that hydroxycyclopentadienylruthenium/ bisphosphine 

system would be a tandem normal-selective hydroformylation/hydrogenation catalyst, 
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cyclopentadienoneruthenium/bisphosphine system was investigated and found to catalyze the 

reaction in one-pot in moderate yield and reaction rate but with highest level of n/i ratio as a 

tandem hydroformylation/hydrogenation catalyst. If the rate-determining step is the generation of 

hydridoruthenium from (cyclopentadienone)ruthenium(0), the reaction rate should be increased 

by introducing electron withdrawing ligand, which facilitates dissociation of CO. However, as 

demonstrated with bisphosphite ligand in Table 3-2, that will result in rapid isomerization of 

terminal alkene to internal alkenes. 
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Experimental Section 

 

General 

General experimental details are common with those in Chapter 2. 

 

Hydroformylation/hydrogenation of 1-decene by Ru singular catalyst 

To a stainless autoclave (50 mL) charged with Ru complex (25.0 µmol), XANTPHOS (28.9 

mg, 50.0 µmol) and magnetic stir bar under Ar, toluene (2.0 mL) and 2:1 mole ratio mixture of 

1-decene and dodecane (total 300 µL, 1-decene 1.0 mmol, dodecane 0.5 mmol) were added via 

syringe. The autoclave was pressurized with 2.0 MPa of H2/CO and stirred at 160 ºC, at 800 rpm, 

for 24 hours. Then the autoclave was cooled with water/ice bath for 30 minutes, the pressure was 

released. Then the solution was analyzed by GC. 

 

Hydroformylation/hydrogenation of propene by Ru singular catalyst 

To a stainless autoclave (50 mL) charged with Ru complex (25.0 µmol), XANTPHOS (28.9 

mg, 50.0 µmol) and magnetic stir bar under Ar, toluene (2.0 mL) was added via syringe. The 

autoclave was pressurized with 0.8 MPa of propene and desired pressure of H2/CO, and stirred at 

160 ºC, at 800 rpm, for 24 hours. Then the autoclave was cooled with water/ice bath for 30 

minutes, the pressure was released. Then the solution was analyzed by GC. 

 

Real-time IR monitoring of hydroformylation/hydrogenation of 1-eicosene by 

Rh(acac)(CO)2/XANTPHOS/1 



88 
 

An autoclave (100 mL) equipped with IR probe was charged with 4 (22.5 mg, 50 µmol), 

XANTPHOS (57.8 mg, 100 µmol) and magnetic stir bar was flushed with Ar. It was added 

toluene (10.0 mL) and 1-eicosene (1.75 mL, c.a. 5.0 mmol), and heated at 160 °C. The 

integration of the characteristic peaks for 1-decene (912 cm
−1

, terminal C=C), undecanal (1726 

cm
−1

, C=O), and undecanol (1058 cm
−1

, C-O) were monitored during the reaction time. After 

appropriate reaction time, the autoclave was cooled with water/ice bath for 30 minutes and the 

pressure was released. 1,3,5-Trimethoxybenzene 100.0 mg, 0.595 mmol) was added to the crude 

solution. Then the solution was analyzed by 
1
H NMR with longer relaxation delay (15 s). 

The actual amount of substrate injected into the autoclave was estimated as sum of the 

observed product with GC analysis. The actual liquid volume was estimated with the following 

equation 

Data treatment of IR was as follows. Background was measured before experiment under air. 

During the reaction, the peak area for 1-decene (912 cm
−1

, terminal C=C) and alcohols (1058 

cm
−1

, C-O) were plotted versus time (t) in every 5 minutes (256 scans were integrated). 

Aldehydes (1726 cm
−1

, C=O) were not observed. 

Catalytic species could not be characterized by in-situ infrared spectroscopy because of low 

intensity of those signals. 

 

Preparation of tricarbonyl(2,5-bis(ethoxycarbonyl)3,4-

diphenylcycopentadienone)ruthenium (3) 

To a 50 mL double necked round-bottomed flask containing Ru3(CO)12 (507 mg, 2.38 

mmol(mol Ru)) and 2,5-bis(methoxycarbonyl)-3,4-diphenylcyclopentadienone (879 mg, 2.34 

mmol), Toluene (17 mL) was added and refluxed until starting materials were consumed as 
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confirmed by TLC. After cooled the reaction mixture to room temperature, solvent was 

evaporated. Recrystallization from CHCl3/hexane gave the title compound as yellow crystals 

(766 mg, yield 58.5%). 
1
H NMR (CD2Cl2, 500 MHz) δ 0.97 (t, J = 7 Hz, 6H) 4.03 (dq, J = 16, 7 

Hz, 2H), 4.05 (dq, J = 16, 7 Hz, 2H), 7.21-7.33 (m, 10H); 
13

C NMR (CDCl3, 101 MHz) δ 13.4 

(CH3), 61.3 (CH2), 70.8 (4°), 109.5 (4°), 128.0 (CH), 129.1 (CH), 131.1 (CH), 164.7 (4°), 170.8 

(4°), 192.1 (4°); mp 165-169 °C (decomp.); IR (KBr, cm
−1

):1653 (s), 1709 (s), 1722 (s), 2002 (s), 

2029 (s), 2100 (s); Anal. Calced for C26H20O8Ru: C, 55.61; H, 3.59. Found: C, 55.38; H, 3.61. 

 

Preparation of tricarbonyl(2,4-bis(trimethylsilyl)bicycle[3,3,0]octa-1,4-dien-3-

one)ruthenium (4) 

To a 50 mL stainless autoclave, 1,7-bis(trimethylsilyl)-hepta-1,6-diyne (970 μL, 3.3 mmol) 

and triruthenium dodecacarbonyl (700 mg, 1.10 mmol) were charged with acetonitrile (50 mL). 

Then the autoclave was pressurized with CO 0.5 MPa and the resulting mixture was stirred at 

120 °C for 12 h. After evaporation of the solvent, the residue was dissolved in CH2Cl2, and 

passed through short silica-gel column. The volatiles of the filtrate was evaporated and then the 

residue was recrystallized from toluene at −35 °C (to afford 4 as 1.011 g, yield 68.0%). 
1
H NMR 

(CDCl3, 500 MHz) δ 0.26 (s, 18H) 1.75-1.89 (m, 1H), 2.33 (m, 1H), 2.50-2.67 (m, 4H); 
13

C 

NMR (CDCl3, 101 MHz) δ 0.07 (CH3), 25.8 (CH2), 27.8 (CH2), 67.6 (4°), 118.8 (4°), 186.9 (4°), 

195.0 (4°); mp;146-147 °C (decomp.), IR (KBr, cm
−1

):1609, 2006, 2070; Anal. Calced for 

C17H24O4RuSi2: C, 45.41; H, 5.38. Found: C, 45.25; H, 5.34. 

 

Details for X-ray crystallography for complexes 3 and 4 
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Details of the crystal graphical data, and a summary of the intensity data collection parameters 

for 3 and 4 are listed in Table 3-4. In each case a suitable crystal was mounted with a mineral oil 

to glass fiber and transferred to the goniometer of a Rigaku Mercury CCD diffractometer with 

graphite-monochromated Mo Kα radiation (λ = 0.71070 Å) or . The structures were solved by 

direct methods with (SIR-97)
10

 and refined by full-matrix least-squares techniques against F
2
 

(SHELEXL-97).
11,12

 The intensities were corrected for Lorentz and polarization effects or 

NUMABS program (Rigaku 2005). The non-hydrogen atoms were refined anisotropically. 

Hydrogen atoms were placed using AFIX instructions. ORTEP drawings of 3 and 4 are shown in 

Figure 3-5 (thermal ellipsoids set at 50% probability; hydrogen atoms except bonded to Ru are 

omitted for clarity.). 
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Table 3-4. Crystallographic data and structure refinement details for 3 and 4 

 3 4 

formula C26H20O8Ru C17H24O4RuSi2 

fw 561.49 449.61 

T (K) 103(2) 103(2) 

 (Å) 0.71070 0.71070 

cryst syst monoclinic orthorhombic 

space group P21 P212121 

a, (Å) 9.810 (4) 7.705(3) 

b, (Å) 10.483(3) 13.954(5) 

c, (Å) 11.670(5) 19.299(7) 

, (° 90 90 

, (° 102.2858(16) 90 

, (° 90 90 

V, (Å
3
) 1172.7(7) 2075.1(13) 

Z 2 4 

Dcalc, (g / cm
3
) 1.590 1.439 

 (mm
-1

) 0.718 0.887 

F(000) 568 920 

cryst size (mm) 0.70 × 0.70 × 0.10 0.25 × 0.20 × 0.10 

2 range, (deg 3.05-25.00 3.02-25.00 

reflns collected 7590 13582 

indep reflns/Rint 3931/0.0192 3652/0.0406 

params 345 223 

GOF on F2 1.162 1.092 

R1, wR2 [I>2(I)] 0.0257, 0.0585 0.0370, 0.0804 

R1, wR2 (all data) 0.0275, 0.0610 0.0409, 0.0840 
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Figure 3-5. Ortep drawing of 3 and 4 (50% thermal ellipsoid, hydrogen atoms were omitted for 

clarity). 
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Rh/Ru Dual Catalyst System 
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4 Tandem Hydroformylation/Hydrogenation of Terminal Alkenes to Normal-

Alcohols Using a Rh/Ru Dual Catalyst System 

 

4-1 Background 

As mentioned in the chapter 1, one-pot conversion of an alkene to a nomal-alcohol (tandem 

normal-selective hydroformylation/hydrogenation) would be an advantageous process by 

reducing the numbers of reactors and distillation steps for hydrogenation and the separation of 

dihydrogen from synthesis gas. Although this process was already commercialized with cobalt 

system, it is suffering from required harsh conditions (150−200 °C, >10 MPa of H2/CO) and low 

selectivity of desired normal-alcohol (~70%). Therefore, the tandem reaction is still being well 

investigated. Representative examples are summarized in the Table 4-1. Most of the early 

examples are alkylphosphine modified systems. For example, Co-monodentate trialkylphosphine 

system was first patented in 1960’s (n/i ratio up to 5). Shell modified this system further to find 

bulky bidentate trialkylphosphine ligand is more efficient.
1
 With this modification, normal-

selectivity was improved (n-alcohol yield 77%, n/i = 8.1). For the modification of cobalt by 

trialkylphosphine, there are several advantages and disadvantages. One of the advantages is that 

trialkylphosphines enhance activity for hydrogenation probably by increasing nucleophilicity of 

cobalt hydride. Also, steric bulk of trialkylphosphine suppresses the deactivation of cobalt 

species by dimerization to inactive species. As a result, reaction could be performed under 

relatively lower CO pressure compared to unmodified systems. Third advantage is that the n/i 

ratio is improved compared to the unmodified system due to the steric bulk of trialkylphosphine. 

