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Abstract

According to the axioms of quantum mechanics, there exists a quantum measure-
ment corresponding to each observable. Energy is one of such observables, and
the operator of the energy is called Hamiltonian. The Hamiltonian specifies the
dynamics of closed quantum systems and it also characterizes the property of the
equilibrium state in contact with a heat bath. Therefore the energy is an essen-
tial quantity in quantum mechanics, which characterizes behavior of a quantum
system. On the other hand, since the Hamiltonian is not a local observable in
general, a concrete construction of how to apply the quantum measurement of
energy is not trivial. Thus various measurement models of energies have been
proposed, and also discussions have been made on whether the time is a resource
to be consumed to increase the precision of energy measurement in connection
with the time-energy uncertainty relationship.

Constructing a way to implement the energy measurement on an unknown
Hamiltonian system is important, since it avoids constructing a new measurement
scheme for each new quantum system. On the other hand, among measurements
of energy, the projective measurement of energy has useful properties for applica-
tions. The projective measurement is a measurement which satisfies the condition
so-calledepeatable hypothesibat when we measure the state immediately after
obtaining an outcome from the same measurement, we obtain the same outcome
again.

In this thesis, we consider two schemes to implement the projective mea-
surement of energy for an unknown Hamiltonian system. One is a tomography
based method, which is a construction suggested in the paper of Aharanov et.
al. (2002). The other is the phase estimation based method, which utilizes the
Hamiltonian dynamics of the system as a resource for the quantum algorithm,
and realizes the projective measurement of energy on the system without identi-
fying all parameters of the Hamiltonian. In this thesis, we assume there is a finite
dimensional quantum system (quantum computer) which is able to apply any in-
teraction between the target system and the finite dimensional system although
the interaction should not depend on the target system Hamiltonian.

To evaluate the performance of the measurements implemented by the two
schemes, we formulate two evaluation functions cafledtuation of measure-
ment valueandnon-repeatabilitywhich can evaluate how much a measurement
is different from the ideal projective measurement of an observable. We calculate
a suficient time to guarantee the fluctuation of measurement value below some



small valueg, for each of the two measurement schemes. We find that the tomog-
raphy based method takes the time proportion@®(@*Am../€), while the phase
estimation based method tak®gA3 /%), whered is the dimension of the tar-

get system and . is the diference between the largest energy eigenvalue and
the smallest energy eigenvalue. We show that the phase estimation based method
performs better for large particle systems.
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According to the axioms of quantum mechanics, there exists a quantum mea-
surement corresponding to each observable. Energy is one of such observables,
and the operator of the energy is called Hamiltonian. The Hamiltonian specifies
the dynamics of closed quantum systems and it also characterizes the property
of the equilibrium state in contact with a heat bath. Therefore the energy is an
essential quantity in quantum mechanics, which characterizes behavior of a quan-
tum system. On the other hand, since the Hamiltonian is not a local observable
in general, a concrete construction of how to apply the quantum measurement of
energy is not trivial. Thus various measurement models of energies have been
proposed [1, 2, 3, 4, 5], and also discussions have been made on whether the time
iS a resource to be consumed to increase the precision of energy measurement.

Among measurements of energy, the projective measurement of energy has
useful properties for applications. The projective measurement is a measurement
which satisfies the condition so-callegpeatable hypothes|§, 7] that when we
measure the state immediately after obtaining an outcome from the same mea-
surement, we obtain the same outcome again. Quantum non-demolition measure-
ment (QND) is an example of the application of the projective measurement [8].
One type of QND is a sequence of projective measurement of energy on the same
system, which is considered to beyond the standard quantum limit that experi-
mental confirmation of the gravity-wave detection faces. It will return the same
outcome even when the measurements are separated by arbitrarily long intervals,
as long as no external factor disturbs the system throughout the sequence. It
makes the projective measurement of energy ideal for high-precision quantum
metrology. Another application of the projective measurement of energy is for
the experimental confirmation of the fluctuation theorem [9, 10, 11], which re-
lates the probability of microscopic energy transition to macroscopic properties
of energy, heat work in of the thermodynamics.

Most of the previous proposals for implementing the energy measurement
on quantum systems work only when the Hamiltonians of quantum systems are
known. Constructing a method to implement the energy measurement on un-
known Hamiltonian systems is useful, since it can be performed on quantum
systems by a fixed procedure which is independent from the Hamiltonian. The
energy measurement on an unknown Hamiltonian system was once considered
in [12], but still substantial progress is required fdli@ent implementation. In
this thesis, we construct schemes to implement the projective measurement of
energy on finite dimensional quantum systems with unknown Hamiltonians and
analyze their running time required to guarantee a certain level of performance
of energy measurement. We investigate how the running time depends on the
dimension of the system. The Hamiltonian of the system is unknown but we only



require the dierence between the minimum and the maximum eigenvalues of

the system Hamiltonian is to be bounded and given by a known constant. Even
if we consider the case that the bound is known, the number of parameters for
identifying Hamiltonian is not reduced and implement the energy measurement
Is still non-trivial.

In this thesis, we consider two schemes to implement the projective mea-
surement of energy for an unknown Hamiltonian system. One is a tomography-
based method, which is a construction suggested in the paper of Aharanov et. al.
(2002) [12, 13]. The other is the phase estimation based method, which utilizes
the Hamiltonian dynamics of the system as a resource for the quantum algorithm,
and realizes the projective measurement of energy on the system without iden-
tifying all parameters of the Hamiltonian. In this thesis, we assume there is a
finite dimensional quantum system (quantum computer) which is able to apply
any interaction between the target system and the finite dimensional system al-
though the interaction should not depend on the target system Hamiltonian. The
guantum computer works in enough short duration to ignore the dynamics caused
by the self-Hamiltonian of the target system. Thus the total time of the measure-
ment is evaluated by the sum of the idle times of the quantum computer, which
causes a required time evolution on the target system before the next operation.
In quantum informationguery complexity14] is the time cost determined by the
number of use of an unknown unitary gate. For example, the cost of Grover’s
database search algorithm [15] is analyzed in terms of query complexity. Espe-
cially when the gate is given by the Hamiltonian dynamics, the time cost is called
Hamiltonian query16].

In the tomography-based method, we construct a linear estimation scheme
of the unitary operation, and we takes the logarithm for the estimated operation
to identify the Hamiltonian. However, the probability to return the result which
has no physical counterpart is known to be a disadvantage of the linear estima-
tion [17]. It is also the case with our estimator. The estimated operator can be
a general complex matrix, on which the logarithm operation is not well-defined.
We analyze this method on the assumption that there is an appropriate converter
which deforms a given operator into a regular, normal matrix while leaving the
statistical property of each element the same as the original operator.

In the phase estimation based method, our key contribution is to make Ki-
taev’s phase estimation algorithm [18], which is used in Shor’s factorization al-
gorithm [19], applicable for our situation by presenting a new quantum algo-
rithm called universal controllization. Kitaev's phase estimation algorithm had
been shown to implement the projective measurement of energy in the asymp-
totic limit [20, 21]. To perform this algorithm, the Hamiltonian dynamics of the
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target system has to be coherently controlled by the state of a memory qubit (con-
trol qubit). This means that if the state of a memory qubidjs the dynamics
of the system is static, and if the state of the memotgisthe dynamics of the
system is applied as usual, and if the state is in the superpositiOn afid|1),
the superposition of the two is realized. There were attempts [22, 23] to obtain
the controlled dynamics for an unknown Hamilton dynamics; however there is
a proof that the exact controllization is impossible in general [24]. (The meth-
ods of controllizaiton presented by [22, 23] has turned out to be not applicable
to completely unknown Hamiltonian dynamics). In this thesis, we construct a
scheme of universal controllization which approximately realizes the controlled
Hamiltonian dynamics, there by avoiding the impossibility of exact implementa-
tion. In our new algorithm, the Hamilton dynamics is divided into a short time
sequence and randomization processes are inserted between sequences. The re-
sulting dynamics cancels emerging entanglement between the target system and
the quantum computer which has the main obstacle for controllization of the un-
known Hamiltonian.

To evaluate the performance of the measurements implemented by the two
schemes, we formulate two evaluation functions cafledtuation of measure-
ment valueandnon-repeatabilitywhich can evaluate how much a measurement
is different from the ideal projective measurement of an observable. Fluctua-
tion of measurement value is defined as the mean squared error of the measure-
ment outcome. non-repeatability evaluates how a measurement behidges di
ently from the repeatable hypothesis. These two are defined in a similar spirit as
the error and the disturbance defined by Ozawa [26]. There are also two known
evaluation methods of the distance between measurements, nisimege dis-
tance[27, 30] for two probability distributions andiamond norm33, 34] for
two instruments (probabilistic maps) associated with the state changes for each
outcome. In these two evaluation methods, measurement on not only eigenstates
but also all possible states should be taken into account to evaluate the perfor-
mance of the measurement. This arbitrariness of the states makes these methods
very hard to calculate. The Monge distance includes the maximization over Lip-
schitz functions which is hard to calculate, and the diamond norm can not be
well-defined in our situation. In this thesis, we formulate two relations between
the known evaluation methods and ours. One relationship is that the fluctuation
of measurement value and non-repeatability give an upper bound of the Monge
distance. The other is, when the fluctuation of measurement value is zero, the
diamond norm becomes well-defined and the value becomes the same as the non-
repreatability.

We calculate a dticient time to guarantee the fluctuation of measurement



value below some small valug for each of the two measurement schemes. We
find that the tomography-based method takes the time proportio@&iifa .,/ <),

while the phase estimation based method ta®es ,,/£%), whered is the di-
mension of the target system ang.y is the diference between the largest en-
ergy eigenvalue and the smallest energy eigenvalue. It is clarified that when the
fluctuation of measurement value is smaller thgp,/d*, the tomography-based
method is better than the phase estimation based method. However, the dimen-
sion of a physical system grows exponentially with system size given by the num-
ber of constituent particles whereag., grows only linearly when we assume a
nearest-neighbor interaction between particles, which is frequently encountered
in physics. Therefore, as for the fluctuation of measurement value, phase estima-
tion based method shows better performance when the system siféciestly

large. We also calculate the non-repeatability for the case of tomography-based
method and the the phase estimation algorithm based method. We have found
the non-repeatability of the tomography-based method can not converge to zero
in the limit of infinite measurement time, while that of the method using phase
estimation algorithm is always zero for any amount of time consumed.
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2.1 Introduction

In this chapter, we present a formulation of quantum mechanics used in quantum
information theory. In Sec. 2.2, we give mathematical preliminaries. In Sec. 2.3,
we present axioms of the theory of quantum mechanics. In Sec. 2.4 we present
definitions and notations of terminologies of quantum measurement used in this
thesis.

2.2 Mathematical Preliminary

A Hilbert space is a vector space associated with a distance in which all Cauchy
sequences have a limit point (completeness). Concepts in quantum mechanics are
defined on a Hilbert space. In this thesis, we only consider the Hilbert spaces of
finite dimensions. In the following, we first set notations of general terms in the
linear algebra used in the thesis. Second, we give definitions for mathematical
terms to formulate quantum mechanics for mixed states.

Notations on finite dimensional Hilbert spaces

Notation 1. We call a finite dimensional complex vector spétfeas a Hilbert
space, and we represent it by a curly alphaét\We represent the inner product
between two vectotg), |¢) € H as{p|y), and the norm of a vectaw) as||jy)|| =

V).

Notation 2. We call a linear operator orH simply as an operatoB3(#) denotes
the set of operators o. We represent the identity operator ¢has | € B(H).

Notation 3. For a diagonalizable (normal) operator A B(H), we represent a
projection operators corresponding to the eigenspace of the i-th eigenvahse a
PA. Thus the operator A is written by

A= aPl (2.1)

Notation 4. We represent the tensor product of two vectorgag |¢) for vectors
ly) € H and|¢) € H’ and also asy)|¢) € H ® H’ for short.

Definitions on finite dimensional Hilbert spaces

Definition 1. An Hermitian operator whose eigenvalues are non-negative is called
a positive matrix. For any Hermite operator AB(H), A > 0 means the Hermi-
tian operator A is a positive matrix.
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Definition 2. Whenp € B(H) satisfies
p=>0 Tr[p] =1, (2.2)

it is called as a density operator (matrix) 0. D(H) denotes the set of density
operators.

Definition 3. For |), |¢) € H, an operatoné)¢| € B(H) is defined by,

() 16) = (lE) - ). (2.3)

Definition 4. For A € B(H ® H’) such that
A=) leXeleA;, leyeH, AjeBH), (2.4)
i
we define a linear mapry, [+] : B(H®H’) — B(H), which is called the partial
trace of A overH’ as

Trye [A] = > Tr[Ay]leXeyl. (2.5)
N

Definition 5. For any Hermite operator A ori{ and real function f: R — R,
we define the Hermite operato(A) on H by

f(A =), f@P (26)

Definition 6. We define the trace-norm of an operatoe AB(H) as
1Al == Tr| VAAT|. (2.7)

Definition 7. A linear functionA : 8(H) — B(H) is called a superoperator

on the Hilbert spacé{. We represent the identity superoperatorfnasid and

also asidy to specify the Hilbert space. We represent superoperators by curly
alphabets or Greek alphabets distinguishing them from operatofd on

Definition 8. We define the tensor product of two superoperafoos H and A
onH’ as
CeA)A:= > T(eXe) & A(A), (2.8)
0]

where Ae B(H ® H’) is defined by

A= leXel®A;, leyeH, AjeBH). (2.9)

i
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Definition 9. A superoperatoi” on H is a completely positive (CP) map if and
only if
A>0=T®idy (A) >0, (2.10)

is satisfied for all Hilbert spaces{’ and Hermite operators A ol @ H'.
Definition 10. A superoperatof’ onH is a completely positive trace preserving
(CPTP) map if and only if
A>0 = T ®idy (A) >0, (2.112)
Tr[A] = Tr[I'(A)], (2.12)

are satisfied for all Hilbert spacesl’ and operators A B(H @ H’).
As the last part of this subsection, we introduce the following fact [36].

Fact 1. The partial trace and a tensor product of superoperators are defined
independent of the chosen basis set.

2.3 Formalisms of quantum mechanics

We summarize two formalisms of quantum mechanics. One is the observable
formalism for pure states introduced by von Neumann [6], and the other is the
instrument formalism for mixed states widely used in quantum information. We
present both formalisms based on the axioms of quantum mechanics for pure and
mixed state. We will combine these two formalisms to develop an instrument
formalism of measurement of observables in the next section.

The observable formalism for pure states

Axiom 1. Any quantum system corresponds to a Hilbert spaCeA state of a
system is characterized by a unit veciigy € H.

Axiom 2. Any observable corresponds to an Hermitian operatoe AB(H).
When an observable A is measured on a giatewe obtain one of the eigenval-
ues of A as an outcome. The probabilityopobtaining the eigenvalug af A is
given by

P = WP, (2.13)
and the post-measurement stpig after obtaining an eigenvalug hecomes
PRy
i) = d (2.14)

PRl
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Axiom 3. For any quantum system represented by a Hilbert sgd¢cthere is an
Hermite operator He B(H) which is called the Hamiltonian of a system, such
that the statey) € H after time t is described as

() = e [y), (2.15)
when the system is closed.

Axiom 4. For two djfferent quantum systems representedbgand#H’, the total
system is characterized by the Hilbert sp&des H'.

