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Abstract

We investigate quarkonium and open heavy flavor meson productions in pA collisions at

RHIC and LHC energies within the Color Glass Condensate (CGC) framework in order

to study parton saturation effects in the target nucleus. The reason to focus on the heavy

quark system is that the heavy quark pair is produced only in the initial gluon scattering.

This means that the heavy quark is an ideal probe to investigate the QGP and heavy

ion collision physics, while we can study the gluon structure in high energy hadron and

the nucleus through the heavy quark productions. The heavy quark pair production cross

section from the CGC in pA collisions is obtained by Blaizot, Gelis and Venugopalan [J.P.

Blaizot, F. Gelis, R. Venugopalan, Nucl. Phys. A 743, 57 (2004).], where a pA collision

is treated as a dilute-dense system and the cross section is evaluated at the leading order

in strong coupling constant and color charge density of valence parton in the proton ρp,

but in all orders in the color charge density of valence parton in the nucleus g2ρA = O(1)

because ρA should be proportional to approximately A1/3 with A being an atomic mass

number. The CGC framework systematically includes multiple scattering of valence par-

tons in the eikonal approximation and the resummation of large αs ln(1/x) correction at

small Bjorken’s x, which is important in high energy hadronic interactions. Actually the

quantum evolution equation resums the αs ln(1/x) correction in the gluon distribution in

the hadron. We use the unintegrated gluon distribution at small x in the proton obtained

by solving the Balitsky-Kovchegov equation with running coupling correction (rcBK). In

this study, the initial condition for the rcBK equation in the proton is constrained by

global fitting of HERA data compared with McLerran-Venugopalan model which includes

only multiple scattering effect of a dipole off the heavy nucleus. For the heavy nucleus,

multi-parton functions are relevant to heavy quark pair production and given by solving

the rcBK equation with use of appropriate initial condition in large-Nc limit. When we

focus on the minimum bias event, we replace the initial saturation scale of the gluon dis-

tribution in the proton by that in the nucleus. This initial saturation scale indeed depends

on the impact parameter in the nucleus and we introduce nuclear thickness function to

study the impact parameter dependence. For quarkonium production, we firstly employ

the color evaporation model and use appropriate heavy quark fragmentation function for

open heavy flavor meson production. We show the transverse momentum spectrum and

nuclear modification factor (RpA) of the quarkonium (J/ψ, Υ(1S)) and the heavy meson



(D, B) productions at collider energy. The important result is that the our CGC calcula-

tion shows the strongly suppression of the RpA at RHIC and further suppression of RpA

at the LHC. We next discuss the transverse momentum, rapidity, and initial saturation

scale dependence of the RpA, the transverse momentum broadening, and furthermore the

azimuthal angle correlation of open heavy flavor meson pair. Subsequently, we discuss

the impact parameter dependence of the quarkonium production. by using the Glauber

model with simple thickness function. As to the RpA, we actually find our computations

reproduce the data for minimum bias event and central collisions event at RHIC but can

not describe the peripheral data. Finally, we discuss the quarkonium production within

non-relativistic QCD (NRQCD) effective field theory. Quarkonium production mecha-

nism is not fully understood even in proton-proton collisions, then model dependence of

quarkonium production is important study. In this framework, both the color singlet and

octet channel productions are treated in a unified way. We notice that the color singlet

production depends on the quadratic correlator in the target nucleus, and this may bring

enhancement effect of the quarkonium production although the J/ψ production cross sec-

tion itself in our model in this paper is smaller than inclusive J/ψ production data at

RHIC. This effect brings a possibility what we should do in our future work.
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Chapter 1

Introduction

First of all, let us start by giving introduction and background of our study in the context

of both high energy heavy ion collisions and small-x physics.

1.1 Quantum Chromodynamics

The Standard Model of particle physics consists of quarks and leptons, and gauge bosons

such as gluon, today [1]. The quarks have color quantum number in the 3-dimension in-

trinsic space and are classified in terms of SU(3) group in the fundamental representation.

The gluons, which are relevant to the strong interaction, also carry the color quantum

number in the SU(3) adjoint representation. Quantum Chromodynamics (QCD) is a

fundamental theory to describe the dynamics of the quarks and the gluons. Baryons and

mesons are bound states consisting of the quarks and gluons and referred to as hadrons

because they feel the strong interaction. As the lightest meson, the pion is regarded as

the Nambu-Goldstone boson of chiral symmetry breaking. Quarks and gluons themselves

have never been captured alone so far due to the confinement nature of QCD.

1.2 QCD phase transition

In the QCD, many-body system consisting of the hadron at high temperature and density

makes phase transition into a deconfined state referred to as Quark-Gluon Plasma (QGP).

The existence of the QGP was predicted long time ago in the context of condition at high

baryon density [5] and high temperature [6]. At finite temperature T ̸= 0 but zero baryon

chemical potential µ = 0, the QCD phase transition actually can be investigated by
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Figure 1.1: Equation of state as a function of temperature computed by Lattice QCD
method. Figure is cited from Ref. [7].

Lattice QCD Monte-Carlo simulations. Fig. 1.1 displays a result of equation of state as a

function of temperature T obtained by Lattice QCD computations. The result shows that

the pressure of the system normalized by T 4 increases rapidly around T ∼ 200 MeV, and

gets closer to the Stefan-Boltzmann limit where the quark and gluon are in a gas state.

We can interpret this rapid increase of the degrees of freedom as the phase transition from

hadronic phase to QGP phase.

1.3 Standard picture of Heavy ion collisions

It is considered that QGP exists in early universe, inside high density neutron stars,

and can be created in high energy heavy ion collisions (HICs) experiments. Relativistic

Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN are

actually the unique machine to create the QGP in laboratory. By analyzing direct photons

produced in HICs [12], it has been demonstrated that the initial temperature in HICs at

RHIC is estimated to be higher than critical temperature Tc where the phase transition

is occurred. Furthermore, creation of strong collective flows observed in the HICs is

successfully analyzed with relativistic fluid dynamics. As for hard probes, quarkonium

suppression and jet quenching confirms the high density medium consisting of colored

partons. These measurements gradually establish the creation of QGP in HICs.

Then, next, by assuming the creation of QGP in heavy ion collision experiments, let

us explain briefly a standard time evolution picture of heavy ion collisions.

7



1.3.1 Initial condition nuclear wave function

In high energy heavy ion collisions, two heavy nuclei become thin pancakes like discs

due to the Lorentz contraction in the longitudinal direction 1 . Due to the Lorentz time

dilation, quantum fluctuation emerges as parton (gluon) with small Bjorken’s x, and the

heavy nucleus at small-x can be recognized as a novel state with large gluon occupation

number referred to as Color Glass Condensate (CGC), which we will explain later. In

fact, this small-x gluons mainly contribute to particle productions in hadronic collisions

The CGC-inspired model [10] has been used as specific initial condition for relativistic

fluid dynamic simmulation to analyze bulk properties observed in the HICs.

1.3.2 Pre-equilibrium state

There is an open question how to form QGP from initial pre-equilibrium state. In terms of

the CGC, strong coherent color field referred to as Glasma is created for an extreme short

time in the HICs. Now, we introduce τ0 as the proper time where the system achieves

local equilibrium. By hydrodynamic analyzing of bulk properties in HICs, it is suggested

that τ0 is about or shorter than 1 fm/c. This is very short time scale and recently a

new mechanism between the Glasma and local equilibrium state QGP has been studied

actively.

1.3.3 QGP phase

At τ > τ0, thermal QGP rapidly cools through expansion of the system. As a very amazing

fact at RHIC, the space-time evolution of the system is well described by the relativistic

hydro dynamics. This analysis is quite nontrivial and suggests that the produced QGP

at RHIC behaves as nearly perfect fluid with small correction of transport coefficients,

such as viscosity [8,9]. Transport coefficients decrease with increasing the strength of the

particle interaction if the system is like gas. The smallness of the transport coefficient

correction indicates that the QGP created at RHIC is just a strongly coupled plasma

(sQGP).

1Longitudinal is parallel to a beam axis while transverse is perpendicular to it.
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1.3.4 Hadronization and Freeze-out

As the system expands hydrodynamically, the deconfined matter begins to hadronize

and quarks and gluons are re-confined in hadrons. In this stage, inelastic scatterings

become less frequent and the number of each hadron species is effectively fixed around

τ ∼ 5− 10 fm, which is called chemical freeze-out. Next, the system is more cooled and

kinetic thermal freeze-out starts at τ ∼ 10−20 fm/c breaking the local equilibrium in the

system, which results in fixing the momentum distribution of produced particles. Finally,

the produced hadrons, leptons, and photons are observed in detectors.

This is a schematic standard picture now from the first impact in a heavy ion collision

to final particle observation.

1.4 Observables

In fact, we can not observe QGP directly due to the confinement nature of QCD. We need

to confirm the creation of QGP via careful analysis of observed hadrons and leptons in the

final state. For instance, creation of strong collective flows observed in HICs is successfully

described with relativistic fluid dynamics simulation for QGP as stated above. As for

hard probes, strong jet quenching is regarded as an evidence for the high density medium

consisting of colored partons. Heavy quarks production is also an useful probe to the HIC

physics and has been studied actively for a long time. In the following subsections, we

introduce two important observables concerning the heavy quark pair production in the

HICs.

1.4.1 Quarkonium

Quarkonium (J/ψ) suppression is for a long time suggested as a clear signature of QGP

creation in HICs because the hot matter screens the potential between the quark and

antiquark and prevents the quark pair from binding [11]. The original reason to regard

the quarkonium as an ideal probe of QGP is listed as follows: a small number of heavy

quarks are produced in pair only in initial hard process, and then the bulk medium

produced at later stage would destroy the pair’s correlation to bound into quarkonium.

In addition, at RHIC and the LHC, a large number of cc̄ pairs produced in AA

collisions and c and c̄ produced independently can be combined into a quarkonium in the

hadronization [144], which may result in an enhancement of the quarkonium yield. This is
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Figure 1.2: Nuclear modification factor RAA of inclusive J/ψ in the forward rapidity range
2.5 < y < 4 as a function of the number of participating nucleons measured in Pb-Pb
collisions at

√
s = 2.76 TeV compared to PHENIX results in Au-Au collisions at

√
s = 200

GeV at mid rapidity and forward rapidity. The number of mean participants corresponds
to centrality estimated at experiments. Figure is cited from Ref. [105].

referred to as recombination scenario which has already been discussed extensively [142,

143].

The production and propagation of J/ψ in AA collisions can be quantified by the

nuclear modification factor defined by

RAA =

dNJ/ψ

d2P⊥dy

∣∣∣
AA

Ncoll
dNJ/ψ

d2P⊥dy

∣∣∣
pp

(1.1)

where Ncoll is the average number of inelastic AA collisions in a given centrality class

and dNJ/ψ/d
2P⊥dy

∣∣
pp (AA)

is the transverse momentum (P⊥) and rapidity (y) differential

multiplicity per event in pp (AA) collisions. Fig. 1.2 shows nuclear modification factor of

inclusive J/ψ production as a function of the number of participating nucleons measured

in Pb-Pb collisions in the forward rapidity region at the LHC, compared to PHENIX

results in Au-Au collisions at
√
s = 200 GeV at mid rapidity and forward rapidity. One

can immediately find a strong suppression with increasing the number of participants at

both RHIC and the LHC. As the primary suppression by melting in QGP can compete

with the subsequent enhancement effect, a careful analysis is necessary to interpret the

data.

10



1.4.2 Open heavy flavor meson

Open heavy flavor meson (Heavy meson) production itself is also very valuable probes

in HIC experiments [77], in order to quantify properties of hot and dense matter or the

QGP transiently created in the events. For example, energy loss in medium [136–140] and

collective flow of D and B mesons [141], have been studied. The heavy meson production

in AA collisions measured at RHIC [104, 106] and the LHC [114, 115] actually shows

a strong suppression at large transverse momentum (compared to that in pp collisions

with appropriate normalization), similar in magnitude to that of light hadrons, which

is interpreted as a large energy loss of the heavy quark in the hot medium. This is a

puzzling problem because energy loss via gluon radiation in the hot medium is expected

to be suppressed by 1/m with particle’s mass m.

1.5 Cold nuclear matter effect

In fact, the systematic studies of quarkonium and heavy meson production in pp and pA

collisions are indispensable in order to quantify the effects of QGP precisely. pp collisions

provide fundamental information on the production mechanism of the quarkonia and

heavy mesons. pA collisions can be regarded as a controlled baseline in the context of

HIC physics and playing a crucial role to separate cold nuclear matter (CNM) effects from

hot plasma effects. We briefly introduce some typical CNM effects.

CNM effects in the target nucleus include absorption of particles such as breakup of

quarkonium during traversing medium, multiple scattering of partons, modification of the

initial parton distribution (e.g. shadowing), and parton saturation effects.

1.5.1 Absorption in target nucleus

J/ψ suppression in pA collisions at SPS-NA60 [103] has been analyzed by use of incoherent

Glauber model: Snucl = exp(−ρnmσJ/ψ
abs L) where ρnm = 0.16 fm−3 is mean nuclear density,

L is the effective pass length which J/ψ passes through in the target nucleus. σ
J/ψ
abs is an

effective absorption cross section of J/ψ in the nucleus which is obtained by fitting data.

1.5.2 Nuclear parton distribution function

Parton distribution function (pdf) in proton f pi (x,Q
2) is studied in deep inelastic e + p

scattering experiments. x is a momentum fraction of parton i and Q2 is a virtuality

11



of probe. On the other hand, the pdf in nucleus fAi (x,Q
2) is not fully understand and

phenomenologically determined by several experiments. For example, in Ref. [134], by

assuming the nuclear pdf as fAi (x,Q
2) = RA

i (x,Q
2)fpi (x,Q

2), the fit function RA
i (x,Q

2)

is determined by deep inelastic lepton-nucleus scattering, Drell-Yan di-lepton produc-

tion in pA, and inclusive pion production in d+Au at RHIC. If no nuclear effects exist,

RA
i (x,Q

2) = 1 exactly. However, the behavior of fAi (x,Q
2) is actually quite different

from f pi (x,Q
2). Particularly, RA

i (x,Q
2) < 1 can be found at x ≤ 10−2 for large nucleus

(A=Pb) and this RA
i (x,Q

2) < 1 is called nuclear shadowing where the parton apparently

hides in other many partons.

1.5.3 Energy loss in medium

Heavy quark energy loss by medium induced gluon radiation in the nucleus is studied

in Ref. [159]. The calculation is carried out in nucleus rest frame and the energy loss

depends on the path length crossed in the target nucleus. We comment that quark and

gluon can be rotated in their color space without their recoil when they radiate gluons.

This is a feature in QCD.

1.5.4 Parton saturation

In high energy hadronic scattering, parton saturation scale Q2
sA(x) of the gluon distri-

bution in heavy nucleus with atomic mass number A is enhanced by the larger valence

color charges seen at moderate value of x = x0. Indeed, the empirical formula [31, 32]

Q2
sA(x) = Q2

s0A
1/3(x0/x)

λ with Q2
s0 = 0.2 GeV2, x0 = 0.01 and λ ∼ 0.3 suggests that

the saturation scale is already comparable to the charm quark mass mc ∼ 1.5GeV with

A = 200 at RHIC energy
√
s = 200 GeV. Therefore, in the saturation point of view,

quantitative analysis of particle production in pA collisions is very crucial [13]. In this

paper, we mainly consider this parton saturation effect in the nucleus based on the Color

Glass Condensate framework which we will show later.

1.6 Heavy quark production in pA collision

We focus on heavy quark pair production in this paper. The reason why we study heavy

quark production is in order here. Heavy quark mass is larger than typical λQCD and it

is clear that the heavy quark is produced only in initial hard gluon fusion and calculated
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by perturbative QCD method. Then the heavy quark can be used as ideal probe to

investigate the medium properties of nucleus. Heavy quark production in high energy

pA collisions at RHIC and the LHC is actually very important to evaluate the CNM

effects and also provides us with a unique opportunity to investigate the so-called parton

saturation phenomenon [28, 29] at small Bjorken’s x of gluon in the incoming nucleus.

The large heavy quark mass allows perturbative calculation of the quark production from

the gluons as stated above, while high center of mass collision energy
√
s makes the

relevant x of the gluons still small. These low x gluons are abundantly generated from the

valence partons with large x in view of the quantum evolution in x. Then the saturation

momentum scale Q2
s(x) emerges dynamically as a semi-hard scale below which virtuality

Q2 < Q2
s(x), coherence and nonlinearity of the x evolution become important. This

dynamics of small-x degrees of freedom in hadrons is systematically described with the

Color Glass Condensate (CGC) effective theory [38].

1.7 Framework

In this paper, we study quantitatively the quarkonium (J/ψ, Υ(1S)) and heavy meson

(D, B) productions in pA collisions at RHIC and the LHC in order to quantify the effects

of gluon saturation.

The quark-pair production cross section from the CGC in pA collisions is obtained by

Blaizot, Gelis and Venugopalan [64, 65], where a pA collision is treated as a dilute-dense

system and the cross section is evaluated at leading order in the strong coupling constant

αs and the color charge density ρp in the proton, but in all orders in the color charge

density g2ρA ∼ gA = O(1) in the nucleus.

As to hadronization of quarkonium and heavy meson productions, the heavy meson

production is calculated with a heavy meson fragmentation function, while the quarko-

nium production is computed in the Color Evaporation model (CEM) where a hadroniza-

tion dynamics is treated simply because all the quark pair form the quarkonium with a

constant transition probability.

In the CGC framework, multiple scatterings and gluon merging dynamics are encoded

in the unintegrated gluon distribution (uGD) function of the heavy nucleus. These ef-

fects cause relative depletion of the quark production yields and azimuthal momentum

imbalance between the produced quark and antiquark. In forward particle production,

the momentum fraction x1 of the gluons from the proton is not small, and the uGD of the
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Figure 1.3: Nuclear modification factor RpA of inclusive J/ψ at forward and backward
rapidity as a function of rapidity in p-Pb collisions at

√
s = 5.02 TeV compared to some

theoretical results [13, 17] based on nuclear pdf and energy loss effects. Figure is cited
from Ref. [108].

proton may be better described with the ordinary collinear gluon distribution function.

This kind of asymmetric treatment is well known for the hadron production from the

CGC [59], and often referred to as hybrid model.

In the nucleus side, multi-parton function such as the three point function ϕqq̄,g appears

in quark pair production and obeys JIMWLK quantum evolution equation. However, in

the large-Nc limit, ϕqq̄,g can be obtained by using only the dipole amplitude. At the

present day, it is standard to use nonlinear Balitsky-Kovchegov (BK) equation [47,48] for

describing the x dependence of the dipole amplitude. It is argued that the inclusion of

running coupling corrections to the BK equation (now called rcBK equation) is essential to

phenomenology [49–51]. Indeed, the rcBK equation with an appropriate initial condition

can fit the HERA DIS data quite well [53,54] and are successful in reproducing/predicting

the data at hadron colliders quantitatively [55–58]. We use the numerical solution of the

rcBK equation to describe the x dependence of the uGD in the proton, and change the

initial saturation scale of the three point function ϕqq̄,g for the heavy nucleus.

We predicted in Ref. [68] that the nuclear modification factor (RpA) of J/ψ and D

meson in pA collisions at the LHC are suppressed than those at RHIC due to the nonlinear

QCD evolution effect in the small-x region. However, our results draw attention as a

14



surprise since the RpA of J/ψ in p+Pb collisions at the LHC is similar to the one in d+Au

collisions at RHIC in the forward rapidity region, which shown in Fig. 1.3 with some

theoretical results [13,17].

1.8 Purpose of this paper

CGC is the effective theory in the context of perturbative QCD (pQCD). If we believe

the pQCD can describes the QCD phenomena, then the CGC picture is also valid. In

particular, pQCD method becomes more reliable at the LHC because of the typical char-

acteristic energy is much larger than any other collider experiments and then the particle

production should be studied from the CGC. Our purpose in this paper is to study the

heavy quark production from the CGC quantitatively and investigate the parton satu-

ration in the nucleus by using the heavy quark production. Our results for quarkonium

and heavy meson production in pA collisions from the CGC bring now tense relations

between theoretical and experimental study and it is required to adopt a cautious atti-

tude to interpretation of data. In this paper, we firstly start with a review of detail our

calculation of quarkonium production in the CEM for minimum bias event and also heavy

meson production with an appropriate fragmentation function. Next, we consider what

we can do soon and then we investigate the impact parameter dependence of quarkonium

production. Furthermore we attempt to match the heavy quark pair production formula

from the CGC with the NRQCD factorization approach, in order to refine the description

of hadronization process of quarkonium production. In the paper, we numerically cal-

culate only quarkonium production cross section in color singlet model which is relevant

to quadrupole amplitude as a multi parton correlator in the nucleus. This multi parton

correlator may bring different feature in quarkonium production in pA collisions than pp

collisions. The quadrupole amplitude is also a solution of JIMWLK equation. It is known

that if the distribution of color charge density inside hadron is gaussian, the quadrupole

amplitude can be expressed by only use of the dipole amplitude. Then, we advance the

computation of the color singlet model for quarkonium production with the quadrupole

amplitude obtained by the dipole amplitude.

This paper is organized as follows. In chapter. 2, we introduce some basic topics related

to our study and review the formula for heavy quark pair production in pA collisions

within the CGC framework in Chap. 3, where we also present how to include the quantum

evolution effect in our numerical study. Next, we show in Chap. 4–6 our numerical results
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for quarkonium and heavy meson productions at RHIC and LHC energies. We also discuss

quantitatively the cross section and nuclear modification factor, and also show azimuthal

angle correlation between the pair of heavy mesons. In Chap. 7, we finally discuss the

quarkonium production in the NRQCD factorization approach. In practice, we show the

numerical results of the color singlet model for quarkonium production without quantum

evolution effect. Summary and outlook are given in Chap. 8.
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Chapter 2

Parton structure

In this chapter, we briefly present some fundamental topics related our study such as

parton structure in the hadron and heavy nucleus which include the non-perturbative long

distance physics. However we can know the scale dependence of those by perturbative

QCD calculation. Then we also show a quantum evolution equations which control the

scale dependence of the parton structure of the hadron. Detailed discussions are found

such as in Ref. [2].

2.1 Deep Inelastic Scattering

Let us consider the deep inelastic electron-proton/nucleus scattering: e+ p/A→ e′ +X,

which is usually called by DIS. We assign the four momenta to incident electron, target

proton, and virtual photon in this process as is found in Fig. 2.1 (Left). Very useful two

important Lorentz invariant variables related with collision dynamics are introduced as

Q2 ≡ −q2 (2.1)

x
Bj
≡ Q2

2P · q
. (2.2)

Q2 is a virtuality of the virtual photon γ∗ which carries a momentum transfer from the

incident electron to the parton in the hadron. It is usually referred to as the resolution in

the transverse plane of hadron. x
Bj

is the Bjorken’s x variable Then the DIS experiment

is then characterized in the (xBj, Q) space. We simply abbreviate the Bjorken’s x as just

x below and will restore the sub-label “Bj” when we need to give notice.
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P µ

e

γ∗

X

e′pµ = (E,~p)

p′
µ = (E ′, ~p′)

qµ = (E − E ′, ~p − ~p′)

kµ

Figure 2.1: Deep inelastic electron-proton scattering. Incident electron observes the in-
ternal parton structure of the proton via virtual photon γ∗.

x and Q can be rewritten in terms of the mandelstam variable as follows;

x =
Q2

ŝ+Q2 −m2
(2.3)

Q2 = yx(s−m2
p −m2

e) ∼ yxs, (2.4)

where m is a mass of the target proton. ŝ = (P + q)2, s = (P + p)2, and y = E−E′

E
is

an energy transfer. DIS experiments are performed in the high scattering energy, then it

probes the small x region inside the target.

2.2 Parton distribution in hadron

Next let us consider the differential cross section of the DIS process in Fig. 2.1

dσep

d3p′
=

α2
EM

EE ′Q4
LµνW

µν (2.5)

where Lµν is a leptonic tensor which involves only the electron scattering and W µν is a

hadronic tensor which involves a contributions from the proton. αEM is the electromag-

netic coupling constant. This Lµν actually reads

Lµν =
1

2

∑
s,s′

⟨p, s|jµ(0)|p′, s′⟩⟨p′, s′|jν(0)|p, s⟩ (2.6)

where jµ(x) = ūe(x)γ
µue(x) is the electromagnetic current of the electron with the Dirac

field ue and we have averaged the initial polarization of the electron s and summed over

18



the polarization in the final state s′. The expression of W µν is given by

W µν =
1

4πm

1

2

∑
λ=±1

∑
X

⟨P, λ|Jµ(0)|X⟩⟨X|Jν(0)|P, λ⟩(2π)4δ(4)(P + q − PX) (2.7)

where we have summed over the final state X and averaged the polarization of the initial

proton λ. Jµ(x) =
∑

f Zf ūf (x)γ
µuf (x) is the electromagnetic current of the quark and

Zf is the electric charge per unit e of the quark with flavor f and uf is the Dirac field. By

imposing the electromagnetic current conservation as qµW
µν = qνW

µν = 0 and assuming

W µν is a symmetric tensor, W µν is generally rewritten by

W µν ≡ −W1(x,Q
2)

(
gµν − qµqν

q2

)
+
W2(x,Q

2)

m2

(
P µ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)

(2.8)

where W1(x,Q
2) and W2(x,Q

2) are scalar function, called structure function. These

structure function can be measured experimentally and include all the non-perturbative

QCD effect in the hadron.

By substituting Eqs. (2.6)(2.7) into Eq. (2.5), the differential cross section of the DIS

in the laboratory frame is given by

dσep

dE ′dΩ

∣∣∣∣
Lab

=
α2
EM

EE ′ sin4 θ
2

[
W2(x,Q

2) cos2
θ

2
+ 2W1(x,Q

2) sin2 θ

2

]
(2.9)

where Ω and θ are the solid angle and the polar angle of the scattering in the laboratory

frame respectively 1. Here we define the dimensionless structure functions as

F1(x,Q
2) ≡ mW1(x,Q

2), (2.10)

F2(x,Q
2) ≡ Q2

2mx
W2(x,Q

2). (2.11)

The physical meaning of F1 is the number of partons in the hadron with longitudinal

momentum fraction x while the physical meaning of the F2 is that the average longitudinal

momentum fraction of the partons in the hadron times the number of partons, that is,

F2(x,Q
2) =

1∫
0

dξ
∑
a

Ca(x/ξ)fa(ξ,Q
2) (2.12)

1Eq. (2.9) is one of the simplest form which is found in Ref. [4].
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Figure 2.2: Valence and sea quark, and also gluon distributions as a function of Bjorken’s
x for Q2 = 2 (Left) and 10 GeV2 (Right) which are extracted by the HERA DIS data [16]
Figures are cited from Ref. [15].

where fa is the number of partons with flavor a in the proton wave function. Ca is

the coefficient function which represents the information on the interaction between the

parton with flavor a and the virtual photon. At the lowest order in the coupling constant,

namely in the born approximation, Ca = e2aδ(x/ξ− 1) with the electromagnetic charge of

the parton ea. Then we find at the lowest order F2(x,Q
2) =

∑
a xfa(x,Q

2). xfa(x,Q
2)

represents the probability to find a parton with flavor a carring the momentum fraction

between x and x+ dx (0 ≤ x ≤ 1) at virtuality Q2.

As we mentioned above, F2 can be measured experimentally via Eqs. (2.9)(2.11) and

Fig. 2.2 displays valence quark (fv) and sea quark (label “f = S”) and gluon (label

“f =g”) distributions xf in the proton as a function of x for Q2 = 2 and 10 GeV2 which

are extracted from the HERA DIS data [15]. We can notice that at larger x ≳ 0.1 for

fixed Q2 the valence quarks (u and d) dominates in the proton while at lower x ≪ 0.1

the number of gluons and sea quarks increase with a decrease in x. With virtuality Q2

increases, only the gluon and sea quark distributions also increase rapidly at smaller x.

F1 and F2 include all the information on the QCD dynamics in the DIS process then

the non-perturbative effect is also included. However only the characteristic scale depen-

dence of the parton distribution can be understand by the perturbative QCD calculations

because the typical value of virtuality is much large than ΛQCD and the small-x region

corresponds to the high energy scattering. Of particular importance is that F2 is related
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Figure 2.3: Parton structure in hadron with respect to Q2 and x.

with the gluon distribution function which is used in the particle productions in hadronic

collisions. Then we will focus on how to compute the structure function F2 and under-

stand the qualitative and also quantitative behavior of the parton distribution functions

by use of the perturbative QCD method.

2.3 Quantum evolution

We discuss the Q and the x dependence of the parton distribution function, in particu-

lar, the gluon distribution function because we focus on the hadronic heavy quark pair

production in this paper and the heavy quark itself is created by the gluon scattering.

Fig. 2.3 displays the cartoon of the parton distribution in the hadron (or nucleus) as a

function of Y = ln(1/x) and lnQ2 according to the results by using the quantum evolution

equations. Here x is related with 1/s (Eq. (2.3)) then Y dependence is just the energy

dependence of the system. The reader notice that the entire kinematical region is divided

in three part: First one is the region where the perturbative QCD method is valid and

the quantum evolution equation is linear with respect to the parton distribution (DGLAP

and BFKL eqs.). Second is the perturbative calculable but the system is dense where the

evolution equation is non-linear with respect to the parton distribution (BK eq.). In this

region, the partons in the transverse plane of hadron are localized at ∆x⊥ ∼ 1/Qswith

the new semi hard scale Qs, usually called the saturation scale. This saturation scale

roughly separates the dilute region from the dense region. Third is the non-perturbative
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kn⊥, xn

Figure 2.4: Diagramatic representations of the gluon cascade process.

region. In this section, we consider only the perturbative region where αs ≪ 1.

2.3.1 DGLAP equation

Firstly let us start by giving the DGLAP equation in the perturbative region Q2 ≫ Λ2
QCD

2 which controls the Q dependence of the parton distribution function with x fixed. Here

we consider the DIS process which is shown in Fig. 2.1. Now we would focus on the

integrated gluon distribution function; xG(x,Q2) ≡
∫ Q2

d2k⊥ϕ(x, k
2
⊥) then we show its

evolution in Q as follows;

Q2∂G(x,Q
2)

∂Q2
=

∂G(x,Q2)

∂ ln(Q2/Q2
0)
≈ αs(Q

2)

2π

∫ 1

x

dz

z
Pgg(z)G(x/z,Q

2) (2.13)

where Q2
0 is a initial virtuality scale and we have considered only the integrated gluon

distribution function f = G and neglected all the quark contributions for simplicity 3. If

2“DGLAP” stands for initial letter : Dokshitzer, Gribov, Lipatov, Altarelli, Parisi.
The QED version of this evolution equation is originally derived by Gribov and Lipatov [19]. After

that, the QCD version was obtained independently by Altarelli, Parisi [20] and Dokshitzer [21].
3Strictly speaking, there is also the quark (gluon) contribution to the gluon (quark) distribution

function. The exact expression of the gluon splitting function Pgg at leading order in the strong coupling
constant is given by

Pgg(z) = 2Nc

[
z

(1 + z)+
+

1− z
z

+ z(1− z)
]
+

11Nc − 2Nf

6
δ(1− z), (2.14)

with the ”+” notation given by∫ 1

x

dz
1

(1− z)+
f(z) =

∫ 1

x

dz
1

1− z
[f(z)− f(1)] + f(1) ln(1− x) (2.15)

for an arbitrary function f(z) defined for 0 ≤ x ≤ 1.
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z ≪ 1, the gluon splitting function reads

Pgg(z)
z≪1
=

2Nc

z
(2.16)

then we can simplify the DGLAP equation for the gluon distribution further as follows;

∂xG(x,Q2)

∂ ln(Q2/Q2
0)

=
αs(Q

2)Nc

π

∫ 1

x

dz

z2
xG(x/z,Q2)

= ᾱs(Q
2)

∫ 1

x

dx′

x′
x′G(x′, Q2) (2.17)

where ᾱs ≡ αsNc
π

and we have redefine z = x
x′

in the second line. This equation is linear

with respect to the gluon distribution.

Here let us consider that Q2 ≫ Q2
0 ∼ Λ2

QCD and x is small but ln(Q2/Q2
0) ≪ ln(1/x)

and also assume that the coupling constant is the fixed value for simplicity. In this

case, even though the coupling constant is much smaller than unity, the large logarithm

ln(Q2/Q2
0) times the coupling constant results in αs ln(Q

2/Q2
0) ∼ 1 which should be re-

summed to all orders in the coupling constant. The DGLAP equation actually resums the

large logarithm correction (αs ln(Q
2/Q2

0)) in the Q-evolution to all orders in the coupling

constant of the parton distribution function. The resummation of αs ln(Q
2/Q2

0) correction

is referred to as the leading logarithmic approximation (LLA). On the other hand, if both

ln(Q2/Q2
0) and ln(x0/x) with a initial momentum fraction x0 are much smaller than unity

but αs ln(Q
2/Q2

0) ln(x0/x) ∼ 1, the resummation parameter of the DGLAP equation be-

comes αs ln(Q
2/Q2

0) ln(x0/x) and we can rewrite the DGLAP equation by differentiating

Eq. (2.17) with respect to ln(x0/x) as follows;

∂xG(x,Q2)

∂ ln(Q2/Q2
0)∂ ln(x0/x)

= ᾱs(Q
2)xG(x,Q2). (2.18)

The resummation of αs ln(Q
2/Q2

0) ln(x0/x) correction to the parton distribution function

is referred to as the double logarithmic approximation (DLA).

The physical meaning of the DGLAP equation for the gluon distribution function is

given as described below. The probability for bremsstrahlung radiation of the number of
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n gluons from the parent parton which is shown in Fig. (2.4) is approximately given by

Png ∼
Q2∫
Q2

0

d2kn⊥
k2n⊥

αs(kn⊥)

k2n⊥∫
Q2

0

d2kn−1⊥

k2n−1⊥
αs(kn−1⊥) · · ·

k22⊥∫
Q2

0

d2k1⊥
k21⊥

αs(k1⊥)

∼ 1

n!

(
αs ln

Q2

Q2
0

)n
(2.19)

where we have assumed that the coupling constant is enough small and nearly fixed value

and also that only the transverse momenta of the radiated gluons are strongly ordered as

follows;

Q2 ≫ k2n⊥ ≫ k2n−1⊥ ≫ · · · k21⊥ ≫ Q2
0. (2.20)

Now the probability Png is order of unity when Q2 ≫ Q2
0 then the DGLAP Q-evolution

describes the multiple gluon emission in the hadron wave function 4 and a transverse size

of the radiated gluon decreases in the Q-evolution. We can interpret the Q-dependence of

the DGLAP equation from a different perspective as follows. Initially, the probe particle

see the hadron structure with the coarse resolution as 1/Q0. By increasing the virtuality

(Q > Q0), the transverse resolution of the probe becomes more finer and can see a smaller

size partons. As a result, it seems that the number of partons at Q is larger than that at

Q0.

We note that the DGLAP evolution describes qualitatively the experimental data of

rapid increase of the gluon distribution at small-x region when the photon’s virtuality

increases (Fig. 2.2).

2.3.2 BFKL equation

Now we investigate the parton distribution in the kinematical region of αs ln(x0/x) ∼
1 with fixed Q2. x0 is a initial value. In such region, BFKL equation5 resums the

large logarithm correction (αs ln(x0/x)) in the x-evolution to all orders in the coupling

4Even though the momentum fraction x is ordered as

x < xn < xn−1 · · · < x1 < x0 < 1, (2.21)

the DGLAP equation also describes the multiple gluon emission but the probability for the bremsstrahlung

is given by Png ∼
∫ Q2

Q2
0

d2kn⊥
k2
n⊥

∫ k+
n−1

k+

dk+
n

k+
n
αs · · ·

∫ k2
2⊥

Q2
0

d2k1⊥
k2
1⊥

∫ q+

k+

dk+
1

k+
1

αs ∼ 1
n!

(
αs ln

Q2

Q2
0
ln x0

x

)n
.

5”BFKL” stands for initial letter : Balitsky, Fadin, Kuraev, Lipatov.
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Figure 2.5: Total cross section of the γ∗p scattering in the dipole picture. A dotted line
at the center of figure is the final state cut which means the scattering amplitude of γ∗p is
left hand side of the dotted line and its complex conjugate is right hand side. The vertical
black oval represents the interaction between the dipole and the target proton.

constant of the parton distribution function. The BFKL equation is originally derived in

Refs. [22,23], and then reconsidered in Refs. [24–26] by the use of Mueller’s dipole model.

In this paper, we will review the BFKL equation from the point of view of the Mueller’s

dipole model.

We first revisit the DIS process within the light cone perturbation theory [2] 6. It is

often convenient to consider the DIS process by use of dipole picture which is valid in

high energy limit. The dipole picture which is shown in Fig. (2.5) is the same topology

but different in the time ordering as shown in Fig. (2.1). Now let us consider the total

γ∗p cross section in the dipole picture because the dimensionless structure function F2 is

actually related with the total γ∗p cross section as follows

F2(x,Q
2) =

Q2

4π2α
σγ

∗p
tot . (2.22)

Concerning the F1, it is found that 2xF1(x,Q
2) = Q2

4π2α
σγ

∗p
T . The subindex T of the σγ

∗p
T

represents that the incident γ∗ is polarized transversely 7. We do not consider here the

process involving the incident electron because we focus on only the parton structure in

the hadron. In the dipole picture, we can factorize the DIS process as two part ; the

virtual photon splits into a qq̄ dipole and fluctuates and subsequently the dipole interacts

6The light cone perturbation theory always imposes an ordering of the light cone time x+.
7We immediately notice that if the longitudinal cross section σγ∗A

L remains finite, the Callan-Gross
relation is broken; F2 − 2xF1 ̸= 0.
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with the target hadron. Then the σγ
∗p
tot is given by

σγ
∗p
tot (x,Q

2) =

∫
d2r⊥

4π

1∫
0

dz

z(1− z)
∣∣Ψγ∗→qq̄(r⊥, z)

∣∣2 σqq̄ptot (r⊥, Y ), (2.23)

where z = k+/q+ and k+ is a light cone momentum of the quark and q+ is that of γ∗. r⊥

is a transverse size between the quark and the antiquark.
∣∣Ψγ∗→qq̄(r⊥, z)

∣∣2 is the square

of the light cone wave function for the γ∗ → qq̄ splitting process and computed by QED

completely. Y ≈ ln(1/x) is the net rapidity gap between the dipole and the target proton.

Furthermore, by the use of the optical theorem, the total cross section for scattering of

the dipole off the target proton σqq̄ptot is given by 8

σqq̄ptot (r⊥, Y ) = 2

∫
d2b N

Y
(r⊥, b) (2.24)

where N
Y
is imaginary part of the forward scattering amplitude of the dipole with the

transverse size r⊥ at impact parameter b. Then, all the information of the QCD dynamics

of the parton structure in hadron is embedded in the forward scattering dipole amplitude

N
Y
. This N

Y
itself is actually the solution of the BFKL equation.

