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Abstract

The matter-antimatter asymmetry and the existence of dark matter are unsolved mysteries
that current cosmology and the Standard Model cannot explain. Supersymmetry (SUSY),
the symmetry of bosons and fermions, adds a full new set of partner particles to the
Standard Model and the partner particles are thought to be candidates of dark matter.
On the other hand, axion is a particle beyond the Standard Model, which is introduced as
a solution of the strong CP problem. Thus, we consider axion models in the framework of
SUSY that solve these problems. In SUSY axion models, axino, a supersymmetric partner
of the axion exists and is also a candidate for dark matter. In this thesis, we investigate
SUSY axion models that solve the matter-antimatter asymmetry and the dark matter
problem simultaneously. The Affleck-Dine (AD) mechanism is a promising baryogenesis
model that explains the matter-antimatter asymmetry, and can generate a non-topological
soliton, Q-ball during generating the baryon number. If one assumes that Q-balls decay
into dark matter particles, baryons and dark matter have same origin, Q-ball. Therefore
the Q-ball decay can naturally explain the observational fact that the energy densities of
the two components are at some order. In the thesis, we assume axino dark matter and the
gauge mediated SUSY breaking to produce Q-balls. The decay takes place well before the
Big Bang Nucleosynthesis (BBN) and also the decay into the supersymmetric particles of
the Minimal Supersymmetric Standard Model (MSSM) is kinematically prohibited until
the very end of the decay. As a result, we can safely make their abundances small enough
for the successful BBN.
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1

Chapter 1

Introduction

Cosmology makes use of every scale of physics, from the quantum scale to the scale of
galaxies. By the combinations of the theories of gravity and observations, cosmology has
unveiled the history and the structures of the universe, for example, the Big Bang theory
and the accelerated expanding of the universe. Furthermore, with the knowledge of high
energy physics, there are promising and interesting theories, which give solutions to the
early history of the universe, such as inflation models, which expect exponential expansions
of the early universe.

Still there exist unsolved mysteries of the universe. The observation tells us that
ordinary matter only consists 5 % of the energy of the universe. Other components are
called dark matter and dark energy. Dark matter, which consists almost one thirds of
the energy, does interact through gravity but does not seem to interact through electro
magnetic force. Thus dark matter does not emit, nor absorb photon, if it does, the
interaction has to be very small. Besides the dark matter problem, another puzzling
observation result that contradicts to the theory is the baryon asymmetry. It seems to
be natural that if there exist same amounts of matter and anti-matter, but obviously the
universe mainly consists of matter.

As the Standard Model has not given a concrete solution for dark matter, the baryon
asymmetry and other cosmological problems, cosmology motivates physics beyond the
Standard Model. One of the promising theory beyond the Standard Model is supersym-
metry (SUSY), the symmetry of bosons and fermions, adds a full new set of partner
particles to the particles of the Standard Model. It is quite natural to consider such sym-
metry because of symmetric nature of physics theories. In SUSY, there consequently exist
the lightest supersymmetric particle (LSP). The LSP is stable with R-parity conservation
and in most cases scarcely interacts with other particles. These properties are ideal to be
dark matter. SUSY also provides a key concept for the baryon asymmetry. The Mini-
mal Supersymmetric Standard Model (MSSM) provides many ”flat directions”, and they



carry baryon number. As we do not observe any supersymmetric particle, SUSY has to
be broken at some energy scale. After the SUSY breaking, the flat directions are lifted
and can gain large VEV. These flat directions can produce baryon number by rotations
due to the SUSY breaking effect. This idea is called the Affleck-Dine mechanism.

So far, we have mentioned the motivations for physics beyond the Standard Model
from cosmological observational results, but of course there are other unsolved mysteries
that the Standard Model itself has. One of them is the strong CP problem. The strong
CP problem is a fine-tuning problem, a problem of the existence of the θ term in QCD.
The θ term is written as Lθ = θFµνF̃

µν where Fµν is a gluon field strength and θ is a
parameter. Lθ violates CP , but from experiments, it is suggested that the term has to
be unnaturally small. A promising solution is introducing a new particle, axion, then θ

becomes the phase of a dynamical field, axion. Thus when the axion settles at the bottom
of its potential, the θ term becomes effectively zero. The axion and its supersymmetric
partner are also candidates for dark matter.

Cosmology not only gives motivations for physics beyond the Standard Model, but also
the universe and its history can play a rule as a huge observatory for high energy physics
at large energy scales where terrestrial experiments cannot reach. Cosmic Microwave
Background (CMB) observations are one of them, and especially have developed drastically
in recent years. By observing the perturbations of the temperature when photons finally
came to be able to move freely after the recombination, we can observe the perturbation
of matters at early universe indirectly. These perturbations are known to be generated by
many inflation models that assume particle physics models. Thus we can constrain these
models using CMB data.

In this thesis, we take the axion as a key ingredient and investigate how the axion that is
introduced by physics beyond the Standard Model can solve the cosmological problem, and
how cosmological observations can have constraint on axion model parameters. Firstly, we
investigate the dark matter problem with the supersymmetric partner of the axion, axino
as LSP. The AD mechanism can generate not only baryon number, but also can generate
dark matter through a consequent object of the AD mechanism. The object is called Q-
ball, non-topological soliton. If Q-balls stay as dark matter or decay into dark matter, the
baryon and dark matter have same origin, an AD field, a flat direction of the MSSM. This
is quite attractive because the energy densities of baryon and dark matter are surprisingly
at same order ρDM ∼ 5ρb, thus such scenarios have been investigated for different dark
matter candidates. The properties of Q-balls depend on its potential. The potential is
related to the kind of SUSY breaking which is necessary for the AD mechanism to occur.
Thus Q-ball’s properties vary according to SUSY breaking mechanisms. For example, If
one takes the gravity mediated SUSY breaking, Q-balls become unstable, on the other
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hand, for the gauge mediated SUSY breaking, Q-balls are stable. We take the gauge
mediation as the SUSY breaking factor, and assume that Q-balls decay into the axino
LSP partly and mainly into nucleons, i.e. baryons. Thus the model can solve the dark
matter and the baryon asymmetry problem simultaneously from the same origin.

In our research of the Q-ball decay, we assume that dark matter consists of nothing
but axino. The axion can also become LSP and dark matter, but if an axion model
produces scale invariant perturbations, there can exist constraints on the amount of the
axion perturbation from the observation of the cosmological perturbation. In the appendix
chapter, we investigate the cosmological perturbations generated by a simple SUSY axion
model. The model produce isocurvature perturbations, and the perturbations have a
specific feature, the blue spectrum at large scales while invariant at small scales. It is
interesting, because such blue spectrum is, contrary to its specific feature, still allowed by
the observations. Using recent CMB data, we constrain the axion model parameters.

The structure of the thesis is as following: in the second chapter, we explain the CP
problem and how axion can solve the problem. In the third chapter, after we review SUSY
and the MSSM, we also introduce axino, a supersymmetric partner of the axion. In the
fourth chapter, we review the basis of cosmology, the Friedmann-Robertson-Walker metric
and inflation. In the fifth chapter, we briefly review the AD mechanism and Q-ball. The
sixth chapter is devoted to the research. We investigate a model, which assume Q-balls
from the AD mechanism with the gauge mediated SUSY breaking, and the decay of Q-
balls into the nucleons and the axinos. With the BBN constraints and other observational
constraints, we calculate the allowed region of the axino and Q-ball parameters. In the
appendix chapter, we assume a SUSY axion model, which generate isocurvature fluctu-
ations. Performing Markov Chain Monte Carlo (MCMC) analysis with CMB data from
WMAP and Planck observations, we constrain the axion model parameters.
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Chapter 2

Strong CP problem and axion

In this chapter, following recent reviews [1–3]. We explain the strong CP problem in
the quantum chromodynamics (QCD) and how it can be solved by introducing a light
pseudoscalar particle, the axion.

2.1 Strong CP problem

In QCD, the Lagrangian is described by

L = −1
2
TrFµνFµν , (2.1)

where Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] is the gluon field strength tensor, and the gluon
fields are represented by Aµ =

∑
aA

a
µτ

a, τa is a generator of SU(3)C . g represents the
coupling constant of QCD. Here, for a while, we omit the kinetic and mass terms of the
quarks q, the fields represented by the fundamental representation of SU(3)C gauge group.
The gauge transformations of Aµ and Fµν are described by

Aµ → UAµU
−1 +

i

g
∂µUU

−1, (2.2)

Fµν → UFµνU
−1 (2.3)

where U denotes a space-time dependent SU(3) matrix.
Let us take the temporal gauge A0(x) = 0. The vacuum of this Lagrangian satisfies

Fµν = 0. (2.4)

The classical vacuum corresponds to the zero field Ai(x) = 0, but the gauge fields which
are generated by gauge transformations from the zero field, Aµ = i

g∂iUU
−1 also satisfy the

condition. In this case, U has to be time-independent unitary matrix ∂0U = 0. Because

A0(x) →
i

g
∂0UU

−1 = 0, (2.5)
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and this leads to

Ai(~x) =
i

g
∂iU(~x)U−1(~x). (2.6)

They are called the pure gauge.
The nature of a vacua can be described by how U goes to unity as |~x| → ∞, such as

Un → ei2πn, (2.7)

where n is a integer and called the topological winding number. The vacua which have
different winding number are topologically different and cannot reach each other by a
continuous gauge transformation. n is also described by

n =
1

24π2

∫
d3xTrεijk

[
U−1

(
∂iU

)
U−1

(
∂jU

)
U−1

(
∂kU

)]
. (2.8)

In the pure gauge case, n is expressed using Aµ such as,

n =
ig3

24π2

∫
d3xTr

(
εijkA

iAjAk
)
. (2.9)

The pseudoscalar density 1
2F

a
µνF̃

aµν = TrFµνF̃µν , F̃µν = 1
2εµναβF

αβ , can be described
by a total divergence such as,

TrFµνF̃µν = ∂µK
µ, (2.10)

where
Kµ = εµαβγTr

(
AαFβγ −

2i
3
gAαAβAγ

)
. (2.11)

As TrFµνF̃µν is described by the total derivative of K, this does not contribute to any
perturbative calculation.