The instrument formalism for mixed states

In a standard textbook of quantum information theory [36], measurement out-
comes are introduced as a listafitcomegindices). This is because what we
obtain by a measurement is not only a real-valued outcome $tothastic event

in general. For example, by a measurement inserting a polarizing plate into the
path of a photon, one of the following two mutually exclusive events occurs, one
event is that the photon is absorbed into the plate, and the other is that the pho-
ton passes through the plate. There is no real such as eigenvalues of observables
obtained from this measurement, but assigning number O to the former event and
1 to the latter, we can distinguish each event by eadbx In accordance with

this generalized idea of quantum measurement, we describe outcomes of a mea-
surement by a list of indices distinguishing stochastic events.

Axiom 5. Any quantum system corresponds to a Hilbert spaCeA state in a
system is characterized by a density operatar D(H). An ensemble of states
that where each staig € D(H) appears in probability p is characterized as a
state

p= P (2.16)

Axiom 6. A set of CP mapd = {Zjli € X} on‘H is called a measurement
instrument if and only if the superoperator

Ar=) 1T, (2.17)
iexX
becomes a CPTP map. Any measurement process corresponds to a measurement
instrument (or an instrument for short) of. Each stochastic event of the mea-

surement is represented as one of indices in X. Whenmeasured on a state
o, the probability pof obtaining the i-th event is

pi:=Tr[Zip], (2.18)
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and the post measurement stat@after obtaining the event is

Tip
P 2.19
o7 Tz @29
Axiom 7. For any quantum system, there is an Hermite operatoe H3(H)
which is called the Hamiltonian, for an initial staje € D(H), the state after
duration time t is described by

p(t) = eHipeht, (2.20)

Energy is an observable oA and it corresponds to the Hamiltonian of the sys-
tem.

Axiom 8. For two diferent system#{ andH’, the total system is characterized
by the Hilbert spacg{ ® H’. For a stateoy: € D(H ® H’) on the total system
H @ H’, the state of the subsystethdenoted is given by

p = Try [prot] - (2.21)
We callp as the reduced density operator (matrix)ogk on .

A state represented by) € H corresponds to the rank-1 projection operator
)| € D(H) in the formalism for mixed state. States represented by rank-
1 projective operators are called pure states. Other density operatpfsane
called mixed states.

Note that the CPTP maf; in Axiom 6 gives an averaged post-measurement
state of the measuremehton p, since

Ap =) P (2.22)

It should be noted that the termeasuremenh the instrument formalism repre-
sents a wider scope of measurement than the one in the pure state formalism. An
instrument including only one CP(TP) map (only one event happening indepen-
dently of a given state) is also called a measurement, nevertheless no information
of a statep is extracted. Even if there is no observer, when a state chargéip
characterized by a CPTP mapwith a probabilityp;, we could describe this pro-

cess as a measurement instrumeént {p;Ali € X}. That is, any stochastic state
change obtaining from non-closedness of a quantum system is characterized by
an instrument.
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2.4 Measurement in guantum mechanics

In the instrument formalism, measurements are not necessary to correspond to
Hermite operators. Moreover, measurement in the instrument formalism does not
give real-valued outcomes, but just indices of events. In this thesis, we construct
a quantum measurement described in the instrument formalism to simulate the
measurement of an observable, energy. To do this, we need to associate a real-
value outcome to each event of an instrument. Thus we formulate the following
definition of measurements.

Definition 11. We define a real valued function :xX — R which associates

the i-th event to a real numbet.XWe call x as an measurement value. We call
the combination of measurement instrument and a measurement outcome as a
measurement value, and denote itels= {7, X, X}.

The instrument of a measurement corresponds to the substantial measurement
procedure, but it does not provide the correspondence between the index of the
eventi and the real valued measurement vakie The function,x is the part
of bridging the index and the real valued measurement value. For example, in
Stern-Gerlach’s experiment, applying the magnetic field on a spin particle and
the detection of the position of the particle correspond to the measurement in-
strument. Finding out the spin particle in a position (upper/loaler half) is an
event of this measurement. We calculate the spin from the position of the particle;
this process is described by the function of measurement value.

According to this definition of measurement, we also formulate probability
measure of outcomes.

Definition 12. For a measuremenM = {7, x, X}, we define a map™ from a
density matrixp to probability measure

w'®) = ) TriLipl. (2:23)

ica-1(B)
where Bc R.

Note that this measure does not reflect the property of the state change by a
measurement; thus the map frowfito 4! is not an injection.

Definition 13. For any real function f: R — R, we define the expectation value
of f under the probability measureas

D= [ 19100, (2.24)
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We also define the following superoperator on the Hilbert spce

I(f):= ) FOOTL. (2.25)

We define the expectation value of tujj‘i as
(f)w =Tr[I(f)p]. (2.26)

By using these definitions, we can represent the measurements correspond-
ing instrument formalism of observables for mixed states. We call this type of
measurements as the projective measurement.

Definition 14. Consider that a Hilbert spacgf is composed by mutually orthog-
onal subspace®f; asH = @iex%. By using a projector Ponto the subspace
Hi, we define the following projective superoperaiyre B(H) as

Pip = Pippi. (227)

We call? = {#jli € X} as projective measurement instruments. We also call
{P,a, X} as the projective measurement. For each projective measurement, we
can define a unique Hermitian operator-A }; aP; an observable. We denote
M* as (P, a, X} and i/ as the probability measure associated to this measure-
ment. The expecation value of the observable A in a quantumsiatgiven
by

(A =(Dyn =Tr [Ao]. (2.28)

If the observable of a projective measurement is the Hamiltoriaof the
guantum system, the measurement is called projective measurement of energy.
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3.1 Introduction

Apart from von Neumann'’s original axiom of quantum mechanics [6] (the mea-
surement in observable formalism for pure state), today the wmasurement
refers to diferent operations depending on the field of physics. Each field of
quantum physics has developed its own notation of measurement. For condensed
matter physicists or the others interested in macroscopic behaviors in quantum
systems, the expectation valugAly) is the quantities of interest on measure-
ment. On the other hand, for quantum information scientists or other physicists
who are interested in manipulation of microscopic quantum states, the proba-
bilities of possible events and state changes associated with them are the most
interesting properties on measurement, since they apply these properties for com-
putation and readout. For them, the measurement values are only identifiers for
discriminating events; then each of them is described just as aniimusead of

the real numbea;. By these diterences on what they required for measurements,
various evaluations of the performance of a measurement has been proposed be-
fore.

Our goal is to formulate a method of evaluating how a measurement is close
to (far from) an ideal projective measurement. In this chapter, we first intro-
duce previously known two evaluations of the performance of a measurement
in Sec. 3.2. One is the Monge distance, the distance between two probability
distributions. The other is the diamond norm, the distance between two measure-
ment instruments. Unfortunately, these two evaluations are not applicable for our
goal. Thus, we introduce two new evaluation methdhigtuation of measure-
ment valueandnon-repeatabilityin Sec. 3.3. In this same section, we formulate
two relations between the known evaluation methods and ours. One relationship
is that the fluctuation of measurement value and non-repeatability give an upper
bound of the Monge distance. The other is, when the fluctuation of measurement
value is zero, the diamond norm becomes well-defined and the value becomes the
same as the non-repeatability.

3.2 Previously known evaluation of performance

3.2.1 Evaluation as a probability distribution; Monge distance

The Monge distance is originally proposed in the optimal transport problem of
soil redistribution problem in a construction site [27, 28]. The essence of this
problem is captured in the following way. There is an amount of soil piled in

a shape on the ground and we want to redistribute the soil the soil piled in the
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different shape while preserving the total amount of the soil. What is the optimal
way to transport when the cost of the transport is given by the total migration
length of all the particles of the soil. We represent the distributions of the soil be-
fore and after the transportation by probability measures by taking normalization
for the distributions. Consider a distribution of the soil on the ground given by a
probability measurg on an Euclidian spade", and transfer the soil ate R" to

y € R". The function®(x) := y representing a way of transportation must satisfy
thatv(B) := u(®~1(B)), wherev is the distribution of the soil after the transporta-
tion. The costc(®) to be minimized in the optimal transport problem is given
as

() = [ duilix= 209l CE)

where||-|| is the Euclidean norm. A major progress on solving the optimal trans-
port problem was made by Kantorovich in 1940’s. On the way for solving another
optimization problem, it was found that the optimal transport problem is equiv-
alent to a dual problem [29, 28] to find a functidne L which maximize the
following valueC(f)

C(f) = |<f>/1 - <f>v

C D= [0t (.= [ df. @2)
where
L={f:R>R[If(x) - fy) < lIx-VI}. (3.3)

The supremum o€(f) is equal to the infimum o€(®). This relationship is
known asMonge-Kantorovich duality In this thesis we define the distance be-
tween two probability measures as the supremum val@ Df.

Definition 15. Monge distancég:||,, between two measurasy is defined as

et =Vl 1= sfuLp|<f>ﬂ —(f)]. (3.4)

where
L:={f:R = R|If() ~ fO)I < Ix=Vil. (3.5)
We call fe L as a Lipschitz function.

In the study of quantum physics, the Monge distance has been used for eval-
uating the distance between two measurements. In a study of an uncertainty re-
lationship [30], this distance is regarded as an error of a measurement simulating
an ideal measurement of an observable.
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Definition 16. We define the Monge distance between two measurenyénts
{(I,a, X}and M’ = {I’,a, X’} on a Hilbert spaceH as

IM = M|y =

M_ M
sup [l =" (3.6)
Other methods for evaluating an error of a measurement from the ideal mea-
surement, for example the one defined by Arthurs and Goodman [31], focus on
the error appearing in the expectation values of an observable. They evaluate how
the measurement values aréelient from the expectation value of an observable.
In this type of method, error can be small when the measurement values are close
to the expectation value although the probability distribution of the measurement
values are totally dierent. In contrast, the Monge distance evaluates the distance
of the measurement as the distance between probability distributions.
The Monge distance between a projective measurem@ndf an observable
A and its simulationM gives the upper bound of thefté#rence in expectation

values whose measurement value is deformed by a Lipschitz funiction
Vel VpeDH), [(f(A), - <f>#pM\ <|[MA- M| . (3.7)

Among distances between two probability distributions, the Monge distance
is particularly suitable to evaluate the distance between two Dirac distributions
due to the following reasons. Let us define a Dirac meagsufer a real number
x € R which satisfieg,(B) = 1 whenx € B, while u4(B) = 0 otherwise. Consider
there are two probability measuresandu, representing two dierent measure-
ments on the same state, where 0. The measurement accordingugpalways
returns the measurement value 0, otherwise the opg mdturnse. Intuitively,
the closer the value is to zero, the better the performance the measurement
shows as a simulation pf. However, some distances of measure do not behave
like this intuition. For example, consider the total variance measure for a bounded
measure: on the real numbers defined as

B) := su C) - inf u(C), 3.8
Il (B) = sup u(C) - inf, u(C) (3.8)

where B(B) is the subset of the Borel set includedBhc R. By using this
measure, we can introduce a distance between two bounded mgasurageal
numbers as

I = vlly =l = v (R), (3.9)
which corresponds to the! distance between two functions. Because there is
always an elemer® of the Borel set which can separate R from 0 € R, for
example a radius open ball centered at 0, we have

llo = pelly = 2. (3.10)
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Thuse is not taken into account for this quantity.

Since a quantum measurement in the finite dimensional Hilbert space has
a discrete probability distribution, the probability distribution of measurement
values can be decomposed into a convex combination of the Dirac measures.
For two discrete probability distributions v, the distance evaluated by the total
variance is less than the maximum value 2 only when at least one of the common
Dirac measures is included in both of the convex decompositions afd v.
However, such a combination of two probability measures is in the zero set in the
parameter space. Therefore such a distance is not useful for our problem. The
other way of evaluation in terms of relative entropy, has the same problem. On
the other hand, since the amount of change of Lipschitz functiossnidth is
equal to or less thas, the Monge distance betwegpandy, is calculated as

||ﬂ0 - ﬂs“m =é&. (311)

The Monge distance reflects the metric of measurement values. Thus this distance
is suitable for our problem.

3.2.2 Evaluation of state change; Diamond norm

When our interest is focused on the quantum state change caused by a measure-
ment, the diamond norm [32, 33] is widely used in quantum information.

Definition 17. If there are two measurement instrumehts {7;|i € X} andJ’ =
{Z{]i € X} on a Hilbert space#, the distance between two sets of measurement
instruments measured by the diamond norm is given as

D.(7,1) = Z |

ieX

I -1,

(3.12)

'S b

wherel|-||, is the diamond norm defined for any superoperatam Hilbert space
H as

. I(A ®idy) Al
IAll, = IA®idyllop = sUp w~ (3.13)
AcB(HoH) 1Al
B(H) is the set of matrices off, and the nornj|-||;, is defined as
Al = Tr [ \/AAT] . (3.14)

This norm is often used to evaluate th&elience between two CPTP maps in
guantum information. An important operational meaning of the diamond norm is
that two quantum state transformation represented by CPTP mayscan dis-
criminated with success probabilityd+ ||A — A’l|, /4 (Holmstbm'’s theorem).
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For a superoperatak on a Hilbert spaceH, its dfect on a larger system
H ® H’ can be larger in the operator norm than the that ofbas

Mllop < I @ idgr[lop .- (3.15)

The diamond norm is proposed for giving the upper bound of the operator norm
over all the extended Hilbert spaces. The maximum operator norm is achieved
when the extended Hilbert spacefi&? [34], namely

”l—“X)idl"’HopS ”r®id‘/—{”op :”F®id‘H””op’ (3.16)
dmH < dmH  <dimH". (3.17)

Thus it is enough to considél ® idy (|, to find the bound. For this reason, the
diamond norm|-||, of a superoperata$ on the Hilbert spacé{ can be calculated
as

TNl = T @ idyllop - (3.18)

The following lemma is convenient for calculating the diamond norm [34].

Lemma 1. For any Hermitian preserving superoperatbron the Hilbert space
H,

Ille = m

I ®idy) P 1
Pepl(% ﬂ)II( ® idgy) Plly (3.19)

whereP,(H ® H) is a set of rank-1 projectors of(®? is satisfied.

By definition, this distance is determined only for two measurements sharing
a common set of indiceX. If it is not the case, a coarse graining method is
proposed for adjusting the numbers of indices.

Definition 18. Consider there is a measurement instrumént {7;]i € X}. A
coarse-grained measurement instrumént {7 |i € Y} such that

Iy=) I (3.20)
keX;

is defined for disjoint subsets X X satisfying Jicy Xi = X.

The coarse graining is not only used for reducing the number of CP-maps but
also for increasing the number by adding empty sets as the disjoint sets.

To evaluate how the state changes due to two measuremé&ntd’ are close
to each other, we define the following coarse graining.
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Definition 19. Consider there are two measuremeftt= {7, X, X} and M’ =
{I’, X, X'}. For a countable disjoint cover C @& such that

C::{cicR|Vi¢j,cmcj:(Z), Uci:R,}, (3.21)
i

we define coarse-grained measurement instruments for C as

Io={Iliez), I'c=|{I.liez}. (3.22)

The diamond norm between these two measurement instruments is defined by

D, (jc,jlc) = Z

i€z

~

Tyag - T

x1g

(3.23)

<

Note that this distance is not uniquely determinedAdrand M’ because it
depends on the countable disjoint coeof R.
By using the triangular inequality, the following lemma is derived naturally.