Before the BFKL equation is shown, we note the Mueller’s dipole model. In the

Mueller’s dipole model, the light cone wave function of the dipole changes with the scat-

tering energy, that is, the x evolution because the the probability for bremsstrahlung of

the gluon in the wave function of hadron is order of αs ln(x0/x) ∼ 1 in high energy scatter-

ing. The Mueller’s dipole model assume the radiated gluon in the dipole wave function is

equivalent to one qq̄ dipole in the large-Nc limit for simplicity of the discussion. Then the

(real and virtual) gluon radiation from the parent dipole is equivalent to the splitting of

the parent dipole into the two daughter dipoles. Here the typical transverse size between

the quark and the antiquark in the scattering process is characterized by δx⊥ ∼ Lk⊥/E

where L is the longitudinal size of the target hadron interacting with the incident dipole

and k⊥ is the transverse momentum between the quark and the antiquark and E is the

energy of the dipole in laboratory frame. The coherence length of the dipole fluctuation

is given by lcoh ∼ 1/mx with the quark mass m and δx⊥ ≪ lcog at small x. Then the as-

sumption that the transverse size of the parent dipole remains invariant in the scattering

process is valid. In other words, the interaction between the partons in the hadron can

8The prefactor 2 in right hand side of Eq. (2.24) originates from the difference between the amplitude
and its complex conjugate.
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be neglected in the high energy scattering. Finally, the BFKL equation with the forward

dipole amplitude is given by

d

dY
N
Y
(r⊥) =

∫
d2r1⊥K(r⊥, r1⊥) [NY

(r1⊥) +N
Y
(r2⊥)−NY

(r⊥)] , (2.25)

with Y = ln(x0/x). The interaction kernel K at leading order in the coupling constant is

given by

K(r⊥, r1⊥) =
αsNc

2π2

r2

r21r
2
2

(2.26)

where r⊥ = r1⊥ + r2⊥ is the transverse size between the parent quark and the parent

antiquark. r1⊥ and r2⊥ are the size of two daughter dipoles respectively at one step after

in x evolution as is shown in Fig. 2.6. We also denote that r = |r⊥| = r1 + r2 with

r1 = |r1⊥| and r2 = |r2⊥|. The first two terms in Eq. (2.25) represent the real emissions

of the gluon; one is coming from the quark N
Y
(r1⊥) and the other is coming from the

antiquark N
Y
(r2⊥). On the other hand, the third term corresponds to the imaginary

part of the quantum correction, in other words, the virtual gluon emission. The negative

sign of it is determined by the unitarity condition for the scattering amplitude. In this

case, the virtual gluon emission shows no increase of the net number of radiated gluon

at one step after in x evolution. The interaction kernel Eq. (2.26) is interpreted as the

probability for finding the daughter dipoles in the parent dipole wave function at each

step in x evolution. We note that the net quark number is conserved while the number

of gluons increases in the BFKL evolution. If r2⊥ = 0 or r⊥ = r1⊥, then
d
dY
N
Y
(r⊥) = 0

because of N
Y
(r2⊥ = 0) = 0. This means the gluon cascade never occur in x-evolution,

in other words, the colorless dipole with the transverse size r⊥ = 0 never interact with

the target hadron. This is called color transparency.

In contrast to the DGLAP equation, the BFKL equation imposes on the strong or-

dering for the momentum fraction as

x≪ xn ≪ xn−1 · · · ≪ x1 ≪ 1 (2.27)

but no such ordering for the transverse momentum. We usually assume that all the

momenta of the radiated gluons are

k2n⊥ ∼ k2n−1⊥ ∼ · · · ∼ k21⊥ (2.28)
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r2
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Figure 2.6: One gluon radiation from qq̄ dipole at one step in x evolution; (up) real
emission and (down) virtual emission. The large-Nc approximation allow us to substitute
the qq̄ dipole for the gluon as shown in the right hand side. The dotted line represents
the final state.

The kinematics with Eqs. (2.27)(2.28) is called the multi-Regge kinematics and we also

find k+ ≪ k+n ≪ k+n−1 · · · ≪ k+1 ≪ q+. q+ is the light cone momentum of the parent

parton and x = k+/q+. In fact, the probability for bremsstrahlung radiation of the

number of n gluons from the parent parton is approximately given by

Png ∼

k+n−1∫
k+

dk+n
k+n

αs

k+n−2∫
k+

dk+n−1

k+n−1

αs · · ·
q+∫

k+

dk+1
k+1

αs

∼ 1

n!
(αs lnY )n (2.29)

where we have denoted Y = ln(x0/x) and assumed that the coupling constant is fixed

value. Then the BFKL equation resums the large logarithm correction (αs lnY ) in the

x-evolution to all orders in the coupling constant of the parton distribution function via

the forward scattering amplitude N
Y
. The resummation of αs ln(x0/x) correction is also

referred to as the leading logarithmic approximation (LLA).

2.3.3 BK equation

The BFKL evolution seemingly describes qualitatively the experimental data of rapid

increase of the gluon distribution with decrease in x when the photon virtuality is fixed

(Fig. 2.2). However the BFKL equation has a serious problem about unitarity. It is known

that the BFKL equation violates the Froissart-Martin bound of the total cross section in
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Figure 2.7: Diagramatic representations of the gluon merging process in the BK equation.

hadron collisions; σtot ≲ ln2 s [27]. By considering the sum from n = 0 to n = ∞ of

Eq. (2.29), we find the total probability for bremsstrahlung of the gluons is proportional

to a power of 1/x;
∑

n Png ∼ (1/x)ω with positive number ω. Then it can be expected

that the total cross section in the hadron collisions scales as σtot ∼ sω and exceeds the

Froissart-Martin bound at very large scattering energy s. We can interpret this violation

as meaning that the rate of increase in the number of gluons in the BFKL evolution is

too large. Then we must add new effect in the BFKL equation in order to reduce the rate

of increase in the number of gluons at small x.

In fact, by introducing a nonlinear effect in the BFKL equation, the unitarity can

be restored 9. This is quite natural because the rapid increase in the number of gluons

makes the system denser then the gluons interact with each other. In order to include

the nonlinear effect, we only have to change the BFKL equation at leading order in the

coupling constant as follows;

d

dY
N
Y
(r⊥) =

∫
d2r1⊥K(r⊥, r1⊥)

[
N
Y
(r1⊥) +N

Y
(r2⊥)−NY

(r⊥)−NY
(r1⊥)NY

(r2⊥)
]
.

(2.30)

This is called Balitsky-Kovchegov (BK) equation [47,48]. The evolution kernel K(r⊥, r1⊥)

is the same as Eq. (2.26). The first three terms in the right hand side of Eq. (2.30)

correspond to the BFKL equation exactly while the last nonlinear term with minus sign

is the nonlinear effect and represents the gluon recombination which is shown in Fig. 2.7.

As a result, this gluon recombination effect can reduce the speed of x-evolution, namely,

the rapid increase of the number of gluons is suppressed. Here we note that d
dY
N
Y
(r⊥) = 0

9Non linear evolution equation for the gluon distribution function was originally derived in Ref. [28]
and rederived in Ref. [29].
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when r2⊥ = 0 or r⊥ = r1⊥.

Let us consider the transverse plane of the hadron which is probed by γ∗ in DIS

process. Given the fixed virtuality Q of γ∗, the rapid increase of the number of gluons

with decrease in x due to the BFKL evolution makes the hadron become more denser

system. When the x reaches at a specific small value xs, we can find that the valence and

the radiated gluons saturate the transverse plane of the hadron completely. Here the gluon

in the hadron has typically a transverse momentum k⊥ ∼ Qs. This Qs is called saturation

scale and corresponds to the inverse of the transverse size of the gluon approximately.

Furthermore, when the x decreases to a smaller value below xs, the wave function of the

gluons begin to overlap each other and the nonlinear gluon recombination effect due to

the BK evolution can no longer be neglected. If the fixed virtuality is much larger than

the saturation scale; Q≫ Qs, the transverse plane of the hadron is not dense but rather

dilute. Then the x-evolution of the gluon distribution in the Q≫ Qs region is controlled

by the BFKL equation. On the other hand, for Q ≲ Qs, the probe particle γ∗ can see

the gluon saturation in the hadron then we should use the BK equation to describe the

x-evolution of the gluon distribution.

The saturation scale Q2
s is defined as

Q2
s(x) ≡

αsNc

S⊥
xG(x) (2.31)

where αsNc ∝ (gT a)2 is the color charge square of one gluon in the hadron. S⊥ is the

transverse area in the transverse plane of the hadron. If the wavelength of the probe

(e.g. γ∗) is much shorter than the transverse size R of the hadron, we can well define

S⊥ = πR2. In this paper, we are just interested in the perturbative region of the probe

which means that the momentum of the probe is much larger than ΛQCD ∼ 1/R, then we

set S⊥ = πR2 throughout in this paper. xG is the integrated gluon distribution function

and corresponds to the number of gluons per unit rapidity. When the number of gluons in

hadron grows rapidly thanks to the x-evolution, the saturation scale itself becomes large.

Eq. (2.31) is just as valid for the nucleus. In general, the saturation scale of the nucleus

is approximately given by

Q2
s,A(x) =

αsNc

SA⊥
xGA(x) ∝ A1/3

(
1

x

)λ
(2.32)

where A is the atomic number of the nucleus and xGp is the gluon distribution in the
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proton. We have also assumed that RA = A1/3Rp with the proton radius Rp and xGA =

AxGp. Actually, it is already known from the experimental data [158] that the gluon

distribution in the proton at small x < 0.01 proportional to a power of 1/x and λ ∼
0.2 − 0.3 at 1 < Q2 < 102 GeV2. Then, the saturation scale of the nucleus is enhanced

by the factor A1/3 and it is expected that the saturation scale in the heavy nucleus at

high energy scattering can reach the hard scale which is comparable with the heavy quark

mass.

2.4 The Color Glass Condensate

Finally, in this section, we explain the Color Glass Condensate (CGC) framework 10 which

is used to calculate the heavy quark pair production in pA collisions in this paper. In the

CGC framework, the degrees of freedom of the parton in the hadron are separated into the

small x part and the large x part. The valence partons with large x are described by the

classical fields which satisfy the classical Yang-MIlls equation while the small x partons

(mainly gluon) are emitted from a classical color sources as a result of the quantum

evolution with respect to x by using the JIMWLK evolution equation 11 [39–46]. As

we have mentioned above, the BK equation describes the energy dependence of the two

point function (dipole amplitude). However, the JIMWLK equation describes the energy

dependence of the multi point function in the heavy nucleus. Then the JIMWLK equation

is considered to more general tool to include the quantum correction in the x-evolution.

As a sophisticated model for a initial condition of the JIMWLK equation, it is very useful

to use McLerran-Venugopalan (MV) model [33–35].

2.4.1 Classical valence quark

Firstly, let us consider a heavy nucleus in the nucleus rest frame. The gluon with mo-

mentum fraction x in the nucleus has a coherent length of order lcoh ∼ 1/mNx where

mN is a nucleon mass. If the x is much smaller than unity, the coherence length of the

gluon becomes much larger than the size of the nucleus; lcoh ≫ 1/ΛQCD. Then, in the

longitudinal direction, such small x gluon is produced coherently from the whole nucleus.

On the other hand, the gluon in the transverse plane of the nucleus is localized in the

area around x⊥ ∼ 1/k⊥ with the transverse momentum of the gluon k⊥ ≫ ΛQCD because

10Readers are referred to Refs. [2, 36–38].
11”JIMWLK” stands for initial letter : Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner.
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the gluons should be confined inside each nucleon in the transverse plane of the nucleus.

Now the gluon in the nucleus with large coherence length can interact with approximately

the number of A1/3 nucleons in the longitudinal direction at a fixed transverse position
12. Then in analogy with a random walk 13, the average color charge seen by the gluon is

given by g
√
A1/3 with the QCD coupling g and atomic number A.

Next, we consider the ultrarelativistic nucleus in the infinite momentum frame where

the nucleus becomes thin pancake like disc due to Lorentz contraction in the longitudinal

direction. Then we only have to consider the transverse field of the gluons on the trans-

verse plane of the nucleus. As is the case in the nucleus rest frame, we can estimate the

typical average color charge fluctuations of the gluon per unit area in the transverse plane

of the heavy nucleus as follows;

µ2
A =

(g
√
A)2

SA⊥
∝ αsA

1/3Λ2
QCD (2.33)

where we have used the assumption SA⊥ = π(A1/3RN)
2 ∼ A2/3/Λ2

QCD. The average color

charge squared µ2
A ≫ Λ2

QCD with large A seen by the gluon in the nucleus makes αs(µ
2
A)≪

1 which allows us to calculate the gluon distribution in the nucleus by perturbative QCD

method. In this case, we can assume that a quantum corrections of the valence gluon

field Aµ are neglected because the coupling constant is assumed to be enough small.

Let us define the color charge density of the valence parton with x in the transverse

plane of the nucleus with the atomic mass number A which is given by

ρ ≡ xGA(x,Q
2)

SA⊥
(2.34)

which is approximately proportional to A1/3 by assuming xGA = AxGN . xGN is the

valence parton distribution in the nucleon. We note that the average color charge density

ρ is static, in other words, the ρ does not depend on the light cone time x+. The reason

why the valence parton color charge is static is here in order. A wee parton with mass

mw radiated from the valence parton has a lifetime x+w on the light cone. This x+w is

approximately estimated to be 1/k−w with the light cone energy of the wee parton k−w .

Now the on-mass shell condition is given by m2
w = 2k+wk

−
w −k2w⊥ = 2xP+k−w −k2w⊥ where x

12Here we assume the Glauber model for the nucleus, namely, the nucleons inside the nucleus are
independent each other.

13It is known that Brownian particle showing a random walk in medium has an average deviation σ
from the origin in coordinate space which is proportional to

√
t at much larger time t.
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is the light cone momentum fraction of the we parton and P+ is the light cone momentum

of the nucleus. Then the lifetime of the wee parton reads x+w ∼ 2xP+/(m2
w + k2w⊥) and

becomes shorter with decrease in x. In other words, by assuming the mass m is fixed, the

lifetime of the valence parton is much longer than that of the wee parton and the valence

parton almost freezes compared with the radiated wee parton. Thus, it is valid to assume

that the valence charge does not depend on x+.

The valence parton color charge density ρ is a random variable and distributed in

the transverse plane of the nucleus according to appropriate weight function W
Y
[ρ] which

is normalized as unity;
∫
Dρ W

Y
[ρ] = 1. Y is a rapidity of the valence parton. In the

McLerran-Venugoplan (MV) model [33–35], the weight function is assumed to be gaussian

with respect to ρ as follows;

W
Y
[ρ] = N exp

[
−
∫
d3x

ρa(x
−,x⊥)ρa(x

−,x⊥)

2µ2
A(x

−)

]
(2.35)

because a lot of nucleons in the heavy nucleus support a existence of a number of valence

partons (∼ A × Nc for quark), then the central limit theorem about the number of the

valence parton becomes valid. In Eq. (2.35), N is normalization factor and µ2
A(x

−) is the

average color charge squared of the valence parton per unit volume and per color with

x = (x−,x⊥). By using the gaussian weight function Eq. (2.35), the two point correlator

between the different valence partons reads

⟨ρa(x⊥)ρ
†
a′(y⊥)⟩Y = δaa′δ

(2)(x⊥ − y⊥)µ
2
A (2.36)

⟨ρa(x−,x⊥)ρ
†
a′(y

−,y⊥)⟩Y = δaa′δ(x
− − y−)δ(2)(x⊥ − y⊥)µ

2
A(x

−) (2.37)

where ρ(x⊥) =
∫
dx−ρ(x−,x⊥) and µ2

A =
∫
dx−µ2

A(x
−) has been shown in Eq. (2.33).

Here a average of the operator Ô is defined by

⟨Ô⟩
Y
≡
∫
Dρ W

Y
[ρ] Ô. (2.38)

The conditions Eqs. (2.37)(2.39) just satisfy the definition of “white noise”. Then, by using

the Eq. (2.35) and denoting the color charge of valence parton as Qa =
∫
∆S⊥

d2x⊥ρa(x⊥),

the average of Qa is trivial;

⟨Qa⟩Y = 0 (2.39)
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while the average of the color charge squared is nonzero value as follows;

⟨QaQa⟩Y = ∆S⊥
g2CFNcA

πR2
A

∝ A1/3

Q2
. (2.40)

Here ∆S⊥ ∼ 1/Q2 is a transverse area in the cylindrical tube where the valence parton is

localized. We have used (gta)2 = g2CF by assuming the valence parton is quark. Then the

commutator between the color charges of valence quarks in the large nucleus at smaller

virtuality can be neglected compared with the average charge squared as follows

[Qa,Q†
b] = ifabcQc ≪ Q2 (2.41)

The commutation relation in Eq. (2.41) and the consideration as αs(µ
2
A) ≪ 1 result in

that the classical approximation is valid for the field of the valence quark in high energy

nucleus collisions.

2.4.2 JIMWLK equation

The small x wave function of the ultrarelativistic nucleus is computed by using the

JIMWLK equation with an appropriate initial condition such as the MV model. This

wave function is referred to as the Color Glass Condensate which is usually abbreviated

as CGC. The meaning of the word “Color Glass Condensate” is as follows. The “Color

” refers to the gluon with colors in the nucleus and this gluon is radiated from the va-

lence quark. The “Condensate” refers to the large number of the gluons emitted in high

energy nucleus. We should note that the “Condensate” never mean the production of

Bose-Einstein condensate. The bremsstrahlung of gluons with small x from the classical

color sources with large x is loosely similar to spin glass in the context of the condensed

matter physics. And the ultrarelativistic nucleus which is saturated by a lot of gluons

seems like glass. Then these analogies result in the word “Glass”.

Now we put an arbitrary scale x0 < 1 on the Bjorken’s x to separate between the

valence quarks with larger x and the smaller x gluons. The JIMWLK equation actually

describes a quantum evolution of the correlator of the number of n gauge fields and also

just controls a response of the correlator when the separation scale is changed. In the

CGC, the connected correlation function between the gauge fields at small x is obtained
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Figure 2.8: Scale separation between the large x degree of freedom corresponding to the
valence parton in the hadron and the small x degree of freedom corresponding to the
gluon which is emitted from the large x classical color field. Y = ln 1/x

by using the generating functional in the light cone gauge (A+ = 0) as follows;

Z[j] =
∫
Dρ W

Y
[ρ] ln

(∫ Y

DAδ(A+)eiS[A,ρ]−i
∫
j·A
)

(2.42)

where j is the external source and ρ is the valence quark color charge density in the

light cone gauge. The functional integral in the bracket in Eq. (2.42) actually includes

the integral with respect to the rapidity up to Y = ln 1/x from Y0 = ln 1/x0 as a initial

condition. This means as follows. The gauge fields at x ≥ x0 firstly make the color source

ρ0. After the quantum evolution, the gauge fields between Y and Y0 are integrated out to

make new color source ρ which replaces ρ0. Here by making one step in evolution in the

rapidity Y to Y + dY , the gauge fields at rapidity Y become larger x degree of freedom

and behave as the classical fields making the color source current.

Let us consider a gauge invariant operator O which is constructed by using the

gauge fields. Most convenient gauge invariant operator is the color singlet one and ac-

tually we can construct the color singlet operator by use of the product of a Wilson

line in the fundamental representation (Ũ) and its complex conjugate (Ũ †), for example,

tr[Ũ(x⊥)Ũ
†(y⊥)] and tr[Ũ(x⊥)Ũ

†(y⊥)Ũ(u⊥)Ũ
†(v⊥)] etc. The definition of Ũ will be given

later in Eq. (3.25). In high energy limit, the transverse position of a parton almost freezes

during its scattering off the target hadron then the Wilson line becomes an useful degree

of freedom. With increasing scattering energy, the quantum evolution of the operator O
reads

∂⟨Ô⟩Y
∂Y

=

∫
Dρ WY [ρ]HJIMÔ ≡ ⟨HJIMÔ⟩Y , (2.43)
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where we have used the following relation

∂W
Y
[ρ]

∂Y
= HJIMWY

[ρ] (2.44)

because the color source ρ also varies in the quantum evolution and then we should know

the alternative weight function where the quantum corrections are integrated. HJIM in

Eq. (2.44) stands the so-called JIMWLK Hamiltonian 14.

An important remark is here. By assuming the gauge invariant operator as the dipole

scattering matix S
Y
(x⊥−y⊥) =

1
Nc

⟨
tr[Ũ(x⊥)Ũ

†(y⊥)]⟩Y , the JIMWLK equation Eq. (2.43)

reads

∂

∂Y

1

Nc

⟨tr[Ũ(x⊥)Ũ
†(y⊥)]⟩Y = −αsNc

2π2

∫
d2z⊥

(x⊥ − y⊥)
2

(x⊥ − z⊥)2(z⊥ − y⊥)
2

×
[ 1

Nc

⟨tr[Ũ(x⊥)Ũ
†(y⊥)]⟩Y −

1

N2
c

⟨tr[Ũ(x⊥)Ũ
†(z⊥)tr[Ũ(z⊥)Ũ

†(y⊥)]⟩Y
]
. (2.47)

We can find immediately that this equation is not closed form because the equation

includes the quadrupole amplitude denoted as ⟨tr[Ũ(x⊥)Ũ
†(z⊥)tr[Ũ(z⊥)Ũ

†(y⊥)]⟩Y . Then
it is difficult to find an analytical solution of the dipole amplitude after the quantum

evolution. For the color singlet operator constructed by only the Wilson line, an infinite set

of evolution equations are generally needed to solve the JIMWLK equation, for example,

the quantum evolution of n-Wilson lines operator would be driven by an (n + 2)-Wilson

lines operator. This infinite system of open equations is referred to as the Balitsky’s

hierarchy.

However if we assume the mean field approximation in the heavy nucleus and large-

14In this paper, we will not use the JIMWLK hamiltonian directly but introduce the simple expression
of the JIMWLK hamiltonian as follows;

HJIM =
1

2

∫
d2x⊥

∫
d2y⊥

δ

δαa
Y
(x⊥)

ηab(x⊥,y⊥)
δ

δαb
Y
(y⊥)

(2.45)

where

ηab(x⊥,y⊥) =
1

π

∫
d2z⊥

(2π)2
(xi⊥ − yi⊥)(xi⊥ − yi⊥)

(x⊥ − z⊥)2(z⊥ − y⊥)
2(

1 + Ũ†(x⊥)Ũ(y⊥)− Ũ†(x⊥)Ũ(z⊥)− Ũ†(z⊥)Ũ(y⊥)
)ab

. (2.46)

The α is defined by −∇2
⊥α

a(x⊥) = ρ̄a(x⊥) where ρ̄ is the color charge density in the covariant gauge.
We can obtain ρ̄ by gauge rotating of ρ with unitary operator S. For convenience, we should choose α in

order to satisfy δŨ(x⊥)
δαa

Y
(y⊥) = igδ(2)(x⊥ − y⊥)t

aŨ(x⊥).
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Nc, the JIMWLK equation reduces to the closed form. Here we assume in Eq. (2.47) the

mean field approximation in the heavy nucleus and the large-Nc limit as follows;

⟨
tr[Ũ(x⊥)Ũ

†(z⊥)]tr[Ũ(z⊥)Ũ
†(y⊥)]

⟩
Y

Nc→∞−→
⟨
tr[Ũ(x⊥)Ũ

†(z⊥)]
⟩
Y

⟨
tr[Ũ(z⊥)Ũ

†(y⊥)]
⟩
Y
.

(2.48)

In the context of the large-Nc approximation, the interaction between two color singlet

dipole amplitudes corresponds to a non-planner diagram which is suppressed by power

of 1/N2
c and the color singlet quadrupole scattering matrix can be substituted with the

product of two color singlet dipole scattering matrices. By using Eq. (2.48) and substitut-

ing the dipole forward scattering amplitude N
Y
= 1 − S

Y
into the Eq. (2.47), JIMWLK

equation exactly reduces to BK equation shown in Eq. (2.30). Therefore, the BK equation

with large-Nc approximation is very convenient for numerical calculations to obtain the

dipole scattering matrix for each step in quantum evolution.

Finally, let us show an appropriate initial condition of the BK equation which is

obtained by assuming the MV model in the heavy nucleus. Now we denote an initial

large Bjorken’s x as x0 where a heavy nucleus consists of valence partons without quantum

evolution. By use of the Eqs. (2.362.37), the dipole scattering matrix at x = x0 is given

by [36]

S
Y0

= 1−N
Y0

= exp

[
−
r2⊥Q

2
s0,A

4
ln

(
1

r2⊥Λ
2

)]
(2.49)

up to leading logarithmic accuracy. Here Y0 = ln 1/x0 and Q2
s0,A is an initial saturation

scale squared of the nucleus and Λ is a infrared cutoff and Q2
s0,A ≡ αsNcµ

2
A. We comment

on the physical meaning of this MV model. The saturation scale in the exponent is

proportional to about α2
sA

1/3 and then the α2
sA

1/3 = O(1) is just resummation parameter

when the atomic number is large. Roughly speaking, one αs represents a probe gluon

and αsA
1/3 represents interaction between the gluon and valence partons of A1/3 nucleons

in the nucleus. The logarithm ln(1/r2⊥Λ
2) results from a quantum fluctuation of the

interacting gluon and also a transverse field created by the nucleons wave function. Then

the multiple scattering effect of the valence partons is included in the MV model.

We should note that all information on the nucleus is only included in the initial

saturation scale in exponent of Eq. (2.49). Quantum evolution equation describes not

nuclear dependence of the scattering matrix but energy dependence of that. And an

impact parameter dependence is effectively included only in the initial saturation scale
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Qs0,A. Here, if r2
⊥ ≪ 1/Q2

s0,A, scattering matrix S
Y0

is close to unity in other words

N
Y0
∼ 0 which is referred to as so-called color transparency. On the other hand, if

r2
⊥ ≫ 1/Q2

s0,A, we find S
Y0
∼ 0 then unitarity of the scattering amplitude is conserved.
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Chapter 3

Heavy quark pair production from

the Color Glass Condensate

In this chapter, we show the way to compute the heavy quark pair production cross section

in pA collisions from the CGC in Ref. [65] by using the light cone perturbation theory [2].

In the CGC formalism, the proton-nucleus collision is described as a collision of two sets

of color charge densities representing the large x degrees of freedom in the proton and the

nucleus respectively. When they collide, these color densities produce a time-dependent

classical color field, and this color field can in turn produce heavy quark-antiquark pairs.

The CGC formalism which we use here is formulated at leading order in the color charge

density of proton ρp while all orders in the nucleus charge density ρ∞A (g2ρA = O(∞)) and

includes nonlinear quantum evolution in Bjorken’s x through the dipole amplitude in the

numerical computations.

3.1 Background gauge field in pA collisions

In the CGC formula, heavy quark pair production amplitude in pA collisions is given

by computing a background gauge field at large Bjorken’s x in the nucleus. This back-

ground field is converted into a multi parton function in the heavy nucleus and we show

it below. The multi parton function is quite different from the usual leading twist parton

distribution and important for investigating the saturation effect in the nucleus.

In order to compute the background field by following Ref. [64], let us first consider
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t

z

x+x−

ρA ρp

p A

t

z

x+x−

ρA ρp

x+
= ε

Figure 3.1: (Left) Proton-nucleus collisions in (x+, x−) plane. The proton (nucleus) with
color charge density ρp(ρA) runs over the x

+(x−) axis. (Right) Background field can be
exactly created before the collision (x+ < 0), inside the nucleus (0 < x+ < ϵ), and after
the collision (ϵ < x+). ϵ is the thickness of the nucleus in the longitudinal direction and
an infinitely small value.

the classical Yang-Mills equation in the high energy pA collisions;

[Dµ, F
µν ] = Jν (3.1)

where Jν is a color current running over the light cone axis 1. The color current on the

light cone axis (Fig. 3.1) at lowest order in ρp and ρA reads

Jνa = gδν+δ(x−)ρp,a(x⊥) + gδν−δ(x+)ρA,a(x⊥) (3.2)

where a is a color and ρp(A)(x⊥) is the color charge density of proton (nucleus) localized at

x⊥ with large Bjorken’s x At larger x, the valence partons mainly carry the color charge.

In this paper, the traveling direction of proton (nucleus) is x+(x−) and δν+ and δν− mean

the Lorentz contraction of the proton and the nucleus respectively in the high energy

limit. The covariant color current Jν satisfies the current conservation condition

[Dν , J
ν ] = 0 (3.3)

and we assume the transverse component J i equals 0, namely the recoilless eikonal current.

In addition, the gauge fixing condition is also imposed and we take the covariant gauge

1We have omitted a coordinate in Eq. (3.1). When we need to express the argument of the field
operator, we restore the argument in the field operator below.
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fixing which is given by

∂νAν = 0. (3.4)

Imposing the boundary condition that both gauge field and color current disappear in

the remote past, then we can obtain the solution Aµ
(ρ1pρ

1
A)

by solving the classical Yang-

Mills equation with Eq. (3.2) 2. Now, we are focusing on pA collisions then we must

solve the Yang-Mills equation and know the gauge field at the order in ρ1pρ
∞
A which means

the proton is being the dilute projectile while the nucleus is dense system. A way to

compute the gauge field Aµ(ρpρ∞A ) is simply shown in order below. By use of the gauge

fixing condition (covariant gauge), we can rewrite the classical Yang-Mills equation and

the current conservation as

□Aν = Jν + ig[Aµ, F
µν + ∂µAν ], (3.5)

∂µJ
µ = ig[Aµ, J

µ]. (3.6)

Now we are interested in the equations at the order ρ1p and we must solve these equations

□Aν(ρ1pρ∞A ) = Jν(ρ1pρ∞A ) + ig[A(ρ1pρ
∞
A )µ, F

µν
(ρ0pρ

∞
A ) + ∂µAν(ρ0pρ∞A )] + ig[A(ρ0pρ

∞
A )µ, F

µν
(ρ1pρ

∞
A ) + ∂µAν(ρ1pρ∞A )],

(3.7)

∂µJ
µ
(ρ1pρ

∞
A ) = ig[A(ρ1pρ

∞
A )µ, J

µ
(ρ0pρ

∞
A )] + ig[A(ρ0pρ

∞
A )µ, J

µ
(ρ1pρ

∞
A )]. (3.8)

By the help of the covariant gauge fixing, the amazing relations are found as

Aµ(ρ0pρ∞A ) = Aµ
(ρ0pρ

1
A)

= −gδµ−δ(x+) 1

∇2
⊥
ρA(x⊥), (3.9)

Jµ(ρ0pρ∞A ) = Jµ
(ρ0pρ

1
A)

= gδµ−δ(x+)ρA(x⊥). (3.10)

which are given by solving the classical Yang-Mills equation with the lowest order color

current Eq. (3.2) 3. Then we just have to determine the color source Jµ(ρ1pρ∞A ) to obtain the

background field Aµ(ρ1pρ∞A ).

2In this paper we abbreviate the gauge field at the order in ρnpρ
m
A with the positive integers n and m

as Aµ
(ρn

pρ
m
A ). As to the color current and the field strength at the order in ρnpρ

m
A , we similarly abbreviate

them as Jµ
(ρn

pρ
m
A ) and F

µν
(ρn

pρ
m
A ).

3Aµ
(ρ1

pρ
0
A)

can be obtained by exchanging + ↔ − and ρp ↔ ρA in Aµ
(ρ0

pρ
1
A)
. Jµ

(ρ1
pρ

0
A)

is the same for

Aµ
(ρ1

pρ
0
A)
.
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· · ·

ρA

x⊥

U(x⊥) = P exp
[

ig
∫

dz+A−

(ρ0
pρ

∞
A )(z

+x⊥) · T
]

ρA

≡

Figure 3.2: Graphical representation of Wilson line in the adjoint representation. The
trajectory of horizontal gluon includes the integration of a light cone time z+. In this
paper, we abbreviate the Wilson line in the adjoint representation as a horizontal gluon
which is connected with a vertical gluon with a straight line shown in the right hand side
of this figure. A black blob vertex represents multiple scattering of the background gauge
field.

From the current conservation Eq. (3.3), we can find the solution J+
(ρ1pρ

∞
A ) which is given

by

J+
(ρ1pρ

∞
A )(x

+, x−,x⊥) = gU(x+,−∞;x⊥)δ(x
−)ρp(x⊥) (3.11)

where U is the Wilson line in the adjoint representation as an eikonal phase which is given

by

U(x+2 , x
+
1 ;x⊥) ≡ P exp

ig x+2∫
x+1

dz+A−
(ρ0pρ

∞
A )(z

+,x⊥) · T

 (3.12)

where T a is a generator in the adjoint representation of SU(Nc) group with the color

number Nc. From Eq. (3.9), we find g2ρA = O(1) (or gA−
(ρ0pρ

∞
A ) = O(1)) because it is

imbedded in the exponent of Eq. (3.12). Combining Eq. (3.11) with the classical Yang-

Mills equation, we can find the expression for A+
(ρ1pρ

∞
A ). The solution of the classical Yang

Mills equation is given by

A+
(ρ1pρ

∞
A )(x) =

∫
dy+

∫
dy−dy⊥GR(x, y)J

+(y) (3.13)

where we decompose the integral range as a three regions according to the nucleus thick-

ness for the x+ direction which is shown in Fig. (3.1) (right). The three integral ranges

and the corresponding color currents are listed below; (i) y+ < 0; J+ = J+
(ρ1pρ

0
A)
, (ii)

0 < y+ < ϵ; J+ = gU(y+, 0;y⊥)δ(y
−)ρp(y⊥), (iii) ϵ < y+; J+ = gU(ϵ, 0;y⊥)δ(y

−)ρp(y⊥).
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A
µ
(ρ1

pρ
∞

A )

p

A

Figure 3.3: Graphical representation of the classical background gauge field A(ρ1pρ
∞
A ). The

vertical gluon with solid line represents the Wilson line in the adjoint representation U .
If U = 1, then A(ρ1pρ

∞
A ) → A(ρ1pρ

0
A)
.

We have assumed the nucleus has a infinite small thickness ϵ for the x+ direction. Here

GR(x, y) is a retarded propagator from yµ to xµ. When the end points x+ and y+ are

outside the nucleus, namely −∞ < x+, y+ < 0 or ϵ < x+, y+ <∞, the GR(x, y) becomes

a free retarded propagator G0
R(x, y). On the other hand, more importantly the GR(x, y)

inside the nucleus [0 < y+ < x+ < ϵ] is given by

GR(x, y) =
1

2
θ(x− − y−)θ(x+ − y+)δ(x⊥ − y⊥)V (x+, y+;y⊥) (3.14)

where V (x+2 , x
+
1 ;x⊥) ≡ P exp

[
ig
2

x+2∫
x+1

dz+A−
(ρ0pρ

∞
A )(z

+,x⊥) · T

]
is also the eikonal phase rep-

resenting the multiple scattering effect of the background gauge field in the nucleus and

differs from the U by the factor 1
2
in the exponent. From the retarded Green function,

the gluon never travel toward the past (e.g. from y+ > 0 to x+ < 0). All the propagators

in the direction of x+ and x− can be constructed of the G0
R(x, y) and Eq. 3.14.

Concerning the transverse component Ai(ρ1pρ∞A ), we can find the expression in similar

way to obtain the A+
(ρ1pρ

∞
A ), by solving the Eq. (3.7) and noticing that a retarded Green

function inside the nucleus involves the eikonal phase V because of the multiple scattering

of the background gauge field. As to the A−
(ρ1pρ

∞
A ), a reasonable derivation of it is given in

Ref. [64]. Now the covariant gauge fixing condition Eq. (3.4) is used and we can understand

it as ∂−A+
(ρ1pρ

∞
A )+∂

+A−
(ρ1pρ

∞
A )−∂⊥ ·A(ρ1pρ

∞
A )⊥ = 0. Then we obtain the expression of A−

(ρ1pρ
∞
A )

by substituting A−
(ρ1pρ

∞
A ) and A

−
(ρ1pρ

∞
A ) into Eq. (3.4). Finally, we find the background field
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at the order in ρ1pρ
∞
A in the momentum representation as

Aµ(ρ1pρ∞A )(q) = Aµ
(ρ1pρ

0
A)
(q) +

ig

q2 + iq+ϵ

∫
d2k1⊥

(2π)2

{
Cν
U(q,k1⊥)[U(k2⊥)− (2π)2δ(2)(k2⊥)]

+ Cν
V (q)[V (k2⊥)− (2π)2δ(2)(k2⊥)]

}
ρp(k1⊥)

k21⊥

(3.15)

where we have used compact notations as follows;

k2⊥ ≡ q⊥ + k1⊥,

U(k⊥) ≡
∫
d2x−ik⊥·x⊥

⊥ U(x⊥),

V (k⊥) ≡
∫
d2x−ik⊥·x⊥

⊥ V (x⊥),

ρp(k⊥) ≡
∫
d2x−ik⊥·x⊥

⊥ ρp(x⊥). (3.16)

and 4-vectors Cµ
U and Cµ

V are given by respectively4

C+
U (q,k1⊥) ≡ −

k21⊥
q−

; C−
U (q,k1⊥) ≡

k22⊥ − q2⊥
q+

; Ci
U(q,k1⊥) ≡ −2ki1 (3.17)

and

C+
V (q) ≡ 2q+ ; C−

V (q) ≡
2q2⊥
q+
− 2q− ; C i

V (q) ≡ 2qi . (3.18)

U(x⊥) ≡ U(+∞,−∞;x⊥) is the Wilson line in the adjoint representation at transverse

position x⊥ and V (x⊥) ≡ V (+∞,−∞;x⊥) is the same as U(x⊥) but with different

exponent. The first term Aµ
(ρ1pρ

0
A)
(q) in Eq. (3.15) represents the gauge field produced

from the proton color source ρp before the pA collisions. Thus we obtain the expression of

the Aµ(ρ1pρ∞A )(q) at the order in ρ
1
pρ

∞
A . We note that the eikonal phase V can be dropped at

last when we consider a heavy quark pair production in the background gauge field [65]. In

next section, we show the heavy quark production amplitude in the classical background

gauge field in pA collisions.

4Here Cµ
L = Cµ

U + 1
2C

µ
V corresponds to the Lipatov vertex.
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(a) (b)

(c) (d) x+ = 0 x+ = ǫ

Areg

(e)

Areg

Areg Areg

Asing

Figure 3.4: Graphical representation of a heavy quark pair production in the background
gauge field. It is assumed that the nucleus has a finite small size ϵ in the x+ direction. (a)–
(d) : the heavy quark pair production from the regular gauge field Areg, (e) : the heavy
quark pair production from the singular field Asing. The vertical gluon with straight
line connected with the black blob means the eikonal phase which represents multiple
scattering in the nucleus.

3.2 Quark pair production from the CGC

3.2.1 Quark pair production amplitude

Let us turn to the expression of the heavy quark pair (qq̄) production amplitude in the

background gauge field in Eq. (3.15). In pA collisions, by assuming the nucleus has the

finite small thickness ϵ, the heavy quark pair can be created outside and also inside the

nucleus. Here we refer the heavy quark pair production outside the nucleus as regular

production and inside the nucleus as singular production. We show the graphical repre-

sentation of the regular production in Fig. 3.4 (a)–(d) while the singular production in

Fig. 3.4 (e). Since the A−
(ρ1pρ

∞
A ) can be existed on the x− axis, then we can decompose

Aµ(ρ1pρ∞A ) as

Aµ(ρ1pρ∞A )(q) ≡ Aµreg(q) + δµ−A−
sing(q). (3.19)

From Eq. (3.15), the expression of the singular field is given by

A−
sing(q) ≡ −

ig

q+

∫
d2k1⊥

(2π)2
[V (k2⊥)− (2π)2δ(2)(k2⊥)]

ρp(k1⊥)

k21⊥
. (3.20)
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· · ·

ρA

x⊥

Ũ(x⊥) = P exp
[

ig
∫

dz+A−

(ρ0
pρ

∞
A )(x⊥) · t

]

ρA

≡

Figure 3.5: Graphical representation of Wilson line in the fundamental representation.
The trajectory of horizontal quark includes the integration of a light cone time z+. In this
paper, we abbreviate the Wilson line in the fundamental representation as a horizontal
quark which is connected with a vertical gluon with a straight line shown in the right hand
side of this figure. A black blob vertex represents multiple scattering of the background
gauge field.

