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Abstract

According to the axioms of quantum mechanics, there exists a quantum measure-
ment corresponding to each observable. Energy is one of such observables, and
the operator of the energy is called Hamiltonian. The Hamiltonian specifies the
dynamics of closed quantum systems and it also characterizes the property of the
equilibrium state in contact with a heat bath. Therefore the energy is an essen-
tial quantity in quantum mechanics, which characterizes behavior of a quantum
system. On the other hand, since the Hamiltonian is not a local observable in
general, a concrete construction of how to apply the quantum measurement of
energy is not trivial. Thus various measurement models of energies have been
proposed, and also discussions have been made on whether the time is a resource
to be consumed to increase the precision of energy measurement in connection
with the time-energy uncertainty relationship.

Constructing a way to implement the energy measurement on an unknown
Hamiltonian system is important, since it avoids constructing a new measurement
scheme for each new quantum system. On the other hand, among measurements
of energy, the projective measurement of energy has useful properties for applica-
tions. The projective measurement is a measurement which satisfies the condition
so-calledrepeatable hypothesisthat when we measure the state immediately after
obtaining an outcome from the same measurement, we obtain the same outcome
again.

In this thesis, we consider two schemes to implement the projective mea-
surement of energy for an unknown Hamiltonian system. One is a tomography
based method, which is a construction suggested in the paper of Aharanov et.
al. (2002). The other is the phase estimation based method, which utilizes the
Hamiltonian dynamics of the system as a resource for the quantum algorithm,
and realizes the projective measurement of energy on the system without identi-
fying all parameters of the Hamiltonian. In this thesis, we assume there is a finite
dimensional quantum system (quantum computer) which is able to apply any in-
teraction between the target system and the finite dimensional system although
the interaction should not depend on the target system Hamiltonian.

To evaluate the performance of the measurements implemented by the two
schemes, we formulate two evaluation functions calledfluctuation of measure-
ment valueandnon-repeatability, which can evaluate how much a measurement
is different from the ideal projective measurement of an observable. We calculate
a sufficient time to guarantee the fluctuation of measurement value below some
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small valueε, for each of the two measurement schemes. We find that the tomog-
raphy based method takes the time proportional toO(d4∆max/ε), while the phase
estimation based method takesO(∆3

max/ε
2), whered is the dimension of the tar-

get system and∆max is the difference between the largest energy eigenvalue and
the smallest energy eigenvalue. We show that the phase estimation based method
performs better for large particle systems.
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6 Chapter 1. Introduction

According to the axioms of quantum mechanics, there exists a quantum mea-
surement corresponding to each observable. Energy is one of such observables,
and the operator of the energy is called Hamiltonian. The Hamiltonian specifies
the dynamics of closed quantum systems and it also characterizes the property
of the equilibrium state in contact with a heat bath. Therefore the energy is an
essential quantity in quantum mechanics, which characterizes behavior of a quan-
tum system. On the other hand, since the Hamiltonian is not a local observable
in general, a concrete construction of how to apply the quantum measurement of
energy is not trivial. Thus various measurement models of energies have been
proposed [1, 2, 3, 4, 5], and also discussions have been made on whether the time
is a resource to be consumed to increase the precision of energy measurement.

Among measurements of energy, the projective measurement of energy has
useful properties for applications. The projective measurement is a measurement
which satisfies the condition so-calledrepeatable hypothesis[6, 7] that when we
measure the state immediately after obtaining an outcome from the same mea-
surement, we obtain the same outcome again. Quantum non-demolition measure-
ment (QND) is an example of the application of the projective measurement [8].
One type of QND is a sequence of projective measurement of energy on the same
system, which is considered to beyond the standard quantum limit that experi-
mental confirmation of the gravity-wave detection faces. It will return the same
outcome even when the measurements are separated by arbitrarily long intervals,
as long as no external factor disturbs the system throughout the sequence. It
makes the projective measurement of energy ideal for high-precision quantum
metrology. Another application of the projective measurement of energy is for
the experimental confirmation of the fluctuation theorem [9, 10, 11], which re-
lates the probability of microscopic energy transition to macroscopic properties
of energy, heat work in of the thermodynamics.

Most of the previous proposals for implementing the energy measurement
on quantum systems work only when the Hamiltonians of quantum systems are
known. Constructing a method to implement the energy measurement on un-
known Hamiltonian systems is useful, since it can be performed on quantum
systems by a fixed procedure which is independent from the Hamiltonian. The
energy measurement on an unknown Hamiltonian system was once considered
in [12], but still substantial progress is required for efficient implementation. In
this thesis, we construct schemes to implement the projective measurement of
energy on finite dimensional quantum systems with unknown Hamiltonians and
analyze their running time required to guarantee a certain level of performance
of energy measurement. We investigate how the running time depends on the
dimension of the system. The Hamiltonian of the system is unknown but we only
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require the difference between the minimum and the maximum eigenvalues of
the system Hamiltonian is to be bounded and given by a known constant. Even
if we consider the case that the bound is known, the number of parameters for
identifying Hamiltonian is not reduced and implement the energy measurement
is still non-trivial.

In this thesis, we consider two schemes to implement the projective mea-
surement of energy for an unknown Hamiltonian system. One is a tomography-
based method, which is a construction suggested in the paper of Aharanov et. al.
(2002) [12, 13]. The other is the phase estimation based method, which utilizes
the Hamiltonian dynamics of the system as a resource for the quantum algorithm,
and realizes the projective measurement of energy on the system without iden-
tifying all parameters of the Hamiltonian. In this thesis, we assume there is a
finite dimensional quantum system (quantum computer) which is able to apply
any interaction between the target system and the finite dimensional system al-
though the interaction should not depend on the target system Hamiltonian. The
quantum computer works in enough short duration to ignore the dynamics caused
by the self-Hamiltonian of the target system. Thus the total time of the measure-
ment is evaluated by the sum of the idle times of the quantum computer, which
causes a required time evolution on the target system before the next operation.
In quantum information,query complexity[14] is the time cost determined by the
number of use of an unknown unitary gate. For example, the cost of Grover’s
database search algorithm [15] is analyzed in terms of query complexity. Espe-
cially when the gate is given by the Hamiltonian dynamics, the time cost is called
Hamiltonian query[16].

In the tomography-based method, we construct a linear estimation scheme
of the unitary operation, and we takes the logarithm for the estimated operation
to identify the Hamiltonian. However, the probability to return the result which
has no physical counterpart is known to be a disadvantage of the linear estima-
tion [17]. It is also the case with our estimator. The estimated operator can be
a general complex matrix, on which the logarithm operation is not well-defined.
We analyze this method on the assumption that there is an appropriate converter
which deforms a given operator into a regular, normal matrix while leaving the
statistical property of each element the same as the original operator.

In the phase estimation based method, our key contribution is to make Ki-
taev’s phase estimation algorithm [18], which is used in Shor’s factorization al-
gorithm [19], applicable for our situation by presenting a new quantum algo-
rithm called universal controllization. Kitaev’s phase estimation algorithm had
been shown to implement the projective measurement of energy in the asymp-
totic limit [20, 21]. To perform this algorithm, the Hamiltonian dynamics of the
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target system has to be coherently controlled by the state of a memory qubit (con-
trol qubit). This means that if the state of a memory qubit is|0⟩, the dynamics
of the system is static, and if the state of the memory is|1⟩, the dynamics of the
system is applied as usual, and if the state is in the superposition of|0⟩ and |1⟩,
the superposition of the two is realized. There were attempts [22, 23] to obtain
the controlled dynamics for an unknown Hamilton dynamics; however there is
a proof that the exact controllization is impossible in general [24]. (The meth-
ods of controllizaiton presented by [22, 23] has turned out to be not applicable
to completely unknown Hamiltonian dynamics). In this thesis, we construct a
scheme of universal controllization which approximately realizes the controlled
Hamiltonian dynamics, there by avoiding the impossibility of exact implementa-
tion. In our new algorithm, the Hamilton dynamics is divided into a short time
sequence and randomization processes are inserted between sequences. The re-
sulting dynamics cancels emerging entanglement between the target system and
the quantum computer which has the main obstacle for controllization of the un-
known Hamiltonian.

To evaluate the performance of the measurements implemented by the two
schemes, we formulate two evaluation functions calledfluctuation of measure-
ment valueandnon-repeatability, which can evaluate how much a measurement
is different from the ideal projective measurement of an observable. Fluctua-
tion of measurement value is defined as the mean squared error of the measure-
ment outcome. non-repeatability evaluates how a measurement behaves differ-
ently from the repeatable hypothesis. These two are defined in a similar spirit as
the error and the disturbance defined by Ozawa [26]. There are also two known
evaluation methods of the distance between measurements, namelyMonge dis-
tance[27, 30] for two probability distributions anddiamond norm[33, 34] for
two instruments (probabilistic maps) associated with the state changes for each
outcome. In these two evaluation methods, measurement on not only eigenstates
but also all possible states should be taken into account to evaluate the perfor-
mance of the measurement. This arbitrariness of the states makes these methods
very hard to calculate. The Monge distance includes the maximization over Lip-
schitz functions which is hard to calculate, and the diamond norm can not be
well-defined in our situation. In this thesis, we formulate two relations between
the known evaluation methods and ours. One relationship is that the fluctuation
of measurement value and non-repeatability give an upper bound of the Monge
distance. The other is, when the fluctuation of measurement value is zero, the
diamond norm becomes well-defined and the value becomes the same as the non-
repreatability.

We calculate a sufficient time to guarantee the fluctuation of measurement
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value below some small valueε, for each of the two measurement schemes. We
find that the tomography-based method takes the time proportional toO(d4∆max/ε),
while the phase estimation based method takesO(∆3

max/ε
2), whered is the di-

mension of the target system and∆max is the difference between the largest en-
ergy eigenvalue and the smallest energy eigenvalue. It is clarified that when the
fluctuation of measurement value is smaller than∆2

max/d
4, the tomography-based

method is better than the phase estimation based method. However, the dimen-
sion of a physical system grows exponentially with system size given by the num-
ber of constituent particles whereas∆max grows only linearly when we assume a
nearest-neighbor interaction between particles, which is frequently encountered
in physics. Therefore, as for the fluctuation of measurement value, phase estima-
tion based method shows better performance when the system size is sufficiently
large. We also calculate the non-repeatability for the case of tomography-based
method and the the phase estimation algorithm based method. We have found
the non-repeatability of the tomography-based method can not converge to zero
in the limit of infinite measurement time, while that of the method using phase
estimation algorithm is always zero for any amount of time consumed.
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2.1 Introduction

In this chapter, we present a formulation of quantum mechanics used in quantum
information theory. In Sec. 2.2, we give mathematical preliminaries. In Sec. 2.3,
we present axioms of the theory of quantum mechanics. In Sec. 2.4 we present
definitions and notations of terminologies of quantum measurement used in this
thesis.

2.2 Mathematical Preliminary

A Hilbert space is a vector space associated with a distance in which all Cauchy
sequences have a limit point (completeness). Concepts in quantum mechanics are
defined on a Hilbert space. In this thesis, we only consider the Hilbert spaces of
finite dimensions. In the following, we first set notations of general terms in the
linear algebra used in the thesis. Second, we give definitions for mathematical
terms to formulate quantum mechanics for mixed states.

Notations on finite dimensional Hilbert spaces

Notation 1. We call a finite dimensional complex vector spaceCd as a Hilbert
space, and we represent it by a curly alphabetH . We represent the inner product
between two vectors|ψ⟩, |ϕ⟩ ∈ H as⟨ϕ|ψ⟩, and the norm of a vector|ψ⟩ as|||ψ⟩|| =√
⟨ψ|ψ⟩.

Notation 2. We call a linear operator onH simply as an operator.B(H) denotes
the set of operators onH . We represent the identity operator onH as I ∈ B(H).

Notation 3. For a diagonalizable (normal) operator A∈ B(H), we represent a
projection operators corresponding to the eigenspace of the i-th eigenvalue ai as
PA

i . Thus the operator A is written by

A =
∑

i

aiP
A
i . (2.1)

Notation 4. We represent the tensor product of two vectors as|ψ⟩⊗|ϕ⟩ for vectors
|ψ⟩ ∈ H and |ϕ⟩ ∈ H ′ and also as|ψ⟩|ϕ⟩ ∈ H ⊗H ′ for short.

Definitions on finite dimensional Hilbert spaces

Definition 1. An Hermitian operator whose eigenvalues are non-negative is called
a positive matrix. For any Hermite operator A∈ B(H), A ≥ 0 means the Hermi-
tian operator A is a positive matrix.
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Definition 2. Whenρ ∈ B(H) satisfies

ρ ≥ 0, Tr
[
ρ
]
= 1, (2.2)

it is called as a density operator (matrix) onH . D(H) denotes the set of density
operators.

Definition 3. For |ψ⟩, |ϕ⟩ ∈ H , an operator|ξ⟩⟨ϕ| ∈ B(H) is defined by,

(|ψ⟩⟨ϕ|) |ξ⟩ := ⟨ϕ|ξ⟩ · |ψ⟩. (2.3)

Definition 4. For A ∈ B(H ⊗H ′) such that

A :=
∑
i, j

|ei⟩⟨ej | ⊗ Ai j , |ei⟩ ∈ H , Ai j ∈ B(H ′), (2.4)

we define a linear mapTrH ′ [∗] : B(H⊗H ′)→ B(H), which is called the partial
trace of A overH ′ as

TrH ′ [A] :=
∑
i, j

Tr
[
Ai j

]
|ei⟩⟨ej |. (2.5)

Definition 5. For any Hermite operator A onH and real function f: R → R,
we define the Hermite operator f(A) onH by

f (A) =
∑

i

f (ai)P
A
i . (2.6)

Definition 6. We define the trace-norm of an operator A∈ B(H) as

||A||tr := Tr
[√

AA†
]
. (2.7)

Definition 7. A linear functionA : B(H) → B(H) is called a superoperator
on the Hilbert spaceH . We represent the identity superoperator onH as id and
also asidH to specify the Hilbert space. We represent superoperators by curly
alphabets or Greek alphabets distinguishing them from operators onH .

Definition 8. We define the tensor product of two superoperatorsΓ onH andΛ
onH ′ as

(Γ ⊗ Λ)A :=
∑
i, j

Γ(|ei⟩⟨ej |) ⊗ Λ(Ai j ), (2.8)

where A∈ B(H ⊗H ′) is defined by

A :=
∑
i, j

|ei⟩⟨ej | ⊗ Ai j , |ei⟩ ∈ H , Ai j ∈ B(H ′). (2.9)
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Definition 9. A superoperatorΓ onH is a completely positive (CP) map if and
only if

A ≥ 0⇒ Γ ⊗ idH ′ (A) ≥ 0, (2.10)

is satisfied for all Hilbert spacesH ′ and Hermite operators A onH ⊗H ′.

Definition 10. A superoperatorΓ onH is a completely positive trace preserving
(CPTP) map if and only if

A ≥ 0 ⇒ Γ ⊗ idH ′ (A) ≥ 0, (2.11)

Tr [A] = Tr [Γ (A)] , (2.12)

are satisfied for all Hilbert spacesH ′ and operators A∈ B(H ⊗H ′).

As the last part of this subsection, we introduce the following fact [36].

Fact 1. The partial trace and a tensor product of superoperators are defined
independent of the chosen basis set.

2.3 Formalisms of quantum mechanics

We summarize two formalisms of quantum mechanics. One is the observable
formalism for pure states introduced by von Neumann [6], and the other is the
instrument formalism for mixed states widely used in quantum information. We
present both formalisms based on the axioms of quantum mechanics for pure and
mixed state. We will combine these two formalisms to develop an instrument
formalism of measurement of observables in the next section.

The observable formalism for pure states

Axiom 1. Any quantum system corresponds to a Hilbert spaceH . A state of a
system is characterized by a unit vector|ψ⟩ ∈ H .

Axiom 2. Any observable corresponds to an Hermitian operator A∈ B(H).
When an observable A is measured on a state|ψ⟩, we obtain one of the eigenval-
ues of A as an outcome. The probability pi of obtaining the eigenvalue ai of A is
given by

pi = ⟨ψ|PA
i |ψ⟩, (2.13)

and the post-measurement state|ψi⟩ after obtaining an eigenvalue ai becomes

|ψi⟩ =
PA

i |ψ⟩∣∣∣∣∣∣PA
i |ψ⟩

∣∣∣∣∣∣ . (2.14)
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Axiom 3. For any quantum system represented by a Hilbert spaceH , there is an
Hermite operator H∈ B(H) which is called the Hamiltonian of a system, such
that the state|ψ⟩ ∈ H after time t is described as

|ψ(t)⟩ = e−iHt |ψ⟩, (2.15)

when the system is closed.

Axiom 4. For two different quantum systems represented byH andH ′, the total
system is characterized by the Hilbert spaceH ⊗H ′.

The instrument formalism for mixed states 　

In a standard textbook of quantum information theory [36], measurement out-
comes are introduced as a list ofoutcomes(indices). This is because what we
obtain by a measurement is not only a real-valued outcome but astochastic event
in general. For example, by a measurement inserting a polarizing plate into the
path of a photon, one of the following two mutually exclusive events occurs, one
event is that the photon is absorbed into the plate, and the other is that the pho-
ton passes through the plate. There is no real such as eigenvalues of observables
obtained from this measurement, but assigning number 0 to the former event and
1 to the latter, we can distinguish each event by eachindex. In accordance with
this generalized idea of quantum measurement, we describe outcomes of a mea-
surement by a list of indices distinguishing stochastic events.

Axiom 5. Any quantum system corresponds to a Hilbert spaceH . A state in a
system is characterized by a density operatorρ ∈ D(H). An ensemble of states
that where each stateρi ∈ D(H) appears in probability pi is characterized as a
state

ρ =
∑

i

piρi . (2.16)

Axiom 6. A set of CP mapsI = {Ii |i ∈ X} on H is called a measurement
instrument if and only if the superoperator

ΛI =
∑
i∈X
Ii (2.17)

becomes a CPTP map. Any measurement process corresponds to a measurement
instrument (or an instrument for short) onH . Each stochastic event of the mea-
surement is represented as one of indices in X. WhenI is measured on a state
ρ, the probability pi of obtaining the i-th event is

pi := Tr
[Iiρ

]
, (2.18)
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and the post measurement stateρi after obtaining the event is

ρi =
Iiρ

Tr
[Iiρ

] . (2.19)

Axiom 7. For any quantum system, there is an Hermite operator H∈ B(H)
which is called the Hamiltonian, for an initial stateρ ∈ D(H), the state after
duration time t is described by

ρ(t) = e−iHtρeiHt . (2.20)

Energy is an observable onH and it corresponds to the Hamiltonian of the sys-
tem.

Axiom 8. For two different systemsH andH ′, the total system is characterized
by the Hilbert spaceH ⊗ H ′. For a stateρtot ∈ D(H ⊗ H ′) on the total system
H ⊗H ′, the state of the subsystemH denoted is given by

ρ = TrH ′
[
ρtot

]
. (2.21)

We callρ as the reduced density operator (matrix) ofρtot onH .

A state represented by|ψ⟩ ∈ H corresponds to the rank-1 projection operator
|ψ⟩⟨ψ| ∈ D(H) in the formalism for mixed state. States represented by rank-
1 projective operators are called pure states. Other density operators inH are
called mixed states.

Note that the CPTP mapΛI in Axiom 6 gives an averaged post-measurement
state of the measurementI onρ, since

ΛIρ =
∑

i

piρi . (2.22)

It should be noted that the termmeasurementin the instrument formalism repre-
sents a wider scope of measurement than the one in the pure state formalism. An
instrument including only one CP(TP) map (only one event happening indepen-
dently of a given state) is also called a measurement, nevertheless no information
of a stateρ is extracted. Even if there is no observer, when a state changeρ→ Λiρ

characterized by a CPTP mapΛi with a probabilitypi, we could describe this pro-
cess as a measurement instrumentI = {piΛi |i ∈ X}. That is, any stochastic state
change obtaining from non-closedness of a quantum system is characterized by
an instrument.
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2.4 Measurement in quantum mechanics

In the instrument formalism, measurements are not necessary to correspond to
Hermite operators. Moreover, measurement in the instrument formalism does not
give real-valued outcomes, but just indices of events. In this thesis, we construct
a quantum measurement described in the instrument formalism to simulate the
measurement of an observable, energy. To do this, we need to associate a real-
value outcome to each event of an instrument. Thus we formulate the following
definition of measurements.