Lemma 2. When two countable disjoint covers®ijiven by

C = {CiCR|vi¢j,CiﬂCj=0, UCiZR,}, (3.24)
and
C = {C{chvi # . nc; =0, Uci :R,}. (3.25)
satisfy
C<C &5Yi%, ccd, (3.26)
then
D.(Zc»1t) < D.(Zc, I¢). (3.27)

The semiordering between families of subsetk af Lemma 2 represents the
comparison on the coarse-grainedness. As a distance between two measurements
independent o€, we introduce the following a fine-grained limit of the diamond
norm between two measurement instruments.

Definition 20. Consider there are two measuremetts= {7, x, X} and M’ =
{I”, X, X'}. We define the fine-grained limit of the diamond norm.

D,(M, M) = max D. (Zc.17c). (3.28)

whereC(R) is a set of countable disjoint cover &f
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The fine grained limit of the diamond norm is well-defined. The following
theorem guarantees the well-definedness.

Theorem 1. Consider there are two measurememtt = {7, x, X} and M’ =
{I’,x,X’}. The fine-grained limit of the diamond norm, 1, M’) exists and
the value is given by

DMM) = 0 et Y Fedt D ea- Tl
aslmx\Imx’ aslmx’\Imx aslmx’Nimx
(3.29)
Proof. Let us define the following countable disjoint co&y of R.
Co:={{a}lae ImxuUImx}U{R \ (ImxuU Imx)}. (3.30)
We also define the intersection of two countable disjoint covers ad
CnC ={ancjceC.ceC| (3.31)

By definition,C N C’ satisfielC N C’ < C.
For anyc; € C, one of the following two cases are satisfied for a measurement
M ={1,x X}.

ke X, xec, or xlg=0. (3.32)
In the former case
T = Z T, (3.33)
kex-1g

and in the latter case
Ty =0. (3.34)

Therefore we derive

= ~I
T -1

x'~1g

P ~/
Ly —1

X/—lq

(x‘lci c ImxnN Imx’) ,
<

<o

17 6| (x‘lci c Imx\ Imx’),
‘j;—lci (x‘lci c Imx \ Imx),,
0 (cn(Imxyulmx)=0). (3.35)

Let us consider the countable disjoint cois given byC = C’ n Cy whereC’
is another countable disjoint coverRf In this case, since at] including at least
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one element of ImU Imx’ must be a one-point set, Eq. (3.35) is represented by

~

NI
T - 17,

x'=1¢;

17510 - Ty, (Maeimxuimx.aec).

<o

17| (Hlae Imx\ Imx,a e ci),

[ (Hlae Imx \ Imx,a € ci),

0 (Yaelmxulmx,agc). (3.36)

Thus the right hand side of Eq. (3.29) is achievable wBes C’' N Cy. On
the other hand, let we define a sequence of countable disjoint cOyerC(R)
satisfying
lim D.(Z¢, - 7¢,) = sup D.(Zc - 1¢). (3.37)
k—oo CeC(R)
Because of Lemma X3¢ N Cy is also a sequence of countable disjoint covers
approaching to the supremum. Then we have

sup D.(Zc — 1¢) = lim D.(Zcnc, ~ Zgnc,)

CeC(R)

= > et X Fedlt Y e Fel, @39
aslmx\Imx’ aslmx’\Imx aslmx’Nimx

Therefore the theorem is proven. O

3.3 Performance of a measurement as the projec-
tive measurement

3.3.1 Fluctuation of the measurement value and non-repeatability

Note that neither the diamond norm nor the Monge distance take account of all
the properties of measurements. The diamond norm gives a metric among mea-
surement instruments, which is not considering measurement values required in
a measurement. If we only use the diamond norm for evaluating the distances
between measurements, we cannot avoid ambiguity originating from determin-
ing one choice from coarse-graining methods. Conversely the Monge distance is
for the measurement values, and it does not take account of state changes caused
by the measurements. Furthermore, the Monge distance is very hard to calculate
since the calculation includes maximization over Lipschitz functions.

In the followings, we formulate two new quantitiBs andR,, which evaluate
how different a measurement is from a projective measurement of an observable
A. These quantities are relatively easy to calculate, their meanings are intuitively
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clear and they have useful relationships with the diamond norm and Monge dis-
tance. Before introducing these two values, let us denote the following notation
of the decomposition of an observaldeon a Hilbert space+ which we use
throughout the following discussions,

A= XP, PR= 1), (3.39)

ieY ez

where{la!)li € Y, A € Z} is an orthonormal basis @f. Y is a set of indices which
specify an eigenspace of an observablandz is a set of indices identifying a
basis of a degenerated eigenspace corresponding to eigeayalue

Definition 21. For a measurememM = {x, 7, X}, we define Ras

Ri(MIA) = max > Tr|iatE] @ - X)) (3.40)

ieY?jleZi Jex
where the maximization undéfa')} means that the orthonormal basis of the
degenerated space is determined as it achieves the maximum value. We also
define R as

Re(MIA) = >~ max||Ar(1a')@!)) - la'a|, (3.41)
&

We call R as fluctuation of the measurement value, andi&non-repeatability
of a measurement.

The behaviors of projective measurement reflecteg;tandR, are summa-
rized by the followings.1l. When an eigenstate of an observable A is prepared,
the measurement value of the observable A is always identical to the eigenvalue.
2.When an eigenstate is prepared, the state after the measurement is unchanged
and stays in the same eigenstafehese two quantities are similar to the ideas of
the error and disturbance proposed to introduce Ozawa’s inequality [26].

3.3.2 Relationship between Monge distance and diamond norm

The two quantities of projectiveness we have introduced in the previous subsec-
tion is related to the diamond norm and the Monge distance through the following
two theorems.

Theorem 2. Let us define a measurememt = {x, 7, X} and an observable A on
a Hilbert spaceH. We denote the set of eigenvalues of AX&8 € Y} and the
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projective superoperator of the eigenspaceéPds The projective measurement of
Ais defined as

MA={Phay|, PA={PlicY}). Pip=PlpP (3.42)
We denote disjoint subsgs c X|i € Y} as
X = xta (3.43)

for every eigenvalue;af A. We also denotegXvhich includes all the indices
which are not included in any;Xnamely

Xo={ )X\ X (3.44)

ieY
We define the following coarse-grained measurement instruments.
IT={IylieYu(oy, P*=(PlieYu(O), (3.45)

whereP, = 0. We also define the measurement instrument and measurement
which are the extentions dfand M into the Hilbert spaceH*? by

IQidy ={Ii®idyli € X}, M®®idy = {X, I ®idy, X}. (3.46)
If Ry(M|A) = 0, then
R(M ®idy|A® lg) = Do(Z,P) = D, (M, MH). (3.47)

In case the observable A has no degeneracy,(iIMRA), then
Ry(MIA) = D(Z,P) = D.(M, M*). (3.48)

As we will see in the proof below, wheR, = 0, each measurement valye
of a measuremen¥ is equal to one of the eigenvaluesAgfotherwise the prob-
ability of achieving the measurement value is zero. The distance between the
coarse-grained measurement instrumén(i, £ defined in Theorem 2 equals
the summation of each diamond distance between measurement instruigents
and®?, both of which represent the state changes duettand M* after achiev-
ing an measurement valae

Theorem 2 concludes the following corollary.

Corollary 1. M = {x, I, X} satisfies RM|A) = 0and R(M ® idx|A® l4) = 0,
if and only if the coarse-grained measuremgrtis equivalent to the projective
measurement of an observable A as

M= MA, (3.49)

where )
M={a1,YU{0}}, M ={(a P YU|O). (3.50)
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The other theorem is for the Monge distance. We can bound the Monge dis-
tance between two measurement from above by URirandR;.

Theorem 3. There is a bound of the Monge distance between a measurevhent
and a projective measuremeht” which is determined by, RM|A) and R(M|A)
as

M= M| < 2R(MIA) + dAxmax( V2R(M, A) + w), (3.51)

whereAxmax IS the dfference between the maximum and minimum measurement
values of the measurememt.

First, we prove Theorem 2. We prove this theorem according to the following
two lemmas.

Lemma 3. A measuremenM = {7, x, X} satisfies RM|A) = O, if and only if
Tr[ 7@ )| # 0= x =X, (3.52)

is satisfied for any choice of eigenba{i'eg*)li eY,le Z}, wherela!) is an eigen-
state of A of corresponding to eigenvalye a

Proof. By definition of Ry, if
Tr [ 208! %a)] (4 - a)* = 0, (3.53)

foralli € Y,1 € Z, j € X and the choice of eigenbas{lq@}, then the fluctuation

of measurement value satisfieRg M|A) = 0. Thus the backward implication of
Lemma 3 is satisfied. Next we prove the forward implication by its contraposi-
tion. When at least one of the [IZJ- (|af>(af|)] (X; — &)* becomes nonzero, then

R (M, A) never becomes 0. Therefore the forward implication is also proven.

Lemma 4. If a measuremenM = {7, x, X} satisfies RM|A) = 0, then for all
eigenstate&!) in the djferent eigenspaces of the observable A,

I3 @) = 0. (3.54)
Proof. To prove Lemma 4, we define two density matripgsando_
ps = (si&) + cia)) (st + c(al). (3.55)

p- = (sa") — cla)) (| - c(al). (3.56)
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wherec € C ands € R. Sincea; # a;, at least one side & or a; is different
from x.. Without loss of generality we assuie+ a;. Because of the Lemma 3,
Ti(1& X&) = 0. Then

Tilp+) = STu(la! @) + sTi(claXa| + c'la! (&), (3.57)

T(p-) = ST(la'ya]) - sTi(cla &'l + c'lag)(&]). (3.58)

Since eacl is a CP map, both matricdk(o,) andZ(o0-) are positive matrices.
Then fors > 0, it is easy to prove that

sTla'Xal) > T (clat W'l + c'lagtiall) > —sTi(la)(a). (3.59)

By considering the limits — 0+, the middle side of Eq. (3.59) must be a zero
matrix because of the pinching theorem. Therefore we obtain

Ty (clat @] + el a) = 0. (3.60)
Comparing the cases of= 1 andc = i, we conclude Eqg. (3.54). O

Proof of Theorem. 2AssumeR;(M|A) = 0. Since Lemma 3, for all indices
i €Y, j e Xsatisfyinga, # x;, 7;(|a')(a]|) becomes the zero matrix. Then

D ilahat = ) Iyl = Tx(a)a). (3.61)

jex JEX
The projection superoperat®* satisfies
Pi(a)@l) = 61jla; Ma| (3.62)

by definition. Then by using Eqgs.(3.61) and (3.2 M|A) for the extended
measurement is calculated as

R(M®idylAx 1)

2

D el (Tx (i@ - PAa"E)) @ |wf><wf|‘

AueZ;

= E max
A A
ooy a0

t
Sz |cP=1 '

(3.63)

Where{h//i’l)} is a set of unit vectors of.

According to [34], a diamond norm of a CP map is calculated by maximiza-
tion over all rank 1 density matrices instead of all the density matricé< e
Thus

17 - PP

— 7 AY & i
o= ymax [|(Zx = PP @idn()CED]], (3.64)
IM)1I=1
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A vector|¥) in H ® H can be decomposed into a linear combination of vectors
which is a tensor product of two unit vectors#h by

W) = cost > cllalyi) +sing > cilaiy). (3.65)
AeZ; j#i
HEZ]

By using Lemma 3, 4 and the property of the projection superoperator, we obtain

Jmax, |(Zx — PP @ idy ()P

= max cosd max
6e[0,27] fla Ay

Taez |c=1

D ehadx - PHatED) @ i Xwl

A e

D GraTx - PO(aE D) © ! Xwdl

A UEZ;

tr

= max
{la®y {ly))
Yz, |q‘|2=1

(3.66)

tr

ThenR,(M, A) can be rewritten as
R(M@idulAg 1) = " [|Tx - PP, (3.67)
ieY
For any matrixjal)(a|, if i € Xo, Zi(la})(&|) = 0 is satisfied due to Lemma 3

and Lemma 4. Because any matrix #® H can be represented by a linear
combination of these matrices, then

I,=) I =0. (3.68)
ieAg
Since®, is also the zero superoperator, we conclude the main result
RMoidA®1)= > ||Ix - PP = D.(7.9). (3.69)
ieYU{0}

On the other hand, when the observaBldéas no degeneracy degenerated,
Eq. (3.66) becomes

||in -P7

.= max |(Zx =P @idy (W)W

=[x - P @D @ Wil
= |@x - P@xal)), - (3.70)

Taking the summation of the above equality overY, we obtain the following
equality of the degenerated case.

Ry(MIA) = D.(7,P) = D.(M, MP). (3.71)

O
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Next, we prove Theorem 3. We prepare the following five lemmas for proving
the theorem.

Lemma 5. For a measurement = {7, x, X}, let us define;g ; by

€ 1k
Tr| I (la ) al)| = ———. 3.72
EPEREY] o ap (3.72)
This g .« satisfies
E €k < R]_(M|A), € 1k > 0. (373)

keX

Proof. The proof of this lemma is almost trivial. Because of the definition of

Ri(MIA)
Dlea = D Tr[Tdiaxal)] & - %)
keX keX
max )" Tr[ (&) @] @ - %)°

{la®y)
ieY, 1€z, kex

Ri(MIA). (3.74)

IA

O

To prove the rest of lemmas, we define a subspdce= sparila/)} for any
eigen statéa!) of an observablé. We also denote thefect of a CP magy as

Ti(1a'a1) = ganda! @] + i + &k (3.75)

whereo; i« is a density matrix o, i .k, i .k are positive real numbers and
&1k Is a traceless Hermite operator which can be decmoposed as

Wi € Hh G = (1800 + Wia(&l). (3.76)
Lemma 6. For a measuremem = {7, x, X},

2 )" Fia < R(MIA) (3.77)
k

is satisfied for all i€ Y, 1 € Z; and ke X.

Proof. To prove this lemma, note that the trace norm satisfies monotonicity con-
dition [34] asllp - oll, > llAp — Ad]|, for any CPTP map\, wherep and o

are two density matrices. We define project®rg and P;;, which is onto the
subspace#f; , and ;. We define the following CPTP map ; as

Aia(p) = PiapPia + Pfﬂppfm (3.78)
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The monotonicity of the trace norm leads to

A (ArGatyah - atya)||, < [IarGaath - lahadll, . (3.79)

According to the definition oR,(M]|A), the left-hand side of the above equation
Is bounded byR,(M|A) as

A (Araat - lahal)|, < ReMIA). (3.80)

Substituting the definition oA 7 in this inequality, we obtain

Z (riaxoian — (1 - dadlaXall)

keX

A (Z EHCHE Ia\-”><a-”|)
k

tr tr

Because of the definition of a density matrix and a CPTP map, we can derive a
relationship between céigcientsq .« andr; .« by

Tr{Azp] = Z(q ak F Tiak) = (3.82)
keX
Then the sum of + g .« satisfies
D= ta) = ) ik (3.83)
keX keX

Substituting this value in Eq. (3.81), we obtain

A (Ar(at et - lat )| = (3.84)

Zr.ﬂk (oria — 13 ad)|| -

tr

Because the trace norm of an Hermitian operator is calculated as the sum of the
absolute value of its eigenvalues [36], if a matrix is given as the sum of the two
different matrices on orthogonal subspaces, its trace norm becomes the sum of
each trace norm, namely,

(3.85)

Zrl/lko-l/lk

keX

1D riaxdata]

keX

Z liak (O'i,/l;k - |a1.ﬂ)<al |

keX

tr tr tr

Due to the same reason, the trace norm of a linear combination of positive matri-
ces has linearity, then

Z Fi, kT, 2.k

keX

1D riaxdata]

tr keX tr

= Z Mk ||0'i,/1;k||tr T Z Fi.ak |||ai/l><ai/l|||tr' (3.86)

keX keX
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Since the trace norm of a density matrix is equal to 1, the left-hand side of
the above equation is2,.x ri.k. Then we can simplify the left-hand side of
Eq. (3.80) as
2 Tk < R(MIA). (3.87)
keX
i

Lemma 7. For any completely positive mapon a Hilbert spaceH,

[OAZ (XD < VAT (WD) Y12 (60X D) (3.88)
is satisfied for any), |¢), [v) € H.