Now for the pure gauge, the non-zero component is only K0, which is written by

K0 = −2gi
3
εijkTr (AiAjAk) , (2.12)

then ∫
dx4∂0K

0 =
∫
dx4Tr

(
FµνF̃µν

)
=

2gi
3

24π2

g3i

∫
dt∂0n

=
16π2

g2
(nt=∞ − nt=−∞) . (2.13)

Here nt=∞ − nt=−∞ becomes non-zero if there exist a transition between different vacua.
The solution that gives such a transition of vacua is called the instanton.
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The true vacuum of QCD is a superposition of the vacua which have the winding
number n, |n〉

|θ〉 =
∑
n

e−iθn|n〉. (2.14)

This vacuum is called the θ-vacuum. Now let us see the transition from one θ-vacuum to
another θ-vacuum by calculating the transition amplitude,

+〈θ
′ |θ〉− =

∑
m,n

eimθ
′−inθ

+〈m|n〉−

=
∑

κ=m+n, ν=m−n
e
i
2

“
θ
′
+θ

”
ν
e
i
2

“
θ
′−θ

”
κ

+〈ν|0〉−

= δ
(
θ

′ − θ
)∑

ν

eiθν +〈ν|0〉−

= δ
(
θ

′ − θ
)∑

ν

∫
[DA]ν exp

(
i

∫
dx4Leff

)
, (2.15)

where [dA]ν means the field configuration which gives n = ν. The effective Lagrangian
becomes

Leff = L+
g2θ

16π2
Tr
(
FµνF̃µν

)
. (2.16)

Considering the nature of QCD vacuum adds an extra term such as

Lθ =
g2θ

32π2
F aµνF̃ aµν . (2.17)

This term is antisymmetric under the parity exchange and symmetric under the charge
reversal, thus it violates P and CP symmetry.

This θ term is changed by the chiral transformations, considering the anomaly. Let us
see this by considering the QCD Lagrangian

L = −1
4
Tr (FµνFµν)−

1
4
Tr
(
F em
µν F

emµν
)

+ q̄ (i 6D −m) q. (2.18)

The path integral measure dq is not invariant under the chiral transformation such as

q
′
(x) = exp (iα(x)γ5/2)q(x)

q̄
′
(x) = q̄(x) exp (iα(x)γ5/2), (2.19)

then, the measure is changed by

Dq′Dq̄′
= DqDq̄ exp

[
i

∫
d4x

α(x)
2

g2

8π2
Tr
(
FµνF̃

µν
)]
, (2.20)
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due to the anomaly. The generating functional is then rewritten by∫ ∏
f

DqfDq̄fDAµ exp
(
i

[∫
d4x− 1

2
Tr (FµνFµν) −

1
2
Tr
(
F em
µν F

emµν
)

+q̄f
(
i 6D − eiαγ5/2mfe

iαγ5/2
)
qf +

g2(θ + α)
16π2

Tr
(
FµνF̃µν

)])
. (2.21)

Here f stands for kinds of fermions. If the mass of fermions is 0, it is possible to remove
the extra term which violates CP by an axial rotation with α = −θ. In reality, however
quarks are all massive, and hence, we cannot eliminate θ-term by chiral transformations.
Because of the mass term, one has to diagonalize the mass matrix such as

Lmass = −q̄fRmff ′ qfL + h.c.. (2.22)

In order to go to a physical basis, it is necessary to perform chiral transformation with
α = arg detM . Thus θ in the extra term actually becomes,

θ̄ = θ − arg detM. (2.23)

The extra term violates CP and generates a neutron electric dipole moment dn. It can
be calculated, for example in [2], dn ' 4.5× 10−15θ̄e cm. There exists strong experimental
bound |dn| < 2.9 × 10−26e cm [4] and this bound implies |θ̄| < 0.7 × 10−11. Because it
is natural to suppose a parameter with no dimension to be O(1), such a small θ̄ remains
problematic. This is called the strong CP problem.

2.2 Peccei-Quinn mechanism and Axion

The promising solution to the strong CP problem is to add a chiral symmetry. This is
quite natural because the chiral symmetry can rotate the θ 2-1 term away. This chiral
symmetry is global chiral U(1) symmetry, which is called U(1)PQ symmetry [5] [6]. The
dynamical CP-conserving field which is the phase of U(1)PQ is called axion. The axion is
the Nambu-Goldstone boson of the U(1)PQ symmetry [7], [8]. The PQ symmetry has to
be spontaneously broken, which is realized when the axion settles down to the minimum
of its potential. Under a U(1)PQ transformation, the axion field a(x) translates to

a(x) → a(x) + αfa, (2.24)

where fa represents the breaking scale of the PQ symmetry. The Lagrangian that includes
the new field axion has extra terms of axion and the interactions of axion and other field,

L = LSM + θ
g2

16π2
Tr(FµνF̃µν)−

1
2
∂µa∂

µa+ Lint

[
∂µa

fa
,Φ
]

+ ξ
a

fa

g2

16π2
Tr(FµνF̃µν).(2.25)

2-1Here we set θ̄ → θ as there is no fear of confusing.
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The last term above represents an effective potential for the axion field, and its minimum
occurs at 〈a〉 = −θ faξ , that is〈

∂Veff

∂a

〉
= − ξ

fa

g2

16π2

〈
Tr(FµνF̃µν)

〉∣∣∣∣
〈a〉=−θ fa

ξ

= 0. (2.26)

At this minimum the θ term is canceled out, so the axion field is a dynamical solution
to the strong CP problem. Additionally including the effects of the QCD anomaly serves
to generate a potential for the axion field which is periodic in the effective vacuum angle
θ + 〈a〉 ξ

fa
:

Veff ' cos
(
θ + ξ

〈a〉
fa

)
. (2.27)

The PQ solution can be obtained by minimizing this potential with respect to 〈a〉,

〈a〉 = −fa
ξ
θ. (2.28)

Thus the Lagrangian wirtten in terms of aphys = a− 〈a〉 no longer violates CP invari-
ance. In order to make the Standard Model invariant under a U(1)PQ transformation,
one must introduce two Higgs doublets Hu and Hd which couple to up-type and down-
type quarks respectively to absorb independent chiral transformations. This is called the
Peccei-Quinn-Weinberg-Wilczeck (PQWW) model. The axion is the phase of the Higgs
doublets, which are written by

Hu =
vu√
2
e
i ax
vF

(
1
0

)
, Hd =

vd√
2
e
i a
xvF

(
0
1

)
, (2.29)

where x ≡ vd
vu

and v2
F = v2

u + v2
d ∼ 250 GeV (electroweak scale). Under a U(1)PQ transfor-

mation, the axion, the quarks and the Higgs doublets translate to

a→ a+ αvF , (2.30)

uR → e−iαx, dR → e−i
α
x . (2.31)

From these rules of translation, one can see the Yukawa interacting term

LYukawa = −Γuij q̄iLHuujR − Γdij q̄iLHddjR + h.c. (2.32)

is invariant under U(1)PQ transformations. Now we perform an axial rotation

ui → e
−i ax

2vF
γ5ui, di → e

−i a
2xvF

γ5di, (2.33)
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in order to cancel out the dependence of the axion in the Yukawa interaction term. By
the chiral anomaly, we get the interaction term between the axion and the gluons such as

Lagg = − g2

16π2
Ng

(
x+

1
x

)
a

vF
Tr(FµνF̃µν). (2.34)

Comparing this to eq.(2.25), one finds

fa = vF , (2.35)

and

ξ = Ng

(
x+

1
x

)
, (2.36)

where Ng is the number of generations of the quarks.

2.3 Invisible Axion Models

The PQWW model we explained in the previous section was actually ruled out by exper-
iment. The branching ratio of the decay of K+ is

BR(K+ → π+ + a) ' 3× 10−5

(
x+

1
x

)2

(2.37)

[9], [1]. On the other hand, the bound obtained at the experiment is BR(K+ → π+ +
nothing) < 3.8 × 10−8 [10]. Thus the branching ratio obtained by the PQWW model
is far above the experimental bound. In this model, the axion is in the phases of Higgs
doublets, so the PQ breaking scale fa is bound to the electroweak scale. The branching
ratio of K0 decay is inverse proportional to fa, thus we need to have larger fa. Actually the
interactions between the axion and the quarks or the photons are also inverse proportional
to the PQ breaking scale, so if one can set fa � vF , axion becomes invisible in experiments.
In this section, we are going to briefly explain so-called invisible axion models.

First, we introduce the Kim-Shifman-Vainstein-Zakharov (KSVZ) model [11], [12]. In
this model, a scholar field σ and a super heavy quark Q are added to the model. σ is
embedded with the axion degree of freedom and has VEV: 〈σ〉 = fa � vF . Q has the
mass MQ ' fa. Only these two fields carry PQ charges. Under a U(1)PQ transformation,
these field translate to

σ → e2iα, (2.38)

QL → eiαQL, QR → eiαQR. (2.39)
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In a similar way as the PQWW model, the Yukawa interaction terms are invariant under
this transformation.