Definition 11. We define a real valued function x: X → R which associates
the i-th event to a real number xi. We call x as an measurement value. We call
the combination of measurement instrument and a measurement outcome as a
measurement value, and denote it asM = {I, x,X}.

The instrument of a measurement corresponds to the substantial measurement
procedure, but it does not provide the correspondence between the index of the
event i and the real valued measurement valuexi. The function,x is the part
of bridging the index and the real valued measurement value. For example, in
Stern-Gerlach’s experiment, applying the magnetic field on a spin particle and
the detection of the position of the particle correspond to the measurement in-
strument. Finding out the spin particle in a position (upper half/lower half) is an
event of this measurement. We calculate the spin from the position of the particle;
this process is described by the function of measurement value.

According to this definition of measurement, we also formulate probability
measure of outcomes.

Definition 12. For a measurementM = {I, x,X}, we define a mapµM from a
density matrixρ to probability measure

µMρ (B) =
∑

i∈a−1(B)

Tr
[Iiρ

]
, (2.23)

where B⊂ R.

Note that this measure does not reflect the property of the state change by a
measurement; thus the map fromM to µMρ is not an injection.

Definition 13. For any real function f: R → R, we define the expectation value
of f under the probability measureµ as

⟨ f ⟩µ :=
∫

µρ(dx) f (x). (2.24)
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We also define the following superoperator on the Hilbert spaceH

I( f ) :=
∑

i

f (xi)Ii . (2.25)

We define the expectation value of f inµMρ as

⟨ f ⟩µMρ := Tr
[I( f )ρ

]
. (2.26)

By using these definitions, we can represent the measurements correspond-
ing instrument formalism of observables for mixed states. We call this type of
measurements as the projective measurement.

Definition 14. Consider that a Hilbert spaceH is composed by mutually orthog-
onal subspacesHi asH =

⊕
i∈XHi. By using a projector Pi onto the subspace

Hi, we define the following projective superoperatorPi ∈ B(H) as

Piρ = PiρPi . (2.27)

We callP = {Pi |i ∈ X} as projective measurement instruments. We also call
{P,a,X} as the projective measurement. For each projective measurement, we
can define a unique Hermitian operator A=

∑
i aiPi an observable. We denote

MA as {P,a,X} andµA
ρ as the probability measure associated to this measure-

ment. The expecation value of the observable A in a quantum stateρ is given
by

⟨A⟩ρ = ⟨1⟩µA
ρ
= Tr

[
Aρ

]
. (2.28)

If the observable of a projective measurement is the HamiltonianH of the
quantum system, the measurement is called projective measurement of energy.
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3.1 Introduction

Apart from von Neumann’s original axiom of quantum mechanics [6] (the mea-
surement in observable formalism for pure state), today the wordmeasurement
refers to different operations depending on the field of physics. Each field of
quantum physics has developed its own notation of measurement. For condensed
matter physicists or the others interested in macroscopic behaviors in quantum
systems, the expectation value⟨ψ|A|ψ⟩ is the quantities of interest on measure-
ment. On the other hand, for quantum information scientists or other physicists
who are interested in manipulation of microscopic quantum states, the proba-
bilities of possible events and state changes associated with them are the most
interesting properties on measurement, since they apply these properties for com-
putation and readout. For them, the measurement values are only identifiers for
discriminating events; then each of them is described just as an indexi instead of
the real numberai. By these differences on what they required for measurements,
various evaluations of the performance of a measurement has been proposed be-
fore.

Our goal is to formulate a method of evaluating how a measurement is close
to (far from) an ideal projective measurement. In this chapter, we first intro-
duce previously known two evaluations of the performance of a measurement
in Sec. 3.2. One is the Monge distance, the distance between two probability
distributions. The other is the diamond norm, the distance between two measure-
ment instruments. Unfortunately, these two evaluations are not applicable for our
goal. Thus, we introduce two new evaluation methods,fluctuation of measure-
ment valueandnon-repeatabilityin Sec. 3.3. In this same section, we formulate
two relations between the known evaluation methods and ours. One relationship
is that the fluctuation of measurement value and non-repeatability give an upper
bound of the Monge distance. The other is, when the fluctuation of measurement
value is zero, the diamond norm becomes well-defined and the value becomes the
same as the non-repeatability.

3.2 Previously known evaluation of performance

3.2.1 Evaluation as a probability distribution; Monge distance

The Monge distance is originally proposed in the optimal transport problem of
soil redistribution problem in a construction site [27, 28]. The essence of this
problem is captured in the following way. There is an amount of soil piled in
a shape on the ground and we want to redistribute the soil the soil piled in the
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different shape while preserving the total amount of the soil. What is the optimal
way to transport when the cost of the transport is given by the total migration
length of all the particles of the soil. We represent the distributions of the soil be-
fore and after the transportation by probability measures by taking normalization
for the distributions. Consider a distribution of the soil on the ground given by a
probability measureµ on an Euclidian spaceRn, and transfer the soil atx ∈ Rn to
y ∈ Rn. The functionΦ(x) := y representing a way of transportation must satisfy
thatν(B) := µ(Φ−1(B)), whereν is the distribution of the soil after the transporta-
tion. The costc(Φ) to be minimized in the optimal transport problem is given
as

c(Φ) =
∫
Rn

dµ(x) ||x− Φ(x)|| , (3.1)

where||·|| is the Euclidean norm. A major progress on solving the optimal trans-
port problem was made by Kantorovich in 1940’s. On the way for solving another
optimization problem, it was found that the optimal transport problem is equiv-
alent to a dual problem [29, 28] to find a functionf ∈ L which maximize the
following valueC( f )

C( f ) =
∣∣∣⟨ f ⟩µ − ⟨ f ⟩ν∣∣∣ , ⟨ f ⟩µ = ∫

Rn
dµ(x) f (x), ⟨ f ⟩ν =

∫
Rn

dν(x) f (x), (3.2)

where

L =
{
f : R→ R

∣∣∣ | f (x) − f (y)| ≤ ||x− y||
}
. (3.3)

The supremum ofC( f ) is equal to the infimum ofc(Φ). This relationship is
known asMonge-Kantorovich duality. In this thesis we define the distance be-
tween two probability measures as the supremum value ofC( f ).

Definition 15. Monge distance||·||m between two measuresµ, ν is defined as

||µ − ν||m := sup
f∈L

∣∣∣⟨ f ⟩µ − ⟨ f ⟩ν∣∣∣ . (3.4)

where

L :=
{
f : R→ R

∣∣∣ | f (x) − f (y)| ≤ ||x− y|| . (3.5)

We call f ∈ L as a Lipschitz function.

In the study of quantum physics, the Monge distance has been used for eval-
uating the distance between two measurements. In a study of an uncertainty re-
lationship [30], this distance is regarded as an error of a measurement simulating
an ideal measurement of an observable.
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Definition 16. We define the Monge distance between two measurementsM =
{I,a,X} andM′ = {I′,a′,X′} on a Hilbert spaceH as

||M −M′||m := sup
ρ∈D(H)

∣∣∣∣∣∣µMρ − µM′ρ

∣∣∣∣∣∣
m
, (3.6)

Other methods for evaluating an error of a measurement from the ideal mea-
surement, for example the one defined by Arthurs and Goodman [31], focus on
the error appearing in the expectation values of an observable. They evaluate how
the measurement values are different from the expectation value of an observable.
In this type of method, error can be small when the measurement values are close
to the expectation value although the probability distribution of the measurement
values are totally different. In contrast, the Monge distance evaluates the distance
of the measurement as the distance between probability distributions.

The Monge distance between a projective measurementMA of an observable
A and its simulationM gives the upper bound of the difference in expectation
values whose measurement value is deformed by a Lipschitz functionf

∀ f ∈ L,∀ρ ∈ D(H),
∣∣∣∣⟨ f (A)⟩ρ − ⟨ f ⟩µMρ

∣∣∣∣ ≤ ∣∣∣∣∣∣MA −M
∣∣∣∣∣∣

m
. (3.7)

Among distances between two probability distributions, the Monge distance
is particularly suitable to evaluate the distance between two Dirac distributions
due to the following reasons. Let us define a Dirac measureµx for a real number
x ∈ Rwhich satisfiesµx(B) = 1 whenx ∈ B, whileµx(B) = 0 otherwise. Consider
there are two probability measuresµ0 andµε representing two different measure-
ments on the same state, whereε > 0. The measurement according toµ0 always
returns the measurement value 0, otherwise the one ofµε returnsε. Intuitively,
the closer the valueε is to zero, the better the performance the measurementµε
shows as a simulation ofµ0. However, some distances of measure do not behave
like this intuition. For example, consider the total variance measure for a bounded
measureµ on the real numbers defined as

|µ| (B) := sup
C∈B(B)

µ(C) − inf
C∈B(B)

µ(C), (3.8)

whereB(B) is the subset of the Borel set included inB ⊂ R. By using this
measure, we can introduce a distance between two bounded measuresµ, ν on real
numbers as

||µ − ν||1 := |µ − ν| (R), (3.9)

which corresponds to theL1 distance between two functions. Because there is
always an elementC of the Borel set which can separateε ∈ R from 0 ∈ R, for
example a radiusε open ball centered at 0, we have

||µ0 − µε||1 = 2. (3.10)
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Thusε is not taken into account for this quantity.
Since a quantum measurement in the finite dimensional Hilbert space has

a discrete probability distribution, the probability distribution of measurement
values can be decomposed into a convex combination of the Dirac measures.
For two discrete probability distributionsµ, ν, the distance evaluated by the total
variance is less than the maximum value 2 only when at least one of the common
Dirac measures is included in both of the convex decompositions ofµ and ν.
However, such a combination of two probability measures is in the zero set in the
parameter space. Therefore such a distance is not useful for our problem. The
other way of evaluation in terms of relative entropy, has the same problem. On
the other hand, since the amount of change of Lipschitz functions inε-width is
equal to or less thanε, the Monge distance betweenµ0 andµε is calculated as

||µ0 − µε||m = ε. (3.11)

The Monge distance reflects the metric of measurement values. Thus this distance
is suitable for our problem.

3.2.2 Evaluation of state change; Diamond norm

When our interest is focused on the quantum state change caused by a measure-
ment, the diamond norm [32, 33] is widely used in quantum information.

Definition 17. If there are two measurement instrumentsI = {Ii |i ∈ X} andI′ =
{I′i |i ∈ X} on a Hilbert spaceH , the distance between two sets of measurement
instruments measured by the diamond norm is given as

D⋄(I,I′) :=
∑
i∈X

∣∣∣∣∣∣I′i − Ii

∣∣∣∣∣∣⋄ , (3.12)

where||·||⋄ is the diamond norm defined for any superoperatorΛ on Hilbert space
H as

||Λ||⋄ := ||Λ ⊗ idH ||op = sup
A∈B(H⊗H)

||(Λ ⊗ idH ) A||tr
||A||tr

. (3.13)

B(H) is the set of matrices onH , and the norm||·||tr is defined as

||A||tr := Tr
[√

AA†
]
. (3.14)

This norm is often used to evaluate the difference between two CPTP maps in
quantum information. An important operational meaning of the diamond norm is
that two quantum state transformation represented by CPTP mapsΛ,Λ′ can dis-
criminated with success probability 1/2+ ||Λ − Λ′||⋄ /4 (Holmstr̈om’s theorem).
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For a superoperatorΛ on a Hilbert spaceH , its effect on a larger system
H ⊗H ′ can be larger in the operator norm than the that of onH as

||Γ||op ≤ ||Γ ⊗ idH ′ ||op . (3.15)

The diamond norm is proposed for giving the upper bound of the operator norm
over all the extended Hilbert spaces. The maximum operator norm is achieved
when the extended Hilbert space isH⊗2 [34], namely

||Γ ⊗ idΓ′ ||op ≤ ||Γ ⊗ idH ||op = ||Γ ⊗ idH ′′ ||op , (3.16)

dimH ′ ≤ dimH ≤ dimH ′′. (3.17)

Thus it is enough to consider||Γ ⊗ idH ||op to find the bound. For this reason, the
diamond norm||·||⋄ of a superoperatorS on the Hilbert spaceH can be calculated
as

||Γ||⋄ = ||Γ ⊗ idH ||op . (3.18)

The following lemma is convenient for calculating the diamond norm [34].

Lemma 1. For any Hermitian preserving superoperatorΓ on the Hilbert space
H ,

||Γ||⋄ = max
P∈P1(H⊗H)

||(Γ ⊗ idH ) P||tr , (3.19)

whereP1(H ⊗H) is a set of rank-1 projectors onH⊗2 is satisfied.

By definition, this distance is determined only for two measurements sharing
a common set of indicesX. If it is not the case, a coarse graining method is
proposed for adjusting the numbers of indices.

Definition 18. Consider there is a measurement instrumentI = {Ii |i ∈ X}. A
coarse-grained measurement instrumentĨ = {ĨXi |i ∈ Y} such that

ĨXi =
∑
k∈Xi

Ik. (3.20)

is defined for disjoint subsets Xi ⊂ X satisfying
∪

i∈Y Xi = X.

The coarse graining is not only used for reducing the number of CP-maps but
also for increasing the number by adding empty sets as the disjoint sets.

To evaluate how the state changes due to two measurementsM,M′ are close
to each other, we define the following coarse graining.
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Definition 19. Consider there are two measurementsM = {I, x,X} andM′ =
{I′, x′,X′}. For a countable disjoint cover C ofR such that

C :=

ci ⊂ R|∀i , j, ci ∩ c j = ∅,
∪

i

ci = R,

 , (3.21)

we define coarse-grained measurement instruments for C as

ĨC =
{
Ĩx−1ci |i ∈ Z

}
, Ĩ′C =

{
Ĩ′x−1ci

|i ∈ Z
}
. (3.22)

The diamond norm between these two measurement instruments is defined by

D⋄
(
ĨC, Ĩ′C

)
:=

∑
i∈Z

∣∣∣∣∣∣∣∣Ĩx−1ci − Ĩ′x−1ci

∣∣∣∣∣∣∣∣⋄ (3.23)

Note that this distance is not uniquely determined forM andM′ because it
depends on the countable disjoint coverC of R.

By using the triangular inequality, the following lemma is derived naturally.

Lemma 2. When two countable disjoint covers ofR given by

C =

ci ⊂ R|∀i , j, ci ∩ c j = ∅,
∪

i

ci = R,

 , (3.24)

and

C′ =

c′i ⊂ R|∀i , j, c′i ∩ c′j = ∅,
∪

i

ci = R,

 . (3.25)

satisfy

C ≤ C′
def⇐==⇒ ∀i, ∃ j, ci ⊂ c′j , (3.26)

then
D⋄(ĨC′ , Ĩ′C′) ≤ D⋄(ĨC, Ĩ′C). (3.27)

The semiordering between families of subsets ofR in Lemma 2 represents the
comparison on the coarse-grainedness. As a distance between two measurements
independent ofC, we introduce the following a fine-grained limit of the diamond
norm between two measurement instruments.

Definition 20. Consider there are two measurementsM = {I, x,X} andM′ =
{I′, x′,X′}. We define the fine-grained limit of the diamond norm.

D⋄(M,M′) = max
C∈C(R)

D⋄
(
ĨC, Ĩ′C

)
, (3.28)

whereC(R) is a set of countable disjoint cover ofR.
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The fine grained limit of the diamond norm is well-defined. The following
theorem guarantees the well-definedness.

Theorem 1. Consider there are two measurementsM = {I, x,X} andM′ =
{I′, x′,X′}. The fine-grained limit of the diamond norm D⋄(M,M′) exists and
the value is given by

D⋄(M,M′) =
∑

a∈Imx\Imx′

∣∣∣∣∣∣Ĩx−1a

∣∣∣∣∣∣⋄ + ∑
a∈Imx′\Imx

∣∣∣∣∣∣Ĩ′x′−1a

∣∣∣∣∣∣⋄ + ∑
a∈Imx′∩Imx

∣∣∣∣∣∣Ĩx−1a − Ĩ′x′−1a

∣∣∣∣∣∣⋄ .
(3.29)

Proof. Let us define the following countable disjoint coverC0 of R.

C0 := {{a} |a ∈ Imx∪ Imx′} ∪ {
R \ (Imx∪ Imx′

)}
. (3.30)

We also define the intersection of two countable disjoint covers ofR as

C ∩C′ =
{
ci ∩ c′j |ci ∈ C, c′j ∈ C′

}
(3.31)

By definition,C ∩C′ satisfiesC ∩C′ ≤ C.
For anyci ∈ C, one of the following two cases are satisfied for a measurement

M = {I, x,X}.

∃k ∈ X, xk ∈ ci , or x−1ci = ∅. (3.32)

In the former case

Ĩx−1ci =
∑

k∈x−1ci

Ik, (3.33)

and in the latter case

Ĩx−1ci = 0. (3.34)

Therefore we derive∣∣∣∣∣∣∣∣Ĩx−1ci − Ĩ′x′−1ci

∣∣∣∣∣∣∣∣⋄ = ∣∣∣∣∣∣∣∣Ĩx−1ci − Ĩ′x′−1ci

∣∣∣∣∣∣∣∣⋄ (
x−1ci ⊂ Imx∩ Imx′

)
,

=
∣∣∣∣∣∣Ĩx−1ci

∣∣∣∣∣∣⋄ (
x−1ci ⊂ Imx \ Imx′

)
,

=
∣∣∣∣∣∣∣∣Ĩ′x−1ci

∣∣∣∣∣∣∣∣⋄ (
x−1ci ⊂ Imx′ \ Imx

)
, ,

= 0
(
ci ∩

(
Imx∪ Imx′

)
= ∅) . (3.35)

Let us consider the countable disjoint coverC is given byC = C′ ∩C0 whereC′

is another countable disjoint cover ofR. In this case, since allci including at least
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one element of Imx∪ Imx′ must be a one-point set, Eq. (3.35) is represented by∣∣∣∣∣∣∣∣Ĩx−1ci − Ĩ′x′−1ci

∣∣∣∣∣∣∣∣⋄ = ∣∣∣∣∣∣Ĩx−1a − Ĩ′x′−1a

∣∣∣∣∣∣⋄ (
∃1a ∈ Imx∪ Imx′,a ∈ ci

)
,

=
∣∣∣∣∣∣Ĩx−1a

∣∣∣∣∣∣⋄ (
∃1a ∈ Imx \ Imx′,a ∈ ci

)
,

=
∣∣∣∣∣∣Ĩ′x−1a

∣∣∣∣∣∣⋄ (
∃1a ∈ Imx′ \ Imx,a ∈ ci

)
,

= 0
(
∀a ∈ Imx∪ Imx′,a < ci

)
. (3.36)

Thus the right hand side of Eq. (3.29) is achievable whenC = C′ ∩ C0. On
the other hand, let we define a sequence of countable disjoint coversCk ∈ C(R)
satisfying

lim
k→∞

D⋄(ĨCk − Ĩ′Ck
) = sup

C∈C(R)
D⋄(ĨC − Ĩ′C). (3.37)

Because of Lemma 2,Ck ∩ C0 is also a sequence of countable disjoint covers
approaching to the supremum. Then we have

sup
C∈C(R)

D⋄(ĨC − Ĩ′C) = lim
k→∞

D⋄(ĨCk∩C0 − Ĩ′Ck∩C0
)

=
∑

a∈Imx\Imx′

∣∣∣∣∣∣Ĩx−1a

∣∣∣∣∣∣⋄ + ∑
a∈Imx′\Imx

∣∣∣∣∣∣Ĩ′x′−1a

∣∣∣∣∣∣⋄ + ∑
a∈Imx′∩Imx

∣∣∣∣∣∣Ĩx−1a − Ĩ′x′−1a

∣∣∣∣∣∣⋄ . (3.38)

Therefore the theorem is proven. □

3.3 Performance of a measurement as the projec-
tive measurement

3.3.1 Fluctuation of the measurement value and non-repeatability

Note that neither the diamond norm nor the Monge distance take account of all
the properties of measurements. The diamond norm gives a metric among mea-
surement instruments, which is not considering measurement values required in
a measurement. If we only use the diamond norm for evaluating the distances
between measurements, we cannot avoid ambiguity originating from determin-
ing one choice from coarse-graining methods. Conversely the Monge distance is
for the measurement values, and it does not take account of state changes caused
by the measurements. Furthermore, the Monge distance is very hard to calculate
since the calculation includes maximization over Lipschitz functions.

