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Abstract

We study the connections among particle statistics, frustration, and ground-

state energy, in many-particle systems. Statistics of identical particles is one of

the most fundamental concepts, which pervades all of quantum mechanics. A con-

sequence of the particle statistics appears in the ground-state energy. We compare

the ground-state energies of bosons and fermions with the same Hamiltonian. In

noninteracting systems, the influence of particle statistics on the ground-state en-

ergy is trivial: the ground-state energy of noninteracting bosons is lower than that

of free fermions because of Bose-Einstein condensation (BEC) and Pauli exclusion

principle. The relation that bosons have a lower ground-state energy than fermions

is described as natural inequality in this thesis. However, the comparison of the

ground-state energies of bosons and fermions is not trivial in the presence of inter-

action, because the simple argument based on the perfect BEC breaks down. In a

system of interacting bosons, it is in fact already a nontrivial question whether the

BEC actually takes place. In strongly correlated systems, the influence of particle

statistics on the ground-state energy is still a relatively unexplored area.

We have found a sufficient condition for the natural inequality to hold for

spinless and spinful cases respectively, without relying on the occurrence of BEC.

That is, if all the hopping amplitudes are nonnegative, the ground-state energy

of hard-core bosons is still lower than that of fermions. The same argument im-

plies that, once we relax the condition of nonnegative hopping amplitudes, it is

possible to reverse the inequality so that the ground-state energy of bosons could

be higher than that of fermions. By relaxing the condition, we indeed have found

several concrete examples in which the ground-state energy of hard-core bosons is

proved to be higher than that of fermions. Many of the examples are even proved

rigorously in the thermodynamic limit.

Our study leads to a novel physical understanding of the effects of particle

statistics, in terms of frustration in quantal phase. This is more general than the

picture based on the perfect BEC, and is indeed applicable to systems with inter-

action. We can map a quantum many-particle problem to a single-particle problem

on a fictitious lattice in higher dimensions. When all the hopping amplitudes are

nonnegative and the particles are bosons, the corresponding single-particle prob-

lem also has only nonnegative hopping amplitudes. In such a case, there is no

frustration in the quantal phase of the wavefunction. On the other hand, Fermi

statistics of the original particles gives an effective magnetic flux in the corre-



sponding single-particle problem. This implies a frustration in the phase of the

wavefunction, which can be regarded as “statistical frustration”: it is induced by

the Fermi statistics and it leads to a destructive interference among propagation

along different paths.

In the presence of a non-vanishing flux in the original many-body problem,

we observe that there is also a magnetic flux in the corresponding single-particle

problem, inducing a frustration among quantal phases, which we name hopping

frustration. In the original many-particle problem, the statistical frustration ap-

pears rather differently from the hopping frustration. However, upon mapping to

the single-particle problem on the fictitious lattice, both hopping frustration and

statistical frustration are represented by non-vanishing flux in the fictitious lattice.

This provides a unified understanding of frustration. Based on the unified under-

standing, we find the mechanism as to why the ground-state energy of hard-core

bosons can be higher than that of fermions. For many-body bosonic systems, in

which there is no statistical frustration, introduction of hopping frustration will

not decrease the ground-state energy. This is known as Simon’s universal diamag-

netism of bosons. On the other hand, in many-body fermionic systems, where

statistical frustration already exists, hopping frustration if introduced, is expected

to compete with statistical frustration and sometimes partially cancel with each

other, resulting in the reversed inequality between the ground-state energies of the

hard-core bosons and fermions.
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Chapter 1

Introduction

“Quantum many-body problem”, the study of intriguing phenomena and proper-

ties of a large number of quantum mechanically interacting particles, for example

interacting electrons in a solid, is still challenging in modern condensed matter

physics. Motion of a single particle is described by the Schrödinger equation in

quantum mechanics. Even a many-body system can still be described, in princi-

ple, by the Schrödinger equation as well, in terms of many-body wavefunctions.

However, the problem confronted by condensed matter physicists is much more

complicated than what is expected from these formulations. On one hand, the de-

grees of freedom grows exponentially with the number of particles. Thus, in order

to just represent the many-body wavefunction faithfully, the required memory for

storage grows exponentially with system size. This quickly becomes impractical,

even with the aid of a supercomputer. On the other hand, new phenomena, new

physics and new principles appear in many-body problems, which are far beyond

a mere technical problem of solving the Schrödinger equation. This is what called

as “emergence” or stated as “more is different” by Anderson [1].

The difficulty mentioned above calls for new frameworks to understand the

physics of many-body systems. One of the approaches to quantum many-body

physics is approximation, for example mean field approximation. In the frame of

mean-field theory, the correlations between two particles are neglected. Mean-field

theory is often successful in giving a qualitative description of the phase diagram.

It is quantitatively accurate in some cases where the fluctuations are suppressed.

However, it generally fails to give a prediction near the critical point, where the

correlations are so strong and cannot be neglected. Therefore, the limitation of

approximation is obvious. Apart from approximation, another approach to the
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Chapter 1 Introduction

quantum many-body system is numerical calculation with the aid of computer-

s. Exact diagonalization of a Hamiltonian is a direct and precise method, with

very high precession. However, due to the computation cost of storage, which

grows exponentially with system size, exact diagonalization only works for small

systems. Density matrix renormalization group (DMRG) [2] is powerful and reli-

able in one dimension. Recently proposed infinite time evolving block decimation

(iTEBD) [3] and multiscale entanglement renormalization ansatz (MERA) [4] are

becoming widely used in the calculation of strongly correlated systems in one di-

mension. However, the latter three methods are still difficult to be utilized in

systems with dimensions higher than one. Quantum Monte-Carlo can be imple-

mented for relatively large size systems, but it has the sign problem in frustrated

systems.

Mathematically rigorous approach is another important route to quantummany-

body systems. Two well known solvable models are the Lieb-Liniger model [5] and

the spin-1/2 XXZ Heisenberg chain [6, 7, 8], which can be exactly solved by the

Bethe ansatz method. Although the solvable cases that we encountered are so

rare, the results can be used to compare with experiments in detail. Investigation

of the solvability of the models is one of the branch of mathematically rigorous ap-

proach. We notice that there are many mathematical rigorous theorems about the

properties of the ground state and low-lying excited states [9]. Nagaoka’s theorem

is the first rigorous result of ferromagnetism in the Hubbard model, which states

the unique ferromagnetic ground state with the maximum total spin [10]. The

Lieb-Mattis theorem excludes the possibility of ferromagnetism of the Hubbard

model with only nearest neighbor hoppings in one dimension with open boundary

conditions [11]. Lieb’s theorem proves the absence of ferromagnetism on bipar-

tite lattices at half filling for any repulsive interaction [12]. Koma and Tasaki’s

theorem proves upper bounds for correlation functions at finite temperatures [13].

The Yamanaka-Oshikawa-Affleck theorem describes the low-lying excitations in

general electron systems on one-dimensional lattice [14]. These theorems do not

focus on specific calculation of certain physical quantity. Instead, they give quali-

tative estimate or prediction by mathematically rigorous proof. The importance of

mathematically rigorous theorems is that it usually sheds light on the possibility

or impossibility of some physical phenomena. For example, if one knows Lieb’s

theorem [12], he/she can avoid spending effort for ferromagnetism on a bipartite

lattice at half filling by approximation or numerical calculation. Although rigor-

ous theorems are limited to some cases, they are very useful and sometimes they

give guidelines on concrete calculations. We can check the correctness of the re-
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sults from approximations and numerical calculations with the rigorous theorems.

Therefore, the mathematically rigorous theorems provide many physical insights

and play important roles for concrete calculation.

In this thesis, we investigate a very fundamental and significant problem: the

effect of particle statistics and frustration on the ground-state energy of quantum

many-body systems, by mathematically rigorous approach. In condensed matter

physics, it is fundamental to understand the ground state and its energy. The

ground state of a quantum system is its state with the lowest energy. The interest

in the ground state is partially due to its simplicity, compared with the properties

of excited states. The ground state is in principle realized in the limit of zero

temperature. In reality, the absolute zero temperature can never be achieved in

any experiment. Nevertheless, elucidation of the ground state is important for

understanding of physics at sufficiently low temperatures. Moreover, quantum

phase transitions, which occur in the ground state, sometimes govern physics up

to rather high temperatures. In addition, some ordered states are expected in

the ground state, such as antiferromagnetic (Néel) order and crystalline order.

Consequently, the investigation on the properties of the ground state and low-

lying excitations is an indispensable part in physics. Three rigorous theorems

are put forward, in which a sufficient condition when the ground-state energy of

bosons is (strictly) lower than that of corresponding fermions is proved. A strict

diamagnetic inequality is proved in the fourth theorem.

To address the effect of particle statistics and frustration on the ground-state

energy, we compare the ground-state energies of hard-core bosons and fermions

with the same Hamiltonian. The hard-core boson is introduced as a model of boson

behaving like impenetrable hard sphere, with infinite on-site repulsion (or infinite

Dirac δ-function repulsive interaction), which allows the number of bosons at the

same place to be 0 or 1. Bosons with large repulsive interaction at close range

such as Helium-4 can be regarded as a hard-core bosons model. The hard-core

boson is of great interest in condensed matter physics because it is mathematically

equivalent to a spin-1/2 magnet. On the other hand, the hard-core boson is not

a purely theoretical model. Hard-core bosons confined to one dimension are also

known as the Tonk-Girardeau gas [15, 16], which has been realized in a one-

dimensional optical lattice experimentally [17]. With the hard-core constraint

of bosons, the dimension of the Hilbert space is the same as fermions. On the

same site, hard-core bosons obey the anticommutation relation, which is typical

for fermions. Therefore, hard-core bosons are expected to have some “fermionic-
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Chapter 1 Introduction

like” behaviors. However, hard-core bosons are still statistically different from

fermions because on different sites they satisfy the commutation relation as usual

bosons. The wavefunction of N hard-core bosons does not have the antisymmetry

property with respect to exchange of two particles. This essential and fundamental

difference makes the hard-core bosons statistically distinct from fermions, and the

difference can be shown in the ground-state energy.

This thesis is organized as follows. In Chap. 2, the background of our research is

presented. To focus on the discussion on physics in the main body, four frequently

involved theorems are presented in Chap. 3. In Chap. 4, we explain why the

comparison is trivial for noninteracting systems, that the ground-state energy of

bosons is always lower than fermions (natural inequality). We also explain why it

becomes non-trivial in the presence of hard-core and other interactions. We proved

if all the hopping amplitudes are nonnegative, the ground-state energy of hard-core

bosons is still lower than that of the corresponding fermions, which is summarized

in Theorem 1, Theorem 2 and Theorem 3 for spinless and spinful cases respectively.

Proof of strict diamagnetic inequality is presented in Theorem 4. Based on the

proofs, we propose a unified understanding of frustration in Chap. 5. The quantal

phase introduced by Fermi statistics is understood as statistical frustration, in

terms of a fictitious lattice. Hopping frustration and statistical frustration are

understood in a unified way. We find the mechanism that the reversion of the

natural inequality is possible. In Chap. 6 and Chap. 7, we present the natural

inequality is indeed reversed in various systems due to hopping frustration, by

rigorous proof assisted by exact diagonalization. The examples include particles on

a ring, coupled rings from one dimension to two dimensions, the two-dimensional

square lattice with uniform flux, and flat band models. Many of the examples

are rigorous in the thermodynamic limit. Finally, conclusions and discussions are

presented in Chap. 8.
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Chapter 2

Background

In this chapter, I will present the background of the research in this thesis. Some

known results of previous research are reviewed: Simon’s universal diamagnetism

of bosons [18] and optimal phase problem of fermions [19]. These two studies focus

on the influence of magnetic field or flux on the ground-state energies of bosons and

fermions, respectively. They did not deal directly with our main question of the

comparison between bosons and fermions. Nevertheless, the response to magnetic

flux reveals the differences between bosons and fermions. These results hint some

of our findings, and are also useful for developing a more systematic, unified ap-

proach in the present thesis. In Sec. 2.3, the rigorously solved Lieb-Liniger model

at infinite repulsion limit is reviewed, which is also known as Tonk-Giradeau gas.

The similarities and differences between Tonks-Girardeau gas and one-dimensional

spinless free fermion gas will also be reviewed. Although we are working on lat-

tice systems, review of one-dimensional continuous system gives us some physical

insights. For example, bosons with hard-core constraint have some “fermionic-

like” behaviors, but they are still bosons for statistical reason. One-dimensional

gas is the continuous analog of particles on a lattice ring in Chap. 6. Bose-Fermi

mapping on one-dimensional Tonks-Giradeau gas is analogous to Jordan-Wigner

transformation on one-dimensional lattice hard-core bosons. The relation between

the ground-state energy of one-dimensional bosonic gas and that of fermionic gas

is analogous to the one between bosons and fermions on a lattice. The discus-

sion of momentum distribution of Tonks-Giradeau gas is a good example to show

why perfect Bose-Einstein condensation breaks down in bosonic gas with hard-core

interaction.
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Chapter 2 Background

2.1 Universal diamagnetism of bosons

The terminology of “diamagnetism” was introduced by Michael Faraday to de-

scribe the fact that all the materials in natures possessed some form of diamagnet-

ic response to external magnetic field. Generally speaking, diamagnetism is the

property of an object to prevent the external magnetic filed inside itself, signatured

by the negative magnetic susceptibility. Diamagnetism is a quantum mechanical

effect, since Bohr-van Leeuwen theory states that a classical gas of charged particle

is nonmagnetic [20].

There are some known theorems associated with diamagnetism [20]. Langevin

(Larmor) theory of diamagnetism applies to isolated magnetic moments: atoms

with localized electrons. For itinerant electrons (free electron gas), the theory of

diamagnetism is attributed to Landau, which is a result of total energy change of

the system due to the presence of Landau levels, when the system is subject to a

magnetic field.

Diamagnetism of spinless bosons is rigorously proved by Barry Simon [18]. He

proved that the ground-state energy of nonrelativistic spinless Bose particles in

any arbitrary magnetic filed is greater than corresponding bosons without mag-

netic filed. Namely, arbitrary magnetic filed increases the ground-state energy

of nonrelativistic spinless bosons. The terminology of “diamagnetism” for boson-

s here is consistent with those associated with negative magnetic susceptibility

in above theorems. Negative magnetic susceptibility is consistent with minimal

ground-state energy at zero magnetic field. This is because at zero temperature,

F = E − TS = E, χ = ∂M/∂H = −∂2F/∂H2, and ∂E/∂H|H→0 = 0 due to time

reversal symmetry at H = 0. I will present Simon’s theorem and the outline of

the proof here.

Consider N interacting nonrelativistic spinless Bose particles. The many-body

Hamiltonian is assumed as

H(A⃗) = −
N∑
j=1

1

2mj

[∇j − iejA⃗(r⃗j)]
2 +

∑
j<k

vjk(r⃗j − r⃗k) +
∑
j

vj(r⃗j), (2.1)

where ej is the charge carried by jth particle, A⃗(r⃗j) is an arbitrary magnetic field

vector potential (no assumption of uniform magnetic field here), vjk is the inter-

action potential between two bosons which are located at r⃗j and r⃗k in coordinate

space, and vj(r⃗j) is the scalar potential. For example, the site independent part

6



2.1 Universal diamagnetism of bosons

of vj(r⃗j) is the chemical potential. All the functions A⃗, vjk and vj are assumed to

take real values.

Theorem. (Simon’s diamagnetism in [18])

As an operator H(A⃗) 1 on functions with Bose statistics on all of the particles,

the ground-state energy H(0) cannot be greater than H(A⃗).

The foundation of Simon’s diamagnetism is based on the inequality∫
dτ |ψ|∗H(0)|ψ| ≤

∫
dτ ψ∗H(A⃗)ψ (2.2)

for any ψ, which follows from a more general inequality of Kato [21]. The details

of the proof of Eq. (2.2) is presented in Appendix.

Assume ϕ is the orthonormalized ground state of H(0) with energy E(0), and

assume ψ is the orthonormalized ground state of H(A⃗) with energy E(A⃗). There-

fore E(0) =
∫
dτϕ∗H(0)ϕ and E(A⃗) =

∫
dτψ∗H(A⃗)ψ, where the wave functions ϕ

and ψ satisfy Bose statistics. By variational principle and Eq. (2.2),∫
dτϕ∗H(0)ϕ ≤

∫
dτ |ψ|∗H(0)|ψ| ≤

∫
dτψ∗H(A⃗)ψ, (2.3)

leading to Simon’s diamagnetism,

E(0) ≤ E(A⃗), (2.4)

where |ψ| plays as a trial wavefunction of H(0) in the first inequality in Eq. (2.3).

There are some remarks of this theorem:

• This theorem describes the property of many-body bosonic system. It is

different with diamagnetic inequality in Sec. 2.2.1, which is restricted to

single particle case.

• This theorem can only apply to compare the ground-state energies of H(0)

and H(A⃗). It implies nothing about excited states. This is because the

ground-state wavefunction of bosons in coordinate space has “no node” [22,

23], namely ψ0(r⃗) > 0. Assume the excited state is ψ1(r⃗), which must

satisfy the orthogonality ⟨ψ1(r⃗)
∣∣ψ0(r⃗)⟩ =

∫
dr⃗ ψ∗

1(r⃗)ψ0(r⃗) = 0. If ψ1(r⃗) =

1H(A⃗) is defined in equation (2.1).

7



Chapter 2 Background

|ψ0(r⃗)|, the orthogonality ⟨|ψ0(r⃗)|
∣∣ψ0(r⃗)⟩ =

∫
dr⃗ |ψ0(r⃗)|∗ψ0(r⃗) = 0 cannot

be satisfied, considering ψ0(r⃗) > 0. Therefore, |ψ0(r⃗)| cannot be the trial

wavefunction of excited states and this theorem gives no information about

excited states.

• This theorem only applies to bosonic systems since no-node wave function

|ψ| cannot be used as a trial wavefunction for fermions, where |ψ| destroys
the Fermi statistics.

• Simon’s original proof is for bosonic gas. An argument similar to the proof

of the Theorem can be used to prove a lattice version of Simon’s theorem on

diamagnetism of bosons.

2.2 Flux phase problem of fermions

The influence of magnetic field on the ground-state energy of fermions is in the

context of “flux phase” problem. The flux phase problem in condensed matter

physics is to find the real phase flux distribution which optimally minimizes the

ground-state energy of fermions. Some history of this problem is reviewed in the

literature [19].

2.2.1 Diamagnetic inequality

Diamagnetic inequality [19] is one of the significant conclusions of flux phase prob-

lem. It holds for single-particle tight-binding Hamiltonian. Consider a given planar

graph Λ(V,E). The number of vertices is |Λ|. The Hamiltonian for single electron

is −L, where L is Laplacian. Associated with the graph Λ(V,E), the matrix of L
is known as adjacency matrix in the context of graph theory, which is a |Λ| × |Λ|
matrix. Namely, Lxx = 0, and Lxy = 1 (x ̸= y) if sites x and y are connect-

ed by an edge, otherwise Lxy = 0. Assume the eigenvalues of L are arranged

in a non-ascending order, namely λ1(L) ≥ λ2(L) ≥ · · · ≥ λ|Λ|(L), such that the

ground-state energy of Hamiltonian −L is equivalent to −λ1(L).

In the presence of a spatially dependent magnetic field, the matrix element Lxy
is replaced by Txy = Lxyeiθ(x,y). The functions θ’s are real and satisfy θ(x, y) =

−θ(y, x) such that T is a Hermitian matrix. Physically, the phase θ(x, y) can be

interpreted as the integral of the vector potential A⃗ along the edge connecting

8



2.2 Flux phase problem of fermions

site x and site y in an magnetic filed: θ(x, y) =
∫ y
x
A⃗ · d⃗l. The order of the

eigenvalues of T is also assumed in a non-ascending way: λ1(T ) ≥ λ2(T ) ≥ · · · ≥
λ|Λ|(T ). Therefore, the ground-state energy of fermions in such a magnetic filed

with Hamiltonian −T corresponds to −λ1(T ).