LYukawa = −ΓQ̄LσQR + h.c. (2.40)

After U(1)PQ breaking, σ field can be written by axion such as,

σ =
fa√
2
e
i a
fa . (2.41)

By construction, axion in the KSVZ model does not couple with leptons, so by performing
a axial rotation Qi → e

−i a
2fa

γ5Qi, the strong and electromagnetic anomaly terms become

Lanomaly = − a

fa

(
g2

16π2
Tr(FµνFµν) + 3e2Q

α

2π
Tr
(
F emµνF em

µν

))
, (2.42)

where eQ is the electromagnetic charge of Q. Note that in the KSVZ model, the axion
mass is written by [1]

ma ' 6.3 eV
(

106 GeV
fa

)
. (2.43)

Another invisible axion model is so called the Dine-Fischler-Srendnicki-Zhitnitskii
(DFSZ) model [13], [14]. In this model, two Higgs doublets Hu, Hd and a scalar field
φ are added to the original PQ model, where the axion is embedded in φ. The Standard
Model quarks and φ, the two Higgs doublets carry PQ charges. There are couplings be-
tween the Standard Model quarks and the Higgs doublets, and couplings between φ and
the Higgs doublets. After the spontaneous breaking of SU(2)W × U(1)Y × U(1)PQ, there
appear the couplings of the Standard Model quarks and the axion. In the similar way as
the previous models, by performing chiral rotations, one gets the anomaly term such as,

Lanomaly = − a

Fa

g2

16π2
Tr(FµνFµν), (2.44)

where Fa ' fa
2Ng

(〈φ〉 � vF ), and Ng is the number of the generations of the Standard
Model quarks. Then the axion mass in the DFSZ model is written by [1],

ma ' 12 eVNg

(
106 GeV

fa

)
. (2.45)

There are astrophysical and cosmological bounds on the PQ breaking scale Fa (fa in
the KSVZ model) in axion models, such as

109 GeV . Fa . 1011 GeV. (2.46)

Astrophysics gives the lower bound. Because the axions are very light and very weakly
coupled, the axion interaction temperature is much lower than the typical temperature of

10



the interaction inside stars. Thus, axions are emitted from stars. In order not to effect
the evolutions of stars, the axion mass should be small enough, that is, Fa should be
large enough. This lower bound comes from the observation of supernova 1987A [15], [16].
The axion mass has to be small enough not to shorten the neutrino burst duration. On
the other hand, the upper bound comes from cosmology. This is only valid only If one
considers the axion as dark matter (especially, cold dark matter). The energy density of
the axion cannot exceed the observational amount of cold dark matter, thus this gives
the upper bound of Fa [3]. Note that the upper bound exists only if the PQ symmetry
breaking takes place after the inflation. Otherwise Fa can still take Fa > 1011 GeV. In the
chapter 6, as we consider the supersymmetric partner of the axion as dark matter, this
upper bound does not exist.
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Chapter 3

Supersymmetry and MSSM

In this section, we review supersymmetry. Supersymmetry (SUSY) is able to solve prob-
lems in the Standard Model such as the hierarchy problem and also enables the gauge
coupling unification for SU(3)C , SU(2)L and U(1)Y at the Grand Unified Theory scale.
Besides, the new symmetry gives a promising candidate for dark matter. After a review
of SUSY, we take a look at the Minimal Supersymmetric Standard Model which is the
minimal supersymmetric extension of the standard model. There exist many reviews and
introductions about SUSY and the MSSM. In this thesis, we roughly follow [17] and [18].
In the last section, we introduce axino, a supersymmetric partner of the axion.

3.1 Supersymmetry

In the Standard Model, the Higgs boson gives mass to the W and the Z bosons via
the spontaneously symmetry breaking of the electroweak symmetry SU(2)L × U(1)Y →
U(1)em. The masses of the quarks and the charged leptons are also generated via the
couplings to the Higgs boson. The mass of the Higgs particle is effected by radiative
corrections due to loop integrations from the interaction. The one loop radiative correction
to the Higgs mass mH is expressed by the renormalized mass mH and the bare mass mH,0,

δm2
H = m2

H −m2
H,0

= −
|λf |2

8π2
Λ2

UV, (3.1)

where ΛUV is a cut off scale, at which scale new physics enters. Now as we know the
Higgs mass is about 125-6 GeV [19] [20], if we suppose the cut off scale as Planck scale
∼ 1019 GeV and λf ∼ O(1), we need a tremendous fine tuning cancellation such as

m2
H = m2

H,0 + δm2
H

O(100 GeV)2 = O(1019 GeV)2 −O(1019 GeV)2. (3.2)
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This is called the hierarchy problem in the Standard Model. SUSY solves this problem
by introducing a symmetry between bosons and fermions. The new symmetry introduces
bosonic fields for each fermion in the Standard Model and vice versa, so that the quadratic
divergent radiative corrections to the Higgs boson mass are canceled with each other.
From the interaction between the Higgs boson and scalar fields that is written by Lint =
−λs|H|2|φ|2, the radiative corrections to the Higgs mass from one loop integration becomes

δm2
H =

λ2
s

16π2
Λ2

UV. (3.3)

Here the difference of the sign between the radiative corrections from fermions and boson
comes from the spin statistics. Thus with two new bosons to each Dirac fermion and
supposing λs = |λf |, the radiative corrections from bosons and fermions cancel out without
any fine tuning. The corrections by higher loop integrals also cancel thanks to the new
symmetry.

The symmetry which relates bosons and fermions requires a supersymmetric Lagrangian
to be invariant under supersymmetric transformations, which turn bosonic states into
fermionic states and vice versa. Such transformations are described by spinor operators
Qα,

Qα |B〉 = |F 〉 , Q̄α̇ |F 〉 = |B〉 . (3.4)

Note that here we consider QN=1
α , which corresponds to a simple SUSY. α is a spinor

index and Q̄α̇ = Q†
α. These spinor operators satisfy the following algebras,

{Qα , Qβ} = {Q̄α̇ , Q̄β̇} = 0, (3.5)

{Qα , Q̄β̇} = 2 (σµ)αβ̇ Pµ, (3.6)

and

[Pµ , Qα] =
[
Pµ , Q̄α̇

]
= 0. (3.7)

where Pµ is the four-momentum generator of space-time translations. Here σµ = (σ0, σi),
and σi are Pauli matrices. They are defined as

σ0 = σ̄0 =

(
1 0
0 1

)
, σ1 = −σ̄1 =

(
0 1
1 0

)
,

σ2 = −σ̄2 =

(
0 −i
i 0

)
, σ3 = −σ̄3 =

(
1 0
0 −1

)
. (3.8)

In SUSY, a one particle state |Ω〉 and the states which are generated by acting SUSY
generators Qα and Q̄β̇ make up a supermultiplet. The members of one supermultiplet are
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superpartners each other. One can find that each supermultiplet contains same numbers
of bosons and fermions by defining the fermion number operator (−)F = (−1)2s where s
is spin. This operator satisfies

(−)F |B〉 = |B〉 , (−)F |F 〉 = −|F 〉. (3.9)

Then, taking trace of (−)F {Qα , Q̄β̇} gives

Tr{(−)F {Qα , Q̄β̇}} = 2 (σµ)αβ̇ PµTr{(−)F }

= Tr{−Qα(−)F Q̄β̇ + (−)F Q̄β̇Qα} = 0, (3.10)

where we used eq.(3.6) and the anticommutation relation {(−)F , Qα} = 0. Thus

Tr{(−)F } =
∑

boson

〈B| (−)F |B〉+
∑

fermion

〈F | (−)F |F 〉

= nB − nF = 0 (3.11)

The particles in the same supermultiplet share the equal mass from the commutation rela-
tion of −P 2 and Qα, Q̄β̇. In the similar way, from the fact that Qα, Q̄β̇ also anticommute
with the generators of the gauge transformations, the superpartners reside in the same
representations of the gauge group.

Mainly supermultiplets fall into two categories. The first one is called a chiral super-
multiplet (φ, ψ). A chiral supermultiplet consists of a single Weyl fermion ψ (nF = 4),
two real scalars φ (nB = 2) and one complex scalar field F (nB = 2). F does not have
its kinetic term and called an auxiliary field. The auxiliary field is introduced in order
to make the supersymmetric algebras to close even quantum mechanically (off-shell) and
does not propagate. The other kind of supermultiplets is called a gauge supermultiplet(
Aaµ, λ

a
)

where a is a index for the adjoint representation of the gauge group. A gauge
supermultiplet contains a spin-1 vector boson Aaµ and its superpartner, a spin-1/2 Weyl
fermion λa. Before the spontaneous breaking of the gauge symmetry, the vector boson
is massless, thus the fermion is also massless. A massless spin-1 boson has three degrees
of freedom (nB = 3) (one degree of freedom is absent due to the inhomogenous gauge
transformation) and a Weyl fermion has four degrees of freedom (nF = 4). There exists
an auxiliary field Da with one bosonic degree of freedom (nB = 1). Note that so far we
counted the degrees of freedom off-shell, on-shell, a spin-1/2 Weyl fermion has two real
degrees of freedom (nF = 2) according to two helicity states and a spin-2 boson also has
only two degrees of freedom (nB = 2). On-shell, the auxiliary fields F and Da are elimi-
nated. There is another supermultiplet if one includes the spin-2 graviton (again with two
helicity states nB = 2 on-shell). The superpartner of the graviton is called gravitino with
spin-3/2, which is massless (nF = 2 on-shell) if supersymmetry is unbroken.
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3.2 Lagrangian in SUSY

Supersymmetric Lagrangians are invariant under the supersymmetric transformation (up
to total derivative). Let us first take a look at the Lagrangian that consists of free chiral
supermultiplets Φi = (φi, ψi, Fi).