In the followings, we formulate two new quantitiesR1 andR2, which evaluate
how different a measurement is from a projective measurement of an observable
A. These quantities are relatively easy to calculate, their meanings are intuitively
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clear and they have useful relationships with the diamond norm and Monge dis-
tance. Before introducing these two values, let us denote the following notation
of the decomposition of an observableA on a Hilbert spaceH which we use
throughout the following discussions,

A =
∑
i∈Y

XiPi , PA
i =

∑
Γ∈Zi

|aλi ⟩⟨aλi |, (3.39)

where{|aλi ⟩|i ∈ Y, λ ∈ Zi} is an orthonormal basis ofH . Y is a set of indices which
specify an eigenspace of an observableA andZi is a set of indices identifying a
basis of a degenerated eigenspace corresponding to eigenvalueai.

Definition 21. For a measurementM = {x,I,X}, we define R1 as

R1(M|A) := max
{|aλi ⟩}

i∈Y,λ∈Zi

∑
j∈X

Tr
[
I j(|aλi ⟩⟨aλi |)

]
(ai − xj)

2, (3.40)

where the maximization under{|aλi ⟩} means that the orthonormal basis of the
degenerated space is determined as it achieves the maximum value. We also
define R2 as

R2(M|A) =
n∑

i∈Y
max
{|aλi ⟩}
λ∈Zi

∣∣∣∣∣∣ΛI(|aλi ⟩⟨aλi |) − |aλi ⟩⟨aλi |∣∣∣∣∣∣tr . (3.41)

We call R1 as fluctuation of the measurement value, and R2 as non-repeatability
of a measurement.

The behaviors of projective measurement reflected toR1 andR2 are summa-
rized by the followings.1. When an eigenstate of an observable A is prepared,
the measurement value of the observable A is always identical to the eigenvalue.
2.When an eigenstate is prepared, the state after the measurement is unchanged
and stays in the same eigenstate.These two quantities are similar to the ideas of
the error and disturbance proposed to introduce Ozawa’s inequality [26].

3.3.2 Relationship between Monge distance and diamond norm

The two quantities of projectiveness we have introduced in the previous subsec-
tion is related to the diamond norm and the Monge distance through the following
two theorems.

Theorem 2. Let us define a measurementM = {x,I,X} and an observable A on
a Hilbert spaceH . We denote the set of eigenvalues of A as{Xi |i ∈ Y} and the
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projective superoperator of the eigenspace asPA
i . The projective measurement of

A is defined as

MA =
{
PA,a,Y

}
, PA =

{
PA

i |i ∈ Y
}
, PA

i ρ = PA
i ρPA

i . (3.42)

We denote disjoint subsets{Xi ⊂ X|i ∈ Y} as

Xi = x−1ai (3.43)

for every eigenvalue ai of A. We also denote X0 which includes all the indices
which are not included in any Xi, namely

X0 =
∩
i∈Y

X \ Xi . (3.44)

We define the following coarse-grained measurement instruments.

Ĩ = {ĨXi |i ∈ Y∪ {0}}, P̃A = {PA
i |i ∈ Y∪ {0}}, (3.45)

whereP0 = 0. We also define the measurement instrument and measurement
which are the extentions ofI andM into the Hilbert spaceH⊗2 by

I ⊗ idH := {Ii ⊗ idH |i ∈ X}, M⊗ idH := {x,I ⊗ idH ,X}. (3.46)

If R1(M|A) = 0, then

R2(M⊗ idH |A⊗ IH ) = D⋄(Ĩ, P̃) = D⋄(M,MA). (3.47)

In case the observable A has no degeneracy, if R1(M|A), then

R2(M|A) = D⋄(Ĩ, P̃) = D⋄(M,MA). (3.48)

As we will see in the proof below, whenR1 = 0, each measurement valuexi

of a measurementM is equal to one of the eigenvalues ofA; otherwise the prob-
ability of achieving the measurement value is zero. The distance between the
coarse-grained measurement instrumentsD⋄(Ĩ, P̃A) defined in Theorem 2 equals
the summation of each diamond distance between measurement instrumentsIXi

andPA
i , both of which represent the state changes due toM andMA after achiev-

ing an measurement valueai.
Theorem 2 concludes the following corollary.

Corollary 1. M = {x,I,X} satisfies R1(M|A) = 0 and R2(M⊗ idH |A⊗ IH ) = 0,
if and only if the coarse-grained measurementM is equivalent to the projective
measurement of an observable A as

M̃ = M̃A, (3.49)

where
M̃ = {a, Ĩ,Y∪ {0}}, M̃A = {a,P,Y∪ {0}}. (3.50)
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The other theorem is for the Monge distance. We can bound the Monge dis-
tance between two measurement from above by usingR1 andR2.

Theorem 3. There is a bound of the Monge distance between a measurementM
and a projective measurementMA which is determined by R1(M|A) and R2(M|A)
as ∣∣∣∣∣∣M−MA

∣∣∣∣∣∣
m
≤ 2

√
R1(M|A) + d∆xmax

(√
2R2(M,A) +

R2(M,A)
2

)
, (3.51)

where∆xmax is the difference between the maximum and minimum measurement
values of the measurementM.

First, we prove Theorem 2. We prove this theorem according to the following
two lemmas.

Lemma 3. A measurementM = {I, x,X} satisfies R1(M|A) = 0, if and only if

Tr
[
I j(|aλi ⟩⟨aλi |)

]
, 0⇒ x j = Xi (3.52)

is satisfied for any choice of eigenbasis
{
|aλi ⟩|i ∈ Y, λ ∈ Z

}
, where|aλi ⟩ is an eigen-

state of A of corresponding to eigenvalue ai.

Proof. By definition ofR1, if

Tr
[
I j(|aλi ⟩⟨aλi |)

]
(xj − ai)

2 = 0, (3.53)

for all i ∈ Y, λ ∈ Z, j ∈ X and the choice of eigenbasis
{
|aλi ⟩

}
, then the fluctuation

of measurement value satisfiesR1(M|A) = 0. Thus the backward implication of
Lemma 3 is satisfied. Next we prove the forward implication by its contraposi-
tion. When at least one of the Tr

[
I j(|aλi ⟩⟨aλi |)

]
(x j − ai)2 becomes nonzero, then

R1(M,A) never becomes 0. Therefore the forward implication is also proven.□

Lemma 4. If a measurementM = {I, x,X} satisfies R1(M|A) = 0, then for all
eigenstates|aλi ⟩ in the different eigenspaces of the observable A,

I j(|aλi ⟩⟨a
µ
j |) = 0. (3.54)

Proof. To prove Lemma 4, we define two density matricesρ+ andρ−

ρ+ =
(
s|aλi ⟩ + c|aµj ⟩

) (
s⟨aλi | + c∗⟨aµj |

)
, (3.55)

ρ− =
(
s|aλi ⟩ − c|aµj ⟩

) (
s⟨aλi | − c∗⟨aµj |

)
. (3.56)
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wherec ∈ C and s ∈ R. Sinceai , aj, at least one side ofai or aj is different
from xk. Without loss of generality we assumexk , aj. Because of the Lemma 3,
Ik(|aµj ⟩⟨a

µ
j |) = 0. Then

Ik(ρ+) = s2Ik(|aλi ⟩⟨aλi |) + sIk(c|aµj ⟩⟨aλi | + c∗|aλi ⟩⟨a
µ
j |), (3.57)

Ik(ρ−) = s2Ik(|aλi ⟩⟨aλi |) − sIk(c|aµj ⟩⟨a
λ
i | + c∗|aλi ⟩⟨a

µ
j |). (3.58)

Since eachIk is a CP map, both matricesIk(ρ+) andIk(ρ−) are positive matrices.
Then fors> 0, it is easy to prove that

sIk(|aλi ⟩⟨aλi |) ≥ Ik

(
c|aµj ⟩⟨a

λ
i | + c∗|aλi ⟩⟨a

µ
j |
)
≥ −sIk(|aλi ⟩⟨aλi |). (3.59)

By considering the limits→ 0+, the middle side of Eq. (3.59) must be a zero
matrix because of the pinching theorem. Therefore we obtain

Ik

(
c|aµj ⟩⟨a

λ
i | + c∗|aλi ⟩⟨a

µ
j |
)
= 0. (3.60)

Comparing the cases ofc = 1 andc = i, we conclude Eq. (3.54). □

Proof of Theorem. 2.AssumeR1(M|A) = 0. Since Lemma 3, for all indices
i ∈ Y, j ∈ X satisfyingai , xj, I j(|aλi ⟩⟨aλi |) becomes the zero matrix. Then∑

j∈X
I j(|aλi ⟩⟨aλi |) =

∑
j∈Xi

I j(|aλi ⟩⟨aλi |) = ĨXi (|aλi ⟩⟨aλi |). (3.61)

The projection superoperatorPA
i satisfies

PA
j (|aλi ⟩⟨aλi |) = δi, j |aλj ⟩⟨aλj | (3.62)

by definition. Then by using Eqs.(3.61) and (3.62)R2(M|A) for the extended
measurement is calculated as

R2(M⊗ idH |A⊗ I )

=
∑

i∈Y∪{0}
max
{|aλi ⟩},{|ψ

λ
i ⟩∑

λ∈Zi |cλi |2=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
λ,µ∈Zi

cλ∗i cµi
(
ĨXi (|aλi ⟩⟨a

µ
i |) − P

A
i (|aλi ⟩⟨a

µ
i |)

)
⊗ |ψλi ⟩⟨ψ

µ
i |
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

,

(3.63)

where
{
|ψλi ⟩

}
is a set of unit vectors onH .

According to [34], a diamond norm of a CP map is calculated by maximiza-
tion over all rank 1 density matrices instead of all the density matrices onH⊗H .
Thus ∣∣∣∣∣∣ĨXi − PA

i

∣∣∣∣∣∣⋄ = max
|Ψ⟩∈H⊗H
|||Ψ⟩||=1

∣∣∣∣∣∣(ĨXi − PA
i ) ⊗ idH (|Ψ⟩⟨Ψ|)

∣∣∣∣∣∣
tr
. (3.64)



31

A vector |Ψ⟩ in H ⊗H can be decomposed into a linear combination of vectors
which is a tensor product of two unit vectors inH by

|Ψ⟩ = cosθ
∑
λ∈Zi

cλi |aλi ⟩|ψλi ⟩ + sinθ
∑
j,i
µ∈Z j

cµj |a
µ
j ⟩|ψ

µ
j ⟩. (3.65)

By using Lemma 3, 4 and the property of the projection superoperator, we obtain

max
|Ψ⟩∈H⊗H

∣∣∣∣∣∣(ĨXi − PA
i ) ⊗ idH (|Ψ⟩⟨Ψ|)

∣∣∣∣∣∣
= max

θ∈[0,2π]
cos2 θ max

{|aλi ⟩},{|ψ
λ
i ⟩∑

λ∈Zi |cλi |2=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
λ,µ∈Zi

cλ∗i cµi (ĨXi − PA
i )(|aλi ⟩⟨a

µ
i |) ⊗ |ψ

λ
i ⟩⟨ψ

µ
i |
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

= max
{|aλi ⟩ {|ψ

λ
i ⟩}∑

λ∈Zi |cλi |2=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∑
λ,µ∈Zi

cλ∗i cµi (ĨXi − PA
i )(|aλi ⟩⟨a

µ
i |) ⊗ |ψ

λ
i ⟩⟨ψ

µ
i |
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

. (3.66)

ThenR2(M,A) can be rewritten as

R2(M⊗ idH |A⊗ I ) =
∑
i∈Y

∣∣∣∣∣∣ĨXi − PA
i

∣∣∣∣∣∣⋄ . (3.67)

For any matrix|aλk⟩⟨a
µ
l |, if i ∈ X0, Ii(|aλk⟩⟨a

µ
l |) = 0 is satisfied due to Lemma 3

and Lemma 4. Because any matrix onH ⊗ H can be represented by a linear
combination of these matrices, then

ĨX0 =
∑
i∈A0

Ii = 0. (3.68)

SinceP0 is also the zero superoperator, we conclude the main result

R2(M⊗ id|A⊗ I ) =
∑

i∈Y∪{0}

∣∣∣∣∣∣ĨXi − PA
i

∣∣∣∣∣∣⋄ = D⋄(Ĩ, P̃). (3.69)

On the other hand, when the observableA has no degeneracy degenerated,
Eq. (3.66) becomes∣∣∣∣∣∣ĨXi − PA

i

∣∣∣∣∣∣⋄ = max
|Ψ⟩∈H⊗H

∣∣∣∣∣∣(ĨXi − PA
i ) ⊗ idH (|Ψ⟩⟨Ψ|)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(ĨXi − PA
i )(|ai⟩⟨ai |) ⊗ |ψi⟩⟨ψi |

∣∣∣∣∣∣
tr

=
∣∣∣∣∣∣(ĨXi − PA

i )(|ai⟩⟨ai |)
∣∣∣∣∣∣

tr
. (3.70)

Taking the summation of the above equality overi ∈ Y, we obtain the following
equality of the degenerated case.

R2(M|A) = D⋄(Ĩ, P̃) = D⋄(M,MA). (3.71)

□
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Next, we prove Theorem 3. We prepare the following five lemmas for proving
the theorem.

Lemma 5. For a measurementM = {I, x,X}, let us define ei,λ, j by

Tr
[
Ik(|aλi ⟩⟨aλi |)

]
=

ei,λ;k

(xk − ai)2
. (3.72)

This ei,λ;k satisfies ∑
k∈X

ei,λ;k < R1(M|A), ei,λ;k > 0. (3.73)

Proof. The proof of this lemma is almost trivial. Because of the definition of
R1(M|A) ∑

k∈X
ei,λ;k =

∑
k∈X

Tr
[
Ik(|aλi ⟩⟨aλi |)

]
(ai − xk)

2

≤ max
{|aλi ⟩}

i∈Y,λ∈Zi

∑
k∈X

Tr
[
Ik(|aλi ⟩⟨aλi |)

]
(ai − xk)

2

= R1(M|A). (3.74)

□

To prove the rest of lemmas, we define a subspaceHi,λ = span{|aλi ⟩} for any
eigen state|aλi ⟩ of an observableA. We also denote the effect of a CP mapIk as

Ik

(
|aλi ⟩⟨aλi |

)
= qi,λ;k|aλi ⟩⟨aλi | + r i,λ;kσi,λ;k + ξi,λ;k. (3.75)

whereσi,λ;k is a density matrix onH⊥i,λ, qi,λ;k, r i,λ;k are positive real numbers and
ξi,λ;k is a traceless Hermite operator which can be decmoposed as

|ψi,λ;k⟩ ∈ H⊥i,λ, ξi,λ;k =
(
|aλi ⟩⟨ψi,λ;k| + |ψi,λ;k⟩⟨aλi |

)
. (3.76)

Lemma 6. For a measurementM = {I, x,X},

2
∑

k

r i,λ;k ≤ R2(M|A) (3.77)

is satisfied for all i∈ Y, λ ∈ Zi and k∈ X.

Proof. To prove this lemma, note that the trace norm satisfies monotonicity con-
dition [34] as ||ρ − σ||tr > ||Λρ − Λσ||tr for any CPTP mapΛ, whereρ andσ
are two density matrices. We define projectorsPi,λ and P⊥i,λ which is onto the
subspacesHi,λ andH⊥i,λ. We define the following CPTP mapΛi,λ as

Λi,λ(ρ) = Pi,λρPi,λ + P⊥i,λρP⊥i,λ. (3.78)
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The monotonicity of the trace norm leads to∣∣∣∣∣∣∣∣Λi,λ

(
ΛI(|aλi ⟩⟨aλi |) − |aλi ⟩⟨aλi |

)∣∣∣∣∣∣∣∣
tr
≤

∣∣∣∣∣∣ΛI(|aλi ⟩⟨aλi |) − |aλi ⟩⟨aλi |∣∣∣∣∣∣tr . (3.79)

According to the definition ofR2(M|A), the left-hand side of the above equation
is bounded byR2(M|A) as∣∣∣∣∣∣∣∣Λi,λ

(
ΛI(|aλi ⟩⟨aλi |) − |aλi ⟩⟨aλi |

)∣∣∣∣∣∣∣∣
tr
≤ R2(M|A). (3.80)

Substituting the definition ofΛI in this inequality, we obtain∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Λi,λ

∑
k

Ik(|aλi ⟩⟨aλi |) − |aλi ⟩⟨aλi |

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑k∈X

(
r i,λ;kσi,λ;k − (1− qi,λ;k)|aλi ⟩⟨aλi |

)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

.

(3.81)
Because of the definition of a density matrix and a CPTP map, we can derive a
relationship between coefficientsqi,λ;k andr i,λ;k by

Tr
[
ΛIρ

]
=

∑
k∈X

(qi,λ;k + r i,λ;k) = 1. (3.82)

Then the sum of 1− qi,λ;k satisfies∑
k∈X

(1− qi,λ;k) =
∑
k∈X

r i,λ;k. (3.83)

Substituting this value in Eq. (3.81), we obtain∣∣∣∣∣∣∣∣Λi,λ

(
ΛI(|aλi ⟩⟨aλi |) − |aλi ⟩⟨aλi |

)∣∣∣∣∣∣∣∣
tr
=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑k∈X r i,λ;k

(
σi,λ;k − |aλi ⟩⟨aλi |

)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

. (3.84)

Because the trace norm of an Hermitian operator is calculated as the sum of the
absolute value of its eigenvalues [36], if a matrix is given as the sum of the two
different matrices on orthogonal subspaces, its trace norm becomes the sum of
each trace norm, namely,∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∑k∈X r i,λ;k

(
σi,λ;k − |aλi ⟩⟨aλi |

)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑k∈X r i,λ;kσi,λ;k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑k∈X r i,λ;k|aλi ⟩⟨aλi |

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

. (3.85)

Due to the same reason, the trace norm of a linear combination of positive matri-
ces has linearity, then∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∑k∈X r i,λ;kσi,λ;k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑k∈X r i,λ;k|aλi ⟩⟨aλi |

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
tr

=
∑
k∈X

r i,λ;k

∣∣∣∣∣∣σi,λ;k

∣∣∣∣∣∣
tr
+

∑
k∈X

r i,λ;k

∣∣∣∣∣∣|aλi ⟩⟨aλi |∣∣∣∣∣∣tr . (3.86)
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Since the trace norm of a density matrix is equal to 1, the left-hand side of
the above equation is 2

∑
k∈X r i,λ;k. Then we can simplify the left-hand side of

Eq. (3.80) as
2
∑
k∈X

r i,λ;k ≤ R2(M|A). (3.87)

□

Lemma 7. For any completely positive mapI on a Hilbert spaceH ,

|⟨χ|I(|ψ⟩⟨ϕ|)|χ⟩| ≤
√
⟨χ|I(|ψ⟩⟨ψ|)|χ⟩⟨χ|I(|ϕ⟩⟨ϕ|)|χ⟩ (3.88)

is satisfied for any|ψ⟩, |ϕ⟩, |χ⟩ ∈ H .

Proof. A binary operation (|ψ⟩, |ϕ⟩) = ⟨χ|(I|ψ⟩⟨ϕ|)|χ⟩ satisfies the some property
of the inner product except the non-degeneracy condition

(|ψ⟩, |ψ⟩) = 0⇒ |ψ⟩ = 0. (3.89)

The Cauchy-Schwartz inequality of inner product is still valid for binary opera-
tion without this condition. Then this Lemma is satisfied. □

Lemma 8. For a measurementM = {I, x,X} and a real function f satisfying
0 ≤ | f | ≤ ∆, the following is satisfied for any k∈ X, i, j ∈ Y satisfying i, j,∣∣∣∣Tr

[
I( f )(|aλi ⟩⟨a

µ
j |)

] ∣∣∣∣ ≤ ∆ (√
2R2(M|A) +

R2(M|A)
2

)
. (3.90)

Proof. Because of the triangular inequality of the absolute value, the left-hand
side of Eq. (3.90) is bounded as∣∣∣∣Tr

[
I( f )(|aλi ⟩⟨a

µ
j |)

] ∣∣∣∣ =
∣∣∣∣∣∣∣ ∑
l∈Y,α∈Z

⟨aαl |I( f )(|aµj ⟩⟨aλi |)|aαl ⟩
∣∣∣∣∣∣∣

≤
∑

l∈Y,α∈Z

∣∣∣∣⟨aαl |I( f )(|aµj ⟩⟨a
λ
i |)|aαl ⟩

∣∣∣∣
By using Lemma 7, we have∑

l∈Y,α∈Z

∣∣∣∣⟨aαl |I( f )
(
|aµj ⟩⟨a

λ
i |
)
|aαl ⟩

∣∣∣∣
≤

∑
l∈Y,α∈Z

√
⟨aαl |I( f )(|aλi ⟩⟨aλi |)|aαl ⟩ ×

√
⟨aαl |I( f )(|aµj ⟩⟨a

µ
j |)|aαl ⟩. (3.91)

We devide the summation of the right-hand side of Eq. (3.91) into two cases,
one is that the combinations of indices satisfy (l, α) , (i, λ), ( j, µ) and the other
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consists of the rest combinations. Using Eq. (3.75), the sum of the former com-
binations is represented as∑

(l,α),
(i,λ),( j,µ)

√
⟨aαl |I( f )(|aλi ⟩⟨aλi |)|aαl ⟩

√
⟨aαl |I( f )(|aµj ⟩⟨a

µ
j |)|aαl ⟩

=
∑
(l,α),

(i,λ),( j,µ)

√∑
k

f (xk)r i,λ;k⟨aαl |σi;k|aαl ⟩
√∑

h

f (xh)r j,µ;h⟨aαl |σ j;h|aαl ⟩.