On the other hand, one of the disadvantages is that the rate is decreased by the stronger 

coordination of carbon monoxide due to enhanced electron density of the cobalt center. Another 
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drawback is that trialkylphosphines are pyrophoric. As for catalytic activity and selectivity, 

similar tendencies to cobalt system were known for other metal based systems. For example, 

Cole-Hamilton et al. reported tris(triethylphosphine)hydridorhodium (RhH(PEt3)3) gives 

alcohols selectively in EtOH. Yield of alcohols was excellent, but low n/i ratio remained as 

problem (93% alcohols yield, n/i = 4.3).
2
 They examined the reaction mechanism and proposed 

that the reaction was proceeded not via aldehyde as an intermediate. When the 

hydroformylation/hydrogenation of 1-hexene was performed by employing D2/CO in EtOH, 

deuterium distribution of the obtained heptanol was C4H9CHDCH2CD2OH. On the other hand, 

hydrogenation of heptanal using the same catalyst under D2/CO afforded heptanol with 

deuterium content of C4H9CH2CH2CHXOH [X = H (60%), D (40%)]. These results mean in the 

hydrogenation/hydroformylation of 1-heptene, deuterium appears on the C1 of the resulting 

heptanol, while in the hydrogenation of heptanal, both hydrogen and deuterium was found on C1 

(one of the hydrogens was derived from formyl proton of heptanal). Therefore, they concluded 

that heptanal was not released as an intermediate in the tandem reaction. The proposed 

mechanism to explain such results is described in Figure 4-1. The key is the formation of a 

carbene complex from an acylrhodium species assisted by the protonation by methanol, and the 

sequential oxidative addition of D2 and the migration of one of the deuterium followed by 

reductive elimination affords alcohol. 
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Scheme 4-1. Proposed mechanism of one-pot conversion of alkene to alcohol catalyzed by 

RhH(PEt3)3 

 

 

 

Nozaki et al. synthesized BISBI-type ligand possessing alkyl substituent on the phosphorus 

atoms (Scheme 4-2). As alkyl substituents, methyl, n-hexyl, i-propyl, and neo-pentyl were 

investigated. The observed n/i ratios were 4.1, 5.4, 1.0 and 0.84 respectively.
3
 One interpretation 

of such results is that the coordination abilities of phosphorus atoms is weaker in the presence of 

bulkier substituents on them, and that resulted in smaller effect on the n/i selectivity. However, 

analysis of the catalyst solution by 
31

P NMR spectroscopy did not give clear evidence of 

coordination of Me-BISBI whereas coordination of 
i
Pr-BISBI was evident. 
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Scheme 4-2. Tandem hydroformylation/hydrogenation catalyzed by 

bisdialkylphosphinomethylbiphenyl 

 

 

As other trialkylphosphine modified systems, ruthenium
4
 and palladium

5
 based systems were 

also developed. Palladium based system reported by Drent et al. can afford normal-alcohol not 

only from terminal alkenes but also internal alkenes via isomerization to terminal alkene, 

normal-selective hydroformylation, and hydrogenation due to the relatively high activity of the 

palladium based system for isomerization of alkenes. The important aspect of the system is that 

the reaction rate and the n/i selectivity are improved in the presence of catalytic amount of halide. 

In the comparative experiment, the order of the extent of acceleration was Cl (7 times) ≳ Br (7 

times) > I (4 times), and that of enhancement of n/i was Cl (2.6) < Br (3.5) < I (4.6) compared to 

1.9 in the absence of halide. However, the mechanisms of such effects were not well understood. 

The best result using L1 is described in Scheme 4-3. 
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Scheme 4-3. Isomerization/hydroformylation/hydrogenation of a mixture of internal alkenes by a 

palladium alkylphosphine catalyst 

 

 

As explained, previous examples of alkylphosphine modified systems exhibit only low n/i 

ratios. Of course, there have been numerous examples of alkylphosphine ligands however none 

of them has ever reported to exhibit high n/i selectivity. This is probably due to flexibility of 

alkylphosphine ligands. Most of the examples of highly normal-selective hydroformylation 

catalysts are employing bisphosphorus ligands having rigid back bone and wide bite angle. From 

this fact, these properties are considered to be the requirement for high n/i ratio and are difficult 

to achieve by alkyl group, which is more flexible compared to aryl group in general. One 

intriguing example, which does not contain electron donating ligand is reported by Breit et al.
6
 

They developed guinidine tethered phosphine ligands, which interact with carbonyl of aldehyde 

with hydrogen bonding (Scheme 4-4). With this interaction, hydrogenation of aldehyde was 

accelerated while hydroformylation proceeded with relatively high n/i ratio probably due to its 

steric bulkiness of the ligand. 
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Scheme 4-4. Proposed mechanism of hydrogenation of aldehyde by guanidine tethered 

phosphine ligand 

 

 

Another idea to achieve highly normal-selective hydroformylation/hydrogenation is utilizing 

single metal/dual ligand systems. This type of system consists of a mixture of rhodium source 

and two phosphorus ligands, one mediates normal-selective hydroformylation, and the other is 

for hydrogenation under H2/CO is employed. Rhodium species coordinated by these two ligands 

are in equilibrium in the reaction mixture and they play respective role in the tandem reaction. 

For example, in Cole-Hamilton’s report,
7
 XANTPHOS was used with RhH(PEt3)3 (by only 

RhH(PEt3)3, n/i = 4.3) as catalyst precursors, to give alcohols with n/i ratio up to 32 (Table 4-1). 

In this system, rhodium complexes coordinated by XANTPHOS or triethylphosphine are in 

equilibrium. The former species catalyzes normal-selective hydroformylation, and the latter 

catalyzes hydrogenation of resulting aldehyde. Similarly, Breit used a pyridone-tethered 

phosphine ligand for n-selective hydroformylation and a guanidine-tethered phosphine ligand for 

hydrogenation in one-pot (Table 4-1).
8
 Observed n/i ratio was as high as 32 with 95% yield of 

alcohols. So far, this is the highest yield of normal-alcohol ever reported for tandem 

hydroformylation/hydrogenation. 
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Table 4-1. Representative examples of tandem hydroformylation/hydrogenation 
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In summary, tandem hydroformylation/hydrogenation reaction has been well investigated but 

still attracting attention. Selectivity to normal-alcohol has been improved by the intensive studies, 

but they are not sufficiently effective for industrial application probably due to the low activities 

or the costs of the catalyst preparations. 

 

4-2 Design of the dual catalyst system of this work 

In this work, a dual catalyst system for one-pot n-selective hydroformylation/hydrogenation 

was developed by employing rhodium-based hydroformylation catalyst and ruthenium-based 

hydrogenation catalyst (Scheme 4-2). In this system, rhodium-based normal-selective 

hydroformylation catalyst is expected to convert an alkene to normal-aldehyde and subsequent 

hydrogenation of the aldehyde by ruthenium-based hydrogenation catalyst gives normal-alcohol. 

For that purpose, acetylacetonatodicarbonylrhodium (Rh(acac)(CO)2) and XANTPHOS
9
 (See 

Chapter 1) was employed as normal-selective hydroformylation catalyst because of its high 

normal-selectivity and robustness against alcohol. On the other hand, selective hydrogenation of 

aldehyde over alkenes is required for ruthenium-based hydrogenation catalyst. Metal–ligand 

bifunctional hydrogenation catalyst is suitable for the requirement (Figure 4-1).
10

 This type of 
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hydrogenation catalyst hydrogenates unsaturated double bond via concerted transfer of hydridic 

hydrogen on the metal center and protic hydrogen on the ligand. The barrier of the transfer of 

hydrogen atoms is lower with polar double bond such as C=O than C=C.
11

 Therefore, this type 

of catalyst preferably hydrogenates aldehyde and is relatively inert to alkenes. Although 

cyclopentadienyl ruthenium complex has activity in hydroformylation as investigated in the 

previous chapters, it is negligibly slow compared to Rh/XANTPHOS system. 

 

Scheme 4-2. Rh/Ru dual catalyst system for the one-pot conversion of alkenes to normal-alcohol 

 

 

 

Figure 4-1. Ru-based metal–ligand bifunctional hydrogenation catalyst 

 

4-3 Screening of hydrogenation catalysts 

Based on the speculation, literature reported ruthenium-based metal–ligand bifunctional 

hydrogenation catalysts were screened. Screened catalyst systems 1-612-16
 and their proposed 

transition state in hydrogen transfer step are described in Figure 4-2. As a proton source on 

ligand, active species produced from complex 112
 reacts with substrates O-H group on the ligand 

and 2,
13

 3/4,
14

 5,
15

 or 616
 react with substrates with the N-H group on the ligand. For 2-6, one 
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equivalent of 
t
BuOK to ruthenium catalyst was used to generate hydridoruthenium under H2 by 

losing potassium chloride. Under 2.0 MPa of H2/CO (1:1), 1-decene was treated with a catalytic 

amount of Rh(acac)(CO)2, XANTPHOS, and hydrogenation catalyst at 160 °C for 1 hour. 