Lchiral free = −∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi + F ∗iFi. (3.12)

The index i represents all gauge and flavor degrees of freedom. This Lagrangian is invariant
under the supersymmetry transformation,

δφi = εψi, (3.13)

δ(ψi)α = −i(σµε†)α∂µφi + εαFi, (3.14)

δFi = −iε†σ̄µ∂µψi. (3.15)

where εα is a infinitesimal anti-commuting spinor.
The general interaction part of the Lagrangian which is renormalizable and invariant

under supersymmetric transformation is written by,

Lchiral int =
(
−1

2
W ijψiψj +W iFi

)
+ c.c. (3.16)

Here W ij and W i are defined by

W ij =
δ2

δφiδφj
W, (3.17)

and

W i =
δW

δφi
. (3.18)

Here W is called the superpotential,

W =
1
2
M ijφiφj +

1
6
yijkφiφjφk, (3.19)

where M ij is a symmetric matrix and yijk is a symmetric Yukawa coupling for the inter-
action of one scalar field and two fermions. Thus, W ij and W i are explicitly

W ij = M ij + yijkφk, (3.20)

W i = M ijφj +
1
2
yijkφjφk. (3.21)

15



The classical equations of motion for Fi and F j give the expression of the auxiliary fields
by the superpotential, such as

Fi = −W ∗
i , F

∗i = −W i. (3.22)

By inserting eq.(3.22) into eqs.(3.12) and (3.16), we obtain the supersymmetric Lagrangian
for chiral supermultiplets,

Lchiral = Lchiral free + Lchiral int

= −∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi − V (φ, φ∗)

−1
2
M ijψiψj −

1
2
M∗
ijψ

†iψ†j − 1
2
yijkφiψjψk −

1
2
y∗ijkφ

∗iψ†jψ†k. (3.23)

Here the scalar potential V (φ, φ∗) is

V (φ, φ∗) = −W iW ∗
i

= M∗
ikM

kjφ∗iφj +
1
2
M ily∗jklφiφ

∗jφ∗k +
1
2
M∗
ily

jklφ∗iφjφk

+
1
4
yijly∗knlφiφjφ

∗kφ∗n. (3.24)

From the total Lagrangian, one finds the scalar fields and the fermions share the same
squared mass matrix M∗

ijM
jk. This corresponds to the fact that superpartners have same

masses in each supermultiplet.
Next, we include gauge supermultiplets

(
Aaµ, λ

a, Da
)

in the supersymmetric Lagrangian.
The gauge transformation are

Aaµ → Aaµ + ∂µΛa + gfabcAbµΛ
c, (3.25)

λa → λa + gfabcλbΛc, (3.26)

where Λa is a parameter for the infinitesimal gauge transformation, g is the gauge coupling,
fabc are the totally antisymmetric structure constants which satisfy

[
T a, T b

]
= ifabcT c

(T a representationsofthegaugegroup). For Abelian gauge groups, fabc = 0.
The free part of the Lagrangian for gauge supermultiplets is written by,

Lgauge free = −1
4
F aµνF

µνa + iλ†aσ̄µ∇µλ
a +

1
2
DaDa, (3.27)

where F aµν is the field strength which is given by

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (3.28)

The covariant derivative of λa is

∇µλ
a = ∂µλ

a + gfabcAbµλ
c. (3.29)
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This supersymmetric Lagrangian for the gauge supermultiplets is invariant under super-
symmetric transformation such as

δAaµ = − 1√
2

(
ε†σ̄µλ

a + λ†a + λ†aσ̄µε
)
, (3.30)

δλaα =
i

2
√

2
(σµσ̄νε)α F

a
µν +

1
2
εαD

a, (3.31)

δDa i√
2

(
−ε†σ̄µ∇µλ

a +∇µλ
†aσ̄µε

)
. (3.32)

Next we are going to introduce a general supersymmetric Lagrangian with chiral su-
permultiplets and gauge supermultiplets including the interaction between both supler-
multiplets. Fields in a same supermultiplets share in the same gauge representation, thus
they transform under the gauge transformation such as

φi → φi + igΛa(T aφ)i, (3.33)

ψiα → ψiα + igΛa(T aψα)i, (3.34)

Fi → Fi + igΛa(T aF )i. (3.35)

The derivatives of the fields are replaced by the covariant derivatives in order to keep the
Lagrangian invariant under the gauge transformations. They are written by,

∇µφi = ∂µφi − igAaµ (T aφ)i , (3.36)

∇µψi = ∂µψ − igAaµ (T aψ)i . (3.37)

Besides, we need the condition

W i (T aφ)i = 0, (3.38)

in order to keep the Lagrangian (especially the scalar potential part V (φ, φ∗)) invariant
under the gauge transformations.

The general interaction part of the total Lagrangian is written by

Lint = −
√

2g (φ∗T aψ)λa −
√

2gλ†a
(
ψ†T aφ

)
+ g (φ∗T aφ)Da. (3.39)

With this interaction part, the total Lagrangian Lchiral + Lgauge free + Lint is invariant
under the supersymmetric transformations of gauge supermultiplets eqs.(3.30), (3.31) and
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(3.32). The supersymmetric transformations of chiral supermultiplets which keep the total
Lagrangian invariant are modified to

δφi = εψi, (3.40)

δψiα = −i
(
σµε†

)
α
∇µφi + εαFi, (3.41)

δFi = −iε†σ̄µ∇µψi +
√

2g (T aφ)i ε
†λ†a. (3.42)

The equation of motion for the Da field leads to

Da = −g (φ∗T aφ) . (3.43)

Eqs.(3.22) and (3.43) give the expression for the scalar potential

V (φ, φ∗) = F ∗iFi +
1
2
DaDa

= W iW ∗
i +

1
2
g2
∑
a

(φ∗T aφ)2 . (3.44)

The first term is called F-term, which is determined by the interaction between the scalars
and the fermions and the mass terms, on the other hand, the second term is D-term
determined by the gauge interactions.

So far, we did not use the language of superfields and superspace. A supermultiplet can
be represented by a superfield Φ or V , which contains all components of the supermultiplet
Φ 3 (φ, ψ, F ) or V 3 (Aµ, λα, D). In this thesis, we do not explain superfields and
superspace in detail, but in many SUSY reviews, they explain the concept (for example
in [17], [18]). Using the superfields, the superpotential is written by

W =
1
2
M ijΦiΦj +

1
6
yijkΦiΦjΦk. (3.45)

Actually, one can add a term proportional to Φi to the superpotential only if Φi is a gauge
singlet. As we will concentrate on the minimal extension to the Standard Model where
there is no such a chiral supermultiplet, we will omit this term in the following.

3.3 Minimal Supersymmetric Standard Model

So far we briefly reviewed SUSY and introduced the supersymmetric Lagrangian that is
invariant under the spupersymmetric transformation, the transformation into boson from
fermion and vice versa. Now we are going to review a supersymmetric extension of the
Standard Model, the Minimal Supersymmetric Standard Model (MSSM). The Standard
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Model is spontaneously broken SUC(3)⊗SUL(2)⊗UY (1) gauge theory. The super partners
in a supermultiplets inhabit the same gauge representation. Now let us take a look at the
contents of the MSSM.

In the MSSM, there exist chiral supermultiplets with quarks in the Standard Model
and their superpartners, the squarks. Table. 3.1 shows chiral supermultiplets for the
quarks/squarks where i represents three generations for the quarks in the Standard Model.
The chiral supermultiplet Qi is a doublet under SU(2)L. Fig.3.2 shows chiral supermul-
tiplets for the leptons and their superpartners the sleptons and Table.3.3 shows for the
Higgs and their superpartners, the higgsinos. Note that there are two Higgs SU(2)L dou-
blets in the MSSM while there is only one SU(2)L Higgs doublet in the Standard Model.
Besides the cancellation of the anomalies, another reason is that the superpotentials in
SUSY have to be holomorphic. We need two Higgs supermultiplets to give masses to the
up and down-type quarks and the charged leptons.

supermultiplets spin 0 (squark) spin 1/2 (quark) SUC(3)⊗ SUL(2)⊗ UY (1)

Qi

(
ũLi
d̃Li

) (
uLi
dLi

) (
3, 2, 1

6

)
Ūi ũ∗Ri u†Ri

(
3∗, 1,−2

3

)
D̄i d̃∗Ri d†Ri

(
3∗, 1, 1

3

)
Table 3.1: Chiral supermultiplets for quarks/squarks

supermultiplets spin 0 (slepton) spin 1/2 (lepton) SUC(3)⊗ SUL(2)⊗ UY (1)

Li

(
ν̃Li
ẽLi

) (
νLi
eLi

) (
1, 2,−1

2

)
Ēi ẽ∗Ri e†Ri (1, 1, 1)

Table 3.2: Chiral supermultiplets for leptons/sleptons

supermultiplets spin 0 (Higgs) spin 1/2 (higgsino) SUC(3)⊗ SUL(2)⊗ UY (1)

Hu

(
H+
u

H0
u

) (
H̃+
u

H̃0
u

) (
1, 2, 1

2

)
Hd

(
H0
d

H−
d

) (
H̃0
d

H̃−
d

) (
1, 2,−1

2

)
Table 3.3: Chiral supermultiplets for Higgs/higgsinos

The gauge bosons of the Standard Models make up gauge supermultiplets (Table. 3.4).
Corresponding to SUC(3)⊗ SUL(2)⊗ UY (1), there are three gauge supermultiplets. The
gauge supermultiplet for the SUC(3) gauge interaction consists of the gluon g and the
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gluino g̃. For the electroweak gauge interaction SUL(2)⊗UY (1), there exist gauge bosons
and fermions (gauginos), the W bosons W±,W 0 and the winos W̃±, W̃ 0, the B boson B0

and the bino B̃0. These electroweak bosons and their superpartners mix into the Z boson
Z0 and the photon γ after spontaneous symmetry breaking of the electroweak symmetry.
The corresponding gauge fermions are the zino Z̃0 and the photino γ̃.

supermultiplets spin 1/2 gaugino spin 1 gauge boson SUC(3)⊗ SUL(2)⊗ UY (1)

G1 g̃ g (8, 1, 0)

G2 W̃±, W̃ 0 W±,W 0 (1, 3, 0)

G3 B̃0 B0 (1, 1, 0)

Table 3.4: gauge supermultiplets

Now we have the supermultiplets in the MSSM that are shown in Tables. (3.1)-(3.4).
The general superpotential of the MSSM is written by

