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Abstract

In this thesis, I study the in-plane resistivity, ρab, and the Hall coefficient, RH, in the weak-
field limit for the Ru t2g orbital Hubbard model on a two-dimensional square lattice by using
fluctuation-exchange approximation including the Maki-Thompson (MT) current vertex correc-
tion (CVC). In particular, I consider the cases near and away from the incommensurate (IC)
antiferromagnetic (AF) quantum-critical point (QCP), where the spin fluctuation (SF) located
at QIC-AF = (2π/3, 2π/3) is strongly enhanced.

I obtain six principal results. (i) ρab shows the T -linear dependence near the IC AF QCP,
while the T 2 dependence is obtained away from the IC AF QCP. This change arises from the
stronger momentum dependence of the quasi-particle (QP) damping near the IC AF QCP. (ii)
The effect of the MT CVC on the power of the temperature dependence of ρab is negligible,
although this leads to an increase of the value of ρab as a result of a decrease of the current. (iii)
The dxz/yz orbital gives the dominant contribution to the in-plane longitudinal conductivity,
while the contribution of the dxy orbital is very small. This is due to the combination of
the smaller QP damping of the dxz/yz orbital and the momentum dependence of the band
velocity. (iv) RH is less affected by the self-energy of electrons. (v) The signs of the transverse
conductivities of the dxz/yz and the dxy orbitals are opposite in the model of Sr2RuO4. As
a result, RH of this model without the MT CVC becomes nearly zero. (vi) The negative
enhancement of RH is induced by the MT CVC not only near but also away from the IC AF
QCP, although in the latter case this enhancement is strongly suppressed at low temperatures.
This negative enhancement arises from the bend of the current of the dxz/yz orbital due to the
MT CVC of the non-diagonal SF between this and the dxy orbitals at QIC-AF. The strong
suppression of RH obtained away from the IC AF QCP arises from the cancellation between
this negative enhancement and the positive enhancement arising from the bend of the current
of the dxy orbital due to the MT CVC of the diagonal SF of that orbital at Q′

IC-AF = (π, 2π/3).
From these results, I deduce the following conclusions. One is that ρab of Ru oxides is

determined almost by the dxz/yz orbital since the QP damping of that orbital will remain
smaller than that of the dxy orbital even in other Ru oxides. In particular, ρab shows the T -
linear dependence near the IC AF QCP due to the characteristic momentum dependence of the
QP damping of the dxz/yz orbital. The other conclusion is that RH of the model of Sr2RuO4

does not show the Curie-Weiss (CW) like temperature dependence even near the IC AF QCP
since the bends of the currents of the dxz/yz and the dxy orbitals due to the MT CVC lead to
the opposite-sign contributions to RH. The situation will be changed in other Ru oxides, where
the occupation number of each orbital and/or a ratio of the QP damping of the dxy orbital to
that of the dxz/yz orbital are/is different from those/that of the model of Sr2RuO4.

I propose that ρab of Ru oxides can give information about the structure of the magnetic
fluctuations not of the dxy orbital but of the dxz/yz orbital, and that RH of the Ru oxides in the
weak-field limit can capture a characteristic transport property of a multi-orbital effect, which
arises from the bend of the current of the dxz/yz orbital due to the MT CVC of the non-diagonal
SF between that and the dxy orbital at QIC-AF.

I believe that the results obtained in this thesis not only lead to a deeper understanding
of the transport properties of Ru oxides but also open a new door in the transport properties
of multi-orbital strongly correlated electron systems (SCESs) since the similar mechanism will
be realized in other multi-orbital SCESs where several sheets of the Fermi surface’s are located
near each other and the dimensionalities of the orbital characters are different.
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Chapter 1

Introduction

In this chapter, after showing the outline of this thesis in §1.1, I briefly review experimental
and theoretical results of Sr2RuO4 in §1.2 and §1.3, respectively, and explain motivations of the
analyses of this thesis in §1.4. In these experimental and theoretical reviews, we focus on the
electronic structure and the magnetic and the transport properties only in the paramagnetic
(PM) phase of Sr2RuO4. I do not show the results in the superconducting (SC) phase appearing
below 1K [1] since the focus of this thesis is the transport properties in the PM phase. However,
I believe that understanding the properties in the PM phase leads to a deep understanding of
those in the SC phase.

1.1 Outline of this thesis

This thesis is organized as follows.

In Chapter 1, I give experimental and theoretical reviews of Sr2RuO4, and explain the
motivations of the analyses of this thesis. For the experimental review in §1.2, the basis of the
electronic structure and five unusual properties are explained. For the theoretical review in §1.3,
I present the results of some previous theoretical studies, discuss their correspondences to the
experimental results, and explain some remaining issues. In particular, I argue that two of the
five unusual properties can be explained in the fluctuation-exchange (FLEX) approximation [2],
where spatial correlation is taken into account beyond the mean-field approximation (MFA) [3].

Next, in Chapter 2, I explain the method used for the calculations of resistivity and Hall
coefficient in the weak-field limit, which are the transport properties focused, by using an
effective model of Sr2RuO4. First, in §2.1, I show an effective model of Sr2RuO4, i.e., the
Ru t2g orbital Hubbard model on a two-dimensional (2D) square lattice. The parameters of
the non-interacting part are determined so as to reproduce the electronic structure obtained
in the local-density approximation (LDA) [4, 5]. The interacting part of this effective model
is treated in the FLEX approximation [3], whose explanation is given in §2.2 following the
discussion in Refs. [6, 7]. Section 2.3 is devoted to the general derivations of the resistivity
and the Hall coefficient in the weak-field limit for multi-orbital systems. In these derivations,
only the most divergent contributions with respect to the quasi-particle (QP) lifetime are taken
into account [8, 9]. As a result, we see that the resistivity is inversely proportional to the QP
lifetime, and the Hall coefficient is independent of that. In §2.4, I give the general derivation of
the irreducible electron-hole four-point vertex function (VF), resulting in the correction to the
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current, i.e. the current vertex correction (CVC) [10, 11], by using the self-energy of electrons
in the FLEX approximation.

Then, in Chapter 3, I present numerical results near and away from the incommensurate
(IC) antiferromagnetic (AF) quantum-critical point (QCP), which exists in the effective model of
Sr2RuO4 [2], by using the FLEX approximation including the Maki-Thompson (MT) CVC [12,
13]. For simplicity, I neglect the Aslamasov-Larkin (AL) CVCs [14] since these are of higher
order with respect to the QP damping than the MT CVC and these become negligible [11, 15]
in the cases considered in this thesis.

Before showing the results of the transport coefficients, I present the momentum dependence
of the QP damping in §3.1 and the dynamical property of spin fluctuations (SFs) in §3.2. Both
the QP damping and the imaginary part of the effective interaction of the FLEX approximation,
mediated by fluctuations in spin and charge sectors, are used in the kernel of the MT CVC.
In §3.1, I analyze the role of each Ru t2g orbital in the QP damping and discuss whether the
phenomenological Fermi liquid (FL) description works or not. Here, the phenomenological FL
description means that the single-particle Green’s function can be approximated by the standard
form of the coherent part [10, 16]. This description works when the QP damping is smaller than
temperature considered [10]. In §3.2, I analyze the effects of U and T as well as the roles of
the Ru t2g orbitals on the dynamical property of SFs, and discuss how that dynamical property
affects the current of each orbital through the MT CVC.

Sections 3.3 and 3.4 are devoted to the temperature dependence of the resistivity and of the
Hall coefficient in the weak-field limit, respectively. In particular, I analyze the effects both of
the momentum dependence of the self-energy of electrons and of the temperature dependence
of the electron-hole four-point VF. Also, the roles of each Ru t2g orbital and of each fluctuation
(SF, orbital and spin-orbital combined fluctuations [17]) are investigated.

In Chapter 4, I compare the obtained results with other theoretical results in a single-orbital
Hubbard model [11] on a 2D square lattice by the same approximation used in this thesis and
in a tight-binding model of Sr2RuO4 by using the phenomenological theory [18]. I also address
the correspondences with experimental results for Ru oxides.

Finally, in Chapter 5, I summarize principal results and conclusions drawn from this study,
and I explain remaining issues for future study.

1.2 Experimental review

In this section, in order to explain basic properties of Sr2RuO4, I briefly review several experi-
mental studies for the PM phase of Sr2RuO4 [19].

As I will explain below in detail, there are five unusual properties, although extensive re-
search has revealed that Sr2RuO4 can be regarded as a well-defined quasi-2D FL with moder-
ately strong correlation. The five unusual properties are (1) the structure of magnetic fluctua-
tions [20], (2) the orbital dependence of the mass enhancement [21], (3) the semiconductor-like
temperature dependence of the out-of-plane resistivity in the high-temperature region [22], (4)
the negative enhancement of the Hall coefficient at some temperatures due to tiny amount of
nonmagnetic Al impurities [23], and (5) the T -linear in-plane resistivity appearing in the case
of small substitution of Ti4+ for Ru4+ [24].

This section is organized as follows. I begin with the explanation of the basis of the electronic
structure of Sr2RuO4. After explaining the crystal structure [1] and the corresponding energy
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Figure 1.1: (a) Schematic crystal structure of Sr2RuO4 and (b) schematic energy levels
of Sr2RuO4 for the Ru 4d orbitals. Up and down arrows in (b) represent spin-up and
spin-down electrons, respectively.

levels for the Ru 4d orbitals, I present the Fermi surface (FS) observed experimentally [21, 25].
Next, I present several experimental results indicating the well-defined FL behaviors. These are
transport properties [22, 26], the magnetic susceptibility [27], and the specific heat [27]. Then,
I turn to several experimental results [19, 27, 28] which show the roles of electron correlation
in Sr2RuO4. In particular, I argue that electron correlation is not so strong in Sr2RuO4 as
in cuprates (i.e., cupper oxides) but moderately strong, although electron correlation plays
important roles. Finally, I explain the five unusual properties.

1.2.1 Basis of the electronic structure

By the extensive experimental research, it is well established that Sr2RuO4 can be regarded as
a quasi-2D t2g electron system.

According to a powder x-ray diffraction measurement [1], Sr2RuO4 is categorized as a layered
perovskite oxide. The crystal structure has I4/mmm body-centered tetragonal space-group
symmetry. The schematic crystal structure is shown in Fig. 1.1 (a). In this crystal structure,
only the dxz and the dyz orbitals are degenerate, as shown in Fig. 1.1 (b). Since Sr2RuO4 has the
layered perovskite structure, the crystalline-electric-field (CEF) energy between the Ru eg and
the Ru t2g orbitals is about 1 eV [28, 29]. Furthermore, the electronic conduction is anisotropic
(e.g., quasi-2D), and the ratio of the in-plane resistivity to the out-of-plane resistivity at low
temperature is about 10−3 [1]. The ratios at 2 K and 290 K are 1/850 and 1/220, respectively [1].

In addition, electrons occupying the Ru t2g orbitals give the dominant contributions to the
electronic conduction since a Ru ion is Ru4+, i.e. (4d)4 configuration. Although the CEF energy
between the Ru eg and the Ru t2g orbitals is large [Fig. 1.1 (b)], the CEF energy between the
dxz/yz and the dxy orbitals is small since the experimentally observed occupation numbers of
these orbitals are nearly the same, i.e. 1.33 [21], due to the band overlap.

Actually, the measurement [21] of the de Haas-van Alphen (dHvA) effect has shown that

3
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(b)(a)

Figure 1.2: (a) Schematic picture of the FS of Sr2RuO4 observed by the dHvA ef-
fect [21] and (b) the FS observed by the ARPES [25]. (a) and (b) are reprinted from
Ref. [21], “Copyright 1996 by the American Physical Society” and from Ref. [25],
“Copyright 2000 by the American Physical Society”, respectively.

(b)(a)

Figure 1.3: Temperature dependence of (a) the in-plane and the out-of-plane resistivi-
ties [22] of Sr2RuO4 and (b) the Hall coefficient [30] of Sr2RuO4 in a magnetic field of
2 T. The inset of (a) shows these resistivities below 32 K plotted against T 2. (a) and
(b) are reprinted from Ref. [22], “Copyright 1996 by the American Physical Society”
and from Ref. [30], “Copyright 1996 by the American Physical Society”, respectively.

there are three cylindrical sheets of the FS’s consisting of the quasi-1D α and β sheets and the
quasi-2D γ sheets. The schematic picture of the observed FS is shown in Fig. 1.2 (a). The dxz/yz
and the dxy orbitals form the quasi-1D and the quasi-2D sheets of the FS, respectively. This
observation supports the above statement about the role of the Ru t2g orbitals. Qualitatively
the same result as the dHvA effect [21] has been obtained from angle-resolved photoemission
spectroscopy (ARPES) measurement [25], as shown in Fig. 1.2 (b).

Extensive experimental research also reveals that Sr2RuO4 shows the following several well-
defined FL behaviors. (The meaning of the well-defined FL has been described in §1.1.)

First, transport properties are consistent with the results obtained in the phenomenological
FL theory [10]: the in-plane and the out-of-plane resistivities at low temperature show the T 2

dependence [22] as shown in Fig. 1.3 (a), and a Drude peak is observed below 30 K in the
electric field applied both parallel and perpendicular to the RuO2 planes [26]. Temperature
dependence of the Hall coefficient [30] shown in Fig. 1.3 (b) is not so simple as in single-orbital
systems. However, as I will explain in §1.3.3, this temperature dependence can be reproducible
by a phenomenological theory [18] within the relaxation time approximation, assuming a typical
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(b)(a)

Figure 1.4: (a) Magnetic susceptibility of Sr2RuO4 in a magnetic field of 1 T and
(b) the coefficient of the T 2 term of the in-plane and the out-of-plane resistivities of
Sr2RuO4 against the coefficient of the electronic specific heat. Data shown in (a) are
not corrected by diamagnetic contributions from the core electrons of −0.91 × 10−4

emu/mol. The inset in (a) shows the specific heat divided by temperature plotted
against T 2 for a single crystal. The solid and the broken lines in (b) represent the
Kadowaki-Woods ratio, a0, and a0/25, respectively. Reprinted from Ref. [27], “Copy-
right 1997 by Physical Society of Japan”.

form [16] of the QP damping.

Second, as shown in Fig. 1.4 (a), the magnetic susceptibility in a magnetic field of 1 T
shows very weak temperature dependence, indicating that the main contribution arises from
Pauli paramagnetism [27]. Note that the temperature independent contribution arising from the
Van Vleck term is very small compared with the observed value since the estimated contribution
is approximately 1.5×10−4 emu/mol [31]. In addition, the Korringa behavior in the spin-lattice-
relaxation rate is observed in a nuclear-magnetic-resonance (NMR) measurement [31].

Third, the temperature dependence of the specific heat, which is shown in the inset of Fig.
1.4 (a), is well fitted by the sum of the electron and the lattice contributions [27].

Next, I will explain that electron correlation is not so strong in Sr2RuO4 as in cuprates but
moderately strong, although electron correlation plays important roles.

There are several evidences of the importance of electron correlation in Sr2RuO4. One is
the enhancement of the coefficient of the electronic specific heat [27]: the value is 37.5 mJ/K2

mol, which is about 3.6 times larger than that obtained in a band calculation [4]. In addition,
the effective mass of each Ru t2g orbital is about 3-5 times larger than that obtained in band
calculations [4, 19]. Another is the Wilson ratio being larger than unity, which is the value
for a free electron gas: the observed value is 1.7–1.9 [27]. Furthermore, as shown in Fig.
1.4 (b), the Kadowaki-Woods ratio for the in-plane conduction indicates the importance of
electron correlation, i.e., the observed value is 0.3a0-0.5a0, which is not far from the value for
typical heavy-fermion compounds (e.g., UPt3, CeCu2Si2) [27]. Here a0 is the universal value,
1.0−5µΩcm/(mJ/K2).

On the other hand, a polarized O 1s x-ray absorption measurement [28] shows that the
electron correlation of Sr2RuO4 is not so strong. Actually, the observed spectrum [28] can be
reproduced within the unrestricted Hartree-Fock calculation for the two-site model, assuming

5
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Figure 1.5: Intensity observed by INS measurement [20] of Sr2RuO4 at ℏω = 6.2
meV around Q = q + G = (1.3, 0.3, 0) along (0, 1, 0) direction, where q =
(±0.6π/a,±0.6π/a, 0) = (±0.3,±0.3, 0) and G is a zone center or a Z point (001)
in the (HK0) plane. The peak is originated not from the phonon but from the mag-
netic fluctuation since the lowest phonon frequency at q is above 12 meV. Reprinted
from Ref. [20], “Copyright 1999 by the American Physical Society”.

that the on-site intra-orbital Coulomb interaction of the Ru 4d orbitals is 2 eV. This value is
about half of the total bandwidth of the Ru t2g orbitals obtained in the band calculation [4, 44].
Thus, electron correlation of Sr2RuO4 is not so strong but moderately strong.

1.2.2 Unusual properties

In this section, I explain the five unusual properties of Sr2RuO4. The first and the second
unusual properties can be understood [2] if spatial correlation is taken into account beyond the
MFA (see §1.3).

(1) The mechanism of the structure of magnetic fluctuations is unclear. As shown in Fig.
1.5, inelastic neutron scattering (INS) measurement [20] for Sr2RuO4 reveals the enhancement
of IC AF SF located at q = (±0.6π/a,±0.6π/a, 0) = (±0.3,±0.3, 0) with a being the lattice
constant along the a axis, while it does not find sizable ferromagnetic (FM) SFs. This result
is unusual since the observed enhancement of the IC AF SF seems to arise from the nesting
instability [32] of the dxz/yz orbital, of which the density-of-states (DOS) near the Fermi level
is smaller than that of the dxy orbital. Note that within the MFA, the primary contribution
to the susceptibility arises from the orbitals having the largest DOS near the Fermi level. (As
I will explain in §1.3, this magnetic structure cannot be reproduced even within the RPA for
models with the experimentally observed occupation numbers [21].)

Since a polarized neutron measurement [33] for Ca2−xSrxRuO4 has revealed the role of each
Ru t2g orbital in the magnetic fluctuations, i.e. the primary contribution arises from the dxy
orbital, it is desirable to carry out similar analyses in Sr2RuO4. Although there was a polarized
neutron diffraction measurement [34] for Sr2RuO4, this experiment did not discuss this issue
since the aim was to analyze the symmetry of the Cooper pairing in the SC phase.

Although there was a controversial discussion about the inconsistency between the results of

6
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Figure 1.6: Temperature dependence of the Hall coefficient of Sr2RuO4 doped with
Al [23] in the weak magnetic field. In this measurement, the magnetic field sweeps
from −2 to 2 T for T < 50 K and from −3 to 3 T for T > 50 K. The inset shows the
same data plotted in a logarithmic temperature scale in order to emphasize the low
temperature behavior. Reprinted from Ref. [23], “Copyright 2001 by the American
Physical Society”.

INS and NMR measurements, this has been resolved as follows. The authors of an early NMR
measurement [35] for Sr2RuO4 have proposed that there will be no enhanced AF SF since the
temperature dependence of the spin-lattice relaxation rate at Ru sites is the same as that at
O sites. If commensurate AF SFs for Ru ions are enhanced, the amplitude should vanish at
the magnetically symmetric O sites. However, the authors of a later NMR measurement [36]
have pointed out that this result of the early NMR measurement [35] does not contradict with
the evolution of the IC AF SF observed by INS measurement [20]. Thus, it is experimentally
established that the IC AF SF located at q = (±0.3,±0.3, 0) is primary in Sr2RuO4.

(2) Second unusual property is the orbital dependence of the mass enhancement. Combining
the result of dHvA effect [21] and that of the band calculation, we can see that the mass
enhancement of the γ band is larger than that of the α/β bands: the mass enhancements of
α, β, γ bands are 3.0, 3.5, and 5.5, respectively [19]. This result seems to contradict with a
simple theoretical argument that the mass enhancement is large when the bandwidth is small.
In the case of Sr2RuO4, the bandwidth of the quasi-1D dxz/yz orbital is smaller than that of
the quasi-2D dxy orbital.

(3) Third, as shown in Fig. 1.3 (a), the out-of-plane resistivity of Sr2RuO4 shows semiconductor-
like behavior at high temperatures and has the maximum around 130 K, although it shows
metallic behavior at low temperatures [22]. In contrast, the in-plane resistivity always shows
metallic behavior [22]. This semiconductor-like behavior will arise from the incoherent con-
duction due to electron correlation (e.g. strong momentum dependence of the QP lifetime).
Therefore, the roles of electron correlation in the transport properties of Sr2RuO4 should be
analyzed on the basis of microscopic theory beyond the phenomenological FL theory, in which
only the coherent conduction is treated [10].

(4) Fourth, tiny amount of nonmagnetic impurities of Al gives rise to unusual negative
enhancement of the Hall coefficient [23] as shown in Fig. 1.6. This enhancement cannot be
understood within a simple Born approximation for the nonmagnetic impurity scattering in

7
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weakly correlated electron systems since in this case nonmagnetic impurities just give an ad-
ditional QP damping [16]. In addition, in a single-orbital model, this enhancement cannot be
reproduced even if the effects of strong electron correlation are taken into account. In this case,
the weak nonmagnetic impurity scattering gives rise to a suppression of the absolute value of
Hall coefficient from the value without impurities [37]. Thus, it is necessary to clarify the roles
of orbital degrees of freedom in the transport properties in the presence of dilute nonmagnetic
impurities.

(5) Fifth, the origin of the emergence of the T -linear in-plane resistivity [24] due to small
substitution of Ti4+ for Ru4+ has not been clarified yet. The power of the temperature depen-
dence of the in-plane resistivity changes from square in Sr2RuO4 to linear in Sr2Ru1−yTiyO4 at
y = 0.025, although the electronic structure of the latter is similar to that of Sr2RuO4. Note that
the Ti-substitution does not induce either the rotation or the tilting of RuO6 octahedra [38],
which give rise to drastic modifications of the electronic structure. From the results [11, 39] in
single-orbital systems, we expect that this T -linear dependence will be related to the charac-
teristic momentum dependence of the QP damping due to the enhanced fluctuations near an
AF QCP. Actually, Sr2Ru1−yTiyO4 at y = 0.025 is located near the IC AF QCP [24, 40, 41],
whose magnetic fluctuations are nearly the same as those in Sr2RuO4. Thus, it is desirable to
investigate the in-plane resistivity in the presence of dilute nonmagnetic impurities not only in
the case of Sr2RuO4 but also in the case near the IC AF QCP.

1.3 Theoretical review

In this section, I briefly review several theoretical studies for the PM phase of Sr2RuO4, dis-
cuss their correspondence with the experimental results, and explain the remaining issues. In
particular, I argue that spatial correlation beyond the MFA plays very important roles in dis-
cussing the electronic structure and the magnetic properties. Actually, the origins of two of
the five unusual properties, shown in the previous section, have been clarified by an analysis [2]
based on the FLEX approximation that takes account of spatial correlation beyond the MFA.
Although there is a previous study [42] using the FLEX approximation, this previous study
cannot explain the above two unusual properties. This previous study [42] uses a simplified
effective interaction in which some contributions from SF have been neglected.

This section is organized as follows. I begin with previous theoretical results of the electronic
structure on the basis of the band calculations in the LDA [4, 5, 43] and in the local-spin-density
approximation (LSDA) [44], of the dynamical-mean-field theory (DMFT) [45, 46], and of the
FLEX approximation [2]. We also compare these results with the experimental results and
discuss their validities. Next, in §1.3.2, I present previous theoretical results of the magnetic
properties on the basis of the mean-field type approximations [32, 47, 48, 49] and of the FLEX
approximation [2]. I also give the comparisons with the experimental results and the discussions
about their validities. Then, in §1.3.3, I present previous theoretical results of the transport
properties on the basis of the phenomenological theory [18], discuss the validity, and explain
the remaining issues.

1.3.1 Electronic structure

First, I show the results of the band calculations in the LDA [4, 5, 43] and in the LSDA [44],
and discuss their validities.

8
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Figure 1.7: FS of Sr2RuO4 obtained in the LSDA on kz = 0 in the range of
−π/a ≤ kx, ky ≤ π/a in the presence and the absence of the SOI [44]. Dark and
light lines represent the FS sheets calculated in the presence and the absence of the
SOI, respectively. In the absence of the SOI, the γ-FS (light blue) becomes very close
to the inner sheet (light green) in the (π, π) direction. This contradicts with experi-
ments [21, 25]. In the presence of the SOI, on the other hand, the γ-FS and the inner
sheet separate, which is closer to the experimentally observed FS’s. Reprinted from
Ref. [44], “Copyright 2009 by Physical Society of Japan”.

Basic properties of the electronic structure of Sr2RuO4 except several properties can be
understood within the LDA. A band calculation [4] within the LDA just after the discovery [1]
of Sr2RuO4 has revealed that the electronic structure near the Fermi level is essentially described
by the antibonding bands of the Ru t2g and the O 2p orbitals, and that the DOS near the Fermi
level is originated mainly from that of the Ru t2g orbitals. The similar results are obtained in
other band calculations [5, 43, 44]. From the results of the LSDA [44], the spin-orbit interaction
(SOI), which is estimated to be 0.167 eV for Ru atom, little affects the topology of the FS except
the vicinity of k = (2π/3, 2π/3) and the energy dependence of the DOS. The FS obtained in
the LSDA is shown in Fig. 1.7. The small value of the SOI is consistent with the experimental
result [31] of the magnetic susceptibility.

However, the band calculations within the LDA cannot reproduce the experimentally ob-
served occupation number of each Ru t2g orbital. To be precise, the occupation numbers of the
dxz/yz and the dxy orbitals in the LDA are 1.39 and 1.23, respectively [45], which are different
from the experimental values [21] of 1.33 and 1.33. This difference arises from a quantitative
difference of the FS between the LDA and experiments [21, 25]: as shown in Fig. 1.7, the γ-FS
becomes very close to the inner FS in the (π, π) direction. Furthermore, this occupation number
is important in the magnetic properties discussed in §1.3.2. Thus, the LDA is inadequate to
describe the properties of Sr2RuO4, although the electronic structure obtained in the LDA is a
good starting point in order to include effects of electron correlation.