Proof. A binary operation|(), |¢)) = (xI(Z 1y ){#])|y) satisfies the some property
of the inner product except the non-degeneracy condition

(). ) = 0= ) = 0. (3.89)
The Cauchy-Schwartz inequality of inner product is still valid for binary opera-
tion without this condition. Then this Lemma is satisfied. m]

Lemma 8. For a measuremenM = {7, x, X} and a real function f satisfying
0 < |[f| < A, the following is satisfied for any& X, i, j € Y satisfying i |,

rlout ]« s 42)

(3.90)

Proof. Because of the triangular inequality of the absolute value, the left-hand
side of EqQ. (3.90) is bounded as

Tr[z(hiaan]| = | D] @rrchiaxaia

leYaeZ

> @nzoaaia)

leYaeZ

IA

By using Lemma 7, we have

P CIOIENCIES

leY,aeZ

< 30 @I aaia) x \feT(H(a e ia). (3.91)

leY,acZ

We devide the summation of the right-hand side of Eq. (3.91) into two cases,
one is that the combinations of indices satidfyr§ # (i, 1), (j, x) and the other
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consists of the rest combinations. Using Eq. (3.75), the sum of the former com-
binations is represented as

S aIT(hatatia (@I

(LLa)#
- Z \/Z f(X)ri @ loixla’) \/Z FOG)rjen(@ylojnlal).
- h

(1.4),(j)
(L,a)#

(1), (j:1)

Applying Cauchy-Schwartz’s inequality to the right-hand side of the above equal-
ity, then we obtain

Z \/Z f(X)ri k(@ loixla’) \/Z f(Xn)r jcné@flojnlaf)
K h

(La)#
.,(14)
< DI Y @loidany | DT Y @lolahy.
k (o) h (Mp)
..(1) (i.0).(j2)
Substituting the following conditions
0<f<A 0= Y (&lowa) <1, (3.92)
l,a
W)

the equation is bounded as

JZ f(X)riak Z (@|omikla) J Z F(X0)rjn Z (@l jnlay

k (la)# h (mp)#
(1,0, (i,2), (i)

< A\/Z lik \/Z Fin< RZ(/;/HA)A
k h

The last line is derived from Lemma 6. By using the same conditions, the rest
part of the summuation in the left-hand side of Eq. (3.91) is bounded as

DN IR CALFRE D \/Z HCOICHEINED:
h

(.a)= k
(i,)or(j.u)

< A[ \/Z [k + \/Z ru;h] < A2R(MIA).
k h
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The last line is also derived from Lemma 6. Combining all the inequalities, we

obtain
‘Tr HOIERE] ‘ <A ( V2R,(MA) + RZ(/;A'A)) . (3.93)

O

Lemma 9. For an observable A, we define its eigenbasi#la{‘s}li eY, e Z},
where|a!) is an eigenstate corresponding to an eigenvalpelat us denote by
P! as the projective operator onto the subspadé = sparja')}. We define a
projective superoperataPp = P{pP!. For a measurement = {7, x, X} and a
real function f satisfyin@ < f <A,

Tr

f(f)[id - > Pf’] () w)

leY,aeZ

< dA(\/ZRz(/\/UA) + RZ(/;A'A)), (3.94)

is satisfied for any unitvectdy) € H, where d= dimH.

Proof. We decompose a unit vectgr) € H in the eigenbasifa’)} of Aas

vy = > d%clal), CGeR, ¢G>0, (3.95)
i,A
Z(cf)z = 1 (3.96)
i,A
By using this notation, we can decompagiy| as
(id— 2 Pi’) (wxwh = ), o'eieDial)a, (3.97)
leYaeZ @i,2)
#(J.1)
Then
Tr[fk[id— D ’Pi’] (|w><w|)H < AANOEHE
leY,aeZ (1 0)#(j.p)
<Ay cfc’jl(\/ZRz(MlA) + RZ(/;A'A))
(1, )#£(j.1)

IA

A Z ct Z ¢ ( 2R,(M RZ(/;'A))
dA ( V2R(MIA) + RZ(/;'A)) . (3.98)

From the second line to the third line, we used Lemma 8. From the second last
line to the last line, we used the fact that the maximum valug gfc' under
the condition Eq. (3.96) is given when all dheientsc' are ¥/ Vd. (This fact is
easily proven by using the concavity of the square function.) m|

IA
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Lemma 10. For a measurememM = {7, x, X} and an observable A,

< 2\R(MA), (3.99)

Tr|(Z(F) = P(F) ) P W)

leYaeZ

for any statdy) € H, where f is chosen as a Lipschitz function.

Proof. We first evaluate the following value.

D @1(Eh) - PH) (aXah) 18

leY,aeZ

[T ((F) - P(1) () &'D] =

Z(f(xk) - f(@) D @ rlaa@lia)

leY,aeZ

<Z|f(xk)— f@)l ) @'raha@!la) (3.100)

leY,aeZ

We define the following set of the measurement valuesof

Ci = {ke Xlla - xd < VR(MA)] (3.101)

We split the summuation of Eq. (3.100) into the indices include@;iand the
others. The former part is evaluated as

DU - F@)l ). @) - P) (Il 18

keCi leY,aeZ

< VR(MIA) Y (@ |Zz‘k la)¢af) 8

1€C;
< VROMIATY [Z fk(leﬁwl)] = VR(MIA). (3.202)
k

The other part is calculated as

DIt - f(@)| D) @i -

kgCi leY,aeZ keCi (% al)2
(3.103)

o] < Za;k”(xk) - f(a@)l

Note that for ank ¢ C;,
RUMIA) % — ail < (X% — &)’ (3.104)

is satisfied. Then

(%) - f(@)l _
;qa* (% — &)2 m;claﬁ VR(MIA). (3.105)
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We used the definition of the Lipschitz function and Lemma 5 to derive the second
line from the first line. Then, the summations of indicekaf C; and ofk ¢ C;
are given. The total is given by

[Tr[ () - PN ]| < 2 VR(MIA). (3.106)

For any unit vectofy) € H defined in Eq. (3.95) and (3.96),

S opwwi= > (@)lana (3.107)

leYaeZ leY,aeZ

is satisfied. Then

‘[ T =Py YZZPWM]] < 2(#)2 [Tr[(2(F) - P(F) lat &l
N < ZI’WZW
= 2\/m.u (3.108)
Therefore the Lemma 10 is proven. O

Proof of Theorem 3By definition, the Monge distance betwedn and M* is
defined as

M= M| = sup [Tr[(Z(f) - P())p]] (3.109)

peD(H)
feL

The functional which has been maximized in the right-hand side of the above
equation is translationally invariant.  For a Lipschitz functignve define its
parallel translatiorf’ by a constant € R as

f'(x) = f(X) +c. (3.110)
Thenf andf’ satisfy

[Tr[(Z(f) = P(E))pl| = [Tr (T () - P(F) o (3.111)

This relationship is derived from the condition required for measurement instru-
ments, namely,
Tr[Z(1)p] = Tr[PQ)p] = 1. (3.112)

Therefore without losing generality, we can assume the condition for a Lipschitz
function f given by
ieX Axma> f(x)>0. (3.113)
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We denote the diagonalization of a density matrixs
p= > plXuil. > p=1 p20 (3.114)

Using the triangular inequality, we achieve the upper bound of a term in the right-
hand side of Eq. (3.109) as follows.

Tr[(Z(f) - P(F)pl| < Z P |Tr [ (F) = P(F) (waxwal)]] - (3.115)
Because of its definitio(f) salltisfies
Tr[P(H)Pip] = Tr[P(F)o], (3.116)
for any density matriy on#. Then we achieve
Tr[(Z(f) = P(F))p] = Tr[(Z(f) = P(f)) PPp]-Tr [Z(f) (id — P7(f)) o] (3.117)

Substituting this equation into a term in the right-hand side of Eq. (3.115) and
applying the triangular inequality, we derive

‘[ (Z(f) = P(F)) (waXys |)]‘

<|Tr +|Tr

() =2(1) ), Prwwi)

leY,aeZ

I(f)[id— Z PV)(W’iXWiD}

leY,aeZ
(3.118)

Applying Lemmas 9 and 10 for the right-hand side of the above inequality, we
have

‘[ (Z(F) = P(£)) (i) wil) |

< 24 Rl(M|A) + dAXmax( Y, ZRz(M, A) + M) ,

2
(3.119)

where we use the condition Eq. (3.113) to apply Lemma 9. Then we can
reformulate Eq. (3.115) as

<2 AY; Rl(M|A) + dAXmaX( \ 2R2(M, A) + M) .

(3.120)
Because of Eq. (3.109), we achieve the upper bound of the Monge distance as

M= M| < 2VR(MIA) + dAxmaX( V2R, (M, A) + W). (3.121)

thus we have proven the Theorem. 3. O

[ (Z(F) - P(f)) o]




Chapter 4

Tomography-based method:
approach and evaluation

40



41

4.1 Introduction

For a quantum system evolving according to the 8dimger equation determined

by an unknown Hamiltonian, a straightforward way to implement the projec-
tive measurement of energy is given as follows. First, we somehow identify the
Hamiltonian by estimation. Next, we perform the projective measurement of en-
ergy of the estimated Hamiltonian. To identify a Hamiltonian, we must first iden-
tify the Hamiltonian dynamics, and we estimate the generator of the dynamics
afterwards. The general method to identify quantum dynamics is called process
tomography [35], which determines an unknown CPTP by preparing many copies
of initial states and executing many runs of measurements on the statetec

by the map. However the process tomography is not only valid for Hamiltonian
dynamics but it is also applicable for all dynamics represented by CPTP maps,
which is identified byd* — d? parameters. Because a unitary operator is deter-
mined by @2 + 1)/2 independent parameters, the general process tomography
requires excess cost for just identifying Hamiltonian dynamics. However the to-
mography method which only focuses on the unitary dynamics has not been well
established.

In this chapter, we propose a process tomography purely for determining a
unitary dynamics and apply this method to implement the projective measurement
of energy. In Sec. 4.2, we introduce the basics of estimation. In Sec. 4.3, we
construct a process tomography to identify a unitary operator. In Sec. 4.4, we
introduce a method to implement the energy eigenbasis measurement from the
result of estimation.

4.2 Estimation theory

In natural science, we describe a state by a set of numbers called parameters. We
call such numbers as parameters of the state. States describdtebyndivalues

of parameters respondfiirently in observations. The trial of an observation is a
stochastic subject, and they are to be written by random variables. This relation-
ship between a parameter and stochastic trials can be described as followings.

Definition 22. Consider a random variable & R whose probability distributions
py(X) is dependent on a vector of complex numigesshere

0= (61,6,...,00)", 6 €C. (4.1)

We call thisg as the parameter of the probability distribution.
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We call a process reconstructing an unknown parameter from a set of data
obtained by stochastic trials as an estimation. A function which transforms a set
of data into a possible parameter is called an estimator.

Definition 23. Consider there are K random variablégs®|1 < k < K}, the
probability distribution of & is denoted as 8 which depends on the parameter
6 € CN. We iterate stochastic trials of each random variabf@ ki, times. Let
us denote the data of the m-th trial of the k-th random varialffeas d¥. We
denote a set of data of all the trials as & {D®, D@, ..., D)}, where ¥ =
(d®,d¥,....d%),

Definition 24. We define a functioé®® : S — CN, where the set S includes all
possible set of data D of stochastic trials depending on the parariet#e refer
to this function as an estimator.

As an example of an estimator, we introduce the linear estimator. To formu-
late this function, we first define the sample mean of a set of data.

Definition 25. For a set of data D= {D®, D@ ...}, we define the sample mean
of the data of the random variablé¥%as

(D&§“ezﬂﬁﬁzidﬁ. (4.2)

For any function f, we denote the sample mean(df'"l) as
v 1
(Do = 1w Z f(d"). (4.3)
|

Definition 26. Let us define a set of data of the stochastic trials as D. The esti-
mator in the following form is called linear estimator:

ave
67(D) = Z <fi(k)> DK’ (4.4)
K,i
where
f:R->C. (4.5)

The linear estimator is for estimating the parameter given by a linear combi-
nation of the expectation value of trials. The expectation value is given as follows.

Definition 27. For a random variable x of which probability distribution is given
by p(x), we define the expectation value of the random variable by

(5P =" pa)x. (4.6)
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For any real function f, we also define the expectation value by
(e = > P F). 4.7)
To evaluate how close each of estimated va8®(D) to 6 is, we generally

adopt some two-variable functions, which are called loss functions.

Definition 28. We call a two variable functioh : C x C — R satisfying the
following conditions for any &, c € RN a loss function for a parameter.

1. A(a,b) > 0. (Positivity)
2. A(a,a) =0
3. A(a,b) = A(b,a). (Symmetry)
4. A(a,c) < A(a,b) + A(b, ¢). (Triangle inequality).
As a loss function, we define the squared error defined as follows.
Definition 29. A two variable function\, is defined by
Ax(a,b) = |a— b, (4.8)

where ab € C. This function is called the squared error. We also define a
generalized version of this loss function by

An(a b); =la-bf". (4.9)

Since the data of trials are obtained probabilistically, thus the outcome of the
estimator behaves also probabilistically. The estimator of which estimated value
gives a small loss function in typical cases should be a good estimator. To evaluate
probabilistic behavior of an estimator, we introduce the following two quantities.
The first is the expected loss, which is the average value of the loss function. The
second is the error probability which can be regarded as the probability that the
loss function larger thaais achieved.

Definition 30. Expected loss of the i-th element of an estimaf®¥ for a loss
functionA is defined as

AP (65 = (A2 (65°(D). 9,))‘;; (4.10)
where
(A (963‘(D)9 o Zl—[p(k) (d®) A (6(D).4). (4.11)

DeS k.j
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Definition 31. Define a step functior{°¢) for an estimator®as

(D) = 0 (AE(D).6) <) (4.12)
= 1 (A@(D).6)>¢). (4.13)
For an error g, the error probability of the estimate#stis defined as
£, exp
P{A(676) > &) = (s 9)>D’6. (4.14)

We define the expected loss for the squared error.

Definition 32. We call the expected loss of squared error as mean squared error.
We denote it aa5 (65 6).

Now we define the variance of a random variable.

Definition 33. For an random variable x R, the variance of the random vari-
ableo(x) is defined by

(%) = {(x= (0*9?)"". (4.15)
For any function f: R — C, we can also define the varianag( ) of the function
in the random variable x as

(1) = (|10 - HT)

When the probability distribution depends on the statistical paranter de-
scribe the dependency on the variancergg.

(4.16)

exp
X

The mean squared error is related to the variance of a measurement.

Lemma 11. When the expectation value of an element of an estimator is equal
to a stochastic parametek = (6°*)7%, the mean squared error is equal to the
variance, namely,

Toa(BF) = AT, (4.17)

This fact s trivially proven by the definitions of the variance and mean squared
error. As an important property of the variance, we introduce Chevichev’s in-
equality.

