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Abstract

Turbulent thermal convection fills the solar convection zone. Understanding

thermal convection is crucial for the transport of energy and angular momentum,

and the generation and the transport of magnetic field. The central interest in

this thesis is the interaction of small- and large-scale convection in the solar and

stellar convection zone. To this end, we develop a significantly efficient numerical

code that is able to cover broad temporal and spatial scales. We adopt the reduced

speed of sound technique (RSST). The RSST is simple to implement and requires

only local communication in parallel computations. In addition, this method allows

performing simulations without neglecting important physical processes including

the solar near surface and achieves small-scale convection in the global domain.

Using the numerical code, we perform non-rotating high-resolution calculations

of solar global convection, which resolve convective scales of less than 10 Mm. The

main conclusions of this study are the following. 1. The small-scale downflows gener-

ated in the near surface layer penetrate down to deeper layers and excite small-scale

turbulence in the region of > 0.9R⊙, where R⊙ is the solar radius. 2. In the deeper

convection zone (< 0.9R⊙), the convection is not affected by the location of the

upper boundary. 3. Using an LES (Large Eddy Simulation) approach we achieved

small-scale dynamo action and maintained a field of 0.15 − 0.25Beq throughout the

convection zone, where Beq is the equipartition magnetic field to the kinetic en-

ergy. 4. The overall dynamo efficiency significantly varies in the convection zone

as a consequence of the downward directed Poynting flux and the depth variation

in the intrinsic convective scales. For a fixed numerical resolution the dynamo rele-

vant scales are better resolved in the deeper convection zone and are therefore less
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affected by numerical diffusivity, i.e. the effective Reynolds numbers are larger.

Then, we carry out high-resolution calculation of thermal convection in the spher-

ical shell with rotation to reproduce the near surface shear layer (NSSL). It is thought

that the NSSL is maintained by thermal convection for small spatial scales and short

time scales, which causes a weak rotational influence. The calculation with the RSST

succeeds in including such a small scale as well as large-scale convection and the

NSSL is reproduced especially at high latitude. The maintenance mechanisms are

the following. The Reynolds stress under the weak influence of the rotation trans-

ports the angular momentum radially inward. Regarding the dynamical balance on

the meridional plane, in the high latitude positive correlation ⟨v′
rv

′
θ⟩ is generated

by the poleward meridional flow whose amplitude increases with the radius in the

NSSL and negative correlation ⟨v′
rv

′
θ⟩ is generated by the Coriolis force in the deep

convection zone. The force caused by the Reynolds stress compensates the Coriolis

force in the NSSL.
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Part I

General Introduction

This part serves as the introduction. Fig. 1.1 is a schematic of the overview

of the solar interior. In the sun, a static radiative zone and turbulent convection

zone exist. The convection zone is filled with turbulent thermal convection that

transports the energy and angular momentum. On account of the significant change

in the pressure scale height from the base of the convection zone (60,000 km) to the

photosphere (300 km), the convection size drastically changes along the radius. This

change is the central issue of this thesis. The energy transport is one of the most

important factors in solar stratification models (§1.1). The angular momentum

transport generates mean flows, such as differential rotation and meridional flow

(§1.2). The drastic change in the time scale of the convection causes the shear layer

near the surface. In the introduction, we discuss the current understanding on the

basis of the previous studies and the remaining problems. The goals of this thesis

are discussed in §5.
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Figure 1.1: The overview of the solar interior.
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1 Solar Structure and Mean Flow

1.1 Solar Structure

The sun consists of the radiative zone (from the center to 0.715R⊙) and the

convection zone (from 0.71R⊙ to the surface), where R⊙ is the solar radius(=

6.960 × 1010 cm). Fig. 1.2 shows the distribution of physical variables, i.e., grav-

itational acceleration, density etc., which are taken from the solar standard model

(Model S: Christensen-Dalsgaard et al., 1996). Solar luminosity can be estimated

from observations (L⊙ = 3.84×1033 erg s−1). The other variables in the solar interior

are calculated by using the observed luminosity and surface abundance under the

assumptions of (1) spherical symmetricity (one dimension), (2) hydrostatic equilib-

rium, i.e., the balance of the pressure gradient and the gravity force, and (3) thermal

equilibrium, i.e., the energy balance between nuclear fusion and transport. The ef-

fects of rotation and magnetic field are not included in the solar standard model.