Next, I discuss the results [45, 46] of the DMFT. The impurity solver used in Ref. [45] is
not written, and that used in Ref. [46] is exact diagonalization.

The inconsistency in the occupation number is not resolved in a DMFT [45], although
the values are improved. For example, in the case with the intra-orbital Coulomb interaction
U = 2.3 eV and the Hund’s rule coupling J = 0.4 eV, the occupation numbers of the dxz/yz and
the dxy orbitals are 1.36 and 1.29, respectively [45].
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In the following, I explain the orbital dependence of the mass enhancement obtained in the
DMFT [45] for Sr2RuO4 in detail.

Some authors of a DMFT [45] have proposed that the Hund’s metal be the origin of the
unusual orbital dependence of the mass enhancement of Sr2RuO4 since that can be reproduced
only for large values of J . Here, the Hund’s metal [50] is a metallic state with large effective
mass due to a large value of J . The mass enhancement obtained in the DMFT arises mainly
from local SF since the renormalization factors of the Ru t2g orbitals show a monotonic J
dependence.

Their results about the orbital dependence of the mass enhancement can be understood as
the combination of the two effects explained below. One is a reduction of a critical value of U
for a Mott transition, UMIT, due to an increase of J . This arises from the J dependence [51]
of the Mott gap for a t2g orbital Hubbard model with ne = 4, where ne is the total occupation
number. Namely, for a fixed value of U , an increase of J leads to the approaching the Mott
transition. The other effect is that in all the parameters considered in Ref. [45], the occupation
number of the dxy orbital is nearer to 1 compared with that of the dxz/yz orbital, resulting in the
smaller energy scale of local SF [52], i.e. the correlated Fermi temperature, of the dxy orbital.
Note that the mass enhancement is inversely proportional to a ratio of the correlated Fermi
temperature to the non-interacting one. From these two effects, an increase of J gives rise to
the larger mass enhancement of the dxy orbital compared with that of the dxz/yz orbital [45].

However, this result [45] is drastically changed in a more realistic situation. First, the
occupation numbers of the dxy and the dxz/yz orbitals are the same experimentally [21]. Thus, for
the model having the experimentally observed values of the occupation numbers, the correlated
Fermi temperature of the dxy (dxz/yz) orbital becomes larger (smaller) than that obtained in
this DMFT [45], resulting in the smaller (larger) mass enhancement of the dxy (dxz/yz) orbital.
Second, on a 2D square lattice, if we take account of spatial correlation, we obtain a strong
suppression of the mass enhancement compared with the DMFT results. Actually, in cellular
DMFT [53, 54] for the single-orbital Hubbard model, the mass enhancement obtained in the
DMFT is strongly suppressed by a partial account of spatial correlation. Note that in the
cellular DMFT, the effects of spatial correlation are partially taken into account beyond the
DMFT [55]. I expect that the similar result will be obtained for multi-orbital Hubbard models.

Furthermore, even within the DMFT, it is doubtful that a large value of J is important in
order to obtain a larger mass enhancement of the dxy orbital. Another DMFT [46] for Sr2RuO4

has revealed that for J = (U/4), which is larger than that used in Ref. [45], the occupation
number of the dxz/yz orbital becomes nearer to 1 at U = 2.1 eV, which is the same as that used in
Ref. [45], than that of the dxy orbital. In this case, the mass enhancement of the dxz/yz orbital
will be larger than that of the dxy orbital. This result contradicts the proposal of Ref. [45],
i.e. the emergence of the Hund’s metal in Sr2RuO4. Thus, I doubt that the Hund’s metal is
realized in Sr2RuO4, although there are some quantitative differences of the parameters of the
non-interacting Hamiltonian between these previous studies [45, 46].

In order to understand the mass enhancement of Sr2RuO4, I think that it is necessary to
include spatial correlation.

Finally, I present the results of the FLEX approximation [2] and discuss its validity.

Similarly to the DMFT [45], the experimentally observed value of the occupation numbers
cannot be reproduced in the FLEX approximation [2] for the model whose non-interacting FS is
the same as the FS obtained in the LDA [4, 5], although the values are improved. To be precise,
the occupation numbers of the dxz/yz and the dxy orbitals are 1.357 and 1.284 at U = 2.1 eV

10
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Figure 1.8: Occupation numbers of the dxy and the dxz/yz orbitals per a spin as a
function of U in a DMFT [46] of Sr2RuO4 at J = U/4 and T = 0.02 eV. It should be
noted that ni = 1 and 0.5 correspond to the full-filled and half-filled cases, respectively.
∆ is the CEF energy between the dxy and the dxz/yz orbitals. The result at ∆ = 0
eV corresponds to the case of Sr2RuO4 since the authors have used a tight-binding
model of Sr2RuO4, where ∆ has been chosen as 0 eV for simplicity. Note that the
impurity solver is exact diagonalization. Reprinted from Ref. [46], “Copyright 2007
by the American Physical Society”.

and J = (U/6) = 0.35 eV, while those at U = 0 eV are 1.375 and 1.249.

In contrast to the occupation number, the larger mass enhancement of the dxy orbital can be
reproduced in the FLEX approximation in the range of 0 ≤ J ≤ (U/4), which is wider than in
the DMFT [45]. Figures 1.9 (a) and (b) show the obtained renormalization factors of the dxz/yz
and the dxy orbitals, which are inversely proportional to the mass enhancements. The reason
why the mass enhancement of the dxy orbital is always larger than that of the dxz/yz orbital is
that spatially broad SF of the dxy orbital is strongly enhanced in all the cases considered [2].

As I show below, in contrast to the case of the DMFT [45], the results obtained in the
FLEX approximation [2] will remain qualitatively the same even in a more realistic situation.
First, I have checked in the FLEX approximation that, when the occupation number of each
Ru t2g orbital at U = 0 eV is chosen as the experimentally observed value [21], the mass
enhancement of the dxy orbital remains larger than that of the dxz/yz orbital [2]. In addition,
we can expect that taking account of local correlation does not lead to a strong suppression of
the mass enhancement obtained in the FLEX approximation. The reasons are as follows. (1) It
is known that for the single-orbital Hubbard model on a 2D square lattice, the terms neglected
in the FLEX approximation lead to a larger mass enhancement [56]. (2) The similar tendency
will remain even for multi-orbital cases.

The difference between the FLEX approximation and the DMFT will be understood that
on a 2D square lattice, the Mott transition is easily destabilized by spatial correlation, while an
AF instability is hardly destabilized by local correlation.

From the above discussions, I conclude that a correct treatment of both local and spatial
correlations is necessary to reproduce the experimentally observed value [21] of the occupation
numbers if we regard the electronic structure obtained in the LDA [4, 5, 43] as a good start-
ing point in order to include effects of electron correlation, and that spatial correlation plays
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Figure 1.9: Renormalization factors of the dxz and the dxy orbitals at k =
(3π/4, 21π/32) and (7π/8, π/8) as functions of (a) U and (b) (J/U) in the FLEX ap-
proximation [2] for a 2D tight-binding model of Sr2RuO4, where the non-interacting
FS is the same as that obtained in the LDA [4, 5]. 64 × 64 meshes and 1024 Mat-
subara frequencies are used. For all the cases considered, the mass enhancement of
the dxy orbital is larger than that of the dxz/yz orbital. At other wave vectors, the
similar relative magnitude is obtained. Note that the mass enhancement is inversely
proportional to the renormalization factor.

more important roles in discussing the orbital dependence of the mass enhancement than local
correlation does. In other words, the unusual orbital dependence of the mass enhancement is
originated from the stronger enhancement of the spatially broad SF of the dxy orbital than that
of the dxz/yz orbital.

1.3.2 Magnetic properties

The authors of a band calculation [32] within the LDA have proposed the nesting instability
for the dxz/yz orbital with q ≈ (2π/3, 2π/3). This result seems to be consistent with the result
of an INS measurement [20].

However, this result will be modified if the occupation number of each Ru t2g orbital becomes
the same as that observed experimentally [21]. (As described in §1.3.1, the occupation numbers
of the dxz/yz and the dxy orbitals in the LDA are 1.39 and 1.23, which are different from the
experimental values, 1.33 [21].) The reason is as follows (see Fig. 1.10). The increase (decrease)
of the occupation number of the dxy (dxz/yz) orbital means that the bands of the dxy (dxz/yz)
orbital should be lower (higher). As a result, the DOS of the dxz/yz (dxy) orbital near the Fermi
level decreases (increases). Then, these changes of the DOS give rise to the decrease (increase)
of the susceptibility of the dxz/yz (dxy) orbital.

Actually, in the RPA [47, 48] for the model having the experimentally consistent occupation
number [21], it is shown that the dominant contribution to the spin susceptibility arises from
the dxy orbital and the wave vector of the primary instability becomes q ≈ (π, π/2), although
for large values of the Hund’s rule coupling there appears an enhancement of the IC AF SF
located at q ≈ (2π/3, 2π/3). The results in the RPA [48] are shown in Figs. 1.11 (a) and (b).
(Note that there is a quantitative difference between Refs. [47] and [48] due to a slight difference
of the choice of hopping parameters.) There is another previous study [49] in the RPA, showing
that the primary contribution to the spin susceptibility arises from the dxz/yz orbital. However,
this result is incorrect since the occupation numbers used in Ref. [49] are inconsistent with the
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Figure 1.10: Non-interacting DOS of a 2D tight-binding model of Sr2RuO4, where the
occupation number of each Ru t2g orbital is the experimentally consistent value, 1.33.
Green and blue arrows represent the changes of the DOSs of the dxz/yz and the dxy
orbitals, as the occupation number becomes the value obtained in the LDA [4, 5, 43].
These changes lead to a decrease (an increase) of the DOSs of the dxz/yz (dxy) orbital
near the Fermi level.

experiment [21].

In contrast to the cases of the mean-field type approximation [32, 47, 48, 49], the IC AF SF
located at q ≈ (2π/3, 2π/3) is reproduced in the FLEX approximation [2] by using the model
whose occupation number of each orbital without interactions is the same as the experimentally
observed occupation number [48]. The similar result is obtained in another model whose non-
interacting FS is the same as that obtained in the LDA [4, 5]. In the former (latter) model,
electron correlation leads to the occupation number leaving (approaching towards) the value
observed experimentally [21]. Namely, if spatial correlation is taken into account beyond the
MFA, it is natural to reproduce the IC AF SF observed experimentally in a wide range of the
parameters of the non-interacting Hamiltonian.

As revealed by the analysis of the FLEX approximation [2], the essential factor to understand
the unusual magnetic property is the cooperative enhancement of SF for all the Ru t2g orbitals,
which is induced by the merging of the nesting vectors for the dxz/yz and the dxy orbitals due
to the deformation of the FS. In other words, the self-energy correction of electrons beyond the
MFA plays significant roles in discussing the magnetic properties. Actually, we see from Figs.
1.12 (a)–(c) that when the peaks of SF for the dxz/yz and the dxy orbitals are set to merge, the
IC AF SF located at q = (2π/3, 2π/3) becomes primary.

Thus, I conclude that spatial correlation beyond the MFA is essential for understanding the
magnetic properties of Sr2RuO4.

1.3.3 Transport properties

In this section, I present the result of the transport property of Sr2RuO4 within the phenomeno-
logical theory [18]. A phenomenological theory [18] can reproduce the temperature dependence
of the in-plane resistivity and the Hall coefficient, as shown in Figs. 1.13 (a) and (b). In this the-
ory, these transport coefficients are calculated within the relaxation time approximation using a
tight-binding model of Sr2RuO4. Here the authors give the QP damping, 1/τa, by the following
momentum-independent form with some ad hoc parameters: 1/τa = ηa +αaT

2, where a = dxz,
dyz, dxy, {η} = (2.75, 2.75, 3.25), and {α} = (0.035, 0.04, 0.06). Note that this QP damping is
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Figure 1.12: Momentum dependence of the static susceptibility in a spin sector at
U = 1, 1.6, 2.1 eV in the FLEX approximation [2] for a 2D tight-binding model of
Sr2RuO4, where the non-interacting FS is the same as that obtained in the LDA [4, 5].
64× 64 meshes and 1024 Matsubara frequencies are used. 1, 2, and 3 denote the dxz,
the dyz, and the dxy orbitals, respectively.

the typical form in the FL [16]. In addition to the above QP damping, the authors add the
T -linear term, 0.6T , only for the dxy orbital in the case of the in-plane resistivity, assuming
that Sr2RuO4 is a nearly FM metal. This assumption is inconsistent with the experiment [20].
However, the similar temperature dependence of the in-plane resistivity will be obtained at low
temperatures in the cases without the above T -linear term since the dominant contribution to
the in-plane conduction will arise from the dxz/yz orbital, whose QP damping is smaller than
that of the dxy orbital.

Although the above phenomenological theory seems to be reasonable, it is necessary to
analyze the transport properties beyond the phenomenological theory, i.e. on the basis of
a microscopic theory satisfying conservation laws, since the following factors lacking in the
phenomenological theory will be important in Ru oxides. As I will explain in §2.3.1, to obtain
the thermodynamically consistent result about transport, we should treat conservation laws
correctly.

One is the momentum dependence of the self-energy of electrons. The real and the imaginary
parts of the self-energy lead to the renormalization of the band velocity and the QP damping.

14



[Ph.D. Thesis] January 2014

(b)(a)

Figure 1.13: Temperature dependence of (a) the in-plane resistivity and (b) the Hall
coefficient on the basis of the phenomenological theory in the relaxation time approxi-
mation by using a tight-binding model of Sr2RuO4 and assuming a typical FL type QP
damping. The solid lines in (a) and (b) are the theoretical results, and the triangles in
(a) and (b) show experimental data from Ref. [22] and from Ref. [30], respectively.
[These experimental data are shown in 1.3 (a) and (b).] Reprinted from Ref. [18],
“Copyright 2000 by the American Physical Society”.

In particular, the effect of the momentum dependence of QP damping becomes considerable for
a quasi-2D SCES since the van Hove singularity (vHs), which exists in 2D systems [57], gives
strong momentum dependence. Actually, it is known that for a single-orbital Hubbard model
on a 2D square lattice near the AF QCP [11, 58], the strong momentum dependence of the
QP damping gives rise to the non-FL-like temperature dependence of the in-plane resistivity.
As I will show in §2.3.1, the resistivity is proportional to the QP damping when only the most
divergent contributions with respect to the QP lifetime, which is the inverse of the QP damping,
are taken into account. It should be noted that in addition to Sr2Ru1−yTiyO4 [24] at y = 0.025,
Ca2−xSrxRuO4 [59] around x = 0.5 shows the non-FL-like temperature dependence of the in-
plane resistivity [Fig. 1.14 (a)], indicating the importance of the momentum dependence of the
imaginary part of the self-energy of electrons.

Another factor is the temperature dependence of the electron-hole four-point VF. The
electron-hole four-point VF describes the multiple electron-hole scattering [10], which is strongly
enhanced and shows unusual temperature dependence near a QCP [39]. Similarly to the mo-
mentum dependence of the self-energy of electrons, this plays very important roles in discussing
the transport properties of SCES since, as we will see from Eq. (2.47) in §2.3.1, this leads to a
correction to the current. In particular, the effect is significantly important in the Hall coeffi-
cient compared with the resistivity [11, 15]. As we will see from Eqs. (3.5) in §3.3 and (3.14) in
§3.4, this difference arises from the dependence on the correction of the angle for the current,
which plays the most important role in discussing the effect of electron correlation on the Hall
coefficient. Actually, it is known that for a single-orbital Hubbard model on a 2D square lattice
near the AF QCP, the temperature dependence of the electron-hole four-point VF gives rise to
the CW-like temperature dependence of the Hall coefficient [11, 15]. The similar temperature
dependence has been experimentally observed in Ca2−xSrxRuO4 around x = 0.5 [23], as shown
in Fig. 1.14 (b). Thus, the effect of the temperature dependence of the electron-hole four-point
VF is also necessary to be analyzed.
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(b)(a)

Figure 1.14: Temperature dependence of (a) the in-plane resistivity [59] of
Ca2−xSrxRuO4 and (b) the Hall coefficient [23] of Ca2−xSrxRuO4 in the weak mag-
netic field. In the measurement of (b), the magnetic field sweeps from −2 to 2 T for
T < 50 K and from −3 to 3 T for T > 50 K. (a) and (b) are reprinted from Ref. [59],
“Copyright 2000 by the American Physical Society” and from Ref. [23]., “Copyright
2001 by the American Physical Society”, respectively.

1.4 Motivation

As explained above, the origins of three of five unusual properties of Sr2RuO4 have not been
clarified yet, and there are two remaining issues.

The aims of the analyses of this thesis are to clarify the origin of unusual transport proper-
ties of Ru oxides and to reveal the effects of both the momentum dependence of the self-energy
of electrons and the temperature dependence of the electron-hole four-point VF in multi-orbital
SCES from a theoretical point of view. In particular, the goals are to clarify the origins of
the unusual transport properties of Ru oxides and to understand what are the effects of orbital
degrees of freedom on the transport properties of SCESs. However, in this thesis, I do not inves-
tigate out-of-plane conduction and the effects of dilute nonmagnetic impurities on the transport
properties due to the difficulties of the treatment. In the former case, the difficulties are the
treatments of the three-dimensionality and of the incoherent conduction at high temperatures.
In the latter case, the difficulty is the treatment of nonmagnetic impurity scattering in the pres-
ence of strong electron correlation. Although the studies of these issues are remaining future
problems, I believe that the results obtained in this thesis will lead to a deep understanding of
the transport properties not only in Ru oxides but also in other multi-orbital SCESs.

In order to clarify the effects of both the momentum dependence of the self-energy of elec-
trons and the temperature dependence of the electron-hole four-point VF, I study an effective
model of Sr2RuO4 in the FLEX approximation including the MT CVC. For simplicity of the
actual calculations, I do not consider the case of Ca2−xSrxRuO4 around x = 0.5, where the
rotation of RuO6 octahedra leads to a unit cell doubling [38].

The treatment used in this thesis is valid to analyze the transport properties in the regions
near a QCP at low temperatures. These regions correspond to red ellipse shown in Fig. 1.15.
The reason of this applicability is as follows. The transport coefficients are derived by taking
account of the most divergent terms with respect to the QP lifetime. This derivation is valid
in the metallic phases except high temperature regions. In addition, I neglect the AL CVCs
and consider only the MT CVC, since those are of higher order than the MT CVC. In general,
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Figure 1.15: One of the typical phase diagrams for SCESs. T is temperature and x
is a certain tuning parameter (e.g. pressure). Red ellipse represents the region where
the treatment used in this thesis is valid since the contribution of the AL CVCs will
be very small compared with the MT CVC in this region.

we should include both the MT and the AL CVCs to obtain the thermodynamically consistent
result. However, my approximation to neglect the AL CVCs will be valid to analyze the effects
of the two factors neglecting in the phenomenological theory on the transport properties near
an AF QCP qualitatively since the contribution of the AL CVCs will be very small compared
with that of the MT CVC near the QCP. Actually, for a single-orbital Hubbard model on a 2D
square lattice, it is shown that the AL CVCs are negligible compared with the MT CVC near
the AF QCP [11, 15]. The similar result will be obtained even for the present multi-orbital
Hubbard model. However, the check of the validity is a remaining future problem.

The reason why I use the model of Sr2RuO4 is that this model contains not only orbital
degrees of freedom but also the vHs, which gives rise to unusual transport properties as the case
of single-orbital systems [11, 58]. I think that the model of Sr2RuO4 is suitable to investigate
the roles of both the momentum dependence of the self-energy of electrons and the temperature
dependence of the electron-hole four-point VF in determining the transport properties of multi-
orbital SCESs from a theoretical point of view.
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Chapter 2

Formalism

In this chapter, I explain the method to analyze the magnetic, the single-particle and the
transport properties of Sr2RuO4. In §2.1, I begin with the explanation about an effective model
of Sr2RuO4, i.e. the Ru t2g orbital Hubbard model on a 2D square lattice within the next-
nearest-neighbor (NNN) hopping, and about how to choose the parameters. Next, in §2.2,
I explain the FLEX approximation for multi-orbital systems, which is used to treat effects
of electron correlation, following the discussion in Refs. [6, 7]. I also give several remarks
on its applicability from a theoretical point of view on the basis of some previous theoretical
studies [56, 60] for the single-orbital Hubbard model on a 2D square lattice. Then, §2.3 is devoted
to the general derivations of the resistivity and the Hall coefficient for multi-orbital systems on
the basis of the microscopic FL theory. In this treatment, only the most divergent contributions
with respect to the QP lifetime are considered. As a result, the longitudinal and the transverse
conductivities are proportional to the linear and the square terms, respectively. Finally, in §2.4,
I give the general derivation of the irreducible electron-hole four-point VF, which is necessary
to determine the resistivity and the Hall coefficient, by using the FLEX approximation. Here
we call irreducible all diagrams that cannot be split into two parts by removing an electron-hole
pair [10]. The derivations shown in §2.3 and §2.4 are just the extensions of those [8, 9, 11] in
the single-orbital case.

Hereafter, the following units and notations are used. I set ℏ = c = µB = kB = 1, and
choose the coordinates x, y, and z in the directions of the Ru-O bonds [see Fig. 1.1 (a)]. For
convenience, the dxz, the dyz and the dxy orbitals are labeled 1, 2 and 3, respectively. In some
cases shown below, the spin degree of freedom is not explicitly written since we consider only

k, b k , d ‘

k +q, c‘k+q, a

k
ab

abG (   ) k abcdΓ (        ,   ;          ,    ) k+q(1) k k +q k‘‘

Figure 2.1: Diagrammatic representations of the single-particle Green’s function and
the electron-hole irreducible four-point VF. The definitions for other electron-hole
four-point VFs are the same.
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PM states without the SOI. For brevity, the electron-hole four-point VF is called the four-point
VF since all the four-point VF we consider below are electron-hole type except a discussion in
§2.2.2. I use the abbreviations, k and q, which are k ≡ (k, iωm) and q ≡ (q, iΩn) in Matsubara
frequency representation or are k ≡ (k, ϵ) and q ≡ (q, ω) in real frequency representation,
where k = (kx, ky) and q = (qx, qy) are wave vectors, ωm and Ωn are fermionic and the bosonic
Matsubara frequencies, i.e. ωm = πT (2m + 1) and Ωn = 2πTn with integers, m and n, and
temperature, T . In the diagrammatic representations shown below, the single-particle Green’s
function and the four-point VF are defined as those shown in Fig. 2.1. In this definition,
the direction of the single-particle Green’s function is opposite to that used in a standard
textbook [16]: the arrow I use goes from the point where an electron is created to that where
an electron is annihilated.

2.1 Effective model of Sr2RuO4

In this section, I show an effective model of Sr2RuO4 to analyze the magnetic, the single-particle
and the transport properties at low temperature, and explain how to choose the parameters.
In this effective model, I neglect the SOI, for simplicity, assuming that the effect will be small.
(As described in §1.3, the theoretical estimate of the value in the LSDA is 0.167 eV [44], which
is small compared with other energy scales.)

In order to analyze the properties of Sr2RuO4, I consider the Ru t2g orbital Hubbard model
on a 2D square lattice within the NNN hopping:

Ĥ = Ĥ0 + Ĥint, (2.1)

Ĥ0 =
∑
k

3∑
a,b=1

∑
s=↑,↓

ϵab(k)ĉ
†
kasĉkbs, (2.2)

Ĥint = U
∑
j

3∑
a=1

n̂ja↑n̂ja↓ + U ′∑
j

3∑
a=1

∑
b<a

n̂jan̂jb

− JH
∑
j

3∑
a=1

∑
b<a

(2ŝja · ŝjb + 1
2 n̂jan̂jb) + J ′∑

j

3∑
a=1

∑
b<a

ĉ†ja↑ĉ
†
ja↓ĉjb↓ĉjb↑. (2.3)

Here I have introduced several quantities: ĉ†kas (ĉkas) is the creation (annihilation) operator

that creates (annihilates) an electron in a with spin s at k, n̂ia =
∑

s n̂ias =
∑

s ĉ
†
iasĉias,

ŝia = (1/2)
∑

s,s′ ĉ
†
iasσs,s′ ĉias′ with σs,s′ being the Pauli matrices, and ϵab(k), U , U ′, JH, and

J ′ represent the energy dispersions measuring from the chemical potential, µ, the intra-orbital
and the inter-orbital Coulomb interactions, the Hund’s rule coupling, and the pair hopping,
respectively. The chemical potential is determined so that the total occupation number, ne,
satisfies ne = 4:

ne =
2

N

∑
k

∑
α
f(ϵα(k)) +

2T

N

∑
k

3∑
a=1

[Gaa(k)−G
(0)
aa (k)]. (2.4)

Here 2 is the factor of the spin degeneracy, α is the band index, f(ϵ) is the Fermi-Dirac distri-
bution function,

ϵα(k) =
3∑

a,b=1

(U †
k)α;aϵab(k)(Uk)b;α, (2.5)
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Figure 2.2: Schematic picture of the in-plane hopping processes for the Ru t2g orbitals
within the NNN hopping. The difference of a color in each orbital represents that of
the sign of the wave function.
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Figure 2.3: (a) FS and (b) DOS of the effective model for ∆t2g = −0.13 eV, where the
non-interacting FS is the same as that obtained in the LDA [4, 5], and (c) FS of the
effective model for ∆t2g = 0 eV, where the occupation numbers of these orbitals are
1.33.

with (Uk)a;α being a unitary matrix to diagonalize Ĥ0, and G
(0)
ab (k) and Gab(k) are the non-

interacting and the interacting single-particle Green’s functions, whose chemical potentials are

the same. G
(0)
ab (k) is given by

G
(0)
ab (k) =

∑
α
(Uk)a;α

1

iωm − ϵα(k)
(U †

k)α;b, (2.6)

and the method to determine Gab(k) is described in §2.2. The reason why Eq. (2.4) is used
instead of the equation where only Gaa(k) appears is to exclude the ultraviolent divergent term
in it.