Lemma 12 (Chevichev’s inequality) For any random variable xe C and a
complex function f,

P{|f(x) — (6 > ”XT(f)} <e. (4.18)

is satisfied.
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We skip this proof, since this is shown in standard probability theory text-
books [37]. Please note thaE™(6°%! 6,) is the upper bound for the variance of
each element of the estima#f'. For estimation problems, the following corol-
lary which connect the mean squared error and the error probability is useful.

Corollary 2. When an estimater satisfiggs),* = 6,, the following formula for

the mean squared error and the error probability holds:
ATH(6°%, 6,
P{|9i - OieSl] > M} <e&.

£
In the rest of this section, to estimate an unknown unitary operation, we per-
form several two-valued measurements and convert the data by a linear estimator.
Thus we introduce the following two theorems of a linear estimator for two-
valued data.

(4.19)

Theorem 4. Assume that the parameter of a probability distribution and a linear
estimator is given by

o (k) exp t (k) ave
6 = ; (£9),, o= Zkl (1) - (4.20)
Then the expected loas of this estimator satisfies
AS(6, 05 = > opw o £Y). (4.21)
k

Theorem 5. Assume that the parameter of a probability distribution and a linear
estimator is given by

6 = Z (fﬁk))ij’, gest = ; (fi(k))zv(f) . (4.22)

k
The expected loss, satisfies

AZP(E) < 3(ATP(EE)) + 2 max| " (a) - 1O AZP(ES). (4.23)
To prove these theorems, we show the following two lemmas.

Lemma 13. Assume that x is a two-valued random variable which takes the value
a in probability p and b in1 — p. For any f: R — C, the variance obeys

cou(f) = 240, (4.24)
M
whereoy is the variance of x), which is given as
oxa(f) = [£(8) = F(B)I? po(1 — ), (4.25)

and M is the number of data D.
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Proof. By definition, the variance of the sample mean can be transformed as

M! 2

IO (4.26)

|(f() _fpy=K )—<f>exp

M
op(f) = Z IOZ(l— pa)M X
k=0

Since
(fyee = Pafi(@) — (1 - py) fi(b), (4.27)

we simplify op 4(f) as

M
oos(f) = [f(a) = FO)P ) pi(L - p)"*™*
k=0

Xﬁﬁgﬁﬂk ﬂa @—Mm%.mz&

We expand the last two parentheses as

M
7olf) = I1(3) = 1O ) pid— p*
k=0

M1 Ml (M=K
k(M=K M(1 P+ = M ™
M! M! k(M —K)
BT A TT VIS TR VE l (4.29)
By using,Cyx = nl/k!(n - K)!, we rewrite this equation as
M
7o) =11(6) = 10| (1= P) ). -1
k=1
M-1 M M—1 M-1
+ Po Z M-1Ck — Pa(1 = py) Z mCx — ™ M—2Ck—1] p'é(l - pe)M_k.
k=0 k=0 k=1
(4.30)

Now, we factor outp,(1 — py) from the above equation as

M-1

op(f) = 1f(a) - FO)* ps(1 - pe)[Z M-1Ckpi(L — po)

k=0

<

M M—1 -2

- MCkp'é(l — p)M - —— M—2Ckpi9<_1(1 — p)" | (4.31)
k=0 M 0

=
Il
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Because of the binomial theorem, it is transformed as

oo(f) = (@) ~ fO) ps(1 - py)

x 20+ (1= P = (o + (1= P — T (py+ (1 )| (432)

Then we obtain

1-
TouN = 11@) ~ (o) L) (4.33)
Therefore, we complete the proof of Lemma 13. ]

Lemma 14. Assume that x is a two-valued random variable which takes the value
a in probability pyand b in1 — p. For any f: R — C, the following relationship
is satisfied:

TOW() < 30 (F) + 21(a) - FO) ope(f), (4.34)

whereo () is
Xp
ooy (f) = <|<f>ave— (HYP > : (4.35)
D,
and M is the number of the data D.

Proof. Similarly to the proof of Lemma 13, we obtain

M2 +3M -6

A0 = 11(a) - 101 | M o = py

1
Wp(l— p)|. (4.36)
We organize this equation as
aou(f) =1f(@ - f(o)*
X —p2(1 - p)*+ i|02(1 - p)*- £|02(1 - p)?
M M2 M3

F (1= 200p(1- D)+ p(l-p)|. (437)

Since the third term is negative, erasing this term increases the total value. Taking
account of the inequality/M? < 1/M, we have

o) < 11@) ~ FOF | o5 (1 - P+ p%l—p)h%p(l—p)] (4.38)
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Sincep?(1 - p)? < p(1 - p), then

3 2
A1) < 1@ - 1O (- P2+ p =P (839)
Applying Eg. (4.33) to this inequality, we conclude
o () < 303 () + 21f(a) - (D)2 ope(f). (4.40)
O

The proofs of Theorem 4 and Theorem 5 are given as follows.

Proof of Theorem. 4By definition, the expected loss can be represented as
A7) = Z( (38 = EOID) (O3 - AN oy (441)
Note that for allk # |,
<(< fi(k)>aD\€S _ <f(k)>exp) (< f‘(l)>aD\a<)e <f(l)>exp) >eXp
<(<f(k)>a(k) <f(k)>exp)>exp <(<f(l)>a(|) <f(l)>exp) >exp -0 (442)

D® g D09
is satisfied whereg and x, are statistically independent. Then we can simplify

Eq.(4.45) as

exp

AEX"(&):Z<I<fi‘k)>%%8—<f<k>>exp > . (4.43)

k D®,0
Each term in the summation part in the right-hand side¥§'(f®). Thus we
conclude the theorem. O

Proof of Theorem5By definition, A7 (¢®¥) is decomposed as

AZXP(Hiest) — Z < (< f(k)>a(k) _ <f(k)>exp) ((f(l)>a(|) <f(|)>exp)

k,l,mn
exp

(F™am — (F™%) (<fi(”)>gv(s—<f‘”>>e”’)> . (4.44)

D,o

Using the conditior(<fi>g‘(§> —(f, >EX(E)> = 0, only certain terms survive, and we
obtain

Xp
exp(eest) Z<|<f(k)>a|3\€lg f(k)>exp > y

Xp
(9] (K)\ex 0) 1)\ ex
23 ([ s - >ep> <|<f e — (f >ep>w

k=l

+ (s - ay) (-, . @)

kl
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Since ,
X| X| 2
(<t - iz = (ke oms - a™). @0

then we have
exp ®) )y exp|4\ P
a0y < 3 {0 - ),

K W exp2\ TP /1, e Ny exp 2\ &P
#3358~ (AT (laDgs - a"Y) . @an)

k#

Using Lemma 13 for the first term and Lemma 14 for the second, we obtain

AT < 3 Z O'D(k),e(fi(k)) Z O-D(I)’G(fi(l))
- |

+2max f0(a) - OO rowa(f). (4.48)
k

According to Theorem 5, we conclude that
expy hes expy pest |2 0] ) 1\ [2 A XDy pes
ATP(6F%) < 3(A5°(EF%) +2m|ax|fi @ - OO ATREE). (4.49)

O

4.3 ldentifying unitary dynamics

We have introduced a straight forward way to identify an unknown unitary dy-
namicsU up to its global phase. In the following, we limit the quantum system
to ag-qubits system@?)®9. We denote the dimension of this systendas 29,

We define a vectom in a vector spaceZ,)®d for any natural number @ n <
d - 1. Let{e} be an orthogonal basis, ands defined as

n= Z N (4.50)
k

whereny € Z; is thek-th digit number ofn in the binary representation defined
asn = Y2 2ny. The sum of vectors in the vector space is defined by

n+ms= Z lex, (4.51)
k

where
lk=n+m. (mod 2) (4.52)
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We construct a basiin)l0<n<d-1}in (CZ)®q each of which is defined as

q
n) := ® [N = [Ny .. Ng). (4.53)
k=1

If (O)U|0) # O, all the elements of unitaryy are perfectly determined by a
matrix ® up to the global phase where them element of® is defined by
Onm = (NUIM)OJU"|0). (4.54)

We define the generalized Pauli matri@éQ on this Hilbert space for any pair of
integersxi<d-1and,0< j<d-1as

q
(i) _ (i)
X0 = () x5, (4.55)
k=1
whereiy, jx = 0, 1 are also defined as thketh digit numbers defined by
q q
i = Z 2L, j= Z k1. (4.56)
k=1 k=1
X1 is a Pauli matrix on a single qubit defined as
X0 = 0)0] + 1)1, (4.57)
X = (00— 1)1, (4.58)
X0 = oy + 120, (4.59)
X = i(0)(1] - 11)(0)). (4.60)

We define operators), s; on a 1-qubit Hilbert space by

10)¢0, (4.61)
10)(1. (4.62)

S
Sil

For ag-qubit system, we also define an operator.
S, = |0Xn|. (4.63)

Note that
WYISnlg) = (nlg)ll0). (4.64)

Due to Egs. (4.57)—(4.60% is written by
X

Sj = > (465)
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On the other hand5, can be represented in the producsphs

g-1
S, = @ She (4.66)
k=0
Substituting Eq. (4.65) into Eq. (4.66), we obtain
d-1
1 .
EZO =iy X0, (4.67)
For indexm # 0, we associate four vectors by
1
Im,0) = —(|0) +|m)), 4.68
«/é( ) (4.68)
1 .
Im, 1) = —(0) +ijm)), 4.69
\/z( ) (4.69)
1
Im,2) = —(|0)—[m)), 4.70
\/i( ) (4.70)
1 .
m3) = —(0)—im)). 4,71
\/E( ) (4.71)
For these vectors,
1, .
5 2, (M. SAm. s) = (A, (4.72)
s=0

is satisfied, wherd is an operator on a Hilbert spacg?j®d.

We define random variableg.Y as the outcome of the following measure-
ment process. We initially prepare a states). Next we apply the unknown
unitaryU on the state. Then we perform a measurement of obser¥gbén the
state. The expectation value of the measurement in given by.

(('5>>® = (m, U XPU|m, s) (4.73)

We define other random variable for the outcome of a measuremetff on
the statdJ|0), which satisfies

<xg>) = (OUTXDU|0). (4.74)

According to Egs. (4.64),(4.67),(4.72) and (4.73), we conclude thaBany

IS given as
d-1 3

Oum = 50 > O ()" (4.75)

i=0 s=0
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We can also derive -
1 i () EXP
O = 5 Z(_u)” (0, - (4.76)
i=0

Assume that we iterate each measurement on each Mdtdimes. Let us
define each datum &:9. We also define

D={D{J0<m<d-10<n<d-10<i<d-10<s<3}. (477

We define the linear estimator of each element of the param®gigas form # 0,

1 & 3 i i ave
®ﬁﬁ§(D)=—dZZ (DD () g (4.78)
i=0 s=0
and form= 0,
ave
! = dZ( i)™ (x{) o0 (4.79)

For this linear estimator, the following theorem is satisfied.

Theorem 6. The estimator®®s! defined by Eq. (4.78) and (4.79) has t@e
independent upper and lower bound for its loss functions given as

AP (Onm O5) < gy (N m#0). (4.80)
1
AP (@00, OF5) < pve (4.81)

Proof. Since each measurement has a two-valued outcome, accodting to Theo-
rem 4, the expected loss is given astiog 0

(I S)

A oS
(©m OF) = 25 Z : (4.82)
and form = 0,
0]
1
A (Or0, 0% = =5 KA‘T”". (4.83)

o is the variance of the random variabdgy ando ) is the one ofx?). Since
xom = +1 andx®) = +1, we have

ol = 1- () (4.84)
o8 = 1- (). (4.85)
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Substituting Eq. (4.84) in Eq. (4.82), the upper bound of the expected loss is
evaluated as

1

AS® (Onm OF) < v (4.86)
With the similar discussion, we derive
1
exp est
A5 (@00, OF) < vt (4.87)
i
We introduce several properties of a mawixiefined as

V =0%'-0, (4.88)

The following evaluation takes an important role in implementation of the pro-
jective measurement of energy.

Theorem 7. For any vectoli¢) € (C?)®9,

€eX| 1
(@IVP18))q < o7 (4.89)
Theorem 8. For any vectolg) € (C?)%,
, o 2\® 12 9
(keiveiof) <55+ o (4.90)

Before proving these two theorems, we introduce a decomposition of the vec-
tor [¢) € (C?)®% in computational basis denoted by.

)= > Caln). (4.91)
n
Theorem. 7.(¢| |V|?|¢) is calculated as
@IVPI®) = D > VaViCiCon (4.92)
nm Kk
Forn # m,.
(ViVmdng =0 (4.93)

Is satisfied since the probability distribution for each element of the estimator
is independent and the expectation value is set to zero. On the other hand, by
definition, the squared absolute value of each elemeNt statistically behaves
as

(Vaml?)_ 7 = AFAOE, Opn). (4.94)

DO
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Then
(@IVPI®) e = D D ATHO. On ICiP (4.95)
n k

Due to the upper bound given in Theorem 6, we have

Z Z |Gy 2 (4.96)

1
—_— 2 [ —
M En IChl M (4.97)

(@IVE19),

Proof of Theorem 8J(¢| V[ |¢>|2 is given by

(VI = D" D> VeV VeiCiCCaCiy (4.98)

nm ab Kl

Similarly to the relationship in Eq. (4.93), even though more multiplications of
Vam appear, when a combination of indices appears only once in a term, the
term becomes zero. Then only certain terms in the equation survive after taking

average in probability,

(laVvEf) =3 3 (Ve Mal)og (G ICAT
na ki

> ; (IVad? NVend?) - IC ICol?
nm

+ Z Z (V2V;2) Do P cic? (4.99)

Taking the absolute value for the factors in the last term of the above equation,
we obtain

(V) <3 3 {Vad Mal)og (G ICaT

na ki
+222 Vol Vinkl?), ¢ ICol? [Crl? . (4.100)

According to Eq. (4.94) and the relationship

(Vorl®) 5 0 = A5 (O55% On), (4.101)
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the value of interest is bounded as

(Y DI WS Cr I CRuT St

na Kl

+2) > ATHORAATAOLD) ICHl ICwP
nm Kk
£33 3 (A5%E5) - (A3°@50) ) iCal* . (4.202)
n k
Applying Theorem 5 for our setting, we achieve
ATPOF) < 3(A exp(@‘ff,ﬁ)) exp(@est) (4.103)
Substitute the above inequality and the bound@&(@ﬁﬁﬁ) mentioned before
» 1 2 1(12 6 .
(lavewl) " <+ g+ 3 (M + W)Z Col*.  (4.104)

BecausdC,| <1,

Dl < Gl =1 (4.105)
n n
Then 1 2 12 6
(ANFOF)" < i+ G * ot * e (4.106)
Substitute 1d < 1 into (4.106), we obtain
) <12, 2
(IR >D’® <o (4.107)
Od

4.4 Implementing projective measurement of energy

4.4.1 Implementing projective measurement of energy

We propose an implementation method of the projective measurement of energy
using the estimated parame@i*, when the unitary operation is given by the dy-
namics of an unknown Hamiltoniaf with duration timet. We take the Hamil-
tonianH as it absorbs the complex factor (global phase)0gfi|0), among the
arbitrariness for choosing the base-point of the energy eigenvalue, and denote

0= Z ce 8P, Py = Z IEANEL, (4.108)

keY A€Z;
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wherec = |[(0O]U|0)|. We also denote the diagonalizationtbias

H = Z EP, Pi= Z E{'XE]. (4.109)

ieY A€Z;

We assume a bound of the maximum energijedenceAn.x (the largest
eigenvalue minus the smallest eigenvalueHok known. We take the duration
time of the Hamiltonian dynamidssatisfying

Amat < /4. (4.110)

Under this condition, the constamin @ is not zero. It is proven as follows. Since
(0|U|0) is expanded as

U0y = > [OENH[ e e, (4.112)

then

Z Z |<O|E|/l>|2 <0||Elil>'26_i(Ei—Ej)t

i,JeY A€z uez;

= > 3T KoEDF|oED| cosE - Ept.

i,jeY A€z uez;

> > laEd) <0||E’,-‘>'2003Amaxt,

i,jeY A€z uez;

- 33 JoEdf [ien| cost/a

i,JeY A€z ueZ;

KOJU|0)?

v

1
= 4=——. 4,112
cosr/ 7 ( )

For simplicity, we impose a condition that the mean value of the Hamiltonian is
zero, namely,

1
i > Y diE =0, d'=Tr|P| (4.113)
ieY 1€z
Under this condition, each eigenvaluetbfsatisfies
Ete [—g, g] . (4.114)

Note that the following arguments are still valid, even when the mean value is
not zero. If the mean value is given leywe just replace the condition of each
eigenvalue to

T T
Ete [_Z rel+ e] . (4.115)
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Unfortunately, the linear estimat@®{D) which we defined in the previous
section is expected to estimate non-normal matrices in typical cases since the set
of normal matrices is the zero set in the linear space of operators, whereas the
expectation value of the estimat®fs'introduced in Sec. 4.3 is a normal matrix
0. Returning such aanphysicabutcome is known to be the disadvantage of the
linear estimator in general. A non-normal matrix does not have eigenvectors and
eigenvalues, which is necessary to identify for implementing projective measure-
ment of energy. For this purpose, we have to deform the obtained matrix into a
normal matrix.