Results are summarized in Table 4-2. Among the catalysts, 1 gave the highest selectivity to n-

undecanol. When 2-6 were used as the catalyst, low rate of hydrogenation was problematic. 

Formations of high boiling products such as acetals or aldol products were also problematic for 

2-6. Relatively slow rate of hydrogenation by 2-6 resulted in higher concentration of aldehyde 

during the reaction, which supposed to facilitate those side reactions. 

 

 

Figure 4-2. Screened hydrogenation catalyst and their proposed transition state in hydrogenation.  

 

Table 4-2. Tandem hydroformylation/hydrogenation by Rh/XANTPHOS and various Ru-based 

bifunctional catalyst
a
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run Cat. 
alcohols 

n/i 
aldehyde 

n/i 
alkane 

(%) 

others 

(%) n(%) i(%)
b
 n(%) i(%)

b
 

1 1 85 5.0 17 0.9 0.5 2 1.3 internal alkenes (1.7)
c
 formate (1.2) 

2 2+
t
BuOK 64 2.8 23 14 1.6 9 2.7 internal alkenes (2.5)

c
 formate (3.3) 

3 3+4+
t
BuOK 37 1.9 19 41 4.1 10 2.2 

internal alkenes (2.7)
c
 formate (2.0) 

high boiling products (4.3)
d
 

4 5+
t
BuOK 5.4 trace >100 64 4.9 13 2.0 

internal alkenes (26)
c
 

high boiling products (2.4)
d
 

5 6+
t
BuOK 59 1.6 37 7.2 0.6 12 2.4 

internal alkenes (11)
c
 

high boiling products (3.9)
d
 

a
Yields were determined by gas chromatography by using dodecane as internal standard 

otherwise mentioned. 
b
Yields were estimated by using calibration curve for normal-isomer. 

c
Yields were estimated by using calibration curve for 1-decene. 

d
Yields were estimated by using 

calibration curve for normal-aldehyde. 

 

4-4 Optimization of reaction conditions 

Reaction conditions were optimized employing 1 as hydrogenation catalyst. Results are 

summarized in Table 4-3.  

 

Table 4-3. Optimization of reaction condition
a
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run 
deviation from 

standard condition 

alcohols 
n/i 

aldehyde 
n/i 

alkane 

(%) 

internal 

alkenes (%)
c
 

formate 

(%) n(%) i(%)
b
 n(%) i(%)

b
 

1 - 85 5.0 17 0.9 0.5 2 1.3 1.6 1.1 

2 H2 3.0 MPa 83 4.6 18 0.9 0.3 3 5.3 1.9 0.4 

3 CO 3.0 MPa 88 4.6 19 0.4 0.6 0.7 1.2 4.4 1.4 

4 H2 3.0 MPa, CO 3.0 MPa 85 4.3 20 0.6 0.5 1.3 3.3 3.1 1.2 

5 XANTPHOS 5.0 mol% 83 4.9 17 trace trace - 2.7 1.1 2.9 

6 1 1.25 mol% 81 4.8 17 trace trace - 2.7 1.1 trace 

7 1 0.63 mol% 70 4.7 15 7.4 trace - 2.7 1.1 5.7 

8 in toluene 79 4.2 19 0.9 0.6 1.4 2.7 2.8 8.6 

9 in THF 61 5.0 14 4.2 0.6 7.0 3.8 8.6 15 

10 in DMF 83 3.3 21 0.6 0.4 1.5 2.5 4.8 4.5 

11 in DMA
 

87 3.9 22 1.0 0.4 2.7 2.4 4.9 1.4 

12 in DMA, 120 °C, 12.5 h 90 4.2 22 1.0 0.9 1.1 1.3 2.0 1.7 

a
Yields were determined by gas chromatography by using dodecane as internal standard 

otherwise mentioned. 
b
Yields were estimated by using calibration curve for normal-isomer. 

c
Yields were estimated by using calibration curve for 1-decene. 

 

Deviation of pressures of H2 and/or CO (runs 2-4) or increase of the amount of XANTPHOS 

(run 5), or decrease of 1 (run 6, 7) resulted in little change or decrease of the yield of n-alcohol. 

These effects of pressures of H2 and CO, and concentrations of ruthenium and XANTPHOS on 

the rate of hydrogenation will be discussed later. Solvent effect was also examined (runs 8-11). 

DMA gave the best yield. In relatively less polar solvent such as toluene or THF, formation of 

undecyl formate via carbonylation of undecanol was significant. Finally, the yield was enhanced 

up to 90% at 120 °C with elongated reaction time. 

 

4-5 Substrate scope and limitation 
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Substrate scope and limitation are summarized in Table 4-4. Allyl alcohol is important target 

of this reaction because of the significance of corresponding homologated n-alcohol, 1,4-

butandiol (produced more than 1 million t/year mainly by hydrogenation of maleic anhydride). 

However, the yield was as low as 35%, because of the formation of propanol and γ-butyrolactone 

(run 2). Reaction mechanisms giving them are proposed in Scheme 4-3. Complex 1 catalyzes the 

isomerization of allyl alcohol to propanal,
17

 which is susceptible to hydrogenation by 1. Also, 

corresponding homologated n-aldehyde produced from allyl alcohol rapidly forms cyclic acetal, 

which is dehydrogenated to give γ-butyrolactone. 

 

Scheme 4-3. Pathway to form propanol and γ-butyrolactone 

 

 

 

Table 4-4. Substrate scope and limitation
a
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run R
1
, R

2
, R

3
 

alcohols 

n/i 

direct 

hydrogenation 

(%) 

others
c
 

(%) n(%) i(%)
b
 

1 C8H17, H, H 90 4.1 22 1.4 
internal 

alkenes (1.9) 

2 HOCH2, H, H 31 3.5 8.9 20
d
 

γ-butyrolactone (10)
d
 

high boiling 

products (4)
d, e

 

3 AcOCH2, H, H 78 trace >100 1.9 
butanol (9) 

isobutanol (10)
b
 

4 HO(CH2)2, H, H 75 2.4 32 4.5 
cyclic acetals (3)

f
 

δ-valerolactone (11)
f
 

5 AcO(CH2)2, H, H 87 5.6 16 4.5 nd 

6 HO(CH2)3, H, H 95 2.9 33 4.0 none 

7 THPO(CH2)4
g
, H, H 80

f
 5.0

 f
 16 nd 

n-aldehyde (4)
 f
 

internal 

alkenes (2)
 f
 

8 PhCH2O(CH2)4, H, H 81
f
 4.1

d
 20 nd 

internal 

alkenes (2) 

formates (6)
f
 

9 TBSO(CH2)4
h
, H, H 80

 f
 3.7

 f
 22 nd formate (4)

f
 

10  (1,3-dioxolan-2-yl)(CH2)8, H, H 79
 f
 4.2

 f
 19 nd formate (3)

f
 

11 PhNHCO2(CH2)4, H, H 75
f
 4.9

 f
 15 nd nd 

12 cyclohexyl, H, H 87
f
 4.9

f
 18 nd nd 

13 C7H15, CH3, H,  62 trace >50 nd 

starting material (15) 

internal 

alkenes (8) 

14 C7H15, H, CH3 22
i
 34 0.6 nd 

internal 

alkenes (34) 

aldehydes (4.2) 

15 Ph, H, H 60 39 1.5 0 none 

a
The yields in the table were determined by gas chromatography analysis with dodecane or 

tridecane as internal standard otherwise mentioned. n/i = (mol of n-alcohol)/(mol of i-alcohols). 

The yields of aldehydes were trace otherwise mentioned. nd = not determined 
b
The yields were 

estimated by using calibration curve for n-alcohol. 
c
The number in the parentheses are the yield 

of the products. 
d
The yields were estimated by using calibration curve for n-alcohol and 

corrected based on the number of carbon. 
e
Probably acetals or aldol products.  

f
The yield was 

determined by 
1
H NMR with 1,3,5-trimethoxybenzene as internal standard. 

g
THP = 2-

tetrahydropyranyl. 
h
TBS = tert-butyldimethylsilyl 

i
Yield of n-undecanol. 
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On the other hand, allyl acetate was converted to the corresponding n-alcohol in better yield 

(78%, run 3). Hydrogenation of C=C was suppressed because isomerization to aldehyde did not 

take place. Also, cyclization was not occurred because intermolecular acetalization was 

suppressed. Similar to allyl alcohol and allyl acetate, homoallyl alcohol was susceptible to 

formation of lactone (11%) and homoallyl acetate was not (n-alcohol 75% and 87% in runs 4 and 

5). 4-Penten-1-ol gave 1,6-hexanediol in 95% yield with no lactone as side product (run 6). As 

for other functional group, tetrahydropyranyloxy (80%, run 7), benzyloxy (81%, run 8), tert-

butyldimethylsilyloxy (80%, run 9), 1,3-dioxolane-2-yl (79%, run 10), phenylcarbamate (75%, 

run 11), and cyclohexyl (87%, run 12) were applicable to this reaction. A trace amount of i-

alcohol was formed from 2-methyl-1-nonene, and yield of n-alcohol was 62% (run 13). 

Volatility of substrate was problematic that the total yield of recovered product was 85%. (Z)-2-

decene was converted to n-undecanol (22%, run 14) via isomerization to 1-decene and 

successive hydroformylation/hydrogenation. However, formation of i-alcohol was predominant. 