WMSSM = εαβ
(
yiju ŪiaQjαaHuβ − yijd D̄iaQjαaHdβ − yije ĒiLjαHdβ + µHuαHdβ

)
+ εαβ

(
αijk1 LiαLjβĒk + αijk2 LiαQjβaD̄

a
k + αi3LiαHuβ

)
+ εabcβijkŪaiD̄bjD̄ck. (3.46)

where εαβ is the antisymmetric symbol ε12 = −ε21 = −ε12 = ε21 = 1. εabc is also totally
antisymmetric tensor ε123 = −ε123 = 1 where a = 1, 2, 3 is the color index of 3 and its
adjoint representations of SUC(3). The first line of eq.(3.46) contains terms with Yukawa
couplings that give masses to quarks and leptons and a mass term for two Higgs bosons.
The terms in the second line violate the total baryon or lepton number conservation. These
terms do not exist in the Standard Model that automatically preserves the total baryon
or lepton numbers. The existence of the baryon and lepton number violating terms leads
to proton decay p → e+ + π0. The decay time can be estimated to be within seconds.
This is quite contrary to the experiments which suggest that the lifetime of proton is much
longer than the age of the universe. Thus we need to constrain the MSSM to preserve the
total baryon and lepton number by imposing extra symmetry, R-parity. The R-parity is
defined as

PR = (−1)3(B−L)+2s, (3.47)

where B and L are the baryon/lepton number respectively and s is the spin of the particle.
All of the Standard Model particles including the Higgs boson have PR = 1 and their
superpartners, the sparticles have PR = −1. The R-symmetry means that there only
exist interactions involving even-number sparticles. If the R-symmetry exist, the lightest
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sparticle, the lightest supersymmetric particle, LSP is stable. Thus, if LSP is electrically
neutral, which means that it scarcely interacts with other particles, LSP is a promising
candidate for dark matter (weakly interacting massive particle, WIMP). With the R-
symmetry, the superpotential of the MSSM is written by

WMSSM R

= εαβ
(
yiju ŪiaQjαaHuβ − yijd D̄iaQjαaHdβ − yije ĒiLjαHdβ + µHuαHdβ

)
. (3.48)

We have discussed the supersymmetric extension of the Standard Model, but as the
superpartners of the Standard Model particles have not discovered yet, SUSY has to be
broken. If SUSY would be unbroken, the sparticles should have shared same masses as
their superpartners in the Standard Model, which means that they should have discovered
by experiments. The effect of the SUSY breaking has to be constrained in order not
to bring back quadratic divergence in the Higgs mass which is cancelled by introducing
SUSY. Such SUSY breaking is called ”soft” SUSY breaking. The SUSY breaking occurs
spontaneously in a hidden sector different from the visible sector where the MSSM particle
inhabit, then this SUSY breaking communicates via the messenger sector to the visible
sector. The property of the SUSY breaking depends on the mediating interaction. The
gravity mediated SUSY breaking is mediated by gravitational interactions. The typical
mass of the particles is assumed to be

msparticle ∼
M2

SUSY

MP
. (3.49)

If one assumes msparticle ∼ 1 TeV, which leads to the SUSY breaking scale MSUSY ∼
1012 GeV and the gravitino obtains mass of msparticle ∼ 1 TeV. While the gauge mediated
SUSY breaking is via gauge interactions between the messenger sector and the visible
sector. The sparticle mass is roughly estimated as

msparticle ∼
g2

16π2

M2
SUSY

MS
, (3.50)

where g is the gauge coupling constant and MS is the mass scale of the messenger sector.
Thus if one takes msparticle ∼ 1 TeV and MS ∼MSUSY, MSUSY becomes comparably small
∼ O(100 TeV). The gravitino mass becomes also small, approximately∼ M2

SUSY
MP

. O(GeV)
in the case of the gauge mediation, while in the gravity mediation, it is close to the other
sparticle masses.

3.4 Axino

In this section, we briefly explain the axino, the supersymmetric partner of the axion. As
SUSY is a symmetry between bosons and fermions, if there exist supersymmetry, each
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elemental particle has its superpartner whose spin differs by 1/2 and each superparter
shares the same mass and internal quantum numbers except spin. Furthermore, with the
convention of the R-parity, LSP becomes a strong candidate of the dark matter. The
axino can be LSP, which makes the axino a candidate of the dark matter. Reviews about
the axino as the dark matter are [21], [22], for example.

When an axion model is supersymmetrized, a superpartner of the axion a, the axino
ã and a real scalar field, the saxion s are introduced. The axion superfield which includes
the axion, the saxion and the axino A 3 (a, s, ψa) is written by

A =
s+ ia√

2
+ εαβ

√
2θαψβa + εαβθ

αθβFA, (3.51)

θ is a complex anticommuting two-component spinor. FA is an axial field which does not
carry the physical degree of freedom. The axino is written as 4-spinors using ψa,

ã =

(
ψa

ψ̄a

)
. (3.52)

The superpotential responsible for the spontaneous PQ symmetry breaking is written
as [23]

WPQ = fZZ(S1S2 − V 2
a ), (3.53)

where Z is a gauge singlet superfield, S1 and S2 are PQ scalars, and fZ is a Yukawa
coupling. Va is a dimensional parameter corresponding to the PQ-breaking scale. While
Z does not have PQ charge, S1 and S2 translates into

S1 → eiαQσS1, S2 → e−iαQσS2, (3.54)

under U(1)PQ transformation. At the vacuum, S1 ' S2 ' Va, the PQ symmetry is
spontaneously broken. The axion superfield is obtained as (S1 − S2)/

√
2.

Now let us see the supersymmetrization of the two invisible axion models the KSVZ
and the DFSZ model. In the KSVZ model, new heavy quark fields that carry PQ charges
are introduced. Using the new quark fields, the superpotential is written by [24]

WKSVZ = WPQ + fQQLQ̄RS1. (3.55)

The second term leads to the anomaly coupling aF F̃ at low energy after the heavy quarks
are integrated out.

On the other hand, in the DFSZ model, two Higgs doublets, Hd and Hu, and the
MSSM (s)quarks, carry PQ charges and couples to the axion multiplet as [25]

WDFSZ = WPQ +
fs
MP

S2
1HuHd. (3.56)
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The anomalous coupling is obtained after electroweak symmetry breaking through the
coupling of the axion to the Higgs doublets which further couples to the light (s)quarks.

In the chapter 6, we will consider these two supersymmetric axion models.
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Chapter 4

The basis of modern cosmology

This chapter explains basis of cosmology, Friedmann-Robertson-Walker universe, Einstein
equation, and inflation. Throughout this thesis without any explicit statement, natural
units are adopted, where the speed of light, the reduced Planck constant and the Boltz-
mann constant are unity, c = ~ = kB = 1 [26]. In appendix A, we also include a review of
the perturbation theory of the universe [27,28].

4.1 The background universe and Einstein field equations

In order to investigate the nature of space and time, we define the space-time metric. If
there exist curvatures in the space time, it is impossible to define the inertial space, thus
we can only define a local metric using the metric tensor gµν , such as

ds2 = gµνdx
µdxν . (4.1)

The cosmological principle is the assumption that considers no special point and direction
in the universe. This principle describes the homogeneous and isotropic universe. Adapt-
ing the cosmological principle, the metric of the homogeneous and isotropic universe at
the uniform time is described by the metric

ds2 = a2 (τ)
[
−dτ2 +

dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (4.2)

where a(τ) is the scale factor normalized to 1 at present (i.e. a(τ0) = 1), K is a constant,
which describes the curvature of the universe and τ is called conformal time and defined
by dτ = dt

a(τ) . In the following we use d
dτ = ′, ddt = ˙ This metric is called Friedmann-

Robertson-Walker (FRW) metric. K = −1, 0, 1 respectively corresponds to closed, flat
and open universes.

The covariant derivative is the derivative of general metrics. Vectors and tensors change
their components by parallel transports in curved surfaces. The changes are expressed by
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using the Christoffel symbols Γµνλ,

dAµ = −ΓµνλA
νdxλ, (4.3)

dAµ = ΓνµλAνdx
λ, (4.4)

Γµλν =
1
2
gµρ (∂νgρλ + ∂λgρν − ∂ρgλν) . (4.5)

Then the covariant derivative is written by

∇νA
µ = ∂νA

µ + ΓµνλA
λ, (4.6)

∇νAµ = ∂νAµ − ΓλνµAλ. (4.7)

Note that the covariant derivative is not commutative.

∇α∇βA
µν
λ −∇β∇αA

µν
λ = RµναβA

ν 6= 0 (4.8)

Rµναβ = Γµβν,α − Γµνα,β + ΓµαλΓ
λ
βν − ΓµβλΓ

λ
να (4.9)

From now on, we express ∇µ =;µ, ∂µ =, µ. Rµναβ is the Riemann curvature tensor, the
Ricci curvature and the Riemann curvature scholar are defined as

Rµν = Rλµλν

= Γλµν,λ − Γλνλ,µ + ΓλρλΓ
ρ
µν − ΓλρνΓ

ρ
νλ,

(4.10)

R = gµνRµν . (4.11)

Let us calculate Rµν , R.

R00 = −3äa.

Rij = δij
(
aä+ 2ȧ2 + 2K

)
.

R0i = Ri0 = 0.

(4.12)

R = gµνRµν = 6

[
ä

a
+
(
ȧ

a

)2

+
K

a2

]
. (4.13)

Next we introduce the energy-momentum tensor Tµν . The energy-momentum tensor of
perfect fluid can be expressed using the energy density ρ, the pressure P and the comoving
velocity of an observer uµ (gµνuµuν = −1), such as

Tµν = (ρ+ P )uµuν + Pδµν , (4.14)

The comoving velocity is written by

uµ =
1
a
δµ0. (4.15)
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Imposing the energy-momentum conservation, the covariant derivatives of the energy-
momentum tensors

Tµν;µ =
∂Tµν
∂xµ

+ ΓµαµT
α
ν − ΓαµνT

µ
α (4.16)

become 0 for the 0 th and i-th components.