Applying Cauchy-Schwartz’s inequality to the right-hand side of the above equal-
ity, then we obtain

∑
(l,α),

(i,λ),( j,µ)

√∑
k

f (xk)r i,λ;k⟨aαl |σi;k|aαl ⟩
√∑

h

f (xh)r j,µ;h⟨aαl |σ j;h|aαl ⟩

≤
√√√∑

k

f (xk)r i,λ;k

∑
(l,α),

(i,λ),( j,µ)

⟨aαl |σi;k|aαl ⟩
√√√∑

h

f (xh)r j,µ;h

∑
(m,β),

(i,λ),( j,µ)

⟨aβm|σ j;h|aβm⟩.

Substituting the following conditions

0 ≤ f ≤ ∆, 0 ≤
∑
(l,α),

(i,λ),( j,µ)

⟨aαl |σi;k|aαl ⟩ ≤ 1, (3.92)

the equation is bounded as√√√∑
k

f (xk)r i,λ;k

∑
(l,α),

(i,λ),( j,µ)

⟨aαl |σi;k|aαl ⟩
√√√∑

h

f (xh)r j,µ;h

∑
(m,β),

(i,λ),( j,µ)

⟨aβm|σ j;h|aβm⟩

≤ ∆
√∑

k

r i,k

√∑
h

r j,h ≤
R2(M|A)

2
∆.

The last line is derived from Lemma 6. By using the same conditions, the rest
part of the summuation in the left-hand side of Eq. (3.91) is bounded as

∑
(l,α)=

(i,λ)or( j,µ)

√∑
k

f (xk)r i,λ;k⟨aαl |σi;k|aαl ⟩
√∑

h

f (xh)r j,µ;h⟨aαl |σ j;h|aαl ⟩

≤ ∆


√∑

k

r j,µ;k +

√∑
h

r i,λ;h

 ≤ ∆√
2R2(M|A).
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The last line is also derived from Lemma 6. Combining all the inequalities, we
obtain ∣∣∣∣Tr

[
I( f )

(
|aλi ⟩⟨a

µ
j |
)] ∣∣∣∣ ≤ ∆ (√

2R2(M|A) +
R2(M|A)

2

)
. (3.93)

□

Lemma 9. For an observable A, we define its eigenbasis as
{
|aλi ⟩|i ∈ Y, λ ∈ Z

}
,

where|aλi ⟩ is an eigenstate corresponding to an eigenvalue ai. Let us denote by
Pλ

i as the projective operator onto the subspaceHλ
i = span{|aλi ⟩}. We define a

projective superoperatorPλi ρ = Pλ
i ρPλ

i . For a measurementM = {I, x,X} and a
real function f satisfying0 ≤ f ≤ ∆,∣∣∣∣∣∣∣Tr

I( f )

id − ∑
l∈Y,α∈Z

Pαl

 (|ψ⟩⟨ψ|)

∣∣∣∣∣∣∣ ≤ d∆

(√
2R2(M|A) +

R2(M|A)
2

)
, (3.94)

is satisfied for any unitvector|ψ⟩ ∈ H , where d= dimH .

Proof. We decompose a unit vector|ψ⟩ ∈ H in the eigenbasis{|aλi ⟩} of A as

|ψ⟩ =
∑
i,λ

eiθλi cλi |aλi ⟩, ci ∈ R, ci > 0, (3.95)∑
i,λ

(cλi )2 = 1. (3.96)

By using this notation, we can decompose|ψ⟩⟨ψ| asid − ∑
l∈Y,α∈Z

Pαl

 (|ψ⟩⟨ψ|) =
∑
(i,λ)
,( j,µ)

cλi cµj e
i(θλi −θ

µ
j )|aλi ⟩⟨a

µ
j |. (3.97)

Then∣∣∣∣∣∣Tr

[
Ik

id − ∑
l∈Y,α∈Z

Pαl

 (|ψ⟩⟨ψ|)
]∣∣∣∣∣∣ ≤ ∑

(i,λ),( j,µ)

cλi cµj

∣∣∣∣I( f )(|aλi ⟩⟨a
µ
j |)

∣∣∣∣
≤ ∆

∑
(i,λ),( j,µ)

cλi cµj

(√
2R2(M|A) +

R2(M|A)
2

)
≤ ∆

∑
i,λ

cλi
∑

j,µ

cµj

(√
2R2(M|A) +

R2(M|A)
2

)
≤ d∆

(√
2R2(M|A) +

R2(M|A)
2

)
. (3.98)

From the second line to the third line, we used Lemma 8. From the second last
line to the last line, we used the fact that the maximum value of

∑
i,λ cλi under

the condition Eq. (3.96) is given when all coefficientscλi are 1/
√

d. (This fact is
easily proven by using the concavity of the square function.) □
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Lemma 10. For a measurementM = {I, x,X} and an observable A,∣∣∣∣∣∣∣Tr

(I( f ) − P( f ))
∑

l∈Y,α∈Z
Pαl (|ψ⟩⟨ψ|)


∣∣∣∣∣∣∣ < 2

√
R1(M|A), (3.99)

for any state|ψ⟩ ∈ H , where f is chosen as a Lipschitz function.

Proof. We first evaluate the following value.

∣∣∣∣Tr
[
(I( f ) − P( f )) (|aλi ⟩⟨aλi |)

]
=

∣∣∣∣∣∣∣ ∑
l∈Y,α∈Z

⟨aαl |
(
(I( f ) − P( f )) (|aλi ⟩⟨aλi |)

)
|aαl ⟩

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∑k

( f (xk) − f (ai))
∑

l∈Y,α∈Z
⟨aαl |Ik(|aλi ⟩⟨aλi |)|aαl ⟩

∣∣∣∣∣∣∣
≤

∑
k

| f (xk) − f (ai)|
∑

l∈Y,α∈Z
⟨aαl |Ik(|aλi ⟩⟨aλi |)|aαl ⟩ (3.100)

We define the following set of the measurement values ofM,

Ci =
{
k ∈ X| |ai − xk| ≤

√
R1(M|A)

}
(3.101)

We split the summuation of Eq. (3.100) into the indices included inCi and the
others. The former part is evaluated as∑

k∈Ci

| f (xk) − f (ai)|
∑

l∈Y,α∈Z
⟨aαl | (Ik( f ) − Pi)

(
|aλi ⟩⟨aλi |

)
|aαk⟩

∣∣∣∣
≤

√
R1(M|A)

∑
l∈Ci

⟨aαl |
∑

k

Ik

(
|aλi ⟩⟨aλi |

)
|aαl ⟩

≤
√

R1(M|A)Tr

∑
k

Ik(|aλi ⟩⟨aλi |)
 = √

R1(M|A). (3.102)

The other part is calculated as∑
k<Ci

| f (xk) − f (ai)|
∣∣∣∣ ∑

l∈Y,α∈Z
⟨aαl | (Ik − Pi) (|aλi ⟩⟨aλi |)|aαk⟩

∣∣∣∣ ≤∑
k∈Ci

ei;k
| f (xk) − f (ai)|

(xk − ai)2

(3.103)
Note that for anyk < Ci,

R1(M|A) |xk − ai | ≤ (xk − ai)
2 (3.104)

is satisfied. Then∑
k∈Ci

ei;k
| f (xk) − f (ai)|

(xk − ai)2
≤ 1√

R1(M|A)

∑
k∈Ci

ei;k ≤
√

R1(M|A). (3.105)
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We used the definition of the Lipschitz function and Lemma 5 to derive the second
line from the first line. Then, the summations of indices ofk ∈ Ci and ofk < Ci

are given. The total is given by∣∣∣∣Tr
[
(I( f ) − P( f )) |aλi ⟩⟨aλi |

]∣∣∣∣ < 2
√

R1(M|A). (3.106)

For any unit vector|ψ⟩ ∈ H defined in Eq. (3.95) and (3.96),∑
l∈Y,α∈Z

Pαl |ψ⟩⟨ψ| =
∑

l∈Y,α∈Z
(cαl )2|aαl ⟩⟨aαl | (3.107)

is satisfied. Then∣∣∣∣∣∣[ (I( f ) − P( f ))
∑

l∈Y,α∈Z
Pαl |ψ⟩⟨ψ|

]∣∣∣∣∣∣ ≤ ∑
i,λ

(cλi )2
∣∣∣∣Tr

[
(I( f ) − P( f )) |aλi ⟩⟨aλi |

]∣∣∣∣
≤ 2

√
R1(M|A)

∑
i,λ

(cλi )2

= 2
√

R1(M|A). (3.108)

Therefore the Lemma 10 is proven. □

Proof of Theorem 3.By definition, the Monge distance betweenM andMA is
defined as ∣∣∣∣∣∣M−MA

∣∣∣∣∣∣
m

:= sup
ρ∈D(H)

f∈L

∣∣∣Tr
[
(I( f ) − P( f )) ρ

]∣∣∣ (3.109)

The functional which has been maximized in the right-hand side of the above
equation is translationally invariant. For a Lipschitz functionf , we define its
parallel translationf ′ by a constantc ∈ R as

f ′(x) = f (x) + c. (3.110)

Then f and f ′ satisfy∣∣∣Tr
[(I( f ′) − P( f ′)

)
ρ
]∣∣∣ = ∣∣∣Tr

[
(I( f ) − P( f )) ρ

]∣∣∣ (3.111)

This relationship is derived from the condition required for measurement instru-
ments, namely,

Tr
[I(1)ρ

]
= Tr

[P(1)ρ
]
= 1. (3.112)

Therefore without losing generality, we can assume the condition for a Lipschitz
function f given by

∀i ∈ X, ∆xmax ≥ f (xi) ≥ 0. (3.113)



39

We denote the diagonalization of a density matrixρ as

ρ =
∑

i

pi |ψi⟩⟨ψi |,
∑

i

pi = 1, pi ≥ 0. (3.114)

Using the triangular inequality, we achieve the upper bound of a term in the right-
hand side of Eq. (3.109) as follows.∣∣∣Tr

[
(I( f ) − P( f )) ρ

]∣∣∣ ≤∑
i

pi

∣∣∣Tr
[
(I( f ) − P( f )) (|ψi⟩⟨ψi |)

]∣∣∣ . (3.115)

Because of its definitionP( f ) satisfies

Tr
[P( f )Pαl ρ

]
= Tr

[P( f )ρ
]
, (3.116)

for any density matrixρ onH . Then we achieve

Tr
[
(I( f ) − P( f ))ρ

]
= Tr

[
(I( f ) − P( f ))Pαi ρ

]−Tr
[I( f )

(
id − Pαi ( f )

)
ρ
]

(3.117)

Substituting this equation into a term in the right-hand side of Eq. (3.115) and
applying the triangular inequality, we derive∣∣∣∣∣∣[ (I( f ) − P( f )) (|ψi⟩⟨ψi |)

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣Tr

(I( f ) − P( f ))
∑

l∈Y,α∈Z
Pαl (|ψi⟩⟨ψi |)


∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣Tr

I( f )

id − ∑
l∈Y,α∈Z

Pαl

 (|ψi⟩⟨ψi |)

∣∣∣∣∣∣∣ .

(3.118)

Applying Lemmas 9 and 10 for the right-hand side of the above inequality, we
have∣∣∣∣∣∣[ (I( f ) − P( f )) (|ψi⟩⟨ψi |)

]∣∣∣∣∣∣ ≤ 2
√

R1(M|A) + d∆xmax

(√
2R2(M,A) +

R2(M,A)
2

)
,

(3.119)
where we use the condition Eq. (3.113) to apply Lemma 9. Then we can

reformulate Eq. (3.115) as∣∣∣∣∣∣[ (I( f ) − P( f )) ρ
]∣∣∣∣∣∣ ≤ 2

√
R1(M|A) + d∆xmax

(√
2R2(M,A) +

R2(M,A)
2

)
.

(3.120)
Because of Eq. (3.109), we achieve the upper bound of the Monge distance as∣∣∣∣∣∣M−MA

∣∣∣∣∣∣
m
≤ 2

√
R1(M|A) + d∆xmax

(√
2R2(M,A) +

R2(M,A)
2

)
. (3.121)

thus we have proven the Theorem. 3. □
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4.1 Introduction

For a quantum system evolving according to the Schrödinger equation determined
by an unknown Hamiltonian, a straightforward way to implement the projec-
tive measurement of energy is given as follows. First, we somehow identify the
Hamiltonian by estimation. Next, we perform the projective measurement of en-
ergy of the estimated Hamiltonian. To identify a Hamiltonian, we must first iden-
tify the Hamiltonian dynamics, and we estimate the generator of the dynamics
afterwards. The general method to identify quantum dynamics is called process
tomography [35], which determines an unknown CPTP by preparing many copies
of initial states and executing many runs of measurements on the states affected
by the map. However the process tomography is not only valid for Hamiltonian
dynamics but it is also applicable for all dynamics represented by CPTP maps,
which is identified byd4 − d2 parameters. Because a unitary operator is deter-
mined by (d2 + 1)/2 independent parameters, the general process tomography
requires excess cost for just identifying Hamiltonian dynamics. However the to-
mography method which only focuses on the unitary dynamics has not been well
established.

In this chapter, we propose a process tomography purely for determining a
unitary dynamics and apply this method to implement the projective measurement
of energy. In Sec. 4.2, we introduce the basics of estimation. In Sec. 4.3, we
construct a process tomography to identify a unitary operator. In Sec. 4.4, we
introduce a method to implement the energy eigenbasis measurement from the
result of estimation.

4.2 Estimation theory

In natural science, we describe a state by a set of numbers called parameters. We
call such numbers as parameters of the state. States described by different values
of parameters respond differently in observations. The trial of an observation is a
stochastic subject, and they are to be written by random variables. This relation-
ship between a parameter and stochastic trials can be described as followings.

Definition 22. Consider a random variable x∈ Rwhose probability distributions
pθ(x) is dependent on a vector of complex numbersθ, where

θ = (θ1, θ2, . . . , θN)T , θi ∈ C. (4.1)

We call thisθ as the parameter of the probability distribution.
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We call a process reconstructing an unknown parameter from a set of data
obtained by stochastic trials as an estimation. A function which transforms a set
of data into a possible parameter is called an estimator.

Definition 23. Consider there are K random variables{x(k)|1 ≤ k ≤ K}, the
probability distribution of x(k) is denoted as p(k)

θ which depends on the parameter
θ ∈ CN. We iterate stochastic trials of each random variable x(k) Mk times. Let
us denote the data of the m-th trial of the k-th random variable x(k) as d(k)

m . We
denote a set of data of all the trials as D= {D(1),D(2), . . . ,D(K)}, where D(k) =

{d(k)
1 ,d(k)

2 , . . . ,d(k)
Mk
}.

Definition 24. We define a functionθ(est) : S → CN, where the set S includes all
possible set of data D of stochastic trials depending on the parameterθ. We refer
to this function as an estimator.

As an example of an estimator, we introduce the linear estimator. To formu-
late this function, we first define the sample mean of a set of data.

Definition 25. For a set of data D= {D(1),D(2) . . . }, we define the sample mean
of the data of the random variable x(k) as⟨

D(k)
⟩ave
=

1
M(k)

∑
i

d(k)
i . (4.2)

For any function f , we denote the sample mean of f(d(k)
i ) as

⟨ f ⟩ave
D(k) =

1
M(k)

∑
i

f (d(k)
i ). (4.3)

Definition 26. Let us define a set of data of the stochastic trials as D. The esti-
mator in the following form is called linear estimator:

θest
i (D) =

∑
k,i

⟨
f (k)
i

⟩ave

D(k)
, (4.4)

where
f (k)
i : R→ C. (4.5)

The linear estimator is for estimating the parameter given by a linear combi-
nation of the expectation value of trials. The expectation value is given as follows.

Definition 27. For a random variable x of which probability distribution is given
by pθ(x), we define the expectation value of the random variable by

⟨x⟩exp
θ =

∑
x

pθ(x)x. (4.6)
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For any real function f , we also define the expectation value by

⟨ f ⟩exp
x,θ :=

∑
x

pθ(x) f (x). (4.7)

To evaluate how close each of estimated valueθ(est)(D) to θ is, we generally
adopt some two-variable functions, which are called loss functions.

Definition 28. We call a two variable function∆ : C × C → R satisfying the
following conditions for any a,b, c ∈ RN a loss function for a parameter.

1. ∆(a, b) ≥ 0. (Positivity)

2. ∆(a, a) = 0.

3. ∆(a, b) = ∆(b,a). (Symmetry)

4. ∆(a, c) ≤ ∆(a,b) + ∆(b, c). (Triangle inequality).

As a loss function, we define the squared error defined as follows.

Definition 29. A two variable function∆2 is defined by

∆2(a,b) := |a− b|2 , (4.8)

where a,b ∈ C. This function is called the squared error. We also define a
generalized version of this loss function by

∆n(a, b);= |a− b|n . (4.9)

Since the data of trials are obtained probabilistically, thus the outcome of the
estimator behaves also probabilistically. The estimator of which estimated value
gives a small loss function in typical cases should be a good estimator. To evaluate
probabilistic behavior of an estimator, we introduce the following two quantities.
The first is the expected loss, which is the average value of the loss function. The
second is the error probability which can be regarded as the probability that the
loss function larger thanε is achieved.

Definition 30. Expected loss of the i-th element of an estimatorθ(est) for a loss
function∆ is defined as

∆
exp
2

(
θest

i

)
=

⟨
∆2

(
θest

i (D), θi

)⟩exp

D,Θ
, (4.10)

where ⟨
∆

(
θest

i (D), θi

)⟩exp

D,θ
=

∑
D∈S

∏
k, j

p(k)
θ

(
d(k)

j

)
∆

(
θest

i (D), θi

)
. (4.11)
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Definition 31. Define a step function s(ε,θ)
i for an estimatorθest as

s(ε,θ)
i (D) = 0

(
∆(θest

i (D), θi) < ε
)

(4.12)

= 1
(
∆(θest

i (D), θi) ≥ ε
)
. (4.13)

For an errorε, the error probability of the estimaterθest is defined as

P
{
∆

(
θest

i , θi

)
≥ ε

}
=

⟨
s(ε,θ)

i

⟩exp

D,θ
. (4.14)

We define the expected loss for the squared error.

Definition 32. We call the expected loss of squared error as mean squared error.
We denote it as∆exp

2 (θest
i , θi).

Now we define the variance of a random variable.

Definition 33. For an random variable x∈ R, the variance of the random vari-
ableσ(x) is defined by

σ(x) =
⟨
(x− ⟨x⟩exp)2

⟩exp

x
. (4.15)

For any function f: R→ C, we can also define the varianceσx( f ) of the function
in the random variable x as

σx( f ) =
⟨∣∣∣ f (x) − ⟨ f ⟩exp

x

∣∣∣2⟩exp

x
. (4.16)

When the probability distribution depends on the statistical parameterθ, we de-
scribe the dependency on the variance asσx,θ.

The mean squared error is related to the variance of a measurement.

Lemma 11. When the expectation value of an element of an estimator is equal
to a stochastic parameterθi = ⟨θest

i ⟩
exp
D,θ, the mean squared error is equal to the

variance, namely,
σD,θ(θ

est
i ) = ∆exp

2 (θest
i ). (4.17)

This fact is trivially proven by the definitions of the variance and mean squared
error. As an important property of the variance, we introduce Chevichev’s in-
equality.