In the followings, we impose an assumption that there exist an estimator in-
cluding a deformation which does not change the probability distribution on each
matrix element. We also assume the deformation process guarantees the regular-
ity of the matrix, which is a loose assumption since the set of nhon-regular matrix
Is the zero set in the matrix space.

Under these assumptions, we decompose the matrix as

0= > Cu€ P Poa= D IELXEL (4.116)

kEX,(YEW AER! @

wherec, is a positive number argk« is the absolute value denoting the complex
factor of the eigenvalue @®st

According to the estimated matr®est we assign an estimated eneifgyfor
each vectoréﬁ) according to each eigenvaleg¥ of @t As Eq. (4.108), the
value of energy is reflected in the complex factor of the eigenvalue. Then intu-
itively, the energy eigenvalue is determined by the imaginary part of the logarithm
of the eigenvalue;e¥. However there is arbitrariness in choosing a branch of the
logarithm function. When we know the mean value of the energy is 0, it is reason-
able that we take the branch of the logarithm function as a half-line represented
as|z > 0,argz = n. However, we do not know the description of the Hamiltonian
beforehand. Thus, we introduce the following logarithm function.

Definition 34. For a normal, regular matrix®®s having eigenvalues;@¢, we
define the primal value of the phageas ¢; € [-x,n]. We define a complex
functionLog as it satisfies

a=€e"%" aqeC, (4.117)

and
r< (ImLoga -y %) <. (4.118)
i

We call this function as a logarithm function f&¢s,
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Definition 35. We denote the branch cut bbg as the solution of the equation
argz = ge by using a real numbepg € [—x, n1].

In other words, the function Log is the logarithm function whose brunch cut
exists on the half-line determined by the solution of the equation aryy; ¢;/d+
n. This logarithm function satisfies the following theorem.

Theorem 9. Assume that an estimat®®*for the paramete® satisfies the con-
ditions Egs. (4.80),(4.81) and the conditions of normality and regularity. We also
assume the matri® is determined by a Hamiltonian H as Egs. (4.108),(4.109)
and (4.113), and parameter t satisfi®s.t < 7/4. Then

o € [-n/2,7/2]} < 16d(M2 I\iZ) (4.119)

Proof. We denote the probability of achieving, ¢ [-7/2, /2] as
Plpe ¢ [-7/2,7/2]}. (4.120)

Sinceyg is given asy; ¢i/d =, when all ofy; satisfyy; € [-n/2,7/2], pg iS NOt
in the sectionfx/2, 7/2]. Then, we can bound the probability by that of having
at least one indeksatisfyingy; ¢ [-n/2,7/2]. Thus

Plve ¢ [-7/2,7/2]} < P{Ti, i ¢ [-7/2,7/2]}. (4.121)

Now we decompose an eigenvectoi®in the ones o®°, and we denote

Eh=> > VIEL. (4.122)

jeX aeW,ueR;
We define a matri¥ given by Eq. (4.88) and substitute Eq. (4.122) into EqQ. (4.147).
VIEY) = Z Z 7 (Co€” — ce™ B (4.123)
jeX aeW ueR;
We define the valu¥! as
Y= (EIVPIED. (4.124)

Due to Eq. (4.123)Y; can be represented as
=
jeEX aeW;,ueR

Assume thap; ¢ [-n/2.7/2]. SinceE; satisfies the condition of Eq. (4.115), the
cosine function is bounded as

c2 + ¢, — 2cCj, COsEit + ¢))). (4.125)

cosEit + ¢)) < 7 (4.126)
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Substitute this inequality into Eq. (4.125), we obtain
1> (+ &, - Vace,). (4.127)

Since the right-hand side of this inequality is equakted)?+c?/2 andc > 1/ V2

according to Eq. (4.112), then

1
Y > 7

Thus we can conclude that satisfying (4.128) is the necessary condition for being

e ¢ [-n/2,7/2]. Therefore

(4.128)

P{3i,¢ ¢ [-n/2,7/2]} < P{Hi,/l, Y4 > %} (4.129)

The valuesy; for indicesi are not statistically independent of each other. Then
we decompose the probability of achieving at least greqqual to or larger than
1/4 as

p{a, LY > } S Sp {Yﬂz%} Zd;k D P{Yﬁl,...vﬂk_i}

ieY aez I1,...IkeY
/llezil,.../lkezid

(4.130)
The second term of Eq. (4.130) cancels the counted events. Because of the posi-
tivity of the probability, we have

P{Hl ALY > } N {i } (4.131)

ieY aeZz

Since the left side of Eq. (4.89) is the expectation valu¥%fthe variance o]
Is bounded as

exp

< > ~(oe)e)

|<Eﬂ| V2 |Eﬂ>| >

oY) =

IA

9
< (M + MZ) (4.132)

Using the Chevichev’s inequality (Lemma 12) nfr‘), we achieve

P{Yﬁ > %} < 160(Y;"). (4.133)
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Therefore according to Eq. (4.132), we achieve a similar bound from the above
inequality (4.133), namely,

1 12 9
P{Yf > Z} < 16(M + W) (4.134)
Summarizing Eqgs. (4.121),(4.156),(4.157) and (4.134), we reach our goal at last,
namely,

Plgo € [-1/2,7/2]) < 16d(1—2 9 )

YRaY (4.135)
O

This theorem guarantees the performance of the projective measurement de-
fined below.

Definition 36. For the normal, regular matri®®stwhose eigenvalues and eigen-
vectors are given by Eq. (4.116), we define the projective super opé?ﬁ?sér

P70 =" B, (4.136)
i

where
Bi=> P (4.137)

We also define the value BP™ as
~ @est LO e“pl
EY = =09
t
whereLog is the logarithm function fo®°*. A corresponding instrument is de-
fined by

(4.138)

I = p(O@°)P ges, (4.139)

where ©®°) is the probability that we obtain a sequence of data D which pro-
vides the matriX®®stas an estimation result.

Definition 37. We define a measurememtsg = {f, E, Q}, where

Q: = {(@*i)@*'eC¥,ic X}, (4.140)
I: = {I|e™i) e Q}, (4.141)
E@©°i): = E°, (4.142)

and we callMgF as the projective measurement implemented via estin@tor

est

In the following subsection, we abbrevia@é&dependency of a CP ma?p?
and outcomelr?i@est asZ; or E; respectively, when dependency is clearly exhibited
in the context.
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4.4.2 Evaluation of the performance
The dfect of the added matrix for diagonalization

Consider we have a normal matéon a Hilbert spacé( which is diferent from
the diagonalizable matrid by a matrixV, namely,

A=A+V. (4.143)
We assum@\ is still normal. We represent the diagonalization as
A=>ab. Po=) 1E8)@E. (4.144)
k A
We also denote a decompositionfhs

A= aPe Pe= ) la)&. (4.145)
k 1

We decompose the eigenba§#)} of A by the basig|&!)} of A

& = ) 1), (4.146)
J

Applying the matrixA to both sides of Eq. (4.146), we have

alaly = > V) - Vial). (4.147)
j,d

By comparing the ca@cients in the eigen basis &f we obtain
V(8 -a) =V (4.148)

i = Vi

WhereVi(jA“) = (éﬁ")lwaf). Then the cofficientV;; is determined by

Ui =5 1 (4.149)

Evaluating fluctuation of measurement value

In the followings, we evaluate the performances of measurements introduced in

Sec.4.4. The fluctuation of measurement value for the measurevhigis given
by
5 5 exp
Ri(MerlH) = max <Z<Ef|Pj|Ef>(E,- - Ei)2> (4150
i j

{IE")
ieY,AeZ; D.®
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We define an orthonormal bas{léj{a)} of H determined by the estimat®®s'as

follows: -
PJ(1|E|/1>

V(ENPIED

wherei € Y andA € Z; are chosen as they achieve the maximization in the right-
hand side of Eq. (4.150). We defim’{ga as an inner product of two basis vectors
as

ED,) = (4.151)

vO = (B |EY. (4.152)

1 a Jia

Because of the definition clﬁfj’;a), we obtain

Jo _ (ElIPwIEY) @.153)
ij;a — . .
V(EIPjolEY
Then we obtain
V%[ = (E{ 1By IED. (4.154)
Substituting Eq. (4.154) into Eq. (4.150), we have
exp
Ri(MgrlH) = max <Z Vi | (B - > . (4.155)
(IEM)

|eY/leZ. L D,®

We assume the estimat®fstand the unitaryJ satisfy all the condition imposed
in the previous section. We define the following step function according to the
peest defined in the previous section as

s(D) = O, (gogeste[—g,g]) (4.156)
= 1, (otherwisg. (4.157)

Using s(D), we divide the maximized value in Eq. (4.155) in the definitioriRpf

into ¢;,  as
exp

<Z| |Ja| (Ej - Ei)2S(D)> , (4.158)

D,6

exp
<Z| .,al (E; - Ei)z(l_S(D))> : (4.159)
D,®
SubstitutingV = ®°%'- @ into Eq. (4.149)g; is transformed to

5i:<2

= |Cj;ae—iﬁjt _ ceiEi t|

|2 exp

s(D)> (4.160)

D.®

|Ei - E

| ij;a
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The numerator in the right-hand side of Eq. (4.160) is simplified as

|Et

. 2 ~
Ve ce"Eit‘ = ¢ + ¢, — 2¢Cj, COSE; — Eyt. (4.161)

By differentiating this equation by a parametgrit is shown that the minimum
is realized when the parametgy, is given by

Cia = CX max{cosCEi - E)t, 0}. (4.162)
Substituting this result into the equation, we achieve
‘c,-;(,e‘“iit - ce“Eit‘2 > 2 f(X), (4.163)
wheref is defined as
f(x) = sifx, (cosx>0), (4.164)
= 1, (otherwise. (4.165)
Theno; is bounded as
Eit — E;t)? ®
8i £ — o <Z 1E(Et E)t) Vi | S )>D®_ (4.166)

Whens(D) = 1 is realizedy; = —Ejt satisfiesp; € [-371/2, 3n/2]. According to
Eq. (4.115), the valug = ¢; + E;t satisfiesx € [-57/4 < 5r/4]. In this domain,
the functionx?/ f(x) takes the maximum value 288 whenx = +5r/4. Then
we achieve the upper bound di;fgiven by

8 < 8,[202 <Z V0 S(D)> . (4.167)

D.®

Sinces(D) < 1, we further S|mpI|fy this upper bound as

5 < 8t202 <Z| o > . (4.168)

D.®
By using the notation of the trace operation, the value in the parentheses are
transformed as

2NRF = D KEAVIED[ (4.169)
] |
= D (EIVEXENVED) (4.170)
j
< Tr|VIE'XE! V] (4.171)
= (E!IVFIE" (4.172)

.~ (4.173)
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wherey; is defined as Eq. (4.124).
Using Theorem 7 and/lV2 < ¢ < 1 to this inequality, we conclude that

2572
L .
0i < TEIVE (4.174)
Next, we evaluate;. By definition, E; and Ej are bounded by
Et| <n/4, |Ejt] <2r. (4.175)
Then we have 9
Et-E < - (4.176)
Thusg is bounded as
81r? exp
€ < 1o (- s(D)))D@. (4.177)

Because of the definition &{D), we can replace the expectation value part of the
inequality byP{pe € [-7/2,7/2]}. Then according to Theorem 8, we obtain

€ (4.178)

81dx% (12 9
2 \m ™2/

Since maydi+¢) gives the fluctuation of measurement value and the upper bound
of eache; andg; is determinedR;(Mpgr|H) is bounded as

2(25 97 729
Ri(MgglH) < 7:—2( — )

m + M + M2 (4179)

The above discussions are summarized in the following theorem.

Theorem 10. Assume that an estimat®®stfor the paramete® satisfies the con-
ditions given by Egs. (4.80),(4.81) and the conditions of normality and regularity.
We also assume that the matfixis determined by a Hamiltonian H satisfying
Egs. (4.108),(4.109) and (4.113), and the parameter t satidfieg < 7/4. Then

the measuremenMgr according to this estimator satisfies.

(4.180)

2(25 97d 729
Ri(MgelH) < 7,:—2( —_ )

— + +
aM M M?
About non-repeatabilityr, of this tomography based measurement scheme,
no obvious bound has been found. However, it is conceivable that no matter how
many times we iterate measurements to ider®@ifyR; is not always concentrated

to zero. Consider the case that the system is two dimensidnal 2) and its
Hamiltonian is degeneratdd = Eyl. The projective measurement of energy



65

for this Hamiltonian has only one measurement instrument id, which means that
the measurement operatiofiexting the system after obtaining an outcome is an
identity operation id, (namely, the state does not change). On the other hand, the
paramete® for this case is given ds The estimated matri®®stis given by

@St=| +V, (4.181)

whereV is the statistical error from the true parame@erAgain we assume that

V is a normal matrix. According to Eq. (4.181), it is clear that the eigenbasis of
®°stis equal to the ones &f. Normal matrices are completely represented by pa-
rameters describing eigenbasis and eigenvalues. A set of degenerated matrices is
described as a set of the parameters whose eigenvalue part has a restriction. Then
the set of degenerated matrix is a zero set in this parameter space. According to
this fact, we assume that the event of ma@fR'having degenerated eigenvalues

Is zero. Then the CPTP map according to the measureMgptcan be rewritten

as
33 Tiem= Y pO)Aeen (4.182)
i=1,2 @est @est
where
Aews= ) Pies (4.183)

i=12

Consider a maximally entangled statg. on a two-qubit systent? ® C2. By
applying Agest to the first qubit of the maximally entangled state, the state after
the measurement operation becomes a separable state. We call such an operation
as an entanglement breaking operation. A convex sum of separable states is also
a separable state by definition. Then a convex sum of a entanglement breaking
operation is still entanglement breaking operation. We define a separable state
PsepaS

Psep = <A®‘93‘p>eD)fg = Z p(G)ESI)A@eSSOme' (4.184)

@est

Note that(Agesi+)p o is equivalent to the CPTP map corresponding to the mea-
surementMgg. For this case, non-repeatabil®y is calculated as

Re(MerlH) = max_ [[(Aess)5g £l

Because of the maximization of the value in the right-hand side, if we substitute
the statep to pme, the value is smaller than the maximized value, namely,

Ro(MgrlH) > ||Psep_/?me||tr . (4.185)
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The trace norm satisfies the non-negativity conditipr- ofl, = 0 © p = o.