Styrene was quantitatively converted to alcohols but n/i ratio was as low as 1.5 because styrene 

is intrinsically iso-selective in hydroformylation (run 15).
9
 

 

4-6 Investigation of the independency of Rh/XANTPHOS and 1 

High yield of n-alcohol could be attributed to the independency of two catalyst systems, 

Rh/XANTPHOS and 1. Control experiments were performed to prove it. 

 

4-6-1 Observation of catalyst species 

Catalyst solution independently prepared in NMR sample tube was analyzed by 
31

P NMR 

spectroscopy. Obtained spectrum is shown in Figure 4-3. 
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PPM40 30 20 10 0 -10 -20 PPM40 30 20 10 0 -10 -20  

Figure 4-3. 
31

P NMR spectrum of catalyst solution for tandem reaction under 1 atm of H2/CO 

 

Doublet at 19 ppm (J = 122 Hz) is assigned as dicarbonylhydrido(xantphos)rhodium (7),
9
 

which is known as an active species for n-selective hydroformylation. Singlet at −18 ppm is 

ascribed to free XANTPHOS.
9
 Other signals were assigned by additional control experiments. 

When XANTPHOS and 1 were heated under Ar, two singlets at 39 ppm and −22 ppm appeared 

with 1:1 ratio (Figure 4-4). They could be assigned as (tetraphenylcyclopentadienone)(κ
1
-

xantphos)dicarbonylruthenium (8). 
31

P NMR chemical shift of 39 ppm is similar to that of 

(tetraphenylcyclopentadienone)(triphenylphosphine)dicarbonylruthenium (9)
18

 (33 ppm) and 

−22 ppm is similar to free XANTPHOS. Since 9 was reported to be formed by a reaction of 1 

with triphenylphosphine (Scheme 4-4), 8 is supposed to be similarly formed. 
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PPM40 30 20 10 0 -10 -20 PPM40 30 20 10 0 -10 -20

PPM40 30 20 10 0 -10 -20 PPM40 30 20 10 0 -10 -20  

Figure 4-4. Comparison of 
31

P NMR spectrum of (a) catalyst solution for tandem reaction with 

(b) a solution mixture of 1 and XANTPHOS under Ar 

 

Scheme 4-4. Reaction mechanism to form phosphine coordinated Ru(0) species
18

 

 

 

In order to assign doublets at 8 (J = 135 Hz) and 1 ppm (J = 148 Hz), first, 

(acetylacetonato)(carbonyl)(xantphos)rhodium (Rh(acac)(CO)(xantphos), δP 14 ppm, J = 38) 

was isolated (See experimental section). Only one broad signal was observed by 
31

P NMR 

spectroscopy for a DMA solution of Rh(acac)(CO)(xantphos). This is probably due to rapid 
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exchange of two phosphorus atoms, one is coordinated to rhodium and the other is not. When it 

was treated under CO, those two doublets were appeared (Figure 4-5). Since the integral of those 

two signals were 1:1 in all the case, they were assigned as two non-equivalent phosphorus atoms 

of single species. One of the possible structures, Rh(acac)(CO)2(xantphos) is described in Figure 

4-5. Another possibility is carbonyl-bridged dimer. In both case, under high pressure of H2 and 

CO, rapid hydrogenolysis of Rh(acac) to give Rh‒H and acetylacetone, and/or coordination by 

CO is supposed to generate 7. 

 

40 30 20 10 0 -10 -20 PPM40 30 20 10 0 -10 -20 PPM

40 30 20 10 0 -10 -20 PPM40 30 20 10 0 -10 -20 PPM

PPM40 30 20 10 0 -10 -20 PPM40 30 20 10 0 -10 -20  
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Figure 4-5. 
31

P NMR spectra of control experiments to assign doublets at 8 and 1 ppm. a) 

Rh(acac)(CO)(κ
1
-xantphos) in DMA. b) DMA solution of Rh(acac)(CO)(κ

1
-xantphos) treated 

under CO. c) Catalyst solution. 

 

Stoichiometry of the reaction estimated by 
31

P NMR spectrum was shown in Scheme 4-5. 

Although the values of the integration of the signals were not accurate because of relatively low 

S/N and difference of relaxation time of phosphorus nuclear with different chemical environment, 

not all rhodium and ruthenium were coordinated by XANTPHOS. As discussed above, all 

signals were assigned and there was no sign of Rh-Ru dimeric species bridged by XANTPHOS. 

In order to know the state of ruthenium species without phosphine ligand under H2/CO pressure, 

1 was treated under H2/CO pressure. Evaporation of the solvent afforded 

carbonyl(tetraphenylcyclopentadienone)ruthenium (10) as a sole product in a quantitative yield 

(Scheme 4-6). Therefore, ruthenium species except for 9 supposed to exist as 10 under H2/CO 

pressure. 

 

Scheme 4-5. Stoichiometry of generated species in the control experiment 
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Scheme 4-6. Isolation of the resting species formed from 1 under H2/CO in the absence of 

phosphorus ligand 

 

 

In summary, no XANTPHOS bridged Rh-Ru complex was found at least by NMR 

experiments. Coordination of XANTPHOS to ruthenium was observed. It might decrease the rate 

of hydrogenation. 

 

4-6-2 Kinetic analysis by in-situ infrared spectroscopy 

Next, kinetic investigation by in-situ infrared spectroscopy was performed to estimate 

independency of Rh/XANTPHOS and 1. The reactions of 1-decene, undecanals, and undecanols 

were monitored in hydroformylation/hydrogenation of 1-decene by 

Rh(acac)(CO)2/XANTPHOS/1 (Reaction a, Figure 4-6a), hydroformylation of 1-decene by 

Rh(acac)(CO)2/XANTPHOS (Reaction b, Figure 4-6b), isomerization of 1-decene by 1 

(Reaction c, Figure 4-6c), and hydrogenation of undecanal with 1 (Reaction d, Figure 4-6d) 

respectively. The results and calculated rate equations are summarized in Scheme 4-7.  

The rate of hydroformylation was not affected by the presence of 1. The observed rate 

equations of hydroformylation in the presence and absence of 1 were (6.4 ± 0.8) × 10
−3

 [1-

decene] (Figure 4-6a) and (6.6 ± 0.8) × 10
−3

 [1-decene] (Figure 4-6b), respectively. However, 

increase of the amount of iso-product was observed as decrease of n/i ratio (n/i = 16 and 24 

respectively). It can be ascribed to the isomerization of 1-decene by 1 to internal alkenes and 
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successive direct hydroformylation by Rh/XANTPHOS. When the isomerization of 1-decene by 

1 was independently monitored, it was first order on the concentration of 1-decene during initial 

50% conversion (Figure 4-6c). The observed rate equation was (3.6 ± 0.4) × 10
−4

 [1-decene]. 

This rate constant was 6% of the observed rate constant of hydroformylation of 1-decene by 

Rh/XANTPHOS. Formations of decane and alcohols by 1 were confirmed to be slow by low 

yield of decane (3.9%) and alcohols (6.2%). 

On the other hand, the rate of hydrogenation of aldehyde by 1 was quite similar in the 

presence or absence of Rh/XANTPHOS. The observed rate equations were (8.4 ± 0.8) × 10
−5

 

[undecanal]
0
 (Figure 4-6a) and (9.1 ± 0.9) × 10

−5
 [undecanal]

0
, respectively (Figure 4-6d). The 

difference between the reaction rates was within the margin of error. Selectivity to alcohol was 

>95% in both cases. 

 

Scheme 4-7. Summary of observed rate constants as a function of substrate concentration for 

each step. [S]: concentration of substrate in each reaction. 
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(a) Reaction a: Hydroformylation/hydrogenation of 1-decene by Rh/XANTPHOS/1 

 

 

(b) Reaction b: Hydroformylation of 1-decene by Rh/XANTPHOS. 
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(c) Reaction c: Isomerizaion of 1-decene by 1 under H2/CO atmosphere. 

 

 

(d) Reaction d: Hydrogenation of undecanal by 1 under H2/CO atmosphere. 

 

 

 

Figure 4-6. Time courses of substrate and products concentration in the reaction of 1-decene 

catalyzed by Rh/XANTPHOS in the presence of 1 (a) and in the absence (b), in the presence of 1 



119 
 

(c), and time courses of undecanal and undecanol concentration in the presence of 1 (d) 

monitored by real-time IR spectrpscopy. Decay of 1-decene until 95% conversion was fitted with 

first-order equation in (a) and (b). Formation of alcohols was fitted with zero-order reaction in 

(a) and (d). Decay of 1-decene until 50% conversion was fitted with first-order equation in (c). 

Black line shows the fitted functions. Common conditions: DMA, 9 mL; H2, 1.0 MPa; CO, 1.0 

MPa. (a) 1-decene, 3 mmol; Rh(acac)(CO)2, 50 μmol; XANTPHOS, 100 μmol; 1 125 μmol 

(based on mol of Ru atom). (b) 1-decene, 3 mmol; Rh(acac)(CO)2, 50 μmol; XANTPHOS, 100 

μmol. was fitted with zero-order reaction. Common conditions: DMA, 9 mL; H2, 1.0 MPa; CO, 

1.0 MPa. (c) 1-decene, 3 mmol; 1, 125 μmol (based on mol of Ru atom). The rate constant was 

determined from the initial 50% conversion. (d) Undecanal, 3 mmol; 1, 125 μmol (based on mol 

of Ru atom). 

 

In the context, it could be concluded that the presence of 1 did not affect the rate of 

hydroformylation by Rh/XANTPHOS but slightly decreased the selectivity. On the other hand, 

the presence of Rh/XANTPHOS also did not change the rate of hydrogenation of aldehyde. 