Now we define a time ordered heavy quark pair production amplitude which is given by

M
F
(q(q)q̄(p)) ≡ ū(q)T

F
(q,p)v(p). (3.21)

T
F
(q,p) represents the Feynman quark propagator in the classical background field while

an external lines are amputated. q (p) is the momentum of the quark (antiquark). By

computing all the amplitudes shown in Fig. 3.4,M
F
is finally given by [65]

M
F
(q(q)q̄(p))

=g2
∫
d2k1⊥

(2π)2
d2k⊥

(2π)2
ρp,a(k1⊥)

k21⊥

∫
d2x⊥d

2y⊥e
ik⊥·x⊥ei(q⊥+p⊥−k⊥−k1⊥)·y⊥

×u(q)

{
Tqq̄(k1⊥,k⊥)[Ũ(x⊥)t

aŨ †(y⊥)] + Tg(k1⊥)[t
bU ba(x⊥)]

}
v(p) , (3.22)

where

Tqq̄(k1⊥,k⊥) ≡
γ+(/q − /k +m)γ−(/q − /k − /k1 +m)γ+

2p+[(q⊥−k⊥)2 +m2] + 2q+[(q⊥−k⊥−k1⊥)2 +m2]
, (3.23)

Tg(k1⊥) ≡
/C
L
(p+ q,k1⊥)

(p+ q)2
, (3.24)

with a momentum conservation k2⊥ ≡ q⊥ + p⊥ − k1⊥. Physically, k1⊥ (k2⊥) is the

momentum flow coming from the proton (nucleus), and we define k⊥ as the momentum

exchanged between the quark line and the nucleus while k2⊥ − k⊥ as the momentum

exchanged between the antiquark line and the nucleus (Fig. 3.6). Ũ is the Wilson line in
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the fundamental representation which is shown in Fig. 3.5 and defined by

Ũ(x⊥) ≡ P exp

ig +∞∫
−∞

dz+A−
A(z

+,x⊥) · t

 (3.25)

where ta is a generator in the fundamental representation of SU(Nc) group with the color

number Nc. Here we find g2ρA = O(1) in the exponent. Ũ (Ũ †) appears when the quark

(antiquark) is multiply scattered by the classical background field (see Fig. 3.4). Cµ
L is

the well-known gauge invariant Lipatov effective vertex whose components are

C+
L
(q,k1⊥) ≡

−k21⊥
q−

+ q+ ; C−
L
(q,k1⊥) ≡

k22⊥
q+
− q− ; C i

L
(q,k1⊥) ≡ −2ki1 + qi (3.26)

and satisfies the gauge invariance condition q · CL = 0. The Lipatov vertex appears in

the gluon production in pA collisions [64]. Physically, the first term in the curly bracket

in Eq. (3.22) Tqq̄(k1⊥,k⊥)[Ũ(x⊥)t
aŨ †(y⊥)] represents that the quark and the antiquark

production from splitting of a gluon which is coming from the proton and subsequently

the quark at x⊥ and the antiquark at y⊥ interact with the classical background field in

the nucleus. On the other hand, the second term Tg(k1⊥)[t
bU ba(x⊥)] represents that a

gluon coming from the proton interacts with the background field in the nucleus at x⊥

and subsequently splits into the quark and the antiquark. The quark and the antiquark

produced inside the nucleus are very close to each other until the heavy quark pair passes

through the nucleus in high energy limit (ϵ→ 0), then we can assume that the transverse

positions of the heavy quark pair almost freeze during the scattering of the quark pair off

the nucleus. In this case, by use of the identity

Ũ(x⊥)t
aŨ †(x⊥) = tbU ba(x⊥), (3.27)

the propagator of the quark and the antiquark pair in the color octet state inside the

nucleus at the same transverse position can be effectively converted into that of the

gluon. This process is then included in the Tg(k1⊥)[t
bU ba(x⊥)]. Therefore, we only have

to consider the quark pair production from the gluon splitting before or after the gluon

scatters off the nucleus. In other words, the multiple scattering effect of the background

occurs only before or after the heavy quark pair is produced and no process that the

multiple scattering is involved both before and after the heavy quark pair production

occur. We possibly understand that the Eq. (3.22) the gluon emission from the quark
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x⊥

y⊥

q⊥

p⊥

x⊥

k2⊥ k2⊥ − k⊥ k⊥

k1⊥ k1⊥

Figure 3.6: Multiple scattering effect of back ground gauge field on heavy quark pair
production before the quark pair creation (Left) and after (Right).

inside the nucleus should be suppressed by inverse of a scattering energy 1/s in high

energy limit. At the end, we note that the eikonal phase V never appear in the final

result Eq. (3.22) because it is cancelled out by summing all the amplitudes (a)–(e) in

Fig. 3.4.

The total cross section of exactly one heavy quark pair (qq̄) production in the mini-

mum bias event is computed by averaging the configurations of the classical color charge

densities ρp and ρA with the distribution functions W
Yp
[ρp] and WYA

[ρA] [65];

σqq̄ =

∫
d2b

∫
DρpDρAWYp

[ρp]WYA
[ρA]Pqq̄[ρp, ρA; b]. (3.28)

Here Yp (A) is the rapidity of the gluon in the proton (nucleus). As discussed in Ref. [62],

we should interpret Pqq̄ as a probability to find exactly one heavy quark pair production

in the given particular configurations of ρp and ρA at the impact parameter b in pA

collisions. We can compute the Pqq̄ by using the heavy quark pair production amplitude

Eq. (3.22) and it is given by

Pqq̄[ρp, ρA; b] =

∫
d3q

(2π)32Eq

∫
d3p

(2π)32Ep

∑
|M

F
(q(q)q̄(p))|2 (3.29)

where Eq and Ep are the energy of the quark and the antiquark respectively. The sat-

uration scale, which characterizes the behavior of the gluon coming from the nucleus,

depends on the nuclear thickness function then the impact parameter dependence is en-

coded through the saturation scale in the square amplitude, as we show below.
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Figure 3.7: Specific diagrams of the production of the heavy quark pair. Upper figure is
related to the four point function, Middle is related to the three point function, and Lower
is related to the two point function. Dash line at each diagram corresponds to final state
cut where the heavy quark pair is produced in the color singlet and octet state because
we sum the square amplitude over all the final state. The gluons coming from the nucleus
provide eikonal phases to the quark propagators which are shown in Eq. (3.22).
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3.2.2 Multi parton function

Now we turn to the square amplitude
∑
|M

F
(q(q)q̄(p))|2 summing over the final state of

the heavy quark pair which is shown in Fig. (3.7). As we have shown in Eq. (3.28), we need

to average the square amplitude over the configurations of the classical color sources ρp

and ρA, then a two point correlation between the two different color charge densities which

corresponds to the leading twist parton distribution function or a multi point correlation

involving the four different Wilson lines because of the multiple scattering effect of the

background field on the quark and the antiquark are incorporated into the cross section

of the heavy quark pair production. Then, before the expression of the heavy quark

production cross section, we would introduce more compact notations as to such the two

point function and the multi point function.

Firstly, let us see the two point function between the different classical color sources is

related with the unintegrated gluon distribution function. The detailed discussion is also

found in Refs. [36,37]. Now we consider the free transverse polarized field Ai in the light

cone gauge which can be expressed by use of the creation and the annihilation operators;

Ai(x+,x) =

∫
k+>0

d3k

(2π)32k+
(
aic(x

+,k)eik·x + ai†c (x
+,k)e−ik·x

)
(3.30)

with x = (x−,x⊥) and k = (k+,k⊥). i is a component of the polarized vector and c is

a color of the gluon. The creation and the annihilation operator should satisfy the equal

time commutation relation which is given by

[aic(x
+,k), ai

′†
c′ (x

+,k′)] = δii
′
δcc′2k

+(2π)3δ(3)(k − k′) (3.31)

at light cone time x+. Using the production and the annihilation operators defined in the

Fock space, we can compute the gluon density per unit volume in the phase space as

dN

d3k
=
⟨
ai†c (x

+,k)aic(x
+,k)

⟩
=

2k+

(2π)3
⟨
Aic(x

+,k)Aic(x
+,−k)

⟩
(3.32)

where the expectation value ⟨|· · · |⟩ ais given by performing the average over the hadron

state h. The gauge field in the momentum space is here defined by

Aic(x
+,k) ≡

∫
d3x eik·xAic(x

+,x). (3.33)
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This gluon density is usually computed in the light cone gauge. On the other hand, the

collinear gluon distribution function is defined by

xG(x,Q2) ≡
Q2∫
d3k θ(Q2 − k2⊥)xδ

(
x− k+

P+

)
dN

d3k
(3.34)

where Q2 is a momentum transfer between the gluon and the probe and the P+ is a

longitudinal momentum of the parent hadron. Then the unintegrated gluon distribution

(uGD) ϕ is obtained by use of Eqs. (3.34)(3.32);

ϕ(x, k2⊥) =
∂xG(x,Q2)

∂Q2

∣∣∣∣
Q2=k2⊥

= k+
⟨
ai†c (x

+,k)aic(x
+,k)

⟩
=

1

4π3

⟨
F i+
LCc(x

+,k)F i+
LCc(x

+,k)
⟩

(3.35)

where we have used the fact that F i+
LC(x

+,x) = −∂+Ai in the light cone gauge and the

notation

F i+
c (x+,k) ≡

∫
d3x eik·xF i+

c (x+,x). (3.36)

When we choose the gauge field in the covariant gauge, the unintegrated gluon distri-

bution function can be computed by performing the unitary transformation as

F i+
LC(x

+,x) = U(x+,−∞;x)F i+
COV (x

+,x)U †(x+,−∞;x) (3.37)

where FCOV is the field strength in the covariant gauge and U is the Wilson line in

the adjoint representation which is given in Eq. (3.12). When we consider the gluon

distribution of the dilute projectile (or target) such as proton, the field strength should

be given at the lowest order in the classical color source ρ and then the replacement U → 1

in Eq. (3.37) becomes valid approximately.

Here, by taking the above discussion into account, we convert the two point function

⟨ρp,a(k1⊥)ρ
†
p,a′(k

′
1⊥)⟩Y , which is averaged over the configurations of the color charge density

ρp with the weight function W
Y
[ρp], into the unintegrated gluon distribution function of
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⊥

Figure 3.8: The transverse coordinates of the quark and the antiquark in the amplitude
(left hand side from the dotted line) and in the complex conjugate amplitude (right hand
side from the dotted line). Dotted line represents a final state cut.

the proton φp = 4π3ϕ as follows [64];

g2⟨ρp,a(k1⊥)ρ
†
p,a′(k

′
1⊥)⟩Y =

δaa
′

πdA

[
k1⊥ + k′

1⊥
2

]2 ∫
X⊥

ei(k1⊥−k′
1⊥)·X⊥

dφp,Y

(
k1⊥+k′

1⊥
2
|X⊥

)
d2X⊥

≈ δaa
′

πdA
k21⊥

∫
X⊥

ei(k1⊥−k′
1⊥)·X⊥

dφp,Y (k1⊥|X⊥)

d2X⊥
, (3.38)

where we have assumed g2 is fixed value and dA = N2 − 1. We denote
∫
x⊥

=
∫
d2x⊥.

X⊥ is a coordinate running over the transverse profile of the proton and characterized by

1/ΛQCD. Then k1⊥− k′
1⊥ as the conjugate momentum of X⊥ is the order of O(ΛQCD) at

most. Therefore we can validly neglected k1⊥ − k′
1⊥ in the second line of Eq. (3.38). We

are mainly interested in the perturbative region (k1⊥ + k′
1⊥)/2≫ ΛQCD, then we assume

k1⊥ = k′
1⊥ below. Here by performing the integration dφp(k1⊥|X⊥)

d2X⊥
over X⊥ in Eq. (3.38),

we can obtain

φp(k1⊥) =
π2R2

pg
2

k21⊥

∫
x⊥

eik1⊥·x⊥⟨ρp,a(x⊥)ρ
†
p,a(0)⟩ (3.39)

where we have converted the classical source ρ into the one in the configuration space.

Furthermore we have assumed the translational invariance in the transverse plane of the

proton then the proton size πR2
p emerges in Eq. (3.39).

On the other hand, we can not define the gluon distribution function for the nu-
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cleus because the gauge field in the nucleus is given in all orders in the color charge

density, in other words, many partons are relevant to the distribution function. Then

we must define a multi parton correlation function. Here let us consider the correla-

tion function between the four different Wilson lines in the fundamental representation⟨
tr[Ũ(x⊥)t

aŨ †(y⊥)Ũ(y
′
⊥)t

aŨ †(x′
⊥)]
⟩
Y
, where ⟨· · · ⟩

Y
represents the average over the con-

figurations of the color charge density ρA with the weight function W
Y
[ρA].

By referring to the definition of the two point function in the proton, we define the

four point parton function which is shown in Fig. (3.8) by analogy with Eq. (3.38) as

follows;

δaa
′

∫
x⊥,x

′
⊥,y⊥,y

′
⊥

ei(k⊥·x⊥−k′
⊥·x′

⊥)ei(k2⊥−k⊥)·y⊥e−i(k
′
2⊥−k′

⊥)·y′
⊥

× ⟨tr[Ũ(x⊥)t
aŨ †(y⊥)]tr[Ũ(y

′
⊥)t

a′Ũ †(x′
⊥)]⟩Y

=
g2Nc

2πk22⊥

∫
Y ⊥

ei(k2⊥−k′
2⊥)·Y ⊥

dϕqq̄,qq̄A,Y (k⊥,k2⊥ − k⊥;k
′
⊥,k2⊥ − k′

⊥|Y ⊥)

d2Y ⊥
, (3.40)

where we have assumed g2 is fixed value. x⊥ and y⊥ are a transverse coordinates of the

quark and the antiquark respectively in the production amplitude and x′
⊥ and y′

⊥ are

the same but in the complex conjugate. Y ⊥ is a transverse position on the nucleus and

its conjugate variable is k2⊥ − k′
2⊥. We have also assumed that the difference k2⊥ − k′

2⊥

is small (O(ΛQCD)) and then we take k2⊥ = k′
2⊥ because we focus on the perturbative

region.

Here by use of the Fierz identity; (ta)ij(t
a)kl =

1
2

(
δilδjk − 1

Nc
δijδkl

)
, we can rewrite

the four point correlator in Eq. (3.40) as

⟨
tr[Ũ(x⊥)t

aŨ †(y⊥)Ũ(y
′
⊥)t

aŨ †(x′
⊥)]
⟩
Y

=
1

2

⟨
tr[Ũ(x⊥)Ũ

†(x′
⊥)]tr[Ũ(y

′
⊥)Ũ

†(y⊥)]
⟩
Y
− 1

2Nc

⟨
tr[Ũ(x⊥)Ũ

†(y⊥)Ũ(y
′
⊥)Ũ

†(x′
⊥)]
⟩
Y

LNc=
N2

2
S
Y
(x⊥,x

′
⊥)SY (y⊥,y

′
⊥) (3.41)

where we have used the large-Nc approximation in the second line and the dipole ampli-

tude is given by S
Y
(x⊥,y⊥) ≡ 1

Nc

⟨
tr[Ũ(x⊥)Ũ

†(y⊥)]
⟩
Y
. We have abbreviated the large-Nc

limit as “LNc”
5. In the large-Nc limit, we have also assumed the mean field approxima-

5Unless we give notice to the reader, we use the same abbreviation for the large-Nc limit.
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Figure 3.9: Graphical representation of the four point correlator between the different
four Wilson line in the fundamental representation. The horizontal solid line represents
the fundamental Wilson line.

tion in the heavy nucleus Eq. (2.48). The third line in Eq. (3.41) is very important result

in this paper because the quantum evolution effect can be included through the dipole

amplitude S
Y
not the quadruple amplitude which is related to the four point correlator.

It s known that the quantum evolution of the dipole amplitude is controlled by the BK

equation. In this paper, we compute the cross section of the heavy quark pair production

in the large-Nc limit and use Eq. (3.41).

In addition to the four point function ϕqq̄,qq̄A,Y , we need to define a three point function

ϕqq̄,gA,Y and a two point function ϕg,gA,Y which are related with
⟨
tr[Ũ(x⊥)t

aŨ †(y⊥)t
bU †ab(x′

⊥)]
⟩
Y

(Fig. (3.7) (mid)) and
⟨
tr[tbU ba(x⊥)t

b′U †ab′(x′
⊥)]
⟩
Y
(Fig. (3.7) (lower)) respectively in or-

der to compute the heavy quark pair production cross section. However they can be ob-

tained as a special limits of the four point function thanks to the identity Ũ(x⊥)t
aŨ †(x⊥) =

tbU ba(x⊥). Without lacking generality, we can find the following sum rule [65, 67],∫
k⊥,k

′
⊥

dϕqq̄,qq̄A (k⊥,k2⊥ − k⊥;k
′
⊥,k2⊥ − k′

⊥|Y ⊥)

d2Y ⊥

=

∫
k⊥

dϕqq̄,gA (k⊥,k2⊥ − k⊥;k2⊥|Y ⊥)

d2Y ⊥

=
dϕg,gA (k2⊥;k2⊥|Y ⊥)

d2Y ⊥
. (3.42)

Here we denote
∫
k⊥

=
∫
d2k⊥/(2π)

2. Then we use this relation in computing the heavy

quark pair production cross section below.

Finally, let us consider the heavy quark pair production cross section by squaring

the amplitude and summing the square amplitude over the final state and averaging the

configurations of the classical color charge density with the weight function in the proton
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RA

Rp

b

Y⊥

X⊥

Y⊥ − b

Figure 3.10: Transverse plane of the nucleus in pA collisions. X⊥(Y ⊥) runs over the
transverse plane of the proton (nucleus) having a radius Rp(RA). b is the impact param-
eter characterized the distance from the center of nucleus to the center of proton.

and the nucleus. Here we indicate the impact parameter dependence of the heavy quark

pair production cross section. The saturation scale Q2
s,A, which depends on the impact

parameter, is embedded in the dipole amplitude in the large-Nc limit however when we

treat the nucleus as cylindrical one and assume the translational invariance in the nucleus,

we can effectively convert the impact parameter dependence into the initial saturation

scale at larger Bjorken’s x. Therefore If once we fix the initial saturation scale, the ϕA,Y

itself does not depend on the impact parameter and the impact parameter dependence

should be encoded in the exponential phase in Eq. (3.40) as (k1⊥ − k′
1⊥) · (X⊥−Y + b).

By the shift Y ⊥ → Y ⊥− b, Y ⊥ becomes a relative transverse coordinate from the center

of proton as is shown in Fig. (3.10). When we focus on the production cross section in

the minimum bias event, we integrate out the impact parameter by use of∫
b

ei(k1⊥−k′
1⊥)·b = (2π)2δ(2)(k1⊥ − k′

1⊥). (3.43)

After the performing of the integral over the impact parameter, we can treat the X⊥ and

the Y ⊥ independently in φp and ϕA and we can also perform the integral over the X⊥

and the Y ⊥. Then the heavy quake pair production cross section in minimum bias event
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is given by

dσqq̄
d2p⊥d

2q⊥dypdyq
=
α2
sNc

8π4dA

1

(2π)2

∫
k2⊥,k⊥

Ξ(k1⊥,k2⊥,k⊥)

k2
1⊥k

2
2⊥

ϕqq̄,g
A,y2

(k2⊥,k⊥) φp,y1(k1⊥) ,

(3.44)

where y1 and y2 are a rapidities of the gluon coming from the proton and the nucleus

respectively. We have used the relations in Eq. (3.42) then only the three point function

emerges. The hard matrix element Ξ is given by

Ξ(k1⊥,k2⊥,k⊥) = trd

[
(/q+m)Tqq̄(/p−m)γ0T †

qq̄γ
0
]

+trd

[
(/q+m)Tqq̄(/p−m)γ0T †

g γ
0 + h.c.

]
+trd

[
(/q+m)Tg(/p−m)γ0T †

g γ
0
]
. (3.45)

This production formula corresponds to the unpolarized cross section of the heavy quark

pair production 6. The three point function is given by

ϕqq̄,g
A,Y

(k2⊥,k⊥) =
πR2

ANck
2
2⊥

4αs
S̃
Y
(k⊥) S̃Y (k2⊥ − k⊥) (3.46)

where we have assumed the translational invariance in the nucleus and introduced the

dipole scattering matrix S̃
Y
in the momentum representation as follows;

S̃
Y
(k⊥) ≡

∫
x⊥

e−ik⊥·x⊥S
Y
(x⊥). (3.47)

Single heavy quark production cross section is obtained by integrating the pair pro-

duction cross-section (3.44) over the anti-quark phase space:

dσq
d2q⊥dyq

=

∫
dp+

p+
d2p⊥

dσqq̄
d2p⊥d

2q⊥dypdyq
. (3.48)

By dividing the production cross section Eq. (3.44) or (3.48) with the total inelastic cross

section σpAinel, which we estimate as σpAinel = π(RA+Rp)
2 ≈ πR2

A, we can obtain the average

6We note that the production formula here strictly breaks k⊥-factorization due to the multi parton
correlator [66,67]. We mean that the single momentum k2⊥ only characterizes the gluon exchange between
the quark or the antiquark and the gluon coming from the nucleus in k⊥-factorization.
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multiplicity per event7. If we compute the multiplicity per event, the total inelastic cross

section is effectively canceled out with the transverse size of nucleus πR2
A in ϕqq̄,g

A,y2
(k2⊥,k⊥)

and therefore the proton size only remains explicitly in the expression of multiplicity. We

show the multiplicity of the quark pair production as follows;

dNqq̄

d2p⊥d
2q⊥dypdyq

=
1

πR2
A

α2
sNc

8π4dA

1

(2π)2

∫
k2⊥,k⊥

Ξ(k1⊥,k2⊥,k⊥)

k2
1⊥k

2
2⊥

ϕqq̄,g
A,y2

(k2⊥,k⊥) φp,y1(k1⊥) .

(3.49)

3.3 Collinear limit on proton side: Hybrid descrip-

tion

When the momentum fraction x1 probed in the proton is not small or even more at

forward rapidity where x1 = O(1), the gluons in the proton have the typical transverse

momentum of the order ofO(Λ
QCD

) or larger. In this case, we can neglect k1⊥ in the matrix

element Ξ in Eq. (3.45) compared to other hard scale such as heavy quark mass and the

larger transverse momentum of the heavy quark, and then the taking of the collinear

approximation on the proton side becomes valid. This limit is well defined thanks to the

fact that the expression on the second line in the amplitude in Eq. (3.22) goes to zero as

k1⊥ → 0 [65] :

M
F
(q,p) =

k1⊥→0
A · k1⊥ +O(k2

1⊥) . (3.50)

In fact, in the k1⊥ limit, the two terms in the curly bracket of Eq. (3.22) become

Tqq̄(k1⊥,k⊥)[Ũ(x⊥)t
aŨ †(y⊥)]→

γ+

p+ + q+
[Ũ(x⊥)t

aŨ †(y⊥)] (3.51)

Tg(k1⊥)[t
bU ba(x⊥)]→ −

γ+

p+ + q+
[tbU ba(x⊥)] +

[
− γ−k21⊥

(p+ q)2(p− + q−)

+
γ+

(p+ q)2(p+ + q+)

[
k21⊥ − 2(p⊥ + q⊥) · k1⊥

]
+

2γ⊥ · k1⊥

(p+ q)2

]
[tbU ba(x⊥)]

(3.52)

7The expression Eq. (3.44) is for single quark pair production. Ref. [119] reports that double charm
production amounts to 10 % of single charm production in forward rapidity region in pp collisions at√
s = 7 TeV.

57



where we have used the identity γ+γ−γ+ = 2γ+ and ū(q)(/q −m) = 0 and (/p+m)v(p) =

0. And in Eq. (3.52), we have left the k1⊥ dependent terms explicitly. By combining

Eq. (3.51) with Eq. (3.52) except for the k1⊥ dependent terms and performing the integral

over the k⊥, we can find∫
k⊥

eik⊥·(x⊥−y⊥)

{
γ+

p+ + q+
[Ũ(x⊥)t

aŨ †(y⊥)]−
γ+

p+ + q+
[tbU ba(x⊥)]

}
= 0 (3.53)

where we have used the identity Eq. (3.27) because the inside in the curly bracket does

not depend on k⊥ then the delta function δ(2)(x⊥ − y⊥) emerges after the integration.

Therefore, the squared amplitude Ξ is quadratic in k1⊥ when k1⊥ → 0, which cancels

the factor k21⊥ in the denominator of Eq. (3.44). Note that the three vector A in this

formula contains spinors and Dirac matrices. In this approximation, we can write the

integral in Eq. (3.44) as∫
k1⊥,k⊥

trd(A
iAj) ki1⊥k

j
1⊥

k2
1⊥k

2
2⊥

ϕqq̄,g
A,y2

(k2⊥,k⊥) φp,y1(k1⊥) ,

(3.54)

where it is now implicit that k1⊥ should not exceed the typical transverse momentum

scale set by the produced final state. Using d2k1⊥ = 1
2
dθ1d(k

2
1⊥) and defining the collinear

gluon distribution from Eq. (3.34) as 8

1

4π3

Q2∫
d(k2⊥)φp,y(k⊥) ≡ xGp(x = e−y, Q2) , (3.55)

and then we obtain

dσqq̄
d2p⊥d

2q⊥dypdyq
=
α2
sNc

8π2dA

1

(2π)2

∫
k⊥

Ξcoll(k2⊥,k⊥)

k2
2⊥

ϕqq̄,g
A,y2

(k2⊥,k⊥) x1Gp(x1, Q
2),

(3.56)

where we have now k2⊥ = p⊥+q⊥ and we denote Ξcoll(k2⊥,k⊥) ≡ 1
2
trd(A

2). The squared

matrix element Ξcoll in the collinear approximation can be obtained by expanding the

8Q2 is a renormalization scale limited by the transverse resolution determined by an external probe
such as virtual photon. Large αs lnQ

2 correction is controlled by DGLAP equation.
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amplitude in Eq. (3.22) to linear order in the transverse momentum k1⊥:

Ξcoll = Ξqq̄,qq̄coll + Ξqq̄,gcoll + Ξg,gcoll , (3.57)

with

Ξqq̄,qq̄coll =
8p+q+

(p+ + q+)2(a2
⊥ +m2)2

[
m2 +

(p+)2 + (q+)2

(p+ + q+)2
a2
⊥

]
,

Ξqq̄,gcoll = − 16

(p+ q)2(a2
⊥ +m2)

[
m2 +

(p+)2 + (q+)2

(p+ + q+)3
a⊥ · (p+q⊥ − q+p⊥)

]
,

Ξg,gcoll =
8

(p+ q)4

[
(p+ q)2 − 2

(p+ + q+)2
(p+q⊥ − q+p⊥)

2

]
. (3.58)

In these formulas, we denote a⊥ ≡ q⊥ − k⊥ and the squared invariant mass of the pair

(p+ q)2 is given by

(p+ q)2 = (p+ + q+)

[
p2
⊥ +m2

p+
+

q2
⊥ +m2

q+

]
− (p⊥ + q⊥)

2 . (3.59)

We will evaluate how the collinear description works in the quarkonium production below.

3.4 Quantum evolution effect

So far we have shown the two point gluon distribution and the multi parton function but

these functions describe the behavior of only the valence parton in the proton and the

nucleus. In fact, the creation of the smaller-x parton results from the quantum evolution of

the gluon distribution and multi parton function. Energy dependence of the heavy quark

production cross section is implicit in the multi parton function ϕqq̄,g
A,Y

(k2⊥,k⊥) shown in

Eq. (3.46) through the rapidity Y = ln(1/x) evolution of the dipole amplitude.

We have already shown that the BK equation controls the energy dependence of the

dipole amplitude. As a recent theoretical development, it has been demonstrated [50,51]

that the BK equation with the running coupling corrections includes the important part

of the NLO corrections 9. That means the quark loops run over the gluon line which

is emitted from the parent dipole through the one step rapidity evolution (Fig. 3.11).

In Balitsky’s prescription [49] but without the subtraction term in the evolution kernel,

we refer BK equation with running coupling kernel as rcBK equation and the running

9The full NLO corrections of the BK equation at leading order has been computed in Ref. [52].
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} r1

} r2

· · ·

Figure 3.11: One of the running coupling corrections of the BK equation.

coupling kernel is given by

KBal(r⊥, r1⊥) =
αs(r

2)Nc

2π2

[
1

r21

(
αs(r

2
1)

αs(r22)
− 1

)
+

r2

r21r
2
2

+
1

r22

(
αs(r

2
2)

αs(r21)
− 1

)]
(3.60)

where both r1 (r2) is the transverse size between the emitted gluon and the parent quark

(antiquark). In this paper, we use the rcBK equation to include the quantum evolution

effect into the dipole amplitude because it is manageable for numerical calculations.

In order to use the rcBK equation, we need to determine the initial condition of

the dipole amplitude at x = x0. Global fit analysis of the compiled HERA e+p data at

x < x0 = 0.01 was performed in [53,54] using the rcBK equation with the initial condition

of the dipole amplitude in the proton side at x = x0

S
Y=0

(r⊥) = exp

[
−
(r2Q2

s0,p)
γ

4
ln

(
1

Λr
+ ec · e

)]
. (3.61)

where ec ·e is a infrared regulator. Here, in the quantum evolution, we modify the infrared

regularization of the running coupling in the coordinate space to the smooth one [57]:

αs(r
2) =

[
b0 ln

(
4C2

r2Λ2
+ a

)]−1

(3.62)

with b0 = 9/(4π). The constant a is introduced so as to freeze the coupling constant

smoothly at αs(r → ∞) = αfr and Λ is a width and we fix Λ = 0.241 GeV in this

paper. The global fitted parameter values Q2
s0,p, γ, αfr, and C are listed in Table 3.1. We

also list a parameter set with the McLerran-Venugopalan (MV) model initial condition

γ = 1 which is also used in our numerical computations, for comparison. We also refer

the constrained initial condition by fitting data as MVγ model below 10.

10The origin of γ ̸= 1 in the initial condition for the proton is not fully understood yet. In the case
of MV model with γ = 1 which is valid for the very large nucleus, the classical color source density ρ is
distributed as gaussian in the transverse plane of the nucleus due to the central limit theorem. On the
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set Q2
s0,p/GeV2 γ αfr C

g1118 0.1597 1.118 1.0 2.47

MV 0.2 1 0.5 1

Table 3.1: Parameter values of the initial dipole amplitude with ec = 1 at x0 = 0.01. Λ =
0.241 GeV is fixed. The data fit with MVγ initial condition yields a best fit χ2/d.o.f. ≈ 1.1.
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Figure 3.12: (Left) Two point function ϕg,gA,Y with respect to each initial saturation scale
Q2
s0 and its evolution in rapidity Y = ln(x0/x) with x0 = 0.01. Black solid lines correspond

to the uGD in the proton with Q2
s0,p = 0.1597 GeV2 at Y = 0, 2, 4, 6, 8. The uGD in

the nucleus is shown as red solid line with Q2
s0,A = 6Q2

s0,p. (Right) The ratio of uGD in
the proton to the one in nucleus, which is defined by ϕpA/(6ϕpp) at Y = 2, 4, 6, 8.

For a heavy nucleus A, the saturation scale at moderate values of x will be enhanced

by a factor of the nuclear thickness TA(b) at the impact parameter b. However, as we

limit our analysis to the minimum bias events, we assume a simpler relation

Q2
s,A(x0) = A1/3Q2

s,p(x0) (3.63)

which is the only information about the nucleus and embedded in the initial condition

Eq. (3.61). We shall allow the saturation scale of the nucleus with A = 200 in the range

Q2
s,A = (4 – 6)×Q2

s,p at initial point x0 = 0.01.

other hand, the distribution of the ρ for the proton is not necessarily gaussian. Then we could interpret
γ ̸= 1 as meaning that it possibly results from higher order corrections of the gaussian distribution of
the ρ [156]. We also comment that the infrared cutoff ec dependence on the global data fitting is studied
in Ref. [157]. When ec becomes an additional fitting parameter, it is possible to find another best fit
parameters set (χ2/d.o.f. ≈ 1.1) even though γ = 1. In any case, we should now understand that γ is
just the parameter of the initial condition.
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We show in Fig. 3.12 (Left) two point function ϕg,g =
∫
k⊥
ϕqq̄,gp,Y

11 with respect to

each saturation scale for proton (Q2
s0,p) and nucleus (Q2

s0,A) and its evolution in rapidity

Y = ln(x0/x). Black solid lines correspond to the ϕg,g with Q2
s0,p = 0.1597 GeV2 at

Y = 0, 2, 4, 6, 8. The ϕg,g in the nucleus is shown as red solid line with Q2
s0,A = 6Q2

s0,p.

The peak value of the ϕg,g determines the typical momentum scale Qs of the gluon inside

the hadron. One can immediately note that the quantum evolution modifies the gluon

distribution and the peak of the ϕg,g moves. For both the proton and the nucleus, the

number of gluon at lower k⊥ is strongly suppressed due to the gluon merging, while more

gluons are emitted at higher k⊥ by the BFKL cascade in x evolution. Taking a ratio of the

ϕg,gA,Y in the nucleus to the ϕg,gp,Y in the proton times the effective thickness A1/3 (Fig. 3.12

(Right)), we can find the large suppression of the ratio at low k⊥ which means that the

gluon density in the nucleus becomes totally harder compared with the one in the proton

while the net number of gluon in the nucleus is much larger than that in the proton.

We note how to compute the multi point function at larger x > x0 in this paper. For

x0 ≤ x ≤ 1, we apply the following phenomenological Ansatz [67]:

ϕqq̄,g
A,Y

(l⊥,k⊥) = ϕqq̄,g
A,Y0

(l⊥,k⊥)

(
1− x
1− x0

)4 (x0
x

)0.15
, (3.64)

11In fact, the dipole amplitude with parameter set g1118 has a negative value at high k⊥ region due
to the non-gaussian initial condition.
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Figure 3.14: Evolution speed λ = d lnQ2
s(Y )/dY for each initial saturation scale

Q0 =0.5, 0.75, 1.0, and 1.25 GeV. Left (Right) figure corresponds to the different match-
ing condition to determine the saturation scale; N

Y
(r = 1/Qs(Y )) = 0.5 (e−1). Figure

cited from Ref. [51].

where Y0 ≡ ln(1/x0). In this formula, the power 4 for the factor 1 − x comes from

the behavior at large x of the gluon distributions, as inferred from sum rules. Note

that this extrapolation implies that the saturation scale is frozen at large x, which may

lead to a harder k⊥-spectrum for x > x0 than expected, possibly overestimating the

Cronin peak. Here we note the difference between the collinear gluon distribution function

obtained from Eq. (3.39) by performing the integral over the transverse momentum k⊥

and the CTEQ6LO parametrization [61] which is used in our numerical computations.

The extrapolated gluon distribution with the Ansatz Eq. (3.64) is actually larger than

the CETQ6LO parametrized gluon distribution at x0 ≤ x ≤ 1. This fact can provide the

difference of the magnitude of the heavy quark pair production cross section between the

CGC formula and the hybrid formula at forward rapidity.

Here we show the behavior of the saturation scale which is extracted from the rcBK

equation, as is studied in Ref. [51]. Fig. 3.14 displays the speed of evolution λ ≡
d lnQ2

s(Y )/dY which is extracted from numerical solution of Eq. (2.30) with the evo-

lution kernel Eq. (3.60) The initial forward scattering amplitude is given by N
Y=0

(r) =

1 − S
Y=0

(r) where S
Y=0

(r) is Eq. (3.61) and γ = 1 and Λ = 0.2 GeV. The saturation

scale is determined by the condition N
Y
(r = 1/Qs(Y )) = κ with κ = 0.5 (Fig. 3.14 (left))

or e−1 (Fig. 3.14 (right)) for each different initial condition Qs0 =0.5, 0.75, 1.0, and 1.25
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set MV model.

GeV. At ∆Y ∼ 0, the λ strongly depends on the initial condition while at larger ∆Y

the λ for different initial condition gets close to the same value and the initial condition

dependence of the λ disappears. We can find that the λ at larger Y , which is determined

by the rcBK equation whether the matching condition is κ = 0.5 or e−1, is compatible

with approximately λ = 0.288 which is constrained by global fitting of HERA data [30].

In this paper, we adopt the rcBK equation to include the quantum evolution effect

in the heavy quark pair production cross section and we remark here about a difference

between the ϕg,g with the rcBK equation and the one which is obtained by use of the

leading order BK equation with fixed coupling kernel. Fig. 3.15 displays that a ratio of

the ϕg,g which is computed with the rcBK equation to the one which is computed with the

leading order BK equation as a function of k⊥ at each rapidity Y = ln(x0/x). The solid

red (dashed green) lines correspond to the results which is obtained by using αs = 0.1 (0.2)

in the leading order BK equation. As the rapidity increases, the ratio with the leading

order BK equation with αs = 0.2 deviates from unity both at lower and higher k⊥ while

the one with αs = 0.2 deviates from unity only at lower k⊥. This fact indicates that the

x-evolution of the ϕg,g with the leading order BK equation with αs = 0.2 is too fast at

larger k⊥ and we need to fix αs = 0.1 in the leading order BK equation to reproduce
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Figure 3.16: Centrality dependence of charged particles multiplicity at mid rapidity in
Pb+Pb collisions at

√
s = 2.76 TeV which is computed by using the rcBK equation in

Ref. [56]. η ia a pseudo rapidity and Npart is a number of Dotted (Solid) line is the result
with MV (MVγ) model as the initial condition in the rcBK equation Figure cited from
Ref. [56].

reasonably the evolution speed which is obtained by the rcBK equation at larger k⊥. As

long as we use the rcBK equation with the suitable running coupling constant, we can

reproduce automatically the x-evolution speed extracted from the data fitting.

As is mentioned above, the saturation scale characterizes not only light hadron pro-

duction and also the heavy quark production, particularly in high energy collisions at

forward rapidity. Concerning the light hadron production, there is already the previous

work to compute charged particles multiplicity by using the rcBK equation ( [56]). Then

although we will show a results of the heavy quark pair production in this paper, we finally

present the result of the multiplicity of charged particle which is computed by use of the

rcBK equation in Ref. ( [56]) 12. In Fig. 3.16, we show the charged particle multiplicity at

mid rapidity for Pb+Pb collisions at the LHC
√
s = 2.76 TeV by use of the unintegrated

12In Ref. [56], the number of gluons produced at a transverse position R in the Pb-Pb collisions is
computed in k⊥-factorization formula;

dNg

dyd2p⊥d2R
∝ 1

σ

αs(Q)

p2⊥
φ

(
|p⊥ + k⊥|

2
, x1; b

)
⊗ φ

(
|p⊥ − k⊥|

2
, x2;R− b

)
(3.65)

where σ is the effective inelastic interaction area in Pb-Pb collisions and p⊥ is the transverse momentum

of the produced gluon with the rapidity y and |p⊥+k⊥|
2

(
|p⊥−k⊥|

2

)
is the transverse momentum of the

gluon with x1,2 = p⊥/
√
se±y coming from the projectile (target) nucleus. Q is a scale of the running
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gluon distribution with the rcBK equation and by assuming that the produced gluon is

the dominant source of the charged particle. As to the initial condition for the rcBK

equation, both MV model and MVγ model with γ = 1.119 are used in the computations

of charged particles multiplicity for comparison. We should note that no hot matter effect

is considered. Nevertheless, it seems that the theoretical results has been successful in

describing the data at ALICE whether the initial condition of the rcBK equation is MV

model or MVγ model. Then, we expect the use of the rcBK equation might also provide

a good possibility to describe the heavy quark pair production.

coupling and the unintegrated gluon distribution φ is given by

φ(k, x; b) ∝
∫
d2re−ik·r∇2

rNY
(r, b). (3.66)

where N
Y
(r, b) is the dipole amplitude and depends on the transverse coordinate b through the saturation

scaleQ2
s0,A(b) = N(b)Q2

s0,p in the initial condition of the dipole amplitude. N(b) is the number of nucleons
overlap at b from the two nucleus.
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Chapter 4

Quarkonium production in Color

Evaporation Model

In this chapter, we show the numerical results of quarkonium production from the CGC in

the Color Evaporation Model. In particular, transverse momentum spectrum and nuclear

modification factor are presented. For the gluons in the proton, we examine two possible

descriptions, unintegrated gluon distribution and ordinary collinear gluon distribution.