−∂ρ
∂t
− Γµ0µρ− Γα0µT

µ
α = 0 (4.17)

∂ρ

∂t
+
ȧ

a
3 [ρ+ P ] = 0. (4.18)

The actual universe consists of multi components and if one labels the energy density
and pressure of the i-th components as ρi and Pi then, the total energy density and total
pressure are given by

ρ =
∑
i

ρi, (4.19)

P =
∑
i

Pi. (4.20)

By defining the critical density such as

ρc ≡
3H2

0

8πG
, (4.21)

(H = ȧ
a is called the Hubble parameter, and the Hubble constant at present H0 =

100h km/sec/Mpc), then the density parameter for a single component i is defining by

Ωi =
ρi(t0)
ρc

, (4.22)

where ρi(t0) represents the energy density of today. Eq.(4.18) express the continuous
property of the energy density of the expanding universe. Einstein’s theory of gravity tells
us the interaction between the space-time and matter of the universe. The Einstein field
equations are given by

Gµν ≡ Rµν −
1
2
gµνR = 8πGTµν − Λgµν . (4.23)

The left hand side Gµν , is called the Einstein tensor and expresses the geometry of the
universe and the right hand side describes cosmological constituents. Here λ is the cos-
mological constant, which is the one of the unsolved mystery of the cosmology. Let us
calculate the Einstein tensors in the FRW metric, which are written by

G0
0 = −3

[(
ȧ

a

)2

+
K

a2

]
,

Gi0 = G0
i = 0,

Gij = −

[
2
ä

a
+
(
ȧ

a

)2

+
K

a2

]
δij .

(4.24)
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Now assuming the components of the universe consist of perfect fluid , we can obtain the
two independent components of the Einstein field equation,(

ȧ

a

)2

=
8πG

3
ρ− K

a2
+

Λ
3
, (4.25)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ
3
. (4.26)

Eq.(4.25) is especially called the Friedemann equation. From Eq.(4.25) and (4.26), we can
derive the continuous equation, Eq.(4.18), this is due to the fact that Tµν;µ = 0 is included
in Gµν;µ = 0. Actually, the three equations, the Friedmann equation Eq.(4.25), the con-
tinuous equation Eq.(4.18), and the equation of state p = p(ρ) are the basic equations of
the universe which decide the evolution and dynamics of the universe.

So far we have worked with the homogenous and isotropic universe. The universe
without any inhomogeneities and anisotropies are referred as background or unperturbed
universe. The observed universe is not exactly homogenous and isotropic. Actually the
observed universe can be assumed as a unperturbed universe at 0-th order. In the next
section, we introduce the perturbed universe and how the perturbations of the universe
evolve.

4.2 Inflation

The standard cosmological models that assume the homogeneous and isotropic universe
have discovered the expanding universe, the Big Bang Nucleosynthesis (BBN), and the
thermal history of the universe, so on. But there still exist unsolved problems such as
the horizon problem, why our universe’s temperature is so homogeneous over the regions
which do not have causality each other, and the flatness problem which involves the fine
tuning of the curvature. The inflation models [29, 30] assume that at the early time, the
universe experienced the exponential expansion,

a(t) ∝ eHt. (4.27)

With this exponential expansion, the regions that have almost same temperatures can
have been inside the horizon in which every two points have causality, and this solves the
horizon problem. On the other hand, the curvature problem is also solved by the large scale
factor of the early universe. In addition to solving these problem, inflation models also
provide perturbations of the universe and even though these primordial perturbations have
quantum origin, the perturbations freeze out when the scales of the perturbations become
larger than the horizon scale and generate the structure of the universe afterwards. In this
section we explain one of the most simple inflation models, the single slow-roll inflation
model.
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The stage of the history of the universe when the exponential expansion takes place
is called the de-Sitter stage, and at this stage from Eq.(4.26), one finds that in order to
obtain ä > 0, we need P < −ρ

3 . Here we ignore the K term due to the fact that a−2

decreases rapidly. In order to gain such pressure, we need some substance that is not
matter nor radiation. Now let us consider a scalar field, inflaton ϕ. The lagrangian of the
inflaton is given by

L = −1
2
gµν∂µϕ∂νϕ− V (ϕ) , (4.28)

where V (ϕ) is the potential of the inflaton. The action of the inflaton is written by

S =
∫
d4x

√
−gL, (4.29)

where g = detgµν , by using the variational method, we obtain the Klein-Gordon equation.

1√
−g

∂µ
(√
−ggµν∂νϕ

)
=
∂V (ϕ)
∂ϕ

. (4.30)

For the FRW metric without perturbations Eq.(4.2), the field equation of the inflaton
becomes

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+
dV

dϕ
= 0. (4.31)

The motion of the inflaton is comparable to the motion of a particle, which moves with
fraction in the potential. Then the energy-momentum tensor is given

Tµν = −2
∂L
∂gµν

+ gµνL = ∂µϕ∂νϕ+ gµν

[
−1

2
gαβ∂αϕ∂βϕ− V (ϕ)

]
. (4.32)

Now we express the inflaton by a classical field, which has the infinite wavelength and a
quantum perturbative part

ϕ(t,x) = ϕ0 (t) + δϕ (t,x) . (4.33)

For a while, we just deal with the classical field ϕ (t) = ϕ0 (t). Then the field equation of
the inflaton becomes

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0, (4.34)

and the energy-momentum tensor is given by

T00 =
ϕ̇2

2
+ V (ϕ) , (4.35)

Ti0 = T0j = 0, (4.36)

Tij =
[
ϕ̇2

2
+ V (ϕ)

]
δij . (4.37)
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ρϕ = −T00, Pϕ = Tii are respectively

ρϕ =
ϕ̇2

2
+ V (ϕ) , (4.38)

Pϕ =
ϕ̇2

2
− V (ϕ) . (4.39)

In order to have inflation, one needs the slow-roll condition

|ϕ̇|2 � V (ϕ) , (4.40)

|ϕ̈| � dV (ϕ)
dϕ

. (4.41)

From (4.40),
Pϕ ' −ρϕ. (4.42)

Now from the Friedmann equation, only considering the energy density of the inflaton,

H2 ' 8πGN
3

ρϕ '
8πGN

3
V (ϕ) , (4.43)

and using Pϕ ' −ρϕ and the continuous equation Eq.(4.18), one finds ρ̇ϕ = 0, ρϕ = const.
Thus the Hubble parameter becomes constant.

H = const = HI . (4.44)

Now we define the time when the inflation begins as ti and the scale factor at ti as ai,
then during the inflation, a is

a (t) = aie
HI(t−ti). (4.45)

Thus by imposing the slow roll conditions, we obtained the exponential expansion of the
universe. Besides with the slow roll conditions, from Eq.(4.41), approximately

ϕ̇ ' − 1
3H

dV

dϕ
. (4.46)

Using this, the slow roll conditions can be rewritten in terms of the flatness of the potential.

dV
dϕ

V
� H2, (4.47)

d2V

dϕ2
� H2. (4.48)

These condition also can be expressed by the slow roll parameter ε, θ,

ε =
M2
pl

2

(
dV
dϕ

V

)2

, (4.49)
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θ = M2
pl

(
d2V
dϕ2

V

)
, (4.50)

where we used the Planck mass Mpl ≡
√

8πGN ' 2.4 × 1018 GeV. By using Eqs.(4.43),
(4.46), ε is also expressed as ε = − Ḣ

H .
The e-fold number N shows the amount of exponential growth. N is defined by

a(tf )
a(ti)

= exp
∫ tf

ti

Hdt ≡ eN . (4.51)

a(tf )
a(ti)

is the proportion of the scale factors at the beginning and the end of the inflation.
If the Hubble parameter is constant during the inflation,

N =
∫ tf

ti

Hdt ∼ H(tf ) (tf − ti) , (4.52)

and from Eqs(4.46), (4.43),

N =
∫ tf

ti

Hdt =
∫
H
dϕ

ϕ̇
'M2

pl

∫
V
dV
dϕ

dϕ = M2
pl

∫ ϕf

ϕi

(
−d lnV

dϕ

)−1

dϕ. (4.53)

Thus one can find the e-fold number becomes larger when the potential becomes more
flat. In order to resolve the horizon problem, roughly speaking, we need N & 60.
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Chapter 5

Q-ball and Affleck Dine
Mechanism

In this chapter, we briefly explain a model which solves the baryon asymmetry problem,
Affleck-Dine (AD) baryogenesis, then introduce a non-topological soliton, Q-ball, that is
produced via fragmentations made after AD baryogenesis.

5.1 Baryon Asymmetry

The baryon makes up only 5% of the total energy density of the universe. The dark
energy makes up roughly 2/3 while the dark matter explains about 1/3 of the total energy
density. Although it seems to be natural to suppose that there exist same amounts of
matter and anti-matter by nature, we know almost all stars and gas are consists of matter
and as it is also difficult to consider a large region which consists of mainly anti-matter,
we can conclude that there exists the asymmetry of matter and anti-matter. The baryon
to photon ratio is defined as

η ≡ nB
nγ
, nB = nb − nb̄, (5.1)

where nb and nb̄ are the number densities of baryon and anti-baryon, while nγ is the
number density of photon. As nb � nb̄, we can consider nB ∼ nb. Actually the theory
and observations of Big Ban Nucleosynthesis (BBN) constrain the amount of η [31]

5.1× 10−10 ≤ η ≤ 6.5× 10−10. (5.2)

There are many models which explain how to produce baryon asymmetry, and they are
called as baryogenesis models. In this chapter, we are going to introduce one of the most
promising model which is called the Affleck-Dine baryogenesis.



5.2 Affleck-Dine Baryogenesis

In the Affleck-Dine (AD) mechanism [32], they considered a complex scalar field φ = |φ|eiθ,
which has a global U(1) symmetry, then the Lagrangian can be written by

L = (∂µφ) (∂µφ∗)− V (|φ|). (5.3)

The Noether current which is related to U(1) symmetry gives the conserved charge Q is
given by,

Q = i
(
φ̇∗φ− φ∗φ̇

)
= θ̇|φ|2. (5.4)

This Q corresponds to the baryon number and one can see we need θ̇ 6= 0 and φ 6= 0 in
order to generate the baryon number. Note that as under U(1) symmetry, nB is conserved,
in order to generate baryon number, we need to break U(1) symmetry.