In order to carry out numerical calculations, I choose the parameters in Ĥ0 and Ĥint as
follows.

For the non-interacting part, Ĥ0, the energy dispersions are given by

ϵ11(k) =
∆t2g

3
− 2t1 cos kx − 2t2 cos ky − µ, (2.7)

ϵ12(k) = ϵ21(k) = −4t′ sin kx sin ky, (2.8)

ϵ22(k) =
∆t2g

3
− 2t2 cos kx − 2t1 cos ky − µ, (2.9)

ϵ33(k) = −
2∆t2g

3
− 2t3(cos kx + cos ky)− 4t4 cos kx cos ky − µ, (2.10)

ϵab(k) = 0 otherwise , (2.11)

21



[Ph.D. Thesis] January 2014

and the parameters are chosen so as to reproduce the band structure obtained in the LDA [4, 5]:
the hopping integrals within the NNN hopping processes shown in Fig. 2.2 are (t1, t2, t3, t4, t

′) =
(0.675, 0.09, 0.45, 0.18,−0.03) (eV) and the CEF energy between the dxy and the dxz/yz orbitals
are ∆t2g = −0.13 eV [2]. Figure 2.2 shows the schematic pictures of the in-plane hopping
processes for the Ru t2g orbitals within the NNN hopping. This choice of the parameters is
based on the assumption that the electronic structure obtained in the LDA [4, 5] is a good
starting point in order to include correlation effect beyond the mean-field level. In this choice,
the total bandwidth is about 4 eV, the occupation numbers of the dxz/yz and the dxy orbitals
are 1.38 and 1.25, respectively, the γ-FS is located nearer to the inner FS than in the case of the
experiments [21, 25], and the vHs for the dxy orbital is located above the Fermi level. The FS
and the DOS of this effective model are shown in Figs. 2.3 (a) and (b), respectively. Note that
if we set ∆t2g = 0 eV, the occupation numbers of the Ru t2g orbitals become the experimentally
observed values [21], i.e. 1.33. In this case, the obtained FS is in better agreement with the
experimentally observed FS [21, 25] than for ∆t2g = −0.13 eV [compare Figs. 2.3 (a) and (c)].

For the interacting part, Ĥint, I use the FLEX approximation, which is one of the pertur-
bation theories to take account of effects of electron correlation. The detailed treatment is
described in the next section.

2.2 FLEX approximation for multi-orbital systems

In this section, I briefly explain the FLEX approximation for multi-orbital systems, which is
used to treat effects of electron correlation, by following the discussion of Refs. [6, 7], and give
several remarks on its applicability from a theoretical point of view. These remarks are based on
some previous theoretical studies [56, 60] for the single-orbital Hubbard model on a 2D square
lattice.

As I will explain below in detail, the FLEX approximation is suitable for describing the
electronic and the transport properties at low temperatures with moderately strong electron
correlation qualitatively. In particular, the suitability becomes better in analyses of the trans-
port properties such as the resistivity and the Hall coefficient than in those of the electronic
structures since the importance of the electronic state near the Fermi level, which can be appro-
priately treated in the FLEX approximation, is more significant in these transport properties.

2.2.1 General derivation

After explaining what the FLEX approximation is and its merits from a theoretical point of
view, I show the self-consistent loop of this approximation, which is used to determine the
single-particle quantities and the susceptibilities.

The FLEX approximation is a perturbation theory beyond the RPA on the basis of a con-
serving approximation [3, 60, 61, 62]. In this approximation, the renormalization of fluctuations
due to electron correlation is taken into account within the one-loop order. It is noted that in
the conserving approximation, whose discussion is based on a free energy, conservation laws
hold automatically [61, 62]. To be precise, in the conserving approximation [61, 62], choosing
the form of the Luttinger-Ward functional, ΦLW[G], which appears in the free energy, we ob-
tain some quantities by the functional derivations of ΦLW[G]. It is also noted that the reason
of the name of the FLEX approximation is that in this approximation, exchange of collective
excitations can be taken into account systematically [3, 60].
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There are several merits of the FLEX approximation. One is to satisfy conservation laws for
bulk quantities automatically. This is crucial for obtaining a reasonable description of transport.
Another merit is to include spatial and local correlation in principle, although the account of
local correlation is not appropriate for large values of electron correlation [56]. Another merit
is to take account of the mode-mode coupling of fluctuations partially through the self-energy
of electrons [3]. This account of the mode-mode coupling leads both to a suppression of the
instability obtained in the RPA and to the Curie-Weiss (CW) like temperature dependence of
the susceptibilities at several wave vectors. (As I will present in §3, the CW like temperature
dependence is obtained in the FLEX approximation for an effective model of Sr2RuO4.)

It should be noted that the terms neglected in the FLEX approximation give rise to a
larger mass enhancement, a larger suppression of the instability and a stronger temperature
dependence of the susceptibilities in the case of the single-orbital Hubbard model on a 2D
square lattice [56, 39]. Even for multi-orbital Hubbard models on the same lattice, we will
obtain the similar result.

I go on to show the self-consistent loop of the FLEX approximation, which is used to
determine the single-particle quantities, the susceptibilities, and the effective interaction.

For the actual calculations, I use ΦLW[G] consisting of bubble and ladder diagrams only for
electron-hole scattering processes [6, 7], which become very important near a QCP [39]. Corre-
spondingly, Gab(k), the self-energy of electrons, Σab(k), and the effective interaction, Vabcd(q),
are determined by the following set of equations:

Gab(k) = Gab(k) +
∑
c,d

G
(0)
ac (k)Σcd(k)Gdb(k), (2.12)

χabcd(q) = −
T

N

∑
k

Gdb(k)Gac(k + q), (2.13)

χ
(S)
abcd(q) = χabcd(q) +

∑
{a′}

χaba′b′(q)Γ
S
a′b′c′d′χ

(S)
c′d′cd(q), (2.14)

χ
(C)
abcd(q) = χabcd(q)−

∑
{a′}

χaba′b′(q)Γ
C
a′b′c′d′χ

(C)
c′d′cd(q), (2.15)

Vabcd(q) =
3

2

∑
{a′}

ΓS
aba′b′χ

(S)
a′b′c′d′(q)Γ

S
c′d′cd +

3

2
ΓS
abcd

+
1

2

∑
{a′}

ΓC
aba′b′χ

(C)
a′b′c′d′(q)Γ

C
c′d′cd −

1

2
ΓC
abcd

−
∑
{a′}

1
2(Γ

S
aba′b′ + ΓC

aba′b′)χa′b′c′d′(q)
1
2(Γ

S
c′d′cd + ΓC

c′d′cd), (2.16)

Σac(k) =
T

N

∑
q

∑
b,d

Vabcd(q)Gbd(k − q). (2.17)

Here
∑

{a} =
∑

a,b,c,d, and χ
(S/C)
abcd (q) and Γ

S/C
abcd are the susceptibility for a spin/charge sector
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and the bare interaction vertex for a spin/charge sector, which is given by

Γ
S/C
abcd =



U/U for a = b = c = d

JH/(2U
′ − JH) for a = b ̸= c = d

U ′/(−U ′ + 2JH) for a = c ̸= b = d

J ′/J ′ for a = d ̸= b = c

0/0 otherwise

. (2.18)

Note that the set of equations of the FLEX approximation, Eqs. (2.12)–(2.17), is easily derived
by calculating the RPA type but renormalized effective interaction consisting of bubble and
ladder diagrams for electron-hole scattering processes for Ĥ and neglecting the VC in the
susceptibilities.

Concerning Eqs. (2.12)–(2.17), there are two remarks. One is that χ
(S)
abcd(q) and χ

(C)
abcd(q)

contain information about SF and spin-orbital-combined fluctuation and about charge and or-
bital fluctuations [17], respectively. Note that spin-orbital-combined fluctuation is characterized
by the correlation function for the spin-orbital operator, the product of the irreducible matrices
of spin and orbital degrees of freedom [17]. For example, for the t2g-orbital Hubbard model,
the operator is the product of the Pauli matrix for a spin degree of freedom and the Gell-Mann
matrix for an orbital degree of freedom [17]. The other remark is that the last term in Eq.
(2.16) is introduced in order to avoid a double counting of the topologically equivalent diagram
in the self-energy of electrons.

2.2.2 Applicability

Before going to the next section, I briefly remark on the applicability of the FLEX approximation
from a theoretical point of view. Several remarks are given by the comparisons between the
results in the FLEX approximation and others for the single-orbital Hubbard model on a 2D
square lattice. Others are the results of quantum Monte Carlo (QMC) simulation [60] and those
in the second-order and the fourth-order perturbation theories [56] with respect to U . In these
calculations, the NNN hopping integral has been neglected, although in Ref. [60] the value has
not been written explicitly.

At a moderately large value of U , the single-particle Green’s function obtained in the FLEX
approximation is in a qualitatively good agreement with that obtained in QMC simulation,
although there are quantitative differences at a certain wave vector [60], as shown in Figs. 2.4
and 2.5. In particular, we see from these figures that the agreement is better for ⟨n⟩ = 1
than for ⟨n⟩ = 0.875. This indicates that when a system is located nearer to an AF QCP, the
more suitable the FLEX approximation is. Note that parquet approximation, whose results are
also compared with the others in Figs. 2.4 and 2.5, is one of the perturbation theories, where
the three kinds of the irreducible four-point VFs, i.e. longitudinal and transverse electron-hole
types and electron-electron type, are self-consistently determined by the (parquet type) Bethe-
Salpeter (BS) equations. Namely, the FLEX approximation corresponds to the first step in an
iterative solution of this parquet approximation.

On the other hand, when the value of U is very large, the FLEX approximation becomes
unsuitable for describing the electronic structures. This unsuitability arises from the inappro-
priate treatment of local correlation since local correlation becomes important for large values
of U [52, 64]. Actually, in the FLEX approximation, the incoherent peak in electronic spectrum,
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Figure 2.4: Single-particle Green’s function obtained in several methods for the single-
orbital Hubbard model. 8× 8 meshes are used and ⟨n⟩ is fixed at 1. We see the better
agreement between the results of the QMC simulation and the FLEX approximation
than the agreement between those of the QMC simulation and the parquet approxi-
mation. The situation becomes opposite for ⟨n⟩ = 0.875, i.e. away from half-filling.
Reprinted from Ref. [60], “Copyright 1991 by the American Physical Society”.

Figure 2.5: Single-particle Green’s function obtained in some methods for the single-
orbital Hubbard model. 8 × 8 meshes are used and ⟨n⟩ is fixed at 0.875. We see the
worse agreement between the results of the QMC simulation and the FLEX approx-
imation than the agreement between those of the QMC simulation and the parquet
approximation. The situation becomes opposite for ⟨n⟩ = 1, i.e. half-filling. Reprinted
from Ref. [60], “Copyright 1991 by the American Physical Society”.

which arises from local correlation, is smeared out for large values of U at half-filling [Figs. 2.6
(b)], although in the second-order and the fourth-order perturbation theories, the incoherent
peak appears [compare Figs. 2.6 (a) and (c)] [56].

However, the FLEX approximation can capture the pseudo-gap behavior near the Fermi
level due the momentum dependence of the QP damping, which is induced by the enhanced AF
SF; the similar pseudo-gap behavior is obtained in the fourth-order perturbation theory [Fig.
2.6 (c)], although the second-order perturbation theory is insufficient to capture this behavior
[Fig. 2.6 (a)].

From these comparisons, it is deduced that the FLEX approximation can appropriately
describe only the coherent part of electronic spectrum and cannot appropriately describe the
incoherent part due to local correlation. In particular, the FLEX approximation can capture
the pseudo-gap behavior near the Fermi level [56, 63], which is one of the unusual electronic
behaviors in SCESs. However, this approximation cannot capture the Mott transition due to
local correlation [64, 65, 66].

It should be noted that it is better to describe the transport properties such as the resistivity
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Figure 2.6: DOS obtained in (a) the second-order perturbation theory, (b) the FLEX
approximation, and (c) the fourth-order perturbation theory for some values of u = U/t
by using the Padé approximation. 64 × 64 meshes and 1024 Matsubara frequencies
are used. There are two remarks to be drawn. One is that the pseudo-gap behavior
near the Fermi level is obtained in the fourth-order perturbation theory and the FLEX
approximation, while the second-order perturbation theory is insufficient to describe
this. The other remark is that the incoherent peak appears in the second-order and the
fourth-order perturbation theories, although at the same value of u the incoherent part
is smeared out in the FLEX approximation. Reprinted from Ref. [56], “Copyright
2008 by Physical Society of Japan”.

and the Hall coefficient by the FLEX approximation than the electronic structures since the
importance of the coherent part of electronic spectrum, which can be well treated in the FLEX
approximation, becomes more significant for these transport properties in metallic phases.

Since the similar result with the results described above will be obtained even in multi-orbital
Hubbard models on a 2D square lattice, I conclude that the FLEX approximation is suitable
for describing the electronic properties and the transport properties at low temperatures with
moderately strong electron correlation qualitatively.

Note that the single-particle Green’s function obtained in the FLEX approximation is not
perfectly the same as that for the standard FL theory [10, 16], where the momentum dependence
of the QP damping is neglected. This is the reason why I use the word of the microscopic FL
theory instead of the FL theory in the formulations of the resistivity and the Hall coefficient. As
I will show in §2.3, I assume that the main contribution of the single-particle Green’s function
arises from the coherent part of the electronic spectrum, which is not perfectly the same as
the standard FL theory but has the similar singularity in ω-limit or q-limit, and derive the
transport coefficients.

2.3 Transport coefficients on the basis of the microscopic FL
theory

In this section, I give the general derivations of the resistivity and the Hall coefficient in the
weak-field limit for multi-orbital systems on the basis of the microscopic FL theory. These
derivations are just the extension of those [8, 9] in the single-orbital case.

In the following, let us consider the in-plane current and a short-ranged interacting system
with orbital degrees of freedom. In the case of a short-ranged interacting system, the singularity
of the two-particle Green’s function, which appears in the conductivities, in q-limit or ω-limit
arises from the product of the single-particle Green’s functions whose poles coincide [10, 16]. In
the case of a long-ranged interacting system, the singularity arises not only from that product
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but also the direct term of interaction. The change of the treatment from the formulation
presented below is just the replacement of the kind of the unit of the summation of the four-
point VF from irreducible to proper irreducible [10]. Here we call proper all diagrams that
cannot be split into two parts by removing a single interaction line [10].

2.3.1 Resistivity

I begin with the general derivation of the resistivity for multi-orbital systems by extending that
for single-orbital systems, given by G. M. Éliashberg [8].

The outline of the derivation is as follows. Since the resistivity is the inverse of the static
longitudinal conductivity, we consider the longitudinal conductivity on the basis of the Kubo
formula [67]. After carrying out the analytic continuations of the terms appearing in the lon-
gitudinal conductivity, the exact expression is obtained. In particular, the expression can be
written in a more compact form by using the three-point vector VF, which is the current includ-
ing all the corrections due to electron correlation, instead of the irreducible four-point VF. Since
the exact expression is difficult to solve, we consider a simplified case: only the most divergent
terms with respect to the QP lifetime are taken into account. This procedure is based on the
microscopic FL theory, and is correct in the coherent limit, i.e. the QP dampings at all the wave
vectors are small compared with temperature considered. In addition, this procedure remains
approximately correct, even when QP dampings at some wave vectors are not small compared
with temperature considered. The reason is that in that case the QP dampings at the others are
small and electrons at these wave vectors lead to the dominant contributions to the transport
properties such as the resistivity. In this treatment, the longitudinal conductivity is given by
the terms related to the retarded-advanced pair of the single-particle Green’s function since that
pair is proportional to the QP lifetime and the other pairs (i.e. retarded-retarded and advanced-
advanced types) are of higher order. Thus, the longitudinal conductivity is proportional to the
linear term with respect to the QP lifetime in this treatment.

From the Kubo formula [67], the longitudinal conductivity is given by

σxx = 2e2
∑
k,k′

∑
{a}

(vkx)ba(vk′x)cd lim
ω→0

K̃
(R)
abcd(k,k

′;ω)− K̃
(R)
abcd(k,k

′; 0)

iω
, (2.19)

Here 2 is the factor of the spin degeneracy, (vkx)ba is

(vkx)ba =
∑
α
(Uk)b;α

∂ϵα(k)

∂kx
(U †

k)α;a, (2.20)

and K̃
(R)
abcd(k,k

′;ω) is obtained by the analytic continuation of K̃abcd(k,k
′; iΩn), which is

K̃abcd(k,k
′; iΩn) =

1

N

∫ β

0
dτeiΩnτ ⟨Tτ ĉ

†
kb(τ)ĉka(τ)ĉ

†
k′cĉk′d⟩

= − δk,k′
T

N

∑
m

Gac(k, iϵm + iΩn)Gdb(k, iϵm)

− T 2

N

∑
m,m′

∑
{A}

GaA(k, iϵm + iΩn)GdD(k
′, iϵm′)Γ{A}(k, k

′; iΩn)

×GBb(k, iϵm)GCc(k
′, iϵm′ + iΩn). (2.21)
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Figure 2.8: Relation between the reducible and the irreducible four-point VF. Black
(white) square represents the reducible (irreducible) four-point VF.

The corresponding diagrammatic representation is given in Fig. 2.7. Here Γ{A}(k, k
′; iΩn) is the

reducible four-point VF, which is related to the irreducible four-point VF by the BS equation,
as shown in Fig. 2.8, and I have used the following abbreviation:

Γ{A}(k, k
′; iΩn) ≡ ΓABCD(k, iϵm + iΩn,k, iϵm;k′, iϵm′ + iΩn,k

′, iϵm′). (2.22)

Thus, in order to obtain the longitudinal conductivity, we have to carry out the analytic
continuation of K̃abcd(k, k

′; iΩn) with respect to Matsubara frequencies to real frequency plane.
It should be noted that iΩn → ω+i0+ is carried out after taking the summation with respect to
Matsubara frequencies. (Simple cases of the analytic continuation are explained in a standard
textbook [16].)

For the first term of Eq. (2.21), the analytic continuation is simple, and the result is

− δk,k′
T

N

∑
m

Gac(k, iϵm + iΩn)Gdb(k, iϵm)

=− δk,k′
1

N

∫
C

dϵ

4πi
tanh

ϵ

2T
Gac(k, ϵ+ iΩn)Gdb(k, ϵ)

=− δk,k′
1

N

∫ ∞

−∞

dϵ

4πi

[
tanh

ϵ

2T
G(R)

ac (k, ϵ+ iΩn)
(
G

(R)
db (k, ϵ)−G

(A)
db (k, ϵ)

)
+ tanh

ϵ

2T

(
G(R)

ac (k, ϵ)−G(A)
ac (k, ϵ)

)
G

(A)
db (k, ϵ− iΩn)

]
→− δk,k′

1

N

∫ ∞

−∞

dϵ

4πi

[
tanh

ϵ

2T
g1;acdb(k;ω) +

(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;acdb(k;ω)

− tanh
ϵ+ ω

2T
g3;acdb(k;ω)

]
, (2.23)

where the contour C is shown in Fig. 2.9 (a), → represents iΩn → ω + i0+, and

g1;acdb(k;ω) = G(R)
ac (k, ϵ+ ω)G

(R)
db (k, ϵ), (2.24)

g2;acdb(k;ω) = G(R)
ac (k, ϵ+ ω)G

(A)
db (k, ϵ), (2.25)

g3;acdb(k;ω) = G(A)
ac (k, ϵ+ ω)G

(A)
db (k, ϵ). (2.26)
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Figure 2.9: Contours (a) C and (b) C′ used for the analytic continuations of the first
and the second terms of Eq. (2.21). Note that (b) is one of the orderings of the
locations of the poles, and there are the other orderings (see Fig. 2.10).

As I will explain below, g2;acdb(k;ω), which is proportional to the liner term of the QP lifetime,
is most important when we consider the most divergent contributions with respect to the QP
lifetime to the conductivities.

For the second term of Eq. (2.21), the analytic continuation is complicated but can be
carried out by paying careful attention to several points explained below.

In order to carry out the analytic continuation of the second term of Eq. (2.21), it is
necessary to elucidate the analytic properties of the four-point VF.

For this purpose, it is sufficient to elucidate the analytic properties of the two-particle Green’s
function since that is connected with the four-point VF by the BS equation [10]. The analytic
properties of the two-particle Green’s function, K(ϵ, ϵ′;ω) with the complex variables, ϵ, ϵ′, and
ω, are elucidated by the Lehmann representation. [For brevity, parameters of K(ϵ, ϵ′;ω) except
the Matsubara frequencies are discarded here.] Note that the Lehmann representation is given
by

K(ϵ, ϵ′;ω)

=
1

Z

1

T

∑
α1,α2,α3,α4

A(α1, α2, α3, α4)

×
[ e−E1/TΠj ̸=1(e

∆E1j/T + 1)

(∆E21 − ϵ− ω)(∆E31 − ϵ− ϵ′ − ω)(∆E41 − ϵ)
−

e−E2/TΠj ̸=2(e
∆E2j/T + 1)

(∆E12 + ϵ+ ω)(∆E32 − ϵ′)(∆E42 + ω)

+
e−E3/TΠj ̸=3(e

∆E3j/T + 1)

(∆E13 + ϵ+ ϵ′ + ω)(∆E23 + ϵ′)(∆E43 + ϵ′ + ω)
−

e−E4/TΠj ̸=4(e
∆E4j/T + 1)

(∆E14 + ϵ)(∆E24 − ω)(∆E34 − ϵ′)

]
,

(2.27)

where Z is the grand partition function, ∆Eij = Ei − Ej , and A(α1, α2, α3, α4) represents the
product of the matrix elements of the annihilation and the creation operators.

Since the important points for the discussions about the analytic properties are the denom-
inators of Eq. (2.27), we find that the two-particle Green’s function has singularities when

Imϵ = 0, (Imϵ+ Imω) = 0, Imϵ′ = 0, (Imϵ′ + Imω) = 0,

(Imϵ+ Imϵ′ + Imω) = 0, (Imϵ− Imϵ′) = 0. (2.28)

Thus, the whole space of the variables ϵ, ϵ′, and ω is divided into several regions, shown in Fig.
2.10. As I will show below, the contributions from the regions 22-II, 22-III, and 22-IV are very
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Figure 2.10: Several regions dividing the whole space of the complex variables ϵ, ϵ′,
and ω of K(ϵ, ϵ′;ω).

important since these connect with the retarded-advanced pair of the single-particle Green’s
function, which gives the dominant contributions.