Because the plasma temperature exceeds 107 K near the core, energy is continu-

ously generated by nuclear fusion. In the radiative zone, this energy is transported

by efficient radiation. From 0.2R⊙ to 0.715R⊙ (the base of the convection zone),

the radiative diffusion transports all solar luminosity, i.e., L⊙ (see Fig. 1.2h). This

region is convectively stable. In the convection zone, the radiation is no longer

efficient and the atmosphere becomes superadiabatically stratified, i.e., ds/dr < 0,

where s is the specific entropy. Thus, this zone is characterized by turbulent thermal

convection and the convective energy flux dominates over the radiative energy flux.

The convective energy flux, which is required to determine the temperature gra-

dient and accordingly the solar structure, is estimated with the mixing length model
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(e.g. Stix, 2004). In this model, the mixing length (lmix), which is the mean free

path for each convective parcel, is specified with a constant parameter αmix as:

lmix = αmixHp, where Hp is the pressure scale height. It is assumed that each con-

vective parcel is accelerated by buoyancy along the mixing length. Then a certain

type of averaged vertical velocity and its convective energy flux can be estimated

with the equation of motion. Once the convective energy flux is estimated one can

solve equations to obtain the distribution of entropy and the mixing length param-

eter simultaneously (αmix).

インターネット公表に関する同意が 
得られなかったため非公表 

Figure 1.2: Various physical quantities in the solar interior from the center to the
surface estimated with the solar standard model: (a) gravitational acceleration (b)
absolute value of the specific entropy gradient (c) density (d) gas pressure (e) pres-
sure scale height (f) temperature (g) radiative diffusivity (h) radiative luminosity.
The values are obtained from Christensen-Dalsgaard et al. (1996) and his website.

The results of the solar standard model are confirmed with global helioseismol-
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ogy data. The solar global oscillation observed at the photosphere is described

with spherical harmonics (Ylm) in horizontal space and Fourier transforms in time.

The harmonic components are compared with the oscillations that are computed

with the solar model after assuming linear and adiabatic perturbations. When the

residuals of the model with respect to observations are assumed linear, inversion

can be performed to obtain information on the solar interior (see also Stix, 2004).

Although there is an unexplained anomaly at the base of the convection zone, the

residuals between the solar standard model and helioseismology are small. δc2
s/c

2
s is

typically 10−3 where c2
s is the square of the speed of sound and δc2

s is its difference

(Basu et al., 1997).

1.2 Observation of Solar Mean Flow, Differential Rotation
and Meridional Flow

Helioseismology has also revealed the mean structure of the solar flow such as

differential rotation (global helioseismology) and meridional flow (local helioseismol-

ogy).

The solar differential rotation on the surface was first observed by Christoph

Scheiner as early as 1630 by using the motion of the sunspots. Then, in 1855 Car-

rington started the first quantitative observation of the solar rotation (see review by

Beck, 2000). Although several researchers expected the existence of a shear layer

below the surface with different rotation rate between sunspots and Doppler velocity

(see the introduction in part IV), the internal structure of the solar differential ro-

tation remained unknown until the advent of helioseismology. Solar rotation is fast

enough to break the spherical symmetry of global oscillation and causes frequency

splitting in terms of the azimuthal order m owing to the asymmetry in travel times
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between the eastward and westward waves (see review by Christensen-Dalsgaard,

2002). Fig. 1.3 shows the obtained result of the internal differential rotation (origi-

nally from Schou et al., 1998).