Take the single-particle basis {|ϕx⟩}, which means the site x is occupied by

the electron. Assume ϕ is the normalized eigenvector belonging to the largest

eigenvalue λ1(T ) of T . Thus the ground state can be expanded as |ϕ⟩ =
∑

x ϕx|ϕx⟩.
By variational principle,

λ1(T ) = ⟨ϕ|T |ϕ⟩ =
∑
xy

ϕ∗
xϕy⟨ϕx|T |ϕy⟩ =

∑
xy

ϕ∗
xϕyTxy =

∑
xy

ϕ∗
xϕyLxyeiθ(x,y)

≤
∑
xy

|ϕx||ϕy|Lxy ≤ λ1(L).
(2.5)

It directly leads to the diamagnetic inequality,

E0({θ(x, y)}) ≥ E0({θ = 0}) (2.6)

for any distribution of {θ(x, y)}. Thus {θ = 0} is the optimal distribution of phase

to minimize the ground-state energy of single particle.

This conclusion is easily extended to “t-V” model H = −T + V , since V is

a real and diagonal matrix. In addition, in the limit of continuous systems Rn,

where H = −[∇ − iA⃗(r⃗)]2 + V (r⃗), A⃗(r⃗) = 0 minimizes the ground-state energy

of H. The physical meaning of diamagnetic inequality can be represented as “a

magnetic field increases the ground-state energy of one particle” intuitively.

Different with Simon’s diamagnetism of bosons, the Eq. (2.6) holds only for

single particle tight-binding problem. It can be extended to hold in the limit of

low electron density. Because at low electron density, it is the lattice analog to

Landau’s diamagnetism for free electron gas. However, at high electron density,

diamagnetic inequality cannot be applied, because the analogy to Landau’s dia-

magnetism breaks down at high electron density. The actual case of high electron

density will be discussed in the following section.

2.2.2 Optimal phase at half filling

For an arbitrary filling fraction especially at high electron density, it is a highly

nontrivial problem to determine the optimal flux distribution. The reason can be

9



Chapter 2 Background

explained in terms of the well known Hofstadter’s butterfly [24] with the uniform

flux distribution.

Hofstadter considers single electron on a two-dimensional square lattice with

periodic boundary condition, immersed in a uniform magnetic field perpendicular

to the lattice plane. By tight-binding approximation, the energy spectrum as

a function of flux density α is obtained by solving a one-dimensional difference

equation associated with Harper, where α = Φ/Φ0 is the number of flux quanta

passing through every plaquette. The beauty of this problem is highly captured

in the energy spectrum E(α), which is continuous with α and full of gaps with

a remarkable fractal structure as shown in Figure 2.1. For fixed number of free

electrons, the ground-state energy of many-body fermions in a uniform magnetic

filed is obtained by particle filling to the Hofstadter’s butterfly up to the Fermi

level. Due to the complicity of the energy spectrum as functions of α, it is not a

trivial question to find the phase that optimally minimizes the ground-state energy

for given number of particles.

However, the optimal phase is found in the most special case at half filling ν =

1, where ν is filing fraction, the number of particles per site. The term “flux phase”

was introduced firstly in I. Affleck and J. B. Marston’s paper on large-n limit of

the Heisenberg-Hubbard model for high temperature superconductivity, when they

needed to describe the state with minimal ground-state energy as a function of the

hopping phase [25]. Contrary to diamagnetic inequality that the ground-state

energy is raised by magnetic field [19], they found that a state arrives at the

minimum of the ground-state energy with π flux per plaquette near half filling.

Great interests and intensive studies have casted on the investigation of the optimal

phase in various lattice and more values of particle filling fraction [26, 27, 28].

Based on numerical calculations, the original flux phase conjecture is that for a

tight-binding model on a square planar lattice at half filling, the optimal flux that

minimizes the ground-state energy of fermions is π per plaquette [25, 26, 27, 29].

In addition, the conjecture is rigorously proved later by E. H. Lieb and M. Loss in

several cases [19]. And later it is proved to be beyond the original conjecture in

several ways, where only refection symmetry is needed and it works for extended

Hubbard model (with any sign of on-site interaction and long range interactions)

for any lattice with dimensions D ≥ 2 (periodicity in D − 1 is needed) at any

temperature [30].

The conclusion that π flux is the optimal phase for square lattice is very useful in

10
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Figure 2.1: Hofstadter’s butterfly: the energy spectrum of single electron on a
two-dimensional square lattice in a uniform magnetic field, which is perpendicular
to the lattice. Vertical variable is energy E and horizontal variable is flux density
per plaquette α, whose value is given by the number of flux quanta per plaquette
Φ/Φ0.

the following discussion in the Sec. 7.3.1. Considering π flux greatly minimizes the

ground-state energy of fermions, and on the other hand any arbitrary magnetic filed

increases the ground-state energy of spinless bosons according to Simon’s universal

diamagnetism of bosons, these two conclusions shed light on the possibility that the

ground-state energy of bosons can be higher than that of corresponding fermions

with π flux per plaquette.

2.3 1D interacting Bose gas

In this section, I present some results of previous studies of one-dimensional in-

teracting Bose gas. There are some exactly solved interacting boson models in

one dimension. For instance, a model of Bose gas via 1/(ri− rj)
2 type interaction

introduced by Calogero is solvable [31]. Another instance is the Lieb-Liniger mod-

el [5]; a model of Bose gas via a two-body δ-function interaction is exactly solved

by Bethe ansatz.

11



Chapter 2 Background

The limit of infinite repulsion in the Lieb-Liniger model, is also called as the

Tonks-Girardeau or hard-core limit [15, 32]. One of the main subjects in this

thesis is the ground-state energy of hard-core bosons. Although we are working

on lattice systems, reviewing the properties of the Tonks-Girardeau gas, which is

the continuous analog of lattice hard-core bosons, is able to give us many physical

insights for discrete lattice systems. In addition, the “fermionic-like” behaviors

possessed by hard-core bosons can be shown in the discussion of Tonks-Girardeau

gas. Since we are also working on the effect of particle statistics on the ground-

state energy, the studies of Tonks-Girardeau gas will tell us the differences between

hard-core bosons and spinless free fermions in one dimension.

2.3.1 Ground-state energy of Tonks-Girardeau gas

The simplest and nontrivial model of interacting bosons in the continuum is Lieb-

Liniger model [5]. They consider N bosons in one dimension interacting via a

two-body δ-function potential (assume ~ = 1, 2m = 1),

H = −
N∑
i=1

∂2

∂x2i
+ 2c

∑
1≤i<j≤N

δ(xi − xj), (2.7)

where 2c > 0 is the amplitude of the repulsive δ interaction.

In the limit of c → ∞, we obtain the Tonks-Girardeau limit, since the parti-

cles are interacting with an impenetrable point potential. The infinite repulsion

enforces the constraint that the eigenfunction of Hamiltonian (2.7) in the limit of

c→ ∞ must vanish when two particles meet at the same point,

Ψ(x1, · · · , xi, · · · , xi, · · · , xN) = 0. (2.8)

This constraint can be implemented by assuming the symmetric wave function of

N particle Bose gas [15, 32],

ΨB(x1, · · · , xN) = S(x1, · · · , xN)ΨF (x1, · · · , xN), (2.9)

where S(x1, · · · , xN) =
∏

1≤i<j≤N sign(xi − xj) and ΨF (x1, · · · , xN) is the wave-

function of N spinless free fermions. The sign change of ΨF (x1, · · · , xN) when

two particles are exchanged is compensated by the function S(x1, · · · , xN), there-
fore the wavefunction in Eq. (2.9) obeys Bose statistics. And at the same time

ΨB(x1, · · · , xi, · · · , xj, · · · , xN) = 0 is satisfied automatically if xi = xj.

12
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The many-body wavefunction of spinless free fermion is given by

ΨF (x1, · · · , xN) ∝ det[ϕj(xl)],

where det denotes the Slater determinant and ϕj(x) is the jth eigenfunction of the

single-particle Hamiltonian. For free fermion, the single particle wavefunction is

of plane-wave type ϕj(xl) ∝ eikjxl . Therefore, the wavefunction of Tonks-Giradeau

gas is

ΨB(x1, · · · , xN |k1, · · · , kN) ∝ det[eikjxl ]
∏

1≤j<l≤N

sign(xj − xl). (2.10)

The wavefunction (2.10) is the eigenfunction of the Hamiltonian in (2.7) with the

corresponding eigenvalues [33]

E =
N∑
j=1

k2j . (2.11)

Assume the system is a ring of circumference L with periodic boundary condition,

ΨB(x1, · · · , xj = 0, · · · , xN |k1, · · · , kN) = ΨB(x1, · · · , xj = L, · · · , xN |k1, · · · , kN),

leading to the condition eikjL = (−1)N−1. The quantization condition brought by

periodic boundary can be written as

kj =
2πnj
L

, j = 1, · · · , N, (2.12)

where nj are arbitrary odd number for even N and arbitrary even for odd N .

Assume the total number of particle is odd. The ground-state energy of Tonks-

Girardeau gas is obtained by choosing the values of nj lying within the Fermi

surface [15],

−1

2
(N − 1) ≤ nj ≤

1

2
(N − 1).

The ground-state energy is given by

E0 =

1
2
(N−1)∑

nj=− 1
2
(N−1)

(
2πnj
L

)2.

In the thermodynamic limit (N,L → ∞, N/L is finite), the ground-state energy

is obtained by integral

E0 =
L

2π

∫ πN/L

−πN/L
dk k2 =

Lπ2ρ3

3
, (2.13)
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Chapter 2 Background

where ρ = N/L is the particle density. This is consistent with Lieb and Liniger’s

results by Bethe ansatz [5].

The ground-state energy of Tonks-Girardeau or one-dimensional hard-core bo-

son gas is exactly the same as that of one-dimensional spinless free fermion gas in

the thermodynamic limit. This is the result in continuum limit, due to Bose-Fermi

mapping (see Sec. 2.3.2). In one-dimensional lattice system, the ground-state en-

ergies of free fermions and hard-core bosons are the same as well in the thermo-

dynamic limit, by Jordan-Wigner transformation. The latter of discrete lattice

system will be discussed in Chap. 6: Particles on a ring.

2.3.2 Bose-Fermi mapping

The Bose-Fermi mapping denoted by Eq. (2.9), is first put forward by M. Girardeau

in 1960, which demonstrates the connections between one-dimensional hard-core

bosonic gas and spinless free fermionic gas. It maps a strongly interacting many-

body bosonic problem into a noninteracting many-body fermionic problem! This is

an astonishing mapping, since the distinction between bosons and fermions looks as

if being blurred by this mapping. In this section, more discussion of the similarities

and differences will be presented.

Bose-Fermi mapping is even simplified in the case of the ground state. Notice

the function S(x1, · · · , xN) =
∏

1≤i<j≤N sign(xi − xj) can only takes the value +1

or −1. And consider the ground-state wave function of bosons is positive definite

according to Feynman’s “no-node” theorem [22, 23]. The relation (2.9) is reduced

to [15]

ΨB
0 =

∣∣ΨF
0

∣∣. (2.14)

The hard-core constraint or Tonks-Girardeau limit has some similar effect on

bosons as that of Pauli principle on a gas of spinless fermions, since any two

bosons cannot occupy the same site in real space. To minimize their mutual

repulsion, the bosons are avoided to occupy the same position, which mimics the

Pauli exclusion principle for fermion. Therefore, some “fermion-like” behaviors are

expected in hard-core bosons. The relation
∣∣ΨB

0

∣∣2 = ∣∣ΨF
0

∣∣2 results the fundamental

similarities between one-dimensional hard-core boson and spinless free fermions.

M. Girardeau proved that not only the energy spectra of one-dimensional hard-

core bosons and spinless free fermions are identical, but also all configurational

probability distributions are the same [15].

14



2.3 1D interacting Bose gas

However, as denoted by Bose-Fermi mapping (2.9), the wavefunction of hard-

core bosons is symmetric, which is statistically different from fermions. Due to the

different symmetries of the wavefunctions, the momentum distribution of Tonks-

Girardeau gas is very different from that of free fermions system [15]. The differ-

ence is also signatured by the one-particle density matrix [34]. This difference can

be understood qualitatively by the Heisenberg uncertainty relation. Since hard-

core bosons cannot occupy the same position in real space, they will distribute in a

wider region in momentum space, compared with weakly interacting bosons. This

also lends help to explain why perfect Bose-Einstein condensation (all the bosons

condense into the same lowest energy state) breaks down in interacting bosons.

On the other hand, hard-core bosons do not have to be in different momentum

states, this is the fundamental difference from fermions.

All of the observations reveal that hard-core bosons do not exhibit complete-

ly fermionic or bosonic quantum behaviors. However, hard-core bosons are still

bosons, satisfying Bose statistics that is the fundamental property, even if they pos-

sess some “fermionic-like” behaviors. The distinction of statistics is not blurred by

hard-core interaction. And a consequence of statistics appears on the ground-state

energy, which is the main subject in this thesis. Although in the thermodynam-

ic limit, Tonk-Girardeau gas has the same ground-state energy as free fermion

gas, the energy difference indeed exists in finite system. To see this, consider

the case when the number of particles is even, then after Bose-Fermi mapping,

“new” free fermions satisfies anti-periodic boundary condition. Free fermions with

anti-periodic boundary condition has a lower ground-state energy than that with

periodic boundary condition in finite system. The detailed discussion of the energy

difference on one-dimensional lattice will be presented in Chap. 6.
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Frequently used theorems

To focus on the discussion of physics instead of being distracted by mathematical

theorems or techniques involved in the main part of this thesis, I present some

frequently used theorems in this chapter. All of them play important roles for

our proof for natural inequality (in Chap. 4) and rigorous proofs for a lower or an

upper bound of the ground-state energy in infinite system (in Chap. 7), based on

the results obtained from finite clusters by exact diagonalization.

3.1 Min-max principle

Min-max principle (or min-max theorem, Courant-Fischer-Weyl min-max princi-

ple) is a standard theorem in linear algebra and matrix analysis. It variationally

characterizes eigenvalues of a Hermitian operator in the Hilbert space.

The theorem that we use frequently is one of the important applications of

the Courant-Fischer theorem (see Chap. 4.2.11 in [35] and Chap. 4.3.1 in [36]),

associated with Weyl.

Theorem. (Weyl (see Chap. 4.3.1 in [36]))

Let A and B be n×n Hermitian matrices and let the eigenvalues λi(A), λi(B)

and λi(A+B) be arranged in non-decreasing order (λ1(X) ≤ λ2(X) ≤ · · · ≤ λn(X),

where X = A,B,A+B). For each k = 1, 2, · · · , n, we have

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B). (3.1)

Weyl’s theorem can be used to compare the eigenvalues of matrix A + B and
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those of matrix A. One important application of Weyl’s theorem is the case with

k = 1 for the lowest eigenvalues:

λ1(A) + λ1(B) ≤ λ1(A+B) ≤ λ1(A) + λn(B). (3.2)

When the Hermitian matrices A, B and A+B are associated with Hamiltonians,

the Eq. (3.2) gives an upper bound and a lower bound of the ground-state energy

of the Hamiltonian A+B.

One extension of the Eq. (3.2) is that if all the eigenvalues of B is positive

semi-definite (λi(B) ≥ 0 for any i), a lower bound of A+B is simply given by the

lowest eigenvalue of A:

λ1(A) ≤ λ1(A+B), (3.3)

which will be frequently used for positive semi-definite Hamiltonian in Chap. 7.

3.2 Anderson’s argument

Mathematically speaking, Anderson’s argument [37] is a corollary and special case

of Weyl’s min-max principle as in Eq. (3.2). It gives more insights from the aspects

of physics.

Theorem. (Anderson (see [37]))

The lowest eigenvalues of the total Hamiltonian must be greater than the sum

of the lowest eigenvalues of its parts.

Anderson’s argument is easily proved by variational principle.

Proof. Assume EA
0 , E

B
0 and EA+B

0 are the ground-state energies for HA, HB, and

HA +HB, respectively. And assume |ψ⟩ is the ground state of total Hamiltonian

HA +HB. By variational principle, We have

EA+B
0 = ⟨ψ|HA +HB|ψ⟩ = ⟨ψ|HA|ψ⟩+ ⟨ψ|HB|ψ⟩ ≥ EA

0 + EB
0 , (3.4)

where |ψ⟩ plays as the trial wave function of ground states for HA and HB.

From above proof, the lower bound of EA+B
0 holds when HA|ψ⟩ = EA

0 |ψ⟩ and
HB|ψ⟩ = EB

0 |ψ⟩. Namely, the ground-state energy of HA +HB is EA
0 + EB

0 when
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3.3 Dirichlet’s box principle

Figure 3.1: A cartoon to show Pigeonhole principle. There are ten pigeons but
only nine holes. If all the pigeons are put in holes, there is at least one hole accom-
modating more than one pigeon. This figure is taken from Wikimedia Commons
(http://en.wikipedia.org/wiki/File:TooManyPigeons.jpg). The copy right belongs
to BenFrantzDale, licensed under the Creative Commons Attribution-Share Alike
3.0 Unported license.

the ground state of HA +HB is simultaneously the ground state of HA and HB.

One sufficient condition of the lower bound is [HA,HB] = 0, which means when

the cluster Hamiltonian commutes with each other, the ground-state energy of

total Hamiltonian is simply given by the summation of the ground-state energy of

cluster Hamiltonians.

Anderson’s argument will be frequently used in cluster decomposition technique

in Chap. 7.

3.3 Dirichlet’s box principle

In mathematics, Dirichlet’s box principle is also known as pigeonhole principle and

drawer principle. It starts with the observation that when ten pigeons are put in

nine holes, there is at least one hole containing more than one pigeon as shown

in Fig 3.1. It is first formalized by Peter Gustav Lejeune Dirichlet in 1834 in the

proof of a theorem in diophantine approximation. Dirichlet’s box principle is a

very basis counting argument, and it has very important applications in number

theory.

Theorem. (Dirichlet Box Principle (see [38]))
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If more than N objects are placed in N boxes, at least one box contains two or

more objects.

A generalized version of this principle states as follows,

Theorem. (generalization of Dirichlet Box Principle (see Chap. 2 in [39]))

Let S be a finite set containing n elements, and let S1, S2, · · · , Sk be a partition

of S into k subsects. Then at lest one subset Si, 1 ≤ i ≤ k, contains at least [n/k]

elements.

The notation [n/k] in above theorem means the ceiling function, denoting the

smallest integer which is larger than or equal to n/k.

Dirichlet’s box principle will be used in Sec. 7.4 for filling fraction of reversed

natural inequality in flat band models.

3.4 Perron-Frobenius theorem

The Perron-Frobenius theorem is standard in linear algebra [40, 35, 36], which

states the properties of eigenvalues and eigenvectors of nonnegative matrices. It is

firstly proved by O. Perron and G. Frobenius for positive matrices, and is extended

by G. Frobenius for nonnegative irreducible matrices.

Perron-Frobenius theorem plays a significant role and is broadly applicable in

the research of physics. It is widely used in different ares, for example in the study

of Markov chains in stochastic process [41], and in the study of the ground state

in condensed matter physics [42, 43, 44, 45]. One reason why Perron-Frobenius

theorem is so useful is that it shows the properties of the dominant eigenvalue,

whose absolute value is the largest.