In the MSSM model, there exist many directions along which the effective scalar po-
tential vanishes. These directions are called flat directions. As they consist of the squarks,
the sleptons and the Higgs, they carry the baryon and lepton numbers. In AD model, a
flat direction is taken as the AD field Φ [33].

Even though flat directions are exactly flat if SUSY is unbroken, they are lifted by
SUSY breaking terms and higher order terms in the super potential. The higher order
terms are non-renormalizable and the super potential due to non-renormalizable terms is
written as

W = λ
Φn

nMn−3
, (5.5)

where M is the large energy scale where new physics comes in, here we take M = MP .
The scalar potential due to the non-renormalizable parts are given by

VNR = λ2 |Φ|2n−2

M2n−6
, (5.6)

VA = am3/2
Φn

Mn−3
+ h.c.. (5.7)

Here a is order O(1) parameter and we assume that the cosmological constant vanishes.
Note that this A term VA is also non-renormalizable and breaks U(1) symmetry, thus this
term is key to the baryon number generation. The mass term is given by

Vmass = m2
Φ|Φ|2. (5.8)

In addition to these terms, there exists the Hubble induced mass term which is due to the
inflaton potential,

VH = −cHH2|Φ|2, (5.9)
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where cH is O(1) parameter.
Even though there are other terms in the scalar potential, these terms above are

dominant part. Thus the scalar potential for a flat direction is given by [33], [34]

V (Φ) = (m2
Φ − cHH

2)|Φ|2 + a
m3/2

Mn−3
(Φn + Φ∗n) + λ2 |Φ|2n−2

M2n−6
. (5.10)

The AD field evolves depending on dominant terms of the potential. Now let see how it
evolves during and after the inflation. In the following discussion, we take cH ∼ λ ∼ 1 for
simplicity. During the inflation, H = HI � mΦ ' O(1 TeV), the Hubble induced mass
term and non-renormalizable term are dominant. The scalar potential is approximately
expressed as

V (Φ) ∼ −H2|Φ|2 +
|Φ|2n−2

M2n−6
. (5.11)

The AD field takes the minimum |Φ| ∼ (HIM
n−3)1/(n−2) which is decided mainly by two

dominant terms. After the inflation, the reheating era begins and the inflaton oscillates
around its minimum of the potential, while H > m3/2, |Φ| follows adiabatically the mini-
mum (HMn−3)1/(n−2), where H = 2/3t. When H ∼ mΦ, the AD field begins to oscillate
from |Φ| ∼ (mΦM

n−3)1/(n−2) and rotate into the phase direction by the kicking of the A
term under the scalar potential

V (Φ) = m2
Φ|Φ|2 + a

m3/2

Mn−3
(Φn + Φ∗n) . (5.12)

This rotation is supposed to generates the baryon number, however, the AD mechanism is
made complicated by the existence of new object, Q-ball. While the AD field is rotating
in its potential, it also feels spatial instabilities that lead to generate the instabilities of
the baryon asymmetry. The condensed region develops to become Q-balls. In the next
section, we look into the nature of this object.

5.3 Q-ball

Q-ball is a non-topological soliton, which appears if there exist scholar fields which carry
a conserved charge associated with a global U(1) symmetry. In the MSSM, the squarks,
the sleptons and the Higgs carry the conserved baryon and lepton numbers. After the
baryogenesis mechanism, these numbers can act as the conserved charge Q, thus these
fields can form Q-balls.

Now let us consider a global U(1) symmetry and a complex scalar field Φ = 1√
2
φ.

Suppose the potential of φ, U(φ) which is symmetric under φ → φeiθ and has a global
minimum U(0) at φ = 0. The Lagrangian is written as

L =
1
2
∂µφ

∗∂µφ− U(φ) (5.13)
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The charge Q associated with U(1) is given by

Q =
∫ (

L
∂φ̇
iφ+

L
∂φ̇∗

(−iφ∗)
)
d3x =

1
2i

∫
d3x

(
φ∗φ̇− φ̇∗φ

)
. (5.14)

The energy is

E =
∫
d3x

(
1
2
|φ̇|2 +

1
2
|∇φ|2 + U(φ)

)
. (5.15)

Now we calculate the scalar field φ which gives the lowest energy under the fixed charge
Q. Using a Lagrange multiplier ω, define Eω as

Eω ≡ E + ω

[
Q− 1

2i

∫
d3x

(
φ∗φ̇− φ̇∗φ

)]
. (5.16)

We need to find ω and φ which minimize Eω. By dividing this into the time dependent
and independent parts,

Eω =
∫
d3x

[
1
2
|φ̇|2 +

ω

2
i
(
φ∗φ̇− φ̇∗φ

)]
+
∫
d3x

[
1
2
|∇φ|2 + U(φ)

]
+ ωQ

=
∫
d3x

1
2

∣∣∣φ̇− iωφ
∣∣∣2 +

∫
d3x

[
1
2
|∇φ|2 + U(φ)− 1

2
ω2|φ|2

]
+ ωQ. (5.17)

The first term gives the time dependence of φ, such as

φ (x, t) = eiωtφ(x). (5.18)

Then the energy and charge are written by

Eω =
∫
d3x

[
1
2
|∇φ(x)|2 + Uω(φ(x))

]
+ ωQ, (5.19)

where Uω(φ(x)) = U(φ(x))− 1
2ω

2|φ|2, and

Q = ω

∫
d3x|φ(x)|2. (5.20)

Now we need to minimize eq.(5.19) with fixed ω and Q. The solution for this problem,
actually which is the Q-ball, exists if

U(φ)
φ2

= min, forφ = φ0 > 0. (5.21)

This means Uω(φ) has a negative global minimum at φ0 > 0 with the local minimum at
φ = 0 [36], [37]. In this case, the solution is spherically symmetric [37] φ(x) = φ(r) , r =√
~x2. By taking variation of eq.(5.19), one finds

d2φ(r)
dr2

+
2
r

dφ

dr
− ∂Uω

∂φ
= 0, (5.22)

34



with the condition
dφ(0)
dr

= φ(∞) = 0. (5.23)

If one sees r as time, this equation becomes the dynamics of a point particle, which has
a potential −Uω and a damping part −2

r
dφ
dr . Then, the condition eq.(5.23) means that

one puts a particle at some point φ > 0 at t = 0 and the particle has to reach the
origin at the end t = ∞. In order to find the solution, we need ω2

0 < ω2 < U
′′
(0) where

ω0 =
√

2U(φ0)/φ2
0. This is because if ω2 < ω2

0, the particle cannot reach the origin due to
the dumping term, on the other hand, if ω2 > U

′′
(0), the particle overshoots the origin.

Fig. 5.3 shows the situations for each case. In the two following sections, we are going to

-­‐Uω(φ)	


ω0
2	
  <	
  ω2	
  <	
  U”(0)	


ω	
  2	
  >	
  U”(0)	


ω2	
  <	
  ω0
2	
  	


φ	
φ(0)	

φ(∞)	


Figure 5.1: The condition for the existence of Q-balls. The blue line corresponds to
ω2

0 < ω2 < U
′′
(0), the yellow one is for ω2 < ω2

0 (the particle stops before reaching the
origin) while the orange line is for ω2 > U

′′
(0) (overshooting)

take a look at two extreme cases: the thin and thick-wall approximations.

5.3.1 Thin-wall approximation

In this section, we suppose that the radius of the Q-ball R is large, this corresponds the
case ω ∼ ω0 [35]. Due to the large radius, we can ignore the effect of the surface of the
Q-ball, then φ(r) is given by

φ(r) =

{
φ0 for r < R

0 for r > R
. (5.24)
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Then, the energy and charges are given by

E =
4π
3
R3

[
1
2
ω2φ2

0 + U(φ0)
]
, (5.25)

Q =
4π
3
R3ωφ2. (5.26)

From these equations, we can express E in terms of Q,

E =
1
2
Q2

φ2
0V

+ U(φ0)V ≥ 2

√
Q2U(φ0)

2φ2
0

, (5.27)

where V = 4π
3 R

3 and the equality is attained if V = Q
φ0

√
1

2U(φ0) . Then we can obtain φ0

by minimizing E.

5.3.2 Thick-wall approximation

In this section, we take a look at the case ω � ω0 [38], [39]. In this case, two minima
of Uω(φ) are very non-degenerate and the ”escape point” φ̄(0) (the maximal value of φ
inside of the Q-ball) approaches the zero of Uω(φ) and far from the global minimum. In
this limit, we can neglect the dynamics at large φ.