インターネット公表に関する同意が 
得られなかったため非公表 

Figure 1.3: The distribution of angular velocity in the solar interior (after Thompson
et al., 2003); the distribution (a) in the meridional plane and (b) at selected latitudes.
These are obtained by using the MDI/SOHO (see also Miesch, 2005).

The result shows five important features regarding the internal rotation. First the

equator region rotates faster than the polar region. Note that the reliability of

the data diminishes around the polar region. Second the distribution of the angular

velocity is not cylindrical but conical in contrast to the Taylor-Proudman theory (see

the theoretical discussion in §2). Third the radiation zone rotates almost rigidly at

intermediate rate between the equator and the pole. Forth, there is a thin shear

layer between the convection zone and radiation zone called tachocline. Although the
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details of the structure are controversial, the tachocline is thought to be ellipsoidal.

For example, Charbonneau et al. (1999) show that the center of the tachocline is

rt/R⊙ = 0.693±0.003 at the equator which is below the base of the convection zone

and rt/R⊙ = 0.717 ± 0.003 at the pole which is slightly above the base. Although

the thickness of the tachocline is still controversial, Charbonneau et al. (1999) show

that the thickness is from ∆t = 0.016R⊙ at the equator to ∆t = 0.038R⊙ at the

pole. The fifth important feature is the near surface shear layer (NSSL). There are

significant deviations from the Taylor-Proudman state above r = 0.95R⊙. In this

layer, the angular velocity increases along the radius (see also the introduction of

Part IV). The detailed distribution of the NSSL is studied by Corbard & Thompson

(2002), using f modes from MDI data. They measured the gradient of the NSSL

as about −400 nHz/R⊙. The rotation rate was found to vary almost linearly with

depth Howe (2009). We note that the deviation from the Taylor-Proudman state in

the NSSL is larger than that in the deep convection zone. This shear layer is the

one of the targets of this thesis.

The meridional flow, known as the mean flow on the meridional plane, i.e., ⟨vr⟩

and ⟨vθ⟩, is also observed on the surface with Doppler measurements (Hathaway

et al., 1996; Hathaway, 1996), where the parenthesis ⟨⟩ denotes the zonal aver-

age. These observations show the poleward meridional flow with the amplitude of a

several 10 m s−1 (Giles et al., 1997). Using the global helioseismology, i.e., global-

standing mode of the acoustic wave, it is difficult to distinguish the effect of the

meridional flow as a perturbation of the standing-mode from those of magnetic field

and the centrifugal force since the amplitude of the meridional flow is relatively small

(∼ 10 m s−1) compared to the convection at the surface (∼ 1 km s−1) and the speed
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of rotation (2 km s−1). Duvall et al. (1993) suggested a new technique to investigate

the flow structure in the solar interior; they called it “local helioseismology.” In the

time-distance method of local helioseismology, a correlation between two specific

points is estimated. The travel time difference between the forward and backward

waves is sensitive to the internal structure of the horizontal flow. The Gile et al.’s

(1997) results are shown in the Fig. 1.4. Although the result show only a fraction

インターネット公表に関する同意が 
得られなかったため非公表 

Figure 1.4: Figure is from Giles et al. (1997) and shows the average travel time
difference. The solid line is the best fit using the function δτ = a1 cos λ + a2 cos 2λ.
Using this model, the travel time can be interpreted as the mean flow. In this model,
the 12.1 m s−1 flow corresponds to 1 s travel time1 difference. The positive velocity
corresponds to northward movement.

of the meridional flow in the solar convection zone (the upper 4% in radius and ±60

degree in latitude), there is a poleward meridional flow in both hemispheres. Haber

et al. (2002) also showed the asymmetry of the meridional flow about the equator

and its dependence on time. In a certain phase of the solar cycle there is counter

flow in the polar region (Fig. 1.5)

Recent observation by Zhao et al. (2013) shows a 2D distribution of the merid-

ional flow (Fig. 1.6a). Although the reliability in deeper layer is controversial, a
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インターネット公表に関する同意が 
得られなかったため非公表 

Figure 1.5: The figure is from Haber et al. (2002). The structure of the meridional
flow is averaged in time and longitude. The time interval in these figures is six
years. The gray-shaded area shows the region with southward flow (poleward at
south hemisphere).