The Perron-Frobenius theorem used in this thesis is the one for nonnegative

irreducible matrix. Let me present the general notations used in mathematics

first. Assuming A is an n by n matrix, if the matrix element aij of A satisfies

aij ≥ 0 for any i and j, matrix A is said to be nonnegative and is denoted by

writing A ≥ 0. If every matrix element aij is not smaller than corresponding bij

of matrix B (aij ≥ bij for any i, j), it is denoted by A ≥ B. The notation of |B| is
for a matrix whose matrix element is |bij|. The largest eigenvalue of matrix A is

assumed as λA. The spectral radius of A is defined as ρ(A) ≡ max1≤i≤n(|λi|).
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With these notations, the Perron-Frobenius is presented below:

Theorem. (Perron-Frobenius theorem for nonnegative irreducible matrix (see

Theorem 7.7 in [40]))

If A ≥ |B|, where A is an n × n nonnegative irreducible matrix and B is an

n× n real or complex matrix, then:

(1) any eigenvalue β of B satisfies |β| ≤ λA = ρ(A);

(2) the condition to have the equal sign in the equality in (1) is |B| = A.

In mathematics, matrix A is said to be reducible when there exists a permuta-

tion matrix P (a product of elementary interchange matrices which interchanges

two rows) such that P TAP =

(
X Y
O Z

)
, where X and Z are square matri-

ces [36]. Otherwise A is said to be an irreducible matrix. This definition is not

directly useful when we want to make sure if one matrix is irreducible or not. One

necessary and sufficient condition of the irreducibility of A is that if and only if

(I+A)n−1 > 0 [36, 35], where I is identity matrix and n is the dimension of matrix

A. It can be used as a criterion if A is known.

Actually, in the context of graph theory, the irreducibility is more physically

meaningful. As is known in graph theory, a matrix can be constructed from a

graph. It is also possible to reverse the process by starting with a matrix to build

an associated graph. The graph of An×n (denoted by G(A)) is defined on a directed

graph with n nodes {V1, V2, · · · , Vn} in this way: there is a directed edge from node

Vi to Vj if and only if aij ̸= 0. The directed graph G(A) is said to be strongly

connected if there is a sequence of directed edges leading from Vi to Vj for any pair

of nodes (Vi, Vj). Matrix A is said to be irreducible if and only if G(A) is strongly

connected [36].

However, in our work, we do not need such a strong condition that the graph

G(A) is strongly connected, because the matrix of Hamiltonian is not a general

one but Hermitian with the property that Hij = H∗
ji. This property leads to

the fact that graph G(H) is undirected. The requirement of irreducibility of a

Hermitian or symmetric matrix is reduced to the connectivity of the undirected

graph. Namely, any two different vertices Vi and Vj are connected by a path, or

connected by nonvanishing matrix elements of H. More precisely, for any i ̸= j,

there is a sequence (i1, · · · , iK) such that i1 = i, iK = j and aik,ik+1
̸= 0 for all

k < K. Therefore, the terminology of “connectivity” is widely used in the physical

literatures instead of “irreducibility”.
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By the mapping to the graph, irreducibility can be regarded as the property

of a tight-binding model defined on a “lattice” (G(H)) in “single-particle” basis.

Considering a tight-binding model, if the lattice (graph G(H) is the lattice) is con-

nected, a particle can get from any site to any other site by successive hoppings,

with nonvanishing nearest neighbor hopping amplitudes. Therefore, in single par-

ticle basis, the matrix of tight-binding Hamiltonian is irreducible (or connected)

on a connected lattice, no matter the particle is spinless or spinful. However, the

irreducibility of the matrix of tight binding Hamiltonian in single particle basis

does not necessarily leads to the irreducibility or connectivity of the matrix of

Hamiltonian in many-body basis for spinful particles. A care need to be taken on

the connectivity of Hamiltonian in many-body basis. The application of Perron-

Frobenius theorem and a care of connectivity of Hamiltonian in many-body basis

will be presented in Chap. 4.

22



Chapter 4

Natural inequality

In quantum many-body problem, understanding of the ground state and corre-

sponding energy is fundamental. The ground-state energy is a physical quantity

which governs the stability of the system, and in principle it is measurable by

measuring the exchange of the energy with the outside, during a process starting

from a known initial state. The ground-state energy also reflects the statistics of

identical particles, which pervades all of quantum physics. We study the effect of

particle statistics and frustration on the ground-state energy, by comparing bosons

and fermions subject to the same lattice Hamiltonian.

In this chapter, we will explain why in the absence of interaction, the compari-

son is trivial in Sec. 4.1: the ground-state energy of noninteracting bosons is always

lower than that of free fermions (natural inequality). And we will demonstrate why

the comparison is not trivial in the presence of hard-core interaction among bosons

in Sec. 4.2. We prove that the ground-state energy of hard-core bosons is still lower

than that of fermions if all the hopping amplitudes are nonnegative, for spinless

case (Theorem 1) and spinful case (Theorem 2 and Theorem 3) respectively.

4.1 In noninteracting systems

In noninteracting systems, the influence of particle statistics on the ground-state

energy is quite trivial, because we can do particle filling to the single particle states.

For a system of free fermions, the ground state of fermions is obtained by

filling the individual single-particle states up to the Fermi level, due to Pauli
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Pauli exclusion

principle 

Bose Einstein

condensation

bosons fermions

Figure 4.1: An illustration of particle filling to the single-particle states in nonin-
teracting systems for bosons and fermions, respectively.

exclusion principle [46] and the Aufbau principle. In contrast, in the ground state of

noninteracting bosons, all the bosons condense into the lowest single-particle state,

as known as Bose-Einstein condensation (BEC) [47, 48]. (At zero temperature, the

condensation is perfect for free bosons.) Therefore, the ground state of bosons is

obtained by putting all the particles in the lowest-energy state of the single-particle

Hamiltonian. Thus, the ground-state energy of bosons EB
0 and that of fermions

EF
0 , for the same form of the Hamiltonian, satisfy

EB
0 ≤ EF

0 , (4.1)

if the particles are noninteracting.

A schematic illustration of particle filling is shown in Fig. 4.1. The Eq. (4.1)

is called as “natural” inequality in this thesis.

4.2 In interacting systems

In the presence of interaction, the comparison of the ground-state energies of boson-

s and fermions is not trivial, because the simple argument based on the perfect BEC

breaks down. Einstein’s original literature assumes the absence of interaction and

it is restricted to the thermal equilibrium [48, 49]. Namely, the original argument

only tells us that below a critical temperature, BEC will occur in a noninteracting

system in thermal equilibrium. But how about the case in interacting many-body

bosonic system? In a system of interacting bosons, it is in fact already a nontriv-

ial question whether the BEC actually takes place. It is obvious that there can
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not be any general theorem that BEC always occur in interacting bosonic system,

because the crystalline solid phase of 4He is a counterexample, where BEC (in the

sense of off-diagonal long range order) is absent even at zero temperature, under a

sufficiently high pressure. To our knowledge, the only rigorously proven example

of BEC (in the sense of the off-diagonal long-range order) in an interacting system

is the hard-core bosons on hypercubic lattice at half-filling and at zero temper-

ature, in two or higher dimensions, proved by Kennedy et al. [50]. Even if the

occurrence of BEC or the off-diagonal long-range order is proved in a system of

interacting bosons, it does not necessarily restrict the ground-state energy, because

single-particle states with higher energies can be partially occupied.

On the other hand, the “no-go” theorem associated with Mermin-Wagner-

Hohenberg states that there can not be any long-range order in any system with

short range interactions in d ≤ 2 dimensions at finite temperature [51, 52, 53]. It

excludes the possibility of BEC in such systems, since the presence of off-diagonal

long-range order is the criterion of BEC. (In literatures, the Mermin-Wagner-

Hohenberg theorem is also equivalently represented as the statement that there

cannot be any spontaneous breaking of a continuous symmetry in d ≤ 2 dimension-

s [54], such as U(1) symmetry. By this statement, it also rules out the existence of

BEC in interacting bosons in such systems, since U(1) symmetry is preserved [32].)

With the reasons given above, the BEC (even if it happens) is no longer perfect

in interacting bosons. The simple argument based on perfect BEC can not be used

to compare the ground-state energies of interacting bosons and fermions. In the

strongly correlated system, the influence of particle statistics on the ground-state

energy is still a relatively unexplored area. Even in the simplest and extreme

interacting case only hard-core interaction among bosons, the issue was note clar-

ified. Therefore, we need investigate if the natural inequality (4.1) still holds in

interacting systems. Intuitively, it would be still natural to expect that Eq. (4.1)

holds. This is the reason why the Eq. (4.1) is called as the natural inequality in

this thesis.

However, recently an apparent counterexample was found numerically in small

cluster [55, 56], in which the ground-state energy of hard-core bosons is higher

than that of fermions on delta-chain and kagome lattice with flat band. This

motivates us to examine the fundamental question: how general is the “natural”

inequality (4.1) and when can it be actually violated?

In the following, we focus on the comparison of the ground-state energies of
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hard-core bosons and fermions with the same Hamiltonian. In fact, we can give [57]

a sufficient condition for the natural inequality (4.1). That is, if all the hopping

amplitudes are nonnegative, the ground-state energy of hard-core bosons is still

lower than that of the corresponding fermions. This theorem is extended to the

spinful case.

4.2.1 Hard-core bosons

In the frame of second quantization, the Schrödinger wavefunction is raised to the

operator, which satisfies commutation or anticommutation algebras. For fermions,

the field operators satisfy anticommutation relation:

{ci, c†j} = δij, {ci, cj} = {c†i , c
†
j} = 0, (4.2)

where ci (c
†
i ) is the annihilation (creation) operator of fermion at site i. Pauli

exclusion principle is represented as c2i = 0, and (c†i )
2 = 0. For bosons, the field

operators satisfy commutation relation:

[bi, b
†
j] = δij, [bi, bj] = [b†i , b

†
j] = 0. (4.3)

With Dirac δ repulsive interaction (on-site repulsion goes to infinity), bosons

behave like impenetrable particles, which is called as hard-core boson. For hard-

core boson, double occupancy is not allowed. Thus, the hard-core constraint can

be applied by ni = b†ibi = 0 or 1. On different sites, the hard-core bosons commute

as usual bosons, obeying the commutation relation in Eq. (4.3). However, on the

same site these operators satisfy anticommutation relations typical for fermions:

{bi, b†i} = 1, {bi, bi} = {b†i , b
†
i} = 0,

which is clear after the Matsubara-Matsuda mapping [58] as shown below.

Hard-core boson is of great interest in condensed matter physics, since it

is mathematically equivalent to quantum spin-1/2 magnet. By the Matsubara-

Matsuda transformation, hard-core bosons can be mapped to spin 1/2 magnets:

S+
j = b†j, S−

j = bj, Szj = b†jbj − 1/2 (4.4)

where S+
j = (σxj + iσyj )/2, spin raising operator. And σx,y,zj is the Pauli matrix,

satisfying [σa, σb] = 2i
∑

c ϵabcσ
c. A more general mapping from hard-core boson

to spin is Holstein-Primakoff transformation [59, 60]

S+
j = b†j

√
1− nj, S−

j =
√

1− njbj, Szj = nj − 1/2, (4.5)

26
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which can be used for higher S spins and any dimension.

Apart from the mathematical equivalence to spin-1/2 magnet, hard-core boson

is of great interest because of the experimental realization. One dimensional hard-

core boson, also known as Tonks-Giradeau gas [15, 16], is not a toy model, which

has already been realized in experiment by optical trap [17].

With hard-core constraint of bosons, the dimension of Hilbert space is the same

compared with fermions. On the same site, hard-core bosons obey anticommuta-

tion relation, which is typical for fermions. In this sense, the behavior of hard-core

boson has some similarity as fermions. (The “fermionic-like” behaviors of one-

dimensional hard-core bosonic gas is discussed in Sec. 2.3.2.) But still they are

distinctly different because on different sites hard-core bosons satisfy commutation

relation as usual bosons. The wavefunction of N hard-core bosons does not have

the antisymmetry property with respect to exchange of two particles. This essen-

tial, and also distinguished difference, makes hard-core bosons obey Bose statistics

and statistically different with fermions. The difference of statistics can be shown

in the ground-state energy.

4.2.2 Spinless case

The “natural” inequality (4.1) holds trivially for noninteracting bosons and fermion-

s with the same form of the Hamiltonian. Now we present three theorems (one

theorem for spinless case in this section, and two theorems for spinful case in

Sec. 4.2.3), which state that Eq. (4.1) holds even for hard-core bosons, provided

that all the hopping amplitudes are nonnegative.

To simplify this matter, in this section we focus on the comparison of spinless

hard-core bosons with spinless fermions. (See also Refs. [61, 62].) “Spinless boson”

can be understood as there is no internal degree of freedom, for example liquid
4He. “Spinless fermions” means the spin orientation or spin degrees of freedom

could be ignored, or it can be understood as fully polarized. The discussion of

spinful version is presented in Sec. 4.2.3.

The Hamiltonian is given by

H = −
∑
j,k

(
tjkc

†
jck +H.c.

)
−

∑
j

µjnj +
∑
j,k

Vjknjnk, (4.6)

where each site j belongs to a finite lattice Λ, nj ≡ c†jcj, and tjk = 0 is assumed for

27



Chapter 4 Natural inequality

j = k. The uniform (site independent) part of µj is the chemical potential µ. For a

system of bosons, we identify cj with the boson annihilation operator bj satisfying

the standard commutation relations, with the hard-core constraint nj = 0, 1 at each

site. The hard-core constraint (nj = 0, 1) may also be implemented by introducing

the on-site interaction U
∑

j nj(nj − 1) and then taking U → +∞. For a system

of fermions, we identify cj with the fermion annihilation operator fj satisfying the

standard anticommutation relations.

This generic Hamiltonian is very general. We do not make any assumption

on the dimensionality or the geometry of the lattice Λ, or on the range of the

hoppings. In addition, the interaction is also arbitrary, as long as it can be written

in terms of Vjk. The interesting aspect of attractive interaction will be discussed in

Sec. 4.2.3. We note that the Hamiltonian (4.6) conserves the total particle number.

Thus the ground state can be defined for a given number of particlesM (canonical

ensemble), or for a given chemical potential µ (grand canonical ensemble). The

comparison between bosons and fermions can be made in either circumstance.

First we present a sufficient condition for the “natural” inequality (4.1) to hold.

Furthermore, we find sufficient conditions for the strict inequality EB
0 < EF

0 to hold.

The proof also gives us a physical insight into the reason why the inequality still

holds even in interacting systems, where the simple argument based on the perfect

Bose-Einstein condensation of bosons breaks down.

Theorem 1. (Natural inequality for spinless case)

The inequality (4.1) holds for any given number of particlesM on a finite lattice

Λ with N ≥M sites, if all the hopping amplitudes tjk are real and nonnegative.

Furthermore, if the lattice Λ is connected, and has a site directly connected to

three or more sites, and if the number of particles satisfies 2 ≤ M ≤ N − 2, the

strict inequality EB
0 < EF

0 holds.

Proof. Let us take the occupation number basis |ϕa⟩ ≡ |{naj}⟩, where M is the

total number of particles satisfying
∑

j n
a
j =M . The number operator nj has the

same matrix elements in this basis, for hard-core bosons and spinless fermions. It

is convenient to introduce the operator,

KB,F ≡ −HB,F + C1, (4.7)

with a sufficiently large real number C so that all the eigenvalues κB,F of matrix

KB,F and thus all the diagonal matrix elements KB,F
aa are positive. The matrix
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4.2 In interacting systems

elements of each hopping term in the bosonic operator KB is nonnegative (see also

Feynman’s “no-node” theorem [22, 23]). While the corresponding matrix element

for the fermionic operator must have the same absolute value but could differ in

signs. Thus the matrix elements for bosonic and fermionic operators satisfy

KB
ab =

{
|KF

ab| (a ̸= b)
KF
aa (a = b)

= |KF
ab| (4.8)

The ground state of the Hamiltonian HB,F corresponds to the eigenvector be-

longing to the largest eigenvalue κB,Fmax of KB,F. Let |Ψ0⟩F =
∑

a ψa|ϕa⟩F be the

normalized ground state for fermions. The trial state for the bosons |Ψ0⟩B =∑
a |ψa||ϕa⟩B, where |ϕa⟩B is the basis state for bosons corresponding to |ϕa⟩F.

Then, by a variational argument,

κBmax ≥ B⟨Ψ0|KB|Ψ0⟩B =
∑
ab

|ψa||ψb|KB
ab ≥

∑
ab

ψ∗
aψbKF

ab = κFmax, (4.9)

implying EB
0 ≤ EF

0 . The first part of Theorem 1 is proved. As a simple corollary,

the ground-state energies for a given chemical potential µ also satisfy Eq. (4.1).

For strict natural inequality, let us now consider LS ≡
(
KS

)n
, where S = B,F,

for a positive integer n. Its matrix elements in the occupation number basis can

be expanded as

LSab =
∑

c1,...,cn−1

KS
ac1

KS
c1c2

KS
c2c3

. . .KS
cn−1b

. (4.10)

Each term in the sum represents a process in which a particle can hop among

connected sites.

We will derive two useful relations first. From the definition of LS and the rela-

tion between KB and KF denoted by Eq. (4.8), we have following useful inequality:

LB
ab =

∑
c1,...,cn−1

KB
ac1

KB
c1c2

KB
c2c3

. . .KB
cn−1b

=
∑

c1,...,cn−1

|KF
ac1

KF
c1c2

KF
c2c3

. . .KF
cn−1b

|

≥ |
∑

c1,...,cn−1

KF
ac1

KF
c1c2

KF
c2c3

. . .KF
cn−1b

| = |LF
ab|. (4.11)

This applies, in particular, to the diagonal elements with b = a.

Another important relation is the property of diagonal terms in LS. Since K
is a Hermitian matrix, K is diagonalizable. The eigenvalues of K are real and

corresponding eigenvectors can be chosen to be mutually orthogonal. Let κi and

u⃗i are the eigenvalues and orthonormal eigenvectors of K, where κi ≥ 0 by taking
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Figure 4.2: An illustration of two-particle exchange process in six steps.

sufficient large C in equation (4.7). By spectral decomposition of Hermitian matrix

K 1, we have

K =
m∑
i=1

κiu⃗iu⃗
T
i =

m∑
i

κiPκi , (4.12)

where Pκi is the projection operator to κi satisfying PκiPκj = Pκiδij . Therefore,

the diagonal elements of L is nonnegative,

Laa = (Kn)aa = (
∑
i

κiPi)
n
aa = (

∑
i

κni Pκi)aa > 0, (4.13)

leading to LB
aa ≥ LF

aa > 0.

From Eq. (4.8), it follows that the matrix elements of KF and thus the am-

plitudes of the process in Eq. (4.10) can be negative for fermions, while they are

positive for bosons. The difference between bosons and fermions shows up exactly

when two particles are exchanged. To make two-particle exchange process possi-

ble, let us consider a lattice with a “branching” site directly connected to three

or more sites. If the number of particle falls in the range 2 ≤ M ≤ N − 2, two

particles can be exchanged from an initial state |ϕa⟩ and back to the same state

in 6 hoppings. An example of particle exchange on a lattice with a branching

site is demonstrated schematically in Fig. 4.2. The contribution to the diagonal

elements of bosons LB
aa is always positive at n = 6, while the contribution to LF

aa

is negative when two particles are exchanged. This implies the strict inequality

LB
aa > LF

aa > 0 for the particular diagonal element. In other words, LB
aa > |LF

aa|
holds if two particles are exchanged in this process.

When the lattice Λ is connected, any basis state |ϕa⟩B can be reached by

a consecutive application of the hopping term in KB, and thus the matrix KB
ab

1See Theorem 2.5.6 of Ref. [35].
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4.2 In interacting systems

satisfies the connectivity. Together with the property KB
ab ≥ 0, KB

ab (and thus also

LB
ab) is a Perron-Frobenius matrix [35].