 

4-6-3 One-pot two step reaction 

Independency between two catalyst systems of Rh/XANTPHOS and 1 was also demonstrated 

by comparison of one-pot reaction with one-pot two step reaction (Scheme 4-8) 

 

Scheme 4-8. One-pot two step hydroformylation/hydrogenation 

 

First, hydroformylation was performed by Rh/XANTPHOS under H2/CO for 1 h. Then 1 was 

added to the mixture, H2/CO was purged by H2, and the solution was heated for 1 h. The yield 

and n/i ratio of undecanol was almost the same as one-pot reaction (94%, n/i = 22). It indicates 

that presence of 1 did not affect the yield of hydroformylation by Rh/XANTPHOS at all. On the 

other hand, hydrogenation of undecanal under H2 was much faster than that under H2/CO (less 
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than 1 h versus 10 h). Since Rh/XANTPHOS doesn’t affect the rate of hydrogenation by 1, 

therefore, the deceleration was ascribed to the presence of carbon monoxide. It should be noted 

that one-pot two-step reaction affords n-alcohol with higher TOF (>38 compared to 3.8 in one-

pot reaction (based on the mole of ruthenium)), but there is drawback that it requires purification 

of H2 from H2/CO by membrane separation. 

 

4-7 Reaction mechanism of hydrogenation under H2/CO 

Significant deceleration of hydrogenation under CO was suggested in the previous section. It 

is a drawback to the system from a viewpoint of industrial application. Therefore, investigation 

of the mechanism of hydrogenation under H2/CO may provide a clue to design a new catalyst 

which is more active under H2/CO pressure. 

 

4-7-1 Kinetics of hydrogenation 

First, the effects of pressures of H2 and CO, and concentrations of ruthenium and XANTPHOS 

on the reaction rate were determined by real-time IR monitoring (Figure 4-7). Based on the 

obtained data, the rate equation in the absence of XANTPHOS was expressed as 

 

−d[aldehyde]/dt = k[aldehyde]
0
PH2PCO

−1
[Ru] 

 

As the amount of XANTPHOS was increased, the rate of hydrogenation was linearly 

decreased until the stoichiometry of XANTPHOS to Ru reached to one equivalent. Further 

increase of the amount of XANTPHOS did not change the rate. The rate equation is different 

from that of under H2 pressure (not simply described but at least the rate depends on aldehyde 
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concentration, reported in the ref 19). Accordingly, the change of reaction mechanism by CO 

was suggested. 

 

(a) Effect of CO pressure 

 

(b) Effect of H2 pressure 
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(c) Effect of Ru concentration 

 

(d) Effect of XANTPHOS 

 

Figure 4-7. Rate of hydrogenation of undecanal catalyzed by 1 using H2/CO under varying CO 

pressure (a), H2 pressure (b), Ru concentration (c), and XANTPHOS concentration (d). Standard 

condition: DMA 10 mL, H2 1.0 MPa, CO 1.0 MPa, undecanal 5 mmol, dodecane 2.5 mmol (total 

11.6 mL), 1 0.125 mmol (based on the mol of Ru atom). a) under various CO pressure b) under 

various H2 pressure c) with various Ru concentration d) with various XANTPHOS concentration 

in initial 500 minutes. Selectivity from undecanal to undecanol is >95% in all cases. Rate 

constants were determined from time course of alcohols in initial 200 minutes by fitting with 

zero-order reaction. Obtained rate constants in each Figure were fitted with inverse proportion to 

CO pressure in a), direct proportion to H2 pressure in b), direct proportion to Ru concentration in 

c), direct proportion to XANTPHOS concentration in d). In 3d), two different lines are drawn for 

XANTPHOS concentration of 0 to 1.1 × 10
−2

 M and 1.1 × 10
−2

 to 2.2 × 10
−2

 M respectively. 

 

4-7-2 Proposed mechanism 
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Proposed mechanism is described in Scheme 4-9. As confirmed by the control experiment 

above, ruthenium mostly existed as 10 under high H2/CO pressure. Considering the fact that the 

reaction was first-order in ruthenium concentration, equilibrium to dimer is not involved in the 

reaction mechanism. Since the rate obeys inverse first order kinetics in the pressure of CO and 

first order kinetics in the pressure of H2, loss of CO to form 11 and successive oxidative addition 

of H2 to form 12 is the rate determining step. Rapid transfer of two hydrogen atom in concerted 

manner and coordination by CO regenerated 10. In the presence of XANTPHOS, 11 could be 

coordinated by XANTPHOS to form 9. 9 less favorably lose CO to form 13 and 14 because Ru-

CO bond is stronger due to stronger π-back donation from more-electron rich ruthenium center 

by coordination of XANTPHOS. That resulted in decrease of rate of hydrogenation. As the 

stoichiometry of XANTPHOS increased from 0 to 1 equivalent to ruthenium, the rate of 

hydrogenation decreased (Figure 4-7d). More than 1 equivalent, all the ruthenium was 

coordinated by XANTPHOS then no further decrease took place. Coordination of two 

XANTPHOS to one ruthenium center is prohibited by steric bukiness. It should be noted that in 

actual tandem reaction with Rh:XANTPHOS:Ru = 1:2:2.5, XANTPHOS preferably coordinated 

to Rh and decrease of the rate of hydrogenation was relatively minor. 
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Scheme 4-9. Proposed mechanism of hydrogenation of aldehyde by 1 under H2/CO in the 

presence or absence of XANTPHOS.  

 

 

4-8 Comparison of hydrogenation activity with other ruthenium-based catalysts 

The hydrogenation rate of normal-undecanal by 1 was compared with those of other 

conventional hydrogenation catalysts under H2/CO. Ru3(CO)12, Ru(CO)H2(PPh3)3, and 

Cp*Ru(cod)Cl(3)/Ph2PCH2CH2NH2(4)/
t
BuOK were tested here (Table 4-5). However, none of 

them was active as 1. Comparison with 3/4/
t
BuOK was also done with 

i
PrOH as solvent (runs 5 

and 6), which was reported as the best solvent for 3/4/
t
BuOK, but still 1 was more active and 

more selective. 

 

Table 4-5 Hydrogenation of undecanal under H2/CO with various catalysts
a
 

run Cat. 
Time 

(h) 

Conv. 

(%) 

Alcohol 

(%) 

1 1 11 99 99 

2 Ru3(CO)12 12 <1 0 

3 Ru(CO)H2(PPh3)3 23 4.7 4.4 

4
b
 

Cp*Ru(cod)Cl(3) /Ph2PCH2CH2NH2(4) 

/
t
BuOK 

12 21 <1
c
 

5
d
 1 13 99 98 

6
d
 

Cp*Ru(cod)Cl(3) /Ph2PCH2CH2NH2(4) 

/
t
BuOK 

10 85 16
c
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a
 Reaction conditions: DMA 10 mL, H2 1.0 MPa, CO 1.0 MPa, undecanal 5 mmol, dodecane 2.5 

mmol, Ru complex 0.125 mmol (based on the mol of Ru atom). 
b
 The molar ratio of 

Cp*Ru(cod)Cl:Ph2PCH2CH2NH2:
t
BuOK = 1:1:1. 

c
 High boiling products were observed by GC, 

which are considered to be dimers.
 d

 
i
PrOH was used as solvent. 

 

These results were interpreted as follows (Scheme 4-10). Under H2/CO, 1 is transformed to 10 

as discussed above, and Ru3(CO)12 and Ru(CO)H2(PPh3)3 were thought to be converted to 

RuxHyLz (L = CO or PPh3).
20

 Judging from IR absorption band of νC≡O for 10 (2081, 2026, 2005 

cm
−1

) and Ru4H4(CO)12 (2081, 2067, 2030, 2008 cm
−1

) the extent of π-backdonation from 

ruthenium center to carbonyl is similar in those complexes. Therefore the strength of Ru-CO 

bond is similar and rate of loss of CO should be comparable. The difference should be attributed 

to the difference in successive steps. 1 hydrogenates substrate in concerted manner. On the other 

hand, RuxHyLz is supposed to do via coordination-insertion mechanism. The difference between 

1 and 3/4/
t
BuOK thought to be derived from the rate of losing CO. Under CO pressure, 

3/4/
t
BuOK though to form Cp*Ru(CO)(Ph2PCH2CH2NH). Generation of active species requires 

dissociation of CO and successive addition of H2. Comparing νC≡O for 10 (2081, 2026, 2005 

cm
−1

) with Cp*Ru(NHPh)(P
i
PrPh2) (1904 cm

−1
) as a referential compound, generation of active 

species should be faster in the case of 10. 
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Scheme 4-10. Proposed mechanisms of hydrogenation with various Ru catalysts 

 

 



127 
 

4-9 Conclusion 

In summary, the author developed high-yielding tandem normal-selective 

hydroformylation/hydrogenation for one-pot conversion of terminal alkenes to normal-alcohols 

using dual catalyst system composed of Rh(acac)(CO)2/XANTPHOS/Shvo’s catalyst (1). This 

method would be advantageous by simplifying process operation. Mechanistic investigations 

revealed that Rh/XANTPHOS and 1 independently catalyzed hydroformylation and 

hydrogenation with minor interference. Poisoning of 1 by carbon monoxide retards the 

hydrogenation. Reaction mechanism of hydrogenation of aldehyde catalyzed by 1 under H2/CO 

was revealed by the kinetic esperiments. Further improvement of the rate of hydrogenation 

would provide a simplified method for industrial normal-alcohol synthesis. 

 



128 
 

Experimental section 

 

General 

Commercially available anhydrous N,N-dimethylacetamide, methanol, and 2-propanol were 

distilled and degassed by freeze-pump-thaw before use. 1-decene, dodecane, tridecane, allyl 

alcohol, allyl acetate, 3-butenyl alcohol, 3-butenyl acetate, and 4-pentenyl alcohol were 

purchased from TCI and distilled and degassed by freeze-pump-thaw before use. Undecanal 

styrene, vinylcyclohexane, 2-methyl-1-nonene, and (Z)-2-decene, were purchased from TCI and 

degassed by freeze-pump-thaw before use. Ru(CO)H2(PPh3)3 was purchased from TCI. 