Using these analytic properties and paying careful attention to the inequalities that the
three complex variables satisfy, we can carry out the analytic continuations of the second term
of Eq. (2.21):

− T 2

N

∑
m,m′

∑
{A}

GaA(k, iϵm + iΩn)GdD(k
′, iϵm′)Γ{A}(k, k

′; iΩn)GBb(k, iϵm)GCc(k
′, iϵm′ + iΩn)

=− 1

N

∫
C

dϵ

4πi
tanh

ϵ

2T

∑
{A}

GaA(k, ϵ+ iΩn)GBb(k, ϵ)

×
[∫

C′

dϵ′

4πi
tanh

ϵ′

2T
GdD(k

′, ϵ′)Γ{A}(k, ϵ+ iΩn,k, ϵ;k
′, ϵ′ + iΩn,k

′, ϵ′)GCc(k
′, ϵ′ + iΩn)

+ TGdD(k
′, ϵ)Γ{A}(k, ϵ+ iΩn,k, ϵ;k

′, ϵ+ iΩn,k
′, ϵ)GCc(k

′, ϵ+ iΩn)

+ TGdD(k
′,−ϵ− iΩn)Γ{A}(k, ϵ+ iΩn,k, ϵ;k

′,−ϵ,k′,−ϵ− iΩn)GCc(k
′,−ϵ)

]
→− 1

N

∫ ∞

−∞

dϵ

4πi

[
tanh

ϵ

2T

∑
{A}

g1;aABb(k;ω)
∫∞
−∞

dϵ′

4πi

3∑
l=1

J1l;{A}(k, k
′;ω)gl;CcdD(k

′;ω)

+
(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

) ∑
{A}

g2;aABb(k;ω)
∫∞
−∞

dϵ′

4πi

3∑
l=1

J2l;{A}(k, k
′;ω)gl;CcdD(k

′;ω)

− tanh
ϵ+ ω

2T

∑
{A}

g3;aABb(k;ω)
∫∞
−∞

dϵ′

4πi

3∑
l=1

J3l;{A}(k, k
′;ω)gl;CcdD(k

′;ω)
]
, (2.29)
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where the contours C and C′ are shown in Figs. 2.9 (a) and (b), and Jll′;{A}(k, k
′;ω) is

J11;{A}(k, k
′;ω) = tanh

ϵ′

2T
ΓI
11;{A}(k, k

′;ω)

+ coth
ϵ′ − ϵ

2T

[
ΓII
11;{A}(k, k

′;ω)− ΓI
11;{A}(k, k

′;ω)
]
, (2.30)

J12;{A}(k, k
′;ω) =

(
tanh

ϵ′ + ω

2T
− tanh

ϵ′

2T

)
Γ12;{A}(k, k

′;ω), (2.31)

J13;{A}(k, k
′;ω) =− tanh

ϵ′ + ω

2T
ΓI
13;{A}(k, k

′;ω)

− coth
ϵ+ ϵ′ + ω

2T

[
ΓII
13;{A}(k, k

′;ω)− ΓI
13;{A}(k, k

′;ω)
]
, (2.32)

J21;{A}(k, k
′;ω) = tanh

ϵ′

2T
Γ21;{A}(k, k

′;ω), (2.33)

J22;{A}(k, k
′;ω) = coth

ϵ′ − ϵ

2T

[
ΓII
22;{A}(k, k

′;ω)− ΓIII
22;{A}(k, k

′;ω)
]

+ coth
ϵ′ + ϵ+ ω

2T

[
ΓIII
22;{A}(k, k

′;ω)− ΓIV
22;{A}(k, k

′;ω)
]

− tanh
ϵ′

2T

[
ΓII
22;{A}(k, k

′;ω)− ΓIV
22;{A}(k, k

′;ω)
]
, (2.34)

J23;{A}(k, k
′;ω) =− tanh

ϵ′ + ω

2T
Γ23;{A}(k, k

′;ω), (2.35)

J31;{A}(k, k
′;ω) = tanh

ϵ′

2T
ΓI
31;{A}(k, k

′;ω)

+ coth
ϵ+ ϵ′ + ω

2T

[
ΓII
31;{A}(k, k

′;ω)− ΓI
31;{A}(k, k

′;ω)
]
, (2.36)

J32;{A}(k, k
′;ω) =

(
tanh

ϵ′ + ω

2T
− tanh

ϵ′

2T

)
Γ32;{A}(k, k

′;ω), (2.37)

J33;{A}(k, k
′;ω) =− tanh

ϵ′ + ω

2T
ΓI
33;{A}(k, k

′;ω)

− coth
ϵ′ − ϵ

2T

[
ΓII
33;{A}(k, k

′;ω)− ΓI
33;{A}(k, k

′;ω)
]
. (2.38)

Note that the contributions from the poles of ϵ′ = iϵm, 0, −iΩn, and −iϵm − iΩn to the second
term of Eq. (2.21) are given by

− 1

N

∑
{A}

∫∞
−∞

dϵ
4πi

∫∞
−∞

dϵ′

4πi coth
ϵ′−ϵ
2T

{(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;aABb(k;ω)

×
[
ΓII
22;{A}(k, k

′;ω)− ΓIII
22;{A}(k, k

′;ω)
]
g2;CcdD(k

′;ω)

− tanh
ϵ+ ω

2T
g3;aABb(k;ω)

[
ΓI
33;{A}(k, k

′;ω)− ΓII
33;{A}(k, k

′;ω)
]

× g3;CcdD(k
′;ω)

+ tanh
ϵ

2T
g1;aABb(k;ω)

[
ΓII
11;{A}(k, k

′;ω)− ΓI
11;{A}(k, k

′;ω)
]

× g1;CcdD(k
′;ω)

}
, (2.39)
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− 1

N

∑
{A}

∫∞
−∞

dϵ
4πi

∫∞
−∞

dϵ′

4πi tanh
ϵ′

2T

{(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;aABb(k;ω)

×
[
Γ21;{A}(k, k

′;ω)g1;CcdD(k
′;ω)

− ΓII
22;{A}(k, k

′;ω)g2;CcdD(k
′;ω)

]
− tanh

ϵ+ ω

2T
g3;aABb(k;ω)

[
ΓI
31;{A}(k, k

′;ω)g1;CcdD(k
′;ω)

− Γ32;{A}(k, k
′;ω)g2;CcdD(k

′;ω)
]

+ tanh
ϵ

2T
g1;aABb(k;ω)

[
ΓI
11;{A}(k, k

′;ω)g1;CcdD(k
′;ω)

− Γ12;{A}(k, k
′;ω)g2;CcdD(k

′;ω)
]}

,

(2.40)

− 1

N

∑
{A}

∫∞
−∞

dϵ
4πi

∫∞
−∞

dϵ′

4πi tanh
ϵ′+ω
2T

{(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;aABb(k;ω)

×
[
ΓIV
22;{A}(k, k

′;ω)g2;CcdD(k
′;ω)

− Γ23;{A}(k, k
′;ω)g3;CcdD(k

′;ω)
]

− tanh
ϵ+ ω

2T
g3;aABb(k;ω)

[
Γ32;{A}(k, k

′;ω)g2;CcdD(k
′;ω)

− ΓI
33;{A}(k, k

′;ω)g3;CcdD(k
′;ω)

]
+ tanh

ϵ

2T
g1;aABb(k;ω)

[
Γ12;{A}(k, k

′;ω)g2;CcdD(k
′;ω)

− ΓI
13;{A}(k, k

′;ω)g3;CcdD(k
′;ω)

]}
,

(2.41)

and

− 1

N

∑
{A}

∫∞
−∞

dϵ
4πi

∫∞
−∞

dϵ′

4πi coth
ϵ′+ϵ+ω

2T

{(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;aABb(k;ω)

×
[
ΓIII
22;{A}(k, k

′;ω)− ΓIV
22;{A}(k, k

′;ω)
]
g2;CcdD(k

′;ω)

− tanh
ϵ+ ω

2T
g3;aABb(k;ω)

[
ΓII
31;{A}(k, k

′;ω)− ΓI
31;{A}(k, k

′;ω)
]

× g1;CcdD(k
′;ω)

+ tanh
ϵ

2T
g1;aABb(k;ω)

[
ΓI
13;{A}(k, k

′;ω)− ΓII
13;{A}(k, k

′;ω)
]

× g3;CcdD(k
′;ω)

}
, (2.42)

respectively.
There are two remarks about quantities in Eq. (2.29). One is that in Eq. (2.29), I do not

explicitly write whether the integral with respect to ϵ′ is the principal integral or not for brevity:
the integral is the principal integral when the coth terms in Jij;{A}(k, k

′;ω) are calculated. (The
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Figure 2.11: Relation between the irreducible four-point VF and the three-point vector
VF. The first term of the right-hand side represents (vkµ)ab.

numerical treatment of such principal integral will be explained in §3.) The other is that for
the analytic continuation with respect to iϵm′ , the additional terms appears since C′ does not
contain the poles of ϵ′ = ϵ and ϵ′ = −ϵ− iΩn. These additional terms are canceled out with the
contributions from the integrals around the points ϵ′ = ϵ and ϵ′ = −ϵ− iΩn, and the remaining
terms about the upper and the lower lines along ϵ′ = ϵ and ϵ′ = −ϵ− iΩn become the principal
integrals.

Combining Eq. (2.29) with Eq. (2.23), we find

K̃
(R)
abcd(k,k

′;ω) = − 1

N

∫ ∞

−∞

dϵ

4πi

[
tanh

ϵ

2T

∑
A,B

g1;aABb(k;ω)

×
(
δk,k′δc,Aδd,B +

∫ ∞

−∞

dϵ′

4πi

∑
C,D

3∑
l=1

J1l;{A}(k, k
′;ω)gl;CcdD(k

′;ω)
)

+
(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

) ∑
A,B

g2;aABb(k;ω)

×
(
δk,k′δc,Aδd,B +

∫ ∞

−∞

dϵ′

4πi

∑
C,D

3∑
l=1

J2l;{A}(k, k
′;ω)gl;CcdD(k

′;ω)
)

− tanh
ϵ+ ω

2T

∑
A,B

g3;aABb(k;ω)

×
(
δk,k′δc,Aδd,B +

∫ ∞

−∞

dϵ′

4πi

∑
C,D

3∑
l=1

J3l;{A}(k, k
′;ω)gl;CcdD(k

′;ω)
)]

.

(2.43)

Then, in order to write the longitudinal conductivity in a more compact form, let us intro-
duce the three-point vector VF (µ = x, y), which is the current including all the corrections due
to electron correlation,

Λµ;ab(k; q) = Λµ;ab(k + q, iϵm + iΩn,k, iϵm)

= (vkµ)ab +
T

N

∑
k′

∑
{A}

ΓabCD(k, k
′; q)GBD(k

′)GCA(k
′ + q)(vk′µ)AB (2.44)

= (vkµ)ab +
T

N

∑
k′

∑
{A}

Γ
(1)
abCD(k, k

′; q)GBD(k
′)GCA(k

′ + q)Λµ;AB(k
′; q), (2.45)

where we have used the relation between ΓabCD(k, k
′, q) and Γ

(1)
abCD(k, k

′, q), shown in Fig. 2.8.
The corresponding diagrammatic representation of Eq. (2.45) is shown in Fig. 2.11. It is noted
that the second term of Eq. (2.45) is called the CVC since this term represents the correction
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Figure 2.12: Contours used for the analytic continuations of the three-point vector
VF. There are three possibilities of the three-point vector VF in real frequency repre-
sentation, which is characterized by the inequalities of the Matsubara frequencies of
the outgoing and the incoming lines: iϵm > 0 and iϵm + iΩn > 0 in (a), iϵm < 0 and
iϵm + iΩn > 0 in (b), and iϵm < 0 and iϵm + iΩn < 0 in (c), respectively.

term to the current due to the four-point VF. It is also noted that by using Eqs. (2.21) and
(2.45), we have

∑
k,k′

∑
{a}

(vkx)ba(vk′x)cdK̃abcd(k,k
′; iΩn)

=− T

N

∑
k

∑
{a}

(vkx)baGac(k, iϵm + iΩn)Gdb(k, iϵm)Λx;cd(k; q = 0, iΩn). (2.46)

Before going to the analytic continuation of the three-point vector VF, I remark that the
CVC plays very important roles in discussing the transport properties. In particular, this CVC
is necessary to obtain the thermodynamically consistent results about transport. Note that the
thermodynamically consistent result means the correct result, where conservation laws satisfy.
One of the examples of the importance is the absence of the resistivity in the continuum, where
there is no Umklapp process [68]. Namely, the physically correct conductivity is obtained only
when the CVC, which is neglected in the relaxation time approximation [57], is correctly taken
into account. Such treatment also plays an important role in discussing the Drude weight: the
renormalization of the Drude weight is absent in the continuum, and the renormalization arises
from the Umklapp process [69]. Furthermore, the absence of the renormalization of the electron
cyclotron frequency in the continuum, i.e. Kohn’s theorem, results from the conservation law [70,
71].

The analytic continuation of the three-point vector VF is easily carried out by using the
three kinds of contours shown in Figs. 2.12 (a)–(c). These kinds are originated from the time
orderings of the outgoing and the incoming lines: iϵm > 0 and iϵm + iΩn > 0, iϵm < 0 and
iϵm + iΩn > 0, and iϵm < 0 and iϵm + iΩn < 0. Since the second term of Eq. (2.45) can be
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rewritten as

T

N

∑
k′

∑
{A}

ΓabCD(k, k
′; q)GBD(k

′)GCA(k
′ + q)(vk′µ)AB

=
1

N

∑
k′

∑
{A}

[∫∞
−∞

dϵ′

4πi tanh
ϵ′

2T ΓabCD(k, iϵm,k′, ϵ′; q, iΩn)GBD(k
′, ϵ′)GCA(k

′ + q, ϵ′ + iΩn)

+ TΓabCD(k, iϵm,k′, iϵm; q, iΩn)GBD(k
′, iϵm)GCA(k

′ + q, iϵm + iΩn)

+ TΓabCD(k, iϵm,k′,−iϵm − iΩn; q, iΩn)GBD(k
′,−iϵm − iΩn)GCA(k

′ + q,−iϵm)
]
(vk′µ)AB,

(2.47)

the three-point vector VF in real frequency representation is

Λµ;j;ab(k; q) = (vkµ)ab +
1

N

∑
k′

∑
{A}

3∑
l=1

∫∞
−∞

dϵ
4πiJjl;abCD(k, k

′; q)gl;CABD(k
′; q)(vkµ)AB (2.48)

= (vkµ)ab +
1

N

∑
k′

∑
{A}

3∑
l=1

∫∞
−∞

dϵ
4πiJ

(1)
jl;abCD(k, k

′; q)gl;CABD(k
′; q)Λµ;l;AB(k; q),

(2.49)

where j = 1, 2, 3 of Λµ;j;ab(k; q) correspond to Figs. 2.12 (a), (b), (c), respectively. Similarly
to case of the analytic continuation of the second term of Eq. (2.21), I do not explicitly write
whether the integral with respect to ϵ′ is the principal integral or not, for brevity: the integral
is the principal integral when the coth terms in Jij;{A}(k, k

′;ω) are calculated. In addition, the
reason why the additional terms appear in Eq. (2.47) is the same as the case of the analytic
continuation of the second term of Eq. (2.21): the contour, C′, does not contain the poles of
ϵ′ = iϵm and ϵ′ = −iϵm − iΩn.

Using this three-point vector VF, we have∑
k

∑
{a}

(vkx)ba(vkx)cdK̃
(R)
abcd(k,k

′;ω)

= − 1

N

∑
k

∑
{a}

(vkx)ba
∫∞
−∞

dϵ
4πi

[
tanh ϵ

2T g1;acdb(k;ω)Λx;1;cd(k;ω)

+
(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;acdb(k;ω)Λx;2;cd(k;ω)

− tanh
ϵ+ ω

2T
g3;acdb(k;ω)Λx;3;cd(k;ω)

]
. (2.50)

Although this expression is exact, it is difficult to solve. Thus, a simplified treatment is neces-
sary.

In order to proceed with the calculation, let us consider only the most divergent terms with
respect to the QP lifetime. In this case, the leading contributions arise from only g2;{a}(k;ω)
terms since the singularity appears only when the poles of the factors of the Green’s function
coincide [10, 16]. We recall that only for the retarded-advanced pair, g2;{a}(k;ω), the pair of the

single-particle Green’s functions has the term such as 2πz2kδ(ϵ−ξ∗(k))/(−iω−2zkImΣ(R)(k, ϵ)),
the linear term of the QP lifetime (in case of multi-orbital systems, the indices of the QP bands
are added) [10, 16], and that for the other pairs, the QP lifetime dependence is negligible within
the linear order. Although this expression is the result in the standard FL theory [10, 16], the
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similar QP lifetime dependence will be realized even in microscopic perturbation theories, in
which the single-particle Green’s function obtained is not the same as that in the standard FL
theory.

Since the leading contributions arise from only g2;{a}(k;ω) terms, we introduce the quantities,

J (0)
ij;{a}(k, k

′;ω) and Λ
(0)
µ;i;ab(k;ω), which do not contain g2;{a}(k;ω):

J (0)
ij;{a}(k, k

′;ω) = J (1)
ij;{a}(k, k

′;ω) +
∑
l ̸=2

1

N

∑
k′′

∑
{A}

∫∞
−∞

dϵ′′

4πiJ
(0)
il;abCD(k, k

′′;ω)

× gl;CABD(k
′′;ω)J (1)

lj;ABcd(k
′′, k′;ω), (2.51)

Λ
(0)
µ;i;ab(k;ω) = (vkµ)ab +

∑
{A}

∑
j ̸=2

1

N

∑
k′

∫∞
−∞

dϵ′

4πiJ
(0)
ij;abCD(k, k

′;ω)gj;CABD(k
′;ω)(vk′µ)AB.

(2.52)

Note that Λ
(0)
µ;i;ab(k;ω) can be regarded as irreducible with respect to retarded-advanced pairs.

By using these quantities, we obtain

∑
k

∑
{a}

(vkx)ba(vkx)cdK̃
(R)
abcd(k,k

′;ω)

= − 1

N

∑
k

∑
{a}

(vkx)ba
∫∞
−∞

dϵ
4πi

[
tanh ϵ

2T g1;acdb(k;ω)Λ
(0)
x;1;cd(k;ω)

− tanh
ϵ+ ω

2T
g3;acdb(k;ω)Λ

(0)
x;3;cd(k;ω)

]
− 1

N

∑
k

∑
{a}

Λ
(0)
x;2;ba(k;ω)

∫∞
−∞

dϵ
4πi

(
tanh ϵ+ω

2T − tanh ϵ
2T

)
g2;acdb(k;ω)Λx;2;cd(k;ω). (2.53)

Note that at this form, the longitudinal conductivity is exactly calculated. Here I have used the
exchange symmetry of the four-point VF in Matsubara frequency representation, e.g. Γ(1234) =

Γ(3412), and the equations for J (0)
ll′;{A}(k, k

′;ω), which are the replaced versions of Eqs. (2.31)

and (2.33) and Eqs. (2.32), (2.36). To be precise, these are used to rewrite the second terms of

Λ
(0)
x;1;ba and Λ

(0)
x;3;ba in Eq. (2.52) since the following relations are obtained by using these:

− 1

N

∑
k

∑
{a}

∫∞
−∞

dϵ
4πi(vkx)ba tanh

ϵ
2T g1;acdb(k;ω)

× 1

N

∑
k′

∑
{A}

∫∞
−∞

dϵ′

4πiJ
(0)
12;cdCD(k, k

′;ω)g2;CABD(k
′;ω)Λx;2;AB(k

′;ω)

=− 1

N

∑
k

∑
{a}

∫∞
−∞

dϵ
4πi

[
1
N

∑
k′

∑
{A}

∫∞
−∞

dϵ′

4πiJ
(0)
21;baBA(k, k

′;ω)g1;BDCA(k
′;ω)(vk′x)DC

]
×

(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;acdb(k;ω)Λx;2;AB(k;ω), (2.54)
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and

− 1

N

∑
k

∑
{a}

∫∞
−∞

dϵ
4πi(vkx)ba

(
− tanh ϵ+ω

2T

)
g3;acdb(k;ω)

× 1

N

∑
k′

∑
{A}

∫∞
−∞

dϵ′

4πiJ
(0)
32;cdCD(k, k

′;ω)g2;CABD(k
′;ω)Λx;2;AB(k

′;ω)

=− 1

N

∑
k

∑
{a}

∫∞
−∞

dϵ
4πi

[
1
N

∑
k′

∑
{A}

∫∞
−∞

dϵ′

4πiJ
(0)
23;baBA(k, k

′;ω)g3;BDCA(k
′;ω)(vk′x)DC

]
×

(
tanh

ϵ+ ω

2T
− tanh

ϵ

2T

)
g2;acdb(k;ω)Λx;2;AB(k;ω). (2.55)

Since the dominant contributions arise from the second term of Eq. (2.53), we get finally

σxx =
2e2

N

∑
k

∑
{a}

∫∞
−∞

dϵ
2πΛ

(0)
x;2;ba(k; 0)g2;acdb(k; 0)Λx;2;cd(k; 0)

(
−∂f(ϵ)

∂ϵ

)
. (2.56)

where

Λx;2;cd(k; 0) = Λ
(0)
x;2;cd(k; 0) +

1

N

∑
k′

∑
{A}

∫∞
−∞

dϵ′

4πiJ
(0)
22;cdCD(k, k

′; 0)g2;CABD(k
′; 0)Λµ;2;AB(k; 0),

(2.57)

and

Λ
(0)
µ;2;ba(k; 0) = (vkµ)ba +

∂

∂kµ
ReΣ

(R)
ba (k), (2.58)

which is one of the Ward identities [10, 72]. In deriving Eq. (2.56), I have used

tanh
ϵ+ ω

2T
− tanh

ϵ

2T
= 2ω

(
−∂f(ϵ)

∂ϵ

)
+O

((ω
T

)2)
. (2.59)

We see from Eq. (2.56) that the longitudinal conductivity is proportional to the linear term
with respect to the QP lifetime since the retarded-advanced pair, g2;CABD(k

′; 0), gives the linear
term. Also, we see from Eqs. (2.57), and (2.58) that electron correlation gives rise to both the
renormalization of the band velocity through the real part of the self-energy of electrons and
the correction to the current through the four-point VF. Namely, these are the modifications

from the result in the relaxation time approximation [57], where Λ
(0)
x;2;ba(k; 0) and Λx;2;cd(k; 0)

replace by (vkx)ba and (vkx)cd in Eq. (2.56), due to electron correlation.
To sum up, we can calculate the longitudinal conductivity by Eqs. (2.56), (2.57), and (2.58)

if we give the form of J (0)
22;abcd(k, k

′; 0), whose derivation in the FLEX approximation will be
explained in §2.4.

2.3.2 Hall coefficient in the weak-field limit

I go on to give the general derivation of the Hall coefficient for multi-orbital systems in the
weak-field limit (i.e. ωcτ ≪ 1) [57] by extending the formulation for single-orbital systems,
given by H. Kohno and K. Yamada [9]; τ and ωc are the mean free time of electrons and
the cyclotron frequency. Note that the formulation in the continuum has been given by H.
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Fukuyama et al. [73]. For simplicity, let us assume that the system has both the mirror planes
with respect to the xz- and yz-planes and the equivalence between the x- and the y-directions.
These assumptions are valid for Sr2RuO4.

The outline of the derivation is as follows. In order to calculate the Hall coefficient in
the weak-field limit, we consider uniform static weak magnetic field, H, applied along the z-
direction, and derive the expression of the transverse conductivity being proportional to H on
the basis of the Kubo formula [67]. For the actual formulation, the vector potential is used
instead of H. Before carrying out the analytic continuations, we calculate q-linear terms of
the transverse conductivity, which are the coefficients of the vector potential. In particular,
we consider a simplified case, which is similar to the case of the longitudinal conductivity, on
the basis of the microscopic FL theory: only the most divergent terms with respect to the
QP lifetime are taken into account. In this treatment, we can neglect the q-linear terms due
to the four-point and the six-point VFs, which are the next-leading terms compared with the
remaining terms. After calculating the q-linear terms, we carry out the analytic continuations in
a similar way to the case of the longitudinal conductivity. Taking limω→0 limq→0, we obtain the
transverse conductivity in the weak-field limit. In this treatment, the transverse conductivity
being proportional toH is proportional to the square term with respect to the QP lifetime, while,
as described in §2.3.1, the longitudinal conductivity withoutH is proportional to the linear term.
Combining the transverse conductivity formulated with the longitudinal conductivity derived
in §2.3.1, we obtain the Hall coefficient in the weak-field limit, which is independent of the QP
lifetime in the coherent limit.

Let us consider uniform static weak magnetic field, which is given by

H = ∇×A(r) = (0, 0,H). (2.60)

In particular, the effect is taken into account within the linear response. In this treatment, it
is sufficient to consider

A(r) = A(q)eiq·r, (2.61)

and the corrections of H to the Hamiltonian and the current operator are

Ĥext =−
∫

drĴ(r) ·A(r)

=− Ĵ(−q) ·A(q)

=− e
∑
k

∑
a,b

(vk)ba ·A(q)ĉ†
k+ q

2
b
ĉk− q

2
a, (2.62)

and

ĴH(q)− Ĵ(q) = −e2
∑
k

∑
a,b

A(q) ·∇k(vk)baĉ
†
kbĉka, (2.63)

respectively. In other words, when we consider uniform static magnetic field within the linear
response, the total Hamiltonian and the current operator become

Ĥ0 + Ĥint + Ĥext, (2.64)
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and

ĴH(−q) = e
∑
k

∑
a,b

(vk)baĉ
†
k+ q

2
b
ĉk− q

2
a − e2

∑
k

∑
a,b

A(−q) ·∇k(vk)baĉ
†
kbĉka, (2.65)

respectively. As describe in §2.1, Ĥ0 + Ĥint is given by Eq. (2.3).
In the weak-field limit, the Hall coefficient, RH, is given by

RH = lim
H→0

σ
(1)
xy

σ2
xx

1

H
, (2.66)

where σxx is the longitudinal conductivity without H, and σ
(1)
xy is the transverse conductivity

being proportional toH. Here we have used the equivalence between the x- and the y-directions,
which is one of the assumptions. Note that due to the assumptions about symmetry (i.e., two
mirror planes and the rotation axis) the Hall coefficient under the magnetic field along the
z-direction becomes scalar, although in general the Hall coefficient is a third-rank axial tensor.

Since we have derived the longitudinal conductivity without H in §2.3.1, the remaining

thing is to calculate σ
(1)
xy . Similarly to the case of the longitudinal conductivity, let us consider a

simplified case on the basis of the microscopic FL theory: only the most divergent contributions
with respect to the QP lifetime are taken into account.

I begin with the explanation about a calculation of the q-liner terms of the transverse
conductivity since H is related to the vector potential through the equation,

H = iq ×A(q)eiq·r = (0, 0, iqxAy(q)− iqyAx(q))e
iq·r. (2.67)

Note that limH→0 is equivalent to limq→0.
From the Kubo formula [67] for the transverse conductivity within the linear response of H,

σ
(1)
xy /H is obtained by

lim
H→0

σ
(1)
xy

H
= lim

ω→0
lim
q→0

σxy(q, ω)

iqxAy(q)− iqyAx(q)
e−iq·r. (2.68)

Note that it is known that the order of the limits in the right-hand side of Eq. (2.68) is very
important since the dynamic and uniform field (i.e. limω→0 limq→0) is necessary to obtain finite
currents; on the other hand, the static and non-uniform field (i.e. limq→0 limω→0) does not give
rise to currents due the screening induced by the modulations of the charge distribution [57, 74].
Here,

σxy(q, ω) = 2e3
∑

α=x,y

Φ
(R)
xyα(q, ω)− Φ

(R)
xyα(q, 0)

iω
Aα(q), (2.69)

and Φ
(R)
xyα(q;ω) is obtained by the analytic continuation of Φxyα(q), which is

Φxyα(q) =
1

e3
T

N

∫ β

0
dτ

∫ β

0
dτ ′eiΩn(τ−τ ′)⟨Tτ Ĵ

H
x (q, τ)ĴH

y (0, τ ′)⟩

=− δα,y
1

e

T

N

∫ β

0
dτ

∫ β

0
dτ ′eiΩn(τ−τ ′)⟨Tτ Ĵx(q, τ)

∑
k

∑
a,b

∂(vky)ba
∂kα

ĉ†kb(τ
′)ĉka(τ

′)⟩

+
1

e3
T

N

∫ β

0
dτ

∫ β

0
dτ ′

∫ β

0
dτ ′′eiΩn(τ−τ ′)⟨Tτ Ĵx(q, τ)Ĵy(0, τ

′)Ĵα(−q, τ ′′)⟩. (2.70)
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Figure 2.13: Diagrammatic representation of each term of Eq. (2.71); the first, the
second, the third, and the fourth terms correspond to (a), (b), (c), and (d), respectively.
× in (a) represents momentum derivative.