4.1 Factorization assumption

In the high energy collisions at RHIC and the LHC, a production time of the heavy quark

pair in the lab frame tp is determined by the mass m, the transverse momentum P⊥ and

the rapidity y. For example, tp of the charm quark pair is given by about 1/mc ∼ 0.1

fm and the charmonium formation time tf is given by about 1/mcv
2 ∼ 0.5 fm in the

charm pair rest frame. Here we have assumed that the binding energy of the charmonium

EB ∼ mcv
2 is about 0.5 GeV. These times are strongly retarded by the Lorentz boost in

the forward rapidity region as follows

tp ∼
1

mc

Boost−→ 1

mc

M⊥

M
cosh y, (4.1)

tf ∼
1

mcv2
Boost−→ 1

mcv2
M⊥

M
cosh y. (4.2)

Here theM ∼ 2mc is an invariant mass of the pair with small relative momentum between

the quark and the antiquark in the rest frame and M⊥ =
√
M2 + P 2

⊥. The passing

time of the heavy quark pair through the Lorentz contracted nucleus t0 is estimated as
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Figure 4.1: J/ψ production process in pA collisions. The charm quark pair is created in
the hard process (white box) and interacts with the nucleus (dark grey oval). At very
forward rapidity, the J/ψ is produced far away from the nucleus (the symbol F inside grey
box).

2RA/γ ∼ 0.1 − 0.01 fm at RHIC and the LHC respectively. Then if the retarded quark

pair creation time is large than t0, the heavy quark pair creation is affected by the nucleus

coherently. Furthermore if tf ≫ tp, we can regard the hadronization of the heavy quark

pair is almost frozen when the quark pair passes through the nucleus. In that case, the

quarkonium is produced far away from the nucleus and a dynamics of the quarkonium

production is not related to the nuclear effect.

In our model at leading order in coupling constant, the quarkonium is produced in the

collisions of two gluons which are coming from proton and nucleus. Then the quarkonium

transverse momentum is almost determined by the saturation scale of the gluon in the

nucleus which becomes larger at forward rapidity. Namely, from Eqs. (4.1)(4.2), the

order tf ≫ tp ≫ t0 can be valid at very forward rapidity in the lab frame and the

factorization between the heavy quark pair production and the quarkonium formation

becomes a feasible assumption (Fig. 4.1).

4.2 Expression of production cross section

Quarkonium production in the CEM is straightforward. For instance, J/ψ production

cross section reads

dσJ/ψ
d2P⊥dy

= FJ/ψ

∫ 4M2
D

4m2
c

dM2 dσcc̄
d2P⊥dM2dy

, (4.3)
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where mc (MD) is the charm quark (D meson) mass. This expression is obtained by

using Eq. (3.44) with change of variables. A phenomenological constant FJ/ψ represents

the non-perturbative transition rate for the charm pairs, produced in the invariant mass

range M ∈ [2mc, 2MD], to be bound into a quarkonium. In this model, we do not

include a bottom quark decay contribution to the J/ψ and also a higher state feed down

contribution. We should understand Eq. (4.3) as the inclusive production. For Υ(1S)

production, the expression of production cross section is the same as J/ψ except that we

should use the different non-perturbative probability FΥ(1S).

A remark is here in order. In the multiplicity of the quark pair production (3.49), the

inelastic cross section which estimated as πR2
A in the denominator in Eq. 3.49 effectively

cancels out with the same factor in ϕqq̄,gA,y , and the cross section is proportional to the

effective transverse area πR2
p of the proton appearing in φp,y. In the following calculations,

we choose the proton size Rp = 0.9 fm for heavy meson and quarkonium production. We

also cancel α2
s in front of the cross section by αs appearing in the denominator in ϕA,y

and in φp,y. In the case of collinear approximation on the proton side, we set αs = 0.2 in

this paper. The proton uGD φp,y may be estimated by replacing the transverse area R2
A

and the amplitude S
Y
with those for the proton in the two point function ϕg,gA,Y =

∫
k⊥

ϕqq̄,gA,Y

1.

4.3 x1,2 coverage

In Fig. 4.2, we show the x1,2 coverage of the charm pair production in the plane of the

rapidity y and the transverse momentum P⊥ of the pair at RHIC and LHC energies;
√
s=200 GeV and 5.02 TeV. Here we fix the charm pair’s invariant mass M = 3.1 GeV,

and draw the curves determined by x1,2 = e±y(
√
P 2
⊥ +M2/

√
s), on which either x1 or

x2 is constant. The kinematically disallowed region where x1,2 > 1 is indicated by the

shaded grey area. We see that, at the RHIC energy, J/ψ is produced from the gluons

of moderate x1,2 ∼ 0.01 − 0.05 at mid-rapidities, while at forward rapidities y ∼ 2 the

process gets sensitivity to the gluons at small x2 < 0.01. On the other hand, at the LHC

energy, J/ψ production is already sensitive to the small x2 gluon even at mid-rapidity,

and at forward rapidity it probes x2 as low as ∼ 10−4 to 10−5.

However, one must take account that in the small x2 region but J/ψ has large P⊥,

1In this paper, we always compute the heavy quark pair production cross section by using ϕg,gp,Y in the
proton side.
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Figure 4.2: Kinematical coverage of the pair production in the plane of rapidity y and
transverse momentum P⊥ for invariant mass M = 3.1 GeV at (a)

√
s=200 GeV and (b)√

s=5.02 TeV. Shown are the curves of constant x1,2 = (
√
P 2
⊥ +M2/

√
s)e±y. The shade

region is kinematically forbidden.

the gluon with large k1⊥ in the proton can participate in the production of J/ψ, which

reduces the saturation effect.

Thus one can find that the heavy quark production, which may be evaluated with per-

turbation method, can be used to probe the small-x dynamics by studying the open heavy

flavor production and also the quarkonium production at lower transverse momentum in

the forward rapidity region at the LHC.

4.4 Transverse momentum spectrum of J/ψ

In this section, we estimate the quarkonium production from the quark-pair production

cross section in the CEM (Eq. 4.3). We choose the J/ψ formation fraction FJ/ψ = 0.02

as representative values. One should keep in mind that the absolute normalization of the

cross section depends on these parameters. In addition, the framework in our calculations

is valid in the small-x region and the transverse momentum P⊥ corresponds to about the

saturation scale of the gluon coming from the nucleus. Then the reader should focus on

the spectrum of J/ψ productions at lower P⊥ up to about the saturation scale in the

nucleus which is here approximately estimated as Q2
sA(x) ∼ 0.2 A1/3

(
0.01
x

)0.3
GeV2 or a

few times higher than it.
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Figure 4.3: Transverse momentum spectrum of J/ψ in di-lepton channel in pp collisions
at
√
s = 200 GeV for rapidity ranges (a) |y| < 0.35 and (b) 1.2 < y < 2.2. Brll is a

branching ratio of the J/ψ decay into di-lepton channel; Brll = 0.0594 for e+e− at mid
rapidity and Brll = 0.0593 for µ+µ− at forward rapidity. CEM model results using the
pair production (3.44) with sets MV and g1118 are shown in gray and doubly-hatched
bands, respectively, and the result using collinear approximation (3.56) with set g1118
is in hatched band. The upper (lower) curve of the band corresponds to the result with
mc = 1.2 (1.5) GeV, and the scale of pdf is chosen at 2M⊥ (M⊥/2) in the collinear
approximation. Data from [110].
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4.4.1 RHIC

We first show in Fig. 4.3 the transverse momentum spectrum of the produced J/ψ in pp

collisions at
√
s = 200 GeV, using the uGD set g1118 given in Table 3.1. The upper (lower)

curve of each band indicates the result with charm quark mass mc = 1.2 (1.5) GeV. In the

collinear approximation on the larger-x1 side, we adopt CTEQ6LO parametrization [61],

and the band in Fig. 4.3 includes the change of the factorization scale from 2M⊥ toM⊥/2

with M⊥ =
√
M2 + P 2

⊥, where M is the pair’s invariant mass. Here we note that no

K-factor have been included in our computations which means we set K = 1. We just

compare the results in k⊥-factorization like formalism to that in the hybrid formalism in

this paper. This fact is the same for the results in pA collisions.

As mentioned above, the quarkonium production at mid-rapidity |y| < 0.35 is largely

determined by the gluon distributions at moderate x1,2 ≳ 0.01. Then, we notice a difficulty

with set g1118: the peculiar dip structure of g1118 seen in Fig. 3.12 remains in the J/ψ

spectrum as a similar dip around P⊥ ∼ 2 GeV, which must be an artifact of this initial

condition. In contrast, we don’t see such a structure with the MV initial condition. At

forward-rapidity 1.2 < y < 2.2, the dip is smeared to be less noticeable by the imbalance

between x1 and x2 and by the x2 evolution of the uGD. As a whole, the P⊥ spectrum

obtained with set g1118 is closer to the observed data [110] than with set MV. In this pp

case, the collinear approximation on the large-x1 side does not improve the description of

the data. The k⊥ kick from only the one of the protons cannot give enough P⊥ for the

pair.

In Fig. 4.4 shown is the transverse momentum spectrum of the J/ψ in pA collisions

in our model. We set the initial saturation scale of the uGD for the heavy nucleus as

Q2
s0,A(x = x0) = 6Q2

s0,p. The upper (lower) curve of the bands indicate the result with

mc = 1.2 (1.5) GeV. We overlay d-Au data observed by PHENIX at
√
s = 200 GeV [107],

presuming here that the difference between pA and dA results only in normalization

difference of order O(1) 2. We find that P⊥-dependence of J/ψ production is better

described with set g1118 3 than that with set MV. Indeed, here the collinear approximation

on the proton side gives a better description of the data both at mid- and forward-

rapidity regions. At forward rapidities, where we are approaching the small-x2 region and

the kinematical boundary for x1 at the same time (see Fig. 5.1), we expect a nontrivial

2Recall that our model already has an uncertainty of O(1) in the normalization of the uGD.
3Possible dip structure from the proton uGD is smeared out here in Fig. 4.4 by the multiple scattering

effects in the nuclear uGD.
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Figure 4.4: Transverse momentum spectrum of J/ψ in di-leption channel in pA collisions
at
√
s = 200 GeV for rapidity ranges (a) |y| < 0.35 and (b) 1.2 < y < 2.2. Notations are

the same as in Fig. 4.3. Data in d+Au collisions [107] are overlaid for comparison.
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interplay between large x1 and small x2. Besides the saturation dynamics of x2 gluons,

one may need to consider energy loss of large-x1 gluons in the heavy target [17] in order

to understand the P⊥ spectrum of J/ψ in the very forward region. These effects are not

included in our present treatment.

We notice in Fig. 4.4 (b) that the J/ψ production is more suppressed nearly by one

order of magnitude in the collinear approximation than those in the full calculation. This

is caused by a difference in the large x1 behavior of gluon distributions on the proton

side. As x → 1, the CTEQ gluon distribution decreases much more rapidly than our

model uGD φp,y, which is assumed to behave as ∝ (1−x)4. Furthermore, in the collinear

approximation, the pair’s P⊥ is solely provided from the nucleus side, P⊥ = k2, and uGD

ϕA,y for the heavy target is more suppressed at low k2 by multiple scatterings.

Now let us take a ratio of the cross section of J/ψ in pA collisions to that in pp colli-

sions, which is called nuclear modification factor RpA. We expect that model uncertainties

cancel out to some extent in the ratio. We define RpA for J/ψ in our model as

RpA =
dNJ/ψ/d

2P⊥dy
∣∣
pA

Ncoll dNJ/ψ/d2P⊥dy
∣∣
pp

, (4.4)

where dNJ/ψ/d
2P⊥dy is the average multiplicity of J/ψ per event. Here we set the number

of nucleon-nucleon collisions in pA to Ncoll = Aγ/3 as stated in the heavy meson case.

In Fig. 4.5 we compare the model results for RpA at
√
s = 200 GeV with the data

of RdAu. Note that the projectile is different between the model calculation and the

data. The notations are the same as in Fig. 4.3. We stress here that RpA is indeed

little dependent on the choice of the quark mass and factorization scale. Unfortunately,

however, one immediately recognizes an unphysically strong Cronin peak in the model

calculations with set g1118 both at mid- and forward rapidities, which is obviously caused

by the dip seen in the pp collisions (Fig. 4.3). In contrast, the RpA result with set MV

looks more reasonable; we see a moderate Cronin peak at mid-rapidity due to the multiple

scatterings, while it almost disappears at forward rapidity y ∼ 2 by the x2 evolution. In

low-P⊥ region, we also notice a stronger suppression than the experimental data. This

would imply the importance of the fragmentation process in the formation of J/ψ, which

is missing in the simple CEM treatment.

To summarize the results at RHIC energy, the J/ψ production spectrum is sensitive to

the moderate value of x1,2, where the initial condition for the x-evolution is set. We have

a difficulty to describe the pp data and therefore the ratio RpA with the constrained uGD
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Figure 4.5: The ratio of J/ψ productions in pA and pp collisions RpA(P⊥) at
√
s = 200

GeV for (a) |y| < 0.35 and (b) 1.2 < y < 2.2. The results with uGD sets MV and g1118
are shown in gray and doubly-hatched bands, respectively, and the result in collinear
approximation with set g1118 is shown in a hatched band. Notations are the same as in
Fig. 4.3. Data of RdAu taken from [107].
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g1118. In contrast the set MV gives more reasonable behavior for RpA. The P⊥ spectrum

in pA collisions is better described with set g1118 at mid- and forward-rapidities. In

forward rapidity, P⊥ slope is still steeper in the data than in the model, hinting a possible

energy loss of the large-x1 gluon from the proton. Actually RdA of J/ψ at RHIC energy

has been studied in several approaches (e.g.) with introducing nuclear parton distribution

and nuclear absorption effects to a J/ψ production model for pp [147,148], or with taking

account of the multiple scatterings and energy loss of the projectile gluons [17,18].

4.4.2 LHC

Now we compute the J/ψ production at the LHC energy, where we expect that the wider

x2-evolution of uGD on the nucleus side will manifest in the production spectrum. In

fact, both x1,2 are small (∼ 10−3 < x0) already in mid-rapidity production of the charm

pair as seen in Fig. 5.1, and as moving to larger rapidities we can probe smaller values of

x2 on the nucleus side down to x2 ∼ 10−5.

We show in Fig. 4.6 the J/ψ cross section in pp collision at
√
s = 7 TeV, obtained in

CEM from charm quark spectrum (3.44). Notations are same as in the case of the RHIC

energy. In order to assess the uncertainty, we again vary the charm quark mass from

mc = 1.2 to 1.5 GeV, and change in the collinear approximation the factorization scale

from 2M⊥ toM⊥/2. The observed data [113] is fairly well reproduced with set g1118 in this

P⊥ region both at |y| < 0.9 and 2.5 < y < 4, indicating that y-dependence is appropriately

captured by x evolution of uGD. The P⊥ slope in the collinear approximation (3.56) with

set g1118 seems to be slightly off the data, while the full result with set MV gives harder

P⊥ spectrum. The situation is expected to be similar in pp collisions at
√
s = 5.02 TeV.

Results in pA collisions at
√
s = 5.02 TeV are plotted at mid- and forward-rapidities in

Fig. 4.7. The MV initial condition gives a harder spectrum of J/ψ than g1118. But the P⊥

slope is almost the same at P⊥ ≳ 10 GeV, hinting the BFKL tail of uGD generated during

the evolution. Compared to the case at
√
s = 200 GeV, the collinear approximation (with

set g1118) results in the spectral shape rather similar to the full result at this energy
√
s = 5.02 TeV, where the collinear approximation on the proton side would be more

appropriate since the saturation scale of the nucleus is much larger than that of the

proton: Q2
s,A(x2)≫ Q2

s,p(x1), especially in the forward region.

In Fig. 4.8, we show the results of J/ψ cross section in pA collisions with set g1118

in the forward rapidity region (1.5 < y < 4) at the LHC, and put recent data [109]

on our results. The upper (lower) curve of the band is corresponds to the result with
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Figure 4.6: Differential J/ψ yield in pp collisions at
√
s = 7 TeV for (a) |y| < 0.9 and (b)

2.5 < y < 4. Notations are the same as in Fig. 4.3. Data from [113].
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Figure 4.7: Transverse momentum spectrum of J/ψ in di-lepton channel in pA collisions
at
√
s = 5.02 TeV for (a) −1.4 < |y| < 0.4 and (b) 2 < y < 3.5. Notations are the same

as in Fig. 4.3.
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mc = 1.2(1.5) GeV and Q2
sA = 6Q2

sp. We choose the nuclear radius as RA = 6Rp. Our

result seems to reasonable at low-P⊥ while harder than data in the high-P⊥ region. We

can expect the collinear approximation on the proton side provides more reasonable P⊥

slope at forward rapidity. As stated above, one should keep in mind that the absolute

normalization of the cross section depends on RA, Q
2
s, and mc and so on.

We show in Fig. 4.9 the ratio RpA of J/ψ as a function of P⊥ at
√
s = 5.02 TeV. We

have assumed Ncoll = Aγ/3 as mentioned before. We find that each band almost collapses

into a single line, which means that the ratio RpA is insensitive to the variation of the

charm quark mass (and the factorization scale in the collinear approximation) within the

range considered here.

At mid-rapidities (Fig. 4.9 (a)), we see that the ratio RpA of J/ψ production is sup-

pressed at low P⊥, while it approaches unity at higher P⊥ for both sets of g1118 and MV.

In the collinear approximation on the proton side, RpA shows a Cronin-like peak around

P⊥ ∼ 4 GeV and remains larger than unity at larger P⊥, which largely reflects RpA of

ϕA,y at the gluon level. At forward rapidities (Fig. 4.9 (b)), however, this difference due

to different uGD sets and approximations becomes much weaker to yield a systematic

suppression for all three cases 4.

We examine the initial-scale (Q2
s0,A) dependence of the ratio RpA in Fig. 4.10, by

plotting the results with the saturation scale Q2
s0,A = 4Q2

s0,p (uppder) and 6Q2
s0,p (lower)

in Eq. (3.61) at x = x0. It is found that the Q2
s0,A dependence of RpA is relatively weak

within the range. At low P⊥ we have strong suppression, but one should keep in mind

that this suppression may be filled to some extent by the nonperturbative fragmentation

of J/ψ, as is seen in the RHIC case in Fig. 4.5.

To summarize the result at LHC energy, We can probe a wide x2-evolution of the uGD

ϕA,y2(k2) through the J/ψ production, and the ratio RpA will be a good indicator for it.

4.5 Υ production at the LHC

Here we consider Υ(1S) production. Non-linear effects are generally suppressed by the

inverse power of the heavy quark mass. However, since the bottom quark mass mb is just

three times as heavy as the charm quark mass mc, the relevant value of x for the Υ(1S)

production becomes larger by the same factor at low P⊥, as compared to the J/ψ. At the

4 We note a preliminary data in p-Pb collisions at the LHC shows that our results with set g1118
overestimate a suppression of the RpA at lower P⊥ [154].
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Figure 4.9: The ratio RpA(P⊥) for J/ψ at
√
s = 5.02 TeV for (a) −1.4 < y < 0.4 and (b)

2 < y < 3.5. Notations are the same as in Fig. 4.3.
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Figure 4.11: Transverse momentum spectrum of Υ(1S) in di-lepton channel in pp collisions
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LHC energy, this x value may be still small enough for multiple scatterings and saturation

to be important in the Υ production.

We plot the P⊥ spectrum of Υ(1S) in pp and pA collisions at
√
s = 7 and 5.02

TeV in Figs. 4.11 and 4.12, respectively, together with the data measured by ATLAS and

LHCb [111,112] for the pp case. Here we have chosen the CEM parameter as FΥ(1S) = 0.01,

and varied mb from 4.5 to 4.8 GeV. Other notations are the same as in the J/ψ case. In

pp collisions, the coincidence between the model and the data for Υ(1S) state is not as

good as that for J/ψ at low P⊥ and at forward rapidity.

The model uncertainty from the quark mass value and the factorization scale would

cancel out by taking the ratio of the cross-sections in the pp and pA collisions. We present

in Fig. 4.13 the nuclear modification factor RpA for Υ(1S) as a function of P⊥. Indeed,

each band collapses into a thin line whose width is almost unnoticeable.

The result for Υ(1S) is qualitatively very similar to that for J/ψ. At mid-rapidity,

we see a suppression RpA in low P⊥ region below 5 GeV, while it turns to be unity at

larger P⊥. Only in the collinear approximation, we see the Cronin-like enhancement,

which is largely caused by the dip structure in the proton uGD at moderate x1. At

forward rapidities 2 < y < 3.5, the Υ production is suppressed in a wide P⊥ region from

0 to 20 GeV, irrespective of the model uGD’s, g1118 or MV, or of the use of collinear

approximation. In the forward region, Υ(1S) production has the sensitivity to the small-x

evolution of uGD in the nucleus.

We have also checked the initial-scale (Q2
s0,A) dependence by comparing the result with

Q2
s0,A = 4Q2

s0,p and 6Q2
s0,p to find that the change is very similar to the case with J/ψ

(Fig. 4.10).

4.6 Rapidity dependence of RpA of J/ψ and Υ

We study the rapidity dependence of the RpA integrated over P⊥. The computation is

performed with set g1118. In Fig. 4.14 shown is RpA(y) of J/ψ at
√
s = 0.2 and 5.02 TeV

with experimental data at RHIC [106] and the LHC [108,109]. Note that our assumption

of dilute-dense colliding system applies only in the positive rapidity region, especially

for pp, which appears in the denominator of RpA. We see systematically a stronger

suppression of RpA as the rapidity increases both at RHIC and LHC energies. This is in

accord with x-evolution of uGD in the heavy target. RpA(y) of J/ψ flattens out at y ≲ 1

at RHIC energy because the J/ψ is produced there by the gluons with x2 > x0 = 0.01 and
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√
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we freeze the saturation scale to its initial value at x = x0. Although our computation

shows the strong suppression of RpA at the LHC, but the data represent that the RpA at

the LHC in the forward rapidity is similar to the one at RHIC forward rapidity. We will

leave the investigation of the cause of this similarity in the future work.

Comparing the results of J/ψ and Υ(1S) at LHC, we note that the suppression of

Υ(1S) is less than that of J/ψ, but is still significant to be observed. It would be quite

important to study these systematics in experimental data in order to quantify the satu-

ration effects in the heavy nuclear target.

4.7 P⊥ broadening

Finally, we study the mean transverse momentum of quarkonium in pA collisions. The

momentum broadening in the nuclear target has been discussed in the literature [76–79].

In our framework, the multiple scatterings of the incident gluon and the produced quark

pair in the nuclear target, encoded in U and Ũ terms in Eq. (3.45) respectively, cause the

momentum broadening of the pair. Typical momentum transfer of the multiple scatterings

in the nucleus should be characterized by the saturation scale Qs,A(x2). We define here

the broadening of P⊥ as the deviation of the mean transverse momentum ⟨P 2
⊥⟩ of J/ψ in

pA collisions from that in pp collisions:

∆⟨P 2
⊥⟩pA ≡ ⟨P 2

⊥⟩pA − ⟨P 2
⊥⟩pp =

∫
dσpAP

2
⊥∫

dσpA
−
∫
dσppP

2
⊥∫

dσpp
. (4.5)

In Fig. 4.16 we plot ∆⟨P 2
⊥⟩pA as a function of Q2

s0,A. We use uGD set g1118 with the

quark masses mc = 1.5 GeV and mb = 4.8 GeV. We have found that for each rapidity the

Q2
s0,A dependence of the broadening can be fitted in a simple form:

∆⟨P 2
⊥⟩pA = a[(Q2

s0,A/Q
2
s0,p)

α − 1] (4.6)

with a and α being fitting parameters.

At
√
s = 200 GeV, the broadening at mid-rapidity is obviously linear in Q2

s0,A, which

indicates the random walk nature of the multiple scatterings in the momentum space.

In the forward rapidity region, we expected an increase of the mean momentum by the

stronger multiple scatterings, but actually found the opposite, i.e., a decrease from the

mid-rapidity value. This is because of the kinematical boundary of x1 in the forward

region (see Fig. 5.1).
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The measured value of ∆⟨P 2
⊥⟩dAu at RHIC [107] seems to be smaller by a factor of

5 than that in Fig. 4.16, if we naively translate Q2
s0,A to the centrality parameter Ncoll

evaluated for dAu collisions. This strong broadening originates probably from the fact

that our model has too hard P⊥ spectrum at RHIC energy. But it is at least consistent

with data that P⊥ broadening at forward rapidities ∼ 2 is weaker than that at mid-

rapidity y ∼ 0. At
√
s = 5.02 TeV, a wider phase space opens up and we instead see an

increase of the mean momentum of J/ψ as moving to the forward-rapidity region. We

have checked that ∆⟨P 2
⊥⟩pA gets back to be smaller at y = 6 than that of mid-rapidity,

just as seen in the case of
√
s = 200 GeV. Non-linear dependence on Q2

s0,A may imply

the different evolution speed of multiple scattering strength for different initial values

Q2
s0,A. The result for Υ(1S) in Fig. 4.17 is similar to the J/ψ case, but interestingly

the broadening becomes more remarkable; The heavier bottom quark pair can acquire the

larger transverse momentum P⊥ in multiple scatterings before going beyond the threshold

set on the pair’s invariant mass M2 < 4M2
B.
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4.8 Short summary

We have computed the J/ψ and Υ(1S) production in pA collision at collider energies

within the CEM based on the CGC quark pair production, and have discussed sensitivity

of the quarkonium observables to the parton saturation in the target nucleus. We have

presented the two types of calculation: one is using the uGD set g1118 which is constrained

with DIS data at x < x0 = 0.01, and the other is to use uGD set MV for comparison.

At the RHIC energy
√
s = 200GeV, the J/ψ at mid-rapidity is produced not from

small-x2 gluons, but rather from moderate-x2 gluons, and the P⊥ spectrum in pp collisions

is unfortunately sensitive to an unphysical dip structure of the uGD set g1118, which was

constrained only for x < x0. We need better extrapolation of our framework to x ≥ x0.

In pA collisions, multiple scatterings smear out the dip of the uGD and the P⊥ spectrum

of J/ψ becomes closer to the observed one in dAu collisions.

At the LHC energy
√
s = 5.02TeV, the small-x gluons dominate the charm production,

and we have found that our model with the uGD set g1118 works for J/ψ production in pp

collisions both at mid- and forward-rapidities. Then we have shown our model prediction

on J/ψ production in pA collisions. The ratio RpA(P⊥) for J/ψ shows a suppression for

P⊥ < 5GeV at mid-rapidity due to saturation effects, and it is further suppressed in wider

range of P⊥ as moving to forward rapidities.

When integrated over P⊥, RpA(y) of J/ψ is more suppressed with increasing rapidity,

which is consistent with RHIC data. At the LHC energy RpA(y) is further suppressed,

which reflects through CEM the stronger effects of multiple scatterings and gluon satu-

ration in the quark-pair production process. However, the recent data at the LHC p-Pb

collisions indicates that the suppression of RpA(y) of J/ψ at the LHC is comparable to

the one at RHIC in the forward rapidity region. We have also shown that the Υ(1S)

production in pA collisions at the LHC has a good sensitivity to the gluon saturation of

the nucleus, provided that the effect is smaller than that in the J/ψ case. In our model,

when integrated over P⊥, the ratio RpA(y) for Υ(1S) at the LHC shows a suppression

similar to that of J/ψ at RHIC energy.

The collinear approximation on the proton side unsatisfactorily describe the data. It

seems that some k⊥ smearing is necessary in view of our numerical results. The proton

collinear approximation in the CGC framework is also studied in Ref. [145].

Transverse momentum broadening of the quarkonium shows an increasing behavior

as a function of Q2
s0,A. Because our model gives harder P⊥ spectrum than the data, the

broadening is likely to be overestimated at RHIC energy in our calculation. Transverse
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momentum broadening is also investigated recently by taking account of the multiple

scatterings in the target in [146].
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Chapter 5

Heavy meson production

In this chapter, we firstly show the numerical results of open heavy flavor meson pro-

ductions such as D-meson and B-meson in pA collisions. In addition to the transverse

momentum and nuclear modification factor which are discussed in the quarkonium case,

we present azimuthal angle correlation between the heavy meson pair. We expect this

particle correlation can bring some information about the saturation effect in the nucleus.

In the following calculations, we choose the proton size Rp = 0.9 fm.

5.1 Cross section formula of heavy meson production

Heavy meson pair production cross-section can be written as

dσhh̄
d2ph⊥d

2ph̄⊥dyqdyp
= fq→hfq̄→h̄

1∫
z1min,z2min

dz1dz2
Dh
q (z1)

z21

Dh̄
q̄ (z2)

z22

dσqq̄
d2q⊥d

2p⊥dyqdyp
(5.1)

Here ph⊥ (ph̄⊥) and yq (yq̄) are respectively transverse momentum and rapidity of the

produced meson h (h̄). The longitudinal momentum fraction z1 (z2) of the heavy meson

fragmented from the heavy quark (anti-quark) is defined as ph⊥ = z1q⊥ (ph̄⊥ = z2p⊥). The

lower limit zmin is set by the momentum fraction of the meson fragmented from the heavy

quark with the maximum q⊥ allowed kinematically. Here we assume that the meson and

the quark have the same rapidity, yq = yh (yp = yh̄).

For the heavy meson fragmentation function D(z) 1 , we use the Kartvelishvili frag-

1For recent study of the fragmentation functions for charm and bottom quarks, including the factor-
ization scale dependence, we refer to Refs. [127,128].
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mentation function [126],

Dh
q (z) = (α + 1)(α+ 2)zα(1− z) . (5.2)

This is originally not a Lorentz invariant quantity but useful to evaluate the cross section

of the heavy meson production. Here we assume that the non-perturbative parameter α

in Eq. (5.2) is the same both in D (B) production and D⋆ (B⋆) production. The value

of α is set to 3.5 (13.5) for D (B) which is determined by fitting the data [129,130]. The

factor fq→h represents the transition probability of the heavy quark q to evolve the heavy

meson h. fq→h should satisfy the condition as
∑

h fq→h = 1 for all the heavy meson h

from q. Empirical values, fc→D0 = 0.565, fc→D∗+ = 0.224, and fb→B̄0 = 0.401 are taken

from [131, 132, 152]. For the charge conjugate states, we assume Dh
q (z) = Dh̄

q̄ (z) and

fq̄→h̄ = fq→h.

Similarly single heavy meson production cross-section is expressed in convolution form

of quark production cross-section 2 (3.48) and the fragmentation function Dh
q (z),

dσh
d2ph⊥dy

= fq→h

1∫
zmin

dz
Dh
q (z)

z2
dσq

d2q⊥dy
. (5.5)

Again we set ph⊥ = zq⊥ and yq = yh = y.

5.2 Kinematical coverage

It would be instructive to show the relevant kinematical coverage of x variable in the open

heavy flavor production at RHIC and LHC energies.

We assign the momentum fraction x1(x2) to the gluon from proton (nucleus), and it

2The lower limit of the z integration in Eq. (5.5) is given explicitly as

zmin =
qh⊥ cosh y√

s
4 −m2 cosh2 y

. (5.3)

This can be readily derived by noting that the maximum energy of the produced quark and anti-quark

in the center-of-mass frame is Emax
q = Emax

q̄ =
√
s
2 . For the on-mass-shell quark, we have

Emax
q =

√
m2 + (qmax

⊥ )2 cosh y , (5.4)

where y is the quark rapidity, which we set the same as the rapidity of the produced meson h. Then
zmin ≡ qh⊥/qmax

⊥ gives the desired expression.

95



10-4

10-3

10-2

10-1

10-3 10-2 10-1 100

dN
D

0  
/ d

2 p h
⊥
dy

dx
  (

G
eV

/c
)-2

x

(a) √s = 200 GeV, mc = 1.5 GeV, ph⊥  = 2 GeV/c

x1 : y = 0
x1 : y = 2
x2 : y = 0
x2 : y = 2

10-2

10-1

100

101

102

10-5 10-4 10-3 10-2 10-1

dN
D

0  
/ d

2 p h
⊥
dy

dx
  (

G
eV

/c
)-2

x

(b) √s = 5.02 TeV, mc = 1.5 GeV, ph⊥  = 2 GeV/c

x1 : y = 0
x1 : y = 3
x2 : y = 0
x2 : y = 3

10-5

10-4

10-3

10-2

10-1

10-5 10-4 10-3 10-2 10-1 100

dN
D

0  
/ d

2 p h
⊥
dy

dx
  (

G
eV

/c
)-2

x

(c) √s = 5.02 TeV, mc = 1.5 GeV, ph⊥  = 10 GeV/c

x1 : y = 0
x1 : y = 3
x2 : y = 0
x2 : y = 3

10-4

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2 10-1

dN
B

0  
/ d

2 p h
⊥
dy

dx
  (

G
eV

/c
)-2

x

(d) √s = 5.02 TeV, mb = 4.8 GeV, ph⊥  = 2 GeV/c

x1 : y = 0
x1 : y = 3
x2 : y = 0
x2 : y = 3

Figure 5.1: x1 (black) and x2 (red) coverages of D0 production at mid and forward
rapidities, for fixed ph⊥ = 2 GeV at

√
s = 200 GeV (a), and for fixed ph⊥ = 2 GeV (b)

and 10 GeV (c) at
√
s = 5.02 TeV. x1,2 coverages of B0 production are shown in (d) for

fixed ph⊥ = 2 GeV at
√
s = 5.02 TeV.

is expressed in terms of the produced quark momenta as

x1,2 =
1√
s

(√
m2 + q2⊥e

±yq +
√
m2 + p2⊥e

±yp
)
. (5.6)

We plot in Fig. 5.1 the x1,2 distribution of single heavy meson production at a particular

transverse momentum and rapidity. We find in Fig. 5.1 (a) that both x1 and x2 contribut-

ing to single charmed meson production at ph⊥ = 2 GeV and y = 0 at
√
s = 200 GeV

are larger than x0 = 0.01, while at forward rapidity y = 2 the production gets sensitivity

to small x2 < x0. In other words, the mid-rapidity production of single heavy mesons

is sensitive to the initial ϕq̄q,gA,Y 0 and x-evolution effect shows up only at forward meson

production at RHIC energy. However, it is seen in Fig. 5.1 (b) and (c) that at
√
s = 5.02

TeV small x gluons around 10−3 dominate the production even at mid rapidity. In the

96



forward-rapidity production, the x2 value of the gluons from the nucleus can become

lower than 10−4, where one would expect good sensitivity of heavy meson production to

x-evolution and parton saturation. Even for bottomed meson production the situation is

similar, as seen in Fig. 5.1 (d). Thus heavy quark productions, which may be evaluated

with perturbation method, can be used to probe the small-x dynamics by studying the

heavy meson production at lower ph⊥ and forward rapidity at the LHC.

5.3 Transverse momentum spectrum

5.3.1 pp collisions

We calculate D meson production cross-section at mid rapidity in pp collisions at
√
s =

200 GeV and 5.02 TeV. Although the expression (5.5) is derived for a dilute-dense system

such as pA, we apply it here by substituting the numerical solution for the proton into

ϕqq̄,g
A,Y

(l⊥,k⊥). By comparing the result with available data, we can examine the appli-

cability of our formula. Furthermore we actually need the cross-sections in pp collisions

as the normalization when we study the nuclear modification of the cross-sections in pA

collisions.

We compute transverse momentum (p⊥) spectrum ofD meson production cross-section

with uGD sets g1118 and MV in Table 3.1, and show the results in Fig. 5.2 together with

the available data at |y| < 1 and at
√
s = 200 GeV [120] and at |y| < 0.5 and at

√
s = 5.02

TeV [116]. The upper (lower) curve of each band indicates the result with charm quark

massmc = 1.2 (1.5) GeV. We find that p⊥ dependence of D production is better described

with uGD set g1118, although it gives still harder spectrum at high p⊥.

Next we show forward B0 production cross-section in 2 < y < 4.5 in pp collisions at
√
s = 5.02 TeV as a function of p⊥ in Fig. 5.3 (a) and the p⊥-integrated cross-section as

a function of y in Fig. 5.3 (b). The upper (lower) curve of each band indicates the result

with the bottom quark massmb = 4.5 (4.8) GeV. The result with uGD set g1118 describes

p⊥ and y dependence of the data [121] better than that with set MV. But the magnitude

of cross-section is larger than the data by about a factor of 2 – 3.We comment here

that large-x1 gluons in the proton become relevant in B0 production at forward rapidity

and/or at high p⊥. Therefore the numerical result is sensitive to the extrapolation Ansatz

Eq. (3.64) of the uGD for large x.

The framework in our calculations is valid in the small-x region then the reader should

focus on the spectrum of D meson and also B meson productions at low p⊥ up to about
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Figure 5.2: (a) Differential cross-section of D (rescaled as D0/fc→D0 and D∗+/fc→D∗+) vs
transverse momentum p⊥ for rapidity range |y| < 1.0 in pp collisions at

√
s = 200 GeV,

computed with Eq. (5.5) with uGD sets MV (gray band) and g1118 (double-hatched).
The upper (lower) curve of the band corresponds to the result with mc = 1.2 (1.5) GeV.
The data is taken from Ref. [120]. (b) Differential cross-section of D0 vs transverse
momentum p⊥ at |y| < 0.5 in pp collisions at

√
s = 5.02 TeV. The ALICE data is taken

from Ref. [116].
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Figure 5.3: (a) Differential cross-section of B0 vs transverse momentum p⊥ for rapidity
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√
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sets MV (gray band) and g1118 (double-hatched). The upper (lower) curve of the band
corresponds to the result with mb = 4.5 (4.8) GeV. (b) Differential cross-section of B0 vs
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√
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curve is the same as in (a). The LHCb data is taken from Ref. [121].
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2 GeV or a few times higher than it.

5.3.2 pA collisions

We plot in Fig. 5.4 (a) the transverse momentum spectrum of D0 multiplicity in the

rapidity range |y| < 1.0 in pA collisions at
√
s = 200 GeV. We choose the initial saturation

scale of the uGD in the heavy nucleus as Q2
s0,A(x = x0) = 6Q2

s0,p. The upper (lower)

curve of the bands indicate the result with mc = 1.2 (1.5) GeV. We find that the results

obtained with sets g1118 and MV fairly describe the available data at low p⊥ ≲ 2 GeV [117]

although high-p⊥ behaviors are different. We show in Fig. 5.4 (b) D0 production spectrum

in −1 < y < 0 at
√
s = 5.02 TeV 3. The uGD sets MV and g1118 give different p⊥

dependence of the D meson spectrum: Set MV yields harder p⊥ spectrum.

5.4 Transverse momentum dependence of RpA

Now let us discuss the nuclear modification factor for pA collisions defined as

RpA =
dNh/d

2p⊥dy|pA
Ncoll dNh/d2p⊥dy|pp

. (5.7)

where dNh/d
2p⊥dy is the average multiplicity of hadron per event. Here we set the number

of binary nucleon-nucleon collisions 4 to Ncoll = Aγ/3 because the uGD ϕA,y0(k⊥) scales as

(Q2
s0)

γ ∝ Aγ/3 at large k⊥ [58]. Model uncertainties in our calculation will largely cancel

out in the ratio of multiplicity per event in pA collisions to that in pp collisions.