A set of separable states does not include a maximally entangled state nor a se-
guence which approaches to a maximally entangle state, because entangle mea-
sures are continuous functions and separable states have zero entanglement, on
the other hand maximally entangled states have nonzero value. Then there is a
constant > 0 which satisfies

Ro(MeelH) > c. (4.186)

Then we find that there exists the case wHer@loes not concentrate into zero
even if we iterate measurements for infinite times.

Evaluation of the runtime to achieve the required precision

The fluctuation of measurement value is the mean squared error of measurement
outcomes from the true value. In the following, we calculate tiigsent runtime
to achieve required accuragynamely,

Ri(Mer) < &. (4.187)

The total time to implement the energy measurement via Hamiltonian tomogra-
phy is divided into the time for the Sabdinger evolution of the system and the
time required for our manipulation, (for example, preparation of initial states,
executing measurements for process tomography and implementation of the pro-
jective measurement of energy). The latter depends on how fast we can execute
manipulation, and it is not bounded in principle. Then the total calling time of
the Schédinger evolution is the ideal bound of the total time [2, 5, 12].

To implementMgg, according to Sec. 4.3 we must prepace43 different
initial states and perforrd? different measurements on each state after applying
the Hamiltonian dynamics with duration time If we iterate measurememd
times for each combination, the time is determined by

Ter = M x (4d - 3) x d® x t. (4.188)
Due to Eq. (4.180)M must satisfyM > O(d/(t%¢)) to achieve Eq. (4.187). Then

d4
Ter > o(—), (4.189)
te
is the sdficient runtime for achieving the inequality. When a bound of the maxi-

mum eigenvalue diierence in eigenvalues,ax is known, due to the assumption
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/4 > Amad, We can minimize the upper bound of the total time. If we take
t = Amax/7, then the ideal bound of the runtime is given by

d4Amax)

&

TBF > O( (4190)
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5.1 Introduction

In this chapter, we present a method to implement projective measurement of
energy on any finite dimensional system whose self-Hamiltonian is unknown.
This method achieves the ideal projective measurement of energy in the limit of
infinite time resource, while its run time for a given accuracyis independent of
the system dimension. We introduce a randomization technique to show that a
guantum algorithm known as a quantum phase estimation algorithm [18] can be
applied to a system evolving under an unknown Hamiltonian whose bound on
the maximum dterence in the energy eigenvalues is known. More specifically,
by using our technique we show that a unitary operation conditioned on a quan-
tum input (i.e., a controlled-unitary operation) can be implemented for an un-
known unitary operation provided as a physical system evolving according to an
unknown Hamiltonian. Incotrast, previously known implementations of the con-
ditional operations require that the unitary operation to be controlled is known, at
least partially [22, 23].

In Sec. 5.2, we introduce the phase estimation algorithm which asymptotically
implements projective measurement of energy by using the controlled Hamilto-
nian dynamics of the target system as resource. In Sec. 5.3, we introduce our new
algorithmuniversal controllizatiorwhich utilize Hamiltonian evolution of closed
guantum dynamics for implementing the controlled version of Hamiltonian evo-
lution. In Sec . 5.4 we apply the universal controllization to the phase estimation
algorithm, In Sec. 5.5 we analyze the performance of the implemented projec-
tive measurement of energy. Finally, we evaluate the necessary running time to
guarantee small fluctuation outcome for the energy measurement in Sec. 5.6.

5.2 Phase estimation algorithm

The phase estimation algorithm is a quantum algorithm to estimate the phase
factor 0< 6; < 2r of the eigenvalu@’ of a finite dimensional unitary operation
U when an eigenstaté!) is given. A spectral decomposition bfis given by
UM = > %P, Po= > 1@ (5.1)
keY A€Zy
The algorithm is presented by a quantum circuit shown in Fig. 5.1. As shown
in the figure, this algorithm uses controlled-unitary operationsg, &f2, U, - .. ,U%"

whereN denotes the number of control qubits. A controlled-unitary oper&tipn
of a unitary operatiot is defined by

Cyu:=0X0/® | + 1)1 ®U (5.2)
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onH. ® H; where the Hilbert spaces of the control system and the target system
are represented it = C? andH, = CY (d < ), respectively.

The final measurement &f control qubits in the computational base provides
a sequence of outcomés,, - - - , ny} whereny, € {0, 1} corresponds to the mea-
surement outcome of thieth control qubit. Then the estimated phase is given
by 27 fy wherefy := 0.n; - - - ny is the binary representation of a decimal number
defined by Qv ---ny := Y, 27%n.. When an input state of the target system is
|6!), the probability of obtaining 2fy is

sin[2Y(6; - 2rfy)/2) ]2 53

PN(ZJTfN|9i’1) = [2N Sin[(ei _ ZﬂfN)/Z]

We show this result in Sec. 5.4. The output state of the target system remains in
|6;). The probability distribution of the estimation errpr= 6; — 2x fy is given by

sin[2Vy/2] )2

Pu(Y) = Pn(6 - yI8) = (W[Y/Z]

(5.4)

This means thapy(y) for y # 0 decreases exponentially M. The function
pn(Y) can be regarded as a probability distribution of a discreet random variable
yA = 2n(n+ A)/2N with —2N-1 < n < 2N-1 satisfying

oN-1_9

D, P =1 (5.5)
n=-2N-1
where-1/2 < A < 1/2. We show that this discrete probability distribution
converges to a delta function on the sectien,[zr] at N — co.
To transform a discreet random variable to a continuous one, we construct a
probability measurg corresponding to the probability distributiqe} at the limit
N — co. The measure is naturally defined by

u(A) = im > pu(yn). (5.6)
yaeA

whereA is a subset offx, z]. If A=[a,b]for a,b> 0, we can boung(A) as

2
< li . .
4 < im N ] 5.7)
SinceNa < (b - a)(2N + 1),
_ N
0<up) <228 im 2L g (5.8)

sifaN-ew 22N
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This impliesu(A) = 0. If A = [a, b] for a,b < 0, we can similarly obtaip(A) = 0.
Thusu(A) = 1 should be satisfied in the casesok 0 < b due to Eq. (5.5).

We define a set of functiong of which elements are measurable and con-
tinuous atx = 0. Integral off € {#} over the section{r, 7] by the probability
measureu is represented by

[ u@ne9 = tim 3 Fuea 59
- Ke—oo

whereA? = f1([k/n, (k+ 1)/n)). This definition of integral is well defined due
to the condition off to be measurable.

There is an integer such that{f(0)} € A° (or {f(O)} = A N A1), where
A° denotes the interior of the sé&t (A means the closure o&) Due to the
continuity, A (or Aj U Ai,1) includes a sectiorg] b] of a < 0 < b. Thenu(A) = 1
(or u(A) + u(Aiz1) = 1) should be satisfied. Thus the integral satisfies

f " (u(d) = £(0) (5.10)

Formally, we can represent this probability measure as a probability distribution
p(x) of a continuous random variabie

[ﬂ f(Qu(dx) = Iﬂ f(X)p(x)dx = f(0). (5.11)

Therefore the functiomp can be regarded as a delta function for the set of func-
tions ¥. The set of functionf includes smooth functions that are known as
descriptions of physically natural values.

We note that the measugds not a measure called the “Dirac measure”. The
setA = {27A/2NIN > 1} has non-zero value under theneasure, but it gives zero
under the Dirac measure.

If we apply the phase estimation algorithm to an arbitrarily superposed input
statelgy = i, a:'16;y wherey,; , la?> = 1, the probability distribution of obtain-
ing the outcomesny, - - - , Ny} represented in terms df, = 0.n;---ny IS given
by

Pu(2rfulg) = ) la) PPy (2r fnl6). (5.12)
i,4

The corresponding output state of the target system is

i & (Pu(2rfyleh))t?

v Pn(27 i)

6%,) = Mg, (5.13)



72 Chapter 5.Phase estimation based method.: algorithm and evaluation

control 1 |0> ’F‘ —
{QFT

control 2 |0

control 3 10>

: P

Figure 5.1: The phase estimation algorithm. The box QFT denotes the quantum
Fourier transformation. The final measurement is performed in the computational
basis.

=] =] [z

—

LA

whereG(6;, fy) = (@Y -1)(6; - 27 fy). Since Z fy — 6; is guaranteed foaN — oo,
the output state converges R|¢)/ |[|P«l¢)|| when the outcome i$y. Thus the
phase estimation algorithm implements a projective measurement in the eigenba-
sis ofU for N — oo.

If U is given by a Hamiltonian evolution operatoi(t) = eHt of a Hamil-
tonian H, the phase estimation algorithm asymptotically implements a projec-
tive measurement of energy gt that gives an outcome representing an energy
eigenvalueg; of H up to periodicity of the phase oA, and also gives an instru-
ment{#!'} to an eigenstate corresponding to the outc@nd his property of the
phase estimation algorithm is also used in thermalization algorithms [20, 21].

5.3 Controlling of the quantum dynamics

If we can perform the controlled unita@y ), we can implement the projective
measurement of energy via the phase estimation algorithrfartunatelywith a
finite time resourceCy, for U(t) = exp(iHt) cannot be perfectly implemented
whenH is unknown. (See Ref. [24], for instance.) We address this issue by
implementing an approximated version@f .

Let us denote the Hilbert spaces of the control and the target systéfndoyd
H,, respectively. First, we add an ancilla system, with Hilbert sgdgce CY, and
initially prepare it in the completely mixed stak¢d. We introduce thgpseudo
controlled unitary operation \},m of Cy/m, Which is a unitary operation on
H. ® H, @ H,, defined by

Wugm = F(I ® | ® U(t/m))F, (5.14)
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where
=100l @1 +|1){1|® SWAP (5.15)

and the unitary operatioB W APon H, ® H; is defined as

SWARNIS) = o)),  [)Ip) € Hy ® He. (5.16)

For an input density operator
. I
p = ,zk: ke 5@ pik (5.17)

onH; ® Hy ® H;, we see that

k)t t kt
WotmpW my = Z|J>(kl® U((J m))®U(J) JkUT( )

m

where j,k = 0,1. The operatioMy«,m generally entangles the ancilla and the
rest of the system.

The entanglement is broken by the use of the following randomization pro-
cess. We perforrmiterations of unitary operatlo‘mgzt/m) = (@0 @ )Wym(l ®
ol ® 1) on H, ® Hy ® H;, whereo, is uniformly and randomly chosen for each
iteration from a set oD operationgo, } such that

1 .
Bzarua; =TrU -1, (5.18)
r

for all unitary operatoré) on #;. If the system is composed bycpqubits, we
can use the set of general Pauli matrimé‘,é,)} in Eg. (4.55) as an exampleWe
denote the CPTP map of the randomizéﬁ‘/m) by

. (r) vy
Vuwm(p) = ZV tmPNVum)

and define the reduced CPTP nfapm of Vyym on H. ® H; for the reduced
statepc; = Try p by

TuwmPc) = Tre[ Vuem (e ® 1/d)]. (5.19)

The randomization process transforms all component${giho states propor-
tional to the completely mixed state, herikg/m(oc®1/d)) = 'ygm o) @1/d.
Random operations are used in a similar spirit when decoupling a system from
an interacting environmeras the dynamical decoupling [25)ut in this case
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the random operations are applied on the system. See Fig. 5.2(b) for a quantum
circuit representation of the algorithm.
Let us analyze the accuracy of the approximation. mdterations of the

mapsly(ym andVyem (denoted by, - and V.., respectively), we have
T0m ©0c) = T V0m e ® 1 /d)]. (5.20)

We define a controlled unitary “up to phases” by
CO = [J0X0| ® | + €%|1)(1| ® U], (5.21)

wheregy is a real function ofJ. LetCS’“) be the CPTP map representing unitary
operationC%".

We evaluate the éfierence between the two CPTP mﬂﬁ%“‘”m’) andI'J )
in terms of the diamond norm. Both maps act on the Hilbert sgéce H; =
C?®CY. Thus we search rank-1 projectors gi.&7H;)%? to calculate the diamond
norm. (According to Lemma. 1. Any vector|¥) in (H.@%H,)®? can be represented
by [¥) = a|0)y) + BI1)|¢) where{|0),|1)} is the computational basis of the first
control qubit systent,, by taking appropriate statés), |¢) € H. ® H; anda,
satisfying|al® + |81 = 1. Any rank-1 operator or{;. ® #;)® can be written by
[Pl

As a partitioned matrix, the projector is represented by

@l )yl aB )l
a'Bleywl 18P lgXel)

The left upper partition corresponds to 0| element of the first system rep-
resented by, = C2. The right upper partition is th€)(1| element, and so as the
others. The projectd¥)(¥| is transformed by the mamsf,”(t”’)““’”‘)) andFS(t /m ON
H. ® H; as

YW = ( (5.22)

lal® [ )y aﬁ*e-‘mwvmwwxmu(t)*)

@ peMuemU (1)|¢) (] BPU®)Ig)elU (1)
(5.23)

(CETZSU(Vm)) ® I(Hc®(/’(t) [|T><\P|] = (

and

(Mymy © Gy ) [1¥CI] =

( ) Tr{ U] e wxelu @)
Tr| U] e BU®)le)w] IBI” U)X g1U (1)

Here,U(t) acts on the first,. Note that

). (5.24)

m .
o[ ()] = @ume (5.25)
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Xm
contr LO—Ck control
. ill
alr}glla —_ WU(Um) ar;;:(lja O — WU(t/m) — Oi |-
system U (t/m ) system
(a) (b)

Figure 5.2: (a) Quantum circuit representation of the §8tg,m). (b) Quantum
circuit representation of the algorithm implementing the approxim@tggl The

two operationsr; in a sequence are identical, but are chosen randomly for each
iteration.

where we shall assung™/™ = 1 for simplicity. (The final consequence is the
same for general cases.) Then the norm we are interested in is calculated to be

i T
C(mﬂuu/m)) .. = max1- (auum) )H af* |y ){glU )
H u(t) u(/ )Ho |w)’|l;]5) (t/m) ﬁU|¢><W| 0 tr
) . |w><w| 0
= (1 (aU(t/m)) )m%);laﬂl |' U|¢><¢|UT) N

2(1- (aU(t/m))m) rggXlaﬁl
1- (aU(t/m))m~

We refer to &y;m)™ as thecoherence factoand represents the quality of the
approximation. We also define a phase fagiqf/m € [Emat/m, Emint/m] so that

Tr{u(t/m)]
Tr{ut/m]

e leuum —

(5.26)
Let Amax := Emax — Emin b€ the maximum dierence between the maximum en-
ergy eigenvalues and the minimum energy eigenvalues /g, is determined

uniquely, wheneveh it < 7/2. The following value is also uniquely determined

Eit — Mpy/m € [-m, 7. (5.27)

For Amat < /2, the quantityay ,m satisfies

A 2t2
au(ym = VCOSAmat/m) > 1 - %. (5.28)
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The total relative phase facter™®'™ which is obtained byn times the
relative phase factor for each iteratien™ ™ converges taqE)t atm — oo,
where(E) is the average of the all energy eigenvalueslphamely,

(E) = Zdi%, d = Tr[P]. (5.29)

(We have omitted the degeneracy parameter of the energy eigenbasis for simplic-
ity). This statement is shown by the following way. Sirgegm = 1+ O(1/n¥),
the coherence factor can be sorted by the orden a$

g/ (1 - iTro[l:] Ly o(%))m. (5.30)

Since TrH] /d = (E), we can conclude that

m
o miet/m) (1_iTr[H]t) +O(%)

dm

e Bt 4 O(l)
m

5.4 Applying universal control to phase estimation

In this section, we show the derivation of the probabil@y (2 fy|6;, U (t/m))
of the phase estimation algorithm using universal controllizatiey(2x fy|6)) is
given as the special case Q(27fy|6;, U(t/m)). A spectral decomposition of
U(t) = exp(iHt) is given by

UM = > e™™Py, Po= ) IEED. (5.31)

keY A€Zy

Definedy € [0, 27) so that
Ok = —Ekt + 27TV, yEZ. (532)

Let us replace each .
mation algorithm.