Compounds 2, 3, 4, 5, and 6 were purchased from Strem. Rh(acac)(CO)2 was purchased from 

Aldrich. Shvo’s catalyst(1) was prepared according to literature method from Ru3(CO)12 and 

tetraphenylcyclopentadienone and purified by recrystallization from toluene/hexane. 2-(5-hexen-

1-yloxy)-tetrahydropyran,
21

 (5-hexen-1-yloxy)methylbenzene,
22

 (5-hexen-1-yloxy)-tert-

butyldimethylsilane,
23

 2-(9-decen-1-yl)-1,3-dioxolan,
24

 (5-hexen-1-yl)-N-phenylcarbamate,
25

 

XANTPHOS
9
 were prepared by the literature method. Product yields were determined by 

Shimadzu GC-2014 equipped with InertCap 5MS/Sil capillary column (0.25 ID, 0.25 µm df, 30 

m) using calibration curve made with dodecane or tridecane as an internal standard. Real-time IR 

measurement was performed by using METTLER TOLEDO ReactIR
TM 

45 and analyzed by icIR. 

NMR yields were determined by 
1
H experiment with 15 s relaxation delay using 1,3,5-

trimethoxybenzene as internal standard. 

 

General procedure for hydroformylation/hydrogenation of alkene 
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To a stainless autoclave (50 mL) charged with Rh(acac)(CO)2 (5.2 mg, 20 µmol), 

XANTPHOS (23.1 mg, 40.0 µmol) and magnetic stir bar under Ar, appropriate solvent (1.0 mL) 

was added and the resulting mixture was stirred for 5 minutes at room temperature. Ru catalyst 

catalyst (50.0 µmol (Ru)) was weighed and dissolved in solvent (2.0 mL) under Ar, which was 

transferred to the autoclave by cannulation. 2:1 mole ratio mixture of an alkene (2.0 mmol) and 

internal standard (1.0 mmol) was added via syringe. The autoclave was pressurized with 2.0 MPa 

of H2/CO and stirred at 120 ºC, at 800 rpm for 12.5 hours. Then the autoclave was cooled with 

water/ice bath for 30 minutes, the pressure was released. 1,3,5-trimethoxybenzene (100 mg, 

0.590 µmol) was added to the crude solution. Then the solution was analyzed by GC and 
1
H 

NMR. NMR yield of n- or i-aldehydes were determined from the integration of corresponding 

formyl proton (δ 9.8, t, -CH2CHO, and δ 9.6, d, -CHRCHO, respectively). NMR yield of n- or i-

alcohols were determined from the alpha-proton of hydroxyl group (δ 3.6, t, -CH2CH2OH, and δ 

3.4-3.5, m, -CHRCH2OH). NMR yield of formats were determined by the integration of 

corresponding formyl proton (δ 8.0, s, CH2OCHO). The yields determined by 
1
H NMR were 

consistent with those determined by GC. 

 

Preparation of the solution ruthenium catalyst and 
t
BuOK 

To two 20 mL Schlenk flasks, ruthenium complex (2, 5, or 6, 50 μmol), and 
t
BuOK (5.6 mg, 

50 μmol) were separately charged under argon atomosphere. To the Schlenk flask containing 

ruthenium complex, 
i
PrOH (1.0 mL) was added, and the resulting solution was transferred to the 

other Schlenk flaks containing 
t
BuOK followed by washing Schlenk with 1.0 mL of 

i
PrOH. 

 

Preparation of Cp*Ru(Ph2PCH2CH2NH2)Cl/
t
BuOK solution 
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To three 20 mL Schlenk flasks, Cp*Ru(cod)Cl (3, 19 mg, 50 μmol), Ph2PCH2CH2NH2 (4, 11.4 

mg, 50.0 μmol), and 
t
BuOK (5.6 mg, 50 μmol) were separately charged under argon 

atomosphere. To the both Schlenk flasks containing 3 and 4, 
i
PrOH (1.0 mL) was added, and 

they were combined and were stirred for a few minutes. The resulting mixture was transferred to 

the third Schlenk flaks containing 
t
BuOK. Each Schlenk flask was washed with 

i
PrOH (1.0 mL) 

and combined. 

 

NMR experiments 

 

Rh/XANTPHOS/Ru = 1/2/2.5 in DMA under H2/CO 

To a 20 mL Schlenk flask containing Rh(acac)(CO)2 (2.6 mg, 10 μmol) and XANTPHOS 

(11.5 mg, 19.9 μmol), DMA (300 μL) was added under H2/CO atmosphere. After stirring the 

resulting mixture at room temperature for 5 min, a solution of 1 (12.5 mg 11.2 μmol) in DMA 

(500 μL) was transferred into the Schlenk flask. The mixture was stirred at 120 °C for 15 min, 

and was cooled down to room temperature. The resulting solution was transferred to a screw-

capped NMR tube by a syringe under H2/CO atmosphere to take 
31

P NMR spectrum. 

 

XANTPHOS/Ru = 1/2 in DMA under H2/CO 

To a screw-capped NMR tube containing XANTPHOS (11.1 mg, 19.2 mmol) and 1 (10.9 mg, 

10.0 mmol), DMA (600 μL) was added under H2/CO atmosphere. After heating at 120 °C for 15 

min, it was cooled down to room temperature to take 
31

P NMR spectrum. 

 

Rh/XANTPHOS = 1/1 in DMA under H2/CO 
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To a 20 mL Schlenk flask containing Rh(acac)(CO)2 (2.6 mg, 10 μmol) and XANTPHOS (5.8 

mg, 10 μmol), DMA (700 μL) was added under H2/CO atmosphere. The mixture was heated at 

120 °C for 15 min, and cooled down to room temperature. The resulting solution was transferred 

to a screw-capped NMR tube by a syringe under H2/CO atmosphere to take 
31

P NMR spectrum. 

 

Rh/XANTPHOS = 1/1 in DMA under CO 

Similarly performed as Rh/XANTPHOS = 1/1 in DMA under H2/CO by replacing H2/CO with 

CO. 

 

Preparation of Rh(acac)(CO)(XANTPHOS) 

To a 50 mL J-Young tube containing Rh(acac)(CO)2 (182 mg, 705 μmol) and XANTPHOS 

(408 mg, 704 μmol), C6H6 was vacuum-transferred to the tube. After C6H6 melted under argon 

atmosphere, a rapid generation of CO was observed. Resulting solution was stirred at r.t. for 5 

min. After the evaporation of the solvent, the crude orange solid was dissolved in small amount 

of hot C6H6, and hexane was added to the solution to give an yellow-orange powder of 

Rh(acac)(CO)(xantphos)•C6H6 (504 mg, 569 μmol, 81.5%). Single crystals for X-ray analysis 

were obtained via recrystalization from benzene solution with a diffusion of hexane. Crystal 

graphical data are shown at Figure 4-8. Analytically pure single crystals were obtained by a 

recrystallization from toluene solution with a diffusion of hexane. 
1
H NMR (CD2Cl2, 400 MHz) 

δ 0.88 (s, 3H) 1.63 (s, 6H), 2.03 (s, 3H), 5.21 (s, 1H), 6.48 (br t, J = 7 Hz, 2H), 6.99 (t, J = 8 Hz, 

2H), 7.06-7.43 (m, 20H), 7.49 (d, J = 8 Hz, 2H); 
13

C NMR (CD2Cl2, 101 MHz) δ 26.0 (CH3), 

27.5 (CH3), 30.0 (CH3), 35.0 (4°), 100.0 (CH), 122.1 (d, J = 12 Hz, 4°), 123.6 (CH), 126.5 (CH), 

128.0 (vt, CH), 128.3 (CH), 129.0 (CH), 131.3 (4°), 131.8 (CH), 134.0 (d, J = 14 Hz, CH), 135.7 
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(d, J = 18 Hz, 4°), 154.1 (d, J = 12 Hz, 4°), 186.0 (d, J = 32 Hz, 4°), 191.0 (dt, J = 75 Hz, 11 Hz, 

4°); 
31

P NMR (CD2Cl2, 162 MHz) δ 13.7 (br d, J = 38 Hz); mp 186-190 °C (decomp.); IR (KBr, 

cm-1): (Rh–C≡O) 1965,  (Rh–O=C) 1578, 1516; Anal. Calced for C45H39O4P2Rh•C7H8: C, 

69.34; H, 5.26. Found: C, 69.23; H, 5.26. 

 
Figure 4-8. ORTEP drawing of Rh(acac)(CO)(xantphos) (50% thermal ellipsoid, hydrogen 

atoms and solvent molecule C6H6 were omitted for clarity) 

 

X-ray crystallographic data for Rh(acac)(CO)(xantphos) 

Details of the crystal graphical data, and a summary of the intensity data collection parameters 

for Rh(acac)(CO)(xantphos)·C6H6 are shown in Table 4-6. A suitable crystal was mounted with 

mineral oil to a glass fiber and transferred to the goniometer of a Rigaku Mercury CCD or 

VariMax Saturn CCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 

0.71070 Å) or . The structures were solved by direct methods with (SIR-97)
26

 and refined by 

full-matrix least-squares techniques against F2 (SHELEXL-97).
27

 The intensities were corrected 

for Lorentz and polarization effects or NUMABA program (Rigaku 2005). The non-hydrogen 
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atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions. All 

the resulting CIF files and their checkCIF files are also attached as supporting information. 