In Fig. 5.5 we plot RpA of (a) D and (b) B productions as a function of p⊥ at mid

rapidity (|y| < 1.0) at
√
s = 200 GeV. We use the uGD set g1118 in this subsection. We

have checked that RpA is insensitive to the variation of the heavy quark mass within the

range considered here, and we show the results with mc = 1.5 GeV for D production and

mb = 4.8 GeV for B production.

The nuclear modification factor RpA of D production is suppressed at lower p⊥ ≲2

GeV while enhanced at higher p⊥ larger than 2 GeV. As seen in Fig. 5.1 (a), heavy mesons

are produced from the gluons with moderate values of x, whose distribution is fixed by

3Rapidity in the center-of-mass frame in pA collisions at
√
s = 5.02 TeV is shifted by ∆y = 0.465

from that in the laboratory frame.
4Of course, we have an ambiguity of definition of Ncoll. We discuss in the Appendix chapter a

quantitative difference between RpA of the J/ψ with Ncoll = Aγ/3 and that with Ncoll = A1/3.
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the extrapolation Ansatz (3.64) from x = x0 to larger x > x0. Thus the suppression and

enhancement of RpA should be interpreted as the effects of the multiple scatterings in the

nucleus encoded in ϕA,Y0 . On the other hand, RpA of B production in Fig. 5.5 (b) shows

little structure as a function of p⊥, even though it is dominated by the larger-x gluons.

This is because the larger bottom mass suppresses the effects of multiple scatterings, i.e.,

Q2
A,y0/m

2
b ≪ 1. That is, B production scales with Ncoll at RHIC energy.

Next, we study the nuclear modification RpA of D and B productions at
√
s = 5.02

TeV. RpA ofD production shown in Fig. 5.6 (a) indicates that there is a strong suppression

at lower p⊥ and that no Cronin-like peak structure is seen at mid rapidity (−1 < y < 0) by

the quantum x-evolution effects on the small x2 gluons
5. We see the stronger suppression

of RpA in the wider range of p⊥ at forward rapidity (2 < y < 3.5), compared to that at

mid rapidity. At
√
s = 5.02 TeV, B production at low p⊥ shows a suppression similar to

but weaker than the D production as shown in Fig. 5.6 (b).

5.5 Rapidity dependence of RpA

The nuclear modification factor (RpA(y)) of the heavy meson multiplicities dN/dy in pA

collisions as a function of y provides important information about how the saturation

effect evolves as moving to forward rapidity region. In Fig. 5.7 shown are the RpA of D

(gray band) and B (double hatched band) mesons as a function of rapidity at
√
s = 200

GeV (a) and 5.02 TeV (b).

We have allowed the variation of the initial saturation scale at x = x0 in the heavy

nucleus as Q2
s0,A(x = x0) = (4− 6)Q2

s0,p with A
1/3 = 4− 6 here. The upper (lower) curve

of the band of D production in Fig. 5.7 now corresponds to the result with mc = 1.5 (1.2)

GeV and A1/3 = 4 (6). For B production, the upper (lower) curve corresponds to the

result obtained with mb = 4.8(4.5) GeV and A1/3 = 4(6). The width of the band here

comes mainly from the change of A1/3 = 4− 6.

We find in Fig. 5.7 (a) that RpA of the D production at mid rapidity at
√
s = 200

GeV is suppressed, which reflects the multiple scattering effect as we have discussed in

Fig. 5.5. Stronger suppression of D production is seen with increasing the rapidity, in

accord with the quantum evolution of the gluon distribution ϕA. On the other hand, for

B production, RpA shows no appreciable change with the increasing rapidity at RHIC

5A preliminary data of RpA as a function of p⊥ of D meson production in the mid rapidity region at
the LHC seems to consistent with our result within a certain error [118,155].
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energy, besides a subtle suppression at very forward rapidities.

At
√
s = 5.02 TeV, RpA of both D and B productions show large depletion even at

mid rapidity as seen in Fig. 5.7 (b). Since the large colliding energy of the LHC gives rise

to much smaller x2 < x0 of participating gluons (Fig. 5.1 (b)–(d)), small-x effects have

already become relevant at mid rapidity, and even B production shows a suppression with

increasing rapidity.

Here, we compare RpA for D and J/ψ productions as a function of rapidity at (a)
√
s = 200 GeV and (b)

√
s = 5.02 TeV in Fig. 5.7. We notice that J/ψ production is

more suppressed than D meson. This is because, in addition to the saturation effects

of the initial gluons, the produced quark pair experiences the multiple scatterings with

the gluons in the target. This effect increases the invariant mass of the pair on average.

In the CEM, if the quark pair is kicked beyond the invariant mass threshold, the quark

pair cannot bound into the quarkonium, which results in a stronger suppression of the

quarkonium than the D meson production. We have also found that Υ(1S) is more

suppressed than B in our calculation, although it is not shown here.

5.6 Azimuthal angle correlation

Pair production of open heavy flavor covers wider kinematic region of the participating

partons than quarkonium production. In this subsection we examine nuclear modification

of the azimuthal angle correlation of the heavy meson pair hh̄ in pA collisions [55,122].

Although azimuthal angle correlation measurement for charmed meson pair is inac-

cessible at RHIC so far due to limited statistics, LHCb collaboration recently measured

the angle correlation at forward rapidity in pp collisions [119,123]. We expect that it will

become also available in AA collisions at the LHC. In AA collisions, the interactions of

the heavy quarks with the hot medium will distort the angle correlation of the pair and

may generate a new correlation by collective flow [124]. For a precise evaluation, again,

we need to take account of the initial state effects.

We define the azimuthal angle correlation between h and h̄ as the pair-production

multiplicity per event integrated over certain momentum and rapidity ranges with fixed

angle ∆Φ between the pair:

CP [∆Φ] =
2π

Ntot

∫
ph⊥dph⊥ ph̄⊥dph̄⊥dyhdyh̄

dNhh̄

d2ph⊥d
2ph̄⊥dyhdyh̄

, (5.8)
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Figure 5.8: Nuclear modification factor RpA for D and J/ψ vs y in pA collisions at (a)√
s = 200 GeV and (b)

√
s = 5.02 TeV. The bands indicate the uncertainties from the

variations mc = 1.2− 1.5 GeV and Q2
s0,A = (4− 6)Q2

s0,p.
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where Ntot is the pair multiplicity per event integrated over the same kinematic region

and further integrated over the angle between the pair. The pair production cross-section

of the heavy mesons is given in Eq. (5.1).

5.6.1 pp collisions

We compute the azimuthal angle correlation in D0D̄0 pair production at the forward

rapidity in pp collisions at
√
s = 7 TeV, using the uGD sets g1118 and MV for studying

the sensitivity to the initial condition. We use mc = 1.5 GeV. In order to compare

the result with LHCb data [119], we set the kinematical range as 2 < yD, yD̄ < 4 and

3 < pD⊥, pD̄⊥ < 12GeV, as plotted in Fig. 5.9 (a). In [119] the bin size of the azimuthal

angle is chosen as ∆Φ/π = 0.05.

We immediately notice the near-side (|∆Φ| ∼ 0) and away-side (|∆Φ| ∼ π) enhance-

ments in the numerical result. The away-side peak is naturally expected from the back-

to-back kinematics of the LO quark-pair production from two gluons in the collinear

factorization framework, but no near-side peak can be explained unless the higher-order

processes are considered. In the CGC framework, on the other hand, gluon bremsstrahlung

and multiple scatterings, which are encoded in ϕqq̄,gp , provide intrinsic transverse momen-

tum k⊥ ∼ Qs of incident gluons. This k⊥ smears the away-side peak and generates the

near-side peak in the angle correlation. In the LHCb data, indeed, we see the near-side

peak but an only subtle away-side enhancement. The numerical result with set MV fairly

reproduces this LHCb angle correlation, whereas in the result with set g1118 the away-

side peak still remains. This is presumably reflecting the fact that the uGD set MV

has harder k⊥ spectrum than set g1118. But one should recall that the uGD set MV is

already disfavored in the global fit [53, 54] and in hadron production analysis at collider

energies [56,58].

The invariant mass spectrum of D0D̄0 pair production in pp collisions at
√
s = 7 TeV

is also measured in [119]. We compare in Fig. 5.9 (b) our numerical results with the data.

The bin size for M is 0.5 GeV. The dip structure seen at low M is understood as the

effect of the lower momentum cut at 3 GeV. Apparently the numerical result yields much

harder invariant mass spectrum than the observed data.

Several remarks are here in order: First, largeM pair production probes the gluons at

large x1, where as explained in Sec. 2 we extrapolate the uGD with a simple Ansatz (3.64),

which is likely to overestimate the uGD in large x region and needs more refinement.

Furthermore the back-to-back kinematics corresponds to the pair with the large M and
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Figure 5.9: Azimuthal angle correlation (a) and invariant mass MDD̄ spectrum of D0D̄0

pair production (b) in the rapidity and transverse momentum coverages, 2 < yD, yD̄ < 4
and 3 < pD⊥, pD̄⊥ < 12GeV in pp collisions at

√
s = 7 TeV, normalized by the total

cross-section in the same fiducial region. For binning, ∆Φ/π = 0.05 in (a) and ∆M = 0.5
GeV/c2 in (b). Solid line denotes numerical result of Eq. (5.1) with uGD set g1118, the
data points with error bars are taken from [119].
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Figure 5.10: Nuclear modification of azimuthal angle correlation of heavy meson pair
production in pA collision at

√
s = 5.02 TeV. Results with the initial saturation scale

Q2
0, 4Q

2
0 and 6Q2

0 are plotted in solid, dashed and dotted lines, respectively. (a) DD̄
correlation with set g1118 for −1 < yh,h̄ < 0, (b) the same as (a) but with set MV,
(c) the same as (b) but for 2 < yh,h̄ < 3.5, and (d) BB̄ correlation with set g1118 for
−1 < yh,h̄ < 0. The momentum coverage is 1 < ph,h̄⊥ < 5 GeV, and mc = 1.5 GeV for
DD̄ and mb = 4.8 GeV for BB̄.

small transverse momentum, where soft gluon emissions will be important and should be

resummed [150]. Regarding small M pair on the near-side, full NLO extension of the pair

production formula may be important although gluon splitting processes are partially

included in the LO CGC formula (3.44).

5.6.2 pA collisions

Here we discuss modification of the azimuthal angle correlation between open heavy flavor

meson (h) and open anti-flavor meson (h̄) in pA collisions at
√
s = 5.02 TeV. We set the

momentum coverage to 1 < ph⊥, ph̄⊥ < 5 GeV.
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In Fig. 5.10 (a) we plot the numerical result obtained with uGD set g1118 for the DD̄

production at mid rapidity (−1 < y < 0). The away-side peak seen at |∆Φ| ∼ π in pp

collisions (initial scale Q2
0) is gradually suppressed in pA collisions with increasing the

(initial) saturation scale in the nucleus as (4 − 6)Q2
0, while the near-side peak is slightly

enhanced. This is due to the stronger multiple scatterings and saturation effects in the

heavy nucleus. Then nuclear effects make DD̄ correlation at low momentum closer to

isotropic distribution. For comparison, we show the same plot but with the uGD set MV

in Fig. 5.10 (b). Stronger enhancement of the correlation on the near side than on the

away side is seen with increasing the saturation scale of the uGD in the nucleus. Different

uGD sets result in quantitatively different correlation, but the qualitative features remain

the same.

The nuclear modification of the angle correlation becomes more prominent in the

forward rapidity region as seen in Fig. 5.10 (c). We have also computed the angle

correlation in higher momentum region, 5 < ph,h̄⊥ < 10 GeV. We saw a strong away-side

peak suppressed in pA collisions than in pp, while the near-side structure is unaffected.

Note that the transverse momentum on the near side is provided solely by the intrinsic

k⊥ of the gluons in (5.5). The gluon saturation at k⊥ ≲ Qs does not affect the particle

production in such a high momentum region.

Finally, let us study BB̄ correlations in the same kinematic region as DD̄, to see the

quark mass dependence of the correlation. As seen in Fig. 5.10 (d), despite that the

momentum region is as low as in Fig. 5.10 (a), we do not confirm any correlation on the

near side since intrinsic momentum of gluon is still insufficient to produce the pair there.

The away-side peak exists and is suppressed with increasing Q2
A,0(x0).

5.7 Short summary

In this chapter, we have shown the numerical results of D and B meson productions in

pA collisions at the collider energy.

At RHIC energy, numerical result with the constrained gluon distribution g1118 fairly

reproduces singleD meson spectrum data at mid-rapidity in pp and pA collisions, whereas

the result with set MV is too hard. The nuclear modification factor RpA of D shows a

suppression at low p⊥ and a Cronin-like enhancement at larger p⊥ reflecting the multiple

scattering effects implemented in the initial gluon distribution at x = x0. In contrast,

RpA(p⊥) of B is almost flat in p⊥.
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At LHC energy, D0 production with constrained gluon distribution g1118 reasonably

reproduces the p⊥-dependence of the mid-rapidity data in pp collisions. The RpA of D

shows stronger suppression at low p⊥ and no enhancement in the computed p⊥ region. The

RpA(y) for p⊥-integrated multiplicity shows a systematic suppression from mid rapidity

to forward rapidity, which is due to the quantum x-evolution effect of the gluons in the

heavy nucleus. We have also found that the RpA(y) of J/ψ production is more suppressed

than that ofD production.

The azimuthal angle correlation for DD̄ and BB̄ pair in pp and pA collisions at

LHC energy shows that the near-side peak emerges in DD̄ correlation in addition to the

smeared away-side peak. The near-side peak is also seen in LHCb pp data [119]. We

have a difficulty to reproduce quantitatively the angle correlation and the invariant mass

spectrum of the pp data at the same time. Nevertheless, we have calculated the DD̄

correlation in pA collisions, in order to estimate qualitatively the nuclear dependence of

the saturation effect. We have found that the away-side peak is more smeared and the

near-side peak is slightly enhanced for the larger saturation scale, i.e., with the heavier

nucleus and/or at more forward rapidity. For BB̄ correlation, we do not see the near-side

peak. This is probably because the saturation scale is not large enough to produce the

BB̄ in the same azimuthal direction.
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Chapter 6

Impact parameter dependence of

J/ψ Nuclear modification factor

We investigate the dependence of RpA on the saturation scale parameter Q2
s0,A, which

may be translated to the effective thickness of the target. We can effectively translate

the initial saturation scale dependence of RpA shown in previous section into the effective

impact parameter dependence in the heavy nucleus.

6.1 Q2
s0,A dependence of RpA of J/ψ

In this section, we compute RpA of J/ψ integrated over P⊥ as a function of Q2
s0,A at several

values of y. We fix here the uGD set g1118 and the quark masses as mc = 1.5 GeV. In

Fig. 6.1 we plot RpA of J/ψ at
√
s = 200 GeV and

√
s = 5.02 TeV. We found that for

each rapidity Q2
s0,A-dependence of RpA can be fitted nicely by a model function:

RpA =
a

(b+Q2
s0,A)

α
(6.1)

with a, b and α being fitting parameters 1. This functional form is motivated by QCD

analog of superpenetration of a electron-positron pair through a medium [67, 101]. The

stronger suppression at the larger value of Q2
s0,A is naturally understood as a result of

stronger multiple scatterings and saturation effects in the heavier target

1We can fit the RpA of Υ(1S) production at
√
s = 5.02 TeV by the same function, which is not shown

here. Energy and rapidity dependences may be qualitatively inferred from the increase of Q2
s,A(y) as

increasing y. Thus we tried to fit the rapidity dependence of RpA by replacing in Eq. (6.1) Q2
s0,A →

Q2
s0,Ae

λy with a free parameter λ, but it was unsuccessful.
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Energy and rapidity dependences may be qualitatively inferred through the increase

of Q2
s,A(y) with increasing y. We remark here that quarkonium suppression due to parton

saturation in our treatment is twofold: a relative depletion of the gluon source and multiple

scatterings of the quark pair in the target. The latter disturbs the bound state formation,

by increasing the pair’s invariant mass on average in CEM [102]. It appears hard to

describe energy and rapidity dependence of the suppression at the same time through a

single function Q2
s,A(x).

In Table 6.1, we list the specific numerical values of the least chi-square fitting of RpA

of J/ψ integrated over P⊥ as a function of Q2
s0,A by simple parametrized function at each

rapidity.

6.2 Revisit the definition of RpA

We define RpA of the J/ψ production in our model as

RpA(b, y) =

1

σpAinel

dσpA
J/ψ

(b)

dy

Ncoll(b) · 1
σppinel

dσpp
J/ψ

dy

, (6.2)

where the cross sections are integrated over P⊥. in this paper, we replace σppinel with σ
NN
inel

for nucleon-nucleon collisions.

We shift the saturation scale for heavy nucleus as

Qs0,A(b) = N
1/γ
coll (b)Qs0,p (6.3)

since the uGD ϕA,y0(k⊥) in (3.44) scales as (Q2
s0,A)

γ at large k⊥. We also consider another

simple expression given by

Qs0,A(b) = Ncoll(b)Qs0,p. (6.4)

Through this chapter, we call Eq. (6.4) natural definition and Eq. (6.3) effective defini-

tion [14]. Within these definitions, the uncertainties of RpA exist.

In the rest of this chapter, we will show the model in our calculations describing

σpAinel and Ncoll(b). Of particular importance of this calculations is that we include the

impact parameter dependence in the saturation scale explicitly. Our aim in this chapter

is to clarify whether we should explicitly include the impact parameter dependence in the

114



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

R
pA

Q2
s0,A (GeV/c)2

√s = 200 GeV, mc = 1.5 GeV

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

R
pA

Q2
s0,A (GeV/c)2

√s = 5.02 TeV, mc = 1.5 GeV

Figure 6.1: Nuclear modification factor RpA for J/ψ as a function of Q2
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√
s = 200 GeV

mc = 1.5 GeV mc = 1.2 GeV

y Ay By Cy Ay By Cy

0.0 4.93 3.11 1.35 8.89 3.42 1.71

0.5 5.08 3.13 1.36 8.53 3.36 1.70

1.0 1.26 1.20 0.762 1.31 1.20 0.901

1.5 0.844 0.622 0.671 0.846 0.653 0.785

2.0 0.697 0.442 0.703 0.681 0.463 0.800

2.5 0.596 0.366 0.799 0.574 0.378 0.886

3.0 0.499 0.330 0.967 0.475 0.332 1.042
√
s = 5.02 TeV

mc = 1.5 GeV mc = 1.2 GeV

y Ay By Cy Ay By Cy

0.0 0.575 0.169 0.496 0.550 0.181 0.554

0.5 0.526 0.146 0.540 0.502 0.156 0.596

1.0 0.483 0.130 0.585 0.459 0.138 0.641

1.5 0.445 0.117 0.630 0.422 0.125 0.686

2.0 0.412 0.105 0.665 0.389 0.112 0.723

2.5 0.386 0.094 0.693 0.363 0.101 0.752

3.0 0.364 0.087 0.722 0.341 0.092 0.779

3.5 0.343 0.083 0.755 0.321 0.087 0.811

4.0 0.321 0.080 0.796 0.300 0.084 0.851

Table 6.1: The parameter sets of least squared fitting RpA of the J/ψ with parametrized
function Eq. (6.11) at

√
s = 200 GeV and 5.02 TeV : RpA = Ay/(By + Q2

s,A0)
Cy with

mc = 1.5 and 1.2 GeV.
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heavy nucleus or we can exchange Ncoll(b) with effective value in the minimum bias event.

6.3 Semi-classical description of proton-nucleus col-

lisions

Here, we approximate a density of atomic mass number as

ρA =
A

4
3
πR3

A

∼ 1.17fm−3 . (6.5)

In general, ρA might depend on a configuration of nucleon within the nucleus which is

characterized with impact parameter: b in the transverse plane and longitudinal position:

z [58].

Then, we can define a nuclear thickness function given by

TA(b) =

∫
dz ρA =

3A

2πR3
A

√
R2
A − b2 θ(RA − b) , (6.6)

with the density of the nuclear mass number (6.5). This function is of course normalized

as
∫
d2b TA(b) = A. Thickness function takes a crucial role for the calculation of impact

parameter dependence of RpA for the J/ψ production.

Using the semi-classical Glauber theory, the number of overlapping nucleons at the

impact parameter b in proton-nucleus collisions is given by

Ncoll(b) =

∫
d2s σNNinel TA(s)Tp(s− b) = σNNinel TA(b) , (6.7)

where the thickness function of the proton has been assumed to be Tp(s− b) = δ(s− b).

(See Fig. 6.2.) Here σNNinel is an input parameter to estimate Ncoll at x = x0 encoded into

the saturation scale. Initial saturation scale is proper to the heavy nucleus, therefore we

should take σNNinel as energy independent one. Here σNNinel = 42 mb is used for the calculation

of both RHIC and LHC energy.

Next, we present briefly how to obtain the total inelastic cross section in pA collisions.

We take n as the number of nucleon-nucleon collision in pA collisions and (A − n) as

the number of binary nucleon’s pair passing through each other. Following the Glauber

117



Projectile B Target A

~b

~s z

~s−~b ~s−~b

Figure 6.2: Schematic representation of the Glauber Model geometry, with transverse
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theory,

d2σpAinel
db2

=

{
A∑
n=1

(
A

n

)[
T̂A(b)σ

NN
inel

]n [
1− T̂A(b)σNNinel

]A−n}
, (6.8)

where T̂A(b) = TA(b)/A. Therefore, total inelastic cross section in pA collisions is given

by

σpAinel =

∫
d2b

{
1−

[
1− T̂A(b)σNNinel

]A}
. (6.9)

Now we have replaced TA(b) = TA(b) since TA(b) is the scalar function given in Eq. (6.5).

Finally, we remark a centrality which is measured in the experiences. Centrality

corresponds to the ratio of produced J/ψ cross section in the certain range of impact

parameter to its total cross section. The cross section at b ∼ 0 is larger than any other

point in the impact parameter space in our model, then the centrality is measured from

the center of target nucleus in the transverse plane. For instance, X%-centrality for each

rapidity means

∫ bX
0

2πbdb
dNpA

J/ψ
(b)

dy∫ RA
0

2πbdb
dNpA

J/ψ
(b)

dy

=
X

100
, (6.10)

and we note the heavy nucleus has a sharp edge: θ(RA − b).

6.4 Numerical Results

As stated above, we have found that for each rapidity Q2
s0,A-dependence of RpA can be

fitted nicely by a following parametrized function:

RpA(b, y) =

1

σpAinel

dσpA
J/ψ

(b)

dy

Ncoll(b) · 1
σppinel

dσpp
J/ψ

dy

≃
1

πR2
A

dσpA
J/ψ

(b)

dy

Ncoll(b) · 1
πR2

p

dσpp
J/ψ

dy

=
Ay

(By +Q2
s0,A(b))

Cy
(6.11)

with Qs0,A(b) = N
1/γ
coll (b)Qs0,p. Ay, By and Cy are fitting parameters at each rapidity, and

specific values of these parameters are listed in Table. 6.1. This data analysis procedure

can be also found in Ref. [67] but for different parameter set. Above suppression pattern
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might be caused by the scattering of produced quark pair off the heavy nucleus coherently

known as a QCD analog of superpenetration. in this paper, using the above expression

of Eq. (6.11), we redefine RpA as follows

Reff
pA(b, y;Qs0,A(b) = N

1/γ
coll (b)Qs0,p) =

1

σpAinel

dσpA
J/ψ

(b)

dy

Ncoll(b) · 1
σNNinel

dσpp
J/ψ

dy

=
Ay

(By +Q2
s0,A(b))

Cy
· A

2/3σNNinel
σpAinel

(6.12)

for effective definition and

Rnat
pA (b, y;Qs0,A(b) = Ncoll(b)Qs0,p) =

Reff
pA(b, y;Qs0,A(b) = Ncoll(b)Qs0,p) ·Nγ

coll(b)

Ncoll(b)
(6.13)

for natural definition.

In the minimum bias event,

⟨RpA(y)⟩MB =

1
πR2

A

∫
d2b

dNpA
J/ψ

(b)

dy

1
πR2

A

∫
d2b Ncoll(b) ·

dNpp
J/ψ

dy

=

∫
d2b RpA(b, y)Ncoll(b)∫

d2b Ncoll(b)
(6.14)

and for the centrality (X1 − X2)%, we integrate the impact parameter over b ∈ [b1, b2].

We take RA = A1/3Rp with Rp = 1.12fm and A = 197Au at RHIC and A = 208Pb at LHC

as default parameters in our calculations.

We show in Fig. 6.4 and Fig. 6.5 the RpA of J/ψ production at
√
s = 200 GeV as a

function of rapidity for each centrality, computed with Eq. (6.12) and (6.13). We found

the results in the central collisions (0 − 20%) and the minimum bias event (0 − 100%)

,which is shown in Fig. 6.6, can reproduce the data at RHIC. On the other hand, for

peripheral collisions (60 − 88%) it seems the discrepancies between our results and the

data at forward rapidity.

Fig. 6.7 shows the RpA in the minimum bias event at
√
s = 5.02 TeV. Contrast to the

results at RHIC, the results indicate a stronger suppression of RpA at forward rapidity,

however, the data of the LHC provide the similar suppression of that of RHIC.
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Figure 6.4: Nuclear modification factor as a function of rapidity at
√
s = 200 GeV, for

each centrality. Grey band includes uncertainty for changing the charm mass mc = 1.2
GeV to 1.5 GeV. Data at RHIC are taken from Ref. [106].
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Figure 6.5: Nuclear modification factor as a function of rapidity at
√
s = 200 GeV,

for each centrality. Notations are the same as Fig. 6.4. Data at RHIC are taken from
Ref. [106].
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Figure 6.6: Nuclear modification factor as a function of rapidity at
√
s = 200 GeV in the

minimum bias event. Notations are the same as Fig. 6.4. Data at RHIC are taken from
Ref. [106].
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6.5 Short summary

We have found the RpA of quarkonium production as a function of initial saturation scale

in the 3-point ϕqq̄,g can be fitted nicely by simple model function. We have computed

the effective centrality dependence of the nuclear modification factor of the quarkonium

production, but we have found taking into account the nuclear profile does not modify the

results in our model drastically. Namely, as to the minimum bias event, the results of the

J/ψ production which are computed with the nucleus regarded as cylindrical is possibly

reasonable in our computations. As to central collisions, we found our computations

reproduce the data of the RpA of the J/ψ production at RHIC qualitatively, on the other

hand, it might be difficult to reproduce the data in peripheral collisions by use of the

CGC model only. We can rather conclude that the peripheral are of the nucleus behaves

like as a group of free nucleons then we should discuss the peripheral collisions carefully.

In this paper, we have used the simple thickness function Eq. (6.6) with the constant

nuclear density however, for example, the woods-saxon distribution, which is differ from

Eq. (6.6) in a tail of the thickness function at edge of the nucleus, can change the results

in the peripheral collisions. We leave a study of the thickness function dependence of the

J/ψ RpA in the peripheral collisions in future work.

So far we have investigated only the initial interaction of the gluon coming from the

nucleus to the heavy quark pair production. As to the quarkonium production, the fun-

damental quarkonium production mechanism is not fully understood even in elementary

pp collisions. Then, a dynamics of bound state formation , which is the lack in our calcu-

lations, might modify the RpA of the J/ψ quantitatively. In next chapter, we will consider

the dynamics of quarkonium production in pA collisions by using a little sophisticated

model in order to study whether the RpA of the J/ψ is affected or not by the dynamics

of the bound state.
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Chapter 7

Quarkonium production within the

NRQCD factorization approach

In the view of quantitative study, when we compare our results with data, we should

include the other effects such as energy loss of the heavy quark in cold nuclear matter and

a higher order corrections of the amplitude in terms of the coupling constant. Focusing on

the saturation effect and the multiple scattering effect of the heavy quark pair production,

our computation of the CGC shows in Chapter 4 that the stronger suppression of the RpA

of the J/ψ at low p⊥ and forward rapidity at the LHC as compared to the one at RHIC.

However, the quarkonium production mechanism is not fully understood in elementary

pp collisions yet, so that a dynamics of the bound state formation might modify the RpA

of the J/ψ quantitatively. In this chapter, we attempt to evaluate the direct quarkonium

production from the heavy quark pair in the color singlet state in terms of the NRQCD

factorization within the CGC framework 1. Particularly, we focus on a direct quarkonium

production taking a static limit as v → 0 with the relative velocity v between the quark

and the antiquark in the quarkonium rest frame. In this case, the quarkonium production

amplitude reduces to the same as the amplitude in the color singlet model exactly. Then,

in other words, we investigate whether the color singlet model can contribute to the total

quarkonium production cross section. If the quarkonium production cross section from the

heavy quark pair in the color singlet state is remained a comparable order by comparing

it with the total cross section of the quarkonium production, we can expect that the RpA

of the J/ψ at RHIC and also the LHC one become larger than our results in the color

evaporation model which are shown in Fig. 4.14. This is because the background color

1Our model of the computation is similar to that found in Ref. [70].
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field created in pA collisions does not affect the heavy quark pair in the color singlet state,

whereas in the color evaporation model the heavy quark pair in the color octet state which

is created in the initial collisions dominantly contributes to the quarkonium production

later.

7.1 Quarkonium production cross section

Let us start by giving a general way to compute the quarkonium cross section in the CGC.

We follow the discussion about one quark pair production as a reference, so then the cross

section to produce exactly one quarkonium (ψ) in pA collisions is defined by

σψQ =

∫
d2b

∫
DρpDρAWYp

[ρp]WYA
[ρA]PψQ [ρp, ρA; b] (7.1)

with

PψQ [ρp, ρA; b] =

∫
d3P

(2π)32EP

∑∣∣MψQ(P )
∣∣2 . (7.2)

PψQ [ρp, ρA; b] is the probability to find a quarkonium with the given ρp and ρA at the

impact parameter b. MψQ is a time-ordered amplitude to produce the quarkonium with

spacial momentum P and energy EP at b. Here, we consider only the minimum bias

event then the impact parameter b should be integrated out in Eq. (7.1). And we have

also averaged the probability PψQ [ρp, ρA; b] over ρp and ρA with the appropriate weight

functionsW
Yp

andW
YA
. Then what we must do is to compute the quarkonium production

amplitudeMψQ .

In order to compute it, we first consider the production amplitude of the heavy quark

pair in the 2S+1L
(1,8c)
J state by inserting the projection operators in the final state [96]

with use of Eq. (3.22);

Mqq̄

(
qq̄[2S+1L

(1,8c)
J ](P )

)
=
∑
Lz ,Sz

∑
s1,s2

∑
i,j

∫
d3l

(2π)32l0
δ

(
l0 − l2

M

)
YLLz (̂l)⟨ 12 , s1; 1

2
, s2|S, Sz⟩⟨L,Lz;S, Sz|J, Jz⟩

× ⟨3i; 3̄j|1, 8c⟩ M
F

(
qi
(
P

2
+ l; s1

)
q̄j
(
P

2
− l; s2

))
, (7.3)

where S, L, J are spin, angular momentum, and total spin of the heavy quark pair re-
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spectively with Sz, Lz, Jz which are a component of S, L, J respectively. And YLLz is

spherical harmonics and M = 2m. The index 1 and 8c in the left hand side of Eq. (7.3)

represent color singlet and octet state respectively. Before inserting the projection op-

erators, the heavy quark (antiquark) has a spin component s1 (s2) and color i (j) with

the relative momentum l between the quark and the antiquark and the total momentum

P . δ-function for the relative energy in the right hand side of Eq. (7.3) restricts relative

momentum to |l| =
√
Ml0. In the quarkonium rest frame, the kinetic energy of the sys-

tem is estimated ∼ Mv2 then the relative energy between the quark and the antiquark

is assumed to l0 ≃ Mv2 ≪ M = 2m if the relative velocity of the quark is enough small

compared with the speed of light . Color projection operators in the SU(Nc) algebra are

given by

⟨3i; 3̄j|1⟩ = δji√
Nc

⟨3i; 3̄j|8c⟩ =
√
2(tc)ji (7.4)

for the color singlet and the octet state respectively. The relation between the differential

cross section of the heavy quark pair production and the amplitude Eq. (7.3) is given by

dσqq̄

dP 2
⊥dy

=

∫
d2b

∫
DρpDρAWYp

[ρp]WYA
[ρA]

1

(2π)32

∑
|Mqq̄(P )|2 . (7.5)

where P⊥ is the transverse momentum and y is the rapidity of the quark pair. We

notice immediately Eq. (7.3) breaks the Lorentz invariance due to the δ-function which

depends on the frame dependent relative energy. However such Lorentz non-invariant

terms should be compensated with other terms in the long distance matrix element of

the heavy quark pair production. This is proper since the total cross section should be

defined as the Lorentz invariant quantity.

To confirm this fact, let us consider the NRQCD factorization assumption;

dσ(qq̄[2S+1L
(1,8c)
J ]) = C(qq̄[2S+1L

(1,8c)
J ])short⟨0|Oqq̄1,8c(2S+1LJ)|0⟩. (7.6)

This is the rewrite of Eq. (C.9) and the short distance coefficient Cshort involving the

heavy quark pair production is essential for computing the quarkonium cross section. As

we discuss in Appendix C, once Cshort is determined from Eq. (7.6) then we can compute

the quarkonium production cross section with use of the same Cshort. The amplitude
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⟨0|Oqq̄1,8c(2S+1LJ)|0⟩ is given in the NRQCD explicitly. Then, by combining Eq. (7.6) with

Eq. (7.5), what we must do to obtain the differential cross section of the quarkonium

production in the minimum bias event is computing the short distance coefficient as

follows;

C(qq̄[2S+1L
(1,8c)
J ])short

=
1

⟨0|Oqq̄1,8c(2S+1LJ)|0⟩

∫
d2b

∫
DρpDρAWYp

[ρp]WYA
[ρA]

1

(2π)32

∑
|Mqq̄(P )|2 . (7.7)

In Appendix C, we actually show the long distance matrix element ⟨0|Oqq̄1,8c(2S+1LJ)|0⟩
also includes the Lorentz non-invariant δ-function which is canceled out by the same δ-

function in theMqq̄. Then, we find finally the Lorentz invariant quarkonium cross section

with use of this short distance coefficient which is given by

dσψQ
dP 2

⊥dy
= C(qq̄[2S+1L

(1,8c)
J ])short

1

m
⟨0|OψQ1,8c(2S+1LJ)|0⟩ (7.8)

where ⟨0|OψQ1,8c(2S+1LJ)|0⟩ is the non-perturbative long distance matrix element which

describes the hadronization from the heavy quark pair in the 2S+1L
(1,8c)
J state to the

quarkonium in the 2S+1LJ state. And this is fitted or determined by experiments and

lattice calculation. Here we assume that the quantum numbers of the heavy quark are

preserved through its hadronization. The factor 1/m is required to compensate for the

dimension of the cross section. As we already stated, in this paper we focus on the

quarkonium production in terms of the color singlet model. Especially, we are interested

in the direct J/ψ (and also Υ(1S)) production and then we compute the short distance

coefficient of the S-wave heavy quark pair production in color singlet state and octet state

in the following sections.
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7.1.1 Quark pair in the color singlet state : 3S
(1)
1

Firstly, we consider the amplitude of the quark pair production in the color singlet and

spin triplet state; 3S
(1)
1 which is given by

Mqq̄

(
3S

(1)
1 (Sz);P

)
=

π∫
0

sin θdθ

2π∫
0

dϕ
M

4(2π)3

√
M

l0

√
1

4π

1√
Nc

× g2
∫
d2k1⊥

(2π)2
d2k⊥

(2π)2
ρp,a(k1⊥)

k21⊥

∫
d2x⊥d

2y⊥e
ik⊥·x⊥ei(P⊥−k⊥−k1⊥)·y⊥

× trd [P1Sz(P ; l)Tqq̄(k1⊥,k⊥)]|l|=
√
l0M tr[Ũ(x⊥)t

aŨ †(y⊥)] (7.9)

where we assume the quark pair in the final state has a spin component Sz. The covariant

spin projection operator is given by 2 [74, 75]

PSSz(P ; l) =
∑
s1,s2

v

(
P

2
− l; s2

)
ū

(
P

2
+ l; s1

)
⟨ 1
2
, s1; 1

2
, s2|S, Sz⟩. (7.12)

Here we have neglected the term involving Tg because no transition process from color

octet state to color singlet state exists and vice versa. The color singlet quark pair does

not interact with background fields and no gluon absorption occurs. Then this is one of

the phenomena of color transparency in the medium.

Furthermore, by averaging the configurations of the color charge densities ρp and ρA

with the weight functions W
Yp
[ρp] and W

YA
[ρA], and summing over the spin states of

2The expressions for the spin singlet and triplet state read

P00(P ; l) =
−1

2
√
2m

(
/P

2
− /l −m

)
γ5
(
/P

2
+ /l +m

)
(7.10)

P1Sz (P ; l) =
−1

2
√
2m

(
/P

2
− /l −m

)
/ε∗(P ;Sz)

(
/P

2
+ /l +m

)
(7.11)

respectively. Here ε is a three components polarization vector of the produced quarkonium according to
the spin direction Sz = 0,±1.
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produced quarkonium and the configurations of ρp and ρA, we obtain a square amplitude

∑∣∣∣Mqq̄

(
3S

(1)
1 (Sz);P

)∣∣∣2 = ∫ DρpDρAWYp
[ρp]WYp

[ρA]
∑
Sz

∣∣∣Mqq̄

(
3S

(1)
1 (Sz);P

)∣∣∣2
≃
∑
Sz

(4π)2
M3

16(2π)6l0
1

4π

1

Nc

g4
∫

k1⊥,k
′
1⊥,k⊥,k

′
⊥

⟨ρp,a(k1⊥)ρ
†
p,a′(k

′
1⊥)⟩Yp

k21⊥k
′2
1⊥

×
∫

x⊥,x
′
⊥,y⊥,y

′
⊥

ei(k⊥·x⊥−k′
⊥·x′

⊥)ei(P⊥−k⊥−k1⊥)·y⊥e−i(P⊥−k′
⊥−k′

1⊥)·y′
⊥

×trd[P1Sz(P ; l)Tqq̄(k1⊥,k⊥)]trd[T
†
qq̄(k

′
1⊥,k

′
⊥)P†

1Sz
(P ; l′)]

× ⟨tr[Ũ(x⊥)t
aŨ †(y⊥)]tr[Ũ(y

′
⊥)t

a′Ũ †(x′
⊥)]⟩YA , (7.13)

where we can neglect the relative momenta lµ and l′µ in the hard matrix elements since we

suppose that l0 ≃ l′0 ≃Mv2 ≪M and |l| ∼ |l′| =
√
l0M ≃Mv ≪M with quark velocity

v ≪ c = 1. We denote
∫
k⊥

=
∫
d2k⊥/(2π)

2 and
∫
x⊥

=
∫
d2x⊥ in the above expression.

x⊥ and y⊥ are a transverse coordinates of the quark and the antiquark respectively in

the production amplitude and x′
⊥ and y′

⊥ are the same but in the complex conjugate (see

Fig. 3.8).