Applying a corollary of Perron-Frobenius theorem 2 we find κBmax > κFmax and

hence the latter part of the theorem follows.

A distinct property of bosons, described by the Hamiltonian (4.6) is that the

matrix element of K is positive semi-definite as denoted by Eq. (4.8). This property

is consistent with Feynman’s “no-node” theorem (see Sec. 11.3 of [22]). According

to Feynman’s discussion in 4He system, it is stated that the many-body ground-

state wavefunction of bosons are positive-definite in the coordinate representation,

if there is no external rotation applied. External rotation will introduce effective

flux, which can be understood as frustration in a unified manner (see the discussion

in Chap. 5). Therefore, “no-node” theorem applies to the ground state of flux free

bosons. This strong argument reduces the general complex-valued many-body

wavefunctions to be positive definite. This theorem also paves the way for the

study of the ground-state properties of bosonic systems (such as 4He) by quantum

Monte Carlo simulation, in which case it is free of sign problem. The distinct

property of bosons in unfrustrated system leads to the natural inequality (4.1).

Of course, the fact that the matrix element of KB in occupation number basis

is positive semi-definite is a different thing from the “no-node” theorem that the

ground-state wavefunction is positive definite in coordinate space. The relation can

be explained in the following way. Under the assumption that the connectivity

is satisfied, the positive semi-definite matrix KB is a Perron-Frobenius matrix.

According to the Perron-Frobenius theorem in [63], the largest eigenvalue of KB is

nondegenerate and the corresponding eigenvector v⃗ = (vi)i=1,··· ,N can be taken to

satisfy vi > 0 for all i, which corresponds to the ground state of HB. Feynman’s

theorem tells us that this eigenvector can be taken in coordinate space, which is

positive definite.

The essence of the proof is that a state without “no node” has low energy,

which is quite familiar in quantum mechanics (for example, see Sec. 20 of [64]).

The unconventional boson systems beyond Feynman’s paradigm (i.e. meta-stable

state of bosons in the high orbital bands in optical lattice, and spinful bosons with

spin-orbital coupling), whose wavefunction is complex, is discussed by C. Wu et

al. [23, 65, 66]. The unconventional bosons beyond Feynman’s diagram is not the

2See Theorem 8.4.5 of Ref. [35] and Theorem in the review section 3.4.
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subject investigated in this chapter.

Another point need noticed is that for spinless case, the connectivity of the

matrix of Hamiltonian in many-body basis is satisfied when the hopping matrix in

single-particle basis is irreducible. Irreducibility of a symmetric matrixM = (mij)

means for any i ̸= j, we can take a sequence {i1, i2, · · · , in} with i1 = i and

in = j such that mik,ik+1
̸= 0 for all k < n. Intuitively, the irreducibility simply

means that one can bring a particle from site j to i by successive applications

of the hopping term. Namely, if the lattice is not decoupled into disconnected

pieces. Therefore, for spinless particles, the irreducibility of the hopping matrix in

single-particle basis (or connectivity of the lattice) leads to the irreducibility of the

matrix of Hamiltonian in many-body basis, making the Perron-Frobenius theorem

applicable. The connectivity for spinful case with infinite on-site repulsion is quite

involved, and will be presented in Sec. 4.2.3.

Theorem 1 gives a qualitative estimate of the comparison between the ground-

state energies of hard-core bosons and spinless fermions. It is obvious that the

magnitude of energy difference depends on the models in the question. Therefore,

there cannot be any general or mathematically rigorous theorem about the order

of the energy difference. For a given concrete model, a lower bound of the energy

difference may be obtained quantitatively. For example, consider the tight-binding

model on a two dimensional square lattice H = −
∑

⟨j,k⟩(c
†
jck +H.c.). The disper-

sion relation is easily obtained as ϵ(kx, ky) = −2(cos kx+cos ky). The ground-state

energy at half filling is obtained by filling up the Fermi sea,

EF
0 /N =

1

N

∑
kx,ky∈FS

ϵ(kx, ky) =
4

(2π)2

∫ π

0

dkx

∫ −kx+π

0

dky ϵ(kx, ky) = −0.81057,

(4.14)

where the Fermi sea is shown by the dark region in Fig. 4.3. An upper bound

of the ground-state energy of hard-core bosons can be obtained by variational

method. Due to the hard-core constraint, we can use the spin-1/2 notation to

represent a site which is occupied by one particle or empty: | ↑⟩ = b†|0⟩, | ↓⟩ = |0⟩.
The trial wavefunction of hard-core bosons is assumed as a direct product of the

wavefunction on every site: |Ψ⟩ = ( 1√
2
| ↑⟩1 + 1√

2
| ↓⟩1)⊗ ( 1√

2
| ↑⟩2 + 1√

2
| ↓⟩2)⊗ · · · ,

where 1√
2
| ↑⟩i + 1√

2
| ↓⟩i is the wavefunction of ith spin-1/2 pointing to the x axis.

By variational principle, EB
0 ≥ ⟨Ψ|H|Ψ⟩ = −1

4
× 4N = −N . Therefore, a lower

bound of the energy density difference is obtained

∆ϵ = EF
0 /N − EB

0 /N ≥ 0.18943. (4.15)

32



4.2 In interacting systems

-Π 0 Π

-Π

0

Π

kx

k y

Figure 4.3: Fermi sea for two-dimensional tight-binding model.

The discussion of the estimation on the magnitude of the ground-state energy

density difference can be extended to other two-dimensional lattices and also to

higher dimensions by the same method. In a generic system in two or higher

dimensions, we expect that the energy difference scales linearly in the system size

(or equivalently, the difference in the ground-state energy density approaches a

constant).

4.2.3 Spinful case

In Sec. 4.2.2, we have proved a sufficient condition of (strict) natural inequality

for spinless case. In this section, we extend the discussion of natural inequality for

spinful case. (See Ref. [67] for a similar inequality for spinful fermions.)

We consider the comparison between spin-1/2 hard-core bosons and spin-1/2

fermions. The pseudospin-1/2 bosons can be regards as bosons with two internal

degrees of freedom, for example two-component bosons [32]. The Hamiltonian is:

H = −
∑
j ̸=k

∑
σ

(
tjkc

†
jσckσ +H.c.

)
−

∑
jσ

µjnjσ +
∑
j ̸=k

∑
σ,σ′

Vjknjσnkσ′ +
∑
j

Ujnj↑nj↓,

(4.16)

where nj =
∑

σ c
†
jσcjσ, the number of particles on site j of the finite lattice Λ, and

σ =↑, ↓, the spin index for fermions and bosons. This Hamiltonian is a generaliza-

tion of Eq. (4.6) with the introduction of the spin degrees of freedom σ =↑, ↓. For
a system of fermions, cjσ is identified with the fermion annihilation operator fjσ,

satisfying anticommutation relation {fjσ, f †
kσ′} = δjkδσσ′ . For a system of bosons,
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cjσ is identified with the boson annihilation operator bjσ, satisfying commutation

relation [bjσ, b
†
kσ′ ] = δjkδσσ′ . The hard-core constrain (nB

jσ = b†jσbjσ = 0, 1 without

summation over σ and j) is applied to each site; two or more particles with the

same spin cannot occupy the same site. Similarly to the Hamiltonian for spinless

case (4.6), the generic Hamiltonian is also very general. The interesting point of

attractive on-site interaction (Uj < 0) will be discussed in section 4.2.3.3.

4.2.3.1 Finite Uj’s

Let us first discuss the case in which all Uj’s are finite. We present sufficient

conditions for the natural inequality and strict natural inequality EB
0 < EF

0 for

spinful case with finite Uj’s first. The discussion of infinite Uj’s is presented in

section 4.2.3.2 and 4.2.3.3.

The following simple generalization of Theorem 1 holds:

Theorem 2. (Natural inequality for spinful case with finite Uj’s)

For any set of finite Uj’s, if all the hopping amplitudes tjk are real and non-

negative, the inequality (4.1) holds for any given number of particles M ≤ 2N on

a finite lattice Λ with N sites.

Furthermore, if the lattice Λ is connected, and has a site directly connecting to

three or more site, and if the number of particles satisfies 3 ≤ M ≤ 2N − 3, the

strict inequality holds.

The proof of the Theorem 2 is a straightforward generation of that for spinless

case in Theorem 1 in section 4.2.2.

Proof. Since the total number operator M =
∑

jσ njσ and total magnetization

Sz = 1/2
∑

j(nj↑−nj↓) commute with the Hamiltonian (4.16), one can diagonalize

the Hamiltonian in each sub-Hilbert space with fixed values of M and Sz. Each

sub-Hilbert space has definite numbers of up-spin and down-spin particles. Let

|ϕµ⟩↑ ≡ |{nµj↑}⟩ (µ = 1, 2, · · · , u) be the occupation number basis for up-spin

particles, and |ψν⟩↓ ≡ |{nνj↓}⟩ (ν = 1, 2, · · · , v) be the occupation number basis for

down-spin particles. Then, we can take the direct product |Φa⟩ = |ψν⟩↓ ⊗ |ϕµ⟩↑,
where a = 1, 2, · · · , uv, as the basis of the sub-Hilbert space mentioned above.
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The Hamiltonian can be rewritten as:

H = Ht +Hint, (4.17)

Ht = 1↓ ⊗H↑
t +H↓

t ⊗ 1↑, (4.18)

whereHσ
t = −

∑
j ̸=k(tjkc

†
jσckσ+H.c.). The matrix elements of the number operator

njσ are the same in this basis, for hard-core bosons and fermions. We introduce

the operator KB,F ≡ −HB,F + C1 with a constant C. Choosing C large enough,

we make all the eigenvalues and all the diagonal matrix elements of KB,F positive.

The matrix elements of bosonic and fermionic Hamiltonians obey the relation:

KB
ab =

{
|KF

ab| (a ̸= b)
KF
aa (a = b),

(4.19)

where the diagonal terms correspond to Hint and the off-diagonal terms correspond

to Ht. With finite Uj’s, one site can be occupied by one spin-up particle and

one spin-down particle. Thus spin-up particles can move as spinless particles for

any given configuration of spin-down particles, and vice versa. Of course, the

interaction term Hint, which is diagonal in this basis, is affected by the presence of

particles with opposite spins. However, as far as the irreducibility (connectivity)

of Hamiltonian is concerned, one can regard the system as a combination of two

independent systems of hard-core particles. As a consequence, when the lattice

Λ is connected, any pair of basis states |Φa⟩B and |Φb⟩B are connected to each

other by a successive applications of the hopping terms in KB. Together with the

property KB
ab ≥ 0, KB satisfies the condition of the Perron-Frobenius theorem.

When the number of particles M ≥ 3, there are at least two particles with the

same spin. The condition M ≤ 2N − 3 guarantees there are at least two spaces

which can accommodate two particles with the same spin. Thus, when the number

of particles falls in the range 3 ≤ M ≤ 2N − 3, we can exchange two identical

particles and return back to the same state, based on the branch structure as in

Fig. 4.2. Therefore, when Uj’s are finite, the lattice is connected and has a branch

structure, and 3 ≤M ≤ 2N − 3, two-particle exchange always happens. As in the

proof of Theorem 1 for spinless case, the strict inequality EB
0 < EF

0 follows from

the Perron-Frobenius theorem 3.

4.2.3.2 Uj = +∞

Now let us discuss the case Uj = +∞. The first half of Theorem 2, the non-

strict version of the inequality, is not affected by taking Uj = +∞. However,

3See Theorem 8.4.5 of Ref. [35].
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the latter half of Theorem 2, the strict inequality, is affected. The proof of the

strict inequality is based on the Perron-Frobenius theorem, which requires the

irreducibility of the matrix. For spinless particles and spinful particles with finite

Uj’s, when the lattice is connected, any pair of occupation number basis states |Φa⟩
and |Φb⟩ of the many-particle problem are connected by consecutive applications

of particle hoppings. This implies the irreducibility of the matrix representing the

many-body Hamiltonian.

However, in the case of spinful system with Uj = +∞, the connectivity of the

lattice does not guarantee the irreducibility of the many-body Hamiltonian matrix.

A special care should be taken on the irreducibility. An illustrative example is

the Hubbard model with Uj = +∞ at half-filling. Each site is occupied by a

particle with either spin up or spin down. However, since there is no empty site

and double occupancy with spin up and down particles is forbidden, each basis

state is not connected by hopping to any other basis state. Therefore, in order to

prove the strict inequality, we need some additional condition which guarantees

the irreducibility of the Hamiltonian matrix in many-body basis.

In fact, the irreducibility of the Hamiltonian matrix at Uj = +∞, and appli-

cation of the Perron-Frobenius theorem were discussed earlier by Tasaki in the

context of Nagaoka’s ferromagnetism [63]. Nagaoka’s ferromagnetism is a mecha-

nism of ferromagnetism in the Hubbard model with a single hole with Uj = +∞,

and can be understood as a consequence of the Perron-Frobenius theorem. For

that, the irreducibility of the Hamiltonian matrix in a certain basis is required.

In Ref. [63], a sufficient condition for the irreducibility was presented: if the en-

tire lattice is connected by exchange bonds, then the Hamiltonian matrix in the

occupation number basis is irreducible. Here “exchange bond” is defined by a

pair of sites which belongs to a loop of length three or four, and the whole lattice

remains connected via nonvanishing hopping amplitudes even when the two sites

are removed. Thus we obtain

Theorem 3. (Natural inequality for spinful case)

When Uj’s are either +∞ or finite, if all the hopping amplitudes tjk are real and

nonnegative, the inequality (4.1) holds for any given number of particles M ≤ N

on a finite lattice Λ with N sites. Furthermore, if the entire lattice Λ is connected

by exchange bonds, and if the number of particles satisfies 3 ≤ M ≤ N − 1, the

strict inequality holds.
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x y
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x

Figure 4.4: An example of exchange-bond lattice. The horizontal bond {x, y} is
not an exchange bond, because the site z is disconnected when the two sites x
and y are removed. However, the {y, z} bond is an exchange bond, because the
lattice is still connected with periodic boundary condition when sites y and z are
removed. The delta-chain is an exchange-bond lattice, since the whole lattice is
connected via non-horizontal exchange bonds.

The property that the entire lattice is connected by exchange bonds can be

verified [63] in various common lattices, such as triangular, square, simple cubic,

fcc, or bcc lattices, in which nearest neighbor sites are connected by non-vanishing

hopping amplitudes. Thus, the above theorem holds for these lattices.

We also note that, Nagaoka’s ferromagnetism only applies to the system with

single hole with respect to half-filling. However, this restriction is only necessary

to guarantee that all the matrix elements are nonnegative. The irreducibility of

the Hamiltonian matrix does not require that there is only one hole. In fact, the

breakdown of the positivity in the presence of more than one holes in the Hubbard

model with Uj = +∞ is precisely due to the Fermi statistics of the electrons. If

we consider the “Bose-Hubbard model” with spin-1/2 bosons instead of electrons,

all the matrix elements are nonnegative in the occupation number basis, for any

number of holes. Thus the Bose-Hubbard model with spin-1/2 bosons exhibit

ferromagnetism for any filling fraction [68]. This non-negativity of the matrix

elements for bosons is also essential for Theorem 3, which holds for any filling

fraction.

4.2.3.3 Uj = −∞

The proofs of Theorems 1, 2 and 3 are insensitive to the signs of the interaction Vjk

or Uj. Namely the natural inequality holds no matter the interaction is repulsive
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or attractive. The interesting aspect of the attractive interaction is that, it will

induce the Cooper pair of fermions. In the case of spinless fermions, orbital part of

the Cooper pair wavefunction must be antisymmetric with respect to the exchange

of two fermions. This results in an extra cost in the kinetic energy. Such fermionic

BEC state thus has a higher ground-state energy than its bosonic counterpart, in

full agreement of the Theorem 1.

In contrast, in the case of spinful fermions, with attractive interaction, fermions

could pair up in the nodeless s-channel. In this case, there is no obvious reason

why the fermions have a higher ground-state energy than bosons. Nevertheless,

according to Theorem 2 and Theorem 3, spinful fermions still have strictly higher

ground-state energy than corresponding bosons, even when the pairing is in the

nodeless s-channel.

This can be interpreted physically in the following way. If the paring of two

particles is completely robust, the problem is reduced to the identical problem of

bosonic“molecules”, whether the original particles are fermions or bosons. Then

the ground-state energies should be the same for fermions and bosons. However,

in general, the pairing is not completely robust, and two pairs can (virtually)

exchange each one of their constituent particles. The amplitude for such a process

has negative sign only for fermions, leading to the nonvanishing energy difference

between fermions and bosons. The exception occurs when the on-site attractive

interaction between up and down spin particles is infinite (Uj = −∞). Then

the pairs are completely robust, and no virtual exchange of constituent particles

occurs; the ground-state energies for fermions and bosons become identical in

this limit. On the other hand, with the infinite attraction, the irreducibility can

not be satisfied because breaking such a pair costs infinite energy Uj, resulting a

completely localized ground state. Thus the natural inequality is reduced to the

trivial equality EB
0 = EF

0 in the limit Uj → −∞ .

4.2.3.4 Spinful Hubbard model

In the following, we numerically demonstrate the above observations in a spinful

Bose-Hubbard model and Fermi-Hubbard model on a 4-site cluster as shown in

Fig. 4.5. Here the bosons in the “Bose-Hubbard” model still obey a particular

hard-core condition nB
jσ = 0, 1. The Hamiltonian is given by

H = −t
∑
⟨i,j⟩σ

(c†iσcjσ +H.c.) + U
∑
j

nj↑nj↓, (4.20)
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4.2 In interacting systems

where t > 0, and ⟨i, j⟩ denotes the nearest hopping. We consider the spin-1/2

bosons and fermions at half-filling (the total number of particles per site ν = 1)

and Sz = 0. That is, on this 4-site cluster, there are two up-spin particles and

two down-spin particles. The energy difference between spinful bosons and spinful

fermions (∆E = EB
0 − EF

0 ) is shown as a function of U = Uj in Fig. 4.6.

Figure 4.5: Four-site branch lattice with four spins at half filling and Sz = 0.

Conforming to Theorem 2, EB
0 ≤ EF

0 holds for all range of U , independent of

the signs of U . Moreover, ∆E(U) is symmetric with respect to U = 0 due to the

particle-hole symmetry of the Hubbard model at half filling ν = 1 [69].
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Figure 4.6: Difference of ground-state energy (∆E = EB
0 −EF

0 ) between hard-core
bosons and fermions on the 4-site lattice with a branch, in Sz = 0 sector with 4
spins.

When U is finite, fermions have strictly higher ground-state energy than bosons,

again in agreement with the latter half of Theorem 2. When U = +∞, the present

4-site cluster does not contain any exchange bond, and thus the strict inequality

cannot be proven. In fact, in this limit, it is easy to see that the particles are

completely immobile and no exchange of identical particles occurs. The ground-

state energy is indeed exactly the same for fermions and for bosons in this limit.
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Chapter 4 Natural inequality

Likewise, in the limit of U = −∞, either bosons or fermions form completely robust

(and immobile) pairs, and the ground-state energies are exactly the same. In the

present case, this can also be understood as a consequence of the particle-hole

symmetry which maps U → −U at specific filling [69].

The asymptotical behavior of ∆E(|U |) can be estimated by the expansion in

terms of t/|U | in the strong-coupling limit (t ≪ |U |). In the strong-coupling

limit at half filling, the Hubbard model is mapped to spin-1/2 Heisenberg model

H = J
∑

⟨j,k⟩ S⃗j · S⃗k, where J = 2t2/|U | (for example, see texture book [70]).