ORTEP drawings of Rh(acac)(CO)(xantphos)·C6H6 is shown below the Table (Thermal 

ellipsoids set at 50% probability; hydrogen atoms except bonded to Ru and solvent molecules are 

omitted for clarity.)  

 

Table 4-6 Crystallographic data and structure refinement details for 

Rh(acac)(CO)(xantphos)·C6H6 

 Rh(acac)(CO)(xantphos)·C6H6 

formula C51H45O4P2Rh 

fw 886.72 

T (K) 103(2) 

 (Å) 0.71070 

cryst syst Triclinic 

space group P-1 

a, (Å) 10.926(3) 

b, (Å) 12.081(4) 

c, (Å) 16.732(6) 

, (° 89.729(10) 

, (° 83.741(10) 

, (° 73.301(8) 

V, (Å
3
) 2102.0(11) 

Z 2 

Dcalc, (g / cm
3
) 1.401 

 (mm
-1

) 0.529 

F(000) 916 

cryst size (mm) 0.25 × 0.20 × 0.05 

2 range, (deg 3.06-25.00 

reflns collected 13657 

indep reflns/Rint 7189/0.0455 

params 527 

GOF on F2 1.168 

R1, wR2 [I>2(I)] 0.0610, 0.1444 

R1, wR2 (all data) 0.0733, 0.1502 
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The GC chart showed six peaks around C10 area. Four of six peaks are assignable to 1-decene, 

n-decane, and (Z)/(E)-2-decene. Remaining two large peaks overlapped with n-decane can be 

assigned as (Z)/(E)-3-decene as follows. The 
1
H NMR spectrum of the crude product showed 

two triplet peaks at 0.957 ppm (t, J = 7 Hz) and 0.964 (t, J = 7 Hz), having cross peaks with 

allylic protons around 2.0 ppm in HH COSY spectrum. Thus, these two peaks are assignable as 

homoallylic terminal methyl groups in (Z)/(E)-3-decene. 

 

n-decane

cis-2-decene

trans-2-decene

1-decene
impurity

in 1-decene

cis/trans-3-decene

 

Figure 4-9. The GC chart of the reaction mixture around hydrocarbon moiety. 
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2.0 1.5 1.0

PPM

2.0
1.5

1.0

P
P
M

DFILE KT3029-HHCOSY.1
COMNT absolute value COSY
DATIM 10-12-2009 17:23:55
EXMOD cosy.exp        
OBNUC 1H
OBFRQ       500.16 MHz
OBSET         2.41 KHz
OBFIN         6.01 Hz
POINT         1024
FREQU      7507.51 Hz
CLPNT          512
TODAT          512
CLFRQ      7507.51 Hz
SCANS            1
ACQTM       0.1364 sec
PD       1.5000 sec
PW1        12.40 usec
PW2         0.00 usec
PW3         0.00 usec
PI1       0.0000 msec
PI2       0.0000 msec
PI3       0.0000 msec
IRNUC 1H
CTEMP         21.8 c
SLVNT CDCL3
EXREF        12.51 ppm
CLEXR        12.51
RGAIN           15

 
Figure 4-10. The 

1
H-

1
H COSY NMR spectrum of the crude product. 
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Preparation of undecyl formate 

To a 100 mL two-necked round-bottomed flask, formic acid (4.51 g, 97.9 mmol) and 1-

undecanol (1.72 g, 10.0 mmol) were charged, and the resulting mixture was refluxed for 9 h. 

After cooling the mixture to room temperature, saturated NaHCO3 aq. was added to neutralize 

the solution. The solution was extracted with Et2O (20 mL × 3). Combined organic layer was 

washed with brine (20 mL × 2), and was dried over Na2SO4. After filtration, solvent was 

removed by evaporation. Analytically pure 1-undecyl formate was obtained (1.60 g, 80%, 

density = 0.870); 
1
H NMR (CDCl3, 500 MHz) δ 0.87 (3H, t, J = 7 Hz), 1.17-1.41 (16H, m), 1.65 

(2H, tt, J = 7 Hz, 7 Hz), 4.16 (2H, t, J = 7 Hz), 8.05 (1H, s), 
13

C NMR (CDCl3, 100 MHz): 

δ14.33. 22.95, 26.11, 28.81, 29.47, 29.60, 29.78, 29.84, 29.86, 32.18, 64.29, 161.28. IR (KBr, 

cm
−1

) CO 1732. Anal. Calcd. for C12H24O2: C, 71.95; H, 12.08. Found: C, 71.75; H, 12.25. 

 

Real-time IR monitoring of hydroformylation/hydrogenation of 1-decene by 

Rh(acac)(CO)2/XANTPHOS/1 

An autoclave (100 mL) equipped with IR probe and high pressure dropping funnel was 

charged with Rh(acac)(CO)2 (13.0 mg, 50 µmol), XANTPHOS (57.8 mg, 100 µmol) and 

magnetic stir bar was flushed with Ar. It was added DMA (2.0 mL) and the resulting mixture 

was stirred for 5 minutes at room temperature. 1 (67.8 mg, 125 µmol (Ru)) was charged into 20 

mL Shlenck under Ar and was dissolved in DMA (3.0 mL). Then the solution was transferred to 

the autoclave by cannulation, the Schlenk was washed two times with DMA (total 1.0 mL), and 

they were transferred to the autoclave. At the same time, the dropping funnel was charged with 

1-decene (1.0 mL, c.a. 5.3 mmol) and DMA (3.0 mL). The autoclave was pressurized with 2.0 

MPa of H2/CO and stirred at 120 ºC, at 800 rpm, for 1,5 hours. Then the mixture of 1-decene and 
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DMA in dropping funnel was pressed in to the autoclave with 3 MPa of H2/CO, and the gas 

pressure was partially released to the value before substrate injection. . The integration of the 

characteristic peaks for 1-decene (912 cm
−1

, terminal C=C), undecanal (1726 cm
−1

, C=O), and 

undecanol (1058 cm
−1

, C-O) were monitored during the reaction time. After appropriate reaction 

time, the autoclave was cooled with water/ice bath for 30 minutes and the pressure was released. 

Dodecane (500.0 mg, 2.945 mmol) was added to the crude solution. Then the solution was 

analyzed by GC. 

The actual amount of substrate injected into the autoclave was estimated as sum of the 

observed product with GC analysis. The actual liquid volume was estimated with the following 

equation 

(actual liquid volume) = (initial charge of solvent) + (mixture of solvent and substrate charged 

via dropping funnel) = 7 + 4 × (mmol of the substrate injected into the autoclave)/(mmol of the 

substrate charged into the dropping funnel) 

Data treatment of IR was as follows. Background was measured before experiment under air. 

During the reaction, the peak area for 1-decene (912 cm
−1

, terminal C=C), undecanal (1726 cm
−1

, 

C=O), and undecanol (1058 cm
−1

, C-O) were plotted versus time (t) in every 15 sec (64 scans 

were integrated) for initial 1.5 hours and every 5 minutes (256 scans were integrated) after that 

time. Signal to noise ratio of these peaks of compounds at concentration of 0.32 M in DMA were 

c.a. 40, 60, and 70 respectively, which supports the accuracy of the integral value. The 

consumption of 1-decene until 95% conversion was monitored to confirm the first order kinetics. 

The obtained pseudo-first order rate constant was multiplied by the selectivity to aldehyde to 

calculate rate constant for hydroformylation. Since the increase of 1-undecanol was linear versus 

time, the observed rate constant was calculated from the slope. 
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As experimental error, the amount of injected substrate ± 5%, H2/CO pressure ± 2.5%, volume 

of liquid ± 1.0%, the amount of weighed catalyst <0.8%, were considered (± 9.6% in total). 

Statistical error was respectively determined as standard deviation from obtained data and its 

least squares fitting curve. The total error (%) was calculated as multiple of experimental and 

statistical error. 

Catalytic species could not be characterized by in-situ infrared spectroscopy because of low 

intensity of those signals. 

 

Real-time IR monitoring of hydroformylation of 1-decene by Rh(acac)(CO)2/XANTPHOS 

An autoclave (100 mL) equipped with IR probe and high pressure dropping funnel was 

charged with Rh(acac)(CO)2 (13.0 mg, 50 µmol), XANTPHOS (57.8 mg, 100 µmol) and 

magnetic stir bar was flushed with Ar. The IR monitoring was started at this point. It was added 

DMA (7.0 mL) and the resulting mixture was stirred for 5 minutes at room temperature. At the 

same time, the dropping funnel was charged with 1-decene (1.0 mL, 5.3 mmol) and DMA (3.0 

mL). The autoclave was pressurized with 2.0 MPa of H2/CO and stirred at 120 °C, at 800 rpm, 

for 1.5 hours. Then the mixture of 1-decene and DMA in dropping funnel was pressed in to the 

autoclave with 3 MPa of H2/CO, and the gas pressure was partially released to the value before 

substrate injection. The concentration of 1-decene and undecanal were monitored by the 

integration of the area at 1-decene (912 cm
−1

, terminal C=C), and undecanal (1726 cm
−1

, C=O) . 

After appropriate reaction time, the autoclave was cooled with water/ice bath for 30 minutes and 

the pressure was released. Dodecane (500.0 mg, 2.945 mmol) was added to the crude solution. 

Then the solution was analyzed by GC. Following data treatments were similar to that mentioned 

above. 



139 
 

 

Real-time IR monitoring of isomerization of 1-decene by 1 

1 (67.8 mg, 125 µmol) was charged into 20 mL Shlenck under Ar and dissolved in DMA (5.0 

mL). An autoclave (100 mL) equipped with IR probe and magnetic stir bar was flushed with Ar. 