Lemma 12 (Chevichev’s inequality). For any random variable x∈ C and a
complex function f ,

P

{∣∣∣ f (x) − ⟨ f ⟩exp
x

∣∣∣2 ≥ σx( f )
ε

}
≤ ε. (4.18)

is satisfied.
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We skip this proof, since this is shown in standard probability theory text-
books [37]. Please note that∆exp

2 (θest
i , θi) is the upper bound for the variance of

each element of the estimaterθest
i . For estimation problems, the following corol-

lary which connect the mean squared error and the error probability is useful.

Corollary 2. When an estimater satisfies⟨θest
i ⟩

exp
D = θi, the following formula for

the mean squared error and the error probability holds:

P

∣∣∣θi − θest
i

∣∣∣ ≥
√
∆

exp
2 (θest

i , θi)

ε

 ≤ ε. (4.19)

In the rest of this section, to estimate an unknown unitary operation, we per-
form several two-valued measurements and convert the data by a linear estimator.
Thus we introduce the following two theorems of a linear estimator for two-
valued data.

Theorem 4. Assume that the parameter of a probability distribution and a linear
estimator is given by

θi =
∑

k

⟨
f (k)
i

⟩exp

x,θ
, θest

i =
∑

k

⟨
f (k)
i

⟩ave

D(k)
. (4.20)

Then the expected loss∆2 of this estimator satisfies

∆
exp
2 (θi , θ

est
i ) =

∑
k

σD(k),θ( f (k)
i ). (4.21)

Theorem 5. Assume that the parameter of a probability distribution and a linear
estimator is given by

θi =
∑

k

⟨
f (k)
i

⟩exp

x,θ
, θest

i =
∑

k

⟨
f (k)
i

⟩ave

D(k)
. (4.22)

The expected loss∆4 satisfies

∆
exp
4 (θest

i ) ≤ 3
(
∆

exp
2 (θest

i )
)2
+ 2 max

l

∣∣∣ f (l)
i (a) − f (l)

i (b)
∣∣∣2∆exp

2 (θest
i ). (4.23)

To prove these theorems, we show the following two lemmas.

Lemma 13. Assume that x is a two-valued random variable which takes the value
a in probability pθ and b in1− p. For any f : R→ C, the variance obeys

σD,θ( f ) =
σx,θ( fi)

M
, (4.24)

whereσx,θ is the variance of f(x), which is given as

σx,θ( f ) = | f (a) − f (b)|2 pθ(1− pθ), (4.25)

and M is the number of data D.
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Proof. By definition, the variance of the sample mean can be transformed as

σD,θ( f ) =
M∑

k=0

pk
θ(1−pθ)

M−k M!
k!(M − k)!

∣∣∣∣∣∣
(
fi(a)

k
M
− fi(b)

n− k
M

)
− ⟨ fi⟩exp

θ

∣∣∣∣∣∣2 . (4.26)

Since

⟨ fi⟩exp
x,θ = pθ fi(a) − (1− pθ) fi(b), (4.27)

we simplifyσD,θ( f ) as

σD,θ( f ) = | f (a) − f (b)|2
M∑

k=0

pk
θ(1− pθ)

M−k

× M!
k!(M − k)!

(
k
M
− pθ

) (
(1− pθ) −

M − k
M

)
. (4.28)

We expand the last two parentheses as

σD,θ( f ) = | f (a) − f (b)|2
M∑

k=0

pk
θ(1− pθ)

M−k

×
[

M!
k!(M − k)!

k
M

(1− pθ) +
M!

k!(M − k)!
(M − k)

M
pθ

− M!
k!(M − k)!

pθ(1− pθ) −
M!

k!(M − k)!
k(M − k)

M2

]
. (4.29)

By usingnCk = n!/k!(n− k)!, we rewrite this equation as

σD,θ( f ) = | f (a) − f (b)|2
[
(1− pθ)

M∑
k=1

M−1Ck−1

+ pθ
M−1∑
k=0

M−1Ck − pθ(1− pθ)
M∑

k=0

MCk −
M − 1

M

M−1∑
k=1

M−2Ck−1

]
pk
θ(1− pθ)

M−k.

(4.30)

Now, we factor outpθ(1− pθ) from the above equation as

σD,θ( f ) = | f (a) − f (b)|2 pθ(1− pθ)

[
2

M−1∑
k=0

M−1Ckpk
θ(1− pθ)

M−k−1

−
M∑

k=0

MCkpk
θ(1− pθ)

M−k − M − 1
M

M−2∑
k=0

M−2Ckpk−1
θ (1− pθ)

M−k−1

]
(4.31)
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Because of the binomial theorem, it is transformed as

σD,θ( f ) = | f (a) − f (b)|2 pθ(1− pθ)

×
[
2(pθ + (1− pθ))

M−1 − (pθ + (1− pθ))
M − M − 1

M
(pθ + (1− pθ))

M−2

]
. (4.32)

Then we obtain

σD,θ( f ) = | f (a) − f (b)|2 pθ(1− pθ)
M

. (4.33)

Therefore, we complete the proof of Lemma 13. □

Lemma 14. Assume that x is a two-valued random variable which takes the value
a in probability pθ and b in1− p. For any f : R→ C, the following relationship
is satisfied:

σ(4)
D,θ( f ) ≤ 3σ2

D,θ( f ) + 2 | f (a) − f (b)|2σD,θ( f ), (4.34)

whereσ(4)
D,θ( f ) is

σ(4)
D,θ( f ) =

⟨∣∣∣⟨ f ⟩ave
D − ⟨ f ⟩

exp
x,θ

∣∣∣4⟩exp

D,θ
, (4.35)

and M is the number of the data D.

Proof. Similarly to the proof of Lemma 13, we obtain

σ(4)
D,θ( f ) = | f (a) − f (b)|4

[
M2 + 3M − 6

M3
p2(1− p)2

+
M − 1

M2
(1− 2p)p(1− p) +

1
M2

p(1− p)

]
. (4.36)

We organize this equation as

σ(4)
D,θ( f ) = | f (a) − f (b)|4

×
[

1
M

p2(1− p)2 +
3

M2
p2(1− p)2 − 6

M3
p2(1− p)2

+
1
M

(1− 2p)p(1− p) +
2p
M2

p(1− p)

]
. (4.37)

Since the third term is negative, erasing this term increases the total value. Taking
account of the inequality 1/M2 ≤ 1/M, we have

σ(4)
D,θ( f ) ≤ | f (a) − f (b)|4

[
3

M2
p2(1− p)2 +

1
M

p2(1− p)2 +
1
M

p(1− p)

]
(4.38)
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Sincep2(1− p)2 ≤ p(1− p), then

σ(4)
D,θ( f ) ≤ | f (a) − f (b)|4

(
3

M2
p2(1− p)2 +

2
M

p(1− p)

)
. (4.39)

Applying Eq. (4.33) to this inequality, we conclude

σ(4)
D,θ( f ) ≤ 3σ2

D,θ( f ) + 2 | f (a) − f (b)|2σD,θ( f ). (4.40)

□

The proofs of Theorem 4 and Theorem 5 are given as follows.

Proof of Theorem. 4.By definition, the expected loss can be represented as

∆
exp
2 (θest

i ) =
∑
k,l

⟨(
⟨ f (k)

i ⟩
ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

) (
⟨ f (l)

i ⟩
ave
D(l) − ⟨ f (l)

i ⟩
exp
x,θ

)∗⟩exp

D,θ
. (4.41)

Note that for allk , l,⟨(
⟨ f (k)

i ⟩ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

) (
⟨ f (l)

i ⟩ave
D(l) − ⟨ f (l)

i ⟩
exp
x,θ

)∗⟩exp

D,θ

=
⟨(
⟨ f (k)

i ⟩
ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

)⟩exp

D(k),θ

⟨(
⟨ f (l)

i ⟩
ave
D(l) − ⟨ f (l)

i ⟩
exp
x,θ

)∗⟩exp

D(l),θ
= 0 (4.42)

is satisfied wherexk and xl are statistically independent. Then we can simplify
Eq.(4.45) as

∆
exp
2 (θi) =

∑
k

⟨ ∣∣∣⟨ f (k)
i ⟩

ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

∣∣∣2 ⟩exp

D(k),θ

. (4.43)

Each term in the summation part in the right-hand side isσM(k)

θ ( f (k)
i ). Thus we

conclude the theorem. □

Proof of Theorem5.By definition,∆exp
4 (θexp) is decomposed as

∆
exp
4 (θest

i ) =
∑

k,l,m,n

⟨ (
⟨ f (k)

i ⟩
ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

) (
⟨ f (l)

i ⟩
ave
D(l) − ⟨ f (l)

i ⟩
exp
x,θ

)∗
(
⟨ f (m)

i ⟩
ave
D(m) − ⟨ f (m)

i ⟩
exp
x,θ

) (
⟨ f (n)

i ⟩
ave
D(n) − ⟨ f (n)

i ⟩
exp
x,θ

)∗ ⟩exp

D,θ

. (4.44)

Using the condition
⟨
⟨ fi⟩ave

D(k)⟩ − ⟨ fi⟩exp
D(k)

⟩exp

D,θ
= 0, only certain terms survive, and we

obtain

∆
exp
4 (θest

i ) =
∑

k

⟨∣∣∣⟨ f (k)
i ⟩

ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

∣∣∣4⟩exp

D,θ

+ 2
∑
k,l

⟨∣∣∣⟨ f (k)
i ⟩ave

D(k) − ⟨ f (k)
i ⟩

exp
x,θ

∣∣∣2⟩exp

D,θ

⟨∣∣∣⟨ f (l)
i ⟩ave

D(l) − ⟨ f (l)
i ⟩

exp
x,θ

∣∣∣2⟩exp

D,θ

+
∑
k,l

⟨(
⟨ f (k)

i ⟩
ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

)2
⟩exp

D,θ

⟨(
⟨ f (l)

i ⟩
ave
D(l) − ⟨ f (l)

i ⟩
exp
x,θ

)∗2⟩exp

D,θ
. (4.45)
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Since ∣∣∣∣∣⟨(⟨ f (k)
i ⟩

ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

)2
⟩∣∣∣∣∣ ≤ ⟨∣∣∣⟨ f (k)

i ⟩
ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

∣∣∣2⟩ , (4.46)

then we have

∆
exp
4 (θest

i ) ≤
∑

k

⟨∣∣∣⟨ f (k)
i ⟩

ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

∣∣∣4⟩exp

D,θ

+ 3
∑
k,l

⟨∣∣∣⟨ f (k)
i ⟩

ave
D(k) − ⟨ f (k)

i ⟩
exp
x,θ

∣∣∣2⟩exp

D,θ

⟨∣∣∣⟨ f (l)
i ⟩

ave
D(l) − ⟨ f (l)

i ⟩
exp
x,θ

∣∣∣2⟩exp

D,θ
. (4.47)

Using Lemma 13 for the first term and Lemma 14 for the second, we obtain

∆
exp
4 (θest

i ) ≤ 3
∑

k

σD(k),θ( f (k)
i )

∑
l

σD(l),θ( f (l)
i )

+ 2 max
l

∣∣∣ f (l)
i (a) − f (l)

i (b)
∣∣∣2 ∑

k

σD(k),θ( f (k)
i ). (4.48)

According to Theorem 5, we conclude that

∆
exp
4 (θest

i ) ≤ 3
(
∆

exp
2 (θest

i )
)2
+ 2 max

l

∣∣∣ f (l)
i (a) − f (l)

i (b)
∣∣∣2∆exp

2 (θest
i ). (4.49)

□

4.3 Identifying unitary dynamics

We have introduced a straight forward way to identify an unknown unitary dy-
namicsU up to its global phase. In the following, we limit the quantum system
to aq-qubits system (C2)⊗q. We denote the dimension of this system asd = 2q.

We define a vectorn in a vector space (Z2)⊗q for any natural number 0≤ n ≤
d − 1. Let {ek} be an orthogonal basis, andn is defined as

n =
∑

k

nkek (4.50)

wherenk ∈ Z2 is thek-th digit number ofn in the binary representation defined
asn =

∑q−1
k=0 2knk. The sum of vectors in the vector space is defined by

n +m =
∑

k

lkek, (4.51)

where
lk = nk +mk. (mod 2). (4.52)



50 Chapter 4. Tomography-based method: approach and evaluation

We construct a basis{|n⟩|0 ≤ n ≤ d − 1} in
(
C2

)⊗q
each of which is defined as

|n⟩ :=
q⊗

k=1

|nk⟩ = |n1n2 . . . nq⟩. (4.53)

If ⟨0|U |0⟩ , 0, all the elements of unitaryU are perfectly determined by a
matrixΘ up to the global phase where then,m element ofΘ is defined by

Θnm = ⟨n|U |m⟩⟨0|U†|0⟩. (4.54)

We define the generalized Pauli matricesX( j)
i on this Hilbert space for any pair of

integers 0≤ i ≤ d − 1 and, 0≤ j ≤ d − 1 as

X(i)
j =

q⊗
k=1

X(ik)
jk
, (4.55)

whereik, jk = 0,1 are also defined as thek-th digit numbers defined by

i =
q∑

k=1

2k−1ik, j =
q∑

k=1

2k−1 jk. (4.56)

X( j)
i is a Pauli matrix on a single qubit defined as

X(0)
0 = |0⟩⟨0| + |1⟩⟨1|, (4.57)

X(1)
0 = |0⟩⟨0| − |1⟩⟨1|, (4.58)

X(0)
1 = |0⟩⟨1| + |1⟩⟨0|, (4.59)

X(1)
1 = i(|0⟩⟨1| − |1⟩⟨0|). (4.60)

We define operatorss0, s1 on a 1-qubit Hilbert space by

s0 = |0⟩⟨0|, (4.61)

s1 = |0⟩⟨1|. (4.62)

For aq-qubit system, we also define an operator.

Sn := |0⟩⟨n|. (4.63)

Note that
⟨ψ|Sn|ϕ⟩ = ⟨n|ϕ⟩⟨ψ||0⟩. (4.64)

Due to Eqs. (4.57)–(4.60),si is written by

sj =
X(0)

j + (−i) jX(1)
j

2
. (4.65)
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On the other hand,Sn can be represented in the product ofsj as

Sn =

q−1⊗
k=0

snk (4.66)

Substituting Eq. (4.65) into Eq. (4.66), we obtain

Sn =
1
d

d−1∑
i=0

(−i)n·iX(i)
n . (4.67)

For indexm, 0, we associate four vectors by

|m, 0⟩ = 1
√

2
(|0⟩ + |m⟩) , (4.68)

|m, 1⟩ = 1
√

2
(|0⟩ + i|m⟩) , (4.69)

|m, 2⟩ = 1
√

2
(|0⟩ − |m⟩) , (4.70)

|m, 3⟩ = 1
√

2
(|0⟩ − i|m⟩) . (4.71)

For these vectors,
1
2

3∑
s=0

(−i)s⟨m, s|A|m, s⟩ = ⟨0|A|m⟩, (4.72)

is satisfied, whereA is an operator on a Hilbert space (C2)⊗q.
We define random variablesx(i,s)

nm as the outcome of the following measure-
ment process. We initially prepare a state|m, s⟩. Next we apply the unknown
unitaryU on the state. Then we perform a measurement of observableX(i)

n on the
state. The expectation value of the measurement in given by.⟨

x(i,s)
nm

⟩exp

Θ
= ⟨m, s|U†X(i)

n U |m, s⟩ (4.73)

We define other random variablesx(i)
n0 for the outcome of a measurementX(i)

n on
the stateU |0⟩, which satisfies⟨

x(i)
n0

⟩exp

Θ
= ⟨0|U†X(i)

n U |0⟩. (4.74)

According to Eqs. (4.64),(4.67),(4.72) and (4.73), we conclude that anyΘnm

is given as

Θnm =
1
2d

d−1∑
i=0

3∑
s=0

(−i)s(−i)n·i
⟨
x(i,s)

nm

⟩exp

Θ
. (4.75)
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We can also derive

Θn0 =
1
d

d−1∑
i=0

(−i)n·i
⟨
x(i)

n0

⟩exp

Θ
. (4.76)

Assume that we iterate each measurement on each stateM times. Let us
define each datum asD(i,s)

nm . We also define

D =
{
D(i,s)

nm |0 ≤ m≤ d − 1, 0 ≤ n ≤ d − 1,0 ≤ i,≤ d − 1,0 ≤ s≤ 3
}
. (4.77)

We define the linear estimator of each element of the parameterΘnm as form, 0,

Θest
nm(D) =

1
2d

d−1∑
i=0

3∑
s=0

(−i)s(−i)n·i
⟨
x(i,s)

nm

⟩ave

D(i,s)
nm
, (4.78)

and form= 0,

Θest
n0 =

1
d

d−1∑
i=0

(−i)n·i
⟨
x(i)

n0

⟩ave

D(i)
n0

. (4.79)

For this linear estimator, the following theorem is satisfied.

Theorem 6. The estimatorΘest defined by Eq. (4.78) and (4.79) has theΘ-
independent upper and lower bound for its loss functions given as

∆
exp
2

(
Θnm,Θ

est
nm

)
≤ 1

dM
(n+m, 0), (4.80)

∆
exp
2

(
Θ00,Θ

est
00

)
≤ 1

dM
. (4.81)

Proof. Since each measurement has a two-valued outcome, accodting to Theo-
rem 4, the expected loss is given as form, 0

∆
exp
2 (Θnm,Θ

est
nm) =

1
4d2

3∑
s=0

∑d−1
i=0 σ

(i,s)
nm

M
, (4.82)

and form= 0,

∆
exp
2 (Θn0,Θ

est
n0) =

1
d2

∑d−1
i=0 σ

(i)
n0

M
. (4.83)

σ(i,s)
nm is the variance of the random variablex(i,s)

nm andσ(i)
n0 is the one ofx(i)

n0. Since
x(i,s)

nm = ±1 andx(i)
n0 = ±1, we have

σ(i,s)
nm = 1−

(⟨
x(i,s)

nm

⟩exp

Θ

)2
, (4.84)

σ(i)
n0 = 1−

(⟨
x(i)

n0

⟩exp

Θ

)2
. (4.85)
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Substituting Eq. (4.84) in Eq. (4.82), the upper bound of the expected loss is
evaluated as

∆
exp
2

(
Θnm,Θ

est
nm

)
≤ 1

dM
. (4.86)

With the similar discussion, we derive

∆
exp
2

(
Θ00,Θ

est
00

)
≤ 1

dM
. (4.87)

□

We introduce several properties of a matrixV defined as

V = Θest− Θ, (4.88)

The following evaluation takes an important role in implementation of the pro-
jective measurement of energy.