The energy difference induced by statistics in the strong-coupling limit should

appear in the order of O(t(t/|U |)2). The numerical fitting for strong-coupling

limit is shown in Fig. 4.7. The leading term in the energy difference is in the

order of t(t/|U |)5, where 5 is the minimum number of intermediate states when

two particles are exchanged on such a branch lattice. In the weak-coupling limit

(t ≫ |U |), the mean-field Hamiltonian for fermions can be derived by Hartree-

Fock approximation [70]. However, with hard-core constraint, perturbation theory

is invalid for hard-core bosons in the limit of weak coupling. Hence, perturbation

theory could not give any information of the magnitude of the energy difference in

weak-coupling limit. Anyway, we can numerically show the asymptotical behavior

of ∆E(|U |) in the weak-coupling limit, which is shown in Fig. 4.8.
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Figure 4.7: Numerical fitting of ∆E(|U |) in the limit of strong coupling at half
filling. The fitting function is ∆E/t = 5.022946−13 + 127.639773(t/|U |)5.

In summary, in this chapter, we mathematically prove a sufficient condition for

the natural inequality (4.1) to hold for interacting systems without relying on the

occurrence of BEC, where the simple argument based on perfect BEC breaks down.
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Figure 4.8: Numerical fitting of ∆E(|U |) in the limit of weak coupling at half filling.
The fitting function is ∆E/t = 0.058859− 0.316873|U |/t+ 0.532999(|U |/t)2.

That is, if all the hopping amplitudes are nonnegative, the ground-state energy of

hard-core bosons is still lower than that of the corresponding fermions. Theorem 1

is proved for spinless case, and Theorems 2, 3 are proved for spinful case. The

physical understanding of the condition “nonnegative” hopping amplitudes will be

discussed in the next chapter.
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Chapter 5

Unified understanding of
frustration

In Chap. 4, we prove that when all the hopping amplitudes are nonnegative, hard-

core bosons still have a lower ground-state energy than corresponding fermions.

What is the physical understanding of this condition? In this chapter, we will re-

veal the physics behind the condition. Our study leads to a novel understanding of

the effects of particle statistics, in terms of frustration of quantal phase. From this

understanding, we will see the role played by frustration is of central importance

in the proof of these theorems.

In this chapter, we will review previous definition of frustration and then

present our understanding of the effects of particle statistics. Namely, Fermi s-

tatistics introduces “statistical frustration” in terms of a fictitious lattice. This is

more general than the picture based on the perfect BEC, and is indeed applicable

to systems with interaction. Based on the fictitious lattice, a strict version of the

diamagnetic inequality for general lattice is presented and proved as a by-product.

Finally, we put forward the unified understanding of hopping frustration and sta-

tistical frustration, pointing out a mechanism to reverse the natural inequality.

5.1 Previous definition

Narrowly speaking, when not every bond of a lattice is able to achieve the lowest

bond energy simultaneously, there is some frustration. Namely, the minimum total

energy is not given by the the summation of the minimum of each bound energy.
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Chapter 5 Unified understanding of frustration

Frustration is often associated with antiferromagnetically interacting spin sys-

tems on geometrically frustrated lattices, such as triangle, kagome and pyrochlore

lattice. This is also called as geometric frustration, which originates from the in-

compatibility between magnetic degree of freedom and crystal geometry [71]. The

origin can be simply illustrated by as few as three spins on a triangle (shown in

Fig. 5.1).

Figure 5.1: An illustration of geometry frustration of three antiferromagnets on a
triangle.

Besides the geometric frustration, another frequently involved frustration is

introduced by magnetic filed or gauge potential, which is independent of the fact

that the lattice is geometrically frustrated or not. For example, consider a Bose-

Hubbard model subjected to a magnetic field. The Hamiltonian is give by: H =

−J
∑

ij(a
†
iaje

iAij +H.c.)+ U
2

∑
i ni(ni−1). In the limit of U ≫ J and S → ∞, spin

vector can be parameterized as [72]: s⃗ = S(sin θ cosϕ, sin θ sinϕ, cosϕ). The Bose-

Hubbard Hamiltonian becomesH = −2JS2
∑

⟨i,j⟩ sin θi sin θj cos(ϕi−ϕj+Aij) [72].
Consider a plaquette from a lattice shown in Fig. 5.2. Every bond energy cannot

be simultaneously minimized if the flux passing through the plaquette is not zero.

This is because for a given phase ϕ1 at site 1, we can choose ϕ2, ϕ3 and ϕ4 (the

values are labeled in Fig. 5.2) to minimize the bound energy on three of the four

bounds. If the total flux of this plaquette A12 + A23 + A34 + A41 is not zero, the

fourth bond cannot be minimized simultaneously.

More generally, the concept of frustration may be applicable to a system with

competing interactions, when the ground state does not minimize individual in-

teraction simultaneously [73].
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1 2

4 3

Figure 5.2: An illustration of frustration introduced by gauge field.

5.2 Unified frustration and diamagnetic inequal-

ity

The frustration of hard-core bosons in Hamiltonians (4.6) can be figured out by

the previous definition of frustration in Sec. 5.1.

To see the sign of hopping amplitudes tjk in a many-boson system is related to

frustration, we can map the hard-core boson problem to spin-1/2 quantum spin

system [58]. The mapping is based on the equivalence between hard-core boson

operators and spin-1/2 operators:

S+
j ∼ b†j, S−

j ∼ bj, Szj ∼ b†jbj −
1

2
. (5.1)

It is then easy to see that a hopping term for hard-core bosons maps to an in-plane

exchange interaction:

−tjk
(
b†jbk + b†kbj

)
∼ J⊥

jk

(
Sxj S

x
k + Syj S

y
k

)
, (5.2)

where J⊥
jk = −2tjk. Thus the nonnegative tjk corresponds to ferromagnetic interac-

tion, in terms of spin system. When all the exchange couplings are ferromagnetic,

there is no frustration. Namely, every in-plane exchange interaction energy can

be minimized simultaneously by aligning all the spins to the same direction in the

xy-plane. Going back to the original problem of quantum particles, the direction

of the spins in the xy-plane corresponds to the quantal phase of particles at each

site. If all the hopping amplitudes are nonnegative, every hopping term can be

simultaneously minimized by choosing a uniform phase throughout the system.

In this sense, bosons with nonnegative hopping amplitudes are unfrustrated with

respect to their quantal phase.
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Chapter 5 Unified understanding of frustration

5.2.1 Statistical frustration

Let us now consider the case of fermions. Since Fermi statistics brings in negative

signs even if all the hoppings tjk are nonnegative, it would be natural to expect

that Fermi statistics leads to some kind of frustration. However, it is difficult to

formulate this based on the above mapping to S = 1/2 spin system. To understand

the frustration induced by Fermi statistics in many-particle system, we introduce

an alternative mapping of the many-body Hamiltonian into a single-particle tight-

binding model. That is, we identify each of the many-body basis states |Φa⟩ with
a site on a fictitious lattice.

Figure 5.3: A schematic figure to explain the relation between original many-
body problem and the tight binding model on a fictitious lattice. Figure 5.3 (a)
demonstrates the process to exchange two particles in real lattice. Figure 5.3 (b)
shows the corresponding loop in a fictitious lattice, where site a is identified with
the many-body basis state |ψa⟩. The flux Φ in Fig. 5.3 (b) is π for fermions but
zero for bosons.

The relation of original many-body problem and the tight-binding model on a

lattice can be summarized as:

• If two basis states |Φa⟩ and |Φb⟩ are connected by Hamiltonian (⟨Φb|H|Φa⟩ ̸=
0), there is a link connecting sites a and b in the fictitious lattice.

• If we can start from an initial state, and return back to the same state
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5.2 Unified frustration and diamagnetic inequality

by successive applications of the Hamiltonian (4.6), there is a loop in the

fictitious lattice.

One schematic figure of the fictitious lattice and the relation to the original many-

body problem is shown in Fig. 5.3. All the particles in this figure are identical. The

different colors are only for the purpose to show the process of particle exchange.

For the boson problem, all the hopping amplitudes in this single-particle prob-

lem are again nonnegative. Hence there is no extra phase in the loop for bosons. In

other words, the fictitious lattice for hard-core boson is flux free. Therefore, there

is no frustration for bosons because there is a constructive interference among all

the paths.

In contrast, for fermions, in the original many-body problem, if two particles are

exchanged and the system returns back to the initial state, the system acquires an

extra π phase. Upon the mapping to the single-particle problem, this is equivalent

to the presence of a π-flux in the corresponding loop in the fictitious lattice. This

can be interpreted as a frustration, which causes destructive interferences among

different paths. The π phase introduced by fermi statistics cannot be gauged out

by gauge transformation, and it can be interpreted as an effective magnetic flux.

In this thesis, we call the effective magnetic flux as “statistical frustration” because

it is introduced by Fermi statistics, which is unique for fermions.

5.2.2 Strict diamagnetic inequality

For a single-particle tight-binding model, introduction of any flux always raises or

does not change the energy, which is known as diamagnetic inequality [19]. By

the mapping to the single-particle problem on the fictitious lattice, the first half

of Theorem 1, which states the non-strict inequality, may be then regarded as a

corollary of the diamagnetic inequality (see Ref. [19] and references therein). On

the other hand, the latter half of the Theorem 1 concerning the strict inequality

does not, to our knowledge, follow from known results on the diamagnetic inequal-

ity. In fact, the arguments in the proof of Theorem 1 can be applied to a strict

version of the diamagnetic inequality on general lattice. The general result can be

presented as follows.

Theorem 4. (General diamagnetic inequality and its strict version)
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Chapter 5 Unified understanding of frustration

Let us consider a single particle on a finite lattice Ξ, with the eigenequation

−
∑
β∈Ξ

ταβψβ = Eψα. (5.3)

In general, ταβ is complex, with ταβ = τ ∗βα. The ground-state energy E0 for a given

set of the hopping amplitudes {ταβ} satisfies

E0({τ ′αβ ≡ |ταβ|}) ≤ E0({ταβ}). (5.4)

Furthermore, the strict inequality,

E0({τ ′αβ ≡ |ταβ|}) < E0({ταβ}) (5.5)

holds, provided that the lattice Ξ is connected and there is at least one loop which

contains a nonvanishing flux. A sequence of sites {α0, α1, α2, . . . , αn}, which sat-

isfies αl ̸= αl+1, ταlαl+1
̸= 0 and αn = α0 is called a loop. The loop contains a

nonvanishing flux when the product

τα0α1τα1α2τα2α3 . . . ταn−1αn (5.6)

is not positive (either negative or not real).

The proof is similar to that of Theorem 1. We can define the matrices K,K′

by

Kαβ ≡ ταβ + Cδαβ, (5.7)

K′
αβ ≡ τ ′αβ + Cδαβ, (5.8)

with a sufficiently large constant C so that K and K′ is positive definite. We then

define L ≡ Kn and L′ ≡ K′n, for the length l of the loop with a nonvanishing flux.

The positive definiteness of K and K′ implies that L and L′ are also positive defi-

nite, and thus all the diagonal matrix elements Lαα and L′
αα are strictly positive.

Similarly to the proof of Theorem 1, L′
αβ ≥ |Lαβ| holds for any α, β. In particular,

the diagonal matrix element of L′ is expanded as

L′
α0α0

=
∑

α1,··· ,αn−1

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

, (5.9)

Lα0α0 =
∑

α1,··· ,αn−1

Kα0α1Kα1α2 . . .Kαn−1α0 , (5.10)

48



5.2 Unified frustration and diamagnetic inequality

Each term in the expansion satisfiesK′
α0α1

K′
α1α2

. . .K′
αn−1α0

≥ |Kα0α1Kα1α2 . . .Kαn−1α0 |,
thanks to K′

αβ ≥ |Kαβ|. By assumption, there is a nonvanishing contribution to

Lα0α0 from the loop of length n

Kα0α1Kα1α2 . . .Kαn−1α0 = τα0α1τα1α2 . . . ταn−1α0 , (5.11)

which is not positive. Here we used the fact that the off-diagonal elements of K
and τ are identical. Combining with the contribution from its reverse loop

Kα0αn−1Kαn−1αn−2 . . .Kα1α0 , (5.12)

which is complex conjugate of Eq. (5.11), we find the strict inequality

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

+ c.c. > Kα0α1Kα1α2 . . .Kαn−1α0 + c.c.. (5.13)

Thus L′
α0α0

> Lα0α0 > 0. Invoking the Perron-Frobenius theorem again, the strict

diamagnetic inequality in equation (5.5) is proved. The non-strict version is the

standard diamagnetic inequality [19]. However, the strict inequality obtained here

appears new, also in the general context of diamagnetic inequality.

5.2.3 Unified understanding of frustration

Mapping of the original quantum many-particle problem to the single particle prob-

lem on a fictitious lattice provides a unified understanding of frustration of quantal

phase. When there is a non-vanishing flux in the original many-particle problem,

we observed that there is a frustration among local quantal phases, which we may

call hopping frustration. On the other hand, when the particles in the original

problem are fermions, there is also a frustration among quantal phases, which we

name statistical frustration. In the original many-particle problem, the statistical

frustration appears rather differently from the hopping frustration. However, up-

on mapping to the single-particle problem on the fictitious lattice, both hopping

frustration and statistical frustration are represented by non-vanishing flux in the

fictitious lattice. This provides a unified understanding of hopping frustration and

statistical frustration.

A system of many bosons with only nonnegative hopping amplitudes tjk repre-

sents a frustration-free system. Introduction of any frustration into such a system

is expected not to decrease the ground-state energy. For example, introduction

of magnetic flux (hopping frustration) does not decrease the ground-state energy.

This is a lattice version of Simon’s universal diamagnetism in bosonic systems [18].
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On the other hand, when one type of frustration already exists, the effect of

introducing another type of frustration is a non-trivial problem. For example, in a

system of fermions, the statistical frustration exists. What happens if one further

introduces hopping frustration (magnetic flux)? In such a case, there cannot be a

general statement: the ground-state energy may or may not decrease, depending

on the system in the question. That is, diamagnetism is not universal in spinless

fermions systems. Correspondingly, the orbital magnetism of fermions can be

either paramagnetic or diamagnetic, depending on the model.

This means that, in some cases, the hopping frustration may (partially) can-

cel the effect of statistical frustration, so that the introduction of the hopping

frustration actually decreases the ground-state energy. The possibility of partial

cancelation between the two kinds of frustration can be again naturally under-

stood by the mapping to the single-particle problem on a fictitious lattice. Each

of the frustrations introduces a particular pattern of magnetic flux in the fictitious

lattice. It is certainly possible that these two magnetic flux (partially) cancel with

each other.

In summary, in this chapter, we discuss the physical understanding of the suf-

ficient condition of natural inequality. For bosons with nonnegative hopping am-

plitudes are unfrustrated with respect to their quantal phase. Fermi statistics has

the effect to introduce statistical frustration. The natural inequality is nontrivially

explained by diamagnetic inequality. As a by-product, the proof of strict natural

inequality leads to a strict diamagnetic inequality. In terms of the fictitious lattice,

the hopping frustration and statistical frustration can be understood in a unified

manner. The latter is unique for fermions. The unified understanding of frustra-

tion hints us the possibility that the ground-state energy of hard-core bosons could

be higher than fermions due to hopping frustration. The exact examples of the

reversed natural inequality will be presented in Chaps. 6 and 7.
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One enlightening example:
particles on a ring

In the following, we discuss how the natural inequality can be violated. Theorem 1,

Theorems 2 and 3 leave the possibility of violation of the inequality by introducing

a hopping frustration, that is, by choosing negative or complex hopping amplitudes

tjk. However, the hopping frustration is a necessary but not sufficient condition to

reverse the natural inequality. We will demonstrate that the violation of natural

inequality indeed happens in several frustrated systems. Intuitively, this means

that we can cancel the effect of the statistical phases by that of hopping amplitudes,

so that the fermions have a lower energy than the corresponding bosons. For

simplicity, we limit ourselves to the comparison between spinless fermions and

hard-core bosons, with no interaction other than the hard-core constraint, setting

Vjk = 0. The case with other interactions will be discussed at the end of Chap. 7.

In this chapter, we discuss the best understood and solvable model in one

dimension: the ground-state energy of hard-core bosons and spinless fermions on

a ring. In the thermodynamic limit, the ground-state energy of hard-core bosons

and fermions are the same, which is consistent with the discussion in continuum

limit in Sec.2.3.1. However, the energy difference does exist in finite systems. And

the ground-state energy density (ground-state energy per site) of bosons is found

to be higher than that of fermions in finite systems. We believe it is a very useful

model in highlighting the central physics of the problem, namely the effect of the

statistical frustration introduced by Fermi statistics can be canceled by the flux or

hopping frustration.
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6.1 Boundary conditions and Jordan-Wigner trans-

formation

We begin with a simple but instructive example in one dimension: the tight-binding

model on a ring,

H = −
N∑
j=1

(c†jcj+1 +H.c.). (6.1)

The hard-core boson version of this model is equivalent to the S = 1/2 XY chain.

Because of the hard-core constraint, bosonic creation and annihilation operators

(b†j and bj) are mapped to S+
j and S−

j exactly [58]. After this mapping, the

Hamiltonian is mapped into one-dimensional S = 1/2 XY model,

HB = −
N∑
j=1

(S+
j S

−
j+1 +H.c.). (6.2)

To diagonalize the Hamiltonian (6.2), we use the Jordan-Wigner transformation [74,

75],

S+
j = exp

(
−πi

j−1∑
l=1

nl

)
f †
i , S−

j = fi exp
(
πi

j−1∑
l=1

nl

)
, Szj = nj− 1/2, (6.3)

which maps the spin-1/2 magnet into noninteracting fermions on the ring. Thus

the hard-core bosons and fermions are almost equivalent in this case. And this is

the discrete analog of Bose-Fermi mapping for Tonks-Giradeau gas (see Sec. 2.3.2).

However, a care should be taken on the boundary condition when we discuss

the ring of finite length. For simplicity, we assume the number of sites N is an

integral multiple of 4, and the number of particles M = N/2. The number of

particles is assumed as even. For the periodic or antiperiodic boundary condition

cN+1 ≡ ±c1, the Jordan-Wigner fermions f̃j obey the boundary condition f̃N+1 =

∓eiπM f̃1, whereM is the number of Jordan-Wigner fermions (equals to the number

of bosons), which has been assumed as even. It implies that hard-core bosons

with the periodic (antiperiodic) boundary condition are mapped to noninteracting

fermions with the antiperiodic (periodic, respectively) boundary condition:

EB
0 (PBC) = EF

0 (APCB), EB
0 (APBC) = EF

0 (PCB). (6.4)
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6.2 Dependence of EF
0 on boundary conditions

Now let us discuss the dependence of the ground-state energy of free fermions on

the boundary conditions. The ground-state energy density is obtained by Fourier

transformation,

ϵ0 =
E0

N
= − 2

N

∑
k

cos k, (6.5)

where k is taken over all the momenta in the Fermi sea, −π/2 ≤ k < π/2. For the

periodic boundary condition, the wavenumber k is quantized as k = 2πn/N , while

k = π(2n+1)/N for the antiperiodic boundary condition, where −N/4 ≤ n < N/4

is an integer.

The ground-state energy density asymptotically converges, in the thermody-

namic limit N → ∞, to the same integral for either boundary condition. Never-

theless, it does depend on the boundary condition for a finite N . The difference

of ground-state energy is exactly calculated as

EPBC
0

N
− EAPBC

0

N
=

2[1− cos(π/N)]

N sin(π/N)
> 0, (6.6)

for any N > 1. The antiperiodic boundary condition gives the lower ground-state

energy. The leading order of difference can be extracted in the limit of large N as,

EPBC
0

N
= − 2

π
+

2π

3N2
+

2π3

45N4
+O(

1

N6
)

EAPBC
0

N
= − 2

π
− π

3N2
− 7π3

180N4
+O(

1

N6
),

(6.7)

for the periodic (PBC) and antiperiodic (APBC) boundary conditions.