Here as we have defined ϕA in Chapter 3, we define the non-perturbative 4-point

correlator ϕCS
A,Y relevant to the color singlet quark pair production which is given as follows;

δaa
′

∫
x⊥,x

′
⊥,y⊥,y

′
⊥

ei(k⊥·x⊥−k′
⊥·x′

⊥)ei(P⊥−k⊥−k1⊥)·y⊥e−i(P⊥−k′
⊥−k

′
1⊥)·y′

⊥

× ⟨tr[Ũ(x⊥)t
aŨ †(y⊥)]tr[Ũ(y

′
⊥)t

a′Ũ †(x′
⊥)]⟩Y

=

∫
k2⊥

(2π)2δ(2)(P⊥ − k1⊥ − k2⊥)
g2Nc

2πk22⊥

×
∫
Y ⊥

ei(k2⊥−k′
2⊥)·Y ⊥

dϕCS
A,Y (k⊥,k2⊥ − k⊥;k

′
⊥,k2⊥ − k′

⊥|Y ⊥)

d2Y ⊥
, (7.14)

where we have assumed g2 is fixed value. Y is the rapidity and P⊥ = k1⊥+(k2⊥−k⊥)+k⊥

is the transverse momentum conservation condition. Y ⊥ is the transverse position running

over the transfers plane of the nucleus and conjugate variable to k2⊥−k′
2⊥. We have also

assumed that the differences k1⊥−k′
1⊥ and k2⊥−k′

2⊥ are small (O(ΛQCD)) and we assume

k2⊥ ≈ k′
2⊥ and k1⊥ ≈ k′

1⊥ because we focus on the perturbative region.This function is
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a quite different from the four point function introduced in the quark pair production

because this new 4-point correlator is not related to the multi-parton function ϕA. The

only allowed configuration of the color singlet quark pair production is shown in Fig. 7.2

where the gluons coming from the nucleus present the multiple scattering effects. Then

the square amplitude with use of the multi parton function ϕCS
A,Y is rewritten as

∑∣∣∣Mqq̄

(
3S

(1)
1 (Sz);P

)∣∣∣2
=

M3

4(2π)5l0
g4

dA

∫
k1⊥,k

′
1⊥,k⊥,k

′
⊥,k2⊥

δ(2)(P⊥ − k1⊥ − k2⊥)

k21⊥k
2
2⊥

Ξ
3S

(1)
1 (k1⊥,k2⊥,k⊥,k

′
⊥)

×
∫

X⊥

ei(k1⊥−k′
1⊥)·(X⊥+b)dφp,Y1 (k1⊥|X⊥)

d2X⊥

×
∫
Y ⊥

ei(k2⊥−k′
2⊥)·Y ⊥

dϕCS
A,Y2

(k⊥,k2⊥ − k⊥;k
′
⊥,k

′
2⊥ − k′

⊥|Y ⊥)

d2Y ⊥
(7.15)

where we have abbreviated the hard matrix part as Ξ
3S

(1)
1 which is explicitly given in

the Appendix B. Y1 (Y2) is a rapidity of the gluon coming from proton (nucleus). In

the amplitude, we have replaced the correlation between the color charge densities of the

proton with the gluon distribution φ defined in Eq. (3.38). X⊥ is a transverse coordinate

in the proton. Then we find the probability of production of one heavy quark pair,

dP
3S

(1)
1

qq̄ [b]

d2P⊥dy
=

1

2(2π)3

∑∣∣∣Mqq̄

(
3S

(1)
1 (Sz);P

)∣∣∣2
=

1

2(2π)3
M3

4(2π)5l0
g4

dA

∫
k1⊥,k

′
1⊥,k⊥,k

′
⊥,k2⊥

δ(2)(P⊥ − k1⊥ − k2⊥)

k21⊥k
2
2⊥

Ξ
3S

(1)
1 (k1⊥,k2⊥,k⊥,k

′
⊥)

×
∫

X⊥,Y ⊥

ei(k1⊥−k′
1⊥)·(X⊥−Y +b)dφp,Y1 (k1⊥|X⊥)

d2X⊥

dϕCS
A,Y2

(k⊥,k2⊥ − k⊥;k
′
⊥,k2⊥ − k′

⊥|Y ⊥)

d2Y ⊥
.

(7.16)

The impact parameter dependence should be encoded in the exponential phase and we

have shifted the exponent as (k1⊥ − k′
1⊥) · (X⊥ − Y + b). By the shift Y ⊥ → Y ⊥ − b,

Y ⊥ becomes a relative transverse coordinate from the center of proton as is shown in

Fig. (3.10). Here, we have assumed that the saturation scale is not sensitive to the

transverse profile of the nucleus. Now we focus on the production cross section in the
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Ũ †(x′
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Figure 7.1: Graphical representation of the four point correlator between the different
four Wilson line in the fundamental representation. The horizontal solid line represents
the fundamental Wilson line.

minimum bias event, therefore we integrate out the impact parameter by use of∫
b

ei(k1⊥−k′
1⊥)·b = (2π)2δ(2)(k1⊥ − k′

1⊥). (7.17)

Finally, we obtain the formula of the cross section of the color singlet quark pair production

in the minimum bias event as follows;

dσ
3S

(1)
1

qq̄

d2P⊥dy
=

∫
b

dP
3S

(1)
1

qq̄ [b]

d2P⊥dy

=
1

2(2π)3
M3

4(2π)7l0
g4

dA

∫
k⊥,k

′
⊥,k2⊥

Ξ
3S

(1)
1 (k2⊥;k⊥,k

′
⊥)

k21⊥k
2
2⊥

φp,Y1 (k1⊥)ϕ
CS
A,Y2

(k2⊥;k⊥,k
′
⊥) (7.18)

where the multi parton function in the minimum bias event is defined as

ϕCS
A,Y2

(k2⊥;k⊥,k
′
⊥) ≡

∫
Y ⊥

dϕCS
A,Y2

(k⊥,k2⊥ − k⊥;k
′
⊥,k2⊥ − k′

⊥|Y ⊥)

d2Y ⊥

=
2πk22⊥
g2Nc

∫
x⊥,x

′
⊥,y⊥,y

′
⊥

ei(k⊥·x⊥−k′
⊥·x′

⊥)ei(k2⊥−k⊥)·y⊥e−i(k2⊥−k′
⊥)·y′

⊥

× ⟨tr[Ũ(x⊥)t
aŨ †(y⊥)]tr[Ũ(y

′
⊥)t

a′Ũ †(x′
⊥)]⟩. (7.19)

To simplify this function further, by the systematic use of the Fierz identities; (ta)ij(t
a)kl =

1
2

(
δilδjk − 1

Nc
δijδkl

)
, the four point function is arranged as follows
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1

Nc

⟨tr[Ũ(x⊥)t
aŨ †(y⊥)]tr[Ũ(y

′
⊥)t

aŨ †(x′
⊥)]⟩Y

=
1

2Nc

⟨tr[Ũ †(y⊥)Ũ(x⊥)Ũ
†(x′

⊥)Ũ(y
′
⊥)]⟩Y −

1

2N2
c

⟨tr[Ũ †(y⊥)Ũ(x⊥)]tr[Ũ
†(x′

⊥)Ũ(y
′
⊥)]⟩Y

(7.20)

which is shown in Fig. 7.1. Here we have defined a quadrupole scattering matrix as

Q
Y
(x⊥,y⊥;y

′
⊥,x

′
⊥) ≡

1

Nc

tr
⟨
Ũ(x⊥)Ũ

†(x′
⊥)Ũ(y

′
⊥)Ũ

†(y⊥)
⟩
Y
, (7.21)

and then we can rewrite the 4 point function as

1

Nc

⟨
tr[Ũ(x⊥)t

aŨ †(y⊥)]tr[Ũ(y
′
⊥)t

aŨ †(x′
⊥)]
⟩
Y

LNc=
1

2
[Q

Y
(x⊥,y⊥;y

′
⊥,x

′
⊥)− SY (x⊥,y⊥)SY (y

′
⊥,x

′
⊥)] , (7.22)

where we have abbreviated the large-Nc limit as “LNc”. Finally Eq. (7.19) in the large-Nc

limit becomes

ϕCS
A,Y (k2⊥;k⊥,k

′
⊥)

LNc=
π2R2

Ak
2
2⊥

g2

∫
r,r′,∆

ei(k⊥·x⊥−k′
⊥·x′

⊥)ei(k2⊥−k⊥)·y⊥e−i(k2⊥−k′
⊥)·y′

⊥

× [Q
Y
(x⊥,y⊥;y

′
⊥,x

′
⊥)− SY (x⊥,y⊥)SY (y

′
⊥,x

′
⊥)]

(7.23)

where r = x⊥−x′
⊥, r

′ = y⊥−y′
⊥, and ∆ = x′

⊥−y′
⊥. We have assumed the translational

invariance in the nucleus then the area of the nucleus πR2
A emerges.

Combining Eq. (7.18) with Eq. (C.19) in Appendix C, the short distance coefficient

for the heavy quark pair production in the color singlet 3S1 state is determined as

C(qq̄[3S
(1)
1 ])short =

α2
s

3(2π)3N2
cCF

∫
k⊥,k

′
⊥,k2⊥

Ξ
3S

(1)
1 (k2⊥;k⊥,k

′
⊥)

k21⊥k
2
2⊥

φp,Y1 (k1⊥)ϕ
CS
A,Y2

(k2⊥;k⊥,k
′
⊥)

(7.24)

where CF = tata = (N2
c − 1)/2Nc. As a results, by the shift of mass dimension, the
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k1

k2 − k k

P k
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′

p

A

Figure 7.2: Graphical diagram of the production of the quark pair in 3S
(1)
1 state. Dash

line at each diagram corresponds to final state cut. White blob represents color singlet
state. The gluons from the nucleus provide eikonal phases to the quark propagators.

production cross section of the quarkonium in the 3S1 state is given by

dσ
3S

(1)
1

ψQ

d2P⊥dy
=C(qq̄[3S

(1)
1 ])short

1

m
⟨0|OψQ1 (3S1)|0⟩

=
2α2

s⟨0|O
ψQ
1 (3S1)|0⟩

3(2π)3N2
cCFM

∫
k⊥,k

′
⊥,k2⊥

Ξ
3S

(1)
1 (k2⊥;k⊥,k

′
⊥)

k21⊥k
2
2⊥

φp,Y1 (k1⊥)ϕ
CS
A,Y2

(k2⊥;k⊥,k
′
⊥) ,

(7.25)

where non-perturbative transition rate ⟨0|OψQ1 (3S1)|0⟩ corresponds to the non-relativistic

BS amplitude exactly which reads

⟨0|OψQ1 (3S1)|0⟩ =
3Nc

2π
|R(0)|2 [1 +O(v4)]. (7.26)

R(0) is a radial wave function at origin and it has been computed in the QCD motivated

potential model 3 and we find |R(0)|2 = 0.81GeV3 in Ref. [99, 100]. We use this value in

3For another phenomenological estimation, we can use a correspondence of decay width to the wave
function at origin as follows,

Γ(J/ψ → e+e−) =
4α2

EMe
2
Q |R(0)|

2

M2

[
1− 16

3π
αs

]
, (7.27)

where the input parameters Γe+e− = 5.55keV, αEM = 1/137, andM = 3.1GeV. This expression includes
the radiative correction [99].

135



numerical computations.

7.1.2 Quark pair in the color octet state : 3S
(8)
1 and 1S

(8)
0

In the similar way for the color singlet heavy quark pair production, the production

amplitude of the quark pair in the color octet and 3S1 state is given by

Mqq̄

(
3S

(8)
1 (Sz);P

)
=
√
2

∫
d3l

(2π)32l0
δ

(
l0 − l2

M

)√
1

4π

× g2
∫
d2k1⊥

(2π)2
d2k⊥

(2π)2
ρp,a(k1⊥)

k21⊥

∫
d2x⊥d

2y⊥e
ik⊥·x⊥ei(P⊥−k⊥−k1⊥)·y⊥

×

{
trd [P1Sz(P ; l)Tqq̄(k1⊥,k⊥)] tr

[
tcŨ(x⊥)t

aŨ †(y⊥)
]

+ trd [P1Sz(P ; l)Tg(k1⊥)] tr
[
tctbU ba(x⊥)

]}
. (7.28)

In this case, the color matrix in the fundamental representation tc for the color octet

heavy quark pair production enters into the color trace of the amplitude. By averaging

the configurations of the color charge densities ρp and ρA, and summing over the spin

states of produced quarkonium and the configurations of ρp and ρA, a square amplitude

is given as follows;

∑∣∣∣Mqq̄

(
3S

(8)
1 (Sz);P

)∣∣∣2 = M3g2

4(2π)5l0πdA

∫
k1⊥,k⊥,k

′
1⊥,k

′
⊥

1

k′21⊥

∫
X⊥

ei(k1⊥−k′
1⊥)·X⊥

dφp,Y1 (k1⊥|X⊥)

d2X⊥

×
∫

x⊥,y⊥,x
′
⊥,y

′
⊥

eik⊥·x⊥−ik′
⊥·x′

⊥ei(P⊥−k⊥−k1⊥)·y⊥e−i(P⊥−k′
⊥−k

′
1⊥)·y′

⊥

×

{
Ξ

3S
(8)
1

1 W
Y2
(x,y;y′,x′) + Ξ

3S
(8)
1

2 W
Y2
(x,y;x′,x′)

+ Ξ
3S

(8)
1

3 W
Y2
(x,x;y′,x′) + Ξ

3S
(8)
1

4 W
Y2
(x,x;x′,x′)

}
,

(7.29)

where we have used the φ in Eq. (3.38) and X⊥ is the transverse coordinate in the proton

which is the same as shown in Eq. (7.15) with assumption k1⊥ ≈ k′
1⊥. Y1 (Y2) is a rapidity

of the gluon coming from proton (nucleus). We have introduced new notation W
Y
which
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reads

W
Y
(x,y;y′,x′) ≡

⟨
tr[tcŨ(x⊥)t

aŨ †(y⊥)]tr[Ũ(y
′
⊥)t

aŨ †(x′
⊥)t

c]
⟩
Y
. (7.30)

In contrast to the quark pair production in the color singlet state, four characteristic

matrices are emerged in Eq. (7.29);

Ξ
3S

(8)
1

1 (k1,k2,k,k
′) =

∑
Sz

trd[P1Sz(P ; l = 0)Tqq̄(k1⊥,k⊥)]trd[T
†
qq̄(k

′
1⊥,k

′
⊥)P†

1Sz
(P ; l′ = 0)],

Ξ
3S

(8)
1

2 (k1,k2,k) =
∑
Sz

trd[P1Sz(P ; l = 0)Tqq̄(k1⊥,k⊥)]trd[T
†
g (k

′
1⊥)P†

1Sz
(P ; l′ = 0)],

Ξ
3S

(8)
1

3 (k1,k2,k
′) =

∑
Sz

trd[P1Sz(P ; l = 0)Tg(k1⊥)]trd[T
†
qq̄(k

′
1⊥,k

′
⊥)P

†
1Sz

(P ; l′ = 0)],

Ξ
3S

(8)
1

4 (k1,k2) =
∑
Sz

trd[P1Sz(P ; l = 0)Tg(k1⊥)]trd[T
†
g (k

′
1⊥)P

†
1Sz

(P ; l′ = 0)], (7.31)

which are shown as a graphical representations in Fig. 7.3.

Next, let us simplify Eq. (7.29) further. By the systematic use of Fierz identity,

Eq. (7.30) can be rewritten as

W
Y
(x,y;y′,x′)

=
1

4

⟨
tr[Ũ(y′

⊥)Ũ
†(y⊥)]tr[Ũ(x⊥)Ũ

†(x′
⊥)]
⟩
Y
− 1

4N

⟨
tr[Ũ(x⊥)Ũ

†(y⊥)Ũ(y
′
⊥)Ũ

†(x′
⊥)]
⟩
Y

− 1

4N

⟨
tr[Ũ(x⊥)Ũ

†(x′
⊥)Ũ(y

′
⊥)Ũ

†(y⊥)]
⟩
Y
+

1

4N2

⟨
tr[Ũ(x⊥)Ũ

†(y⊥)]tr[Ũ(y
′
⊥)Ũ

†(x′
⊥)]
⟩
Y
,

(7.32)

where first term in the right hand side has a scale of order O(N2
c ), the second and third

terms are O(Nc), and fourth term is O(1). Then we find Eq. (7.30) becomes with the

large-Nc limit

W
Y
(x,y;y′,x′)

LNc=
N2
c

4
S
Y
(x⊥,x

′
⊥)SY (y⊥,y

′
⊥) (7.33)

where we have assumed the relation in Eq. (2.48).

In order to obtain the cross section in the momentum space, we consider a Fourier
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Figure 7.3: Specific diagrams of the production of the quark pair in 3S
(8)
1 ; Upper figure is

related to Ξ
3S

(8)
1

1 , Middle is related to Ξ
3S

(8)
1

2 , and Lower is related to Ξ
3S

(8)
1

4 . Dash line at
each diagram corresponds to final state cut. Black blob represents color octet state. The

gluons coming from the nucleus provide eikonal phases to the quark propagators. Ξ
3S

(8)
1

3

is a complex conjugate to Ξ
3S

(8)
1

2 .

138



transform of the W
Y
(x,y;y′,x′) in the large-Nc limit which is given by∫

x⊥,y⊥,x
′
⊥,y

′
⊥

eik⊥·x⊥−ik′
⊥·x′

⊥ei(P⊥−k⊥−k1⊥)·y⊥e−i(P⊥−k′
⊥−k

′
1⊥)·y′

⊥ W
Y
(x,y;y′,x′)

=

∫
k2⊥

(2π)2δ(2)(P⊥ − k1⊥ − k2⊥)

∫
Y ⊥

N2
c

4
(2π)2δ(2)(k⊥ − k′

⊥) S̃Y (k⊥)S̃Y (k2⊥ − k⊥) (7.34)

where S̃
Y
is the scattering matrix in the momentum representation. Here we have assumed

the translational invariance in the heavy nucleus and k1⊥ ≈ k′
1⊥. And we have integrated

out
∫
y⊥

. By convoluting the hard matrix element Ξ
3S

(8)
1

1 with Eq. (7.34), we obtain∫
k⊥,k

′
⊥

Ξ
3S

(8)
1

1 (k1,k2,k,k
′)

∫
x⊥,y⊥,x

′
⊥,y

′
⊥

× eik⊥·x⊥−ik′
⊥·x′

⊥ei(P⊥−k⊥−k1⊥)·y⊥e−i(P⊥−k′
⊥−k

′
1⊥)·y′

⊥W
Y
(x,y;y′,x′)

=

∫
k2⊥

(2π)2δ(2)(P⊥ − k1⊥ − k2⊥)

∫
Y ⊥

N2
c

4

∫
k⊥

S̃
Y
(k⊥)S̃Y (k2⊥ − k⊥) Ξ

3S
(8)
1

1 (k1,k2,k,k
′)

(7.35)

with k′ = k⊥ in the right hand side. In the similar way, by convoluting Ξ
3S

(8)
1

2 , Ξ
3S

(8)
1

3 , and

Ξ
3S

(8)
1

4 with Eq. (7.34), the square amplitude at an impact parameter b is given by

∑∣∣∣Mqq̄

(
3S

(8)
1 (Sz);P

)∣∣∣2
=

M3

4(2π)7l0
g4

2CF

∫
k′
1⊥,k2⊥,k⊥

Ξ
3S

(8)
1 (k1,k2,k)

k′21⊥k
2
2⊥

∫
X⊥

ei(k1⊥−k′
1⊥)·(X⊥+b)dφp (k1⊥|X⊥)

d2X⊥

× ϕCO
A,Y2

(k2⊥,k⊥), (7.36)

where the hard matrix elements are gathered as

Ξ
3S

(8)
1 (k1,k2,k) ≡

∑
Sz

∣∣∣∣∣trd[P1Sz(P ; l = 0)Tqq̄(k1⊥,k⊥)] + trd[P1Sz(P ; l = 0)Tg(k1⊥)]

∣∣∣∣∣
2

,

(7.37)
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Figure 7.4: Transverse plane of the nucleus in pA collisions. X⊥(Y ⊥) runs over the
transverse plane of the proton (nucleus) having a radius Rp(RA). b is an impact parameter
characterized the distance from the center of nucleus to the center of proton.

and we have introduces the multi parton function which is defined as

ϕCO
A,Y2

(k2⊥,k⊥) =
πR2

ANck
2
2⊥

4αs
S̃
Y2
(k⊥)S̃Y2 (k2⊥ − k⊥). (7.38)

The factor πR2
A is derived from the assumption of the translational invariance in the

nucleus. In Eq. (7.36), we have shifted the the exponent as (k1⊥ − k′
1⊥) · (X⊥ + b)

which represents that X⊥ + b becomes a relative transverse coordinate from the center

of nucleus as is shown in Fig. (7.4). We have also assumed the translational invariance

in the nucleus, namely, the saturation scale embedded in the multi parton function does

not depend on the impact parameter. This multi parton function is the same as ϕqq̄,gA,Y in

Eq. (3.46). The agreement between ϕqq̄,gA,Y and ϕCO
A,Y is reasonable because of the use of the

large-Nc approximation.

Finally, in minimum bias event, the production cross section of the quark pair in the
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color octet 3S1 state is given by

dσ
3S

(8)
1

qq̄

d2P⊥dy
=

∫
b

1

2(2π)3

∑∣∣∣Mqq̄

(
3S

(8)
1 (Sz);P

)∣∣∣2
=

M3

4(2π)7l0
α2
s

2πCF

∫
k2⊥,k⊥

Ξ
3S

(8)
1 (k1,k2,k)

k21⊥k
2
2⊥

φp,Y1 (k1⊥) ϕ
CO
A,Y2

(k2⊥,k⊥), (7.39)

and the short distance coefficient is determined by use of Eq. (C.21) in Appendix C as

C(qq̄[3S
(8)
1 ])short =

α2
s

3(2π)3NcC2
F

∫
k2⊥,k⊥

Ξ
3S

(8)
1 (k1,k2,k)

k21⊥k
2
2⊥

φp,Y1 (k1⊥)ϕ
CO
A,Y2

(k2⊥,k⊥). (7.40)

The production cross section of the quarkonium from the quark pair in the color octet
3S1 state is given by

dσ
3S

(8)
1

ψQ

d2P⊥dy
=
2α2

s⟨0|O
ψQ
8 (3S1)|0⟩

3(2π)3NcC2
FM

∫
k2⊥,k⊥

Ξ
3S

(8)
1 (k1,k2,k)

k21⊥k
2
2⊥

φp,Y1 (k1⊥)ϕ
CO
A,Y2

(k2⊥,k⊥) (7.41)

with non-perturbative transition matrix element ⟨0|OψQ8 (3S1)|0⟩ which is determined by

data fitting or lattice computations.

Here we comment on a computation of the production cross section of the quarkonium

via a heavy quark pair in the color octet 1S0 state. In this channel, the main difference in

a short distance coefficient from Eq. (7.40) is the hard matrix element which is given by

Ξ
1S

(8)
0 (k1,k2,k) =

∣∣∣∣∣trd[P00(P ; l = 0)Tqq̄(k1⊥,k⊥)]

∣∣∣∣∣
2

. (7.42)

Here trd[P00(P ; l = 0)Tg(k1⊥,k⊥)] is exactly zero because the quark pair which is created

from gluon splitting never become a pseud scalar channel. Then, using Eq. (C.20) in

Appendix C, the quarkonium production cross section from the heavy quark pair in the

color octet 1S0 state is given by

dσ
1S

(8)
0

ψQ

d2P⊥dy
=
2α2

s⟨0|O
ψQ
8 (1S0)|0⟩

(2π)3NcC2
FM

∫
k2⊥,k⊥

Ξ
1S

(8)
0 (k1,k2,k)

k21⊥k
2
2⊥

φp,Y1 (k1⊥)ϕ
CO
A,Y2

(k2⊥,k⊥). (7.43)
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Here the non-perturbative amplitude ⟨0|OψQ8 (1S0)|0⟩ should also be determined by data

fitting or lattice computations.

7.2 Color singlet model for quarkonium production

with multi parton correlator

We have shown in Eq. (7.23) that the 4-point function is necessary to compute the direct

J/ψ production cross section in the color singlet model. In general, the multiple n-point

parton correlator which consists of n Wilson lines in the fundamental representation is a

solution of the JIMWLK equation. Then it is difficult to express the analytic form of the

4-point function. However, if the color charge density of the nucleus has the Gaussian

weight function, it is known that the 4-point correlation can reduce to very simple form

as follows [60];

Q
Y
(x⊥,y⊥;y

′
⊥,x

′
⊥)

LNc= S
Y
(x⊥,x

′
⊥)SY (y

′
⊥,y⊥)

− lnS
Y
(x⊥,y

′
⊥)SY (x

′
⊥,y⊥)− lnS

Y
(x⊥,y⊥)SY (x

′
⊥,y

′
⊥)

lnS
Y
(x⊥,x′

⊥)SY (y
′
⊥,y⊥)− lnS

Y
(x⊥,y⊥)SY (x

′
⊥,y

′
⊥)

× [S
Y
(x⊥,x

′
⊥)SY (y

′
⊥,y⊥)− SY (x⊥,y⊥)SY (x

′
⊥,y

′
⊥)]

(7.44)

where we have used the large-Nc approximation. We show in Appendix E the way to

derive Eq. (7.44). Therefore, by using Eq. (7.44) in the large-Nc limit, the color singlet

expectation value in Eq. (7.23) is given by

1

Nc

⟨
tr[Ũ(x⊥)t

aŨ †(y⊥)]tr[Ũ(y
′
⊥)t

aŨ †(x′
⊥)]
⟩
Y

LNc=
1

2
[Q

Y
(x⊥,y⊥;y

′
⊥,x

′
⊥)− SY (x⊥,y⊥)SY (y

′
⊥,x

′
⊥)]

=
1

2
[S

Y
(x⊥,x

′
⊥)SY (y

′
⊥,y⊥)− SY (x⊥,y⊥)SY (y

′
⊥,x

′
⊥)]

 ln S
Y
(x⊥,x

′
⊥)S

Y
(y′

⊥,y⊥)

S
Y
(x⊥,y

′
⊥)S

Y
(x′

⊥,y⊥)

ln
S
Y
(x⊥,x

′
⊥)S

Y
(y′

⊥,y⊥)

S
Y
(x⊥,y⊥)S

Y
(x′⊥,y

′
⊥)

 .
(7.45)

Here we assume the gaussian form for S
Y
in the nucleus as

S
Y
(x⊥,y⊥) = exp

[
−Q

2
sA(x⊥ − y⊥)

2

4

]
(7.46)
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Figure 7.5: Transverse coordinates of the quarks in the quadrupole amplitude in
Eq. (7.45).

and change the transverse coordinate as

x⊥ = X +
r

2
→ r

2
,

y⊥ = X − r

2
→ −r

2
,

x′
⊥ = ∆+X +

r′

2
→∆+

r′

2
,

y′
⊥ = ∆+X +

r′

2
→∆− r′

2
, (7.47)

which are shown in Fig. 7.5. The right arrows in Eq. (7.47) represent the use of the

assumption of translational invariant in the nucleus. Then, we find the expectation value

Eq. (7.45) as

1

Nc

⟨
tr[Ũ(x⊥)t

aŨ †(y⊥)]tr[Ũ(y
′
⊥)t

aŨ †(x′
⊥)]
⟩
Y

LNc=
2r · r′

(r + r′)2 − 4∆2 [SY (x⊥,x
′
⊥)SY (y

′
⊥,y⊥)− SY (x⊥,y⊥)SY (y

′
⊥,x

′
⊥)] (7.48)
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and thus the multi parton function Eq. (7.23) becomes

ϕCS
A,Y (k2⊥;k⊥,k

′
⊥)

LNc=
πR2

Ak
2
2⊥

2αs

∫
r,r′,∆

eil1·re−il2·r
′
e−ik2⊥·∆ 2r · r′

(r + r′)2 − 4∆2

× [S
Y
(x⊥,x

′
⊥)SY (y

′
⊥,y⊥)− SY (x⊥,y⊥)SY (y

′
⊥,x

′
⊥)] (7.49)

where l1 = k⊥− k2⊥
2

and l2 = k′
⊥− k2⊥

2
. Then we rewrite the direct J/ψ production cross

section in Eq. (7.25) further by performing integral over k⊥ and k′
⊥ as follows;

dσ
3S

(1)
1

ψQ

d2P⊥dy
=
2α2

s⟨0|O
ψQ
1 (3S1)|0⟩

3(2π)3N2CFM

∫
k2⊥

1

k21⊥k
2
2⊥
φg,gp,Y1 (k1⊥) ΩA,Y2 (k2⊥) , (7.50)

where k1⊥ = P⊥ − k2⊥ and we have denoted ΩA,Y2 as

ΩA,Y2(k2⊥) ≡
∫

k⊥,k
′
⊥

Ξ
3S

(1)
1 (k2⊥;k⊥,k

′
⊥)ϕ

CS
A,Y2

(k2⊥;k⊥,k
′
⊥) . (7.51)

Here, by using the expression of the hard matrix element which is shown in Appendix B,

we find 4

ΩA,Y2(k2⊥) =
πR2

Ak
2
2⊥

αs

∫
r,r′,∆

e−ik2⊥·∆ r · r′

(r + r′)2 − 4∆2K0

(√k2
1⊥ +M2

2
r
)
K0

(√k2
1⊥ +M2

2
r′
)

× k2
1⊥(k

2
1⊥ +M2)

8π2

[
S
Y2
(x⊥,x

′
⊥)SY2 (y

′
⊥,y⊥)− SY2 (x⊥,y⊥)SY2 (y

′
⊥,x

′
⊥)
]

=
πR2

Ak
2
2⊥

αs

k2
1⊥(k

2
1⊥ +M2)

8π2

∫
∆

e−ik2⊥·∆F (∆), (7.53)

4The integration including the term which depends on L1 and L2 convert to the modified Bessel
function as ∫

k⊥

eil1·r

L1
=

1

8π
K0

(
r

2

√
k21⊥ +M2

)
,

∫
k′
⊥

eil2·r

L2
=

1

8π
K0

(
r′

2

√
k21⊥ +M2

)
. (7.52)

Other integrations
∫
k⊥

eil1·r and
∫
k′
⊥

eil2·r
′
necessarily produce δ(2)(r) or δ(2)(r′) which results in rδ(2)(r) =

r′δ(2)(r′) = 0. Therefore, we certainly pick up the term involving both L1 and L2 in the k1⊥ and k2⊥
integrations.
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with compact notations L1 = 4l21⊥+k2
1⊥+M

2 and L2 = 4l22⊥+k2
1⊥+M

2 and the function

F (∆) is defined as follows;

F (∆) ≡
∫

r,r′

r · r′

(r + r′)2 − 4∆2K0

(√k2
1⊥ +M2

2
r
)
K0

(√k2
1⊥ +M2

2
r′
)

× e−
Q2
sA
4

(r2+r′2)

[
e
Q2
sA
8

{(r+r′)2−4∆2} − 1

]
=
Q2
sA

8

∫
r,r′

(r · r′)K0

(√k2
1⊥ +M2

2
r
)
K0

(√k2
1⊥ +M2

2
r′
)

× e−
Q2
sA
4

(r2+r′2)

∫ 1

0

dξe
Q2
sA
8

{(r+r′)2−4∆2}ξ. (7.54)

In the second line in Eq. (7.54), as in Ref. [71, 72], we have used the following identity

e
Q2
sA
8 {(r+r′)2−4∆2} − 1 =

Q2
sA

8

{
(r + r′)2 − 4∆2

} 1∫
0

dξe
Q2
sA
8 {(r+r′)2−4∆2}ξ, (7.55)

which makes the function F (∆) more manageable. Finally, we have expressed Ω by use

of the modified Bessel function in the second kind which is shown in the Appendix A. As

shown in Ref. [71–73], the Bessel function should enter into the propagator of the heavy

quark pair which is created from the gluon splitting. Finally, let us consider the F (∆) in

the momentum representation. The Fourier transform of F (∆) is given by∫
∆

e−ik2⊥·∆F (∆)

=
Q2
sA

4

∫ 1

0

dξ

∫
r,r′

(r · r′)e
Q2
sA
4

(r·r′)ξe−
Q2
sA
8

(r2+r′2)(2−ξ)K0

(√k2
1⊥ +M2

2
r
)
K0

(√k2
1⊥ +M2

2
r′
)

×
∫

∆d∆πJ0(k2⊥∆)e−
Q2
sA
2

∆2ξ

=
π2

2

∫ 1

0

dξ

ξ
e
− k22⊥

(2Q2
sA
ξ)

∫
drdr′r2r′

2

∫
dθ cos θe

Q2
sArr

′ξ
4

cos θe−
Q2
sA
8

(r2+r′2)(2−ξ)

×K0

(√k2
1⊥ +M2

2
r
)
K0

(√k2
1⊥ +M2

2
r′
)

(7.56)
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where θ is a polar angle between r and r′, and we have used Weber’s formula Eq. (A.26).

Eqs. (7.51–7.56) are the main result in this section.

Direct J/ψ and Υ(1S) production in the color singlet model involve the characteristic

factor r · r′. The polar angular average of it leads to 0. Physical meaning of r · r′ is

that both the heavy quark and the antiquark picks up external gluons to make the heavy

quark pair P - and C-odd state 5, and subsequently the heavy quark pair is bound into

the quarkonium in 3S1 state such as J/ψ and Υ(1S). Expanding Eq. (7.54) at leading

order in terms of Q2
s, we find the finite contribution as

F (∆) ∝
∫

r,r′

Q4
sA(r · r′)2. (7.57)

The saturation momentum Q2
sA scales as A1/3Q2

sp and the dipole size r, r′ are changed

to ∼ 1/P⊥ by performing integral over r and r′, then the differential cross action of the

quarkonium production in the color singlet model should fall off as dσ
dP 2

⊥
∝ A2/3Q4

sp

P 6
⊥

. On

the other hand, the P⊥ dependence of the differential cross action of the quarkonium in

the color evaporation model is differ from the one in the color singlet model because the

heavy quark pair production from splitting of the gluon which propagates through the

background gauge fields in the heavy nucleus is lacked as shown in Eq. (7.9). Then we

expect the P⊥-slope of the quarkonium cross section in our color singlet model is steeper

than that of the color evaporation model at large P⊥ region.

Finally let us consider the A dependence of Eq. (7.50). As we have already shown, Q2
sA

is embedded in the exponent of the scattering matrix Eq. (7.46) and it can be estimated

as α2
sA

1/3

πR2
A

(
1
x

)0.3
. Here α2

sA
1/3 is a resummation parameter of the multiple scattering in the

nucleus and order of unity; α2
sA

1/3 = O(1), even if the strong coupling constant is much

5In the spectroscopic representation, the quantum state of gluon is JPC = 1−− then the eigenvalue
with charge conjugation transform for the system involving n gluons is given by

C = (−1)n.

J/ψ is parity negative and also charge negative then the J/ψ production and decay involves the odd
number of gluons,

J/ψ ←→ (2n+ 1)g (n = 0, 1, · · · ).

Similarly, for ηc as pseudscalar particle we find

ηc ←→ (2n)g (n = 1, 2 · · · ).

This is the results by generalized selection rule called Yang’s theorem.
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sA
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sA
1/3 = O(1)

Figure 7.6: Direct J/ψ production in the color singlet model pA collisions. Grey box
represents the multiple scattering in the nucleus. The direct J/ψ production cross section
in pA collisions is order of αs.

smaller than unity. As a results, the quarkonium cross section in our color singlet model is

proportional to A2/3 explicitly as we have shown the above. By taking a limit A→ 1 (pp

collisions), this J/ψ production amplitude contributes to higher order correction because

the direct J/ψ production cross section in pp collisions at leading order in the coupling

constant is order of α3
s. It means that two gluons fusion in initial collisions leads to color

octet heavy quark pair and subsequently the heavy quark pair becomes color singlet state

involving with additional recoil gluon in order to satisfy the parity and charge conditions.

Then we might expect that the J/ψ production process which is shown in Fig. 7.6 does

not contribute to the cross section in pp collisions but woks in pA collisions compared to

pp collisions.

7.3 Numerical results

In the following calculations, we choose the proton size Rp = 0.9 fm for heavy meson

and quarkonium production. We cancel α2
s in front of the cross section Eq. (7.50) by αs

appearing in the denominator in ϕCS
A,y and in φp,y.

7.3.1 Transverse momentum spectrum of direct J/ψ production

In this subsection, we show a numerical results of the direct J/ψ production cross section

in pA collisions at mid rapidity in the RHIC energy by using the color singlet model

Eq. (7.50). Here we do not consider the x-evolution of the dipole amplitude which is

embedded in the cross section in our computations and limit ourselves to estimation of

order of the J/ψ production cross section which is determined only by initial condition
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of the dipole amplitude because we just focus on whether the J/ψ production in the

color singlet model can contribute to the total cross section and can change the nuclear

modification factor quantitatively. In addition, we have assumed that the quadrupole

amplitude consists of only the dipole amplitude which is gaussian form. Then we must

consider the kinematical region where the quantum evolution does not start yet and the

gaussian form of it is preserved approximately. In order to prevent the quantum evolution

of the dipole amplitude, we should consider only the quarkonium production involving

the momentum fraction x of the gluon in the proton and nucleus is larger than an initial

value of the beginning of the quantum evolution. In this paper, we set x0 = 0.01 and J/ψ

production at mid rapidity in the RHIC energy is appropriate for numerical computations

because the J/ψ production is relevant to x0 < x. For x0 ≤ x ≤ 1, we also apply the

phenomenological Ansatz Eq. (3.64) as we have used in the computations within the color

evaporation model.

Before we go to the results, let us first consider Eq. (7.56). Multiple scattering ef-

fect of the heavy quark pair off background gauge fields provides the exponential phase

e
Q2
sArr

′ξ
4

cos θ. Here we expanded it multiplied by cos θ in a series as follows;

cos θ e
Q2
sArr

′ξ
4

cos θ

=cos θ

(
kmax→∞∑
k=0

1

(2k + 1)!

(
Q2
sArr

′ξ

4
cos θ

)2k+1

+
kmax→∞∑
k=0

1

(2k)!

(
Q2
sArr

′ξ

4
cos θ

)2k
)
.

(7.58)

In fact, we found the second term in the bracket of the right hand side in Eq. (7.58)

becomes 0 by performing integral over the angle θ We can check it out easily by use of

Eqs. (A.24)(A.25). 6 .

Now we show in Fig. 7.7 (Upper) the transverse momentum spectrum of the J/ψ

production in di-electron channel in pp collisions at mid rapidity |y| < 0.35 at
√
s = 200

GeV. We have computed the cross section in Eq. (7.50) with the uGD set MV given in

Table 3.1 in the proton, by substituting the saturation scale of proton into Eq. (7.56).

We have chosen the charm quark mass as mc = MJ/ψ/2 = 1.55 GeV which corresponds

to the static limit v → 0, namely the relative momentum between the quark and the

antiquark becomes 0. Non-perturbative transition probability, namely the BS amplitude

is determined by use of a radial wave function of S-wave at origin. In this paper, we

6Here we set kmax = 4 in this paper. Actually we have checked the numerical result with kmax = 2 is
differ from the one with kmax = 4 by order of 1%.
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Figure 7.7: (Upper) Transverse momentum spectrum of direct 3S
(1)
1 J/ψ production cross

section in di-lepton channel in pp collisions at
√
s = 200 GeV for mid rapidity range

|y| < 0.35. (Lower) Transverse momentum spectrum of direct 3S
(1)
1 J/ψ production

multiplicity in di-lepton channel in pp collisions at
√
s = 200 GeV for mid rapidity

range |y| < 0.35. Brll is a branching ratio of the J/ψ decay into di-lepton channel
and Brll = 0.0594 for e+e− decay at mid rapidity. The results are obtained by using
the production formula (7.25) with uGD set MV for the proton and Eq. (7.56). We fix
Q2
s0,A = 6Q2

s0,p with Q
2
s0,p = 0.2 GeV2 and the charm quark mass is a half of J/ψ mass as

2mc =MJ/ψ = 3.1 GeV. Data from [107,110].

149



choose the LDME for 3S
(1)
1 as ⟨OψQ1 (3S1)⟩ = 1.16 GeV3 which is cited from Ref. [100].