Theorem 7. For any vector|ϕ⟩ ∈ (C2)⊗q,⟨
⟨ϕ| |V|2 |ϕ⟩

⟩exp

D,Θ
≤ 1

M
. (4.89)

Theorem 8. For any vector|ϕ⟩ ∈ (C2)⊗q,⟨∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2⟩exp

D,Θ
≤ 12

M
+

9
M2

. (4.90)

Before proving these two theorems, we introduce a decomposition of the vec-
tor |ϕ⟩ ∈ (C2)⊗q in computational basis denoted by.

|ϕ⟩ =
∑

n

Cn|n⟩. (4.91)

Theorem. 7.⟨ϕ| |V|2 |ϕ⟩ is calculated as

⟨ϕ| |V|2 |ϕ⟩ =
∑
nm

∑
k

VnkV
∗
mkC

∗
nCm. (4.92)

Forn , m,. ⟨
V∗nkVmk

⟩exp
D,Θ = 0 (4.93)

is satisfied since the probability distribution for each element of the estimator
is independent and the expectation value is set to zero. On the other hand, by
definition, the squared absolute value of each element ofV statistically behaves
as ⟨

|Vnm|2
⟩exp

D,Θ
= ∆

exp
2 (Θext

nm,Θnm). (4.94)
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Then ⟨
⟨ϕ| |V|2 |ϕ⟩

⟩exp

D,Θ
=

∑
n

∑
k

∆
exp
2 (Θext

nk ,Θnk) |Cn|2 . (4.95)

Due to the upper bound given in Theorem 6, we have

⟨
⟨ϕ| |V|2 |ϕ⟩

⟩exp

D,Θ
≤

∑
n

∑
k

1
dM
|Cn|2 (4.96)

=
1
M

∑
n

|Cn|2 =
1
M

(4.97)

□

Proof of Theorem 8.
∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2 is given by

∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2 =∑
nm

∑
ab

∑
kl

VnkV
∗
mkV

∗
alVblC

∗
nCmCaC

∗
b. (4.98)

Similarly to the relationship in Eq. (4.93), even though more multiplications of
Vnm appear, when a combination of indicesnmappears only once in a term, the
term becomes zero. Then only certain terms in the equation survive after taking
average in probability,

⟨∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2⟩exp

D,Θ
=

∑
na

∑
kl

⟨
|Vnk|2 |Val|2

⟩exp

D,Θ
|Cn|2 |Ca|2

+
∑
nm

∑
k

⟨
|Vnk|2 |Vmk|2

⟩exp

D,Θ
|Cn|2 |Cm|2

+
∑
nm

∑
k

⟨
V2

nkV
∗2
mk

⟩exp

D,Θ
C2

nC
∗2
m (4.99)

Taking the absolute value for the factors in the last term of the above equation,
we obtain⟨∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2⟩exp

D,Θ
≤

∑
na

∑
kl

⟨
|Vnk|2 |Val|2

⟩exp

D,Θ
|Cn|2 |Ca|2

+ 2
∑
nm

∑
k

⟨
|Vnk|2 |Vmk|2

⟩exp

D,Θ
|Cn|2 |Cm|2 . (4.100)

According to Eq. (4.94) and the relationship⟨
|Vnm|4

⟩exp

D,Θ
= ∆

exp
4 (Θest

nm,Θnm), (4.101)
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the value of interest is bounded as⟨∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2⟩exp

D,Θ
≤

∑
na

∑
kl

∆
exp
2 (Θexp

nk )∆exp
2 (Θexp

al ) |Cn|2 |Ca|2

+ 2
∑
nm

∑
k

∆
exp
2 (Θexp

nk )∆exp
2 (Θexp

mk ) |Cn|2 |Cm|2

+ 3
∑

n

∑
k

(
∆

exp
4 (Θest

nk) −
(
∆

exp
2 (Θexp

nk )
)2
)
|Cn|4 . (4.102)

Applying Theorem 5 for our setting, we achieve

∆
exp
4 (Θest

nm) ≤ 3
(
∆

exp
2 (Θest

nm)
)2
+

4
d2
∆

exp
2 (Θest). (4.103)

Substitute the above inequality and the bound of∆est
2 (Θest

nm) mentioned before⟨∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2⟩exp

D,Θ
≤ 1

M2
+

2
dM2

+
1
d2

(
12
M
+

6
dM2

)∑
n

|Cn|4 . (4.104)

Because|Cn| ≤ 1, ∑
n

|Cn|4 ≤
∑

n

|Cn|2 = 1. (4.105)

Then ⟨∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2⟩exp

D,Θ
≤ 1

M2
+

2
dM2

+
12

d2M
+

6
d3M2

. (4.106)

Substitute 1/d ≤ 1 into (4.106), we obtain⟨∣∣∣⟨ϕ| |V|2 |ϕ⟩∣∣∣2⟩exp

D,Θ
≤ 12

M
+

9
M2

. (4.107)

□

4.4 Implementing projective measurement of energy

4.4.1 Implementing projective measurement of energy

We propose an implementation method of the projective measurement of energy
using the estimated parameterΘest, when the unitary operation is given by the dy-
namics of an unknown HamiltonianH with duration timet. We take the Hamil-
tonianH as it absorbs the complex factor (global phase) of⟨0|U |0⟩, among the
arbitrariness for choosing the base-point of the energy eigenvalue, and denote

Θ =
∑
k∈Y

ce−iEktPk, Pk =
∑
λ∈Zi

|Eλ
k⟩⟨Eλ

k |, (4.108)
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wherec = |⟨0|U |0⟩|. We also denote the diagonalization ofH as

H =
∑
i∈Y

EiPi , Pi =
∑
λ∈Zi

|Eλ
i ⟩⟨Eλ

i |. (4.109)

We assume a bound of the maximum energy difference∆max (the largest
eigenvalue minus the smallest eigenvalue) ofH is known. We take the duration
time of the Hamiltonian dynamicst satisfying

∆maxt < π/4. (4.110)

Under this condition, the constantc inΘ is not zero. It is proven as follows. Since
⟨0|U |0⟩ is expanded as

⟨0|U |0⟩ =
∑

i

∣∣∣⟨0|Eλ
i ⟩

∣∣∣2 e−iEi t, (4.111)

then

|⟨0|U |0⟩|2 =
∑
i, j∈Y

∑
λ∈Zi ,µ∈Z j

∣∣∣⟨0|Eλ
i ⟩

∣∣∣2 ∣∣∣∣⟨0||Eµ
j ⟩
∣∣∣∣2 e−i(Ei−E j )t

=
∑
i, j∈Y

∑
λ∈Zi ,µ∈Z j

∣∣∣⟨0|Eλ
i ⟩

∣∣∣2 ∣∣∣∣⟨0|Eµ
j ⟩
∣∣∣∣2 cos(Ei − E j)t.

≥
∑
i, j∈Y

∑
λ∈Zi ,µ∈Z j

∣∣∣⟨0|Eλ
i ⟩

∣∣∣2 ∣∣∣∣⟨0||Eµ
j ⟩
∣∣∣∣2 cos∆maxt,

=
∑
i, j∈Y

∑
λ∈Zi ,µ∈Z j

∣∣∣⟨0|Eλ
i ⟩

∣∣∣2 ∣∣∣∣⟨0||Eµ
j ⟩
∣∣∣∣2 cosπ/4,

= cosπ/4 =
1
√

2
. (4.112)

For simplicity, we impose a condition that the mean value of the Hamiltonian is
zero, namely,

1
d

∑
i∈Y

∑
λ∈Zi

dλi Ei = 0, dλi = Tr
[
Pλ

i

]
(4.113)

Under this condition, each eigenvalue ofH satisfies

Eit ∈
[
−π

4
,
π

4

]
. (4.114)

Note that the following arguments are still valid, even when the mean value is
not zero. If the mean value is given bye, we just replace the condition of each
eigenvalue to

Eit ∈
[
−π

4
+ e,

π

4
+ e

]
. (4.115)
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Unfortunately, the linear estimatorΘest(D) which we defined in the previous
section is expected to estimate non-normal matrices in typical cases since the set
of normal matrices is the zero set in the linear space of operators, whereas the
expectation value of the estimatorΘest introduced in Sec. 4.3 is a normal matrix
Θ. Returning such anunphysicaloutcome is known to be the disadvantage of the
linear estimator in general. A non-normal matrix does not have eigenvectors and
eigenvalues, which is necessary to identify for implementing projective measure-
ment of energy. For this purpose, we have to deform the obtained matrix into a
normal matrix.

In the followings, we impose an assumption that there exist an estimator in-
cluding a deformation which does not change the probability distribution on each
matrix element. We also assume the deformation process guarantees the regular-
ity of the matrix, which is a loose assumption since the set of non-regular matrix
is the zero set in the matrix space.

Under these assumptions, we decompose the matrix as

Θest=
∑

k∈X,α∈W
ck,αe

iφkP̃k;α, P̃k;α =
∑
λ∈Ri,α

|Ẽλ
k;α⟩⟨Ẽλ

k;α|, (4.116)

whereck,α is a positive number andeiφk is the absolute value denoting the complex
factor of the eigenvalue ofΘest.

According to the estimated matrixΘest, we assign an estimated energyẼi for
each vector|Ẽλ

i ⟩ according to each eigenvaluecieiφi of Θest. As Eq. (4.108), the
value of energy is reflected in the complex factor of the eigenvalue. Then intu-
itively, the energy eigenvalue is determined by the imaginary part of the logarithm
of the eigenvaluecieiφi . However there is arbitrariness in choosing a branch of the
logarithm function. When we know the mean value of the energy is 0, it is reason-
able that we take the branch of the logarithm function as a half-line represented
as|z| > 0,argz= π. However, we do not know the description of the Hamiltonian
beforehand. Thus, we introduce the following logarithm function.

Definition 34. For a normal, regular matrixΘest having eigenvalues cieiφ, we
define the primal value of the phaseφi as φi ∈ [−π, π]. We define a complex
functionLog as it satisfies

α = eLogα, α ∈ C, (4.117)

and

−π ≤
ImLogα −

∑
i

φi

d

 ≤ π. (4.118)

We call this function as a logarithm function forΘest.
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Definition 35. We denote the branch cut ofLog as the solution of the equation
argz= φΘ by using a real numberφΘ ∈ [−π, π].

In other words, the function Log is the logarithm function whose brunch cut
exists on the half-line determined by the solution of the equation argz=

∑
i φi/d+

π. This logarithm function satisfies the following theorem.

Theorem 9. Assume that an estimatorΘest for the parameterΘ satisfies the con-
ditions Eqs. (4.80),(4.81) and the conditions of normality and regularity. We also
assume the matrixΘ is determined by a Hamiltonian H as Eqs. (4.108),(4.109)
and (4.113), and parameter t satisfies∆maxt < π/4. Then

P {φΘ ∈ [−π/2, π/2]} ≤ 16d

(
12
M
+

9
M2

)
. (4.119)

Proof. We denote the probability of achievingφΘ < [−π/2, π/2] as

P {φΘ < [−π/2, π/2]} . (4.120)

SinceφΘ is given as
∑

i φi/d± π, when all ofφi satisfyφi ∈ [−π/2, π/2], φΘ is not
in the section [−π/2, π/2]. Then, we can bound the probability by that of having
at least one indexi satisfyingφi < [−π/2, π/2]. Thus

P {φΘ < [−π/2, π/2]} ≤ P {∃i, φi < [−π/2, π/2]} . (4.121)

Now we decompose an eigenvector ofΘ in the ones ofΘest, and we denote

|Eλ
i ⟩ =

∑
j∈X

∑
α∈Wi ,µ∈Ri

v(λµ)
i j ;α |Ẽ

µ
j;α⟩. (4.122)

We define a matrixV given by Eq. (4.88) and substitute Eq. (4.122) into Eq. (4.147).

V|Eλ
i ⟩ =

∑
j∈X

∑
α∈Wi ,µ∈Ri

ṽλµi j ;α

(
ci;αe

iφi − ce−iE j t
)
|Ẽµ

j;α⟩ (4.123)

We define the valueYλ
i as

Yλ
i = ⟨Eλ

i | |V|2 |Eλ
i ⟩. (4.124)

Due to Eq. (4.123),Yi can be represented as

Yλ
i =

∑
j∈X

∑
α∈Wi ,µ∈Ri

∣∣∣∣ṽλµi j ;α

∣∣∣∣2 (
c2 + c2

j;α − 2ccj;α cos(Eit + φ j)
)
. (4.125)

Assume thatφi < [−π/2.π/2]. SinceEi satisfies the condition of Eq. (4.115), the
cosine function is bounded as

cos(Eit + φ j) ≤
1
√

2
. (4.126)
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Substitute this inequality into Eq. (4.125), we obtain

Yλ
i ≥

(
c2 + c2

j;α −
√

2ccj;α

)
. (4.127)

Since the right-hand side of this inequality is equal to (c−ci)2+c2/2 andc ≥ 1/
√

2
according to Eq. (4.112), then

Yλ
i ≥

1
4
. (4.128)

Thus we can conclude that satisfying (4.128) is the necessary condition for being
φΘ < [−π/2, π/2]. Therefore

P {∃i, φi < [−π/2, π/2]} ≤ P

{
∃i, λ,Yλ

i ≥
1
4

}
. (4.129)

The valuesYi for indicesi are not statistically independent of each other. Then
we decompose the probability of achieving at least oneYi equal to or larger than
1/4 as

P

{
∃i, λ,Yλ

i ≥
1
4

}
=

∑
i∈Y

∑
α∈Zi

P

{
Yλ

i ≥
1
4

}
−

d∑
k=2

k
∑

i1,...ik∈Y
λ1∈Zi1 ,...λk∈Zid

P

{
Yλ1

i1
, . . .Yλk

ik
≥ 1

4

}
.

(4.130)
The second term of Eq. (4.130) cancels the counted events. Because of the posi-
tivity of the probability, we have

P

{
∃i, λ,Yλ

i ≥
1
4

}
≤

∑
i∈Y

∑
α∈Zi

P

{
Yλ

i ≥
1
4

}
. (4.131)

Since the left side of Eq. (4.89) is the expectation value ofY2
i , the variance ofYi

is bounded as

σ(Yλ
i ) =

⟨(
Yλ

i

)2
⟩exp

D,Θ
−

(⟨
Yλ

i

⟩exp

D,Θ

)2

≤
⟨(

Yλ
i

)2
⟩exp

D,Θ

=

⟨∣∣∣⟨Eλ
i | |V|2 |Eλ

i ⟩
∣∣∣2⟩exp

D,Θ

≤
(
12
M
+

9
M2

)
. (4.132)

Using the Chevichev’s inequality (Lemma 12) forY(λ)
i , we achieve

P

{
Yλ

i ≥
1
4

}
≤ 16σ(Yλ

i ). (4.133)
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Therefore according to Eq. (4.132), we achieve a similar bound from the above
inequality (4.133), namely,

P

{
Yλ

i ≥
1
4

}
≤ 16

(
12
M
+

9
M2

)
. (4.134)

Summarizing Eqs. (4.121),(4.156),(4.157) and (4.134), we reach our goal at last,
namely,

P {φΘ ∈ [−π/2, π/2]} ≤ 16d

(
12
M
+

9
M2

)
. (4.135)

□

This theorem guarantees the performance of the projective measurement de-
fined below.

Definition 36. For the normal, regular matrixΘest whose eigenvalues and eigen-
vectors are given by Eq. (4.116), we define the projective super operatorP̃Θest

i

P̃Θ
est

i ρ =
∑

i

P̃iρP̃i , (4.136)

where
P̃i =

∑
α

P̃i;α. (4.137)

We also define the value ofẼΘ
est

i as

ẼΘ
est

i = i
Logeiφi

t
, (4.138)

whereLog is the logarithm function forΘest. A corresponding instrument is de-
fined by

IΘest

i = p(Θest)Pi,Θest, (4.139)

where p(Θest) is the probability that we obtain a sequence of data D which pro-
vides the matrixΘest as an estimation result.

Definition 37. We define a measurementMBF = {Ĩ, Ẽ,Q}, where

Q : = {(Θest, i)|Θest ∈ C2d, i ∈ X}, (4.140)

I : = {IΘest

i |(Θest, i) ∈ Q}, (4.141)

E(Θest, i) : = EΘ
est

i , (4.142)

and we callMBF as the projective measurement implemented via estimatorΘest.

In the following subsection, we abbreviateΘest dependency of a CP map̃IΘest

i

and outcomẽEΘ
est

i asĨi or Ẽi respectively, when dependency is clearly exhibited
in the context.
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4.4.2 Evaluation of the performance

The effect of the added matrix for diagonalization

Consider we have a normal matrix̃A on a Hilbert spaceH which is different from
the diagonalizable matrixA by a matrixV, namely,

Ã = A+ V. (4.143)

We assumẽA is still normal. We represent the diagonalization as

Ã =
∑

k

ãkP̃k, P̃k =
∑
λ

|ãλk⟩⟨ãλk |. (4.144)

We also denote a decomposition ofA as

A =
∑

k

akPk, Pk =
∑
λ

|aλk⟩⟨aλk |. (4.145)

We decompose the eigenbasis{|aλi ⟩} of A by the basis{|ãλi ⟩} of Ã.

|aλi ⟩ =
∑

j

ṽλµi j |ã
µ
j ⟩. (4.146)

Applying the matrixÃ to both sides of Eq. (4.146), we have

ai |aλi ⟩ =
∑

j,λ

ṽλµi j ãj |ãµj ⟩ − V|aλi ⟩. (4.147)

By comparing the coefficients in the eigen basis ofA, we obtain

ṽλµi j

(
ãj − ai

)
= Ṽλµ

i j , (4.148)

whereV(λµ)
i j = ⟨ã(µ)

j |V|aλi ⟩. Then the coefficient ṽi j is determined by

ṽi j =
Ṽλµ

i j

ãj − ai
. (4.149)

Evaluating fluctuation of measurement value

In the followings, we evaluate the performances of measurements introduced in
Sec.4.4. The fluctuation of measurement value for the measurementMBF is given
by

R1(MBF|H) = max
{|Eλ

i ⟩}
i∈Y,λ∈Zi

⟨∑
j

⟨Eλ
i |P̃j |Eλ

i ⟩(Ẽ j − Ei)
2

⟩exp

D,Θ

. (4.150)
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We define an orthonormal basis{|Ẽλ
j;α⟩} of H̃ determined by the estimatorΘest as

follows:

|Ẽ0
j;α⟩ =

P̃j;α|Eλ
i ⟩√

⟨Eλ
i |P̃j;α|Eλ

i ⟩
, (4.151)

wherei ∈ Y andλ ∈ Zi are chosen as they achieve the maximization in the right-
hand side of Eq. (4.150). We definevλµi j ;α as an inner product of two basis vectors
as

vλ0
i j ;α = ⟨Ẽ

µ
j;α|E

λ
i ⟩. (4.152)

Because of the definition of|Ẽµ
j;α⟩, we obtain

vλ0
i j ;α =

⟨Eλ
i |P̃j;α|Eλ

i ⟩√
⟨Eλ

i |P̃ j;α|Eλ
i ⟩
. (4.153)

Then we obtain ∣∣∣vλ0
i j ;α

∣∣∣2 = ⟨Eλ
i |P̃j;α|Eλ

i ⟩. (4.154)

Substituting Eq. (4.154) into Eq. (4.150), we have

R1(MBF|H) = max
{|Eλ

i ⟩}
i∈Y,λ∈Zi

⟨∑
j;α

∣∣∣vλ0
i j ;α

∣∣∣2 (Ẽ j − Ei)
2

⟩exp

D,Θ

. (4.155)

We assume the estimatorΘest and the unitaryU satisfy all the condition imposed
in the previous section. We define the following step function according to the
φΘest defined in the previous section as

s(D) = 0,
(
φΘest ∈

[
−π

2
,
π

2

])
(4.156)

= 1, (otherwise) . (4.157)

Using s(D), we divide the maximized value in Eq. (4.155) in the definition ofR1

into δi , ϵi as

δi =

⟨∑
j,α

∣∣∣vλ0
i j ;α

∣∣∣2 (Ẽ j − Ei)
2s(D)

⟩exp

D,Θ

, (4.158)

ϵi =

⟨∑
j,α

∣∣∣vλ0
i j ;α

∣∣∣2 (Ẽ j − Ei)
2(1− s(D))

⟩exp

D,Θ

. (4.159)

SubstitutingV = Θest− Θ into Eq. (4.149),δi is transformed to

δi =

⟨∑
j,α

∣∣∣Ẽ j − Ei

∣∣∣2∣∣∣cj;αe−iẼ j t − ce−iEi t
∣∣∣2 ∣∣∣Vλ0

i j ;α

∣∣∣2 s(D)

⟩exp

D,Θ

(4.160)



63

The numerator in the right-hand side of Eq. (4.160) is simplified as∣∣∣∣c(0)
i e−iẼ j t − ce−iEi t

∣∣∣∣2 = c2 + c2
j;α − 2ccj;α cos(Ei − Ẽ j)t. (4.161)

By differentiating this equation by a parameterci, it is shown that the minimum
is realized when the parametercj;α is given by

c j;α = c×max
{
cos(Ei − Ẽ j)t, 0

}
. (4.162)

Substituting this result into the equation, we achieve∣∣∣∣c j;αe
−iẼ j t − ce−iEi t

∣∣∣∣2 ≥ c2 f (x), (4.163)

where f is defined as

f (x) = sin2 x, (cosx ≥ 0) , (4.164)

= 1, (otherwise) . (4.165)

Thenδi is bounded as

δi ≤
1

t2c2

⟨∑
j

(Eit − Ẽ jt)2

f (Eit − Ẽ jt)

∣∣∣Vλ0
i j

∣∣∣2 s(D)

⟩exp

D,Θ

. (4.166)

Whens(D) = 1 is realized,φ j = −Ẽ jt satisfiesφ j ∈ [−3π/2,3π/2]. According to
Eq. (4.115), the valuex = φ j + Eit satisfiesx ∈ [−5π/4 ≤ 5π/4]. In this domain,
the functionx2/ f (x) takes the maximum value 25π2/8 whenx = ±5π/4. Then
we achieve the upper bound ofδi given by

δi ≤
25π2

8t2c2

⟨∑
j

∣∣∣Ṽλ0
i j

∣∣∣2 s(D)

⟩exp

D,Θ

. (4.167)

Sinces(D) ≤ 1, we further simplify this upper bound as

δi ≤
25π2

8t2c2

⟨∑
j

∣∣∣Ṽλ0
i j ;α

∣∣∣2⟩exp

D,Θ

. (4.168)

By using the notation of the trace operation, the value in the parentheses are
transformed as ∑

j

∣∣∣Ṽλ0
i j ;α

∣∣∣2 = ∑
j

∣∣∣⟨Ẽ0
j |V|Eλ

i ⟩
∣∣∣2 (4.169)

=
∑

j

⟨Ẽ0
j |V|Eλ

i ⟩⟨Eλ
i |V†|Ẽ0

j ⟩ (4.170)

≤ Tr
[
V|Eλ

i ⟩⟨Eλ
i |V†

]
(4.171)

= ⟨Eλ
i | |V|2 |Eλ

i ⟩ (4.172)

= Yλ
i , (4.173)
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whereYi is defined as Eq. (4.124).
Using Theorem 7 and 1/

√
2 ≤ c ≤ 1 to this inequality, we conclude that

δi ≤
25π2

4t2M
. (4.174)

Next, we evaluateϵi. By definition,Ei andẼ j are bounded by

|Eit| ≤ π/4,
∣∣∣Ẽ jt

∣∣∣ ≤ 2π. (4.175)

Then we have ∣∣∣Eit − Ẽ jt
∣∣∣ ≤ 9π

4
. (4.176)

Thusϵi is bounded as

ϵi ≤
81π2

16t2
⟨(1− s(D))⟩exp

D,Θ . (4.177)

Because of the definition ofs(D), we can replace the expectation value part of the
inequality byP{φΘ ∈ [−π/2, π/2]}. Then according to Theorem 8, we obtain

ϵi ≤
81dπ2

t2

(
12
M
+

9
M2

)
. (4.178)

Since maxi(δi+ϵi) gives the fluctuation of measurement value and the upper bound
of eachεi andδi is determined,R1(MBF|H) is bounded as

R1(MBF|H) ≤ π
2

t2

(
25
4M
+

972d
M
+

729d
M2

)
. (4.179)

The above discussions are summarized in the following theorem.