First, let us consider a potential, which is written by

Uω(φ) = U(φ)− 1
2
ω2φ2

=
1
2
(m2 − ω2)φ2 −Aφ3 + λφ4, (5.28)

where m2 − ω2 > 0. Here as we mentioned, when ω is large enough, we can ignore higher
terms of the potential, so we ignore the quartic term and introduce two non-dimensional
parameters

ξi ≡
√
m2 − ω2xi, (5.29)

where i = 1, 2, 3, and

ψ ≡ Aφ

(m2 − ω2)
. (5.30)

Then, in terms of new parameters, Eω are written by

Eω =
(m2 − ω2)3/2

A2

∫
d3ξ

[
(∇ξψ)2 +

1
2
ψ2 − ψ3

]
+ ωQ. (5.31)
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The first term’s integral Sψ =
∫
d3ξ

[
(∇ξψ)2 + 1

2ψ
2 − ψ3

]
is the action of the bounce

solution in the potential 1
2ψ

2−ψ3 and this is numerically calculated in [40], [38]: Sψ ∼ 4.85.
Therefore we are ready to minimize

Eω = Sψ
(m2 − ω2)3/2

A2
+ ωQ (5.32)

with respect to ω. By taking a derivative by ω

∂Eω
∂ω

= (−2ω)
3
2
Sψ

(m2 − ω2)1/2

A2
+Q = 0, (5.33)

we find ( ω
m

)4
−
( ω
m

)2
+ ε = 0, (5.34)

where ε ≡ QA2

3Sψm2 . This equation has solutions, which satisfy 0 < ω < m, if

ε =
QA2

3Sψm2
<

1
2
. (5.35)

One finds the solution is

ω = m

√
1 +

√
1− 4ε2

2
. (5.36)

Then by using inserting ω into the expression of E and expand in powers of ε, E is written
by

E ' Qm

(
1− 1

6
ε2 − 1

8
ε4
)
. (5.37)

One can see as E < Qm, the soliton is stable against the decay into φ particle. The radius
of the Q-ball R in the non-dimensional parameter R

√
m2 − ω2 ∼ 1, so

R−1 ∼
√
m2 − ω2 ∼ mε

(
1 +

1
2

+
7
8
ε4ε2

)
. (5.38)

Now let us check if the assumptions we used are correct. First, φ(0) is small enough to
get λφ4 � Aφ3. This is correct, if

λφ2 ' λ
m2 − ω2

A
' λ

ε2m2

A
� A. (5.39)

The second assumption 0 < ω < m is correct, if ε < 1
2 . Therefore rewriting these condition

in terms of Q, we get,

Q� 14.6
m√
λA

, (5.40)

Q < 7.28
(m
A

)2
. (5.41)

Here we use Sψ = 4.85.
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5.4 Q-ball in the MSSM

So far, we explained the AD mechanism and Q-ball which is produced by the fragmen-
tation of the baryon asymmetry via the AD baryogenesis. In this section, we discuss the
properties of Q-balls from the AD mechanism with two different types of SUSY breaking:
the gravity mediation and the gauge mediation. The properties of the Q-ball depend on
the potential of the AD filed, so vary depending on how SUSY is broken.

5.4.1 Q-ball from the gravity mediated AD mechanism

In the gravity mediation, the potential for the AD field Φ is written by [41]

Vgrav = m2
Φ

[
1 +K log

(
|Φ|2

M2

)]
|Φ|2, (5.42)

where the K term is the 1-loop correction term and we suppose M = MP . The Q-ball
solution exists if K < 0. Because for K < 0, the potential Vgrav grows slower than |Φ|2 at
low energy scales. Thus, by rewriting Φ = 1√

2
φ(r)eiwt, we obtain

Uω(φ) =
1
2
m2

Φφ
2

[
1 +K log

(
φ2

M2

)]
− 1

2
ω2φ2. (5.43)

Then from eq.(5.22), the equation of motion of φ is written by

d2φ

dr2
+

2
r

dφ

dr
= −

[
ω2 −m2

Φ(1 +K)
]
φ−m2

ΦφK log
(
φ2

M2

)
(5.44)

We solve this equation of motion with the Gaussian ansatz,

φ(r) = φ0e
− r2

R2 . (5.45)

Then R and ω0 ≡ ω2 −m2
Φ(1 +K) are obtained by

R =
√

2√
|K|mΦ

, (5.46)

ω2
0 =

[
3|K| − 2|K| log

(
φ0√
2M

)]
m2

Φ. (5.47)

Then the charge and energy are given by

Q =
(π

2

)3/2
ωφ2

0R
3, (5.48)

E = mΦQ

(
1 +

3
2
|K|
)
. (5.49)

As the energy per charge is E
Q = mΦ(1 + 3

2 |K|) > mΦ, one can see the Q-ball is unstable
against the decay into Φ particle.
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5.4.2 Q-ball from the gauge mediated AD mechanism

In the gauge mediation, the potential term is given as [43,44]

Vgauge(Φ) = M4
F log

(
1 +

|Φ|2

M2
S

)
, (5.50)

MS is the mass scale for messenger particles and MF is given
√
mΦMS . One can approx-

imate this potential with a tree level mass term at low energy scales and a flat potential
U0 at high energy scales such as [45]

Vgauge(Φ) ∼

{
U0 (|Φ| �MS),

m2
ΦΦ2 (|Φ| �MS),

(5.51)

Then for low energy scales, that is for large r, eq.(5.22) becomes

d2φ

dr2
+

2
r

dφ

dr
= −ω2φ, (5.52)

and for high energy scales, that is for small r,

d2φ

dr2
+

2
r

dφ

dr
= (m2

Φ − ω2)φ. (5.53)

The boundary condition is φ
′
(0) = φ(∞) = 0. Thus the Q-ball solution is given by for low

energy scales,

φ = φ1
e−mr

mr
, (5.54)

where m =
√
m2

Φ − ω2 and for high energy scales

φ = φ0
sin(ωr)
ωr

. (5.55)

Here ω, φ0 and φ1 are chosen to minimize Eω and give a continuos Q-ball solution. In the
thick wall limit ω0 ∼ mΦ � ω, by defining ξ = ωx and ψ = φ

ω , Eω is written by

Eω =
1
ω

∫
4πξ2dξ

(
1
2
d2ψ

dξ2
− 1

2
ψ2 + U0

)
+ ωQ, (5.56)

where we ignored terms in the potential except the constant and ω2 term. Then one can
see this gives Eω ∼ aω+ bω−3 + ωQ, where a and b are independent of ω. Minimizing Eω
leads to ω ∝ Q−1/4, and using M as a mass parameter, ω ∼ MQ−1/4. The radius of the
Q-ball R is R ∼ ω−1 ∼M−1Q1/4, using this approximation, one obtains

Q ' ω

∫
d3x|φ|2 ' ωR3|φ0|2. (5.57)
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Thus φ0 ∼ MQ1/4, and the energy E ∼ ωQ ∼ MQ3/4. Except coefficients, these results
coincide with the previous results in [45], [46]. At last in this section, let us see the stability
of the Q-ball in the gauge mediated AD mechanism, the energy per charge is given by

E

Q
∼MQ−1/4. (5.58)

Thus if the Q is large enough, the Q-ball becomes stable against the decay. This situation
is contrary to the case of the gravity mediation where the Q-ball is always unstable.
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Chapter 6

Axino dark matter and baryon
number asymmetry from Q-ball
decay in gauge mediation
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Chapter 7

Summary

In this thesis, we have seen how unsolved mysteries of cosmology motivate physics be-
yond the Standard Model and the theories beyond the Standard Model can help solving
these problems. Here we took the axion, which is a solution to the CP problem, as a
key to investigate such a combination of cosmology and physics beyond the Standard
Model. Supersymmetry could give solutions to the dark matter and the baryon asymme-
try problems. The lightest supersymmetric particle is a promising dark matter candidate
in supersymmetry with R-symmetry. On the other hand, supersymmetry also enables the
Affleck-Dine mechanism to have the AD field that after generates the baryon number. The
AD field may fragment into the non-topological soliton, Q-balls. We have investigated the
model that combines the supersymmetric partner of the axion, the axino, the Affleck-Dine
mechanism and Q-ball. The model can explain dark matter and the baryon asymmetry
simultaneously. We have found that there remain allowed parameter regions that satisfy
cosmological constraint from the Big Bang Nucleosynthesis and give the necessary and
sufficient amount of the dark matter and the baryon asymmetry.

We have not mentioned the possibility of the axion dark matter yet. In the Q-ball
model, we assumed dark matter only consists of the axino. There also can exist the
axion dark matter as well. If there exist the axion during the inflation era, the axion
fluctuation produces the isocurvature fluctuation, which has the different property to the
fluctuation that is simply produced by the single scalar inflation. If the isocurvature is
scale invariant, the amount of isocurvature fluctuations is strongly constrained by the
observational results. However, the constraints is comparably weak if the isocurvature
fluctuation has a scale-dependent spectrum, more specifically, blue-tilted spectrum. In
the appendix, we calculate constraints from the observational data on a SUSY axion dark
matter model, which produce the blue-tilted spectrum perturbation.
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CMB constraint on blue-tilted
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Appendix B

Appendix for special functions

B.1 Hankel function

The bessel equation

d2u

dz2
+

1− 2α
z

du

dz
+
(
β2 +

α2 − ν2

z2

)
u = 0 (B.1)

has a solution, which is represented by the cylinder function Z(z)

zαZν (βz) . (B.2)

The cylinder functions Z are general forms of the first kind Bessel functions Jnu, the
second kind Bessel functions Nν , the first kind Hankel functions H(1)

ν , the second kind
Hankel functions H(2)

ν .

Jν(z) =
(z

2

)2
∞∑
n=0

(−1)n
(
z
2

)2n
n!Γ (ν + n+ 1)

, (B.3)

(z 6= negative real number)

Nν(z) =
1

sin νπ
[cos νπJν (z)− J−ν (z)] , (B.4)

H(1)
ν = Jν (z) + iNν(z), (B.5)

H(2)
ν = Jν (z)− iNν(z). (B.6)

B.2 Legendre polynomials

For the Legendre’s differential equation with n =integerA

(1− z2)
d2u

dz2
− 2z

du

dz
+ n(n+ 1)u = 0, (B.7)
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the solutions are the Legendre polynomials.

Pn(z) =
[n
2
]∑

k=0

(−1)k(2n− 2k)!
2nk!(n− k)!(n− 2k)!

zn−2k, (B.8)

where [x] is an integer and satisfies x− 1 < [x] ≤ x. Using Rodrigues’s formula

Pn(z) =
1

2nn!
dn

dzn
(z2 − 1)n. (B.9)

The orthogonality of the Legendre polynomials is expressed∫ 1

−1
Pn(z)Pm(z)dz =

2
2n+ 1

δmn. (B.10)

The relation between the spherical harmonics is given by

Pl(n̂ · k̂) =
4π

2l + 1

∑
m

Ylm(n̂)Y ∗
lm(k̂). (B.11)
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