We found that the J/ψ production cross section in the color singlet model is approx-

imately two orders of magnitude less than the data in pp collisions at RHIC. Although

we have calculated the J/ψ production cross section by use of the dipole amplitude in

the gaussian form which constructs the quadrupole amplitude in the large-Nc limit, we

conclude that the color singlet direct J/ψ production at leading order in coupling constant

does not contribute to total J/ψ production cross section at mid rapidity in pp collisions

at RHIC. And we expect this conclusion is not changed in the production at forward

rapidity and at the LHC energy 7.

When we compute the averaged multiplicity of the direct J/ψ production by use of

Eq. (7.50), we should divide Eq. (7.50) by the inelastic cross section which estimated as

πR2
A and effectively it cancels out with the same factor in ϕCS

A,y Eq. (7.49). Then the

averaged multiplicity is proportional to the effective transverse area πR2
p of the proton

appearing in φp,y.

Fig. 7.7 (Lower) shows the averaged multiplicity of the J/ψ production in pA collisions

at mid rapidity at RHIC by using Eq. (7.50) divided by total inelastic cross section which

is approximated as σpAinel ≈ πR2
A. We have also used the dipole scattering matrix in the

gaussian form which consists of the quadrupole scattering matrix element in the large-Nc

limit Eq. (7.44). The initial saturation scale of the target nucleus is fixed as Q2
sA = 6Q2

sp.

It seems that our numerical result in pA collisions is close to the data than the case in

pp collisions. We expect the J/ψ production cross section in pA collisions can be naively

enhanced approximately fiftyfold than that in pp collisions because the J/ψ production

cross section in the color singlet model is proportional to A2/3 which shown in Eq. (7.57).

7.3.2 Nuclear modification factor of direct J/ψ production

Next, let us consider the nuclear modification factor of the J/ψ production in pA collisions,

which has been defined in Eq. (5.7). We have already shown that direct the J/ψ production

cross section computed in the color singlet model cannot reproduce the data both in pp

collisions and pA collisions at RHIC. However we show the qualitative difference of the

transverse momentum spectrum in pA collisions from that in pp collisions.

We show in Fig. 7.8 that RpA of J/ψ (Upper) and Υ(1S) (Lower) as a function of

7It has been known since early times that LO direct J/ψ production cross section in the color singlet
model is smaller than the data in pp(p̄) collisions at Tevatron in the context of collinear factorization
framework.
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Figure 7.8: The ratio RpA(P⊥) as a function of transverse momentum of J/ψ (Upper) and
Υ(1S) (Lower) productions in pA collisions at

√
s = 200 GeV for |y| < 0.35. The charm

quark mass is fixed as a half of the J/ψ mass 2mc = MJ/ψ = 3.1 GeV, and similarly the
bottom quark mass is 2mb =MΥ(1S) = 9.46 GeV.
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transverse momentum P⊥ at mid rapidity in the RHIC energy. The initial saturation

scale of the target nucleus is fixed as Q2
sA = 6Q2

sp. As stated above, the quarkonium cross

section in pA collisions within the color singlet model is proportional to A2/3, then the

RpA is expected to becomes larger than unity if no nuclear effect exists 8.

In the lower momentum region (P⊥ ≲ 2 GeV), we found the RpA is larger than unity

but relatively suppressed than about A1/3 ∼ 6 and a small Cronin like peak around

P⊥ = 3 GeV because of the multiple scattering in the nucleus. At larger P⊥, the RpA

becomes close to about A1/3 ∼ 6 Similarly, we computed the Υ(1S) production by use of

Eq. (7.50) with 2mb =MΥ(1S) = 9.46 GeV and found the RpA of the Υ(1S) is suppressed

than about A1/3 but larger than unity. And a large Cronin like peak is also found at

lower-P⊥, although the RpA of Υ(1S) is less suppressed than that of J/ψ.

7.3.3 J/ψ production from heavy quark pair in color octet state

Finally, we consider only a qualitative behavior of RpA of J/ψ production via color octet

charm quark pair in order to check whether the suppression of RpA is similar to that in

the color evaporation model. As a simple example, we would consider color octet charm

quark pair in 1S0 state by use of Eq. (7.43). We assume the 1S0 color octet charm quark

pair becomes the J/ψ through a non-perturbative interaction at long distance. Here we do

not go into the detail about the cross section of J/ψ from color octet cc̄ because the non-

perturbative long distance matrix element to compute the cross section of J/ψ from color

octet charm quark pair is not known precisely. To determine the non-perturbative long

distance matrix element, we need to compute all the channels in which the charm quark

pair is bound to J/ψ and must extract the long distance matrix element by fitting data.

Then we will leave it in future work. As to computing the nuclear modification factor of

the J/ψ via charm quark pair in the color octet state, the long distance matrix element of

pA collisions could cancel out that in pp collisions if we assume the long distance matrix

element in pp collisions is the same as in pA collisions. Then in this case we do not have

to know the specific value of the long distance matrix element and we can also include

the quantum evolution effects of the multi parti function Eq. (7.38) in the same way as

shown in the J/ψ production in the color evaporation model.

We show In Fig. 7.9 the RpA of the J/ψ production from the color octet charm quark

8In the RpA, the numerator includes A2/3 in the averaged multiplicity dN/d2P⊥dy|pA, while the
number of binary collisions is proportional to approximately A1/3. Then we naively expect RpA ∼ A1/3

at large P⊥.
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Figure 7.9: RpA(P⊥) as a function of transverse momentum of J/ψ production in pA
collisions at

√
s = 200 GeV (Upper) and

√
s = 5.02 TeV (Lower) at each rapidity y =

0, 1, 2, 3. We have assumed color octet cc̄ in 1S0 state becomes J/ψ with non-perturbative
interaction. The charm quark mass is fixed as a half of the J/ψ mass 2mc = MJ/ψ = 3.1
GeV.
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pair in 1S0 at
√
s = 200 GeV (Upper) and

√
s = 5.02 TeV (Lower) at rapidity y =

0, 1, 2, 3. We have used the uGD set g1118 both in proton and nucleus and set Q2
s0,A =

6Q2
s0,p. In the RHIC energy, we found a strong suppression of the RpA at mid and forward

rapidity in the low P⊥ ≲ 2GeV region and large Cronin like peak around ∼ 3GeVat

y = 0 and 1. As the rapidity increases, the Cronin like peak disappears and the RpA

at large P⊥ gets close to unity. On the other hand, the RpA in the LHC energy is more

suppressed even at mid rapidity because of the quantum evolution effect. We certainly

checked these behaviors of the RpA at RHIC and the LHC are qualitatively the same as

we have shown in the CEM production.

7.4 Short summary

In this chapter, we have computed the J/ψ production cross section within the color

singlet model Eq. (7.50) at mid rapidity in the RHIC energy and compared it with data.

We have assumed the large-Nc approximation and constructed the quadrupole scattering

matrix only by the dipole scattering matrix which is assumed to be the gaussian form.

We wondered initially whether the nuclear modification factor RpA of the J/ψ production

which is computed in the color evaporation model can be modified quantitatively by

adding the contribution of direct J/ψ production from the color singlet heavy quark pair.

Concerning the RpA of direct J/ψ production, we found in Fig. 7.8 the enhancement

which means that the RpA is larger than unity because of the A-dependence in the specific

function Eq. (7.57) which appears in our color singlet model. However, the cross section

of the direct J/ψ production can not reproduce the data both in pp collisions and dAu

collisions at RHIC. From these results, although we do not consider the quantum evolution

effect of dipole and quadrupole scattering matrices, we conclude that the direct J/ψ

production from color singlet quark pair might not be dominant production process and

does not change the nuclear modification factor quantitatively in itself. In this paper,

while we just compared our numerical results with the RHIC data, we expect the direct

J/ψ production from color singlet quark pair in itself is not dominant production process

at the LHC too.

On the other hand, we never mean that the dynamics of bound state formation is

not important for understanding the difference between our result of the RpA of the J/ψ

production in pA collisions at the LHC and the data. We have not included a contribution

of the higher state feed-down and possibly the direct J/ψ production from the color singlet
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heavy quark pair at next to leading order (NLO) in strong coupling constant with v = 0

can contribute to the total cross section because the new production channel is opened

at NLO. Then we will leave it in future study.
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Chapter 8

Summary

Approach

Our calculations in this paper are based on the framework of heavy quark pair production

from the CGC in pA collisions where a pA collision is regarded as a dilute-dense system.

The quark pair production cross section is evaluated at leading order in the strong coupling

constant and the color charge density ρp in the proton, but in all orders in the nucleus color

charge density (3.44). Single quark production cross-section is obtained by integrating

the pair production cross-section over the anti-quark phase space.

Incoming gluon from the proton is produced by the unintegrated gluon distribution

(uGD), while gluon coming from nucleus allows a multi parton function such as 3-point

function (3.46). In the large-Nc limit, the multi parton function is obtained by using the

dipole amplitude which is defined as a product of two Wilson lines in the fundamental

representation averaging all the configurations of the classical color charge density. The

dipole amplitude also represents eikonal phase which include multiple scattering effect

of valence partons in the nucleus. At small Bjorken’s x, αs ln(1/x) correction becomes

larger and important for the phenomenology. Nonlinear BK equation allows us to include

quantum evolution effects at small x in the dipole amplitude. Then, the CGC formula

systematically describes both classical multiple scattering effect of valence partons and

the nonlinear QCD evolution effect on the quark pair production (3.22).

At initial point of evolution x0 = 0.01, the BK equation with running coupling cor-

rection is constrained by global fitting of HERA data. We use the constrained initial

condition of the BK equation and construct the unintegrated gluon distribution at small

x ≤ x0 in the proton. On the other hand, we change the initial saturation scale of the

gluon distribution for the heavy nucleus, by assuming the translational invariance in the
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nucleus and limiting the minimum bias event. For x0 ≤ x ≤ 1, on the other hand, we

apply the phenomenological Ansatz (3.64) where we extrapolate the uGD at x0. This

extrapolation implies that the saturation scale is frozen at large x. As for the central and

peripheral collisions, we use the Glauber model to compute the number of collisions. We

assume in this paper that a nuclear density is constant to simplify the discussion.

Physical quarkonium and heavy meson productions cross section are obtained by con-

voluting the quark pair cross section with non-perturbative hadronization model. We

firstly studied the quarkonium production in the CEM where the hadronization dynamics

is treated simply and later attempted to match the quark pair production cross section

from the CGC with the NRQCD approach where the dynamics of hadronization is more

complicated. We use the heavy quark fragmentation function for describing the heavy

meson production.

Results

We have shown the numerical results of quarkonium and heavy meson production in pA

collisions compared to the available data at RHIC and the LHC.

The transverse momentum spectra of quarkonium and heavy meson production cross

sections are accompanied by large uncertainties on input parameters. However, the uncer-

tainties of the results are canceled in RpA which quantifies the production and propagation

of quarkonium/heavy meson in pA collisions. We have found that in the CEM RpA of J/ψ

and D meson in pA collisions at the LHC are suppressed than those at RHIC because of

the non-linear QCD evolution effect in the small-x region. As to the peripheral collisions

at RHIC, our model fails to describe the data. Then the computations by the use of more

realistic nuclear profile is needed. We comment that the DD̄ correlation in pA collisions

can provide the valuable information of saturation effects in the heavy nucleus. However,

we might need to consider the decay process of heavy meson (e.g. D → e) in order to

compare our results to data because statistics of DD̄ production itself is small then the

lepton from heavy quark decay is often used in experiments.

In order to clear the reason why the RpA of J/ψ production at the LHC is compa-

rable to that at RHIC, we investigated the hadronization dynamics by using the color

singlet model. We found the color singlet model bring a possibility to enhance the cross

section of quarkonium production in pA collisions than pp collisions. This is because the

large number of atomic mass number A compensate for a suppression of higher order in

coupling constant as α2
sA

1/3 ∼ O(1) which is encoded in multi parton correlator in the
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nucleus. Although we have not included the quantum evolution effects, we have verified

the enhancement of J/ψ and Υ(1S) production cross section in pA collisions compared

to normalized pp collisions. Multi parton function is observed characteristically in pA

collisions, and then, it suggest that the multi parton function brings different feature in

quarkonium production in pA collisions than pp collisions.

However, we found the color singlet model does not contribute the total inclusive J/ψ

production at RHIC. This might mean we need to compute the contribution of color

octet channel precisely or NLO hard process. If the heavy meson production experiments

will be carried out precisely, the importance of dynamics of hadronization (bound state)

can be expected to become more clear. In any case, our results in this paper are first

quantitative theoretical results which can be comparable to the data and the important

start point for the study of heavy quark pair production in the CGC framework.

Outlook

Finally, we show outlook of this study.

Completing NRQCD matching

We have matched the heavy quark pair production in S-wave from the CGC with NRQCD

factorization approach. However, the P-wave production is also required in order to

extract the Long Distance matrix Elements from the data of hadron collider such as

Tevatron and the LHC. Hard matrix elements of P-wave production in the context of the

CGC can be found in Ref. [70].

Quantum evolution of multi parton function

Color singlet model for quarkonium production is relevant to quadrupole amplitude in

the nucleus. When the distribution of the color charge density is gaussian, we have

already known that the quadrupole amplitude consists of dipole amplitude only in the

large N approximation. Then, in order to study the rapidity dependence of the production

cross section, it is dispensable to include the evolution effect in the quadrupole amplitude

though the dipole amplitude which obeys rcBK equation, or providing a numerical solution

of JIMWLK equation directly.
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Higher order correction

Recently NRQCD framework has been extended to NLO systematically, which results in

a significantly improved description of quarkonium production in pp collisions [97, 98].

The NLO extension of the CGC framework for hadron production in pA collisions is also

elaborated recently [149]. As we have remarked in Chap. 3, the pair production formula

(3.44) used in this study is derived at LO in αs and the color charge density in the proton,

but includes full orders of dense target effects. Extension of the CGC framework from the

LO to the NLO accuracy is seriously attempted nowadays for more accurate and robust

study. For example, the near-side peak in azimuthal angle correlation between the quark

pair can appear at NLO in collinear factorization framework, and comparison of these

frameworks seems important.

Soft parton resummation

As pointed out by the authors in Ref. [150,151], improvement of soft gluon resummation

needs in back-to-back kinematics of DD̄ (or BB̄) pair production and also in production

of J/ψ at small P⊥ compared to invariant mass of the pair. We leave these for a future

study.

In nucleus-nucleus collisions

In the context of HICs, the extending our study to the AA collisions is important study.

The CGC calculation at the present day describes the particle production at only low

transverse momentum region because the typical saturation scale is semi hard but com-

parable to the heavy quark mass scale or larger a little. On the other hand, if we can verify

that the heavy quark production in the larger transverse momentum region at pA colli-

sions does not depend on the CNM effects, pA collisions can be regarded as a reference of

AA collisions. In fact, the energy loss mechanism of heavy quark in hot medium expects

strongly suppression of RAA at larger transverse momentum. So the model extension in

order to describe the cross section of heavy quark production (J/ψ, D) as a function of

transverse momentum is important future work.
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Appendix A

Notations and Identities

A.1 Notation

We show the notations and the definitions used in this paper. When we meet a two

expression with same Lorentz and color indicies, we promise to contract them.

h = c = 1, gµν = diag(1,−1,−1,−1),

xµ = (t,x), pµ = (E,p),

x2 = gµνx
µxν = t2 − x2, p2 = gµνp

µpν = E2 − p2,

pµ = i
∂

∂xµ
= i∂µ,

□ = ∂µ∂
µ. (A.1)

Another important definition is a metric of light-cone frame. In particular, the Wilson

line as the gauge link is defined in terms of the gauge field in the light-cone frame. in this

paper, we take [133]

x+ =
1√
2
(x0 + x3) (A.2)

x− =
1√
2
(x0 − x3), (A.3)

and define the light cone momentum xµ = (x+, x−,x⊥) with light cone metric g+− =

g−+ = 1, g11 = g22 = −1 and the other zero. v2 = 2v+v−−v2
⊥ and u · v = u+v−+u−v+−

u⊥ · v⊥
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A.2 γ-matrices

In 4 dimensional Clifford algebra,

{γµ, γν} = 2gµν ,

σµν =
i

2
[γµ, γν ],

tr[γµγν ] = 4gµν ,

tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ). (A.4)

Dirac matrices γµ in standard Dirac expression is,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
. (A.5)

Here σi is SU(2) Pauli matrices and

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.6)

A.3 SU(3) algebra

tα is a generator of compact SU(3) Lie group and fill the property of Lie algebra.

tr[ta] = 0, (A.7)

[ta, tb] = ifabctc, fabc = fabc. (A.8)

ta = λa

2
in the fundamental representation and Gell-Mann matrices λa have a following

value.

λi =

(
σi 0

0 0

)
; i = 1, 2, 3, λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 ,

λ6 =

(
1 0

0 σ1

)
, λ7 =

(
0 0

0 σ2

)
, λ8 =

1√
3

1 0 0

0 1 0

0 0 −2

 . (A.9)
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tα has a following anti-commutation relation,

{ta, tb} = 1

3
δab1+ dabctc, dabc = dabc. (A.10)

This expression is completely symmetric with exchanging the indices a, b and c. The

coefficients for each relation are

1 = f123 = 2f147 = 2f246 = 2f257 = 2f345 = −2f156 = −2f367 =
2f458√

3
=

2f678√
3
,

1√
3
= d118 = d228 = d338 = −d888,

− 1

2
√
3
= d448 = d558 = d668 = d778,

1

2
= d146 = d157 = d247 = d256 = d344 = d355 = −d366 = −d377. (A.11)

We also note the sum of these structure functions are given by

∑
abc

dabcdabc =
40

3∑
abc

fabcfabc = 24. (A.12)

In addition to the above relations, there are some more relations as follows:

tatb =
1

2
(dabn + ifabn)tn +

1

6
δab, (A.13)

tr[tatb] =
1

2
δab, (A.14)

tatbtc =
1

2
(dabn + ifabn)tntc +

1

6
δabtc, (A.15)

tr[tatbtc] =
1

4
(dabc + ifabc). (A.16)
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A.4 Clebsh-Gordon coefficient

In general, Clebsh-Gordon coefficient is given by

⟨J1,m1; J2,M2|J,M⟩ (A.17)

=δM,M1+M2

√
2J + 1∆(J1J2J)

×
√

(J1 +M1)!(J1 −M1)!(J2 +M2)!(J2 −M2)!(J +M)!(J −M)!

×
∑
z

(−1)z[z!(J1 + J2 − J − z)!(J1 −M1 − z)!(J2 +M2 − z)!(J − J2 +M1 + z)!

× (J − J1 −M2 + z)!]−1,

where

∆(J1J2J) =

√
(J1 + J2 − J)!(J + J1 − J2)!(J + J2 − J1)!

(J1 + J2 + J + 1)!
. (A.18)

We note 0! = 1.

A.5 Fierz identities

Along with the Fierz identities for SU(N) algebra

(ta)ij(t
a)kl =

1

2

(
δilδjk −

1

N
δijδkl

)
(A.19)

which imply

tr[taM1t
aM2] =

1

2
tr[M1]tr[M2]−

1

2N
tr[M1M2] (A.20)

tr[taM1]tr[t
aM2] =

1

2
tr[M1M2]−

1

2N
tr[M1]tr[M2] (A.21)

for any (N ×N) matrices M1 and M2.

A.6 Formulae

We show some formulas used in our calculations.

• Bessel function of the first kind (Hansen’s representation);
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=
1

2
−

1

2N

i j

kl

Figure A.1: Graphical representation of Fierz identities for SU(N) algebra.

Jn(z) =
1

πin

∫ π

0

eiz cos θ cosnθdθ. (A.22)

• Modified Bessel function of the second kind;

K0(mx⊥) =
1

2π

∫
d2k⊥

k2
⊥ +m2

eik⊥·x⊥ . (A.23)

• Trigonometric functions;

cos2n θ =
1

22n−1

[
n−1∑
r=0

(
2n

r

)
cos(2n− 2r)θ +

1

2

(
2n

n

)]
(A.24)

cos2n+1 θ =
1

22n

n∑
r=0

(
2n+ 1

r

)
cos(2n− 2r + 1)θ. (A.25)

• Weber’s Integration;

∫ ∞

0

dxe−a
2x2xJ0(bx) = e−b

2/(4a2)/(2a2). (A.26)
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Appendix B

Hard part of the cross section

In this chapter, we present the detail expression of the hard matrix part of the cross section

which is used in Eq. (7.15). To see the detail results, let us introduce some projection

momentum to treat light cone variables explicitly:

nµ− =
1√
2
(1, 0, 0, 1) (B.1)

nµ+ =
1√
2
(1, 0, 0,−1) (B.2)

nµi = (0, 1, 1, 0) n+
2 = n−

2 = n+ · ni = n− · ni = 0 (B.3)

n+ · n− = 1 (B.4)

ni
2 = −2. (B.5)
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3S
(1)
1 channel

For color singlet 3S
(1)
1 state, summing over the final spin components, an explicit expres-

sion of the hard pard is given by

Ξ
3S

(1)
1 (k1,k2,k,k

′)

=
∑
Sz

trd[P1Sz(P ; l = 0)Tqq̄(k1⊥,k⊥)]trd[T
†
qq̄(k1⊥,k

′
⊥)P†

1Sz
(P ; l = 0)]

=

(
−gµν + P µP ν

M2

)
1

2M2

1

24
1

(P+)2

×
trd
[(
/P −M

)
γµ
(
/P +M

)
/n+(/P − 2/k +M)/n−(/P − 2/k − 2/k1 +M)/n+

]
[(P⊥−2k⊥)2 + (P⊥−2k⊥−2k1⊥)2 + 2M2]

×
trd
[
/n+(/P − 2/k′ − 2/k1 +M)/n−(/P − 2/k′ +M)/n+

(
/P +M

)
γν
(
/P −M

)]
[(P⊥−2k′

⊥)2 + (P⊥−2k′
⊥−2k1⊥)2 + 2M2]

, (B.6)

where the J/ψ mass is M = 2m in terms of v = 0 limit. We have also used the following

relation: ∑
i=T1,T2,L

εµi ε
ν
i
∗ = −gµν + P µP ν

M2
. (B.7)

By the use of the mathematica package ”FeynCalc” [135], we found

Ξ
3S

(1)
1 (k1,k2,k,k

′) =
F (1)

D(1)
, (B.8)

where the denominator of Ξ
3S

(1)
1 is given by

D(1) = [4l21⊥ + k2
1⊥ +M2][4l22⊥ + k2

1⊥ +M2] = L1L2, (B.9)

and the numerator is

F (1) = 2
(
k4
1⊥ + 2k2

1⊥M
2 +M4 − 4k2

1⊥(l
2
1⊥ + l22⊥) + 16(l22⊥)(l

2
1⊥) + 4M2(l21⊥ + l22⊥)

)
,

(B.10)
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where

l1⊥ = k⊥ −
k2⊥

2
(B.11)

l2⊥ = k′
⊥ −

k2⊥

2
(B.12)

with P⊥ = k1⊥ + k2⊥ and compact notations defined as

L1 = 4l21⊥ + k2
1⊥ +M2

L2 = 4l22⊥ + k2
1⊥ +M2. (B.13)

Finally, we can obtain the following result

Ξ
3S

(1)
1 (k1,k2,k,k

′) =
8k2

1⊥(k
2
1⊥ +M2)

L1L2

− 4k2
1⊥

(
1

L1

+
1

L2

)
+ 2. (B.14)

1S
(8)
0 channel

For color octet 1S0 state, the square matrix element is just given by

Ξ
1S

(8)
0 (k1,k2,k) =

25(k2
1⊥l

2
1⊥ − (k1⊥ · l1⊥)2)

L2
1

. (B.15)
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Appendix C

Quarkonium and Heavy meson

Quarkonium as a bound state of a quark and an antiquark is very similar to positronium

which is a QED bound state. Spectroscopic classification of various quarkonium states is

shown in Table C. QCD motivated potential consists of one gluon exchange part at short

distance ∝ −αs/r, and confining part at long distance κr with r is the distance between

the quark and the antiquark, and κ ∼ 1 GeV/fm.

Concerning the quarkonium production, there are two production sources. One is

prompt production where the quarkonium is hadronized directly from the heavy quark

which is created in initial gluon scattering, and there is also a contribution by feed-down

of higher excited states which are produced primarily (e.g. χc → J/ψ + γ). Another

source is non-prompt production by a heavy meson decays via weak interaction (e.g.

B+ → J/ψ +K+). Prompt production process largely contributes to a total production

yield of quarkonia. We show in Table C.3 a ratios of the contribution source with respect

to each state to total quarkonium yield in the prompt production.

cc̄ mesons ηc(1S) J/ψ(1S) χc0(1P ) χc1(1P ) χc2(1P ) ψ′(2S)

Mass [GeV] 2.98 3.10 3.42 3.51 3.56 3.69

JPC 0−+ 1−− 0++ 1++ 2++ 1−−

bb̄ mesons ηb(1S) Υ(1S) χb0(1P ) χb1(1P ) χb2(1P ) Υ(2S)

Mass [GeV] 9.40 9.46 9.86 9.89 9.91 10.02

JPC 0−+ 1−− 0++ 1++ 2++ 1−−

Table C.1: Spectroscopic classification of charmonium and bottomonium with respect to
each quantum number. Cited from [153].
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Charmed mesons D± D0 D⋆± D⋆0 Bottom mesons B± B0

Mass [GeV] 1.87 1.86 2.01(0) 2.00(7) Mass [GeV] 5.28 5.28

I(JP ) 1
2
(0−) 1

2
(0−) 1

2
(1−) 1

2
(1−) I(JP ) 1

2
(0−) 1

2
(0−)

Table C.2: Spectroscopic classification of Charmed meson and Bottom meson with respect
to each quantum number. Cited from [153].

H FH (in %) H FH (in %)

J/ψ 64±6 Υ(1S) 50.9± 8.2(stat.)±9.0(sys.)
ψ(2S) 7± 2 ∼ 15± 5 Υ(2S) 10.7+7.7/-4.8

χc(1P ) 29.7± 1.7(stat.)±5.7(sys.) χb(1) 27.1± 6.9(stat.)±4.4(sys.)

Table C.3: The ratios of the contribution source to total J/ψ yield in the prompt produc-
tion. FJ/ψ expresses the direct J/ψ production rate, Fψ(2S) is the ratio of a contribution
from the ψ(2S) feed down to the J/ψ yield, and Fχc is the same as Fψ(2S). FH for the Υ
production is the same as J/ψ. Cited from [77].

In contrast to quarkonium, a heavy meson involving specific flavor quantum number

consists of a heavy quark and a light quark. The spectroscopic classification of heavy

mesons is shown in Table C. The contribution sources to the heavy meson production

Heavy meson production sources are also clarified by prompt and non-prompt production

as explained in the quarkonium production.

In this Appendix, we present specific hadronization models of quarkonium (Color

Singlet Model, Color Evaporation Model, and NRQCD approach) and fragmentation

functions of open heavy flavor heavy meson. These models are used widely so far in

phenomenological studies.

C.1 Color Singlet Model

Color Singlet Model (CSM) for quarkonium production is based on the quarkonium po-

tential model combined with the parton model calculation at short distance [80–82]. In

the CSM, a factorization between a short distance matrix element describing the produc-

tion of an on-shell heavy quark pair and a long distance matrix element describing the

non-perturbative bound state is assumed. Once this factorization assumption is justified,

large transverse momentum scale in addition to the heavy quark mass scale compared
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with ΛQCD allows us to calculate the short distance amplitude with the perturbation the-

ory in terms of the strong coupling constant αs. In hadronic collisions, if the produced

heavy quark pair is color octet state, an additional gluon is required to make the color

octet quark pair become color singlet in the bound state. In regard to this point, we

further assume that the color singlet quark pair production with the additional gluon is

perturbatively calculated.

Based on these assumptions, production amplitude of a quarkonium H is expressed as

MH =

∫
d4lMqq̄(l)ψH(l), (C.1)

where Mqq̄ is heavy quark pair production amplitude in the color singlet state and the

Bethe-Salpeter amplitude (ψH). l
µ is a relative momentum between the composite quark

and the antiquark. Here,Mqq̄ includes all the hard scattering part of the amplitude. If

all the components of lµ are smaller than the invariant mass M ≃ 2mq of the pair in the

quarkonium rest frame, then we can expandMqq̄ in terms of l0/M and |l|/M as follows;

MH ∼Mqq̄(0)

∫
d4lψH(l) +

∂

∂lµ
Mqq̄(l)

∣∣∣∣
l=0

∫
lµd4lψH(l) + · · · . (C.2)

First term corresponds to the S-wave amplitude and the second term, which involves a

derivative of the wave function at origin, corresponds to the P-wave ammplitude. In

principle, the amplitude is expressed as an infinite series in (lµ)n (n = 0, 1, · · · ). However,
it might be sufficient to compute only the low order terms in the expanded amplitude

because the higher order terms are considered to be suppressed by factors of (l/M)n 1.

C.2 Color Evaporation Model

Color Evaporation Model (CEM) assumes that a part of the produced heavy quark pairs

bound into a color singlet quarkonium with soft gluon interaction 2 [77, 83], and the

dynamics of this hadronization is not depend on the color state of the produced heavy

quark pair. Production cross section of a quarkoniumH from a qq̄ quark pair is computed

1Strict speaking, we must compute higher order corrections to confirm whether the perturbative
expansion in terms of coupling constant converges or not.

2This color neutralization is called evaporation.
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PDF mc (GeV) µ
mc⊥

Fcc̄→J/ψ PDF mb (GeV) µ
mb⊥

Fbb̄→Υ(1S)

MRST HO 1.2 2 0.0144 MRST HO 4.75 1 0.0276

MRST HO 1.4 1 0.0248 MRST HO 4.5 2 0.0201

CTEQ 5M 1.2 2 0.0155 MRST HO 5.0 0.5 0.0508

GRV 98 HO 1.3 1 0.0229 GRV 98 HO 4.75 1 0.0225

Table C.4: Parameters Fcc̄→J/ψ and Fbb̄→Υ of inclusive production for various choices of
parton distribution functions (PDFs) [84–87], quark masses (m), and ratio of renormal-

ization scales (µ). µ is set to a constant times the transverse mass (m⊥ =
√
m2 + P 2

⊥),
where P⊥ is the total momentum of the quark and antiquark. Cited from Ref. [77]. See
also Ref. [88, 89].

H J/ψ ψ′(2S) χc1 H Υ(1S) Υ(2S) χb1(1P )

F direct
cc̄→J/ψ/F

inclusive
cc̄→J/ψ 0.62 0.14 0.60 F direct

bb̄→Υ
/F inclusive

bb̄→Υ
0.52 0.33 1.08

Table C.5: Ratio of the direct CEM parameters F direct
cc̄→H and F direct

bb̄→H
to those of inclusive

production. Cited from Ref. [77].

as follows;

dσH = Fqq̄→H

∫ (2MQ)2

(2mq)2
dM2 dσqq̄

dM2
(C.3)

where mq is the quark mass and MQ is a mass of the open heavy flavor meson and M is

a invariant mass of the quark pair. Fqq̄→H is an empirical factor which controls the order

of magnitude of the cross section. This formula represents that all the quark pairs within

a certain invariant mass region from the quark mass up to the the decay threshold bound

into a quarkonium with the transition probability Fqq̄→H . This empirical factor Fqq̄→H has

been estimated in the collinear factorization framework by fitting the data, and we show

the fitted values of Fqq̄→H for inclusive and direct production of charmonia and bottominia

in Table. C.4 and C.5. We should note that the CEM provides only unpolarized cross

section in contrast to the CSM.
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C.3 Non-Relativistic QCD approach

C.3.1 Factorization

Non-Relativistic QCD (NRQCD) effective field theory [90–92] is more sophisticated ap-

proach to compute a production and a decay of a quarkonium. The production cross

section of a quarkonium H in the NRQCD reads

dσH =
∑
n

Cn
short⟨0|OHn |0⟩ (C.4)

where n is a arbitrary quantum state of the qq̄ binding into the H. The Eq. (C.4)

is based on a assumption of factorization between the short distance coefficient Cn
short

involving heavy quark mass scale m or larger, which is computed perturbatively in terms

of strong coupling constant αs, and a long distance matrix element ⟨0|OHn |0⟩ involving
the smaller scales mv, mv2, or ΛQCD with small heavy quark relative velocity v. Of

particular importance is that we should interpret the NRQCD calculations as the results

in the quarkonium rest frame. Concerning a qq̄ bound state with color coulomb force, mv

corresponds to a relative momentum of heavy quark and antiquark in the quarkonium

rest frame and mv2 corresponds to a binding energy of the quarkonium. Thus, one can

understand the validity of perturbation expansion in powers of v within the NRQCD

framework, and both the αs and the v can be used as the small expansion parameters.

The NRQCD operator of heavy quark pair is given by

OHn = ψ†Knχχ†K′
nψ (C.5)

where ψf (χf ) is a two component Pauli spinor field which annihilates (produces) a heavy

quark f (antiquark f̄) In fact, a four component Dirac field consists of these two compo-

nent spinor as Ψ =
(
ψ
χ

)
, and off diagonal term in the Lagrangian allow the two spinor to

couple each other. Kn and K′
n represent a products of a unit color matrix, a spin matrix,

a polynomial in covariant derivative, and other fields.

By inserting a complete set with light hadronic states
∑

X

∑
mJ
|H +X⟩⟨H +X| = 1

with mJ the total spin component of the quarkonium between χ† and χ in Eq. (C.5), we
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find

OHn = ψ†Knχ

(∑
X

∑
mJ

|H +X⟩⟨H +X|

)
χ†K′

nψ. (C.6)

Here we assume that the sum of the low energy state X is dominated by the QCD vacuum

|0⟩ as the lowest energy state. We call the approximation of
∑

X |X⟩ ≈ |0⟩ the vacuum

saturation approximation. Therefore, we obtain the relation between a production

matrix element and a decay matrix element of the quarkonium as follows ;

⟨0|OHn |0⟩ =⟨0|ψ†Knχ

(∑
X

∑
mJ

|H +X⟩⟨H +X|

)
︸ ︷︷ ︸

≈
∑
mJ

|H+0⟩⟨H+0|

χ†K′
nψ|0⟩

≈(2J + 1)⟨H|χ†K′
nψ |0⟩⟨0|︸ ︷︷ ︸

≈1

ψ†Knχ|H⟩ ≈ (2J + 1)⟨H|On|H⟩. (C.7)

where new NRQCD operator is defined as On ≡ χ†K′
nψψ

†Knχ. In the second line, we

have assumed the SU(2) spin rotational invariance of χ†K′
nψ|0⟩⟨0|ψ†Knχ. In the heavy

quark mass limits m → ∞, the spin quantum number J of the heavy quark (and also

the antiquark) is conserved. 3 Assuming this symmetry to simplify the discussion, the

matrix element is identical for each of the
∑

mJ
= (2J + 1) spin state but differ in the

spin component mJ . In the last expression, we have used the QCD vacuum saturation

approximation again.

Let us show a simple example; the relation between the decay amplitude and the

production amplitude of ηc which consists of cc̄ pair in the color singlet state. The decay

matrix element of ηc is given by ⟨ηc|ψ†χχ†ψ|ηc⟩. If |ηc⟩ exactly consists of only cc̄ with
1S0 quantum number in the Fock space, the vacuum saturation approximation is exactly

justified since χ†ψ|ηc⟩ = χ†ψ|cc̄⟩ = |0⟩. However the ηc indeed involves various Fock

components such as |cc̄g⟩, |cc̄gg⟩ involving the dynamical gluons. One dynamical gluon

which is induced by operating a spacial covariant derivative on the quark field is of order

v in coulomb gauge 4. Therefore, the higher order corrections in the v for the vacuum

saturation approximation to the intermediate state |X⟩ which is shown in Eq. (C.7) are

3Finite mass correction such as spin flip term in the QCD Lagrangian actually breaks the heavy quark
spin symmetry.

4This order estimation in coulomb gauge was carried out in Ref. [93]. The coulomb gauge is very
useful to compute the quarkonium production since no negative norm exists.
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Cshort 〈0|Oqq̄|0〉

q

q̄

Figure C.1: Short distance coefficient is defined as a perturbative part by subtracting the
matrix element ⟨0|Oqq̄|0⟩ from the qq̄ production cross section.

covered with the dynamical gluons. Expanding the Fock state of ηc up to order v2

explicitly, we found

⟨ηc|ψ†χχ†ψ|ηc⟩

= ⟨ηc|ψ†χ|0⟩⟨0|χ†ψ|ηc⟩︸ ︷︷ ︸
O(v0)

+ ⟨ηc|ψ†χ|g⟩⟨g|χ†ψ|ηc⟩︸ ︷︷ ︸
O(v2)

+ ⟨ηc|ψ†χ|gg⟩⟨gg|χ†ψ|ηc⟩︸ ︷︷ ︸
O(v4)

+O(v6)

≈|⟨0|χ†ψ|ηc(cc̄)⟩|2
[
1 +O(v4)

]
. (C.8)

In the third line, we have dropped the term of O(v2) because of color conservation which

means that a color singlet ηc can’t be converted into a color octet gluon and vice versa by

interacting with background fields . ⟨0|χ†ψ|ηc(cc̄)⟩ in Eq. (C.8) is the amplitude which

represents that the cc̄ pair is created in far past by the operators χ†ψ and then bound

into the ηc in far future. This is just the Bethe-Salpeter amplitude whose expression is

given in Appendix D.

In contrast to color singlet operators, the vacuum saturation approximation actually

can not be applied to a NRQCD operators in the color octet state such as ψ†taχχ†taψ

because the matrix element ⟨H|ψ†taχ|X⟩ vanishes when |X⟩ is the QCD vacuum |0⟩ or
any color singlet state. Then, the matrix element for the color octet operator should

be constrained by fitting the experimental data or computed by using the lattice gauge

theory.

C.3.2 Short distance coefficient

In this section, we show how to compute the short distance coefficient in Eq. (C.4) in

terms of the NRQCD.

We firstly consider a production of the heavy quark pair in the 2S+1L
(1,8)
J state with

the indices (1) and (8) which are color singlet and octet respectively. And S, L, J are

174



spin, angular momentum, and total spin (or angular momentum) of the heavy quark pair

respectively. We note that this heavy quark pair is not bound yet. The production cross

section of the heavy quark pair reads

dσ(qq̄[2S+1L
(1,8)
J ]) = C(qq̄[2S+1L

(1,8)
J ])short⟨0|Oqq̄1,8(2S+1LJ)|0⟩, (C.9)

where the short distance coefficient Cshort involves the heavy quark pair production and

the NRQCD operator is

Oqq̄1,8(2S+1LJ) = χ†Kψ

(∑
Jz

|qq̄[2S+1L
(1,8)
J ]⟩⟨qq̄[2S+1L

(1,8)
J ]|

)
ψ†K′χ (C.10)

where we have inserted a complete set with the heavy quark pair between ψ and ψ†.

Eq. (C.9) is similar to Eq. (C.4) except for the long distance matrix element. Using the

Clebsh-Gordon coefficient, the intermediate state in Eq. (C.10) is given by

|qq̄[2S+1L
(1,8)
J ]⟩

=
∑
Lz ,Sz

∑
s1,s2

∑
i,j

∫
d3l

(2π)32l0
δ

(
l0 − l2

M

)
YLLz (̂l)⟨ 12 , s1; 1

2
, s2|S, Sz⟩⟨L,Lz;S, Sz|J, Jz⟩

× ⟨3i; 3̄j|1, 8c⟩|qi (l; s1) q̄j (−l; s2)⟩, (C.11)

where lµ is the relative momentum between the quark and the antiquark and YLLz is

a spherical harmonics. The heavy quark q (antiquark q̄) has a spin component s1 (s2)

and color i (j). The color projection operators are given in Eq. (7.4). As discussed in

Ref. [96], the δ-function for the relative energy in Eq. (C.11) restricts the spacial relative

momentum between the quark and the antiquark to |l| =
√
Ml0 with M = 2m. Since

the kinetic energy of the pair is estimated Mv2 in the rest frame, it is possible for us to

assume l0 ≃ Mv2 ≪ M = 2m. Then the relative velocity between the quark and the

antiquark is given by |l|/M ≃ v which is also assumed to be a small variable. Concerning

the expectation value ⟨0|Oqq̄1,8(2S+1LJ)|0⟩, the amplitude ⟨0|χ†Kψ|qq̄[2S+1L
(1,8)
J ]⟩ represents

that the qq̄ pair in the 2S+1L
(1,8)
J state is created by the operators χ†Kψ.