It can be seen that the noninteracting fermions on a ring have a lower energy

with the antiperiodic boundary condition. The leading term of O(1/N2) is also

determined by conformal field theory[76, 77], the detail of which will be presented

in Sec. 6.3.

Considering the relation of boundary condition in Eq. (6.4), this implies that

the hard-core bosons have a lower energy than fermions on a ring with the periodic

boundary condition, conforming to Theorem 1 since all the hopping amplitudes

are nonnegative. On the other hand, the same result implies that, under the

antiperiodic boundary condition, the hard-core bosons have a higher energy than

fermions. The anti-periodic boundary condition can be understood as a result of

insertion of π-flux inside the ring. This hopping frustration cancels the statistical

phase so that the natural inequality is violated.
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Chapter 6 One enlightening example: particles on a ring

6.3 Calculation by conformal field theory

The leading term of O(1/N2) is also determined by conformal field theory[76, 77].

For one dimensional quantum XXZ model:

HXXZ = − γ

2π sin γ

L∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 +∆σzi σ

z
i+1), (6.8)

where ∆ = − cos γ, 0 ≤ γ ≤ π. The ground state energy density of XXZ chain is

given by[77, 78]

E0(∆, L, ψ) = e∞ − π

6L2
c(ψ) +O(L−2), (6.9)

where the central charge c(ψ) is given by 1− 3ψ2

2π(π−γ) and ψ is the angle of twisted

boundary condition

σxL+1 ± iσyL+1 = e±iψ(σx1 ± iσy1), σzL+1 = σz1.

Consider γ = π/2, in which case the Hamiltonian (6.8) turns into one dimen-

sional XY model

H = −1

2

N∑
j=1

(S+
j S

−
j+1 +H.c.).

Periodic boundary condition corresponds to ψ = 0, and antiperiodic boundary

condition corresponds to ψ = π. Therefore

E0(∆ = 0, L, ψ = 0) = e∞ − π

6L2
+O(L−2),

E0(∆ = 0, L, ψ = π) = e∞ +
π

3L2
+O(L−2).

(6.10)

The results obtained by conformal field theory is exactly the same as Eq. (6.7).

Since the XY chain with PBC (ψ = 0) is equivalent to the fermions with APBC,

when the number of particles is even, as shown in Sec. 6.1. And the XY chain with

APBC (ψ = π) is equivalent to the hard-core bosons with APBC. Therefore, with

APBC, hard-core bosons have a higher ground-state energy density than fermions,

with leading term of O(1/N2).

In summary, hard-core bosons has a higher ground-state energy density than

free fermions on a ring of finite length, with antiperiodic boundary condition.

Imposing the antiperiodic boundary condition is equivalent to introducing a π-

flux inside the ring, which can cancel the effect of the statistical phase so that

the inequality (4.1) is indeed inverted. This tight-binding model may look trivial,
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6.3 Calculation by conformal field theory

and indeed the calculation itself has been known for years. Nevertheless, it is very

useful in highlighting the central physics of the problem, namely the effect of the

statistical frustration introduced by Fermi statistics can be canceled by the flux or

hopping frustration, in terms of a fictitious lattice.

However, the energy difference on the ring vanishes asymptotically in the ther-

modynamic limit N → ∞. Thus, we shall seek for the examples where the hard-

core bosons have a higher energy than fermions in the thermodynamic limit. The

application of particles on a ring and nonvanishing energy density difference in the

thermodynamic limit will be discussed in the next chapter.
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Chapter 7

More examples of reversed
natural inequality

As demonstrated in the last chapter, hard-core bosons have a higher ground-state

energy density than fermions on a finite ring with π flux inside the ring. It is the

best example to highlight the central physics of the problem. Hopping frustration

and statistical frustration can be understood in a unified manner in terms of a

fictitious lattice. Introduction of hopping frustration is expected to compete with

(and cancel) statistical frustration introduced by Fermi statistics. Therefore, the

ground-state energy of fermions may or may not decrease. On the other hand,

frustration always increases the ground-state energy of bosons. This is the mech-

anism that it is possible to reverse the natural inequality by introducing hopping

frustration. And this reversal is indeed found in one-dimensional ring in the last

chapter.

In this chapter, we will present more examples in which such a reversal is

realized, and in several cases it is proved rigorously in the thermodynamic limit,

with rigorous proof and techniques assisted by exact diagonalization.

7.1 Coupled rings

Since hard-core bosons have a higher ground-state energy than fermions on a ring

with π flux inside the ring as demonstrated in Chap. 6, we can construct a series

of systems where EB
0 ≥ EF

0 , by taking many such small rings and connecting them

with weak hoppings. The conjecture is that if the inter-ring hoppings are weak
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Chapter 7 More examples of reversed natural inequality

π

π

π
t

t'

a1

Figure 7.1: Figure 7.1(a) is π-flux octagon-square lattice, and Figure 7.1(b) is the
plot of lowest two bands of Hamiltonian (7.1) with t = 1, t′ = 0.1.

enough, they would be expected not to revert the inequality and EB
0 ≥ EF

0 would

be kept [79].

7.1.1 π-flux octagon-square lattice

We prove rigorously that the reversed natural inequality is still kept in coupled

π-flux rings, connected by weak hoppings, even in the thermodynamic limit. The

first example is π-flux octagon-square model. The lattice structure is shown in

Fig. 7.1 (a), where one unit cell is shown in green with basis vectors a⃗1 = (3, 0)

and a⃗2 = (0, 3). The hopping amplitudes on thick and broken lines are denoted

by t and t′ respectively. The Hamiltonian is given by

H = −t
∑

⟨i,j⟩∈thick,oriented

eiπ/4c†icj − t′
∑

⟨i,j⟩∈broken

c†icj +H.c., (7.1)

where t > t′ > 0. By the choice of eiπ/4 hopping phase on the oriented thick lines,

there is a π flux in every square. Therefore, it can be regarded as a model of

coupled π-flux rings by weak hopping t′.
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7.1 Coupled rings

7.1.1.1 Lower bound of bosons and upper bound of fermions

In order to prove EB
0 > EF

0 rigorously in the coupled rings, we seek a lower bound

for EB
0 and an upper bound for EF

0 . If the former is higher than the latter, the

desired inequality is proved. We introduce the positive semi-definite operators,

A = t′
∑

⟨i,j⟩∈Broken

(c†i + c†j)(ci + cj) ≥ 0, (7.2)

B = t′
∑

⟨i,j⟩∈Broken

(c†i − c†j)(ci − cj) ≥ 0, (7.3)

where A ≥ 0 means ⟨Φ, AΦ⟩ ≥ 0 for any wave function |Φ⟩. Therefore, the

Hamiltonian for fermions and bosons can be written as

HF = H̃F − A =
∑
⋄

hF⋄ − A, (7.4)

HB = H̃B +B =
∑
⋄

hB⋄ +B, (7.5)

where hF⋄ = −t
∑4

i=1(e
iπ/4c†ici+1+H.c.)+t′

∑4
i=1 c

†
ici and h

B
⋄ = −t

∑4
i=1(e

iπ/4c†ici+1+

H.c.) − t′
∑4

i=1 c
†
ici, the cluster Hamiltonians defined on a solid-line square for

fermions and bosons, respectively. Noticing h⋄ commutes with each other, we can

give the ground-state energy of H̃ simply by the summation [37]:

Ẽ0 =
∑
⋄i

ϵ⋄i , (7.6)

where Ẽ0 and ϵ⋄i are the ground-state energy of H̃ and h⋄i on ith π-flux square

respectively.

Because the operators B is positive semi-definite, the ground-state energy of

bosons satisfies

EB
0 = ⟨Φ|HB|Φ⟩ ≥ ⟨Φ|H̃B|Φ⟩ ≥ ẼB

0 =
∑
⋄i

ϵB⋄i , (7.7)

where Φ is assumed as the ground state of HB. The min-max principle 1 has been

applied in the first inequality in Eq. (7.7).

On the other hand, an upper bound of fermions can be derived as,

EF
0 = ⟨Ψ|HF|Ψ⟩ ≤ ⟨Ψ̃|HF|Ψ̃⟩ ≤ ⟨Ψ̃|H̃F|Ψ̃⟩ = ẼF

0 =
∑
⋄i

ϵF⋄i , (7.8)

1See Theorem 4.3.1 of Ref. [35].
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Chapter 7 More examples of reversed natural inequality

mi ϵF⋄i(mi) ϵB⋄i(mi)

1 −
√
2t+ t′ −

√
2t− t′

2 −2
√
2t+ 2t′ −2t− 2t′

3 −
√
2t+ 3t′ −

√
2t− 3t′

4 4t′ −4t′

Table 7.1: The ground-state energies of fermions and hard-core bosons on a thick-
line square, where mi is the number of particles on i-th cluster.

where |Ψ⟩ and |Ψ̃⟩ are the ground states of HF and H̃F respectively.

By exact diagonalization, we obtain the ground-state energies ϵB,F⋄i (mi) in given

mi particles sectors, shown in Table 7.1.

Assuming the number of unit cells is N , from the results of exact diagonaliza-

tion, we have one lower bound of bosons as EB
0 ≥ −2N(t+ t′) when t′/t ≤ 2−

√
2,

or EB
0 ≥ −N(

√
2t + 3t′) when 2−

√
2 < t′/t < 1. An upper bound of fermions is

given by the ẼF
0 , which is dependent on the density pattern on the whole lattice.

At half filling, an upper bound of fermions is obtained as EF
0 ≤ −2N(

√
2t − t′).

Thus, when the ratio falls in this range t′/t ≤ (
√
2− 1)/2, we have EB

0 ≥ EF
0 .

7.1.1.2 EF
0 by exact calculation of dispersion

Instead of searching an upper bound of fermions, the ground-state energy of

fermions can be exactly calculated at certain filling. For convenience, t is cho-

sen as 1. It is useful to introduce the vector notation,

c⃗i =


ci,A
ci,B
ci,C
ci,D

 and c⃗k⃗ =


ck⃗,A
ck⃗,B
ck⃗,C
ck⃗,D

 =
1√
N

∑
i

eik⃗·R⃗i c⃗i.

The unit cells i are at positions R⃗i = mia⃗i + nia⃗2, mi, ni ∈ Z with a⃗1 = (0, 3),

a⃗2 = (3, 0). One unit cell is shown in Fig. 7.1 (a). After the Fourier transformation,

the Hamiltonian (7.1) now reads (for convenience, t is chosen as 1)

H = c⃗†
k⃗

∑
k⃗


0 −ei(kx+ky) −t′e−iky −e−i(kx−ky)

−e−i(kx+ky) 0 e−i(kx−ky) −t′eikx
−t′eiky ei(kx−ky) 0 −e−i(kx+ky)

−ei(kx−ky) −t′e−ikx −ei(kx+ky) 0

 c⃗k⃗, (7.9)
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7.1 Coupled rings

where the sum is over the first Brillouin zone. Diagonalizing this matrix gives the

four bands,

E
(1)
± = ±

√
(t′)2 + 2− 2t′

√
1− sin (3kx) sin (3ky),

E
(2)
± = ±

√
(t′)2 + 2 + 2t′

√
1− sin (3kx) sin (3ky),

where (kx, ky) is the wavenumber which belongs to the reduced Brillouin zone

−π/3 ≤ kx,y < π/3. The ground-state energy of fermions at µ = 0, which corre-

sponds to the half-filling, is given as

EF
0 =

∑
kx,ky

[
E

(1)
− (kx, ky) + E

(2)
− (kx, ky)

]
. (7.10)

For the lattice of size 9L2, the number of unit cells N equals L2. In the thermo-

dynamic limit L → ∞, the ground-state energy per unit cell of fermions at half

filling is given by the integral of the lowest two bands (shown in Fig. 7.1(b)) in the

reduced Brillouin zone,

EF
0

N
= −

∫ π

−π

dk̃x
2π

∫ π

−π

k̃y
2π

[ √
(t′)2 + 2 + 2t′

√
1− sin k̃x sin k̃y

+

√
(t′)2 + 2− 2t′

√
1− sin k̃x sin k̃y

]
. (7.11)

It is easily verified that the reversed natural inequality holds with small ratio of

t′/t, by comparison of the lower bond of bosons and numerical integral of Eq. (7.11)

with given value of t′. For example when t = 1 and t′ = 0.1, EB
0 ≥ −2.2N > EF

0 =

−2.831967N, where N is the number of unit cells. When t′ = 0.4, EB
0 ≥ −2.8N >

EF
0 = −2.885971N.

7.1.2 π-flux hexagon-square lattice

The second example is the π-flux hexagon-triangle lattice, which is shown in

Fig. 7.2(a). One unit cell is shown in green in Fig. 7.2(a), with basis vectors

a⃗1 = (0, 1) and a⃗2 = (1/2,
√
3/2). The Hamiltonian is defined as

H = −t
∑

⟨i,j⟩∈thick, orinted

eiπ/3c†icj − t′
∑

⟨i,j⟩∈broken

c†icj +H.c., (7.12)

which can be regarded as π-flux triangles coupled by weak hopping t′. To obtain a

lower bound of bosons and an upper bound of fermions, the Hamiltonian is written
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Chapter 7 More examples of reversed natural inequality

m ϵFa
i
(mi) ϵBa

i
(mi)

1 −t+ 2t′ −t− 2t′

2 −2t+ 4t′ −t− 4t′

3 6t′ −6t′

Table 7.2: The ground-state energies of fermions and hard-core bosons on a thick-
line up triangle, where mi is the number of particles on i-th cluster.

as HF =
∑a hFa −A and HB =

∑a hBa +B with the same definitions of A and B

in equations (7.2)(7.3), where hFa = −t
∑3

i=1(e
iπ/3c†ici+1+H.c.)+ 2t′

∑3
i=1 c

†
ici and

hBa = −t
∑3

i=1(e
iπ/3c†ici+1+H.c.)−2t′

∑3
i=1 c

†
ici are the cluster Hamiltonians defined

on a solid-line pointing up triangle. Therefore, we have EB
0 ≥

∑a
i
ϵBa

i
and EF

0 ≤∑a
i
ϵFa

i
. The ground-state energies in sectors of mi’s particles are demonstrated

in Table 7.2. Also the number of unit cells is N , we obtain a lower bound of bosons

as EB
0 ≥ −N(t + 4t′) when t′/t ≤ 1/2 or EB

0 ≥ −6Nt′ when 1/2 < t′/t < 1. One

upper bound of fermions is given by ẼF
0 , which also depends on the density pattern

on the whole lattice. At 2/3 filling, we find EF
0 ≤ −2N(t − 2t′)N . According

to the results of exact diagonalization on a cluster, we find when t′/t ≤ 1/8,

EB
0 ≥ −N(t+ 4t′) ≥ −2N(t− 2t′) ≥ EF

0 .

The second approach for the ground-state energy of fermion is calculating the

dispersion. The dispersion relations are (t=1 is assumed):

E(1) =
1

2
(1− t′ −

√
9(t′)2 + 6t′ + 9 + 8t′Λ(k⃗)),

E(2) = t′ − 1,

E(3) =
1

2
(1− t′ +

√
9(t′)2 + 6t′ + 9 + 8t′Λ(k⃗)),

where Λ(k⃗) = cos k1 +cos k2 − cos k3, k1,2 = k⃗ · a⃗1,2 and k3 = k1 − k2. The ground-

state energy of fermions at 2/3 filling is given by the integral of the lowest two

bands in Brillouin zone, which is shown in Fig. 7.2 (c),

EF
0 =

∑
kx,ky

[
E(1)(kx, ky) + E(2)

]
=

√
3N

2

∫∫
BZ

dkx
2π

dky
2π

[
E(1)(kx, ky) + E(2)

]
, (7.13)

where kx,y ∈ BZ as shown in Fig. 7.2 (b). The basis vectors b⃗1 and b⃗2 are chosen

accordingly as 2π(1, −1/
√
3) and 2π(0, 2/

√
3), respectively. The reversed natural

inequality holds when t′ ≪ t. For example, when t = 1 and t′ = 0.1, EB
0 ≥
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7.2 2D square lattice with flux

a1

π π

ππ

t
t'

a2

Figure 7.2: The lattice structure of π-flux hexagon-triangle is shown in Fig. 7.2
(a), in which the unit cell is labeled in green. The first Brillouin zone is shown in

Fig. 7.2 (b), where the basis vectors are shown by b⃗1 and b⃗2. Figure 7.2 (c) is the
lowest two bands with t = 1, t′ = 0.2.

−1.4N > EF
0 = −2.004349N ; when t′ = 0.2, EB

0 ≥ −1.8N > EF
0 = −2.017037N ,

in which case the inequality EB
0 ≥ EF

0 is not reverted by the weak inter-ring

coupling t′ as expected.

In both examples, we find the reversed natural inequality still holds when the

inter-ring hopping is sufficiently weak.

7.2 2D square lattice with flux

As we discussed in Chap. 6, the energy difference between bosons and fermions

on a ring is a finite size effect, and indeed vanishes in the thermodynamic limit.
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Chapter 7 More examples of reversed natural inequality

This is rather natural, because it is only the entire system as a ring that contains

π flux. As a simple extension of the idea, here we consider two-dimensional square

lattice in a uniform magnetic field.

7.2.1 Electrons in 2D magnetic field

A natural system to consider would be a two-dimensional lattice with flux. Contin-

uing relaxation of the condition of nonnegative hopping amplitudes, we change the

real negative hopping factor tjk into complex one. One possible exact expression

of complex hopping terms is:

tjk = teiAjk , (t ≥ 0, t ∈ R, Ajk ∈ R). (7.14)

The meaning of this substitution from the physical point of view can be explained

in terms of vector potential in electromagnetic field. Consider a 2D square lattice

with unit spacing, immersed in an uniform magnetic field B⃗, which is perpendicular

to the plane. The magnetic flux passing through surface S can be calculated by a

surface integral,

Φ =

∫
S

B⃗ · dS⃗ =

∫
S

∇⃗ × A⃗ · dS⃗ =

∮
L

A⃗ · d⃗l =
∑

plaquette

Ajk,

where Stokes theorem have been applied. For every plaquette, the magnetic flux

passing through is given by
∑

plaquetteAjk, from which we have seen that the com-

plex hopping term is relevant to the problem of particles in a magnetic field. D. R.

Hofstadter’s butterfly is a famous problem of single Bloch electron in an uniform

magnetic field with rational value of Φ [24], which has been intensively studied in

past decades.

7.2.2 Energy spectra

We consider two-dimensional square lattice in a uniform magnetic field, described

by the Hamiltonian,

H = −
∑
⟨j,k⟩

(
tjkc

†
jck +H.c.