In deriving Eq. (2.70), I neglect the other A-linear term originated from ĴH
x (q, τ) since this

does not lead to a q-linear term, i.e. this term is q-independent. Thus, what we have to do are
to exclude the q-linear term of Φxyα(q; iΩn) and to carry out the analytic continuation of that.

Using the three-point vector VF, we can rewrite Eq. (2.70) as follows:

Φxyα(q) = δα,y
T

N

∑
k

∑
a,b,A,B

∂(vky)ba
∂kα

GaA(k−, iϵm)Λx;AB(k−, iϵm,k+, iϵm+n)GBb(k+, iϵm+n)

+
T

N

∑
k

∑
{a},f,g

Gfb(k−, iϵm)Λx;ba(k−, iϵm,k+, iϵm+n)Gad(k+, iϵm+n)

× Λα;gf (k+, iϵm,k−, iϵm)Gcg(k+, iϵm)Λy;dc(k+, iϵm+n,k+, iϵm)

+
T

N

∑
k

∑
{a},f,g

Gag(k+, iϵm+n)Λx;ba(k−, iϵm,k+, iϵm+n)Gcb(k−, iϵm)

× Λα;gf (k+, iϵm+n,k−, iϵm+n)Gfd(k−, iϵm+n)Λy;dc(k−, iϵm+n,k−, iϵm)

+
( T

N

)3 ∑
k,k′,k′′

∑
{a},f,g

∑
{A},F,G

GBb(k−, iϵm)Λx;ba(k−, iϵm,k+, iϵm+n)GaA(k+, iϵm+n)

×GGg(k
′′
+, iϵm′′)Λα;gf (k

′′
+, iϵm′′ ,k′′

−, iϵm′′)GfF (k
′′
−, iϵm′′)

×GDd(k
′, iϵm′+n)Λy;dc(k

′, iϵm′+n,k
′, iϵm′)GcC(k

′, iϵm′)

× Γ
(1)
3;ABCDFG(k+, iϵm+n,k−, iϵm;k′, iϵm′ ,k′, iϵm′+n;k

′′
−, iϵm′′ ,k′′

+, iϵm′′), (2.71)

where Γ
(1)
3;ABCDFG(k+, iϵm+n,k−, iϵm;k′, iϵm′ ,k′, iϵm′+n;k

′′
−, iϵm′′ ,k′′

+, iϵm′′) is the irreducible six-
point VF, k± = k ± q

2 , and ϵm+n = ϵm + Ωn. The diagrammatic representations of each term
of Eq. (2.71) is shown in Fig. 2.13.

In order to exclude the q-linear terms of Eq. (2.71), let us consider the contributions from
each term. For the pair of the single-particle Green’s functions, we have

GaA(k−, iϵm)GBb(k+, iϵm+n) = GaA(k, iϵm)GBb(k, iϵm+n)

+
∑

η=x,y

qη
2

[
GaA(k, iϵm)

←→
∂

∂kη
GBb(k, iϵm+n)

]
, (2.72)

40



[Ph.D. Thesis] January 2014

where

[
GaA(k, iϵm)

←→
∂

∂kη
GBb(k, iϵm+n)

]
≡ GaA(k, iϵm)

∂GBb(k, iϵm+n)

∂kη
− ∂GaA(k, iϵm)

∂kη
GBb(k, iϵm+n).

(2.73)

For the three-point vector VF for the y component, we have

Λy;dc(k±, iϵm+n,k±, iϵm) = Λy;dc(k, iϵm+n,k, iϵm)±
∑

η=x,y

qη
2

∂

∂kη
Λy;dc(k, iϵm+n,k, iϵm).

(2.74)

For the three-point vector VF for the x component, we have

Λx;AB(k−, iϵm,k+, iϵm+n) = Λx;AB(k, iϵm,k, iϵm+n) + ∆Λx;AB(k, iϵm,k, iϵm+n), (2.75)

where ∆Λx;AB(k, iϵm,k, iϵm+n) is determined by

∆Λx;AB(k, iϵm,k, iϵm+n) =
T

N

∑
k′

∑
{a}

Γ
(1)
ABcd(k, iϵm,k, iϵm+n;k

′, iϵm′ ,k′, iϵm′+n)

×
∑

η=x,y

qη
2

[
Gbd(k

′, iϵm′+n)

←→
∂

∂kη
Gca(k

′, iϵm′)
]
Λx;ab(k

′, iϵm′ ,k′, iϵm′+n)

+
T

N

∑
k′

∑
{a}

Γ
(1)
ABcd(k, iϵm,k, iϵm+n;k

′, iϵm′ ,k′, iϵm′+n)

×Gbd(k
′, iϵm′+n)Gca(k

′, iϵm′)∆Λx;ab(k
′, iϵm′ ,k′, iϵm′+n). (2.76)

In deriving Eq. (2.76) from Eq. (2.49), I neglect the q-linear term originated from the irreducible
four-point VF since this term gives the higher order contributions than the contributions from
retarded-advanced pairs [9]. For the three-point vector VF for the α component, there is no
q-linear term since the Matsubara frequencies of the outgoing and the incoming lines are the
same. Thus, we have ∑

f,g

Gfb(k−, iϵm)Λα;gf (k+, iϵm,k−, iϵm)Gcg(k+, iϵm)

=
∑
f,g

Gfb(k, iϵm)Λα;gf (k, iϵm,k, iϵm)Gcg(k, iϵm)

=
∂Gcb(k, iϵm)

∂kα
. (2.77)

In the final line, one of the Ward identities [10, 72] has been used. Note that in Eq. (2.77), the
Matsubara frequencies of the pair of the single-particle Green’s functions are the same, while in
Eq. (2.72), those are different. Namely, the contributions of the q-linear terms arising from the
pair with the same Matsubara frequencies are negligible since these terms are proportional to the
retarded-retarded or the advanced-advanced pair. For the irreducible six-point VFs, we neglect
the q-linear term due to the same reason why the irreducible four-point VF is neglected [9], as
described above.
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Substituting Eqs. (2.72), (2.74), (2.75), and (2.77) into Eq. (2.71) and neglecting the
q-linear terms of the irreducible four-point and the irreducible six-point VFs, we have

Φxyα(q)

= δα,y
T

N

∑
k

∑
a,b,A,B

∂(vky)ba
∂kα

GaA(k, iϵm)∆Λx;AB(k, iϵm,k, iϵm+n)GBb(k, iϵm+n)

+ δα,y
T

N

∑
k

∑
a,b,A,B

∂(vky)ba
∂kα

Λx;AB(k, iϵm,k, iϵm+n)
∑
η

qη
2

[
GaA(k, iϵm)

←→
∂

∂kη
GBb(k, iϵm+n)

]
+

T

N

∑
k

∑
{a}

∆Λx;ba(k, iϵm,k, iϵm+n)Gad(k, iϵm+n)
∂Gcb(k, iϵm)

∂kα
Λy;dc(k, iϵm+n,k, iϵm)

+
T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

∂Gad(k, iϵm+n)

∂kη

∂Gcb(k, iϵm)

∂kα
Λy;dc(k, iϵm+n,k, iϵm)

+
T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)Gad(k, iϵm+n)
∂Gcb(k, iϵm)

∂kα

∑
η

qη
2

∂Λy;dc(k, iϵm+n,k, iϵm)

∂kη

+
T

N

∑
k

∑
{a}

∆Λx;ba(k, iϵm,k, iϵm+n)Gcb(k, iϵm)
∂Gad(k, iϵm+n)

∂kα
Λy;dc(k, iϵm+n,k, iϵm)

− T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

∂Gcb(k, iϵm)

∂kη

∂Gad(k, iϵm+n)

∂kα
Λy;dc(k, iϵm+n,k, iϵm)

− T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)Gcb(k, iϵm)
∂Gad(k, iϵm+n)

∂kα

∑
η

qη
2

∂Λy;dc(k, iϵm+n,k, iϵm)

∂kη

+
( T

N

)3 ∑
k,k′,k′′

∑
{a}

∑
{A},F,G

GBb(k, iϵm)∆Λx;ba(k, iϵm,k, iϵm+n)GaA(k, iϵm+n)

× ∂GGF (k
′′, iϵm′′)

∂k′α
GDd(k

′, iϵm′+n)Λy;dc(k
′, iϵm′+n,k

′, iϵm′)GcC(k
′, iϵm′)

× Γ
(1)
3;ABCDFG(k, iϵm+n,k, iϵm;k′, iϵm′ ,k′, iϵm′+n;k

′′, iϵm′′ ,k′′, iϵm′′)

+
( T

N

)3 ∑
k,k′,k′′

∑
{a}

∑
{A},F,G

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

[
GBb(k, iϵm)

←→
∂

∂kη
GaA(k, iϵm+n)

]
× ∂GGF (k

′′, iϵm′′)

∂k′α
GDd(k

′, iϵm′+n)Λy;dc(k
′, iϵm′+n,k

′, iϵm′)GcC(k
′, iϵm′)

× Γ
(1)
3;ABCDFG(k, iϵm+n,k, iϵm;k′, iϵm′ ,k′, iϵm′+n;k

′′, iϵm′′ ,k′′, iϵm′′). (2.78)

In addition, the ninth and tenth terms of Eq. (2.78) can be written in a simpler form by
using Eqs. (2.49) and (2.76), the exchange symmetry of the irreducible four-point VF, used
in deriving Eq. (2.53), and the relation between the irreducible six-point and the irreducible
four-point VFs, which is( ∂

∂kα
+

∂

∂k′α

)
Γ
(1)
ABDC(k, iϵm+n,k, iϵm;k′, iϵm′+n,k

′, iϵm′)

=
T

N

∑
k′′

∑
F,G

Γ
(1)
3;ABCDFG(k, iϵm+n,k, iϵm;k′, iϵm′ ,k′, iϵm′+n;k

′′, iϵm′′ ,k′′, iϵm′′)
∂GGF (k

′′, iϵm′′)

∂k′′α
.

(2.79)
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After some straightforward calculations, the ninth and tenth terms of Eq. (2.78) become( T

N

)2 ∑
k,k′

∑
{a}

∑
{A}

GBb(k, iϵm)∆Λx;ba(k, iϵm,k, iϵm+n)GaA(k, iϵm+n)

×GDd(k
′, iϵm′+n)Λy;dc(k

′, iϵm′+n,k
′, iϵm′)GcC(k

′, iϵm′)

×
( ∂

∂kα
+

∂

∂k′α

)
Γ
(1)
ABDC(k, iϵm+n,k, iϵm;k′, iϵm′+n,k

′, iϵm′)

+
( T

N

)2 ∑
k,k′

∑
{a}

∑
{A}

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

[
GBb(k, iϵm)

←→
∂

∂kη
GaA(k, iϵm+n)

]
×GDd(k

′, iϵm′+n)Λy;dc(k
′, iϵm′+n,k

′, iϵm′)GcC(k
′, iϵm′)

×
( ∂

∂kα
+

∂

∂k′α

)
Γ
(1)
ABDC(k, iϵm+n,k, iϵm;k′, iϵm′+n,k

′, iϵm′)

=
T

N

∑
k

∑
a,b,A,B

GBb(k, iϵm)∆Λx;ba(k, iϵm,k, iϵm+n)GaA(k, iϵm+n)

× ∂

∂kα

[
Λy;AB(k, iϵm+n,k, iϵm)− (vky)AB

]
−
( T

N

)2 ∑
k,k′

∑
{a}

∑
{A}

GBb(k, iϵm)∆Λx;ba(k, iϵm,k, iϵm+n)GaA(k, iϵm+n)

× ∂

∂k′α

[
GDd(k

′, iϵm′+n)Λy;dc(k
′, iϵm′+n,k

′, iϵm′)GcC(k
′, iϵm′)

]
× Γ

(1)
ABDC(k, iϵm+n,k, iϵm;k′, iϵm′+n,k

′, iϵm′)

+
T

N

∑
k

∑
a,b,A,B

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

[
GBb(k, iϵm)

←→
∂

∂kη
GaA(k, iϵm+n)

]
× ∂

∂kα

[
Λy;AB(k, iϵm+n,k, iϵm)− (vky)AB

]
−
( T

N

)2 ∑
k,k′

∑
{a}

∑
{A}

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

[
GBb(k, iϵm)

←→
∂

∂kη
GaA(k, iϵm+n)

]
× ∂

∂k′α

[
GDd(k

′, iϵm′+n)Λy;dc(k
′, iϵm′+n,k

′, iϵm′)GcC(k
′, iϵm′)

]
× Γ

(1)
ABDC(k, iϵm+n,k, iϵm;k′, iϵm′+n,k

′, iϵm′)

=
T

N

∑
k

∑
a,b,A,B

{
∆Λx;ba(k, iϵm,k, iϵm+n)GBb(k, iϵm)GaA(k, iϵm+n)

+ Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

[
GBb(k, iϵm)

←→
∂

∂kη
GaA(k, iϵm+n)

]}
× ∂

∂kα

[
Λy;AB(k, iϵm+n,k, iϵm)− (vky)AB

]
− T

N

∑
k

∑
c,d,C,D

∆Λx;DC(k
′, iϵm′+n,k

′, iϵm′)

× ∂

∂k′α

[
GDd(k

′, iϵm′+n)Λy;dc(k
′, iϵm′+n,k

′, iϵm′)GcC(k
′, iϵm′)

]
. (2.80)
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Substituting Eq. (2.80) into Eq. (2.78), we obtain

Φxyα(q)

=
T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

∂Gad(k, iϵm+n)

∂kη

∂Gcb(k, iϵm)

∂kα
Λy;dc(k, iϵm+n;k, iϵm)

+
T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)Gad(k, iϵm+n)
∂Gcb(k, iϵm)

∂kα

∑
η

qη
2

∂Λy;dc(k, iϵm+n,k, iϵm)

∂kη

− T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

∂Gcb(k, iϵm)

∂kη

∂Gad(k, iϵm+n)

∂kα
Λy;dc(k, iϵm+n,k, iϵm)

− T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)Gcb(k, iϵm)
∂Gad(k, iϵm+n)

∂kα

∑
η

qη
2

∂Λy;dc(k, iϵm+n,k, iϵm)

∂kη

+
T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)
∑
η

qη
2

[
Gcb(k, iϵm)

←→
∂

∂kη
Gad(k, iϵm+n)

]
×

∂Λy;dc(k, iϵm+n,k, iϵm)

∂kα

=
T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)Λy;dc(k, iϵm+n,k, iϵm)

×
∑

η=x,y

qη
2

{∂Gad(k, iϵm+n)

∂kη

∂Gcb(k, iϵm)

∂kα
− ∂Gad(k, iϵm+n)

∂kα

∂Gcb(k, iϵm)

∂kη

}
+

T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)

×
∑

η=x,y

qη
2

{[
Gcb(k, iϵm)

←→
∂

∂kη
Gad(k, iϵm+n)

]∂Λy;dc(k, iϵm+n,k, iϵm)

∂kα

−
[
Gcb(k, iϵm)

←→
∂

∂kα
Gad(k, iϵm+n)

]∂Λy;dc(k, iϵm+n,k, iϵm)

∂kη

}
=

1

2
(qxδα,y − qyδα,x)

T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)

×
{[

Gcb(k, iϵm)

←→
∂

∂kx
Gad(k, iϵm+n)

]∂Λy;dc(k, iϵm+n,k, iϵm)

∂ky

−
[
Gcb(k, iϵm)

←→
∂

∂ky
Gad(k, iϵm+n)

]∂Λy;dc(k, iϵm+n,k, iϵm)

∂kx

}
+

1

2
(qxδα,y − qyδα,x)

T

N

∑
k

∑
{a}

Λx;ba(k, iϵm,k, iϵm+n)

×
(∂Gcb(k, iϵm)

∂ky

∂Gad(k, iϵm+n)

∂kx
− ∂Gcb(k, iϵm)

∂kx

∂Gad(k, iϵm+n)

∂ky

)
Λy;dc(k, iϵm+n;k, iϵm).

(2.81)

Here I have used the fact that the surface integrals with respect to kx and ky are zero due to the
periodicity of the Brillouin zone. Note that the replacement which has been used in Refs. [9, 73]
is unnecessary to obtain the above equation.
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b a
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dc
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dc
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dc
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dc

kk

Λy
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Figure 2.14: Diagrammatic representation of each term of Eq. (2.82), where the same
coefficient, (qxδα,y−qyδα,x)/2, and the minus signs in (b) and (c) are not shown explic-
itly. × represents momentum derivative. Note that the reason why two momentum
derivatives appear is to exclude the terms being both q-linear and A-linear.

Furthermore, using the equivalence between the x- and the y-directions, which is one of the
assumptions, we have

Φxyα(q) =
1

2
(qxδα,y − qyδα,x)

T

N

∑
k

∑
{a}

[
Λx;ba(k, iϵm,k, iϵm+n)

←→
∂

∂ky
Λy;dc(k, iϵm+n,k, iϵm)

]
×

[
Gcb(k, iϵm)

←→
∂

∂kx
Gad(k, iϵm+n)

]
. (2.82)

The diagrammatic representation of each term is shown in Fig. 2.14.

I go on to explain the analytic continuation of Φxyα(q) in Eq. (2.82).

Since momentum derivatives are irrelevant in the analytic continuation about frequency,
we can easily carry out the analytic continuation of Φxyα(q) by the same way used in §2.3.1
[compare Eqs. (2.46) and (2.82)]. Namely, within the linear order of ω/T , the result is

Φ(R)
xyα(q, ω)− Φ(R)

xyα(q, 0) =
1

2
(qxδα,y − qyδα,x)

1

N

∑
k

∫∞
−∞

dϵ
4πi2ω

(
−∂f(ϵ)

∂ϵ

)
×

∑
{a}

[
Λx;2;ba(k, ϵ,k, ϵ)

←→
∂

∂ky
Λy;2;dc(k, ϵ,k, ϵ)

][
G

(A)
cb (k, ϵ)

←→
∂

∂kx
G

(R)
ad (k, ϵ)

]
.

(2.83)

Finally, from Eqs. (2.68), (2.69), and (2.83), we have the transverse conductivity being
proportional to H on the basis of the microscopic FL theory:

lim
H→0

σ
(1)
xy

H
=− e3

N

∑
k

∫∞
−∞

dϵ
2π

(
−∂f(ϵ)

∂ϵ

)∑
{a}

[
Λx;2;ba(k, ϵ,k, ϵ)

←→
∂

∂ky
Λy;2;dc(k, ϵ,k, ϵ)

]
× Im

[
G

(A)
cb (k, ϵ)

←→
∂

∂kx
G

(R)
ad (k, ϵ)

]
. (2.84)

Note that the reason why two momentum derivatives appear is to exclude the terms being both

q-linear and A-linear. We see from Eq. (2.84) that limH→0(σ
(1)
xy /H) is proportional to the

square term with respect to the QP lifetime since the retarded-advanced pair gives the linear
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term and the momentum derivate of that leads to the additional term of the QP lifetime. As
a result, the Hall coefficient Eq. (2.66) is independent of the QP lifetime. Also, we see from
Eq. (2.84) that the difference between the result in the relaxation time approximation [57] and
the present result is to replace the band velocities by the three-point vector VFs, which is the
current including all the corrections due to electron correlation, as described in §2.3.1.

Therefore, we can calculate the Hall coefficient for multi-orbital systems in the weak-field

limit by Eqs. (2.56), (2.57), (2.58), (2.66) and (2.84) if we give the form of J (0)
22;abcd(k, k

′, 0).

2.4 Irreducible four-point VF in the FLEX approximation

In this section, I give the general derivation of the four-point VF of multi-orbital systems, which
leads to the correction to the current, by the FLEX approximation. In particular, it is sufficient
to consider the four-point VF which does not contain retarded-advanced pairs only in the cases
of 22-II, 22-III, and 22-IV regions, which are shown in Fig. 2.10, since what we need to calculate

is J (0)
22;abcd(k, k

′, 0) of Eq. (2.57). This general derivation is just the extension of that [11] in the
single-orbital Hubbard model.

This section is organized as follows. First, I show how to determine the irreducible four-
point VF on the basis of conserving approximations [61, 62]. Before explaining the derivation of

Γ
(0)
abcd(k, k

′; 0), by using the FLEX approximation, I present a simple example of the calculations
for the second-order bubble type self-energy of electrons. Then, I turn to the case of the

FLEX approximation, and calculate Γ
(0)
abcd(k, k

′; 0) in this approximation. After the analytic

continuation in the cases of 22-II, 22-III, and 22-IV regions, we obtain finally J (0)
22;abcd(k, k

′; 0),
which determines the three-point vector VF Eq. (2.57).

On the basis of conserving approximations [61, 62], the irreducible four-point VF is deter-
mined by the functional derivative of the self-energy of electrons with respect to the single-
particle Green’s function:

Γ
(1)
abcd(k, k

′; q) = Γ
(1)
abcd(k + q, k; k′ + q, k′) =

δΣac(k)

δGbd(k′)
. (2.85)

For the actual derivations, it is necessary to label momentum and Matsubara frequency in each
diagram correctly in order to satisfy conservation laws.

For exmaples of the calculations of Γ
(0)
abcd(k, k

′; 0), let us consider the case that the self-energy
of electrons is given by the bubble type diagram in the second-order perturbation theory. In this

case, as shown in Fig. 2.15, we can easily calculate Γ
(0)
abcd(k, k

′; 0) from Eq. (2.85). Note that
the first and the second/third diagrams, shown in Fig. 2.15, are called the MT term [12, 13]
and the AL term [14], respectively.

Similarly, we can calculate Γ
(0)
abcd(k, k

′; 0) in the case of the FLEX approximation whose
self-energy of electrons is give by Eq. (2.17). As a result, we have

Γ
(0)
abcd(k, k

′; q) =
T

N

∑
q

∑
B,D

VaBcD(q)
δGBD(k − q)

Gbd(k′)
+

T

N

∑
q

∑
B,D

δVaBcD(q)

Gbd(k′)
GBD(k − q)

= Γ
(0)MT
abcd (k, k′; q) + Γ

(0)AL1
abcd (k, k′; q) + Γ

(0)AL2
abcd (k, k′; q), (2.86)
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Figure 2.15: Diagrammatic representations of the second-order bubble type self-energy
of electrons and the corresponding four-point VFs. Two red slashes denote the func-
tional derivative of the single-particle Green’s function in Eq. (2.85). First term and
second/third term are called the MT term and the AL term, respectively.

where

Γ
(0)MT
abcd (k, k′; q) = Vabcd(k − k′), (2.87)

Γ
(0)AL1
abcd (k, k′; q) =− T

N

∑
q′

∑
{A}

GCA(k
′ + q′)GBD(k + q′)W̃AL1

{A};{a}(−q
′, q − q′), (2.88)

Γ
(0)AL2
abcd (k, k′; q) =− T

N

∑
q′

∑
{A}

GAC(k
′ − q′)GBD(k + q + q′)W̃AL2

{A};{a}(−q − q′,−q′). (2.89)

Here I have introduced two quantities

W̃AL1
{A};{a}(−q

′, q − q′) =
3

2

∑
{A′}

ΓS
abA′B′(MS)−1

A′B′bA(−q
′)(NS)dCC′D′(q − q′)ΓS

C′D′cD

+
1

2

∑
{A′}

ΓC
abA′B′(MC)−1

A′B′bA(−q
′)(NC)dCC′D′(q − q′)ΓC

C′D′cD

− 1

2
(ΓS

aBbA + ΓC
aBbA)

1

2
(ΓS

dCcD + ΓC
dCcD), (2.90)

W̃AL2
{A};{a}(−q − q′,−q′) = W̃AL1

dBbD;aAcC(−q − q′,−q′), (2.91)

where

(NS/C)abcd(q) = δa,cδb,d ±
∑
a′,b′

Γ
S/C
aba′b′χ

(S/C)
a′b′cd(q), (2.92)

and (MS/C)−1
abcd(q) is the inverse matrix of (MS/C)abcd(q),

(MS/C)abcd(q) = δa,cδb,d ∓
∑
a′,b′

χaba′b′(q)Γ
S/C
a′b′cd. (2.93)
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Figure 2.16: Diagrammatic representations of the self-energy of electrons of the FLEX
approximation and the corresponding four-point VFs. Two red slashes denote the
functional derivative of the single-particle Green’s function in Eq. (2.85). First term
and second/third term are called the MT term and the AL term, respectively. Two
double lines in (b) and (c) correspond to W̃AL1

{A};{a}(−q
′, q − q′) and W̃AL2
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In deriving Eqs. (2.88) and (2.89), I have used the relations

δχ
(S/C)
a′b′c′d′(q

′)

Gbd(k′)
=

∑
{A′}

(MS/C)−1
a′b′A′B′(q′)

δχA′B′C′D′(q′)

Gbd(k′)
(NS/C)C′D′c′d′(q

′), (2.94)

and

δχA′B′C′D′(q′)

Gbd(k′)
= −δA′,bδC′,dGD′B′(k′ − q′)− δD′,bδB′,dGA′C′(k′ + q′). (2.95)

It should be noted that in contrast to the case of a single-orbital system [11], it is impossible to
write the AL terms by using the bare interaction vertices and (MS/C)−1

abcd(q) since (N
S/C)abcd(q)

is not equal to (MS/C)−1
abcd(q):

χ
(S/C)
abcd (q) =

∑
a′,b′

(MS/C)−1
aba′b′(q)χa′b′cd(q)

=
∑
a′,b′

χaba′b′(q)(N
S/C)a′b′cd(q). (2.96)

I turn to the analytic continuations of Γ
(0)
abcd(k, k

′; 0) in the cases of 22-II, 22-III, and 22-IV

regions and to calculate J (0)
22;abcd(k, k

′; 0) Eq. (2.34). Note that in contrast to the cases of the
conductivities, the analytic continuation is about the bosonic Matsubara frequency [75].