インターネット公表に関する同意が 
得られなかったため非公表 

Figure 1.6: The figure is from Zhao et al. (2013) with modifications. Meridional
flow profile, obtained with the acoustic travel time. Panel (a) shows a flow profile
on the meridional plane, with positive velocity directing northward. Panel (b) shows
a flow profile as a function of latitude averaged over 0.90 − 0.93R⊙ (red line) and
0.95 − 0.98R⊙ (black line).
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return (equatorward) flow is seen in the middle of the convection zone and another

cell exists in the lower part of the convection zone, i.e., multi-cell structure. In

the near surface layer, the coherent poleward flow is observed, which is consistent

with previous studies. Fig. 1.6b indicates that the amplitude of the meridional flow

increases along the radius. This result is important for understanding of the NSSL

in Part IV.

2 Theory and Numerical Calculation for Differ-
ential Rotation and Meridional Flow

2.1 Gyroscopic Pumping and Thermal Wind Balance

To understand the maintenance mechanism of the mean flow, i.e., the differential

rotation and meridional flow, the gyroscopic pumping and thermal wind balance

equations, which we discuss in this section, are helpful (Rempel, 2005; Miesch, 2005;

Miesch & Hindman, 2011).

In the beginning, the Reynolds stress is reviewed. First, we consider the equation

of motion in fluid dynamics:

ρ0
∂v

∂t
= −∇ · (ρ0vv) −∇p, (1.1)

where ρ0, v, and p is time-independent density, fluid velocity and gas pressure,

respectively. Using a kind of ensemble average ⟨⟩, which is likely the zonal average

at following discussion, the quantities (Q) are divided into the mean part ⟨Q⟩ and

the perturbed part Q′, i.e., Q = ⟨Q⟩+Q′. Then, the equation for the mean velocity

⟨v⟩ is expressed as

ρ0
∂⟨v⟩
∂t

= −∇ · (ρ0⟨v⟩⟨v⟩) −∇ · (ρ0⟨v′v′⟩) −∇⟨p⟩, (1.2)
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where ⟨v′⟩ = 0 is used. The terms −∇·(ρ0⟨v⟩⟨v⟩) and −∇⟨p⟩ represent the processes

from the mean quantities to the mean quantities. The term −∇·(ρ0⟨v′v′⟩) represents

the effect from the perturbed part to the mean part via the nonlinear coupling of

the fluid velocity. The quantity ρ0⟨v′v′⟩ is called the Reynolds stress. In anisotropic

turbulence, nondiagonal terms in the Reynolds stress exist, which cause anisotropic

momentum transport.

To derive the equations for gyroscopic pumping and thermal wind balance, we

consider the equation of motion without the kinetic viscosity and the magnetic field

contributions.

ρ0
∂u

∂t
= −∇ · (ρ0uu) −∇p1 − ρ1ger, (1.3)

where p1, ρ1, g, and er are the perturbed gas pressure, the perturbed density, the

gravitational acceleration, and the unit vector along the radial direction. In the

following discussion u and v are the fluid velocities at the inertial reference system

and the rotating system, i.e., u = v + r sin θΩ0eφ, where Ω0 is the rotation rate of

the system. The background stratification, ρ0 and p0, is assumed to be in spherically

symmetric hydrostatic equilibrium, i.e.,

0 = −dp0

dr
− ρ0g. (1.4)

Gyroscopic pumping is derived from the conservation equation for the angular mo-

mentum, i.e., originally from the zonal component of the equation of motion

ρ0
∂uφ

∂t
= − 1

r2

∂

∂r

(
r2ρ0uruφ

)
− 1

r sin θ

∂

∂θ
(sin θρ0uθuφ)