IR monitoring was started at this point. Then the solution of 1 was added to the autoclave by 

cannulation, the Schlenk was washed two times with DMA (total 5.0 mL), and they were 

transferred to the autoclave. At the same time, the dropping funnel was charged with 1-decene 

(1.0 mL, c.a. 5.3 mmol) and DMA (3.0 mL). The autoclave was pressurized with 2.0 MPa of 

H2/CO and stirred at 120 ºC, at 800 rpm for 1.5 hours. Then the mixture of 1-decene and DMA 

in dropping funnel was pressed in to the autoclave with 3 MPa of H2/CO, and the gas pressure 

was partially released to the value before substrate injection. The integration of the characteristic 

peaks for 1-decene (912 cm
−1

, terminal C=C) was monitored during the reaction time. After 

appropriate reaction time, the autoclave was cooled with water/ice bath for 30 minutes and the 

pressure was released. Dodecane (500.0 mg, 2.945 mmol) was added to the crude solution. Then 

the solution was analyzed by GC. Initially the reaction rate was first order on substrate 

concentration. The rate constant for the consumption of 1-decene until 50% conversion was 

calculated from the plot of ln(1−[1-decene]/[1-decene]0) versus time. The rate constant for 

isomerization was calculated as (rate constant for the consumption of1-decene) × (selectivity to 

internal alkenes) 

 

Real-time IR monitoring of hydrogenation of undecanal by 1 

1 (67.8 mg, 125 µmol) was charged into 20 mL Shlenck under Ar and dissolved in DMA (5.0 

mL). An autoclave (100 mL) equipped with IR probe and magnetic stir bar was flushed with Ar. 
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IR monitoring was started at this point. Then the solution of 1 was added to the autoclave by 

cannulation, the Schlenk was washed two times with DMA (total 5 mL), and they were 

transferred to the autoclave. At the same time, the dropping funnel was charged with undecanal 

(1.1 mL, c.a. 5.3 mmol) and DMA (3.0 mL). The autoclave was pressurized with 2.0 MPa of 

H2/CO and stirred at 120 ºC, at 800 rpm for 1.5 hours. Then the mixture of 1-decene and DMA 

in dropping funnel was pressed in to the autoclave with 3 MPa of H2/CO, and the gas pressure 

was partially released to the value before substrate injection. The integration of the characteristic 

peaks for undecanal (1726 cm
−1

, C=O), and undecanol (1058 cm
−1

, C-O) were monitored during 

the reaction time. After appropriate reaction time, the autoclave was cooled with water/ice bath 

for 30 minutes and the pressure was released. Dodecane (500.0 mg, 2.945 mmol) was added to 

the crude solution. Then the solution was analyzed by GC. Following data treatments were 

similar to that mentioned above. 

 

Stepwise hydroformylation/hydrogenation of 1-decene 

To a stainless autoclave (50 mL) charged with Rh(acac)(CO)2 (5.2 mg, 20 µmol), 

XANTPHOS (23.1 mg, 40.0 µmol) and magnetic stir bar under Ar, DMA (2.0 mL) was added 

and the resulting mixture was stirred for 5 minutes at room temperature. 2:1 mole ratio mixture 

of 1-decene (2.0 mmol) and dodecane (1.0 mmol) was added via syringe. The autoclave was 

pressurized with 2.0 MPa of H2/CO and stirred at 120 ºC, at 800 rpm for 1 hour. Then the 

autoclave was cooled with water/ice bath for 10 minutes, and the pressure was released. 1 (27.1 

mg, 50.0 µmol (Ru)) was weighed and dissolved in DMA (2.0 mL) under Ar, which was 

transferred to the autoclave by cannulation. The autoclave was pressurized with 1.0 MPa of H2 

and stirred at 120 ºC, at 800 rpm for 1 hour. Then the autoclave was cooled with water/ice bath 
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for 30 minutes, the pressure was released, and the solution was analyzed by GC. Obtained 

products were n-alcohol 90%, i-alcohol 3.6%, n-aldehyde 1.9%, i-alcehyde 0.5%, decane 1.0%, 

undecyl formate 0.6%. 

 

Real-time IR monitoring of hydrogenation of undecanal by various Ru catalysts under 

various conditions 

Appropriate amount of Ru catalyst (125, 62.5, or 31.3 µmol) was charged into 20 mL Shlenck 

under Ar and dissolved in solvent (5.0 mL). An autoclave (100 mL) equipped with IR probe and 

magnetic stir bar was charged with appropriate amount of XANTPHOS (0, 62.5, 125, or 250 

µmol) and flushed with Ar. IR monitoring was started at this point. Then the solution of 1 was 

added to the autoclave by cannulation, the Schlenk was washed two times with solvent (total 5.0 

mL), and they were transferred to the autoclave. A mixture of undecanal and dodecane (2:1 

molar ratio, 1.6 mL, 5.0 mmol and 2.5 mmol) was introduced into the autoclave via syringe and 

it was immediately pressurized with 2.0 MPa of H2/CO and stirred at 120 ºC, at 800 rpm. The 

integration of the characteristic peaks for undecanol (1058 cm
−1

, C-O) was monitored during the 

reaction time. After appropriate reaction time, the autoclave was cooled with water/ice bath for 

30 minutes and the pressure was released. Dodecane (500.0 mg, 2.945 mmol) was added to the 

crude solution. Then the solution was analyzed by GC. Following data treatments were similar to 

that mentioned above except that the rate constants were determined from the time course of 

alcohol in initial 200 minutes. 

As experimental errors, the amount of injected substrate ± 1.0%, H2/CO pressure ± 2.5%, 

volume of liquid ± 1.0%, the amount of weighed catalyst <0.8%, were considered (± 5.4% in 
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total). Statistical error was respectively determined as standard deviation from obtained data and 

its least squares fitting curve. 

 

Figure4-11. Plot of ln(1−[S]/[S0]) of hydroformylation/hydrogenation of 1-decene 

 

Figure 4-12. Plot of ln(1−[S]/[S0]) of hydroformylation of 1-decene 
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Figure 4-13. Plot of ln(1−[S]/[S0]) of isomerization of 1-decene 

 

Figure 4-14. Effect of CO pressure on the rate of hydrogenation fitted as linear line. 
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Figure 4-15. Effect of H2 pressure on the rate of hydrogenation 

 

Figure 4-16. Effect of Ru concentration on the rate of hydrogenation 



145 
 

 

Figure 4-17. Effect of XANTPHOS concentration on the rate of hydrogenation 

 

In the presence of more than one equivalent of XANTPHOS, the reaction rate gradually 

decreased, which could be ascribed to the decomposition of 1. Possible decomposition pathway 

induced by XANTPHOS is dissociation of cyclopentadienone with the steric repulsion. 
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Treatment of 1 under H2/CO 

1 (50 mg, 92 µmol) was charged into autoclave under Ar and dissolved in toluene (2.0 mL). 

The autoclave was pressurized with 2.0 MPa of H2/CO and stirred at 120 ºC for 2 hours. After 

cooled to room temperature, the pressure was released and the solution was transferred to glass 

vial in grove box. Evaporation of the solvent yielded slightly yellowish powder, which was 

confirmed to be almost pure Ru(CO)3(2,3,4,5-tetraphenylcyclopentadienone) by 
1
H NMR and IR 

spectroscopy. 
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5 Conclusion 

 

In this dissertation, the author developed three catalyst systems to solve problems of currently 

performed hydroformylation process. 

1) The author developed cyclopentadienylruthenium/bisphosphine or bisphosphite system for 

normal-selective hydroformylation. 

 

2) The author found hydroxycyclopentadienylruthenium/bisphosphine system for tandem 

normal-selective hydroformylation/hydrogenation. 

 

3) The author established rhodium/ruthenium dual catalyst system for high yielding and more 

facil tandem normal-selective hydroformylation/hydrogenation. 

 

In the first topic, design of new type of catalyst is proposed. When cyclopentadienyl 

ruthenium/bisphosphine or bisphosphite system for normal-selective hydroformylation is 

compared to the previously reported ruthenium-based systems, n/i selectivity was highest level 

both in propene and 1-decene, selectivity to aldehyde and reaction rate were comparable. When 

it is compared to representative rhodium or cobalt catalyst, n/i ratio is comparable to rhodium, 

and higher than cobalt. Selectivity to aldehyde and reaction rate were still significantly lower. 

Cyclopentadienyl was essential for suppressing side reactions such as hydrogenation of alkenes 

or aldehyde, dimerization of product aldehydes by aldol reaction or acetalization. Existence of 

bidentate phosphorus ligand was essential for high n/i ratio. Although bidentate coordination of 

the ligand to cyclopentadienylruthenium was confirmed in the catalyst precursor, the true active 
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species in the catalytic cycle is not clear so far. Further improvement of catalytic activity was 

achieved by changing pentamethyl cyclopentadienyl to indenyl or 1,2,3-trimethylindenyl. This 

result suggested η
3
-Cp intermediate is involved in the rate determining step. Therefore, further 

modification of Cp group might increase the catalytic activity. Considering that the price of 

ruthenium is roughly 1/10 of rhodium, TOF ~ 100 is a target value, although there are still other 

problems remaining such as stability, separation, and reuse of catalyst. 

 

When hydroxycyclopentadienylruthenium/bisphosphine system is compared to previously 

reported tandem hydroformylation/hydrogenation rhodium-based catalyst, n/i ratio is on of the 

highest, selectivity to alcohol is moderate, and reaction rate is slow. Especially, n/i selectivity is 

highest as a single metal and single ligand system.  

 

As a tandem hydroformylation/hydrogenation catalyst, rhodium/ruthenium dual catalyst system 

exhibited highest level of n/i ratio, selectivity to alcohol, and moderate reaction rate. It would be 

more promising if the slow rate of hydrogenation is overcome. Mechanistic investigation 

revealed that poisoning of hydrogenation catalyst by the coordination of CO is problematic, and 

electron poor ruthenium complex was suggested to be effective.  
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