After the analytic continuations, whose details are described below, we have

J (0)
22;abcd(k, k

′; 0) = J (0)MT
22;abcd(k, k

′; 0) + J (0)AL1
22;abcd (k, k

′; 0) + J (0)AL2
22;abcd (k, k

′; 0). (2.97)

48



[Ph.D. Thesis] January 2014

For the MT term Eq. (2.87), the procedure of the analytic continuation is simple, and the
result is

J (0)MT
22;{a} (k, k

′; 0) = coth
ϵ′ − ϵ

2T

[
ΓII;MT
22;{a}(k, k

′; 0)− ΓIII;MT
22;{a} (k, k

′; 0)
]

− tanh
ϵ′

2T

[
ΓII;MT
22;{a}(k, k

′; 0)− ΓIV;MT
22;{a} (k, k

′; 0)
]

=
(
coth

ϵ− ϵ′

2T
+ tanh

ϵ′

2T

)
2iImV

(R)
abcd(k − k′). (2.98)

We have used Eq. (2.34) and the relation ΓIII;MT
22;{a} (k, k

′; 0) = ΓIV;MT
22;{a} (k, k

′; 0). Note that

Γ
(0)MT
{a} (k, k′; 0) becomes V

(A)
{a} (k − k′) in the region 22-II or V

(R)
{a} (k − k′) in the regions 22-

III and 22-IV since in the region 22-II, Imϵ − Imϵ′ < 0, and in the regions 22-III and 22-IV,
Imϵ− Imϵ′ > 0 (see Fig. 2.10).

For the AL1 and the AL2 terms, the procedure of the analytic continuations is slightly
complicated but straightforward. The results, whose detailed calculations are described below,
are

J (0)AL1
22;{a} (k, k′; 0) = coth

ϵ′ − ϵ

2T

[
ΓII;AL1
22;{a}(k, k

′; 0)− ΓIII;AL1
22;{a} (k, k′; 0)

]
− tanh

ϵ′

2T

[
ΓII;AL1
22;{a}(k, k

′; 0)− ΓIV;AL1
22;{a} (k, k′; 0)

]
=

(
coth

ϵ′ − ϵ

2T
− tanh

ϵ′

2T

)(−i
π

) 1

N

∑
q′

∑
{A}

∫∞
−∞ dω′

(
tanh ω′+ϵ

2T − tanh ω′+ϵ′

2T

)
×WAL1

{A};{a}(−q
′)ImG

(R)
CA(k

′ + q′)ImG
(R)
BD(k + q′), (2.99)

J (0)AL2
22;{a} (k, k′; 0) = coth

ϵ′ + ϵ

2T

[
ΓIII;AL2
22;{a} (k, k′; 0)− ΓIV;AL2

22;{a} (k, k′; 0)
]

− tanh
ϵ′

2T

[
ΓII;AL2
22;{a}(k, k

′; 0)− ΓIV;AL2
22;{a} (k, k′; 0)

]
=

(
coth

ϵ+ ϵ′

2T
− tanh

ϵ′

2T

)(−i
π

) 1

N

∑
q′

∑
{A}

∫∞
−∞ dω′

(
tanh ω′+ϵ

2T − tanh ω′−ϵ′

2T

)
×WAL2

{A};{a}(−q
′)ImG

(R)
AC(k

′ − q′)ImG
(R)
BD(k + q′), (2.100)

where

WAL1
{A};{a}(−q

′) =
3

2

∑
{A′}

ΓS
abA′B′(MS(A))−1

A′B′bA(−q
′)(NS(R))dCC′D′(−q′)ΓS

C′D′cD

+
1

2

∑
{A′}

ΓC
abA′B′(MC(A))−1

A′B′bA(−q
′)(NC(R))dCC′D′(−q′)ΓC

C′D′cD

− 1

2
(ΓS

aBbA + ΓC
aBbA)

1

2
(ΓS

dCcD + ΓC
dCcD), (2.101)

WAL2
{A};{a}(−q

′) = WAL1
dBbD;aAcC(−q′). (2.102)

We have used Eq. (2.34) and the relations ΓIII;AL1
22;{a} (k, k′; 0) = ΓIV;AL1

22;{a} (k, k′; 0) and ΓII;AL2
22;{a}(k, k

′; 0) =

ΓIII;AL2
22;{a} (k, k′; 0). We see from Eqs. (2.98), (2.99), and (2.100) that the AL VFs are of higher
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Figure 2.17: Contours used for the analytic continuations of the AL1 term Eq. (2.88)
in (a) 22-II region and (b) 22-III and 22-IV regions. The difference between (a) and
(b) is the relative location of ω′ = −iϵm and −iϵm′ .

order with respect to the QP damping than the MT VF since one of the two imaginary parts
of the single-particle Green’s function in the AL VFs gives the higher order contribution. It is

noted that similarly to the case of a single-orbital system [11], W
AL1/2
{A};{a}(−q

′) is real.
By using the contours shown in Fig. 2.17, we can carry out the analytic continuations of

the AL1 term Eq. (2.88) in 22-II region and 22-III and 22-IV regions as follows:

ΓII;AL1
22;{a}(k, k

′; q)

=− 1

N

∑
q′

∑
{A}

∫
C

dω′

4πi coth
ω′

2T GCA(k
′ + q′, iϵm′ + ω′)GBD(k + q′, iϵm + ω′)

× W̃AL1
{A};{a}(−q

′,−ω′, q − q′, iΩn − ω′)

− T

N

∑
q′

∑
{A}

GCA(k
′ + q′, iϵm′)GBD(k + q′, iϵm)W̃AL1

{A};{a}(−q
′, 0, q − q′, iΩn)

− T

N

∑
q′

∑
{A}

GCA(k
′ + q′, iϵm′ + iΩn)GBD(k + q′, iϵm + iΩn)W̃

AL1
{A};{a}(−q

′,−ω′, q − q′, 0)

→− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′+ϵ′

2T ImG
(R)
CA(k

′ + q′)G
(A)
BD(k + q′)W̃AL1

{A};{a}(−q
′, q − q′)

− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′+ϵ
2T G

(R)
CA(k

′ + q′)ImG
(R)
BD(k + q′)W̃AL1

{A};{a}(−q
′, q − q′)

+ (Principal integrals), (2.103)

and

Γ
III/IV;AL1
22;{a} (k, k′; q)

→− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′+ϵ′

2T ImG
(R)
CA(k

′ + q′)G
(R)
BD(k + q′)W̃AL1

{A};{a}(−q
′, q − q′)

− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′+ϵ
2T G

(A)
CA(k

′ + q′)ImG
(R)
BD(k + q′)W̃AL1

{A};{a}(−q
′, q − q′)

+ (Principal integrals), (2.104)
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Figure 2.18: Contours used for the analytic continuations of the AL2 term Eq. (2.89)
in (a) 22-II and 22-III regions and (b) 22-IV region. The difference between (a) and
(b) is the relative location of ω′ = iϵm′ and −iϵm − iΩn.

where (Principal integrals) are the contributions from ω′ = iΩn and 0, which are canceled out
between the different regions due to Eq. (2.34), and→ represents the replacements of the three
Matsubara frequencies, iϵm, iϵm′ , and iΩn, to the real frequencies satisfying the inequalities in
each region (see Fig. 2.10).

Similarly, by using the contours shown in Fig. 2.18, we can carry out the analytic continu-
ations of the AL2 term Eq. (2.89) in 22-II and 22-III regions and 22-IV region as follows:

Γ
II/III;AL2
22;{a} (k, k′; q)

=− 1

N

∑
q′

∑
{A}

∫
C

dω′

4πi coth
ω′

2T GAC(k
′ − q′, iϵm′ − ω′)GBD(k + q + q′, iϵm + iΩn + ω′)

× W̃AL2
{A};{a}(−q − q′,−iΩn − ω′,−q′,−ω′)

− T

N

∑
q′

∑
{A}

GAC(k
′ − q′, iϵm′)GBD(k + q + q′, iϵm + iΩn)W̃

AL2
{A};{a}(−q − q′,−iΩn,−q′, 0)

− T

N

∑
q′

∑
{A}

GAC(k
′ − q′, iϵm′ + iΩn)GBD(k + q + q′, iϵm)W̃AL2

{A};{a}(−q − q′, 0,−q′, iΩn)

→− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′−ϵ′

2T (−ImG
(R)
AC(k

′ − q′))G
(R)
BD(k + q + q′)W̃AL2

{A};{a}(−q − q′,−q′)

− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′+ϵ+ω
2T G

(R)
AC(k

′ − q′)ImG
(R)
BD(k + q + q′)W̃AL2

{A};{a}(−q − q′,−q′)

+ (Principal integrals), (2.105)

and

ΓIV;AL2
22;{a} (k, k′; q)

→− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′−ϵ′

2T (−ImG
(R)
AC(k

′ − q′))G
(A)
BD(k + q + q′)W̃AL2

{A};{a}(−q − q′,−q′)

− 1

N

∑
q′

∑
{A}

∫∞
−∞

dω′

2π tanh ω′+ϵ+ω
2T G

(A)
AC(k

′ − q′)ImG
(R)
BD(k + q + q′)W̃AL2

{A};{a}(−q − q′,−q′)

+ (Principal integrals), (2.106)

51



[Ph.D. Thesis] January 2014

where the contributions of (Principle integrals) to J (0)AL2
22;abcd (k, k

′; 0) are canceled out between
the different regions due to Eq. (2.34). It should be noted that in the analytic continuation of
the AL2 term, we have to pay attention to the minus sign of the bosonic Matsubara frequency

in G
(R)
AC(k

′ − q′); in contrast to the case of the plus sign, that single-particle Green’s function
becomes advanced (retarded) in the upper (lower) path.

Therefore, we can determine the three-point vector VF from Eqs. (2.97), (2.98), (2.99), and
(2.100), and can calculate the transport coefficients. Note that the three-point vector VF is real
since the imaginary unit appearing in the CVC is canceled out with that appearing in the MT
and the AL terms, i.e. Eqs. (2.98), (2.99), and (2.100).
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Chapter 3

Results

In this chapter, I present the numerical results for the effective model of Sr2RuO4 near and
away from the IC AF QCP by using the FLEX approximation including the MT CVC. After
showing the momentum dependence of the QP damping in §3.1 and the dynamical property
of SFs in §3.2, I present the temperature dependence of the in-plane resistivity and the Hall
coefficient in the weak-field limit in §3.3 and §3.4, respectively.

Before presenting the numerical results, I explain how to choose the parameters and how to
carry out the procedure for obtaining the quantities shown below.

The numerical calculations are carried out by using the following parameters. The BZ is
divided into 64×64 meshes and 1024 Matsubara frequencies are taken for using the fast Fourier
transformation. In this case, the numerical calculations for the analyses about not only static
but also dynamic property can be safely carried out in the range of T ≥ 0.01 eV since the
non-interacting total bandwidth is about 4 eV. I set J ′ = JH = U/6, U ′ = U − 2JH, and
consider the cases at U = 1.6 and 2.1 eV in 0.01 ≤ T ≤ 0.03 (eV). For U = 2.1 eV (U = 1.6
eV), the system is located near (away from) the IC AF QCP since the spin susceptibility
with QIC-AF = (2π/3, 2π/3), which is shown in Fig. 3.1, shows the CW like (the Pauli PM)
temperature dependence. The reasons why I choose U = 1.6 eV as the case away from the
QCP are that this value is lowest in the cases where the nesting vectors of the t2g orbitals
around QIC-AF coincide, and that it is possible to analyze the effects of the corresponding SFs
of these orbitals, which are cooperatively enhanced near the QCP, on the transport properties
by comparing with the results at U = 2.1 eV. For the integration with respect to real frequency,
I approximate the upper and the lower values to ϵc = 0.2 eV and −ϵc, and discretize this
integration with the interval being 0.0025 eV. This choice is sufficient to obtain the results
without the numerical error in the cases considered since I have checked both the energy cut-off
dependence for ϵc = 0.4, 0.6 and 0.8 eV and the interval dependence for 0.002 and 0.005 eV
and I have obtained the same results as those shown below within a few percent error.

By using these parameters, I calculate the quantities shown below as follows. The single-
particle quantities, the susceptibilities, and the effective interaction are calculated by the self-
consistent loop of the FLEX approximation Eqs. (2.12)–(2.17) until the relative error of the
self-energy of electrons becomes less than 10−4. In this procedure, the chemical potential is
determined by Eq. (2.4) so as to hold ne = 4 in each iteration. After the convergence of this
self-consistent procedure, I carry out the analytic continuations of the self-energy of electrons, of
the susceptibility in a spin sector, and of the effective interaction by the Padé approximation [76]
using the lowest four Matsubara frequencies. Using these quantities, I calculate the three-point
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Figure 3.1: Temperature dependence of the static spin susceptibility at U = 1.6 and
2.1 eV in the FLEX approximation [2] for a 2D tight-binding model of Sr2RuO4,
where the non-interacting FS is the same as that obtained in the LDA [4, 5]. QIC-AF is
(2π/3, 2π/3), where the static spin susceptibility is most strongly enhanced at U = 2.1
eV. The data for 0.7/T is shown in order to compare the temperature dependence.

vector VF by the iterative procedure for the BS equation Eq. (2.57) including only the MT
CVC until its relative error becomes less than 10−4. In this calculation, the principal integral
with respect to real frequency is treated by subtracting and adding the numerator setting ϵ′ = ϵ,
i.e. the term except [−1 + exp(ϵ′ − ϵ)/T ]. As a result, we can eliminate the singularity of the
principal integral by the derivative with respect to real frequency as follows:

1

N

∑
k′

∑
{A}

∫∞
−∞

dϵ′

2π coth ϵ−ϵ′

2T ImV
(R)
cdCD(k − k′)g2;CABD(k

′; 0)Λµ;2;AB(k; 0)

=
1

N

∑
k′

∑
{A}

∫
ϵ′ ̸=ϵ

dϵ′

2π coth ϵ−ϵ′

2T ImV
(R)
cdCD(k − k′)g2;CABD(k

′; 0)Λµ;2;AB(k; 0) + T
∂FMT

cd (k; ϵ, ϵ′)

∂ϵ′

∣∣∣
ϵ′=ϵ

,

(3.1)

where the first term does not contain the contribution for ϵ′ = ϵ and

FMT
cd (k; ϵ, ϵ′) = − 1

2π
(e(ϵ

′−ϵ)/T + 1)
1

N

∑
k′

∑
{A}

ImV
(R)
cdCD(k − k′)g2;CABD(k

′; 0)Λµ;2;AB(k; 0). (3.2)

Here I have used ImV
(R)
abcd(q, 0) = 0.

3.1 QP damping

Here I present the momentum dependence of the QP damping near and away from the IC
AF QCP at some temperatures. Hereafter the values of momentum of the damping are not
restricted on those of the FS.

First, to analyze the role of each Ru t2g orbital, I present the momentum dependence of the

damping of each orbital, γa(k) = −ImΣ
(R)
aa (k, 0), at U = 2.1 eV and T = 0.01 eV in Fig. 3.2

(a).
From this figure, there are two remarks to be drawn.
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Figure 3.2: Momentum dependence of the damping obtained in the FLEX approxi-
mation [2] for a 2D tight-binding model of Sr2RuO4, where the non-interacting FS is
the same as that obtained in the LDA [4, 5].
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Figure 3.3: Momentum dependence of the QP damping in the FLEX approximation [2]
for a 2D tight-binding model of Sr2RuO4, where the non-interacting FS is the same
as that obtained in the LDA [4, 5]. Note that the phenomenological FL description
becomes valid when the QP damping is much smaller than temperature [10].

One is the orbital dependence: the damping of the dxy orbital is much larger than that of
the dxz/yz orbital. This indicates that the dxy orbital is less coherent. This difference arises from
the stronger SF of the dxy orbital [see Fig. 1.12 (c)] since the self-energy of electrons is given
by the convolution of the effective interaction, mediated by fluctuations, and the single-particle
Green’s function [see Eq. (2.17)]. As I will show in §3.3, due to this orbital dependence and
the momentum dependence of the band velocities of the t2g orbitals, the in-plane longitudinal
conductivity arises mainly from the dxz/yz orbital, and the contribution from the dxy orbital is
very small.

The other is the momentum dependence: the peaks of the dampings of the t2g orbitals arise
from the corresponding SFs enhanced due to the nesting instability; e.g., SFs of the dxy orbital
located at q = (2π/3, 2π/3) and (π, 3π/2) lead to the large dampings. In particular, the reason
why the damping around k = (π, 3π/2) is larger than that around k = (2π/3, 2π/3) is due to
the larger DOS since the vHs of the dxy orbital exists around k ≈ (π, 0). Note that in the case
of Sr2RuO4, the wave vector on the FS for the dxy orbital around k = (π, 0) corresponds to
k = (K, 0) with K < π [see Fig. 2.3 (a)].

The similar result is obtained at a small value of U and at higher temperature. The results
at U = 1.6 eV and T = 0.01 eV and at U = 2.1 eV and T = 0.03 eV are shown in Figs. 3.2 (b)
and (c), respectively.

Thus, it is deduced from the results shown in Figs. 3.2 (a)–(c) that the larger damping
of the dxy orbital compared with that of the dxz/yz orbital and the very large peaks of the
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damping of the dxy orbital around k = (π, 3π/2) and k = (2π/3, 2π/3) are realized in all the
cases considered in the analyses of this thesis.

Then, to discuss whether the phenomenological FL description works or not, I present the

momentum dependence of the QP damping of each orbital, γ∗a(k) = −za(k)ImΣ
(R)
aa (k, 0), in the

three cases considered above in Figs. 3.3 (a)–(c), where the renormalization factor, za(k), is
calculated by

za(k) =

[
1− ∂Σ

(R)
aa (k, ω)

∂ω

∣∣∣
ω→0

]−1

. (3.3)

In order that the phenomenological FL description works, it is necessary to turn on the inter-
actions both sufficiently quickly so that the excitation is not damped and sufficiently slowly so
that the energy resolution, the inverse of the interval of turning on the interactions, is smaller
than the thermal excitation energy, which leads to the fading of the FS. These conditions are
satisfied when the QP damping becomes smaller than temperature considered [10].

From Figs. 3.3 (a)–(c), we see two characteristic features related to the QCP. One is that
at U = 2.1 eV, the phenomenological FL description is difficult since the QP damping is very
large not only for the dxy orbital but also for the dxz/yz orbital [Fig. 3.3 (a)]. The other is that
at U = 1.6 eV, the phenomenological FL description is possible at T = 0.01 eV [Fig. 3.3 (b)],
although that is difficult at T = 0.016 eV [Fig. 3.3 (c)]. As I will explain in §3.4, this difference
between the cases near and away from the QCP plays an important role in discussing the effect
of the MT CVC on the temperature dependence of the Hall coefficient in the weak-field limit.

These results about the QP damping suggest that the cases at U = 1.6 and 2.1 eV in
0.01 ≤ T ≤ 0.03 (eV) are located in or very near red ellipse shown in Fig. 1.15. As described
in §1.4, that red ellipse corresponds to the region where the treatment used is applicable.

Thus, I think that the transport properties in all the cases considered in this thesis can be
analyzed by the method including only the MT CVC within the numerical accuracy.

Before going to the next section, I remark on the important difference between the phe-
nomenological FL theory and microscopic perturbation theories. Microscopic perturbation the-
ories do work even if the phenomenological FL description does not work. This difference is the
reason why I calculate the transport coefficients by using the single-particle Green’s function
obtained in the FLEX approximation, which is one of the microscopic perturbation theories, in-
stead of the standard FL type one. Note that this applicability of the microscopic perturbation
theory is valid when the perturbation expansion with respect to electron correlation has good
convergence. In other words, I assume that the convergence is good for all the cases considered
in the analyses of this thesis.

3.2 Dynamical property of SFs

Here I present the dynamical property of SFs near and away from the IC AF QCP at T = 0.01
and 0.02 eV. In the following, I show the results for the SFs and the retarded effective interactions
at QIC-AF and Q′

IC-AF = (π, 2π/3), and do not show the results for the other wave vectors and
for the other fluctuations since in the model of Sr2RuO4, the SFs at QIC-AF and Q′

IC-AF are
strongly enhanced [Figs. 1.12 (b) and (c)] [2] and these give the dominant contribution to the
effective interaction [see Eq. (2.16)]. Note that there are some symmetrically equivalent wave
vectors with these wave vectors in Sr2RuO4; e.g., q = (2π/3, π) is equivalent to Q′

IC-AF.
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Figure 3.4: Real frequency dependence of the imaginary part of the retarded suscepti-
bility in a spin sector at QIC-AF in the FLEX approximation [2] for a 2D tight-binding
model of Sr2RuO4, where the non-interacting FS is the same as that obtained in the
LDA [4, 5]. As described in the beginning of §2, the dxz, the dyz, and the dxy orbitals
are labeled 1, 2, and 3, respectively.

First, I present the real frequency dependence of the imaginary part of the retarded suscep-
tibilities in a spin sector at QIC-AF at U = 2.1 eV and T = 0.01 and 0.02 eV in Figs. 3.4 (a)
and (b) and at U = 1.6 eV and T = 0.01 and 0.02 eV in Figs. 3.4 (c) and (d).

From these figures, there are two remarks about the dynamical property of SFs.

One is about the orbital dependence: in all the cases considered, the largest and the second
largest contributions arise from the diagonal SF of the dxy orbital (i.e. data for 3333) and the
non-diagonal SF between the dxz/yz and the dxy orbitals (i.e. data for 1133/2233), respectively,
while the SFs of the dxz/yz orbital give smaller contributions. This result indicates that the
SFs related to the dxy orbital, i.e. the diagonal and the non-diagonal SFs, play more important
roles in discussing the dynamical property of SFs than the others.

The other remark is about the characteristic properties due to quantum criticality [39]: as
temperature decreases, at U = 2.1 eV, the peak position shifts to a lower energy and the value
of the peak increases, while at U = 1.6 eV, the temperature dependence becomes very small and
the peak position is located at not low energy. The former (latter) is a characteristic property
near (away from) a QCP.

Next, the real frequency dependence of the imaginary part of the retarded susceptibilities
in a spin sector at Q′

IC-AF is shown in Figs. 3.5 (a) and (b).
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Figure 3.5: Real frequency dependence of the imaginary part of the retarded suscepti-
bility in a spin sector at Q′

IC-AF in the FLEX approximation [2] for a 2D tight-binding
model of Sr2RuO4, where the non-interacting FS is the same as that obtained in the
LDA [4, 5]. As described in the beginning of §2, the dxz, the dyz, and the dxy orbitals
are labeled 1, 2, and 3, respectively.
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Figure 3.6: Real frequency dependence of the imaginary part of the retarded effective
interaction at QIC-AF in the FLEX approximation [2] for a 2D tight-binding model of
Sr2RuO4, where the non-interacting FS is the same as that obtained in the LDA [4, 5].
As described in the beginning of §2, the dxz, the dyz, and the dxy orbitals are labeled
1, 2, and 3, respectively.

From these figures, we see the similar results at QIC-AF. Namely, the largest contribution
arises from SFs related to the dxy orbital, the peak position is located at lower energy at U = 2.1
eV than at U = 1.6 eV, and the value of the peak is larger at U = 2.1 eV. Note that in the case
at U = 2.1 eV, the temperature dependence of the imaginary part of the retarded susceptibilities
in a spin sector at Q′

IC-AF is weaker than that at QIC-AF, although that temperature dependence
at Q′

IC-AF is similar to that at QIC-AF (not shown here).

We also find that at U = 1.6 eV, the value of the peak for the diagonal SF of the dxy orbital
at Q′

IC-AF is larger than that at QIC-AF [Figs. 3.4 (c) and 3.5 (b)], while at U = 2.1 eV, the
value of the peak at Q′

IC-AF becomes much smaller than that at QIC-AF [Figs. 3.4 (a) and 3.5
(a)].

Thus, these results indicate that away from the QCP, the dynamical property of SFs not
only at QIC-AF but also at Q′

IC-AF is important, while near the QCP, the latter contribution
becomes much smaller and the dynamical property of SFs only at QIC-AF is important.

Then, I turn to the real frequency dependence of the imaginary part of the retarded effective
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Figure 3.7: Real frequency dependence of the imaginary part of the retarded effective
interaction at Q′

IC-AF in the FLEX approximation [2] for a 2D tight-binding model of
Sr2RuO4, where the non-interacting FS is the same as that obtained in the LDA [4, 5].
As described in the beginning of §2, the dxz, the dyz, and the dxy orbitals are labeled
1, 2, and 3, respectively.

interaction in the FLEX approximation, which is part of the kernel of the MT CVC and plays
an important role in discussing the correction to the current due to electron correlation. The
results for QIC-AF and Q′

IC-AF are shown in Figs. 3.6 (a)–(c) and 3.7 (a) and (b).

We see from these figures that the dependence of the imaginary part of the retarded effective
interaction on U , T , orbital degrees of freedom and wave vector are the same as those of the
retarded susceptibility in a spin sector. Namely, the diagonal and the non-diagonal components
related to the dxy orbital play very important roles. In particular, near the QCP, these diagonal
and non-diagonal components only at QIC-AF are important, while away from the QCP, those
at QIC-AF and Q′

IC-AF are important. These results, which are similar to those of the retarded
susceptibility in a spin sector, are due to the form of the effective interaction in the FLEX
approximation: the effective interaction consists of the interaction mediated by fluctuations in
spin and charge sectors [see Eq. (2.16)].

Finally, I discuss how the dynamical property of SFs shown above affects the current of each
orbital through the MT CVC.

Before going to the detailed discussion, I explain the approximate solution of the BS equation
for the three-point vector VF Eq. (2.57). (As described in §2.3.1, the three-point vector VF
is the current including all the corrections due to electron correlation.) For simplicity, let us
consider the three-point vector VF on the FS (i.e. ϵ = 0 eV) since that near the FS plays an
important role in determining the longitudinal and the transverse conductivities. Since SFs
are dominant in the effective model of Sr2RuO4 [2] and the MT CVC in Eq. (2.98) contains

the factor ImV
(R)
abcd(k− k′, 0− ϵ′), the dominant corrections to the current due to the MT CVC

arise from the regions where k − k′ = QIC-AF or Q′
IC-AF satisfies and ϵ′ is small. Considering

only these dominant corrections due to the retarded effective interaction mediated by SFs, i.e.