Next, let us consider the quarkonium production cross section which is given by

dσ(qq̄[2S+1L
(1,8)
J ]→ ψQ) =

C(qq̄[2S+1L
(1,8)
J ])short

m
⟨0|OψQ1,8 (2S+1LJ)|0⟩. (C.12)
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The short distance coefficient Cshort is the same as that of the heavy quark pair production

which is shown in Eq. (C.9). ⟨0|OψQ1,8 (2S+1LJ)|0⟩ is the nonperturbative long distance

matrix element of the quarkonium ψQ production in the NRQCD and indices (1) and

(8) represent the quarkonium in the color singlet state is produced from the color singlet

quark pair or the color octet quark pair respectively. We note that the factor 1/m in

Eq. (C.12) adjusts a mass dimension of ⟨0|OψQ1,8 (2S+1LJ)|0⟩ which differs by unity from

⟨0|Oqq̄1,8(2S+1LJ)|0⟩ in Eq. (C.9). In fact, the quark field and the antiquark field are

respectively given by [96]

ψαi (x) =
∑
s

∫
d3p

(2π)3
bi(p, s)ξ

α(p, s)e−ip·x,

χαi (x) =
∑
s

∫
d3p

(2π)3
c†i (p, s)η

α(p, s)eip·x, (C.13)

where two component spinors ξ and η are normalized according to 5

2∑
s=1

ξα(p, s)ξ
†
β(p, s) =

2∑
s=1

ηα(p, s)η
†
β(p, s) = δαβ, (C.15)

with the quark color i. The creation operator and the annihilation operator in Eq. (C.13)

satisfy the anticommutation relation as follows;

{bi(p, s), b†j(p′, s′)} = {ci(p, s), c
†
j(p

′, s′)} = (2π)3δijδss′δ
(3)(p− p′). (C.16)

Then, we can understand that ⟨0|Oqq̄1,8(2S+1LJ)|0⟩ certainly differs in the mass dimension

from ⟨0|OψQ1,8 (2S+1LJ)|0⟩ which is also normalized nonrelativistically. The normalization

condition of the ⟨0|OψQ1,8 (2S+1LJ)|0⟩ is given in Eq. (D.30) in Appendix D. Once we obtain

the Cshort in Eq. (C.9), we can compute the quarkonium production cross section by sub-

stituting the Cshort for the heavy quark pair production at short distance into Eq. (C.12).

If we know the cross section of the heavy quark pair dσ(qq̄[2S+1L
(1,8)
J ]) which is shown

5Through this paper, we take

ξ(p, 1) =

(
1

0

)
, ξ(p, 2) =

(
0

1

)
, η(−p, 1) =

(
0

−1

)
, η(−p, 2) =

(
1

0

)
. (C.14)
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in the left hand side of Eq. (C.9), the short distance coefficient is given by

C(qq̄[2S+1L
(1,8)
J ])short =

dσ(qq̄[2S+1L
(1,8)
J ])

⟨0|Oqq̄1,8(2S+1LJ)|0⟩
(C.17)

where the matrix element ⟨0|Oqq̄1,8(2S+1LJ)|0⟩ should be computed in the NRQCD. The

expression of ⟨0|Oqq̄1,8(2S+1LJ)|0⟩ is computed easily by using Eq. (C.11) and Eq. (C.13).

As for the heavy quark pair production in the color singlet and the S-wave, we find

⟨0|Oqq̄1 (1S0)|0⟩ = ⟨0|χ†ψ|qq̄[1S(1)
0 ]⟩⟨qq̄[1S(1)

0 ]|ψ†χ|0⟩

=
M3

22(2π)5
N

l0
(C.18)

⟨0|Oqq̄1 (3S1)|0⟩ = ⟨0|χ†σψ

(∑
Sz

|qq̄[3S(1)
1 ]⟩⟨qq̄[3S(1)

1 ]|

)
ψ†σχ|0⟩

=
3M3

22(2π)5
N

l0
. (C.19)

where M = 2m and N is the color. A very important feature is that the relative energy

l0 ∼ Mv2 is given in the denominator in Eqs. (C.18)(C.19). In the static limit v → 0,

these amplitudes themselves diverge but the numerator in Eq. (C.17), which is computed

in the NRQCD by using Eq. (C.11), also has the ill-factor 1/l0. Then actually the in-

frared divergence does not emerge. We note the amplitudes Eqs. (C.18)(C.19) does not

depend on a process of the heavy quark pair production and are universal in the NRQCD

factorization. As far, we have shown the amplitude in the color singlet state, while the

heavy quark pair production in the color octet state provides the same relations except

for the Casimir factor which are given by

⟨0|Oqq̄8 ((1)S(0))|0⟩ = CF ⟨0|Oqq̄1 ((1)S(0))|0⟩ (C.20)

⟨0|Oqq̄8 ((3)S(1))|0⟩ = CF ⟨0|Oqq̄1 ((3)S(1))|0⟩ (C.21)

with CF = (N2 − 1)/2N .

C.4 Heavy meson fragmentation

Assuming that a heavy quark and an anti heavy quark which are produced in hard gluon

scattering evolve into a heavy meson and an anti heavy meson individually, we can easily
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Figure C.2: Kartvelishvili fragmentation function [126] Dh
q (z) to find a current heavy

quark q with longitudinal momentum fraction z. Non-perturbative parameter is 3.5 (13.5)
for D (B) [129,130].

obtain the heavy meson pair production cross section. The production cross section of

the heavy meson h is computed by using the heavy quark fragmentation function Dh
q (z)

for final state hadronization process. q represents the heavy quark, which evolves into h

with the momentum fraction z of the q. Dh
q (z)dz means a probability to find the heavy

meson h produced in the momentum range [z, z+dz], and is normalized as
∫
Dh
q (z)dz = 1.

We usually assume that the fragmentation function of the antiquark is the same for the

quark. Phenomenologically, the most popular parameterizations of the fragmentation

function Dh
q (z) are listed as follows;

Peterson [125] : Dh
q (z) ∝

1

z

(
1− 1

z
− ϵ

1− z

)−2

(C.22)

Kartvelishvili [126] : Dh
q (z) ∝ zα(1− z) (C.23)

where ϵ and α are non-perturbative parameters which can be obtained by fitting a data

of the heavy meson productions. For example, we show in Fig. C.2 the Kartvelishvili

fragmentation function with an appropriate parameters for charm quark and bottom

quark. The behavior of the fragmentation functions indicates that the momentum of the

heavy quark is not so modified by a background field through the hadronization. Finally,

we should note that the heavy quark fragmentation functions in Eq. (C.22)(C.23) are not

Lorentz invariant.
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Appendix D

Bethe-Salpeter amplitude

We consider Bethe-Salpeter (BS) amplitude [94] which describes a non-perturbative for-

mation of J/ψ from cc̄. In general, the BS equation is not closed equation then it is im-

possible to find a analytic solution. However if we regard a system in the non-relativistic

limit, the solution can be expressed in terms of a wave function obeying the Schödinger

equation. We will present a new way to construct the BS amplitude in this appendix.

D.1 General definition of BS equation

First of all, we show a general expression of the BS equation. Homogeneous BS equation

with interaction kernel K and propagators for free Dirac fields (quark and antiquark) is

following convolution;(
1

2
/P + /l −m

)
ψH(l;P )

(
1

2
/P − /l +m

)
=

∫
d4l′K(l, l′;P )ψH(l

′;P ). (D.1)

Here P = p1 + p2 is the total momentum and l = (p1 − p2)/2 is the relative momentum

with p1 the momentum of quark and p2 the antiquark. The antiquark mass is the same

as the quark (m). Interaction kernel K is a function of relative momentum. Using the

ladder approximation, the right hand side of the BS equation reduces a more simple form∫
d4l′K(l, l′;P )ψH(l

′;P ) ≡
∫
d4l′Kµν(l, l′;P )γµψH(l

′;P )γν . (D.2)

In the following, we will show that if we separate a time component of the interaction

kernel from the convolution in the non-relativistic approximation, the interaction kernel
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reduces 3-dimension potential.

Non-local BS amplitude is generally defined as

ΨH(x1, x2;P ) = ⟨0|T
[
ψ(x1)ψ̄(x2)

]
|H⟩ = ⟨0|T

[
ψ(x1)ψ̄(x2)

]
|P ;S, Sz⟩ , (D.3)

where T represents a time order products. in this paper, we consider a S-state (angular

momentum L = 0) only, therefore, the bound state is assigned by a momentum (P )

and spin (S and Sz). Since the translational symmetry of vacuum is assumed, the BS

amplitude in the momentum space is given by

ψH(l;P ) = eiP ·X
∫

d4l

(2π)4
eil·xΨ(x1, x2;P ) (D.4)

where X = (x1 + x2)/2 and x = x1 − x2. The center of mass coordinate is not relevant

to the physical quantity because it just provides a phase factor. Then we neglect the X

dependence of the BS amplitude.

Mass dimension of the BS amplitude is determined by the normalization condition.

Relativistically, the normalization condition of one particle state is given by

⟨H|H⟩ = ⟨P ′;S ′, S ′
z|P ;S, Sz⟩ = (2π)32P 0δS,S′δSz ,S′

z
δ(3)(P − P ′). (D.5)

Then we found that the mass dimension of |H⟩ is −1.

D.2 BS amplitude in the non-relativistic limit

In this section, we show a way to construct of the BS amplitude in the non-relativistic

limit. We redefine the BS equation of J/ψ as follows 1;(
1

2
/P + /l −m

)
ψH(l

µ;P )

(
1

2
/P − /l +m

)
= −

∫
d4k

2πi
K(k)ψH(l

µ − kµ;P ). (D.6)

We can treat K(k) as a potential between composite particles.

Firstly, we decompose the BS amplitude with16-component spinor as following 4× 4

1In the right hand side of this equation, the integral measure convolutes an extra factor, 2πi. 2πi
takes an important role to reproduce the Schödinger equation .
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matrix [95];

ψH(l
µ;P µ) =

(
ψ++
H (lµ) ψ+−

H (lµ)

ψ−+
H (lµ) ψ−−

H (lµ)

)
. (D.7)

ψ++
H , ψ+−

H , ψ−+
H , ψ−

H are 2×2 matrices and +(−) corresponds to upper (lower) 2-component

of positive (negative) energy solution. We have abbreviated the label P in the right hand

side of Eq. (D.7). This decomposition help us to find a solution of the BS amplitude

easily. Then we can rewrite the BS equation(
M
2
+ ω −m −σ · l
σ · l −M

2
− ω −m

)(
ψ++
H (l) ψ+−

H (l)

ψ−+
H (l) ψ−−

H (l)

)(
M
2
− ω +m σ · l
−σ · l −M

2
+ ω +m

)

= −
∫
d4k

2πi
K(k)

(
ψ++
H (l − k) ψ+−

H (l − k)
ψ−+
H (l − k) ψ−−

H (l − k)

)
. (D.8)

Here M is the mass of J/ψ and ω is a relative energy between composite quark pair (cc̄).

Next, we consider the BS amplitude in the J/ψ rest frame and take a non-relativistic

limit. In the non-relativistic limit, we assume particle number conservation and that addi-

tional cc̄ creation and annihilation never occurred. In this case, ψ+−
H , which is constructed

of the positive energy state of c and the negative energy state of c̄, provides a dominant

contribution. Expanding the matrix of Eq. (D.8), we obtain the following relation

ψ++
H (lµ) ≈ 1

1
2
E0 + ϵ

(σ · l)ψ−+
H (lµ) +

1

2m− ϵ
ψ+−
H (lµ)(σ · l)

− 1(
1
2
E0 + ϵ

)
(2m− ϵ)

(σ · l)ψ−−
H (lµ)(σ · l) + (−2πi)−1(

1
2
E0 + ϵ

)
(2m− ϵ)

∫
d4k K(k)ψ++

H (lµ + kµ),

(D.9)

ψ+−
H (lµ)− 1

1
2
E0 − ϵ

ψ++
H (lµ)(σ · l) + 1(

1
2
E0

)2 − ϵ2 (σ · l)ψ−+
H (lµ)(σ · l)

− 1
1
2
E0 + ϵ

(σ · l)ψ−−
H (lµ) =

(2πi)−1(
1
2
E0

)2 − ϵ2
∫
d4k K(k)ψ+−

H (lµ + kµ), (D.10)

ψ−+
H (lµ) ≈ 1

2m+ ϵ
(σ · l)ψ++

H (lµ)− 1

(2m)2 − ϵ2
(σ · l)ψ+−

H (lµ)(σ · l)

+
1

2m− ϵ
ψ−−
H (lµ)(σ · l) + (2πi)−1

(2m)2 − ϵ2

∫
d4k K(k)ψ−+

H (lµ + kµ), (D.11)
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ψ−−
H (lµ) ≈ 1(

ϵ− 1
2
E0

)
(ϵ+ 2m)

(σ · l)ψ++
H (lµ)(σ · l) + 1

1
2
E0 − ϵ

ψ−+
H (lµ)(σ · l)

+
1

2m+ ϵ
(σ · l)ψ+−

H (lµ) +
(2πi)−1(

ϵ− 1
2
E0

)
(ϵ+ 2m)

∫
d4k K(k)ψ−−

H (lµ + kµ), (D.12)

where a weak binding energy E0 =M−2m≪ m is introduced. For each above equations,

assuming the ψ+−
H term is dominant, we found

ψ++
H ∼ 1

2m− ω
ψ+−
H (σ · l), (D.13)

ψ−+
H ∼ 1

(2m+ ω)(2m− ω)
(σ · l)ψ+−

H (σ · l), (D.14)

ψ−−
H ∼ 1

2m+ ω
(σ · l)ψ+−

H . (D.15)

Furthermore, substituting the above approximate expression into Eq. (D.10) for ψ+−
H , we

can obtain the following equation:

ψ+−
H (lµ) =

1

F (ω)

1

2πi

∫
d4k K(k)ψ+−

H (lµ − kµ), (D.16)

where

F (ω) =
E2

0

4
− ω2 −

(
E0

2
− ω

)
l2

2m+ ω
−
(
E0

2
+ ω

)
l2

2m− ω
+

l4

(2m+ ω)(2m− ω)
.

(D.17)

It is not difficult to understand this expression encoded into the right hand side of

Eq. (D.16) is the products of quark propagator and that of antiquark.

Let us introduce a non-relativistic BS wave function φ defined as

φ(l) =

∫ ∞

−∞
dω ψ+−

H (lµ) =

∫ ∞

−∞
dω ψ+−

H (ω, l). (D.18)

Integrating the both hand sides of Eq. (D.16) results in

φ(l) =

∫ ∞

−∞
dω

1

F (ω)

1

2πi

∫
d3k

∫ ∞

−∞
dk0 K(k)ψ+−

H (l0 − k0, q − k)

=
1

D(l)

1

2πi

∫
d3k K(k)φ(l− k). (D.19)
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where

1

D(l)
=

∫ ∞

−∞
dω

1

F (ω)
∼ 2πi

E0 − l2

m

. (D.20)

As shown in the previous section, we have included 2πi in the definition of the BS equation

, however, in Eq. (D.20) 2πi in the numerator and denominator cancel out each other.

Rewriting Eq. (D.20), we find(
E0 −

l2

m

)
φ(l) =

∫
d3k K(k)φ(l− k). (D.21)

We have already known that this is a convoluted Schödinger equation in the momentum

space.

In general, non-relativistic wave function φ(l) is given by

φ(l) = 2π
√
2M

1√
2

δij√
N c

(σ · ε)ϕ(l), (D.22)

where
√
M is the factor derived from the normalization condition Eq. (D.5) 2. δij/

√
N

and (σ ·ϵ) represent a color and spin projection respectively, which are found in Eq. (7.11)

and Eq. (7.4) 3. Normalized polarization vector εµ in the centre of mass frame is given by

ϵµ =

{
1√
2
(0,−1,∓i, 0) Sz = ±1
(0, 0, 0, 1) Sz = 0

. (D.23)

Here we set a spin quantization direction to z-axis in the rest frame of J/ψ. ϕ(l) is the

product of radial wave function in the momentum space and spherical harmonics.

Finally we consider a correspondence between the BS amplitude (ψH) and non-relativistic

BS wave function (φ). For the ψ+−
B (qµ) component, we find

ψ+−
H (lµ) =

1

F (ω)

1

2πi

∫
d4k K(k)ψ+−

H (lµ − kµ)

=
1

F (ω)

1

2πi

∫
d3k K(k)φ(l− k), (D.24)

2The mass dimension of the BS amplitude is −1 and that of the wave function ϕ(l) is −3/2.
3In this context, we consider a vector meson production (J/ψ). If we consider scalar meson production

(ηc), we manipulate ε · l→ 1 in the BS amplitude φ(l).
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and in the non-relativistic limit, F (ω)−1 is given by

1

F (ω)
=

−1(
ω − E0

2
+ l2

2m
− iδ

)(
ω + E0

2
− l2

2m
+ iδ

) . (D.25)

Here we write explicitly the infinitesimal imaginary part of F (ω). Therefore, we obtain

ψ+−
H (lµ) = − 1

2πi

1(
ω − E0

2
+ l2

2m

)(
ω + E0

2
− l2

2m

) ∫ d3k K(k)φ(l− k). (D.26)

Furthermore, comparing the Schödinger equation in which φ(q) obey, we find

ψ+−
H (lµ) = i

δij√
N c

√
M
(
E0 − q2

m

)
ϕ(l)(

ω − E0

2
+ l2

2m

)(
ω + E0

2
− l2

2m

)(σ · ε). (D.27)

and obtain the other components ψ++
H , ψ−+

H and ψ−−
H by using ψ+−

H . In the end, we find

the BS amplitude in the center of mass system,

ψH(l;P ) =i
δij√
N c

√
M
(
E0 − l2

m

)
ϕ(l)(

ω + E0

2
− l2

2m

)(
ω − E0

2
+ l2

2m

) ( (σ·ε)(σ·l)
2m−ω σ · ε

(σ·l)(σ·ε)(σ·l)
(2m+ω)(2m−ω)

(σ·l)(σ·ε)
2m+ω

)

=− i δ
ij

√
N c

√
M
(
E0 − l2

m

)
ϕ(l)(

ω + E0

2
− l2

2m

)(
ω − E0

2
+ l2

2m

) (1 + /n

2

)
/ε. (D.28)

Here nµ = (1, 0, 0, 0) is a time like four vector.

D.3 BS amplitude in the NRQCD

Non-Relativistic QCD effective field theory provides more rigorous description of heavy

quarkonium transition at long distance, based on the double expansion in αs and v. The

quark (antiquark) field corresponds to an independent two component Pauli field and is

separated from the degree of freedom of light quarks. This treatment is valid in the non-

relativistic limit since the number of quark and antiquark is conserved. Furthermore, no

negative norm states exist in the coulomb gauge, then we can construct any Fock state

by operating the creation operator on the QCD vacuum.

In this paper, we consider the case v → 0 limit, then we should consider only the BS
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amplitude of the exact cc̄ production. The BS amplitude of ηc and that of J/ψ are related

to each other with heavy quark spin symmetry. Therefore, in this section, we consider

the ηc production. In the rest frame, we define the one particle state as

|ηc⟩ = |P ; 0, 0⟩

=
∑
s1,s2

⟨1/2, s1; 1/2, s2|0, 0⟩
∑
i,j

⟨3, i; 3̄, j|1⟩
∫

d3l

(2π)3
ϕ(l) |p1(s1), i;p2(s2), j⟩

=
∑
s1,s2

δs1+s2,0√
2

∑
i,j

δi,j√
N c

∫
d3l

(2π)3
ϕ(l) |p1(s1), i;p2(s2), j⟩ (D.29)

with nonrelativistic normalization condition

⟨P ′; 0, 0|P ; 0, 0⟩ = (2π)3δ(3)(P − P ′). (D.30)

Two particle state is defined as

|p1(s1), i;p2(s2), j⟩ = b†i (p1, s1)cj(p2, s2) |0⟩ (D.31)

where creation and annihilation operator construct the Pauli fields which are shown in

Eq. (C.13). In the non-relativistic limit (v = 0), employing Eq. (C.16). we can find the

BS amplitude of ηc production
4,

⟨
0|Oηc1 (1S0)|0

⟩
≡
⟨
0|ψχ†|P ;S, Sz

⟩
= 2Nc

1√
2

1√
Nc

∫
d3l

(2π)3
R̃(l)

1√
4π

=
Nc√
2π
R(r = 0) (D.32)

The factor 2N is derived from the sum of spin and color indices. We have assumed that

the wave function of J/ψ is the same as ηc up to an correction O(v2) due to the heavy

quark spin symmetry.

4This is the same as ψ+− in the non-relativistic limit defined in the previous section.
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Appendix E

Quadrupole amplitude in Gaussian

approximation

In this appendix, we present the way to formulate the Quadrupole correlator with the

gaussian distribution of the color charge density. The detail discussion is the same as

Ref. [60,63].

E.1 Dipole amplitude

Firstly, we consider a tadpole correction on Wilson line in the fundamental representa-

tion [63]. This corrections play an important role to consider the interactions between

the Wilson lines.

Let us define the Wilson line in the fundamental representation as

Ũ(x⊥) = P exp

−ig2 +∞∫
−∞

dz−
1

∇2
⊥
ρa(z

−,x⊥)t
a

 , (E.1)

where ta is a color matrix in the fundamental representation of SU(Nc). Here we assume

that a trajectory of the quark is z− direction. Then we can regards z− as a light cone time

of the quark. ρa is a color charge density of valence quark in the hadron or nucleus. This

color charge density at transverse coordinate x⊥ is related to the following expression

1

∇2
⊥
ρa(z

−,x⊥) =

∫
d2z⊥G0(x⊥ − z⊥)ρa(z

−, z⊥) (E.2)
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z1 z2

G0 G0

〈ρa1
(z−

1
, z⊥)ρa2

(z−
2
, z⊥)〉

z⊥

Figure E.1: Graphical representation of one loop quantum correction φ1 to the Wilson
line in the fundamental representation. Two point correlation ⟨ρρ⟩ with the gaussian
distribution connects the index z−1 and z−2 and leads to the tadpole correction.

· · ·

z
−

1
z
−

2
z
−

3
z
−

4
z
−

5
z
−

6

Figure E.2: Graphical representation of n-loop correction φn to the Wilson line in the
fundamental representation. With gaussian distribution for the color charge density, each
quantum correction becomes one tadpole diagram.

where G0 is free propagator which satisfies

G0(x⊥ − z⊥) = −
∫

d2k⊥

(2π)2
eik⊥·(x⊥−z⊥)

k2⊥
. (E.3)

Next, we define another Wilson line in the fundamental representation

Ũ(a−, b−|x⊥) = P exp

−ig2 b−∫
a−

dz−
1

∇2
⊥
ρa(z

−,x⊥)t
a

 . (E.4)

Here we consider the expectation value ⟨Ũ(a−, b−|x⊥)⟩. By expanding the path ordered
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exponent, we can find

⟨Ũ(a−, b−|x⊥)⟩ =
∞∑
n

(−ig2)n

n!

∫
Πn
i=0

[
d2zi⊥G0(x⊥ − zi⊥)

]
×

b−∫
a−

dz−1

b−∫
a−

dz−2 · · ·
b−∫

a−

dz−n ⟨ρa1(z−1 , z⊥) · · · ρan(z−n ,z⊥)⟩ta1 · · · tan . (E.5)

Here, ⟨ρa1(z−1 ,z⊥) · · · ρan(z−n , z⊥)⟩ can be reduced to averages of products of two ρ due to

the Wick’s theorem. We consider a quantum correction φ1 on the fundamental Wilson

line as depicted in Fig. E.1 and φ1 is given by

φ1 ≡ G0(x⊥ − z1⊥)G0(x⊥ − z2⊥) (E.6)

By assuming the gaussian distribution for the color charge density (MV model), the two

point correlation is simply given by

⟨ρa1(z−1 ,z1⊥)ρa2(z
−
2 , z2⊥)⟩ = µ2(z−1 )δa1a2δ(z

−
1 − z−2 )δ(2)(z1⊥ − z2⊥), (E.7)

then, we can regard the quantum correction φ1 as just a tadpole correction. Furthermore,

the delta function of the light cone time z− restricts the path ordering of one tadpole.

Then we find that only the possible way for n-tadpole corrections φn is shown in Fig. E.2.

When we use the identity
∫ b−
z−1
dz−2 δ(z

−
1 − z−2 ) = 1/2, we finally obtain

⟨Ũ(a−, b−|x⊥)⟩

=
∞∑
n

(−ig2)nΠn−1
i=1

∫
d2zi⊥d

2zi+1⊥G0(x⊥ − zi⊥)G0(x⊥ − zi+1⊥)δ
(2)(zi⊥ − zi+1⊥)

×
b−∫

a−

dz−1

b−∫
a−

dz−2 δ(z
−
1 − z−2 )µ2(z−1 ) · · ·

b−∫
a−

dz−2k−1

b−∫
a−

dz−2kδ(z
−
2k−1 − z

−
2k)µ

2(z−2k−1)

× (ta2ta2) · · · (tantan)

=
∞∑
k

(−g4)k 1
k!
Πk
i=1

∫
d2zi⊥G

2
0(x⊥ − zi⊥)(t

ata)k

 b−∫
a−

dz−µ2(z−)

k

(E.8)
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where n = 2k. In the limit as a− → −∞ and b− → +∞, we find

⟨Ũ(x⊥)⟩ = exp

[
−CF

2
µ2Lxx

]
, (E.9)

where µ2 and Lxy are defined as

µ2 ≡
b−∫

a−

dz−µ2(z−), (E.10)

Lxy ≡ g4
∫
d2z⊥G0(x⊥ − z⊥)G0(y⊥ − z⊥). (E.11)

dz−µ2(z−) is interpreted as a density of color charge squared per unit area in the slice

between z− and z− + dz−.

Next, we turn to the expectation value of the product Ũ(x⊥)Ũ
†(y⊥). We trace the

similar way to consider the single Wilson line case in the above. By assuming the gaussian

distribution of the color charge density, the Wilson line at the transverse coordinate x⊥

includes the integration of the tadpole corrections at the slice between z− and z− + dz−

and the Wilson line at y⊥ itself has also the tadpole corrections. Furthermore, the link

gauge connecting between the two Wilson lines is depicted as a vertical gluon line in

Fig. E.3 because the correlation between the two Wilson lines remains only when the

interaction points coincide each other. The only permitted expression of the expectation

value of Ũ(x⊥)Ũ
†(y⊥) is given by

⟨Ũ(a−, b−|x⊥)Ũ
†(a−, b−|y⊥)⟩ =

∞∑
n=0

2n
b−∫

a−

dz1
µ2(z−1 )

2

b−∫
z−1

dz2
µ2(z−2 )

2
· · ·

b−∫
z−n−1

dzn
µ2(z−n )

2

×
[
g4(tata)

∫
d2z⊥G0(x⊥ − z⊥)G0(y⊥ − z⊥)

]n
× ⟨Ũ(a−, z−1 |x⊥)⟩⟨Ũ(z−1 , z−2 |x⊥)⟩ · · · ⟨Ũ(z−n , b−|x⊥)⟩︸ ︷︷ ︸

Tadpoles on x⊥ line

× ⟨Ũ(a−, z−1 |y⊥)⟩⟨Ũ(z−1 , z−2 |y⊥)⟩ · · · ⟨Ũ(z−n , b−|y⊥)⟩︸ ︷︷ ︸
Tadpoles on y⊥ line

,

(E.12)

This expression includes a product of Tadpole corrections between a− and b− and the
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product can be reduced to one Wilson line as

⟨Ũ(a−, b−|x⊥)⟩ = ⟨Ũ(a−, z−1 |x⊥)⟩⟨Ũ(z−1 , z−2 |x⊥)⟩ · · · ⟨Ũ(z−n , b−|x⊥)⟩, (E.13)

⟨Ũ(a−, b−|y⊥)⟩ = ⟨Ũ(a−, z−1 |y⊥)⟩⟨Ũ(z−1 , z−2 |y⊥)⟩ · · · ⟨Ũ(z−n , b−|y⊥)⟩. (E.14)

The bracket [· · · ]n represents a sum over the number n of rungs in the ladder diagram.

A factor 2n in Eq. (E.12) means no relative order between the z− on the line at x⊥ and

one at y⊥. As a result,

⟨Ũ(a−, b−|x⊥)Ũ
†(a−, b−|y⊥)⟩

=⟨Ũ(a−, b−|x⊥)⟩⟨Ũ(a−, b−|y⊥)⟩
∞∑
n=0

1

n!

b−∫
a−

dz1µ
2(z−1 )

b−∫
a−

dz2µ
2(z−2 ) · · ·

b−∫
a−

dznµ
2(z−n )

×
[
g4(tata)

∫
d2z⊥G0(x⊥ − z⊥)G0(y⊥ − z⊥)

]n

=exp

−g4
2
(tata)

 b−∫
a−

dzµ2(z−)

∫ d2z⊥{G0(x⊥ − z⊥)−G0(y⊥ − z⊥)}2
 , (E.15)

where we have rewritten the range of the integration and divided by n! in the second

line and combined the results in Eq. E.8 at the third line. By taking a− → −∞ and

b− → +∞, we obtain

⟨Ũ(x⊥)Ũ
†(y⊥)⟩ = exp

[
−1

2
CFµ

2Γ(x⊥ − y⊥)

]
(E.16)

where we have introduced the function Γ(x⊥ − y⊥) which is defined by

Γ(x⊥ − y⊥) ≡ g4
∫
d2z⊥(G0(x⊥ − z⊥)−G0(y⊥ − z⊥))

2

= Lxx + Lyy − 2Lxy. (E.17)

Then, by averaging the color, we can immediately find the dipole amplitude as follows

S
Y
(x⊥,y⊥) ≡

1

Nc

tr⟨Ũ(x⊥)Ũ
†(y⊥)⟩Y = exp

[
−1

2
CFµ

2Γ(x⊥ − y⊥)

]
. (E.18)

Here Y is the rapidity.
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x⊥

y⊥

z
−

1
z
−

2
z
−

3
z
−

4

Figure E.3: Graphical representation of a typical interaction between the Wilson line at
x⊥ and the conjugate one at y⊥. Wilson line has tadpole corrections as self interactions
in the each light cone time slice. There are additional interactions between two Wilson
lines.

E.2 Quadrupole amplitude

In this section, we consider a quadrupole amplitude in the Gaussian distribution of the

color charge density. Quadrupole amplitude is defined as

Q
Y
(x⊥,y⊥;u⊥,v⊥) ≡

1

Nc

tr⟨Ũ(x⊥)Ũ
†(v⊥)Ũ(u⊥)Ũ

†(y⊥)⟩Y . (E.19)

In this case, we should consider both tadpole and non-tadpole ladder correction as

well as the dipole amplitude. To separate these corrections, we define the expectation

value as

1

Nc

tr⟨Ũ(x⊥)Ũ
†(v⊥)Ũ(u⊥)Ũ

†(y⊥)⟩ ≡ T N , (E.20)

where T includes only tadpole corrections in the four Wilson lines which is given by

T = e−
1
2
CFµ

2(Lxx+Lyy+Luu+Lvv). (E.21)

The factor 1/2 in the above exponent is required to reduce an overestimation for the case

of x⊥ = v⊥ and so on. On the other hand N is non-tadpole corrections. N is the same as

Q
Y
but containing only links which connect different Wilson lines. A typical term in N is

shown in Fig. E.4 As stated above, ⟨ρρ⟩ is local in z−, then links must connect points at

the same z− and diagrams with the crossed links are not allowed. Generally, N is defined
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x⊥

v⊥

u⊥

y⊥

≡ an N (a)
+ bn N (b)

· · ·

N (a) ≡ N (b) ≡

x⊥

v⊥

u⊥

y⊥

Figure E.4: Non-tadpole term Nn with n rungs interactions in the ladder which divided
as two topological types. The arrow represents a direction of the path ordering of Wilson
line.

by

N =
∞∑
n=0

∫
z−1 <···<z−n

Nn(z−1 , · · · , z−n ), (E.22)

where Nn(z−1 , · · · , z−n ) includes the number of n links with the ordering of times z− as

z−1 < · · · < z−n . By the systematic use of the Fierz identity, we can find that non-tadpole

N consists of two terms N (a) and N (b) as follows

Nn = anN (a) + bnN (b) (E.23)

with coefficient an, bn. Graphical representation of this expression is shown in Fig. E.4.

If there is 0 link in N , then we find N = N (a) exactly 1 . The coefficients are given by

a0 = 1, b0 = 0. (E.24)

Once we can obtain the expression ofNn−1, then in order to findNn, it is only necessary

1This is because finite links lead to N (b).
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to add one link to Nn−1 for every conceivable case. By the use of the Fierz identity again,

we can find the additional six rungs in the ladder are given by

x⊥v⊥ : µ2(z−n )CFLxv N (a), (E.25)

x⊥u⊥ : −µ2(z−n )Lxu

(
1

2
N (b) − 1

2Nc

N (a)

)
, (E.26)

x⊥y⊥ : µ2(z−n )Lxy

(
1

2
N (b) − 1

2Nc

N (a)

)
, (E.27)

v⊥u⊥ : µ2(z−n )Lvu

(
1

2
N (b) − 1

2Nc

N (a)

)
, (E.28)

v⊥y⊥ : −µ2(z−n )Lvy

(
1

2
N (b) − 1

2Nc

N (a)

)
, (E.29)

u⊥y⊥ : µ2(z−n )CFLuy N (a), (E.30)

for the coefficient of an−1 and

x⊥v⊥ : µ2(z−n )Lxv

(
1

2
N (a) − 1

2Nc

N (b)

)
, (E.31)

x⊥u⊥ : −µ2(z−n )Lxu

(
1

2
N (a) − 1

2Nc

N (b)

)
, (E.32)

x⊥y⊥ : µ2(z−n )CFLxy N (b), (E.33)

v⊥u⊥ : µ2(z−n )CFLvu N (b), (E.34)

v⊥y⊥ : −µ2(z−n )Lvy

(
1

2
N (a) − 1

2Nc

N (b)

)
, (E.35)

u⊥y⊥ : µ2(z−n )Luy

(
1

2
N (a) − 1

2Nc

N (b)

)
, (E.36)

for the coefficient of bn−1. Minus sign in the front of µ2(z−n ) is derived from the contribution

of the link which connects between the Wilson lines with the same direction in the path

ordering exponent. Therefore, the identities for N (a) and N (b) form the following matrix(
an
bn

)
= µ2(z−n ) U

(
an−1

bn−1

)
, (E.37)
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where U is given by

U =

(
CF (Lxv + Luy) +

1
2Nc

F (x, v;u, y) −1
2
F (x, y;u, v)

−1
2
F (x, y;u, y) CF (Lxy + Luv +

1
2Nc

F (x, y;u, v))

)
. (E.38)

We have used the notation F (x, y, u, v) = Lxu − Lxv + Lyv − Lyu. Matrix U does not

depend on the light cone time z−, then we can find the recursion relation as follows(
an
bn

)
=
[
Πn
i=1µ

2(z−i )
]
Un
(
a0
b0

)
=
[
Πn
i=1µ

2(z−i )
]
Un
(
1

0

)
. (E.39)

Next, we compute ∫
z+1 <···<z−n

(
an
bn

)
=

∫
z+1 <···<z−n

[
Πn
i=1µ

2(z−i )
]
Un
(
1

0

)

=
1

n!
µ2n Un

(
1

0

)
. (E.40)

If we can know the eigenvalues of U in the right hand side of the above equation, we imme-

diately obtain an and bn. A characteristic equation provides two independent eigenvalues

which are given by

λ± =
1

2
CF (Lxx + Luu + Lyy + Lvv)−

1

4Nc

[Γ(x− u) + Γ(v − y)]

−
(
Nc

8
− 1

4Nc

)
[Γ(x− v) + Γ(u− y) + Γ(x− y) + Γ(u− v)]± Nc

4

√
∆ (E.41)

where ∆ ≡ (α− γ)2 + 4
N2
c
(α− β)(γ − β). General solution can be written by the use of a

linear combination of two eigenvalues as follows;

∞∑
n=0

∫
z+1 <···<z−n

(
an
bn

)
=

∞∑
n=0

1

n!
µ2n

(
a+λ

n
+ + a−λ

n
−

b+λn+ + b−λn−

)

=

(
a+e

µ2λ+ + a−e
µ2λ−

b+eµ
2λ+ + b−eµ

2λ−

)
, (E.42)
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where

a± =

√
∆± (α− γ)

2
√
∆

(E.43)

b± = ±Γ(x− u) + Γ(v − y)− Γ(x− y)− Γ(v − u)
2Nc

√
∆

(E.44)

with a+ + a− = a0 = 1 and b+ + b− = b0 = 0. Here we have introduced the notations

defined as

α ≡ Lxv + Luy (E.45)

β ≡ Lxu + Lvy (E.46)

γ ≡ Lxy + Lvu. (E.47)

Inserting N (a) = 1 and N (b) = Nc into Eq. (E.44), we obtain

N = (a+ +Ncb+)e
µ2λ+ + (a− +Ncb−)e

µ2λ− . (E.48)

Therefore, as a result, we can find the quadrupole amplitude as follows;

Q
Y
(x⊥,y⊥;u⊥,v⊥)

=e−
µ2

4Nc
(Γ(x−u)+Γ(v−y))

[(√
∆+ α− γ
2
√
∆

+
γ − β√

∆

)
e
Nc
4
µ2

√
∆ +

(√
∆− α+ γ

2
√
∆

− γ − β√
∆

)
e−

Nc
4
µ2

√
∆

]
× e−(

Nc
8
− 1
Nc
)µ2(Γ(x−v)+Γ(u−y)+Γ(x−y)+Γ(v−u)). (E.49)

Finally, we present the approximated result in large-Nc limit,

Q
Y
(x⊥,y⊥;u⊥,v⊥)

LNc= e−
Nc
4
µ2(Γ(x−v)+Γ(u−y)) +

γ − β
α− γ

[
e−

Nc
4
µ2(Γ(x−v)+Γ(u−y)) − e−

Nc
4
µ2(Γ(x−y)+Γ(y−u))

]
(E.50)

and furthermore using the function Γ in the large-Nc limit given by

Γ(x− y) = − 2

µ2CF
lnS

Y
(x, y)

LNc= − 4

µ2Nc

lnS
Y
(x, y), (E.51)
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we can rewrite the quadrupole amplitude in terms of only dipole amplitude as

Q
Y
(x⊥,y⊥;u⊥,v⊥)

LNc= S
Y
(x⊥,v⊥)SY (u⊥,y⊥)

− lnS
Y
(x⊥,u⊥)SY (v⊥,y⊥)− lnS

Y
(x⊥,y⊥)SY (u⊥,v⊥)

lnS
Y
(x⊥,v⊥)SY (u⊥,y⊥)− lnS

Y
(x⊥,y⊥)SY (u⊥,v⊥)

× [S
Y
(x⊥,v⊥)SY (u⊥,y⊥)− SY (x⊥,y⊥)SY (u⊥,v⊥)].

(E.52)

This is simple and useful for numerical computations.
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