)
, (7.15)

where tjk = t exp(iΦjk/Φ0) and t > 0. The flux passing through every plaquette

is uniform as
∑

� Φjk = Φ. With periodic boundary condition, the total flux is

quantized to integer numbers of flux quanta (the unit flux quantum Φ0 = hc/e is 2π

64



7.2 2D square lattice with flux

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ne

Φ
/
Φ

0

 

 

∆
ǫ

=
E

B 0
/N

−
E

F 0
/N

0.05

0.1

0.15

0.2

(a) 3× 3 lattice

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ne

Φ
/Φ

0

 

 

∆
ǫ

=
E

B 0
/N

−
E

F 0
/N

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) 4× 4 lattice

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ne

Φ
/Φ

0

 

 

∆
ǫ

=
E

B 0
/N

−
E

F 0
/N

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c) 5× 5 lattice

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ne

Φ
/Φ

0

 

 

∆
ǫ

=
E

B 0
/N

−
E

F 0
/N

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(d)
√
18×

√
18 lattice

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ne

Φ
/Φ

0

 

 

∆
ǫ

=
E

B 0
/N

−
E

F 0
/N

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(e)
√
20×

√
20 lattice

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ne

Φ
/Φ

0

 

 

∆
ǫ

=
E

B 0
/N

−
E

F 0
/N

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(f)
√
26×

√
26 lattice

Figure 7.3: Differences of ground-state energy density ∆ϵ between hard-core bosons
and fermions on the square lattices with Φ flux per plaquette and ne particle per
site. The natural inequality (4.1) holds in white region, while its violation is color
coded. Statistical transmutation is expected along the two solid diagonal lines
Φ/Φ0 = ne and Φ/Φ0 = 1− ne. 65
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Figure 7.4: Differences of ground-state energy density ∆ϵ between hard-core bosons
and fermions on the rectangle lattices with Φ flux per plaquette and ne particle
per site.

in our unit). For the finite square lattice with N plaquettes, the flux per plaquette

Φ is quantized in unit of 2π/N . The magnetic field introduces frustration, through

the existence of complex hopping amplitudes tjk. The choice of gauge fixing to

determine Φjk does not affect the energy eigenvalues. To investigate all possible

value of flux per plaquette, we choose the string gauge [80]. Starting from one

arbitrary plaquette S, we draw N − 1 outgoing arrows (strings) from S with

periodic boundary condition, where N is the number of sites (plaquettes). The

value of Φjk is given by ΦNjk, where Njk is the number of strings cutting the link

jk. Due to the condition of uniformity, the possible value of the number of flux

quanta per plaquette is restricted as discrete: Φ = 2πn/N , (n = 0, 1, · · · , N).

Exact diagonalization for 3×3, 4×4, 5×5,
√
18×

√
18,

√
20×

√
20 and

√
26×

√
26

square lattices [81] is employed in our work. We obtained the ground-state energy

of hard-core bosons and fermions with various densities of particles ne and various

values of flux Φ using exact numerical diagonalization, for square lattices up to 26

sites with periodic boundary conditions. The energy spectra are shown in Fig 7.3.

We use colors as quantities of the third dimension to demonstrate the differences

of ground-state energy densities between two kinds of particles. The quantity in

the third dimension is defined as ∆ϵ0 = EB
0 /N − EF

0 /N , If ∆ϵ0 is positive, which

we are interested in, the value of it is shown in color bar. Otherwise, it is filled

in white. The column along ne = 1/N is the result of single-particle problem, in

which we can not distinguish boson from fermion. The row along Φ = 0 is the case
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7.2 2D square lattice with flux

described by the Theorem 1, in which the ground-state energy of bosons is proved

to be lower. From above figures, we can see large parts in every figure are filled in

colors. We find that the “natural” inequality (4.1) is violated in a wide region of

the phase diagram, in various lattice sizes, particle densities and flux densities.

The energy spectra of 4 × 7 and 5 × 6 lattices are shown in Fig 7.4. The

natural inequality holds in white plaquettes and it is violated in colored regions.

The energy spectra with our choice of geometry are not of particle-hole symmetry,

because these lattices are not bipartite so that particle-hole symmetry is absent

for fermions.

7.2.3 Statistical transmutation

In particular, the inversion is significant along the diagonal lines Φ/Φ0 = ne and

Φ/Φ0 = 1 − ne, where the particle densities are equivalent to flux density. These

lines are precisely where the statistical transmutation between the hard-core boson

and the fermion is expected to occur [82, 83]. Namely, in the mean-field level,

one flux quantum can be attached to each particle to form a composite particle,

transforming fermions into bosons and vice versa, at the same time eliminating

the background field. At zero field, the frustration is absent and hard-core bosons

have a lower energy than fermions. Thus, the statistical transmutation implies

that, hard-core bosons have a higher energy than fermions on two diagonal lines.

While this argument is not rigorous and the actual physics is presumably more

involved [84], our numerical result supports the statistical transmutation scenario.

(For a related discussion for spinful electrons, see Ref. [85].)

7.2.4 Finite-size scaling

Numerical results for the square lattices of various sizes up to 30 sites suggest that

the energy difference is nonvanishing in the thermodynamic limit.

We plotted Fig. 7.5 and Fig. 7.6 to show the finite-size scalings. Figure 7.5

shows the finite-size scaling with (N/2 − 1)Φ0/N flux per plaquette near half

filling (N/2 − 1)/N . The exact half-filling on finite-size lattices (N/2 particles

on N sites) and the corresponding Φ0/2 flux per plaquette are avoided to reduce

the strong finite-size effect (oscillatory behavior) due to commensuration, while

the extrapolation corresponds to the half filling in the thermodynamic limit. The
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Figure 7.5: Finite size scaling of ground-state energies in two-dimensional square
lattice with (N/2− 1)Φ0/N flux per plaquette at filling fraction (N/2− 1)/N .
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Figure 7.6: Finite size scaling of groundstate energies in two-dimensional square
lattice with Φ0/4 flux per plaquette at quarter filling. While there is no proof
at this present, the numerical extrapolation suggests that fermions have lower
ground-state energy also in this case.
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extrapolation suggests that the fermions have a lower ground-state energy in the

thermodynamic limit, which is confirmed by rigorous proof in the π-flux model [57]

and will be discussed in Sec. 7.3.1. The fitting functions are

EB
0 /N = −0.7593 + 8.973/N2 +O(N−4),

for hard-core bosons and

EF
0 /N = −0.9507 + 8.043/N2 +O(N−4),

for fermions respectively. The extrapolated groundstate energy density for fermion-

s matches well with the exact result −0.958091 (see Ref. [57], and Sec. 7.3.1).

The finite size scaling with Φ0/4 flux per plaquette at quarter filling is shown

in Fig 7.6, suggesting the ground-state energy of hard-core bosons is still higher

than fermions at quarter filling in the thermodynamic limit. The fitting functions

are

EB
0 /N = −0.5877− 3.405/N2 +O(N−4),

for hard-core bosons and

EF
0 /N = −0.6853− 4.125/N2 +O(N−4),

for fermions, respectively.

In fact, in the following, we will prove rigorously in the thermodynamic limit

that the fermions have a lower energy at half filling with Φ = π flux per plaque-

tte, as suggested by our numerical calculation and the statistical transmutation

argument discussed in Sec. 7.2.3.

7.3 Cluster decomposition by Anderson’s argu-

ment

Since exact diagonalization only works on small clusters, to overcome the fatal

disadvantage of numerical method, from this section, we will make use of various

methods to provide rigorous proof in the thermodynamic limit. In this section, we

present the cluster decomposition technique by Anderson’s argument.
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(a) (b)

Figure 7.7: (a) The square lattice with π flux in each plaquette. The brown cross
represents a cluster of 12 sites. The whole lattice is covered by clusters, whose
centers are denoted by black dots. (b) The energy bands in the first Brillouin
zone.

7.3.1 2D π-flux square lattice

We note that Lieb has shown that π flux minimizes the ground-state energy of

fermions at half-filling on the square lattice [30]. On the other hand, an argument

similar to the Proof of Theorem 1 can be used to prove a lattice version of Simon’s

theorem on diamagnetism of bosons [18]. Namely, for bosons, introduction of a

flux always increases the ground-state energy. These, together with the statisti-

cal transmutation argument discussed earlier, suggest a possibility of violation of

Eq. (4.1) with π flux per plaquette.

Let us discuss the square lattice with π flux per plaquette. The Hamiltonian

reads

H = −
∑
<j,k>

(tjkc
†
jck +H.c.). (7.16)

We choose the gauge so that the hopping amplitude tjk is +1 on the black links,

and −1 on the blue ones as shown in Fig. 7.7.

For technical convenience, we restrict ourselves to the case of the “grand canon-

ical ensemble” ground state at µ = 0. For π-flux square lattice, it turns out to

be equivalent to finding the ground state at half filling (1/2 particle per site). We

first discuss the dispersion relation of a single particle on the square lattice with a

π flux through each plaquette. By taking a 2× 2 unit cell (which is twice as large
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7.3 Cluster decomposition by Anderson’s argument

as the minimal magnetic unit cell), the dispersion relation is

E± = ±
√

4 + 2 cos 2kx − 2 cos 2ky, (7.17)

where (kx, ky) is the wavenumber which belongs to the reduced Brillouin zone

−π/2 ≤ kx,y < π/2. Each energy level is doubly degenerate. The ground-state

energy of fermions at µ = 0, which corresponds to the half-filling, is given as

EF
0 =

∑
kx,ky

2E−(kx, ky), (7.18)

where the factor 2 comes from the double degeneracy. For the square lattice of

size Lx × Ly (N = LxLy), kx,y is respectively quantized to integral multiples of

2π/Lx,y. Thus, in the thermodynamic limit Lx,y → ∞, the ground-state energy of

the fermionic model at µ = 0 is obtained exactly as

EF
0

N
= −1

2

∫ π

−π

dk̃x
2π

∫ π

−π

dk̃y
2π

√
4 + 2 cos k̃x − 2 cos k̃y = −0.958091. (7.19)

Now we turn to the “grand canonical” ground-state energy, of the correspond-

ing boson model at the same chemical potential (µ = 0). Here we use Anderson’s

argument [37, 86, 87] by writing the Hamiltonian as

H =
∑
α

hα, (7.20)

where

hα = −1

2

∑
⟨j,k⟩∈+α

(tjkc
†
jck +H.c.). (7.21)

Here +α refers to a cross-shaped cluster of 12 sites as shown in Fig. 7.7 (a). We

consider all the clusters with the same pattern of hopping amplitudes within the

cluster, in the square lattice. As a consequence, each cluster as shown in Fig. 7.7

(a), overlaps with 4 other clusters and each link appears in two different clusters

when periodic boundary conditions are imposed. The factor 1/2 in Eq. (7.21)

compensates this double counting.

The ground-state energy E0 of H satisfies

E0 ≥
∑
α

ϵα0 , (7.22)

where ϵα0 is the ground-state energy of hα, which is shown in Table 7.3. The

grand canonical ground-state energy of the cross-shaped cluster is obtained by
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m ϵ+0 (m)

0 0
1 -1.096997
2 -2.013783
3 -2.629382
4 -3.086229
5 -3.415430
6 -3.609035
7 -3.415430
8 -3.086229
9 -2.629382
10 -2.013783
11 -1.096997
12 0

Table 7.3: The lowest energy of the π-flux model on a 12-site cross-cluster of square
lattice, where m is the number of particles.

exact diagonalization as ϵα0 = −3.609035. Since there are N/4 such clusters in the

square lattice of N sites, we obtain

EB
0 /N ≥ −3.609035/4 = −0.902259 > EF

0 /N. (7.23)

Thus the inversion of the ground-state energies for the π-flux square lattice model

with µ = 0, as expected from the statistical transmutation argument discussed

earlier, is now proved rigorously.

7.3.2 Pyrochlore lattice

This argument is not restricted to two-dimensional systems. Let us consider the

standard tight-binding model on the three-dimensional pyrochlore lattice:

H =
∑
⟨j,k⟩

(c†jck +H.c.), (7.24)

where ⟨j, k⟩ runs over all pairs of nearest-neighbor sites in the three-dimensional

pyrochlore lattice. Again we set the chemical potential µ = 0. We note that this

model has frustrated hoppings with this choice of the sign in hopping amplitudes.

The model in the single-particle sector has two degenerate flat bands at the

energy ϵ = −2 and two dispersive bands touching the flat bands [88]. Thus for
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7.3 Cluster decomposition by Anderson’s argument

Figure 7.8: The lattice structure of pyrochlore. A dimer of two tetrahedra made
up of 7 sites are shown in dark in pyrochlore lattice.

fermions, the ground-state energy at µ = 0 satisfies

EF
0 < −2(N/2) = −N, (7.25)

where N is the number of sites of the lattice. We note that, because of the lack of

the particle-hole symmetry, µ = 0 does not imply half-filling for this model. The

hard-core boson version of this model can be decomposed as Eq. (7.20) with

hα = (1/4)
∑

⟨j,k⟩∈TDα

(c†jck +H.c.), (7.26)

where TDα refers to each dimer of elementary tetrahedra of the pyrochlore lattice

sharing a vertex (site) (see Fig. 7.8). Here we count dimers in any direction;

each tetrahedron (and thus each link) belongs to 4 dimers. The factor 1/4 in the

definition of hα is introduced to compensate the overcounting. The ground-state

energies of the cluster in each sector with fixed number of particles m are shown

in Table 7.4, The lowest ground-state energy of a tetrahedra dimer is obtained by

exact diagonalization as ϵα0 = −(2+
√
2)/4 = −0.853554. Since there are N dimers

of tetrahedra, the GS energy of bosons at µ = 0 satisfies

EB
0 /N ≥ −(2 +

√
2)/4 > EF

0 /N. (7.27)

Thus we have proved the violation of Eq. (4.1) for the simple tight-binding model

on the three-dimensional pyrochlore lattice.
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m 0 1 2 3 4 5 6 7
ϵ0(m) 0 -0.411438 -0.628534 -0.853554 -0.853554 -0.628534 -0.411438 0

Table 7.4: The lowest energy of the NN hopping model on a tetrahedron-dimer of
pyrochlore lattice, in sectors of different numbers of particles.

7.4 Cluster decomposition by min-max principle

The example of the pyrochlore lattice in Sec. 7.3 exhibits a flat band as the lowest

energy band. While the existence of a flat band is neither a necessary nor sufficient

condition to violate Eq. (4.1), it does tend to help: as long as all the fermions

occupy the lowest flat band, the Pauli exclusion principle plays no role in increasing

the ground state energy. Thus, such flat band models would have a better chance

to realize the inversion of the ground state energies.

In this section, we will present rigorous proof that the inequality (4.1) is indeed

violated in the thermodynamic limit, in a few models with a lowest flat band in

a range of filling fraction, using a cluster decomposition technique [89]. They

include the delta-chain model, for which the violation of Eq. (4.1) was numerically

found for small clusters [55, 56], and the kagome lattice model. Rigorous proof

of the optimal lower bound of the filling fraction to reverse natural inequality on

delta-chain is presented in Sec. 7.4.4.

7.4.1 Flat band models

In fermionic system, flat band models play an important role in the study of

strongly correlated systems, for example in the context of ferromagnetism of the

Hubbard model [90, 91, 92, 93, 94]. One way to a flat band is achieved by de-

structive interference of electron hoppings. The distinct characteristic of flat band

model is that it provides huge degeneracy of localized states in the single-particle

spectrum. The well known one flat band model, the Landau level, can be regards

as one in continuum rather than lattice model.

To make use of this advantage of flat band models, think about a system with

positive semi-definite Hamiltonian with lowest flat band, in which all the localized

states of flat bands are occupied by fermions with zero energy, described by filling

factor ν. If we can find that the ground-state energy of corresponding bosonic
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7.4 Cluster decomposition by min-max principle

Figure 7.9: An example of decomposition of the delta-chain Hamiltonian to
clusters, with p = 4 unit cells per cluster, including one decoupled site at the top
of the dashed triangle.

model is strictly positive at the same filling, the reversal of natural inequality is

realized.

7.4.2 Delta chain

First we discuss the delta-chain model, for which the violation of Eq. (4.1) was

numerically found for small clusters [55, 56]. The Hamiltonian of the model can

be written in the following form [93, 94]:

H =
N∑
j=1

a†jaj, (7.28)

where the a-operator, which acts on each triangle, is defined as aj = c2j−1 +√
2c2j + c2j+1. Periodic boundary condition is used to identify c2N+1 with c1. The

Hamiltonian H corresponds to a model with negative hopping amplitudes tjk (as

defined in Eq. (4.6)), which lead to frustration.

The model in the single-particle sector has two bands. The lower flat band with

zero energy is spanned by states annihilated by aj’s. We note that the Hamilto-

nian (7.28) is modified from that in Ref. [55] by a constant chemical potential, so

that the flat band has exactly zero energy. Thus the ground-state energy of the

fermionic version of the model (7.28) is zero as long as the filling fraction (particle

number per site) ν satisfies ν ≤ 1/2. On the other hand, the ground-state energy

EB
0 of bosons is zero as long as ν ≤ 1/4 since the localized zero-energy states do

not overlap with each other in this range of filling [95].

Now let us derive a nontrivial lower bound for EB
0 for filling fractions ν > 1/4.

We decompose the model into clusters, each containing p unit cells:

H =

N/p−1∑
n=0

H(p)
n +

N/p∑
n=1

a†npanp, (7.29)

where H(p)
n =

∑p−1
j=1 a

†
np+janp+j is the Hamiltonian for the solid triangles as in

Fig 7.9. Since the second term
∑N/p

n=1 a
†
npanp, describing hoppings on dashed
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triangles, is positive semidefinite, the ground-state energy ẼB
0 of the first term

H̃ =
∑N/p−1

n=0 H(p)
n satisfies ẼB

0 ≤ EB
0 . H̃ is a sum of mutually commuting clus-

ter Hamiltonians H(p)
n . Thus ẼB

0 is simply given by the sum of the ground-state

energies of all clusters. The particle number within each cluster is also conserved

separately in H̃. Let us choose p = 4 as in Fig. 7.9. The cluster contains 8 sites.

The ground-state energy in each sector with fixed particle number m is obtained

by a numerical exact diagonalization of the 8-site cluster. The results are shown

in Table 7.5. It is found that ϵ
(4)
0 (m) = 0 for m ≤ 3 and ϵ

(4)
0 (m) ≥ ∆

(4)
DC = 0.372605

for 4 ≤ m ≤ 8.

m 1 2 3 4 5 6 7 8

ϵ
(4)
0 (m) 0 0 0 0.372605 1.838145 4.323487 8 12

Table 7.5: Ground-state energy ϵ0 of the cluster Hamiltonian H(4)
n for delta-chain,

with m particles in the cluster. The cluster contains 8 sites, as shown in Fig. 7.9.

If we consider the filling fraction in the range 3/8 < ν ≤ 1/2, it follows from

Dirichlet’s box principle that there is at least one cluster which contains 4 or

more particles. Thus, in this range, ẼB
0 ≥ ∆

(4)
DC for any system size N , while

EF
0 = 0. Therefore, the inversion of the ground-state energies holds also in the

thermodynamic limit.

The outcome of the above argument depends on the cluster size taken. In fact,

the range of filling fraction ν for which we have proved the violation of Eq. (4.1)

is not optimal. In an alternative approach generalizing the techniques used in the

context of flat-band ferromagnetism [93, 94] and of frustrated antiferromagnets

near the saturation field [95, 96], we can extend the region to 1/4 < ν ≤ 1/2. The

lower bound 1/4 is in fact optimal. The detail will be presented in the Sec. 7.4.4.

7.4.3 Kagome lattice

This method can be easily extended to other lattices. For example, the standard

nearest-neighbor hopping model on kagome lattice can be written as

H =
∑
α

a†a
α
aa

α
+
∑
α

a†̀
α
a`

α
, (7.30)

where
a
α and

`
α are elementary triangles pointing up and down respectively, of

the kagome lattice, as shown in Fig. 7.10. We define aa
α
≡ cα1 + cα2 + cα3 , where
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Figure 7.10: The 12-site clusters of “Star of David” shape are shown in solid lines
on a kagome lattice.

m ϵcluster0 (m)

1 0
2 0
3 0
4 0.311475
5 0.937767
6 1.706509
7 3.365207
8 5.196963
9 7.456468
10 10.393543
11 14
12 18

Table 7.6: The lowest energy of cluster Hamiltonian Hcluster on 12-site “Star of
David” shape, in sectors with different numbers of particles m.
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α1,2,3 refer to the three sites belonging to
a
α, and likewise for a`

α
. The fermionic

version of the model has three bands, the lowest of which is a flat band at zero

energy [88]. Thus EF
0 = 0 when ν ≤ 1/3.