Theorem 10.Assume that an estimatorΘest for the parameterΘ satisfies the con-
ditions given by Eqs. (4.80),(4.81) and the conditions of normality and regularity.
We also assume that the matrixΘ is determined by a Hamiltonian H satisfying
Eqs. (4.108),(4.109) and (4.113), and the parameter t satisfies∆maxt < π/4. Then
the measurementMBF according to this estimator satisfies.

R1(MBF|H) ≤ π
2

t2

(
25
4M
+

972d
M
+

729d
M2

)
. (4.180)

About non-repeatabilityR2 of this tomography based measurement scheme,
no obvious bound has been found. However, it is conceivable that no matter how
many times we iterate measurements to identifyΘ, R2 is not always concentrated
to zero. Consider the case that the system is two dimensional (d = 2) and its
Hamiltonian is degeneratedH = E0I . The projective measurement of energy
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for this Hamiltonian has only one measurement instrument id, which means that
the measurement operation affecting the system after obtaining an outcome is an
identity operation id, (namely, the state does not change). On the other hand, the
parameterΘ for this case is given asI . The estimated matrixΘest is given by

Θest= I + V, (4.181)

whereV is the statistical error from the true parameterΘ. Again we assume that
V is a normal matrix. According to Eq. (4.181), it is clear that the eigenbasis of
Θest is equal to the ones ofV. Normal matrices are completely represented by pa-
rameters describing eigenbasis and eigenvalues. A set of degenerated matrices is
described as a set of the parameters whose eigenvalue part has a restriction. Then
the set of degenerated matrix is a zero set in this parameter space. According to
this fact, we assume that the event of matrixΘest having degenerated eigenvalues
is zero. Then the CPTP map according to the measurementMBF can be rewritten
as ∑

i=1,2

∑
Θest

Ii,Θest =
∑
Θest

p(Θest)ΛΘest, (4.182)

where

ΛΘest =
∑
i=1,2

P̃i,Θest. (4.183)

Consider a maximally entangled stateρme on a two-qubit systemC2 ⊗ C2. By
applyingΛΘest to the first qubit of the maximally entangled state, the state after
the measurement operation becomes a separable state. We call such an operation
as an entanglement breaking operation. A convex sum of separable states is also
a separable state by definition. Then a convex sum of a entanglement breaking
operation is still entanglement breaking operation. We define a separable state
ρsepas

ρsep= ⟨ΛΘestρ⟩exp
D,Θ =

∑
Θest

p(Θest)ΛΘestρme. (4.184)

Note that⟨ΛΘest∗⟩exp
D,Θ is equivalent to the CPTP map corresponding to the mea-

surementMBF. For this case, non-repeatabilityR2 is calculated as

R2(MBF|H) = max
ρ∈D(C2×C2)

∣∣∣∣∣∣⟨ΛΘestρ⟩exp
D,Θ − ρ

∣∣∣∣∣∣
tr
.

Because of the maximization of the value in the right-hand side, if we substitute
the stateρ to ρme, the value is smaller than the maximized value, namely,

R2(MBF|H) ≥
∣∣∣∣∣∣ρsep− ρme

∣∣∣∣∣∣
tr
. (4.185)
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The trace norm satisfies the non-negativity condition||ρ − σ||tr = 0 ⇔ ρ = σ.
A set of separable states does not include a maximally entangled state nor a se-
quence which approaches to a maximally entangle state, because entangle mea-
sures are continuous functions and separable states have zero entanglement, on
the other hand maximally entangled states have nonzero value. Then there is a
constantc > 0 which satisfies

R2(MBF|H) ≥ c. (4.186)

Then we find that there exists the case whereR2 does not concentrate into zero
even if we iterate measurements for infinite times.

Evaluation of the runtime to achieve the required precision

The fluctuation of measurement value is the mean squared error of measurement
outcomes from the true value. In the following, we calculate the sufficient runtime
to achieve required accuracyε, namely,

R1(MBF) ≤ ε. (4.187)

The total time to implement the energy measurement via Hamiltonian tomogra-
phy is divided into the time for the Schrödinger evolution of the system and the
time required for our manipulation, (for example, preparation of initial states,
executing measurements for process tomography and implementation of the pro-
jective measurement of energy). The latter depends on how fast we can execute
manipulation, and it is not bounded in principle. Then the total calling time of
the Schr̈odinger evolution is the ideal bound of the total time [2, 5, 12].

To implementMBF, according to Sec. 4.3 we must prepare 4d − 3 different
initial states and performd2 different measurements on each state after applying
the Hamiltonian dynamics with duration timet. If we iterate measurementM
times for each combination, the time is determined by

TBF = M × (4d − 3)× d2 × t. (4.188)

Due to Eq. (4.180),M must satisfyM > O(d/(t2ε)) to achieve Eq. (4.187). Then

TBF > O

(
d4

tε

)
, (4.189)

is the sufficient runtime for achieving the inequality. When a bound of the maxi-
mum eigenvalue difference in eigenvalues∆max is known, due to the assumption
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π/4 ≥ ∆maxt, we can minimize the upper bound of the total time. If we take
t = ∆max/π, then the ideal bound of the runtime is given by

TBF > O

(
d4∆max

ε

)
. (4.190)



Chapter 5

Phase estimation based method:
algorithm and evaluation

68
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5.1 Introduction

In this chapter, we present a method to implement projective measurement of
energy on any finite dimensional system whose self-Hamiltonian is unknown.
This method achieves the ideal projective measurement of energy in the limit of
infinite time resource, while its run time for a given accuracyis independent of
the system dimension. We introduce a randomization technique to show that a
quantum algorithm known as a quantum phase estimation algorithm [18] can be
applied to a system evolving under an unknown Hamiltonian whose bound on
the maximum difference in the energy eigenvalues is known. More specifically,
by using our technique we show that a unitary operation conditioned on a quan-
tum input (i.e., a controlled-unitary operation) can be implemented for an un-
known unitary operation provided as a physical system evolving according to an
unknown Hamiltonian. Incotrast, previously known implementations of the con-
ditional operations require that the unitary operation to be controlled is known, at
least partially [22, 23].

In Sec. 5.2, we introduce the phase estimation algorithm which asymptotically
implements projective measurement of energy by using the controlled Hamilto-
nian dynamics of the target system as resource. In Sec. 5.3, we introduce our new
algorithmuniversal controllizationwhich utilize Hamiltonian evolution of closed
quantum dynamics for implementing the controlled version of Hamiltonian evo-
lution. In Sec . 5.4 we apply the universal controllization to the phase estimation
algorithm, In Sec. 5.5 we analyze the performance of the implemented projec-
tive measurement of energy. Finally, we evaluate the necessary running time to
guarantee small fluctuation outcome for the energy measurement in Sec. 5.6.

5.2 Phase estimation algorithm

The phase estimation algorithm is a quantum algorithm to estimate the phase
factor 0≤ θi < 2π of the eigenvalueeiθi of a finite dimensional unitary operation
U when an eigenstate|θλi ⟩ is given. A spectral decomposition ofU is given by

U(t) =
∑
k∈Y

eiθkPk, Pk =
∑
λ∈Zk

|θλk⟩⟨θλk |. (5.1)

The algorithm is presented by a quantum circuit shown in Fig. 5.1. As shown
in the figure, this algorithm uses controlled-unitary operations ofU,U2,U22

, · · · ,U2N

whereN denotes the number of control qubits. A controlled-unitary operationCU

of a unitary operationU is defined by

CU := |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ U (5.2)



70 Chapter 5.Phase estimation based method: algorithm and evaluation

onHc ⊗ Ht where the Hilbert spaces of the control system and the target system
are represented byHc = C

2 andHt = C
d (d < ∞), respectively.

The final measurement ofN control qubits in the computational base provides
a sequence of outcomes{n1, · · · ,nN} wherenk ∈ {0,1} corresponds to the mea-
surement outcome of thek-th control qubit. Then the estimated phase is given
by 2π fN where fN := 0.n1 · · · nN is the binary representation of a decimal number
defined by 0.n1 · · · nN :=

∑N
k=1 2−knk. When an input state of the target system is

|θλi ⟩, the probability of obtaining 2π fN is

PN(2π fN|θi
λ) =

 sin
[
2N(θi − 2π fN)/2

]
2N sin

[
(θi − 2π fN)/2

]
2

. (5.3)

We show this result in Sec. 5.4. The output state of the target system remains in
|θi⟩. The probability distribution of the estimation errory := θi − 2π fN is given by

pN(y) := PN(θi − y|θλi ) =

(
sin[2Ny/2]
2N sin[y/2]

)2

. (5.4)

This means thatpN(y) for y , 0 decreases exponentially inN. The function
pN(y) can be regarded as a probability distribution of a discreet random variable
y∆n = 2π(n+ ∆)/2N with −2N−1 ≤ n < 2N−1 satisfying

2N−1−1∑
n=−2N−1

pN(y∆n ) = 1 (5.5)

where−1/2 ≤ ∆ < 1/2. We show that this discrete probability distribution
converges to a delta function on the section [−π, π] at N→ ∞.

To transform a discreet random variable to a continuous one, we construct a
probability measureµ corresponding to the probability distributionp∆N at the limit
N→ ∞. The measure is naturally defined by

µ(A) = lim
N→∞

∑
y∆n∈A

pN(y∆n), (5.6)

whereA is a subset of [−π, π]. If A = [a,b] for a,b > 0, we can boundµ(A) as

µ(A) ≤ lim
N→∞

NA

(
1

2N sina

)2

. (5.7)

SinceNA ≤ (b− a)(2N + 1),

0 ≤ µ(A) ≤ b− a

sin2 a
lim
N→∞

2N + 1
22N

= 0. (5.8)
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This impliesµ(A) = 0. If A = [a, b] for a,b < 0, we can similarly obtainµ(A) = 0.
Thusµ(A) = 1 should be satisfied in the case ofa < 0 < b due to Eq. (5.5).

We define a set of functionsF of which elements are measurable and con-
tinuous atx = 0. Integral of f ∈ {F } over the section [−π, π] by the probability
measureµ is represented by∫ π

−π
µ(dx) f (x) = lim

n→∞

∞∑
k=−∞

k
n
µ(An

k) (5.9)

whereAn
k = f −1 ([k/n, (k+ 1)/n)). This definition of integral is well defined due

to the condition off to be measurable.
There is an integeri such that{ f (0)} ∈ A◦i (or { f (0)} = Āi ∩ Āi+1), where

A◦ denotes the interior of the setA. (Ā means the closure ofA.) Due to the
continuity,Ai (or Ai ∪ Ai+1) includes a section [a,b] of a < 0 < b. Thenµ(Ai) = 1
(or µ(Ai) + µ(Ai+1) = 1) should be satisfied. Thus the integral satisfies∫ π

−π
f (x)µ(dx) = f (0). (5.10)

Formally, we can represent this probability measure as a probability distribution
p(x) of a continuous random variablex,∫ π

−π
f (x)µ(dx) =

∫ π

−π
f (x)p(x)dx= f (0). (5.11)

Therefore the functionp can be regarded as a delta function for the set of func-
tions F . The set of functionF includes smooth functions that are known as
descriptions of physically natural values.

We note that the measureµ is not a measure called the “Dirac measure”. The
setA = {2π∆/2N|N ≥ 1} has non-zero value under theµmeasure, but it gives zero
under the Dirac measure.

If we apply the phase estimation algorithm to an arbitrarily superposed input
state|ϕ⟩ = ∑

i,λ α
λ
i |θi⟩ where

∑
i,λ |αλi |2 = 1, the probability distribution of obtain-

ing the outcomes{n1, · · · ,nN} represented in terms offN = 0.n1 · · ·nN is given
by

PN(2π fN|ϕ) =
∑
i,λ

|αλi |2PN(2π fN|θλi ). (5.12)

The corresponding output state of the target system is

|ϕ′fN⟩ =
∑

i,λ α
λ
i (PN(2π fN|θλi ))1/2√
PN(2π fN|ϕ)

eiG(θi , fN)|θλi ⟩, (5.13)
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control 1 

control 2 

control 3 

target 
|Ei>

|0>

|0>

|0>

U U U
2
22

H

H

H

QFT

Figure 5.1: The phase estimation algorithm. The box QFT denotes the quantum
Fourier transformation. The final measurement is performed in the computational
basis.

whereG(θi , fN) = (2N−1)(θi −2π fN). Since 2π fN → θi is guaranteed forN→ ∞,
the output state converges toPk|ϕ⟩/ ||Pk|ϕ⟩|| when the outcome isfN. Thus the
phase estimation algorithm implements a projective measurement in the eigenba-
sis ofU for N→ ∞.

If U is given by a Hamiltonian evolution operatorU(t) = e−iHt of a Hamil-
tonian H, the phase estimation algorithm asymptotically implements a projec-
tive measurement of energy onHt that gives an outcome representing an energy
eigenvalueEi of H up to periodicity of the phase onHt and also gives an instru-
ment{PH

i } to an eigenstate corresponding to the outcomeEi. This property of the
phase estimation algorithm is also used in thermalization algorithms [20, 21].

5.3 Controlling of the quantum dynamics

If we can perform the controlled unitaryCU(t), we can implement the projective
measurement of energy via the phase estimation algorithm.Unfortunately,with a
finite time resource,CU(t) for U(t) = exp(−iHt) cannot be perfectly implemented
when H is unknown. (See Ref. [24], for instance.) We address this issue by
implementing an approximated version ofCU(t).

Let us denote the Hilbert spaces of the control and the target system byHc and
Ht, respectively. First, we add an ancilla system, with Hilbert spaceHa = C

d, and
initially prepare it in the completely mixed stateI/d. We introduce thepseudo
controlled unitary operation WU(t/m) of CU(t/m), which is a unitary operation on
Hc ⊗Ha ⊗Ht, defined by

WU(t/m) = F̃(I ⊗ I ⊗ U(t/m))F̃, (5.14)
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where
F̃ = |0⟩⟨0| ⊗ I ⊗ I + |1⟩⟨1| ⊗ S WAP (5.15)

and the unitary operationS WAPonHa ⊗Ht is defined as

S WAP|ψ⟩|ϕ⟩ = |ϕ⟩|ψ⟩, |ψ⟩|ϕ⟩ ∈ Ht ⊗Hc. (5.16)

For an input density operator

ρ :=
∑

j,k

| j⟩⟨k| ⊗ I
d
⊗ ρ j,k (5.17)

onHc ⊗Ha ⊗Ht, we see that

WU(t/m)ρW†
U(t/m) =

∑
j,k

| j⟩⟨k| ⊗ 1
d

U

(
( j − k)t

m

)
⊗ U

( jt
m

)
ρ j,kU

†
(
kt
m

)
,

where j, k = 0,1. The operationWU(t/m) generally entangles the ancilla and the
rest of the system.

The entanglement is broken by the use of the following randomization pro-
cess. We performm iterations of unitary operationV(r)

U(t/m) = (I⊗σr⊗ I )WU(t/m)(I⊗
σ†r ⊗ I ) onHc ⊗ Ha ⊗ Ht, whereσr is uniformly and randomly chosen for each
iteration from a set ofD operations{σr} such that

1
D

∑
r

σrUσ
†
r = TrU · I , (5.18)

for all unitary operatorsU onHt. If the system is composed by aq-qubits, we
can use the set of general Pauli matrices{X( j)

i } in Eq. (4.55) as an example.We
denote the CPTP map of the randomizedV(r)

U(t/m) by

VU(t/m)(ρ) :=
1
D

∑
r

V(r)
U(t/m)ρ(V(r)

U(t/m))
†

and define the reduced CPTP mapΓU(t/m) of VU(t/m) onHc ⊗ Ht for the reduced
stateρct := TrHaρ by

ΓU(t/m)(ρct) := TrHa[VU(t/m)(ρct ⊗ I/d)]. (5.19)

The randomization process transforms all components onHa to states propor-
tional to the completely mixed state, henceVU(t/m)(ρct⊗ I/d)) = ΓU(t/m)(ρct)⊗ I/d.
Random operations are used in a similar spirit when decoupling a system from
an interacting environmentas the dynamical decoupling [25], but in this case
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the random operations are applied on the system. See Fig. 5.2(b) for a quantum
circuit representation of the algorithm.

Let us analyze the accuracy of the approximation. Form iterations of the
mapsΓU(t/m) andVU(t/m) (denoted byΓm

U(t/m) andVm
U(t/m), respectively), we have

Γm
U(t/m)(ρct) = Tr[Vm

U(t/m)(ρct ⊗ I/d)]. (5.20)

We define a controlled unitary “up to phases” by

C(gU )
U := [|0⟩⟨0| ⊗ I + eigU |1⟩⟨1| ⊗ U], (5.21)

wheregU is a real function ofU. LetC(gU )
U be the CPTP map representing unitary

operationC(gU )
U .

We evaluate the difference between the two CPTP mapsC(mφU(t/m))
U(t) andΓm

U(t/m)

in terms of the diamond norm. Both maps act on the Hilbert spaceHc ⊗ Ht =

C2⊗Cd. Thus we search rank-1 projectors on (Hc⊗Ht)⊗2 to calculate the diamond
norm.(According to Lemma. 1.)Any vector|Ψ⟩ in (Hc⊗Ht)⊗2 can be represented
by |Ψ⟩ = α|0⟩|ψ⟩ + β|1⟩|ϕ⟩ where{|0⟩, |1⟩} is the computational basis of the first
control qubit systemHc, by taking appropriate states|ψ⟩, |ϕ⟩ ∈ Hc ⊗ Ht andα, β
satisfying|α|2 + |β|2 = 1. Any rank-1 operator on (Hc ⊗ Ht)⊗2 can be written by
|Ψ⟩⟨Ψ|.