ImV
(R)
aabb(k − k′, 0 − ϵ′), we have the approximate solution within the linear order of the kernel
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Figure 3.8: Schematic pictures how the currents of (a) the dxy orbital and (b) the
dxz orbital on the Fermi level are affected by the MT CVC. The red, the green, and
the blue arrows represent the band velocities of the dxz, the dyz, and the dxy orbitals,
respectively. The red, the green, and the blue dotted lines represent the nesting vectors
of the dxz, the dyz, and the dxy orbitals.

of the MT CVC, αab(Q, ω), of which the absolute value is smaller than an unity,

Λx;2;aa(k, 0; 0) ≈ Λ
(0)
x;2;aa(k, 0; 0) +

3∑
b=1

∫∞
−∞

dϵ′

2παab(−QIC-AF,−ϵ′)Λ(0)
x;2;bb(k +QIC-AF, ϵ

′; 0)

+
3∑

b=1

∫∞
−∞

dϵ′

2παab(−Q′
IC-AF,−ϵ′)Λ

(0)
x;2;bb(k +Q′

IC-AF, ϵ
′; 0). (3.4)

Here I consider only the diagonal component of the three-point vector VF since that is larger
than the non-diagonal one in the effective model of Sr2RuO4. Thus, we see from Eq. (3.4) that
the current of one orbital is renormalized by the MT CVC not only for itself but also for another
orbital. In general, the renormalizations consist of the corrections to the absolute value of the
current and to the angle between the current and the x-axis. (As I will explain in §3.3 and
3.4, the former correction is important in the case of the resistivity, and the latter correction is
important in the case of the Hall coefficient in the weak-field limit.)

By using the results about the dynamical property of SFs and the above approximate solu-
tion, we can discuss how the current of each orbital is renormalized by the MT CVC.

For the dxy orbital, in the case near the QCP, the dominant contributions of the CVC

arise from ImV
(R)
3333(q, ω) at q = QIC-AF and Q′

IC-AF and ImV
(R)
1133/2233(QIC-AF, ω), while away

from the QCP, the dominant contributions arise from ImV
(R)
3333(q, ω) at q = QIC-AF and Q′

IC-AF.
Combining these results with the direction of the current of each orbital on the FS, we find from

Fig. 3.8 (a) that only the contribution of ImV
(R)
3333(Q

′
IC-AF, ω) leads to the bend of the current,

and the others just lead to the corrections to the absolute value of the current. It is noted that
the bend of the current due to the non-diagonal SF with the dxz orbital at QIC-AF is canceled
out with that due to the orbital non-diagonal SF with dyz orbital at QIC-AF [see Fig. 3.8 (a)].

For the dxz/yz orbital, near the QCP, the largest and the second largest contributions of

the CVC arise from ImV
(R)
1133/2233(QIC-AF, ω) and ImV

(R)
1111/2222(QIC-AF, ω), while away from the

QCP, the dominant contributions arise from ImV
(R)
1133/2233(QIC-AF, ω), ImV

(R)
1111/2222(QIC-AF, ω),
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ImV
(R)
2233(Q

′
IC-AF, ω), and ImV

(R)
2222(Q

′
IC-AF, ω). Similarly to the case for the dxy orbital, we find

from Fig. 3.8 (b) that the contributions related to the dxy orbital [e.g., ImV
(R)
1133/2233(QIC-AF, ω)]

leads to the bend of the current, and the others just lead to the corrections to the absolute value
of the current. Note that the bend of the current of the dxz/yz orbital due to the diagonal SF of
that orbital is very small since t2, the NN hopping integral due to the direct hopping process,
is very small in the model of Sr2RuO4 (see Fig. 2.2).

Thus, we can expect that the current of the dxy orbital is bent due to the MT CVC of the
diagonal SF of that orbital at Q′

IC-AF and the current of the dxz/yz orbital is bent due to the
MT CVC of the non-diagonal SF between that and the dxy orbital at QIC-AF, and that the
other contributions of the MT CVC lead to corrections to the absolute values of the currents of
these t2g orbitals.

3.3 In-plane resistivity

Here I present the temperature dependence of the in-plane resistivity near and away from the
IC AF QCP; hereafter, the constant factor due to e is neglected for brevity.

Before showing the numerical results, I briefly explain how the resistivity is modified by the
MT CVC. (The following explanation holds even including the AL CVCs.) The longitudinal
conductivity along the x-direction contains the factor

Λ
(0)
x;2;ba(k; 0)Λx;2;cd(k; 0)

=
∣∣Λ(0)

2;ba(k)
∣∣ cosφ0

ba(k)
∣∣Λ2;cd(k)

∣∣ cosφcd(k)

=
∣∣Λ(0)

2;ba(k)
∣∣ cosφ0

ba(k)
[∣∣Λ(0)

2;cd(k)
∣∣+∆

∣∣Λ2;cd(k)
∣∣] cos(φ0

cd(k) + ∆φcd(k)
)

∼
∣∣Λ(0)

2;ba(k)
∣∣[∣∣Λ(0)

2;cd(k)
∣∣+∆

∣∣Λ2;cd(k)
∣∣] cosφ0

ba(k) cosφ
0
cd(k)

[
1− (∆φcd(k))

2

2

]
, (3.5)

where ∆
∣∣Λ2;cd(k; 0)

∣∣ and ∆φcd(k) represent the corrections to the absolute value and to the
angle due to the MT CVC. Here only the finite terms are considered, i.e. the vanishing terms
after the summations with respect to momentum are neglected. Similarly, the longitudinal
conductivity along the y-direction contains the factor,

Λ
(0)
y;2;ba(k; 0)Λy;2;cd(k; 0)

∼
∣∣Λ(0)

2;ba(k)
∣∣[∣∣Λ(0)

2;cd(k)
∣∣+∆

∣∣Λ2;cd(k)
∣∣] sinφ0

ba(k) sinφ
0
cd(k)

[
1− (∆φcd(k))

2

2

]
. (3.6)

From Eqs. (3.5) and (3.6), we see that in case of the longitudinal conductivity, the dominant
effect of CVCs is the correction to the absolute value of the current, ∆

∣∣Λ2;cd(k)
∣∣, and that

the effect of the correction to the angle due to CVCs, ∆φcd(k), is very small. Thus, the
renormalization of the temperature dependence of the resistivity due to electron correlation
arises mainly from the change of the absolute value of the current. In contrast, as I will describe
in §3.4, the correction to the angle of the current due to the MT CVC at a certain wave vector
plays important roles in discussing the temperature dependence of the Hall coefficient in the
weak-field limit.

First, I present the temperature dependence of the in-plane resistivity with and without the
MT CVC at U = 2.1 and 1.6 eV in Fig. 3.9 in order to analyze effects of both the momentum
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Figure 3.9: Temperature dependence of the in-plane resistivity at U = 2.1 and 1.6 eV
with and without the MT CVC. As described in the text in detail, the reason for very
small but finite asymptotic value of the in-plane resistivity at T = 0 eV in the cases
of U = 2.1 and 1.6 eV with the MT CVC is due to very small but finite contributions
of the AL CVCs, which are neglected in this calculation.

dependence of the self-energy of electrons and the temperature dependence of the MT four-point
VF.

From this figure, there are two remarks to be drawn.

One is about the effects of the self-energy of electrons: the power of the temperature de-
pendence of the in-plane resistivity changes from square at U = 1.6 eV to linear at U = 2.1
eV. Since this change occurs in both cases with and without the MT CVC, we find that this
change of the power arises from the characteristic momentum dependence of the QP damping
near the IC AF QCP. This sensitivity of the resistivity on the QP damping can be understood
that the resistivity, formulated on the basis of the microscopic FL theory, is proportional to the
QP damping [see Eq. (2.56)].

The other is about the effects of the MT CVC: the MT CVC leads to an increase of the in-
plane resistivity, although this does not affect the power of the temperature dependence. This
increase is mainly due to a decrease of the absolute value of the current since, as explained in
the beginning of this section, the correction to the absolute value due to the MT CVC is more
important in the longitudinal conductivity than that of the angle between the current and the
x-axis. As I will present in Fig. 3.11, this decrease arises mainly from SF of the dxz/yz orbital.

Before going to the results about the role of each Ru t2g orbital, I remark that the reason
why the asymptotic value of the in-plane resistivity at T = 0 eV in the cases of U = 2.1 and
1.6 eV with the MT CVC seems to be very small but finite is that the contributions of the
AL CVCs, which are neglected in this calculation, are very small but finite. Since very small
but finite value strongly affects whether a certain value is zero or not, it is necessary to include
not only the MT CVC but also the AL CVCs to discuss the value of the resistivity at very
low temperature. However, I believe that such very small contributions do not lead to drastic
changes from the obtained results.

Next, to analyze the role of each Ru t2g orbital, I present the orbital dependence of the
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Figure 3.10: Temperature dependence of the in-plane longitudinal conductivities with
and without the MT CVC. The data for the dxz/yz orbital and for the dxy orbital repre-
sent the corresponding components in the longitudinal conductivity, whose definitions
are given by Eqs. (3.7) and (3.8).

in-plane longitudinal conductivity in the cases considered above in Figs. 3.10 (a)–(d). Here I
introduce the longitudinal conductivities of the dxz/yz and of the dxy orbitals, which are defined
as

2

N

∑
k

∑
a,b,c,d=1,2

∫∞
−∞

dϵ
2πΛ

(0)
x;2;ba(k; 0)g2;acdb(k; 0)Λx;2;cd(k; 0)

(
−∂f(ϵ)

∂ϵ

)
, (3.7)

and

2

N

∑
k

∑
a,b,c,d=3

∫∞
−∞

dϵ
2πΛ

(0)
x;2;ba(k; 0)g2;acdb(k; 0)Λx;2;cd(k; 0)

(
−∂f(ϵ)

∂ϵ

)
, (3.8)

respectively.
We see from Figs. 3.10 (a)–(d) that the in-plane longitudinal conductivity arises mainly from

the dxz/yz orbital, and that the contribution from the dxy orbital is very small. In particular, the
dxz orbital gives the primary contribution to the longitudinal conductivity along the x-direction.
Also, from the equivalence between the x- and the y-directions, it is deduced that the primary
contribution to the longitudinal conductivity along the y-direction arises from the dyz orbital.

These results can be understood as the smaller QP damping of the dxz/yz orbital compared
with that of the dxy orbital and the momentum dependence of the band velocities of the Ru
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t2g orbitals along the x/y-direction. The detailed explanation is as follows. As shown in §3.1,
the QP damping of the dxz/yz orbital is smaller than that of the dxy orbital. In addition, the
dominant contribution to the longitudinal conductivity along the x-direction arises from the
band velocities around kx = π/2 since the band velocities for the dispersions given by Eqs.
(2.7)–(2.11) are

(vkx)11 = 2t1 sin kx, (3.9)

(vkx)12 = (vkx)21 = −4t′ cos kx sin ky, (3.10)

(vkx)22 = 2t2 sin kx, (3.11)

(vkx)33 = 2t3 sin kx + 4t4 sin kx cos ky, (3.12)

(vkx)ab = 0 otherwise . (3.13)

Although the band velocity of the dxy orbital becomes comparable with that of the dxz orbital
only around ky = 0 or π, there are no states related to the dxy orbital around kx = π/2 and
ky = 0 or π near the Fermi level [see Fig. 2.3 (a)]. As a result, the contribution of the dxy orbital
becomes smaller than that of the dxz orbital. The similar discussion holds for the longitudinal
conductivity along the y-direction. Thus, I conclude that the dominant contribution to the in-
plane longitudinal conductivity arises mainly from the dxz/yz orbital in the model of Sr2RuO4

since in general the longitudinal conductivity becomes large for the small QP damping and for
the large band velocity.

Finally, to analyze the role of each fluctuation, let us consider several special cases, where
only some components of the retarded effective interaction with respect to orbital indices ate
taken into account as the MT CVC. To be precise, I introduce three cases other than the full
MT CVC where all the components of the retarded effective interaction are included. These
three cases are named SF-MT CVC, dxy-SF-MT CVC, and dxz/yz-SF-MT CVC. Each definition

is as follows. For the SF-MT CVC, only ImV
(R)
aabb(k − k′) is taken into account. As a result,

this retarded effective interaction arises mainly from SFs. Note that although the contribution
from charge fluctuation is also taken into account in principle, the contribution is negligible

compared with that from SF [2]. For the dxy-SF-MT (dxz/yz-SF-MT) CVC, only ImV
(R)
aaaa(k−k′)

for a = dxy (a = dxz, dyz) is taken into account. It should be noted that by comparing the cases
of the SF-MT CVC with the cases of the dxy-SF-MT and the dxz/yz-SF-MT CVCs, we can
analyze the effects of the non-diagonal SF between the dxz/yz and the dxy orbitals since the
difference between the former case and the latter cases arises from the contributions of that
non-diagonal SF.

Figure 3.11 shows the temperature dependence of the in-plane resistivity in several cases of
the MT CVCs at U = 2.1 eV.

From this figure, there are three remarks to be drawn.

First, the dominant contributions of the full MT CVC arise from SFs since the temperature
dependence in the case including the full MT CVC can be reproduced by considering only SF:
the data named MT CVC is reproducible by that named SF-MT CVC. (As I will show in §3.4,
the same result is obtained in the Hall coefficient in the weak-field limit.) This result is due to
the fact that the dominant fluctuations of the model of Sr2RuO4 are SFs [2].

Second, the MT CVC due to the diagonal SF of the dxz/yz orbital gives the dominant
contribution, while that due to the diagonal SF of the dxy orbital little change on the values
of the in-plane resistivity from that without the MT CVC. This result can be understood that
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Figure 3.11: Temperature dependence of the in-plane resistivity at U = 2.1 eV in
several cases of the MT CVCs; the definitions are given in the text. We see that the
data for the full MT CVC can be reproduced by the data for the MT CVC considering
only SFs. In particular, the primary contribution arises from the diagonal component
of the dxz/yz orbital. As described in the text in detail, the reason for very small but
finite asymptotic value of the in-plane resistivity at T = 0 eV in the cases with the
full MT CVC is due to very small but finite contributions of the AL CVCs, which are
neglected in this calculation.

the in-plane longitudinal conductivity arises mainly from the dxz/yz orbital, and the MT CVC
only of that orbital leads to considerable effects on the longitudinal conductivity by changing
the absolute value of the current.

Third, the MT CVC due to the non-diagonal SF gives small effects on the value of the
in-plane resistivity since the contributions from the diagonal SF of the dxy orbital are negligible
and the difference between the values for SF-MT CVC and for dxz/yz-SF-MT CVC is small.
This result can be understood that the MT CVC due to the non-diagonal SF gives rise to a
small change of the absolute value of the current. [As I will show in §3.4, this CVC gives
a considerable change of the angle for the current around k = (2π/3, 2π/3), resulting in the
renormalization of the temperature dependence of the Hall coefficient in the weak-field limit.]

3.4 Hall coefficient in the weak-field limit

Here I present the temperature dependence of the Hall coefficient in the weak-field limit near
and away from the IC AF QCP. (As described in §3.3, the constant factor due to e is neglected
for brevity.)

Before showing the numerical results, I briefly explain how the MT CVCmodifies the Hall co-
efficient in the weak-field limit. (The following explanation holds even including the AL CVCs.)
Similarly to the case of the longitudinal conductivity [Eqs. (3.5) and (3.6)], the transverse
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Figure 3.12: Temperature dependence of the Hall coefficient in the weak-field limit at
U = 2.1 and 1.6 eV with and without the MT CVC.
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Here the notation of each quantity is the same as that used in §3.3, and the vanishing terms
after the summations with respect to momentum are neglected. From this equation, we see that
the transverse conductivity divided by the magnetic field is affected not only by the change of

the absolute value of the current, ∆
∣∣Λ2;ab(k; 0)

∣∣ = ∣∣Λ2;ab(k; 0)
∣∣ − ∣∣Λ(0)

2;ab(k; 0)
∣∣, but also by the

change of the angle of the current due to CVCs, ∆φab(k) = φab(k) − φ
(0)
ab (k), in part of the

k-space. (As described in §3.3, the latter change little affects the longitudinal conductivity
since the order becomes higher and that does not contain momentum derivatives.) Since the
Hall coefficient in the weak-field limit is given by Eq. (2.66), the corrections to the absolute
value of the current, appearing in the transverse conductivity, are nearly cancelled out with
that, appearing in the square of the longitudinal conductivity. Thus, the renormalization of the
temperature dependence of the Hall coefficient in the weak-field limit due to electron correlation
arises mainly from the change of the angle for the current in part of the k-space.

First, I present the temperature dependence of the Hall coefficient in the weak-filed limit
with and without the MT CVC in Fig. 3.12.
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There are three principal remarks.

First remark is about the effect of the self-energy of electrons: without the MT CVC, the
value of the Hall coefficient in the weak-field limit at U = 2.1 eV is nearly the same as that
at U = 1.6 eV, although the QP dampings are different in between. This result indicates that
the self-energy of electrons gives a small effect on the value of the Hall coefficient in the weak-
field limit. This can be understood that the Hall coefficient in the weak-field limit, which is
formulated on the basis of the microscopic FL theory, is independent of the QP damping [see
Eqs. (2.56), (2.66) and (2.84)].

Second and third remarks are about the effects of the MT CVC.

Second one is that near the IC AF QCP, the MT CVC gives rise to the negative enhance-
ment of the Hall coefficient in the weak-field limit, and this enhancement persists even at low
temperature. As I will explain below by using this figure and the other figures in detail, this
enhancement arises mainly from the bend of the current of the dxz/yz orbital due to the MT
CVC of the non-diagonal SF with the dxy orbital located at QIC-AF. Actually, as I will show
in Fig. 3.14, when we consider only the MT CVC of the diagonal SF of the dxz/yz or the dxy
orbital, the enhancement is very small and cannot reproduce the value obtained for the full MT
CVC. Thus, this enhancement is due to a multi-orbital effect and cannot be understood within
single-orbital descriptions.

Third one is that away from the QCP (i.e. U = 1.6 eV), the negative enhancement of the Hall
coefficient in the weak-field limit is induced by the MT CVC, and this enhancement is strongly
suppressed at low temperatures. The former can be understood as the same mechanism as that
in the case near the QCP, and the latter can be understood that there is another considerable
contribution, whose sign is opposite compared with one contribution, from the bend of the
current of the dxy orbital at low temperature. As I will show below, the signs of the transverse
conductivities of the dxz/yz and the dxy orbitals are opposite.

Next, to analyze the role of each Ru t2g orbital, I present each component of the transverse
conductivity divided by the magnetic field in Figs. 3.13 (a)–(d). Each component of the Ru t2g
orbital is obtained by the same replacement used in the analyses of the in-plane resistivity: the
transverse conductivities of the dxz/yz and of the dxy orbitals divided by the magnetic field are
defined as
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respectively.

From Figs. 3.13 (a)–(d), we find three characteristic properties.

One is about the sign of the transverse conductivity of each orbital divided by the magnetic
field: the signs for the dxz/yz and the dxy orbitals are opposite. This arises from the details of
the band structure and the occupation number of each orbital.
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Figure 3.13: Temperature dependence of the transverse conductivities divided mag-
netic field at U = 2.1 and 1.6 eV with and without the MT CVC. The data for the
dxz/yz and the dxy orbitals represent the corresponding components in the transverse
conductivity divided magnetic field, whose definitions are given by Eqs. (3.15) and
(3.16).

The others are about the magnitude of the transverse conductivity of each orbital divided
by the magnetic field without and with the MT CVC: although without the MT CVC, the ab-
solute values of the transverse conductivities of the dxz/yz and the dxy orbitals are comparable,
the MT CVC gives rise to a larger suppression of the absolute value of the transverse conduc-
tivity of the dxy orbital. This difference of the effect of the MT CVC between these orbitals
can be understood that the MT CVC gives rise to a larger decrease of the magnitude of the
transverse conductivity of the dxy orbital due to the combination of a decrease of the current,
which decreases the magnitude, and a change of the angle for the current, which increases the
magnitude. As I will show in Fig. 3.14, in the case of the current of the dxy orbital, the increase
of the magnitude due to a change of the angle for the current is smaller compared with the case
of the current of the dxz/yz orbital.

Thus, from these three characteristic properties, we can understand the reasons why the
values of the Hall coefficients at U = 2.1 and 1.6 eV without the MT CVC are nearly zero and
why the MT CVC gives rise to the negative enhancement.

Finally, to analyze the role of each fluctuation, I present the temperature dependence of
the Hall coefficient in the weak-field limit in the same cases considered in the analysis of the
resistivity in Fig. 3.14.
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Figure 3.14: Temperature dependence of the Hall coefficient in the weak-field limit at
U = 2.1 eV in several cases of the MT CVCs; the definitions are given in the text of
§3.3. We see that the data for the full MT CVC can be reproduced by the data for
the MT CVC considering only SFs, and that the dominant contributions to the full
MT CVC arises not from the diagonal SFs of the dxz/yz or the dxy orbital but from
the non-diagonal SF between these orbitals.

From this figure, we find three principal results.

First one is that similarly to the result of the in-plane resistivity, the dominant contributions
of the full MT CVC arise from SFs. The origin is the same as the case of the in-plane resistivity:
SFs are dominant fluctuations of the model of Sr2RuO4 [2].

Second and third principal results are qualitatively different from the result of the in-plane
resistivity.

Second one is that the diagonal SF of the dxz/yz (dxy) orbital gives a slightly positive
(negative) shift from that without the MT CVC. This result can be understood that the MT
CVC due to that diagonal SF leads to a decrease of the current of that orbital, resulting in a
decrease of the magnitude of the transverse conductivity of that orbital. As described above, the
signs of the transverse conductivities of the dxz/yz and the dxy orbital are negative and positive,
respectively, and the MT CVC suppresses the value from that without the MT CVC. Note that
the reasons why the difference between data without the MT CVC and with the dxz/yz-SF-MT
CVC is enhanced at lower temperature is that the contributions from the dxy orbital, whose
sign is positive, become more considerable due to the combination of decreases both of the QP
damping of the dxy orbital at lower temperature and of the transverse conductivity of the dxz/yz
orbital, which is induced by the dxz/yz-SF-MT CVC.

Third one is that the change of the Hall coefficient due the MT CVC arises not from the
diagonal SF of the dxz/yz or the dxy orbital but from the non-diagonal SF in between. It should
be noted that if the non-diagonal component were not important and the diagonal component
were important, the data for dxy-SF-MT CVC or/and dxz/yz-SF-MT CVC would appear near
the data for MT CVC.

These results can be understood as follows. The largest contribution of the renormalization
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of the Hall coefficient due to the MT CVC arises from the bend of the current of the dxz/yz
orbital due the non-diagonal SF between that and the dxy orbital at QIC-AF. The second largest
contribution is the bend of the current of the dxy orbital due the diagonal SF of that orbital at
Q′

IC-AF. The signs of these contributions are opposite.
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Chapter 4

Discussion

In this chapter, I compare the obtained results with previous theoretical results in §4.1 and
address their correspondences with the experimental results in §4.2. It should be noted that
pure Sr2RuO4 is located not near the IC AF QCP but away from the IC AF QCP since the
spin susceptibility observed experimentally shows Pauli paramagnetism [27]. Thus, it is better
to compare the obtained results in the cases away from the IC AF QCP with the results for
Sr2RuO4.

4.1 Comparisons with other theoretical results

First, let us compare the obtained results with the previous study [11] for a single-orbital
Hubbard model on a 2D square lattice by using the same method used in this thesis, i.e. the
FLEX approximation including the MT CVC. Note that the qualitatively same result as this
previous study has been obtained in larger meshes of the Brillouin zone [15].

The authors of this previous study [11] have found that near the AF QCP, where SF around
q = (π, π) is strongly enhanced, the in-plane resistivity shows the T -linear dependence and the
Hall coefficient in the weak-field limit shows the CW like temperature dependence. The former
and the latter arise from the characteristic momentum dependence of the QP damping and the
temperature dependence of the MT four-point VF, respectively. In addition to these principal
results, they have shown that the MT CVC leads to an increase of the in-plane resistivity as a
result of a decrease of the current, and that the asymptotic value of the in-plane resistivity at
T = 0 eV becomes finite but very small in some cases considered [11]. Note that there are the
other cases where the asymptotic value at T = 0 eV is zero only including the MT CVC.

For the in-plane resistivity, I have obtained the similar results for the Ru t2g orbital Hubbard
model on a 2D square lattice. The obtained results are that the power of the temperature
dependence of the in-plane resistivity becomes linear at U = 2.1 eV (i.e. near the IC AF QCP),
that the value of the in-plane resistivity increases by the MT CVC not only at U = 2.1 eV but
also at U = 1.6 eV (i.e. away from the IC AF QCP), and that the asymptotic value of the
in-plane resistivity at T = 0 eV becomes finite but very small.

This similarity between the results of the in-plane resistivity is due to the facts that the
resistivity is strongly affected by the momentum dependence of the QP damping, and that
the fluctuation of the orbital that gives the dominant contribution to the in-plane longitudinal
conductivity is AF SF.
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However, there is a considerable difference of the relation between the resistivity and the
dominant fluctuation between single-orbital and multi-orbital systems. This difference is that
in multi-orbital systems, the orbital giving the dominant contribution to the structure of fluc-
tuations does not always give the dominant contribution to the longitudinal conductivity. The
reasons are that the dominant contribution to the conduction arises from the orbital having
the small QP damping, and that the QP damping becomes large for the orbital of which the
fluctuation is strongly enhanced. Thus, the power of the temperature dependence of the in-
plane resistivity just gives information about fluctuation of the orbital giving the dominant
contribution to the longitudinal conductivity.