− 1

r sin θ

∂

∂φ
(ρ0uφuφ) −

ρ0uφur

r
− cot θρ0uφuθ

r

− 1

r sin θ

∂p1

∂φ
. (1.5)

11



The zonal component means the φ-component in the spherical geometry (r, θ, φ),

where r and θ are the radius and the colatitude, respectively. Then, we multiply

r sin θ and define the specific angular momentum as L = uφr sin θ. The equation

becomes

ρ0
∂L
∂t

= −1

r

∂

∂r

(
r2 sin θρ0uruφ

)
− ∂

∂θ
(sin θρ0uθuφ)

− ∂

∂φ
(ρ0uφuφ) − ρ0uφur sin θ − ρ0uφuθ cos θ − ∂p1

∂φ

= − 1

r2

∂

∂r

[
r2(r sin θρ0uruφ)

]
− 1

r sin θ

∂

∂θ
[sin θ(r sin θρ0uθuφ)]

− 1

r sin θ

∂

∂φ
[r sin θ(ρ0uφuφ + p1)]

= −∇ · [r sin θ(ρ0uuφ + p1eφ)]. (1.6)

Gyroscopic pumping shows the balance of the angular momentum transport on the

meridional plane after the zonal average. When an anelastic approximation is valid

for the mean flow (∇ · (ρ0⟨vm⟩) = 0), eq. (1.6) with zonal average is expressed as

ρ0
∂⟨L⟩
∂t

= −ρ0⟨vm⟩ ·∇⟨L⟩ − ∇ · (r sin θρ0⟨v′
mv′

φ⟩). (1.7)

Then the thermal wind balance equation is derived. The thermal wind balance

equation is the originally zonal component of the vorticity equation. For a rotational

system with rotation rate Ω0, the equation of motion, after some algebra, is expressed

using the Coriolis force as

∂v

∂t
= −(v ·∇)v − ∇p1

ρ0
− ρ1

ρ0
ger + 2v × Ω0, (1.8)

where Ω0 = Ω0ez and ez = cos θer − sin θeθ is the unit vector along the rotational

axis (z-axis). Using the vector formula

(v ·∇)v = ∇
(

v2

2

)
− v × (∇× v), (1.9)
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and taking the curl of the equation of motion, the vorticity equation is obtained

∂ω

∂t
= ∇× (v × ω) + ∇×

(
−∇p1 + ρ1ger

ρ0

)
+ ∇× (2v × Ω0). (1.10)

In the thermal wind equation, the zonal component is focused. Then, the zonal

component of the second and third terms in the right-hand side is computed as

[
∇×

(
−∇p1 + ρ1ger

ρ0

)]

φ

=
1

ρ2
0r

dρ0

dr

∂p1

∂θ
+

g

ρ0r

∂ρ1

∂θ

= − g

ρ0r

[(
∂ρ

∂p

)

s

∂p1

∂θ
− ∂ρ1

∂θ

]

=
g

ρ0r

(
∂ρ

∂s

)

p

∂s1

∂θ
, (1.11)

and

[∇× (2v × Ω0)]φ = [2(Ω0 ·∇)vr − 2(v ·∇)Ω0]φ

= 2(Ω0 ·∇)vφ = 2r sin θΩ0
∂Ω1

∂z
, (1.12)

respectively. Subsequently, the zonal average for the vorticity equation is

∂⟨ωφ⟩
∂t

= [⟨∇ × (v × ω)⟩]φ + 2r sin θΩ0
∂⟨Ω1⟩

∂z
+

g

ρ0r

(
∂ρ

∂s

)

p

∂⟨s1⟩
∂θ

. (1.13)