To estimate the phase in tinedigits precessions2fy, we use a system con-
sisting of a target system; and a control system consisting Mfqubit systems
HEN. The controlled-unitary operation of?* denoted byC, . is applied on the
k-th qubit of the control system.

The initial state of the control and target system is given by

. . rnzk - .
v With the approximated mapyj ., in the phase esti-

0...0)0...0/® |66, (5.33)
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onHEN@H; wherel0...0) = |0)®---®|0) € HEN is a state in the computational
basis corresponding to a binary number .

At the first step of the algorithm, the Hadamard gate is applied to each control
qubit system.The HadamardHg, gate is a unitary operation for a single qubit
system which is defined as

1
Hgate = > (1001 + [1)¢0] + [0)¢1| — 111 . (5.34)
The state after this operation is written by

1
o >, laa.. . ay)(bib, ... byl @166 (5.35)

ap,ap,...aN
by,by.,....bn

whereay, by € {0, 1}.

At the second step, the universal controllization ma;t:Jékf, Fszk m’ is ap-
plied on thek-th control qubit and the target system for alklk < N. After this
step, the state is transformed to

1 N e
N Z 1—[(au(t/m))mzklak_bk| exp(|2k Yax — by) (6 - mSOU(t/m)))

a;,ag,...an k=1
b1,bo,....on

X |a1, ... aN><b1b2 .. bN| ® |9|><9|| (536)

At the last step, the inverse quantum Fourier transformation[36] is applied
and then the control qubits are measured in the computational basis. This is
equivalent to perform a projective measurement in the Fourier B&sjgfy|} on
HEN where

1 Lok
Ifn) = —— e 27N cic, . .. Cy). (5.37)
\/Z_N Cl,;,CN

The probability of obtainindgy by the measuremefitfy ){ fy|} on a density opera-
tor p is given by( fy|pl fn). Thus, the probability distributio@y (27 fy16;, U (t/m))
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is

On(2rfnl6;, U(t/m)) =
N

1
N Z l‘l(au(t/m))mzkl"’lk_bkI

ap,ag,...an k=1
b1.b2.....bn

X eXp(iZk_l(ak — by) (6 + Moy em) — ZﬂfN))
1 : 1 m2¥|ay—by|
=oN l—li Z(aua/m))
k=1 " ak,bk
x exp(i2a — ) (6 + Mpugm — 2fy))

1
N

(1+(aU(t/m))m2k

:lz

~
1

1

x cos X1 (6 + Mpyem) — 27rfN)).

The probability distributioriPy (27 fy|6;) corresponds to a special case&Rf(2r fy|6;, U (t/m))
whereaym = 1 andeym = 0, namely,

N

Pn(2rful6) = 2iN ﬂ (1+ cos(2 (6 - 2rfy))). (5.38)
k=1

This probability distribution is simplified in the form given by Eq. (5.3),

o (sin2V(6 - 2nfy) /2
Pn(27 fn16:) —( N sin(G — ) /2 ) . (5.39)
by using a formula
1 ) sin2'x/2\?
2_N D(l + COSZ X) = (m) s (540)
which is obtained by repeatedly using
. 2
1+ cosx = 1 (Smf) (5.41)
2\sin3
Eq. (5.41) is obtained by combining the following two formulae
X sin 2x
1+ cosx = 2 cog 5 COSX= o, (5.42)

In Fig. 5.3, we show the probability distributions for severdligtent coherent
factors. We can see that the sharpness of each distribution saturates at some
number of the control qubitd when @y«,m)™ is not equal to 1.
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(b) ay() = 0.99

(C) Ay = 0.9

Figure 5.3: Probability distributions of phase estimati@g(2r fy|6;) for 6 = 0
andgou(%) = 0 for (@) ayym = 1 (b) aygm = 0.99 (c)aywym = 0.9. The blue
lines are folN = 1, the red lines are fd¥ = 2, the yellow lines are foN = 3 and
the green lines are faY = 4.



80 Chapter 5.Phase estimation based method.: algorithm and evaluation

The probability distribution offy given an eigenvectaéy) of 6 is

Qn(2rfnl6;, U(t/m)) =
N
[ 312+ @uim)™ cos 26+ mpum — 201, (5.43)

k=1
We observe that if the coherence factor satisfies
1)
1- (uwm)™ < (5.44)

for afixeds € [0,1/2] andVYN € N, the probability distributiorQy satisfies
Qn (27 fnlbk, U (t/m)) — Pn(27 fnl6 + My m)| < € — 1 < 26. (5.45)

To satisfy Eq.(5.44), it dtices to have

m> (Amax)ztzNZN.

e (5.46)

5.5 The performance of the measurement

According to Sec. 5.2 and Sec. 5.4, the exact projective measurement of energy
for unknownH is implementable with infinite time resource. On the other hand,
the projective measurement of energy of unknorcan only be approximated
under finite time resource. An approximated projective measurement of energy
will show deviations from the ideal behaviors. The accuracy of implementation
can be measured by quantifying these deviationghe quantitie®®; andR, we
defined in Chapter 3Assume that we know a bound of the maximum energy
differenceAnaxin the following process.

Using phase estimation algorithm via universal controllizgitwa estimate
the energy eigenvalues for a givépaccording to

E(fy) = {—zan/t for fy € [0,1/2)

: (5.47)
—(2nfy - 27)/t for fy € [1/2,1)

where we take dticiently smallt satisfyingAnat < 7/2. We define the corre-
sponding measurement instruments of the phase estimation algorithga as
{ZI+,} and measurement adlpea = {Zpea E(TN), { TN}

Let Mpea denote the measurement implemented by our method based on
the phase estimation algorithm and deftde= H — (mpyem/t)l. A spectral
decomposition ofi is given by

H = Z ExPe. (5.48)
keY
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Notice thatE, = E, — Moyem/t. The distance betweeMpea and projective
measurement of energy bf in terms ofR; is

Ra(MpeaH) = max " Tr |74 (IEO(ED] (B - E(fi))>. (5.49)
k4
Note that
Tr [ 2, (IED(ERD) | = Qu(2r falfh, U (t/m)). (5.50)
In addition,
mfle(x) < m;axg(x) + m;alx|f(y) - a(y)l. (5.51)

If Amaxt < /2, we haveE, € (=x/t, 7/t), thus|Ex — E(fy)| < 27/t. Therefore,
when Eq. (5.45) holds,

2N(26)4n?

T (5.52)

Ri(MpeaH) < Rl(McU(t)lHN) +

whereMc,, denotes the measurementimplemented by using the ideal controlled
unitary operatiorCy .

We setmpy;m = O for brevity. If an ideal controlled-unitary operati@y
is available R; of the projective measurement of energy based on the phase esti-
mation algorithmMc,, is calculated according to Eq. (5.39) by

RiMeyylH) = max > P(2rfulg) (E(fu) - Ed?
1>fN>0

max > P(Zﬂ—i'\'lgk)(E(fN)t—Ekt)z. (5.53)

1> >0 t

We define an open ba#B, = B(Et/2r, v/st/2r) whose center and radius are
given byEyt/2r and +/et/2r, respectively. We rewrite Eq. (5.53) as

Ri(Mey,[H) = mkax[ Z + Z ) P(Z’T—EN'HK) (E(fu)t — Ext)?. (5.54)

fneBk  fneBk t

We bound the two terms of the right-hand side of this equation. The first term
is bounded by

P2 fyl6

Z % (E(fut-Ed)? <e Z P(2rful) < &. (5.55)
fneBk fneBk

The first inequality is derived from the definition 8f and the second inequality

is derived from the property of the probability distribution. The other term is
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bounded as
P(2r fnl6k) X 472 (sin N (6 — 2 fy) /2)°
——— (E(fn) - Bt < — . (5.56)
fék tz fék 2 \ 2Nsin(6 — fy) /2
4r? 1
< — (5.57)
f;e t2 22N sirf (6 - f) /2
2
< %L (5.58)
t2 2N sir? et
1672
< Nod’ (5.59)

where the first inequality is derived fro,t < 27 and the third from the fact
that the total number of outcomdg is 2Y. Combining these two results, we

obtain
2

l6r
Ri(Mcy,lH) < &+ N (5.60)
On the other hand®, of Mpgais calculated by
RZ(MCU(t)lH) =0, (561)

since the total unitary matrix according to this algorithm commutes with the local
Hamiltonian of the target system. For the same reason, we obtain

Ro(MpeaH) = 0. (5.62)

5.6 Evaluating the running time

We regard the running time of the algorithm as the total calling time of the Hamil-
tonian dynamics under the assumption that the quantum computer can operate in
a time scale much father than that of the Hamiltonian dynamics of the target sys-
tem.

For givenAnax ande € (0, 1], we calculate the total running tinTe i.e., the
total calling time of the Hamiltonian dynamics to obtain

Ri(MpeaH) < 3e. (5.63)

First, chooséd so thatAn.t < 7/2. Next, chooséN so that the second term of
Eg. (5.60) is equal ta, which implies that ¥ = O((Anax)?/€?). Finally, choose
maccording to Eq. (5.46) , so that the second term in Eq. (5.60) is bounded as

N 2
M@oyan® _

= (5.64)
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The total running time is given by
Tee = @V - 1) x mx n£1 (5.65)

All'in all, to achieve Eq. (5.63) requires

(Amax)?’).

(5.66)

&2

TPE=O(

Thus the running time of our method based on phase estimation and universal
controllization does not depend on the dimension of the systewhereas the
running time of the tomography-based method dependt tmachieve the same
performance as the projective measurement of energy.
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Conclusion

84
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The results in this thesis is summarized as follows.

1. To evaluate the performance of implemented projective measurements of
energy, we formulate two evaluation functions calfegttuation of mea-
surement valuandnon-repeatabilitywhich can evaluate how much a mea-
surement is dferent from the ideal projective measurement of an observ-
able. The fluctuation of measurement value is defined as the mean squared
error of the measurement outcome. Non-repeatability evaluates how a mea-
surement behavesttkrently from the repeatable hypothesis. We formulate
two relations between the known evaluation methods and ours. One rela-
tionship is that the fluctuation of measurement value and non-repeatability
give an upper bound of the Monge distance between two measurements.
The other is, when the fluctuation of measurement value is zero, the di-
amond norm of between measurement instruments becomes well-defined
and the value becomes the same as the non-repeatability.

2. We construct an implementation method of projective measurement of en-
ergy via a linear estimation scheme of a unitary operation (tomography
based method) which is suggested in the paper of Aharanov et. al. (2002).
We first formulate the linear estimation scheme of unitary evolution. We
analyze #iciency of this method on the assumption that there is an ap-
propriate converter which deforms a given operator into a regular,normal
matrix while leaving the statistical property of each element the same as
the original operator. We calculate afiscient time to guarantee the fluc-
tuation of measurement value below some small valuéNVe find that
the tomography based method takes the time proportior@{dt /<),
whered is the dimension of the target system akg.y is the diference
between the largest energy eigenvalue and the smallest energy eigenvalue.
We also calculate the non-repeatability for the tomography based method.
We found that there is a case that the non-repeatability of the tomography
based method cannot converge to zero even in the limit of infinite measure-
ment time.

3. We construct a new quantum randomized algorithm, universal controlliza-
tion which approximately achieves the controlled Hamiltonian dynamics
avoiding the impossibility of exact implementation. In our new algorithm,
the Hamilton dynamics is divided into a sequence of short time segments
and randomization processes are inserted between sequences. The random-
ized dynamics decouples emerging entanglement between the target system
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and the quantum computer which has the main obstacle for controllization
of the unknown Hamiltonian.

4. We present a phase estimation based method, which utilizes the Hamil-
tonian dynamics of the system as a resource for the quantum algorithm,
and construct the projective measurement of energy on the system with-
out identifying all parameters of the Hamiltonian. The phase estimation
based method is implemented via the universal controllizaiton scheme.
We calculate a gticient time to guarantee the fluctuation of measurement
value below some small value We find that the phase estimation based
method takes time proportional @A3./£%). We also calculate the non-
repeatability and found that the non-repeatability of the phase estimation
based method is always zero for any amount of measurement time con-

sumed.

From theses results, we conclude the following properties about the accuracy
and dficiency for performing projective measurement of energy. When the fluc-
tuation of measurement value is smaller ti@?2_,/d*), the tomography based
method is more féicient than the phase estimation based method. However, the
dimension of a physical system grows exponentially with the system size given
by the number of constituent particles wheregas, grows only linearly when
we assume nearest neighbor interactions between particles, which is frequently
encountered in physics. On non-repeatability, our phase estimation based method
shows the same performance as the ideal projective measurement of energy, nev-
ertheless the tomogaraphy-based scheme can not grantee the small amount of the
value. Therefore, as for the fluctuation of measurement value, our phase estima-
tion based method shows better performance than the tomography based method
when the system size is ffigiently large. The projective measurement of en-
ergy expected to be useful an applications for metrology breaking the standard
guantum limit (quantum non-demolition measurement) and for the experimental
confirmation of the fluctuation theorems in non-equilibrium quantum systems.
For metlorgy, larger size systems have higher sensitivity to detect small deviation
caused by an extremal source, e.g. the gravity wave. The experimental confirma-
tion of fluctuation theorems on large quantum systems is also important to test
whether these theories are the origin of the thermodynamics or not. The study in
this thesis suggests that the straight-forward method (tomography based method)
is inefficient for scaling the system size suitable for these applications,féars o
another #icient quantum algorithm.

In the field quantum information the theorysaiper-mapwhat types of quan-
tum operations become possible by combine given unitary operations and quan-
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tum operations independent of the unitary operations have been interested in re-
cent years. The study of seeking computational power using a root of a given
unitary gate has been also actively studied asfthetional query problemn

these days. These problems correspond to the case that we can utilize a Hamil-
tonian dynamics of a system, which is a standard condition in quantum physics.
Thus the many these developments in quantum information going to be useful
tools in physics. However we note that there are gaps in terminology and pre-
condition between two fields, and it often be obstacles for linking them. In this
thesis, we made a formulation of the measurement which can treat measurements
in both standard physics and quantum information. As the result, we utilize the
fruitful algorithm developed in quantum information for the measurement which
provides a fundamental property for understanding physics. Inversely, the idea
developed in quantum physics, dynamical decoupling, also provides a hint to es-
tavlish a super-map, controllization, approximately available which was known to
be impossible in quantum information. The more we understand the connection
between two fields, the more understanding of quantum physics or unexpectable
guantum algorithms are to be found.
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