For the Hall coefficient in the weak-field limit, I have obtained the different result. The
obtained result is that the temperature dependence of the Hall coefficient does not show the
CW behavior even near the IC AF QCP, although the magnitude of the Hall coefficient enhances
due to the MT CVC. As explained in §3.4, this result arises from two opposite-sign contributions
to the Hall coefficient from the bends of the currents of the dxz/yz and the dxy orbitals due to
the MT CVC. Although the bend of the dxz/yz orbital is due to a multi-orbital effect, that of
the dxy orbital is similar to that in the single-orbital case [11].

This difference between the results of the temperature dependence of the Hall coefficient
can be understood that in multi-orbital systems, the signs of the transverse conductivities of
several orbitals are not always the same and there are several contributions of the MT CVC to
the renormalization of the Hall coefficient in general.

Thus, I deduce from this comparison the same properties as those of the single-orbital
case and the different properties. These same properties are the change of the power of the
temperature dependence of the in-plane resistivity near the QCP, an increase of the value of
the resistivity due to the MT CVC, and finite but very small asymptotic value of the in-plane
resistivity at T = 0 eV. The different properties from those of the single-orbital case are the
relation between the resistivity and the dominant fluctuation and the temperature dependence
of the Hall coefficient in the weak-field limit near the QCP.

I turn to the comparison with the previous study [18] about the transport properties of
Sr2RuO4 within the relaxation time approximation. It should be noted that in contrast to this
previous theory [18], I do not use any ad hoc parameters about the QP damping.

As explained in §1.3, the authors of this previous theory [18] has shown that the experimental
results of the in-plane resistivity and the Hall coefficient in the weak-filed limit can be reproduced
within the relaxation time approximation for the tight-binding model of Sr2RuO4 by using the
momentum independent QP damping with some ad hoc parameters.

For the in-plane resistivity, I have obtained the similar result, i.e. the T 2 dependence at
U = 1.6 eV. The similar result will be obtained in the other cases not near the IC AF QCP
(e.g., U = 1.8 eV).

For the Hall coefficient in the weak-filed limit, I have obtained the similar temperature
dependence in the range of 100 ≤ T ≤ 150 (K) but the smaller absolute value at U = 1.6
eV than that obtained in this previous theory [18]. This difference in the value is due to the
experimentally inconsistent occupation number of each orbital in the theory used in this thesis.

However, I think that if the Hall coefficient is calculated in the same method as that used
in this thesis by the model having the experimentally consistent occupation number of each
orbital, the difference in the value of the Hall coefficient becomes smaller. The reasons are that
the smaller absolute value of the Hall coefficient without the CVCs at U = 2.1 eV compared
with that at U = 1.6 eV arises mainly from the change of the occupation number of each orbital,
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and that the occupation number at U = 2.1 eV is nearer to the experimentally observed value
than that at U = 1.6 eV.

Thus, I conclude that the similar temperature dependence of the in-plane resistivity and
the Hall coefficient in the weak-field limit can be obtained in the more correct approximation
for the effective model of Sr2RuO4 without any ad hoc parameters about the QP damping.
In particular, two factors lacking in the previous phenomenological theory [18] of Sr2RuO4,
i.e. the momentum dependence of the self-energy of electrons and the temperature dependence
of the electron-hole four-point VF, are not so important away from the IC AF QCP at low
temperatures.

4.2 Correspondences with experimental results

First, I address the correspondence between the obtained results and the experimental re-
sults [22, 30] of pure Sr2RuO4.

As shown in Figs. 1.3 (a) and (b), the in-plane resistivity [22] shows the T 2-dependence at
low temperatures, and the Hall coefficient [30] in the weak-field limit, which becomes zero at
T = 150 K, shows the upward shift in the range of 100 ≤ T ≤ 300 (K) as temperature decreases.

For the in-plane resistivity, the obtained results are consistent with this experimental re-
sult [22] since the T 2 behavior of the in-plane resistivity has been obtained at U = 1.6 eV.

For the Hall coefficient in the weak-field limit, the temperature dependence is qualitatively
consistent with the experimental result [30], but the obtained value is inconsistent; e.g. the value
including the MT CVC at U = 1.6 eV and T = 150 K ∼ 0.013 eV is not equal to zero. The
reason for this inconsistency can be understood as the experimentally inconsistent occupation
number of each orbital in the theory used in this thesis. As described in §4.1, this inconsistency
will be improved by using the model having the experimentally consistent occupation number of
each orbital since the value of the Hall coefficient will shift upward compared with that obtained
in this thesis.

Thus, I conclude that the obtained results are qualitatively consistent with the experimental
results [22, 30] of pure Sr2RuO4, although there is a remaining issue about the quantitative
comparison of the value of the Hall coefficient in the weak-field limit by using the model having
the experimentally consistent occupation number.

Next, I turn to the discussions about the correspondences between the obtained results and
three unusual transport properties [22, 23, 24] of Sr2RuO4.

As described in §1.4, I focus only on the in-plane transport and do not analyze the out-of-
plane transport due to the difficulties of the treatments both of the three-dimensionality and
of the incoherent conduction. Thus, the analysis about the out-of-plane resistivity is a future
problem.

The mechanism for the negative enhancement [23] of the Hall coefficient due to tiny amount
of nonmagnetic Al impurities can be qualitatively explained by the combination of the obtained
results and the knowledge about the effect of the impurity scattering in the Born approxima-
tion, although the nonmagnetic impurity scattering is not taken into account for the actual
calculations. As I will explain below in detail, that mechanism is that the dilute and weak non-
magnetic impurity scattering enhances a ratio of the QP damping of the dxy orbital to that of
the dxz/yz orbital, resulting in a suppression of the positive enhancement to the Hall coefficient
due to the bend of the current of the dxy orbital. As shown in §3.4, there are two opposite-sign
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contributions to the Hall coefficient from the MT CVC, which are the bend of the current of
the dxz/yz orbital due to the MT CVC of the non-diagonal SF between that and the dxy orbital
at QIC-AF and that of the dxy orbital due to the MT CVC of the diagonal SF of that orbital at
Q′

IC-AF. If the dilute and weak impurity scattering is introduced in Sr2RuO4, the QP damping
of the dxy orbital is more strongly enhanced compared with that of the dxz/yz orbital due to the
larger DOS of the dxy orbital near the Fermi level. Note that in the Born approximation [16],
the self-energy of an orbital due to the impurity scattering is proportional to the DOS of that
orbital. Since the kernel of the MT CVC contains the QP damping, this enhancement of a ratio
of the QP damping of the dxy orbital to that of the dxz/yz orbital leads to a larger suppression
of the contribution of the bend of the current of the dxy orbital than that of the dxz/yz orbital.
As a result, the negative enhancement of the Hall coefficient is induced by the dilute and weak
nonmagnetic impurity scattering. Since the above argument is just qualitative discussion, it is
necessary to carry out the actual calculation in the presence of the dilute and weak nonmagnetic
impurity scattering.

Similarly, the T -linear in-plane resistivity [24] in the case of small substitution of Ti4+ for
Ru4+ can be understood by one of the obtained results, which is the T -linear dependence near
the IC AF QCP. As described in §1.2.2, Sr2Ru1−yTiyO4 at y = 0.025, which is located near
the IC AF QCP, shows the T -linear dependence of the in-plane resistivity [24, 40]. Since the
concentration of Ti is not so large compared with that of Ru, I think that the effect of the
Ti substitution on the total occupation number is small. Although the mechanism that small
substitution of Ti4+ for Ru4+ leads to the system being nearer to the IC AF QCP compared
with Sr2RuO4, I think that the obtained results can explain the experimental fact [24] that the
power of the temperature dependence of the in-plane resistivity becomes linear near the IC AF
QCP.

Thus, the obtained results can give the qualitative explanations about the mechanisms
for two of the three unusual transport properties of Sr2RuO4, although the actual calculations
about the out-of-plane resistivity and the effects of nonmagnetic impurities are remaining future
problems.
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Chapter 5

Conclusions and remaining issues

In this chapter, I summarize the principal results and the conclusions and explain the remaining
issues for future study.

There are the six principal results drawn from this study. Three of them are about the
in-plane resistivity, and the others are about the Hall coefficient in the weak-field limit.

First one is about the effects of the self-energy of electrons on the in-plane resistivity: the
power of the temperature dependence of the in-plane resistivity is strongly affected by the
momentum dependent self-energy of electrons. Actually, we see from Figs. 3.9 and 3.11 that
the power at U = 1.6 eV (i.e. away from the IC AF QCP) is square, while the power becomes
linear at U = 2.1 eV (i.e. near the IC AF QCP).

Second one is about the effects of the MT CVC on the in-plane resistivity: the MT CVC
little affects the power of the temperature dependence of the in-plane resistivity, although the
value of the in-plane resistivity increases due to a decrease of the current, induced by the MT
CVC. For the model of Sr2RuO4, the main contribution to the MT CVC arises from SFs, and the
contributions from the other fluctuations (e.g., orbital fluctuation) are negligible. In particular,
the MT CVC of the diagonal SF of the dxz/yz orbital gives the primary effect on the in-plane
resistivity.

Third one is about the role of each Ru t2g orbital in the in-plane conduction: the longitudinal
conductivity arises mainly from the dxz/yz orbital due to the smaller QP damping compared with
that of the dxy orbital and the momentum dependence of the band velocities. In particular,
the dxz (dyz) orbital gives the primary contribution to conduction along the x-direction (y-
direction). This larger contribution of the dxz/yz orbital compared with that of the dxy orbital
is the origin that the primary effect of the MT CVC on the in-plane resistivity arises from the
diagonal component of SF of the dxz/yz orbital. In addition, this result suggests that the orbital
giving the dominant contribution to the in-plane conduction is not equal to that giving the
dominant contribution to the structure of magnetic fluctuations.

Fourth one is about the effect of the self-energy of electrons on the Hall coefficient in the
weak-field limit: the self-energy of electrons gives a small effect on the value of the Hall coef-
ficient. Actually, I have found that the difference between the values without the MT CVC at
U = 2.1 and 1.6 eV is very small. This result arises from the dependence of the Hall coefficient
on the self-energy of electrons. Instead, this small difference between the values of the Hall
coefficient without the MT CVC at U = 2.1 and 1.6 eV arises from the small difference in the
occupation number of each orbital.

Fifth one is about the role of each Ru t2g orbital in the Hall coefficient in the weak-field limit:
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the signs of the transverse conductivities of the dxz/yz and the dxy orbitals divided by H are
opposite, and the absolute value of the dxz/yz orbital without (with) the MT CVC is comparable
with (larger than) that of the dxy orbital. These opposite signs are due to the details of the
band structure and the occupation number of each orbital, and the larger suppression of the
transverse conductivity of the dxy orbital arises from a combination of a decrease of the current,
which decreases the magnitude of the transverse conductivity, and a bend of the current, which
increases the magnitude.

Sixth one is about the effects of the MT CVC on the Hall coefficient in the weak-filed limit:
the MT CVC gives rise to the negative enhancement of the Hall coefficient not only near but
also away from the IC AF QCP, although in the case away from the QCP the value reaches
that without the MT CVC at low temperatures. This negative enhancement arises from the
bend of the current of the dxz/yz orbital due to the MT CVC of the non-diagonal SF between
that and the dxy orbitals at QIC-AF. The suppression of the negative enhancement of the Hall
coefficient away from the QCP arises from the opposite-sign contributions of that bend and the
bend of the current of the dxy orbital due to the MT CVC of the diagonal SF of that orbital at
Q′

IC-AF. Since the former contribution, whose sign is negative, is primary near the IC AF QCP,
the MT CVC gives rise to the negative enhancement of the Hall coefficient. On the other hand,
in the case away from the IC AF QCP, since the latter contribution becomes nearly the same
as the former contribution at low temperatures, these enhancements of the Hall coefficient are
cancelled out at low temperatures.

From these principal results, we can deduce the following conclusions.

One is that the in-plane resistivity of Ru oxides is determined almost by the dxz/yz orbital
since the QP damping of that orbital will remain smaller than that of the dxy orbital. In
particular, near the IC AF QCP, the characteristic momentum dependence of the QP damping
of the dxz/yz orbital leads to the T -linear in-plane resistivity. As described in §4.2, I think that
this result can explain the mechanism for the T -linear in-plane resistivity [24] in Sr2Ru1−yTiyO4

at y = 0.025.

The other conclusion is that even near the IC AF QCP, the Hall coefficient of the model of
Sr2RuO4 does not show the CW-like temperature dependence, which is obtained in the single-
orbital case [11]. This arises from two opposite-sign contributions of the bends of the currents
of the dxz/yz and of the dxy orbitals due to the MT CVC. However, as explained in §4.2, the
situation will be changed in the presence of dilute nonmagnetic impurities. In this case, an
additional QP damping due to the nonmagnetic impurity scattering will lead to a negative
enhancement of the Hall coefficient from the value in the absence of impurities as a result of
an increase of a ratio of the QP damping of the dxy orbital to that of the dxz/yz orbital. I
think that this is the origin of the negative enhancement [23] of the Hall coefficient due to tiny
amount of nonmagnetic Al impurities.

I believe that the obtained results lead to a deeper understanding of the transport properties
of Ru oxides since the basis of the electronic structure of other Ru oxides is similar to that of
Sr2RuO4.

Also, I believe that the similar mechanism is realized in other multi-orbital SCES where
several sheets of the FS’s are located near each other and the dimensionalities of the orbital
characters are different. The reasons are as follows. If several sheets of the FS’s are located near
each other, there are several nesting vectors, which are nearly the same. In the case of Sr2RuO4,
three sheets of the FS’s are located near each other around k = (2π/3, 2π/3). In addition, if
electron correlation becomes strong or moderately strong, these nesting vectors will coincide
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due to the deformation of the FS. In particular, when the system is located near a QCP, the
orbital cooperative fluctuation is most strongly enhanced and the temperature dependence of
that is strong and leads to the CW like temperature dependence. Correspondingly, the effective
interaction, mediated by this orbital cooperative fluctuation, shows the similar enhancement and
strong temperature dependence. Furthermore, if there are some orbitals, whose dimensionalities
are different in between, the current of one orbital can be bent through the MT CVC due to the
non-diagonal fluctuations with another orbital. Finally, this bend of the current leads to the
drastic renormalization of the temperature dependence of the Hall coefficient in the weak-filed
limit.

Finally, I explain six remaining issues for future study.

First one is about the actual calculations including the AL CVCs, which are neglected. The
actual calculations including the AL CVCs are necessary to carry out since I have obtained very
small but finite asymptotic value of the in-plane resistivity at T = 0 eV. It should be noted that
as described in §3.3, there will be no drastic changes from the results obtained in this thesis
even including the AL CVCs since it is known for the single-orbital Hubbard model on a 2D
square lattice that the AL CVCs are very small near the AF QCP and the similar result will
hold even in multi-orbital cases.

In addition, in the vicinity of a SC QCP, it is necessary to analyze the roles of the AL CVCs
in multi-orbital systems since these roles have not been clarified yet. Note that the roles in a
single-orbital system have been clarified and the importance of the AL CVCs near a SC QCP
has been shown [14]. I believe that the analysis about the roles of the AL CVC in multi-orbital
systems leads to a understanding of the origin of the unusual behavior in the Nernst coefficient
of CeCoIn5 [77] near a SC QCP since this compound is categorized into one of the multi-orbital
SCES and has several sheets of the FS’s being located near each other.

Second one is about the out-of-plane resistivity. As described in §1.4, the out-of-plane
resistivity is not analyzed due to the difficulties of the treatments of the three-dimensionality
and the incoherent conduction. Since it has been pointed out the importance of the role of the
large QP damping due the vHs in cuprates [58], it is highly desirable to analyze the out-of-plane
resistivity of Sr2RuO4 on the basis of the microscopic theory including the three-dimensionality
and the momentum dependence of the QP damping.

Third one is about the dependence of the Hall coefficient on the occupation number of each
orbital or on the total filling. Even for the same total filling as that of Sr2RuO4, the temperature
dependence of the Hall coefficient will change in cases where the occupation number of each
orbital is different from that considered in this thesis. Thus, it is necessary to investigate the
effects of the change of the occupation number of each orbital in discussing the Hall coefficient in
the weak-field limit. In addition, the analysis about the dependence of the occupation number
of each orbital is needed for the quantitative comparison of the value of the Hall coefficient
with the experimental result [30], as described in §4.1. Furthermore, the analysis about this
dependence including the effects of the RuO6 distortions (e.g. rotation) is highly desirable to
clarify the origins of the unusual transport properties [23, 59] of Ca2−xSrxRuO4 around x = 0.5,
where the occupation number of each orbital is changed by the rotation [48, 78] from that of
Sr2RuO4. Then, since the change of the total filling gives a drastic change of the temperature
dependence of the Hall coefficient, the analysis about the effects of the change of the total filling
is needed. I believe that this analysis will lead to a deep understanding about the transport
properties of other SCESs (e.g. CeCoIn5 [77] in the case near the AF QCP).

Fourth one is about the difference between the present case, where SF is primary, and
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another case, where another fluctuation becomes primary. For example, if orbital fluctuation
becomes dominant, we will obtain different transport properties from those obtained in this
thesis. In that case, there will be other contributions of the bend of the current. Since there
are some candidates where not SF but orbital fluctuation is dominant (e.g. PrIrZn20 [79]), the
analysis about this issue is highly desirable.

Fifth one is about the effects of dilute nonmagnetic impurities on the transport properties of
multi-orbital SCES. Although I have given the qualitative explanations about the mechanisms
for the unusual transport properties induced by nonmagnetic impurities in §4.2, it is necessary to
carry out the actual calculations in the presence of dilute nonmagnetic impurities. In addition,
from a theoretical point of view, the effects of dilute nonmagnetic impurities on the transport
properties of multi-orbital SCESs have not been clarified yet. Thus, I believe that the analysis
about the effects of dilute nonmagnetic impurities leads to not only a understanding of the
origin of the unusual transport properties [23, 24] of Sr2RuO4 but also a deep understanding of
the roles of dilute nonmagnetic impurities in the transport properties of multi-orbital SCESs.

Sixth one is about the roles of local correlation in the transport properties of SCESs: how
are the obtained results modified in case that local correlation also becomes strong. This issue
is important from a theoretical point of view since both spatial and local correlations play
important roles in discussing the electronic structures of SCESs [39, 52]. In addition, it is
highly desirable to clarify the effects of local fluctuation for a spin-chiral degree of freedom on
the transport properties since there is a previous theoretical study based on the cellular DMFT,
showing the importance of this fluctuation at low energy in discussing the electronic structure
for the single-orbital Hubbard model on a Kagome lattice [80]. In order to analyze these, it
is necessary to use another theory where conservation laws satisfy and both spatial and local
correlations are taken into account.
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[8] G. M. Éliashberg, TRANSPORT EQUATION FOR A DEGENERATE SYSTEM OF
FERMI PARTICLES, Sov. Phys. JETP 14, 886 (1962).

[9] H. Kohno and K. Yamada, A General Expression for Hall Coefficient Based on Fermi
Liquid Theory, Prog. Theor. Phys. 80, 623 (1988).

[10] P. Nozières, Theory of Interacting Fermi Systems (Addison-Wesley, MA, 1997).

[11] H. Kontani, K. Kanki, and K. Ueda, Hall effect and resistivity in high-Tc superconductors:
The conserving approximation, Phys. Rev. B 59, 723 (1999).

81



[Ph.D. Thesis] January 2014

[12] K. Maki, Critical Fluctuation of the Order Parameter in a Superconductor. I, Prog. Theor.
Phys. 40, 193 (1968).

[13] R. S. Thompson, Microwave, Flux Flow, and Fluctuation Resistance of Dirty Type-II
Superconductors, Phys. Rev. B 1, 327 (1970).

[14] L. G. Aslamasov and A. I. Larkin, EFFECT OF FLUCTUATIONS ON THE PROPER-
TIES OF A SUPERCONDUCTOR ABOVE THE CRITICAL TEMPERATURE, Sov.
Phys. Solid State 10, 875 (1968).

[15] Y. Yanase, Theory of Electric Transport in the Pseudogap State of High-Tc Cuprates, J.
Phys. Soc. Jpn. 71, 278 (2002).

[16] A. A. Abrikosov, L. P. Gorkov, I. E. Dyaloshinski, Methods of Quantum Field Theory in
Statistical Physics (Dover Publications, INC., New York, 1963).

[17] Y. Yamashita and K. Ueda, Spin-orbital fluctuations and a large mass enhancement in
LiV2O4, Phys. Rev. B 67, 195107 (2003).

[18] C. Noce and M. Cuoco, Phenomenological model for magnetotransport in a multiorbital
system, Phys. Rev. B 62, 9884 (2000).

[19] For an experimental review, see A. P. Mackenzie and Y. Maeno, The superconductivity of
Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75, 657 (2003).

[20] Y. Sidis, M. Braden, P. Bourges, B. Hennion, S. NishiZaki, Y. Maeno, and Y. Mori,
Evidence for Incommensurate Spin Fluctuations in Sr2RuO4, Phys. Rev. Lett. 83, 3320
(1999).

[21] A. P. Mackenzie, S. R. Julian, A. J. Diver, G. J. McMullan, M. P. Ray, G. G. Lonzarich,
Y. Maeno, S. Nishizaki, and T. Fujita, Quantum Oscillations in the Layered Perovskite
Superconductor Sr2RuO4, Phys. Rev. Lett. 76, 3786 (1996).

[22] N. E. Hussey, A. P. Mackenzie, J. R. Cooper, Y. Maeno, S. Nishizaki, and T. Fujita,
Normal-state magnetoresistance of Sr2RuO4, Phys. Rev. B 57, 5505 (1998).

[23] L. M. Galvin, R. S. Perry, A. W. Tyler, A. P. Mackenzie, S. Nakatsuji, and Y. Maeno,
Hall effect in single crystal Ca2−xSrxRuO4, Phys. Rev. B 63, 161102(R) (2001).

[24] N. Kikugawa and Y. Maeno, Non-Fermi-Liquid Behavior in Sr2RuO4 with Nonmagnetic
Impurities, Phys. Rev. Lett. 89, 117001 (2002).

[25] A. Damascelli, D. H. Lu, K. M. Shen, N. P. Armitage, F. Ronning, D. L. Feng, C. Kim,
Z.-X. Shen, T. Kimura, Y. Tokura, Z. Q. Mao, and Y. Maeno, Fermi Surface, Surface
States, and Surface Reconstruction in Sr2RuO4, Phys. Rev. Lett. 85, 5194 (2000).

[26] T. Katsufuji, M. Kasai, and Y. Tokura, In-Plane and Out-of-Plane Optical Spectra of
Sr2RuO4, Phys. Rev. Lett. 76, 126 (1995).

[27] Y. Maeno, K. Yoshida, H. Hashimoto, S. Nishizaki, S. Ikeda, M. Nohara, T. Fujita, A.
P. Mackenzie, N. E. Hussey, J. G. Bednorz, and F. Lichtenberg, Two-Dimensional Fermi
Liquid Behavior of the Superconductor Sr2RuO4, J. Phys. Soc. Jpn. 66, 1405 (1997).

82



[Ph.D. Thesis] January 2014

[28] H.-J. Noh, S.-J. Oh, B.-G. Park, J.-H. Park, J.-Y. Kim, H.-D. Kim, T. Mizokawa, L. H.
Tjeng, H.-J. Lin, C. T. Chen, S. Schuppler, S. Nakatsuji, H. Fukazawa, and Y. Maeno,
Electronic structure and evolution of the orbital state in metallic Ca2−xSrxRuO4, Phys.
Rev. B 72, 052411 (2005).

[29] S. J. Moon, M. W. Kim, K. W. Kim, Y. S. Lee, J.-Y. Kim, J.-H. Park, B. J. Kim, S.-J.
Oh, S. Nakatsuji, Y. Maeno, I. Nagai, S. I. Ikeda, G. Cao, and T. W. Noh, Electronic
structures of layered perovskite Sr2MO4 (M=Ru, Rh, and Ir), Phys. Rev. B 74, 113104
(2006).

[30] A. P. Mackenzie, N. E. Hussey, A. J. Diver, S. R. Julian, Y. Maeno, S. Nishizaki, and T.
Fujita, Hall effect in the two-dimensional metal Sr2RuO4, Phys. Rev. B 54, 7425 (1996).

[31] K. Ishida, Y. Kitaoka, K. Asayama, S. Ikeda, S. Nisizaki, Y. Maeno, K. Yoshida, and
T. Fujita, Anisotropic pairing in superconducting Sr2RuO4: Ru NMR and NQR studies,
Phys. Rev. B 56, R505 (1997).

[32] I. I. Mazin and D. J. Singh, Competitions in Layered Ruthenates: Ferromagnetism versus
Antiferromagnetism and Triplet versus Singlet Pairing, Phys. Rev. Lett. 82, 4324 (1999).

[33] A. Gukasov, M. Braden, R. J. Papoular, S. Nakatsuji, and Y. Maeno, Anomalous Spin-
Density Distribution on Oxygen and Ru in Ca1.5Sr0.5RuO4: Polarized Neutron Diffraction
Study, Phys. Rev. Lett. 89, 087202 (2002).

[34] J. A. Duffy, S. M. Hayden, Y. Maeno, Z. Mao, J. Kulda, and G. J. McIntyre, Polarized-
Neutron Scattering Study of the Cooper-Pair Moment in Sr2RuO4, Phys. Rev. Lett. 85,
5412 (2000).

[35] T. Imai, A. W. Hunt, K. R. Thurber, and F. C. Chou, 17O NMR Evidence for Orbital
Dependent Ferromagnetic Correlation in Sr2RuO4, Phys. Rev. Lett. 81, 3006 (1998).

[36] K. Ishida, H. Mukuda, Y. Minami, Y. Kitaoka, Z. Q. Mao, H. Fukazawa, and Y. Maeno,
Normal-state spin dynamics in the spin-triplet superconductor Sr2RuO4, Phys. Rev. B 64,
100501(R) (2001).

[37] H. Kontani, Anomalous transport phenomena in Fermi liquids with strong magnetic fluc-
tuations, Rep. Prog. Phys. 71, 026501 (2008).
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