The equations for the mean flows are thus derived. The equations are originally

derived from the equation of motion, thus the gyroscopic pumping and the thermal

wind balance equation show the time evolution of the angular momentum and the

meridional flow, respectively. In the steady state (∂/∂t = 0), however, the gyroscopic

pumping and the thermal wind balance equations determine the meridional flow and

the differential rotation, respectively. In the steady state, gyroscopic pumping is

ρ0⟨vm⟩ ·∇⟨L⟩ = −∇ · (r sin θρ0⟨v′
mv′

φ⟩). (1.14)
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This equation indicates that when the Reynolds stress is given, the meridional flow

⟨vm⟩ can be determined. The thermal wind balance equation in the steady state is

expressed as

−2r sin θΩ0
∂⟨Ω1⟩

∂z
= [⟨∇ × (v × ω)⟩]φ +

g

ρ0r

(
∂ρ

∂s

)

p

∂⟨s1⟩
∂θ

. (1.15)

This also indicates that when the advection/stretching term ([⟨∇×(v×ω)⟩]φ) and the

latitudinal entropy gradient are given, the differential rotation ⟨Ω1⟩ is determined.

Note that there is a possibility that the mean flows, ⟨vm⟩ and ⟨Ω1⟩, affect the

Reynolds stress in return.

The distribution of the Reynolds stress is required in the direct numerical cal-

culations, otherwise models have to be used (Kitchatinov & Rüdiger, 1995; Küker

& Stix, 2001; Rempel, 2005; Hotta & Yokoyama, 2011). The investigations that use

direct numerical calculations are reviewed in the next section.

2.2 Numerical Calculations for Differential Rotation and
Meridional Flow

There have been numerous studies about differential rotation using the mean-

field model in which the thermal convection is treated as the parameterized effect

(e.g. Kitchatinov & Rüdiger, 1995; Küker & Stix, 2001; Rempel, 2005; Hotta &

Yokoyama, 2011) and the three-dimensional model in spherical shell including ther-

mal convection using the anelastic approximation (Gilman & Miller, 1981; Glatz-

maier, 1984; Miesch et al., 2000; Brun & Toomre, 2002; Miesch et al., 2006, 2008;

Brun et al., 2011). In this type of numerical calculations, the solar parameters in

the standard model are adopted as the background stratification.

The latest conclusions from these studies are summarized as follows: 1. A banana
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cell-like convective structure causes the equatorward angular momentum transport

(Miesch et al., 2000). 2. Radially inward angular momentum transport is established

in almost the whole of the convection zone (Brun & Toomre, 2002). 3. A latitudinal

entropy gradient that corresponds to a temperature difference of ∼ 10 K between

the pole and the equator is required to reproduce the conical profile (Miesch et al.,

2006) and the tachocline (Brun et al., 2011).

The banana cell is especially established outside the tangential cylinder (sin θ >

rbase/r, where rbase is the location of the base of the convection zone). Because the

Coriolis force is expressed as 2ρ0v×Ω0, the fluid parcel rotates around the rotational

axis when the disturbance from the boundary is not significant. This is analogous to

the Larmor motion of the plasma particle, where the Lorentz force is proportional

to v × B.

This situation is seen in Fig. 1.7a, which was originally suggested by Busse (1970).

A topological explanation for the equatorward angular momentum transport is given

in Miesch (2005). In the northern hemisphere, the prograde flow (v′
φ > 0) is bent

equatorward (v′
θ > 0) and the retrograde flow (v′

φ < 0) is bent poleward (v′
θ <

0). As a result, the correlation is positive ⟨v′
θv

′
φ⟩ > 0. This implies equatorward

angular momentum transport. More generally this is explained with the equation of

motion on the perturbed velocity along the λ-direction (v′
λ), where λ is the direction

perpendicular to the rotation axis. Note that the unit vector in λ is eλ = sin θer +

cos θeθ. The equation of motion is expressed as

∂v′
λ

∂t
= [...] + 2v′

φΩ0. (1.16)
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インターネット公表に関する同意が 
得られなかったため非公表 

Figure 1.7: (a) Figure is from Busse (1970). The structure of the velocity is homo-
geneous along the rotational axis and generates columns parallel to the rotational
axis (called the “Busse column” or “Taylor column”) in rapidly rotating fluid, (b)
Figure is from Miesch et al. (2000) with some modifications. At low latitude, there
are banana cells.