As a partitioned matrix, the projector is represented by

|Ψ⟩⟨Ψ| =
(
|α|2 |ψ⟩⟨ψ| αβ∗|ψ⟩⟨ϕ|
α∗β|ϕ⟩⟨ψ| |β|2 |ϕ⟩⟨ϕ|

)
. (5.22)

The left upper partition corresponds to the|0⟩⟨0| element of the first system rep-
resented byHc = C

2. The right upper partition is the|0⟩⟨1| element, and so as the
others. The projector|Ψ⟩⟨Ψ| is transformed by the mapsC(mφU(t/m))

U(t) andΓm
U(t/m) on

Hc ⊗Ht as(
C(mφU(t/m))

U(t) ⊗ IHc⊗Ht

)
[|Ψ⟩⟨Ψ|] =

(
|α|2 |ψ⟩⟨ψ| αβ∗e−imφU(t/m) |ψ⟩⟨ϕ|U(t)†

α∗βeimφU(t/m)U(t)|ϕ⟩⟨ψ| |β|2 U(t)|ϕ⟩⟨ϕ|U(t)†

)
(5.23)

and(
Γm

U(t/m) ⊗ idHc⊗Ht

)
[|Ψ⟩⟨Ψ|] = |α|2 |ψ⟩⟨ψ| Tr

[
U( t

m)
]m
αβ∗|ψ⟩⟨ϕ|U(t)†

Tr
[
U†( t

m)
]m
α∗βU(t)|ϕ⟩⟨ψ| |β|2 U(t)|ϕ⟩⟨ϕ|U(t)†

 . (5.24)

Here,U(t) acts on the firstHt. Note that

Tr
[
U

( t
m

)]m

= (aU(t/m))
me−imφU(t/m) (5.25)
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Figure 5.2: (a) Quantum circuit representation of the gateWU(t/m). (b) Quantum
circuit representation of the algorithm implementing the approximatedCU(t). The
two operationsσi in a sequence are identical, but are chosen randomly for each
iteration.

where we shall assumeeimφ(t/m) = 1 for simplicity. (The final consequence is the
same for general cases.) Then the norm we are interested in is calculated to be

∣∣∣∣∣∣∣∣C(mφU(t/m))
U(t) − Γm

U(t/m)

∣∣∣∣∣∣∣∣⋄ = max
|ψ⟩,|ϕ⟩
α,β

(1− (aU(t/m))
m)

∣∣∣∣∣∣
∣∣∣∣∣∣
(

0 αβ∗|ψ⟩⟨ϕ|U†
α∗βU |ϕ⟩⟨ψ| 0

)∣∣∣∣∣∣
∣∣∣∣∣∣
tr

=
(
1− (aU(t/m))

m) max
|ψ⟩,|ϕ⟩
α,β

|αβ|
∣∣∣∣∣∣
∣∣∣∣∣∣
(
|ψ⟩⟨ψ| 0

0 U |ϕ⟩⟨ϕ|U†
)∣∣∣∣∣∣
∣∣∣∣∣∣
tr

= 2
(
1− (aU(t/m))

m) max
α,β
|αβ|

= 1− (aU(t/m))
m.

We refer to (aU(t/m))m as thecoherence factorand represents the quality of the
approximation. We also define a phase factorφU(t/m) ∈ [Emaxt/m,Emint/m] so that

e−iφU(t/m) =
Tr [U(t/m)]
|Tr [U(t/m)] | . (5.26)

Let ∆max := Emax− Emin be the maximum difference between the maximum en-
ergy eigenvalues and the minimum energy eigenvalues, thenφU(t/m) is determined
uniquely, whenever∆maxt ≤ π/2. The following value is also uniquely determined

Eit −mφU(t/m) ∈ [−π, π]. (5.27)

For∆maxt < π/2, the quantityaU(t/m) satisfies

aU(t/m) ≥
√

cos(∆maxt/m) ≥ 1− (∆max)2t2

4m2
. (5.28)
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The total relative phase factore−imφ(t/m), which is obtained bym times the
relative phase factor for each iteratione−imφ(t/m) converges to⟨E⟩t at m → ∞,
where⟨E⟩ is the average of the all energy eigenvalues ofH, namely,

⟨E⟩ =
∑

i

di
Ei

d
, di = Tr [Pi] . (5.29)

(We have omitted the degeneracy parameter of the energy eigenbasis for simplic-
ity). This statement is shown by the following way. SinceaU(t/m) = 1+O(1/m2),
the coherence factor can be sorted by the order ofm as

e−miφ(t/m) =

(
1− i

Tr [H] t
dm

+O

(
1

m2

))m

. (5.30)

Since Tr [H] /d = ⟨E⟩, we can conclude that

e−miφ(t/m) =

(
1− i

Tr [H] t
dm

)m

+O

(
1
m

)
= e−i⟨E⟩t +O

(
1
m

)
.

5.4 Applying universal control to phase estimation

In this section, we show the derivation of the probabilityQN(2π fN|θi ,U(t/m))
of the phase estimation algorithm using universal controllization.PN(2π fN|θi) is
given as the special case ofQN(2π fN|θi ,U(t/m)). A spectral decomposition of
U(t) = exp(−iHt) is given by

U(t) =
∑
k∈Y

e−iEktPk, Pk =
∑
λ∈Zk

|Eλ
k⟩⟨Eλ

k |. (5.31)

Defineθk ∈ [0,2π) so that

θk = −Ekt + 2πν, ν ∈ Z. (5.32)

Let us replace eachCU2k(t) with the approximated mapΓm2k

U(t/m) in the phase esti-
mation algorithm.

To estimate the phase in theN-digits precession 2π fN, we use a system con-
sisting of a target systemHt and a control system consisting ofN-qubit systems
H⊗N

c . The controlled-unitary operation ofU2k
denoted byCU2k is applied on the

k-th qubit of the control system.
The initial state of the control and target system is given by

|0 . . .0⟩⟨0 . . .0| ⊗ |θi⟩⟨θi |, (5.33)
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onH⊗N
c ⊗Ht where|0 . . .0⟩ = |0⟩⊗ · · ·⊗ |0⟩ ∈ H⊗N

c is a state in the computational
basis corresponding to a binary number 0· · ·0.

At the first step of the algorithm, the Hadamard gate is applied to each control
qubit system.The HadamardHgate gate is a unitary operation for a single qubit
system which is defined as

Hgate=
1
2

(|0⟩⟨0| + |1⟩⟨0| + |0⟩⟨1| − |1⟩⟨1|) . (5.34)

The state after this operation is written by

1
2N

∑
a1,a2,...aN
b1,b2,...,bN

|a1a2 . . .aN⟩⟨b1b2 . . . bN| ⊗ |θi⟩⟨θi | (5.35)

whereak,bk ∈ {0,1}.
At the second step, the universal controllization map ofU2k

, Γm
U2k(t/m)

, is ap-

plied on thek-th control qubit and the target system for all 1≤ k ≤ N. After this
step, the state is transformed to

1
2N

∑
a1,a2,...aN
b1,b2,...,bN

N∏
k=1

(aU(t/m))
m2k|ak−bk| exp

(
i2k−1(ak − bk)

(
θi −mφU(t/m)

))
× |a1,a2 . . .aN⟩⟨b1b2 . . . bN| ⊗ |θi⟩⟨θi |. (5.36)

At the last step, the inverse quantum Fourier transformation[36] is applied
and then the control qubits are measured in the computational basis. This is
equivalent to perform a projective measurement in the Fourier basis{| fN⟩⟨ fN|} on
H⊗N

c where

| fN⟩ :=
1
√

2N

∑
c1,c2,...,cN

e−i2kπ fNck |c1c2 . . . cN⟩. (5.37)

The probability of obtainingfN by the measurement{| fN⟩⟨ fN|} on a density opera-
tor ρ is given by⟨ fN|ρ| fN⟩. Thus, the probability distributionQN(2π fN|θi ,U(t/m))
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is

QN(2π fN|θi ,U(t/m)) =

1
2N

∑
a1,a2,...aN
b1,b2,...,bN

N∏
k=1

(aU(t/m))
m2k|ak−bk|

× exp
(
i2k−1(ak − bk)

(
θi +mφU(t/m) − 2π fN

))
=

1
2N

N∏
k=1

1
2

∑
ak,bk

(aU(t/m))
m2k|ak−bk|

× exp
(
i2k−1(ak − bk)

(
θi +mφU(t/m) − 2π fN

))
=

1
2N

N∏
k=1

(
1+(aU(t/m))

m2k

× cos 2k−1 (
θi +mφU(t/m) − 2π fN

))
.

The probability distributionPN(2π fN|θi) corresponds to a special case ofQN(2π fN|θi ,U(t/m))
whereaU(t/m) = 1 andφU(t/m) = 0, namely,

PN(2π fN|θi) =
1
2N

N∏
k=1

(
1+ cos

(
2k−1 (θi − 2π fN)

))
. (5.38)

This probability distribution is simplified in the form given by Eq. (5.3),

PN(2π fN|θi) =

(
sin 2N (θi − 2π fN) /2
2N sin(θi − fN) /2

)2

. (5.39)

by using a formula

1
2N

N∏
k=1

(1+ cos 2k−1x) =

(
sin 2Nx/2
2N sinx/2

)2

, (5.40)

which is obtained by repeatedly using

1+ cosx =
1
2

(
sinx
sin x

2

)2

. (5.41)

Eq. (5.41) is obtained by combining the following two formulae

1+ cosx = 2 cos2
x
2
, cosx =

sin 2x
2 sinx

. (5.42)

In Fig. 5.3, we show the probability distributions for several different coherent
factors. We can see that the sharpness of each distribution saturates at some
number of the control qubitsN when (aU(t/m))m is not equal to 1.
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Figure 5.3: Probability distributions of phase estimationQN(2π fN|θi) for θi = 0
andφU( t

m) = 0 for (a) aU(t/m) = 1 (b) aU(t/m) = 0.99 (c) aU(t/m) = 0.9. The blue
lines are forN = 1, the red lines are forN = 2, the yellow lines are forN = 3 and
the green lines are forN = 4.



80 Chapter 5.Phase estimation based method: algorithm and evaluation

The probability distribution offN given an eigenvector|θk⟩ of θk is

QN(2π fN|θi ,U(t/m)) =
N∏

k=1

1
2
[
1+ (aU(t/m))

m2k
cos 2k−1(θk +mφU(t/m) − 2π fN)

]
. (5.43)

We observe that if the coherence factor satisfies

1− (aU(t/m))
m2N ≤ δ

N
(5.44)

for a fixedδ ∈ [0,1/2] and∀N ∈ N, the probability distributionQN satisfies∣∣∣∣∣QN(2π fN|θk,U(t/m)) − PN(2π fN|θk +mφU(t/m))
∣∣∣∣∣ ≤ eδ − 1 ≤ 2δ. (5.45)

To satisfy Eq.(5.44), it suffices to have

m≥ (∆max)2t2N2N

4δ
. (5.46)

5.5 The performance of the measurement

According to Sec. 5.2 and Sec. 5.4, the exact projective measurement of energy
for unknownH is implementable with infinite time resource. On the other hand,
theprojective measurement of energy of unknownH can only be approximated
under finite time resource. An approximated projective measurement of energy
will show deviations from the ideal behaviors. The accuracy of implementation
can be measured by quantifying these deviationsby the quantitiesR1 andR2 we
defined in Chapter 3.Assume that we know a bound of the maximum energy
difference∆max in the following process.

Using phase estimation algorithm via universal controllizaiton, we estimate
the energy eigenvalues for a givenfN according to

E( fN) =

−2π fN/t for fN ∈ [0,1/2)

−(2π fN − 2π)/t for fN ∈ [1/2,1)
, (5.47)

where we take sufficiently smallt satisfying∆maxt ≤ π/2. We define the corre-
sponding measurement instruments of the phase estimation algorithm asIPEA =

{I fN} and measurement asMPEA = {IPEA,E( fN), { fN}}.
Let MPEA denote the measurement implemented by our method based on

the phase estimation algorithm and defineH̃ = H − (mφU(t/m)/t)I . A spectral
decomposition ofH̃ is given by

H̃ =
∑
k∈Y

ẼkPk. (5.48)
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Notice thatẼk = Ek − mφU(t/m)/t. The distance betweenMPEA and projective
measurement of energy of̃H in terms ofR1 is

R1(MPEA|H̃) = max
λ,k

∑
fN

Tr
[
I fN(|Eλ

k⟩⟨Eλ
k |)

]
(Ẽk − E( fN))2. (5.49)

Note that
Tr

[
I fN(|Eλ

k⟩⟨Eλ
k |)

]
= QN(2π fN|θk,U(t/m)). (5.50)

In addition,
max

x
f (x) ≤ max

x
g(x) +max

y
| f (y) − g(y)|. (5.51)

If ∆maxt < π/2, we haveẼk ∈ (−π/t, π/t), thus|Ẽk − E( fN)| ≤ 2π/t. Therefore,
when Eq. (5.45) holds,

R1(MPEA|H̃) ≤ R1(MCU(t) |H̃) +
2N(2δ)4π2

t2
, (5.52)

whereMCU(t) denotes the measurement implemented by using the ideal controlled
unitary operationCU(t).

We setmφU(t/m) = 0 for brevity. If an ideal controlled-unitary operationCU(t)

is available,R1 of the projective measurement of energy based on the phase esti-
mation algorithmMCU(t) is calculated according to Eq. (5.39) by

R1(MCU(t) |H) = max
k

∑
1> fN≥0

P(2π fN|θk) (E( fN) − Ek)
2

= max
k

∑
1> fN≥0

P(2π fN|θk)
t2

(E( fN)t − Ekt)
2 . (5.53)

We define an open ballBk = B(Ekt/2π,
√
εt/2π) whose center and radius are

given byEkt/2π and
√
εt/2π, respectively. We rewrite Eq. (5.53) as

R1(MCU(t) |H) = max
k

 ∑
fN∈Bk

+
∑
fN<Bk

 P(2π fN|θk)
t2

(E( fN)t − Ekt)
2 . (5.54)

We bound the two terms of the right-hand side of this equation. The first term
is bounded by∑

fN∈Bk

P(2π fN|θk)
t2

(E( fN)t − Ekt)
2 ≤ ε

∑
fN∈Bk

P(2π fN|θk) ≤ ε. (5.55)

The first inequality is derived from the definition ofBk and the second inequality
is derived from the property of the probability distribution. The other term is
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bounded as∑
fN<Bk

P(2π fN|θk)
t2

(E( fN) − Eit)
2 ≤

∑
fN<Bk

4π2

t2

(
sin 2N (θk − 2π fN) /2
2N sin(θk − fN) /2

)2

(5.56)

≤
∑
fN<Bk

4π2

t2
1

22N sin2 (θk − fN) /2
(5.57)

≤ 1
t2

4π2

2N sin2 √εt
(5.58)

≤ 16π2

2Nεt4
, (5.59)

where the first inequality is derived from∆maxt < 2π and the third from the fact
that the total number of outcomesfN is 2N. Combining these two results, we
obtain

R1(MCU(t) |H) ≤ ε + 16π2

2Nεt4
. (5.60)

On the other hand,R2 ofMPEA is calculated by

R2(MCU(t) |H) = 0, (5.61)

since the total unitary matrix according to this algorithm commutes with the local
Hamiltonian of the target system. For the same reason, we obtain

R2(MPEA|H̃) = 0. (5.62)

5.6 Evaluating the running time

We regard the running time of the algorithm as the total calling time of the Hamil-
tonian dynamics under the assumption that the quantum computer can operate in
a time scale much father than that of the Hamiltonian dynamics of the target sys-
tem.

For given∆max andε ∈ (0,1], we calculate the total running timeTPE i.e., the
total calling time of the Hamiltonian dynamics to obtain

R1(MPEA|H̃) ≤ 3ε. (5.63)

First, chooset so that∆maxt ≤ π/2. Next, chooseN so that the second term of
Eq. (5.60) is equal toε, which implies that 2N = O((∆max)4/ε2). Finally, choose
m according to Eq. (5.46) , so that the second term in Eq. (5.60) is bounded as

2N(2δ)4π2

t2
≤ ε. (5.64)
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The total running time is given by

TPE = (2N+1 − 1)×m× t
m
. (5.65)

All in all, to achieve Eq. (5.63) requires

TPE = O

(
(∆max)3

ε2

)
. (5.66)

Thus the running time of our method based on phase estimation and universal
controllization does not depend on the dimension of the systemd, whereas the
running time of the tomography-based method depends ond4 to achieve the same
performance as the projective measurement of energy.
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Conclusion
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The results in this thesis is summarized as follows.

1. To evaluate the performance of implemented projective measurements of
energy, we formulate two evaluation functions calledfluctuation of mea-
surement valueandnon-repeatability, which can evaluate how much a mea-
surement is different from the ideal projective measurement of an observ-
able. The fluctuation of measurement value is defined as the mean squared
error of the measurement outcome. Non-repeatability evaluates how a mea-
surement behaves differently from the repeatable hypothesis. We formulate
two relations between the known evaluation methods and ours. One rela-
tionship is that the fluctuation of measurement value and non-repeatability
give an upper bound of the Monge distance between two measurements.
The other is, when the fluctuation of measurement value is zero, the di-
amond norm of between measurement instruments becomes well-defined
and the value becomes the same as the non-repeatability.

2. We construct an implementation method of projective measurement of en-
ergy via a linear estimation scheme of a unitary operation (tomography
based method) which is suggested in the paper of Aharanov et. al. (2002).
We first formulate the linear estimation scheme of unitary evolution. We
analyze efficiency of this method on the assumption that there is an ap-
propriate converter which deforms a given operator into a regular,normal
matrix while leaving the statistical property of each element the same as
the original operator. We calculate a sufficient time to guarantee the fluc-
tuation of measurement value below some small valueε. We find that
the tomography based method takes the time proportional toO(d4∆max/ε),
whered is the dimension of the target system and∆max is the difference
between the largest energy eigenvalue and the smallest energy eigenvalue.
We also calculate the non-repeatability for the tomography based method.
We found that there is a case that the non-repeatability of the tomography
based method cannot converge to zero even in the limit of infinite measure-
ment time.

3. We construct a new quantum randomized algorithm, universal controlliza-
tion which approximately achieves the controlled Hamiltonian dynamics
avoiding the impossibility of exact implementation. In our new algorithm,
the Hamilton dynamics is divided into a sequence of short time segments
and randomization processes are inserted between sequences. The random-
ized dynamics decouples emerging entanglement between the target system
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and the quantum computer which has the main obstacle for controllization
of the unknown Hamiltonian.

4. We present a phase estimation based method, which utilizes the Hamil-
tonian dynamics of the system as a resource for the quantum algorithm,
and construct the projective measurement of energy on the system with-
out identifying all parameters of the Hamiltonian. The phase estimation
based method is implemented via the universal controllizaiton scheme.
We calculate a sufficient time to guarantee the fluctuation of measurement
value below some small valueε. We find that the phase estimation based
method takes time proportional toO(∆3

max/ε
2). We also calculate the non-

repeatability and found that the non-repeatability of the phase estimation
based method is always zero for any amount of measurement time con-
sumed.

From theses results, we conclude the following properties about the accuracy
and efficiency for performing projective measurement of energy. When the fluc-
tuation of measurement value is smaller thanO(∆2

max/d
4), the tomography based

method is more efficient than the phase estimation based method. However, the
dimension of a physical system grows exponentially with the system size given
by the number of constituent particles whereas∆max grows only linearly when
we assume nearest neighbor interactions between particles, which is frequently
encountered in physics. On non-repeatability, our phase estimation based method
shows the same performance as the ideal projective measurement of energy, nev-
ertheless the tomogaraphy-based scheme can not grantee the small amount of the
value. Therefore, as for the fluctuation of measurement value, our phase estima-
tion based method shows better performance than the tomography based method
when the system size is sufficiently large. The projective measurement of en-
ergy expected to be useful an applications for metrology breaking the standard
quantum limit (quantum non-demolition measurement) and for the experimental
confirmation of the fluctuation theorems in non-equilibrium quantum systems.
For metlorgy, larger size systems have higher sensitivity to detect small deviation
caused by an extremal source, e.g. the gravity wave. The experimental confirma-
tion of fluctuation theorems on large quantum systems is also important to test
whether these theories are the origin of the thermodynamics or not. The study in
this thesis suggests that the straight-forward method (tomography based method)
is inefficient for scaling the system size suitable for these applications, and offers
another efficient quantum algorithm.

In the field quantum information the theory ofsuper-map, what types of quan-
tum operations become possible by combine given unitary operations and quan-
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tum operations independent of the unitary operations have been interested in re-
cent years. The study of seeking computational power using a root of a given
unitary gate has been also actively studied as thefractional query problemin
these days. These problems correspond to the case that we can utilize a Hamil-
tonian dynamics of a system, which is a standard condition in quantum physics.
Thus the many these developments in quantum information going to be useful
tools in physics. However we note that there are gaps in terminology and pre-
condition between two fields, and it often be obstacles for linking them. In this
thesis, we made a formulation of the measurement which can treat measurements
in both standard physics and quantum information. As the result, we utilize the
fruitful algorithm developed in quantum information for the measurement which
provides a fundamental property for understanding physics. Inversely, the idea
developed in quantum physics, dynamical decoupling, also provides a hint to es-
tavlish a super-map, controllization, approximately available which was known to
be impossible in quantum information. The more we understand the connection
between two fields, the more understanding of quantum physics or unexpectable
quantum algorithms are to be found.
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