For the ground-state energy of the bosonic version, we can use the cluster

decomposition technique similar to what we have discussed above for the delta

chain. Let us choose the 12-site cluster of the “Star of David” shape. The ground-

state energy of the cluster in each sector with m particles is shown in Table 7.6.

The ground-state energy ϵ0 of each cluster is zero with m ≤ 3, but is positive with

m ≥ 4. Thus, invoking Dirichlet’s box principle again, Eq. (4.1) is violated for

filling fraction 1/4 < ν ≤ 1/3. This conclusion also holds for infinite-size system,

or in the thermodynamic limit.

7.4.4 Optimal lower bound of filling fraction for violation
in delta-chain model

Let us improve the estimate of the range of the filling fraction, for which the

violation of Eq. (4.1) occurs in the delta-chain. Our result is that the violation

occurs, namely the reversed inequality EB
0 > EF

0 holds, for 1/4 < ν ≤ 1/2. In fact,

in this range of filling, the ground-state energy of bosons is strictly positive while

the ground-state energy of fermions is zero.

To prove this, consider the Bose-Hubbard model (without hard-core constraint)

with finite on-site U > 0 in the enlarged Hilbert space first,

H = Hhop +Hint,

Hhop =
N∑
j=1

a†jaj,

Hint =
U

2

2N∑
i=1

ni(ni − 1),

where ni = c†ici, and [ci, c
†
j] = δij for bosons. The definition of a-operator is the

same as aj = c2j−1 +
√
2c2j + c2j+1. The hard-core constraint can be implemented

by taking U → ∞, and this problem is reduced to Eq. (7.28) in this limit.

Obviously, the hopping term Hhop is positive semi-definite. The on-site inter-

action, the U term, is also positive semi-definite because Uni(ni − 1) = Uc†ic
†
icici

for bosons. As a consequence, all the energy eigenvalues can not be negative.
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Therefore, any state with EB = 0 is a ground state. If such a ground state |ΦGS⟩
exists, it satisfies

Hhop|ΦGS⟩ = Hint|ΦGS⟩ = 0, (7.31)

namely |ΦGS⟩ a simultaneous zero-energy ground state ofHhop andHint. Therefore,

we first seek zero-energy ground states of Hhop and Hint, separately.

Consider the zero-energy ground state of Hhop first. Define b-operator as bj =

c2j−
√
2c2j+1+c2j+2. Because b-operators commute with any a-operator, [ai, b

†
j] = 0

for any i and j, the single-particle flat band with EB
0 is spanned by b†j|0⟩. Note that

these states b†j|0⟩ are linearly independent of but not orthogonal to each other. The

zero energy state (valley state) b†j|0⟩ is shown in Fig. 7.11 by blue lines, which is the

first excited state of spin-1/2 antiferromagnetic Heisenberg model near saturation

field, with single magnon trapped in the valley of the delta-chain [95, 96]. The

current setup corresponds to the magnetic field exactly at the saturation field, so

that these trapped magnons are exactly at zero energy. The ground state of Hhop

can be constructed out of b-operators as,

|ΦB
0 ⟩ =

∑
{n1,··· ,nN}

f(n1, · · · , nN)(b†1)n1(b†2)
n2 · · · (b†N)

nN |0⟩, (7.32)

where nj = 0, 1, 2, · · · and f(n1, · · · , nN) is the coefficient. It is easy to confirm

Hhop|ΦB
0 ⟩ = 0, by using the commutation relation [ai, b

†
j] = 0.

Now we require those zero-energy ground states (7.32) ofHhop to satisfyHint|ΦB
0 ⟩ =

0. This is equivalent to require cici|ΦB
0 ⟩ = 0, which imposes restrictions on the

coefficients f(n1, · · · , nN). We first note that

c22j+1|ΦB
0 ⟩ =

∑
{n1,··· ,nN}

2nj(nj − 1)f(n1, · · · , nN)×

(b†1)
n1 · · · (b†j)nj−2 · · · (b†N)

nN |0⟩. (7.33)

Then the linear independence of b-operators, together with c22j+1|ΦB
0 ⟩ = 0, implies

that nj = 0 or 1 for nonzero f(n1, · · · , nN). If nj > 1 for any j, the coefficient

f(n1, · · · , nN) vanishes. We thus restrict out attention to the case where nj = 0

or 1 for all j. We successively find

c22j|ΦB
0 ⟩ =

∑
{n1,··· ,nN}

2nj−1njf(n1, · · · , nN)×

(b†1)
n1 · · · (b†j−1)

nj−1−1(b†j)
nj−1 · · · (b†N)

nN |0⟩,
(7.34)
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where nj = 0 or 1 has been applied. From the linear independence of b-operators

and c22j|ΦB
0 ⟩ = 0, we obtain the condition for the zero-energy ground state, which

reads nj−1nj = 0. This implies that, for bosons, in the construction of the zero-

energy ground state, no b†-operators on adjacent valleys can be applied on the

vacuum |0⟩. Thus, the zero-energy ground states are in one-to-one correspondence

with particle configurations in one-dimensional chain with nearest neighbor exclu-

sion. This mapping is schematically shown in Fig. 7.11. In the range ν ≤ 1/4,

we can find a particle configuration that satisfies the exclusion rule. However,

in the case ν > 1/4 we cannot find such configuration, implying the absence of

zero-energy state.

These zero-energy ground states remain as ground states for any U > 0, and

hence in the limit U → ∞. Since the on-site U term is positive semi-definite, no

state joins the zero-energy sector with increasing U . Therefore, the ground-state

energy of hard-core boson (corresponding to infinite U) is strictly positive in the

range of filling ν > 1/4.

On the other hand, for fermions, {ai, b†j} = 0 holds for any i and j. The

zero energy state for fermions in the range of filling fraction ν ≤ 1/2 can also be

constructed by b operators,

|ΦF
0 ⟩ =

∑
{n1,··· ,nN}

f(n1, · · · , nN)(b†1)n1(b†2)
n2 · · · (b†N)

nN |0⟩, (7.35)

where nj = 0, 1. It is easy to confirm that this is the zero energy state of H
because Hhop|ΦF

0 ⟩ = 0, and Hint vanishes. We conclude the reversed inequality

EB
0 > EF

0 holds in the range 1/4 < ν ≤ 1/2.

From the above analysis, it also follows that both bosonic and fermionic systems

have exactly zero-energy groundstate for ν ≤ 1/4. Thus the lower bound of the

range of the filling fraction for the reversed inequality to hold, 1/4, is in fact

optimal.

7.5 In presence of interaction

Theorems 1, 2 and 3 are valid even in the presence of interaction term. In the re-

mainder of the thesis, we dropped the interactions for technical simplicity: fermions

are then free, while bosons are subject only to the hard-core interaction. Intro-

duction of additional density-density interactions should not essentially modify
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2j 2j+2

2j+1

Figure 7.11: Schematic figure of mapping to particle configurations in one-
dimensional chain with nearest neighbor exclusion. Localized zero-energy states
(valley states) are shown in blue lines.

physics, as it would affect bosonic and fermionic models in a similar manner. For

example, the interaction terms are introduced in diagonal terms in the matrix of

Hamiltonian in Theorem 1, which do not affect the conclusion of the comparison.

Therefore, in order to understand the essence of physics in the present problem, it

would suffice to consider the models without interactions other than the hard-core

interaction.

That said, in fact, one can actually prove that the inequality (4.1) is violated

even in the presence of an additional interaction, in the one-dimensional ring with

π flux discussed in Chap. 6. This can be seen by noting that the Jordan-Wigner

transformation applies regardless of the presence of interaction (the number of

particles is assumed as even),

EF
0 (Φ = π) = EB

0 (Φ = 0), (7.36)

EF
0 (Φ = 0) = EB

0 (Φ = π). (7.37)

And a lattice version of Simon’s theorem [18] also applies in the presence of the

interaction:

EB
0 (Φ = π) ≥ EB

0 (Φ = 0), (7.38)

giving EB
0 (Φ = π) ≥ EF

0 (Φ = π). Furthermore, under appropriate assumptions, it

is possible to prove the strict inequality EB
0 (Φ = π) > EF

0 (Φ = π) in the presence

of interaction, with an argument similar to the proof of Theorems 1 and 4.
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Chapter 8

Conclusion

The goal of this thesis is to investigate the effect of particle statistics and frustration

on the ground-state energy. We compare the ground-state energy of hard-core

bosons and fermions with the same Hamiltonian.

The comparison turns out to be nontrivial in the presence of interaction. With

the hard-core interaction among bosons, the simple argument based on the per-

fect BEC breaks down. We rigorously proved sufficient conditions for the natural

inequality and the strict natural inequality. Namely, when all the hopping ampli-

tudes are nonnegative, the ground-state energy of hard-core bosons is still lower

than that of fermions, for the spinless (Theorem 1) and spinful cases (Theorem 2

and Theorem 3) respectively.

The sufficient condition for the natural inequality can be understood as the

absence of frustration among hoppings. We map the original many-body Hamilto-

nian to a single particle tight-binding problem on a fictitious lattice. When all the

hopping amplitudes are nonnegative and the particles are bosons, the correspond-

ing single-particle problem also has only nonnegative hopping amplitudes. In such

a case, there is no frustration in the quantal phase of the wavefunction. On the

other hand, the Fermi statistics of the original particles gives an effective magnetic

flux in the corresponding single-particle problem. This implies a frustration in

the phase of the wavefunction, induced by the Fermi statistics. We nominate it

as “statistical frustration”, because it is introduced by the Fermi statistics and

results in destructive quantum interferences among different paths. In this sense,

the non-strict version of the natural inequality is a corollary of the lattice ver-

sion of the diamagnetic inequality. In fact, we proved the strict version of the
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diamagnetic inequality on a general lattice (Theorem 4), which is a byproduct of

the strict natural inequality. To our knowledge, the strict diamagnetic inequality

has not been discussed previously. We emphasize that this picture does not rely

on the assumption of a perfect BEC and thus its applicability is not limited to

noninteracting systems of particles.

The origins of the hopping frustration and the statistical frustration are rather

different. The latter is introduced by the Fermi statistics and is unique for fermions.

However, upon mapping to the single-particle problem on the fictitious lattice,

both the hopping frustration and the statistical frustration are represented by a

non-vanishing flux in the fictitious lattice. We provide a unified understanding of

the hopping frustration and the statistical frustration. In this sense, the effect of

particle statistics can be included in the scope of general frustration.

In terms of a fictitious lattice, for a frustration-free systems, introduction of any

frustration into such system is expected not to decrease the ground-state energy.

Simon’s universal diamagnetism of bosons is best explained by this understanding.

Another example, which is non-trivially explained by this understanding, is the

natural inequality proved by us. On the other hand, when one type of frustration

already exists, the effect of introducing another type of frustration is a non-trivial

problem. For example, what happens in a system of fermions when the hopping

frustration is introduced, where the statistical frustration already exists? There

cannot be any general answer to this question. The ground-state energy of fermions

may or may not decrease, depending on the model. The orbital magnetism of

fermions can be either paramagnetic or diamagnetic, depending on the system.

Once a magnetic flux is introduced in the original many-particle problem, the

hopping terms can be frustrated. The hopping frustration can partially cancel

the statistical frustration of fermions, hinting the possibility that the natural in-

equality can be reversed in the presence of hopping frustration. For simplicity, we

limit ourselves to the comparison between spinless fermions and hard-core bosons,

with no interaction other than the hard-core constraint. Introduction of addition-

al density-density interactions should not essentially modify physics, as it would

affect bosonic and fermionic models in a similar manner. We proved that the

natural inequality is indeed reversed in the presence of hopping frustration, in

various examples (in Chap. 6 and Chap. 7), by rigorous proof assisted by exact

diagonalization.

Finally we suggest some possible future work and open questions of our work.
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• The comparison of the ground-state energies of soft-core bosons (without

hard-core constraint) and fermions:

In this thesis, we focused on the case of hard-core bosons for simplicity.

However, Theorems 1, 2 and 3 can be readily generalized to soft-core bosons.

This is because hard-core bosons can be regarded as a special limit of more

general interacting bosons. That is, we can introduce the on-site interaction
U
2
ni(ni − 1); the hard-core constraint can be then implemented by taking

U → +∞. The on-site interaction term is positive semi-definite for bosons,

if U ≥ 0. Thus the hard-core bosons have a higher ground-state energy

than that of soft-core bosons at finite U . This implies the applicability of

Theorems 1, 2 and 3 to the soft-core bosons.

Our analysis of the hard-core boson model also suggests that the natural

inequality for soft-core bosons could be reversed by introduced hopping frus-

trations. However, soft-core bosons are closer to free bosons, which never vi-

olate the natural inequality because of the simple argument based on perfect

BEC. Thus the violation would be more difficult to be realized in soft-core

bosons, compared to the hard-core bosons discussed in this paper. Numer-

ically, without hard-core constraint, the dimension of the Hilbert space of

bosons is much larger than that of fermions. Exact diagonalization is not

suitable due to computation cost for memory. To simplify this problem, we

can start with a “quasi hard-core bosons”. Namely, the number of bosons

allowed at the same site can be relaxed to be greater than 1 but still small.

We can use DMRG to investigate this problem in one-dimensional or small

two-dimensional systems, for example a coupled-ladder system. Other open

problems include comparison in the presence of other degrees of freedom such

as the orbital/flavor of particles.

• The investigation of the reversed natural inequality in a spinful system, in

the presence of hopping frustration:

In this thesis, we have also discussed briefly the comparison of the ground-

state energies of spinful bosons and fermions. The natural inequality still

holds in the absence of hopping frustration. Although we did not discuss ex-

plicitly for spinful particles, the natural inequality is expected to be violated

by introducing appropriate hopping frustration.

Here it should be recalled that, physical magnetic field not only introduces

phase factors in hopping terms, but is also coupled to the spin degrees of

freedom via Zeeman term. Thus, Zeeman term should be also taken into
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account, in order to discuss a physical magnetic field applied to the system

of charged particles. The Zeeman term acts as different chemical potentials

for up-spin and down-spin particles. Thus much of the discussion in the

present paper is still applicable. For example, in the absence of hopping

frustration, the natural inequality still holds even in the presence of the

Zeeman term. Once hopping frustration is introduced, the natural inequality

can be violated. However, exactly how the violation of the natural inequality

occurs does depend on the chemical potential, and on the Zeeman effect in

the case of spinful particles.

On the other hand, we also note that phase factors in hopping terms and

Zeeman coupling are two distinct effects, which in principle can be controlled

independently. In fact, for neutral cold atoms, the phase factor in hoppings

are usually introduced as “synthetic gauge field” [97], instead of the physical

magnetic field. This does not produce Zeeman coupling, making it possible

to study the effect of hopping frustrations separately from that of the Zeeman

effect.

• Extension to continuous systems:

The theorems in this thesis are proved for finite lattices, which are discrete

systems. The continuous limit of a lattice system can be obtained by dis-

cretization with extremely fine meshes. The first halves of our theorems

(the non-strict natural/diamagnetic inequality) can be extended to the con-

tinuous limit of lattice systems. However, the latter halves (the strict nat-

ural/diamagnetic inequality) are not guaranteed by taking the continuous

limit. The Perron-Frobenius theorem invoked in our theorems are applica-

ble to a finite lattice. Extension of the discussion to an infinite lattice is

mathematically nontrivial.

• Features of the ground state:

In this thesis, we focus on the comparison of the ground-state energies be-

tween hard-core bosons and fermions. Our study could give some implica-

tions on the features of the ground state. For example, if statistical trans-

mutation occurs, where the ground-state energy of bosons should be higher

than fermions, the ground state of fermions is always ferromagnetic [85], be-

cause the ground state of spinful bosons (composite spinful bosons) is always

polarized [98, 68, 99].

• Experimental realization:
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A ultracold quantum gas provides an exciting setting for quantum simula-

tion of interacting many-body systems, due to highly experimental tunabil-

ity and novel detection possibilities. Given the great controllability of cold

atoms in optical lattices, they would be a natural playground to examine

related physics in this thesis. It would be worth noting that introduction

and control of an artificial “magnetic flux” for cold atoms in optical lattices

is an active area of current experimental research. For example, people use

atom tunneling assisted by Raman transitions to create a strong effective

magnetic field with a staggered flux alternating between π/2 and −π/2 per

plaquette [100]. We hope the our theoretical conclusions can be verified in

some experiments in future.
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Appendix A

Proof of Simon’s diamagnetism

In this appendix, I present the proof of the inequality (2.2) in Section 2.1∫
dτ |ψ|∗H(0)|ψ| ≤

∫
dτ ψ∗H(A⃗)ψ,

which holds for any ψ. This inequality is the foundation of Simon’s diamagnetism.

To prove this inequality, let me derive some useful relations first [18].

The first term in Hamiltonian (2.1)
∑N

j=1
1

2mj
[∇j − iejA⃗(r⃗j)] can be written

as an operator ∇ − iA, acting on a 3N -dimensional space. The N -particle wave

function ψ(r⃗1, · · · , r⃗N) is also 3N dimensional in coordinate space. Not to lose the

generality, the wave function ψ is assumed as a complex one ψ = ReiΘ.

According to |ψ|
∣∣∇|ψ|

∣∣ = ∣∣ψ∇|ψ|
∣∣ = |R∇R|, and ψ∗∇ψ = R∇R + iR2∇Θ,

we have

|ψ|
∣∣∇|ψ|

∣∣ = ∣∣Re(ψ∗∇ψ)
∣∣. (A.1)

Because A is a real function,∣∣Re[ψ∗(∇− iA)ψ]
∣∣ = ∣∣Re(ψ∗∇ψ)

∣∣. (A.2)

For any a, b ∈ C, it is easy to prove
∣∣Re(ab)∣∣ ≤ |a||b|. Therefore,∣∣Re[ψ∗(∇− iA)ψ]

∣∣ ≤ ∣∣ψ∣∣∣∣(∇− iA)ψ
∣∣. (A.3)

From equations (A.1) (A.2) (A.3), we have |ψ|
∣∣∇|ψ|

∣∣ ≤ |ψ|
∣∣(∇− iA)ψ

∣∣.
Furthermore we have

∣∣∇|ψ|
∣∣2 ≤ ∣∣(∇−iA)ψ

∣∣2. Assume dτ is the 3N -dimensional

integral element. Integrating over τ in the whole space,∫
dτ

∣∣∇|ψ|
∣∣2 ≤ ∫

dτ
∣∣(∇− iA)ψ

∣∣2. (A.4)

89



Chapter A Proof of Simon’s diamagnetism

Do integration by parts,∫
dτ

∣∣∇|ψ|
∣∣2 = −

∫
dτ |ψ|∗∇2|ψ|, (A.5)

∫
dτ

∣∣(∇− iA)ψ
∣∣2 = −

∫
dτ ψ∗[∇− iA]2ψ. (A.6)

Because v is a real function, we obtain
∫
dτ |ψ|∗v|ψ| =

∫
dτ ψ∗vψ. Add

∫
dτ |ψ|∗v|ψ|

and
∫
dτ ψ∗vψ to both sides of equations (A.5) and (A.6), respectively, and con-

sider the inequality (A.4), we have∫
dτ |ψ|∗(−∇2 + v)|ψ| ≤

∫
dτ ψ∗(−[∇− iA]2 + v)ψ, (A.7)

Therefor
∫
dτ |ψ|∗H(0)|ψ| ≤

∫
dτ ψ∗H(A⃗)ψ is proved for any ψ. The rest of the

proof for Simon’s universal diamagnetism of bosons is presented in Sec. 2.4.
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