16



This shows that the banana cell is likely to generate positive correlation ⟨v′
λv

′
φ⟩ >

0, with outward angular momentum transport. This is the essential mechanism

accelerating the equator.

Next we discuss the radial angular momentum transport. When the banana cell

is not well established, the correlation between the radial and zonal velocities is

generated from the radial component of the equation of motion.

∂v′
r

∂t
= [...] − 2v′

φΩ0 sin θ. (1.17)

Thus, a negative correlation ⟨v′
rv

′
φ⟩ < 0 is generated. This implies downward angular

momentum transport in the convection zone. In most of the calculations, the angular

momentum flux by the Reynolds stress peaks in amplitude around the middle depth

of the convection zone. This indicates that the value −∇ · (ρ0r sin θ⟨v′
rv

′
φ⟩er) is

negative (positive) at the upper (lower) part of the convection zone. Even when

the differential rotation is conical, the distribution of the angular momentum is

almost cylindrical, i.e., ∇⟨L⟩ ∼ d⟨L⟩/dλ, because of the factor of (r2 sin2 θ). Hence

gyroscopic pumping becomes

ρ0⟨vm⟩d⟨L⟩
dλ

= −∇ · (ρ0r sin θ⟨v′
rv

′
φ⟩er). (1.18)

Then poleward (equatorward) meridional flow is established at the upper (lower)

part of the convection zone with a positive value of d⟨L⟩/dλ.

The discussion then moves to the thermal wind balance equation (1.15), i.e., the

conical profile, the tachocline, and the NSSL. Eq. (1.15) indicates that the contribu-

tions from the advection/stretching term and/or the entropy gradient are required

to maintain the conical profile, the tachocline, and the NSSL, because they are in

the non-Taylor-Proudman state (∂⟨Ω1⟩/∂z ̸= 0) in steady state. In the convection
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zone, the entropy gradient is considered critical (the role of the advection/stretching

term is discussed in Part IV). There are two possible mechanisms to generate the lat-

itudinal entropy gradient. The first is an anisotropic correlation of the velocity and

entropy ⟨v′
θs

′
1⟩. In the convection zone, the flow is likely aligned along the rotational

axis and the correlation is negative ⟨v′
rv

′
θ⟩ < 0. In thermal convection, the radial ve-

locity and entropy fluctuation are well correlated ⟨v′
rs

′
1⟩ > 0, because the hot (cool)

plasma moves upward (downward). As a result, a negative correlation ⟨v′
θs

′
1⟩ that

transports the positive entropy poleward is generated. Miesch et al. (2006) calcu-

lated that the temperature difference between the pole and the equator generated by

this process is approximately 8 K which is not sufficiently large to explain the solar

differential rotation. Thus, Miesch et al. (2006) added a latitudinal entropy gradient

as a boundary condition at the base of the convection zone. The second mechanism

to generate the latitudinal entropy gradient is the penetrating meridional flow orig-

inally suggested by Rempel (2005) in his mean-field model. When the anticlockwise

meridional flow is established in the northern hemisphere, the downflow at the pole

penetrates the overshoot region and generates positive entropy perturbation. The

same phenomenon occurs in the upflow at the equator region and negative entropy

perturbation is generated. Brun et al. (2011) simultaneously reproduced these two

mechanisms and established the conical profile and tachocline in a self-consistent

manner.

Finally in this section, the latest numerical calculations are introduced. Miesch

et al. (2008) is a state-of-art study which considered the convection zone only. They

achieved the highest resolution and provided the latest understanding of the physics

in the convection zone. Their upper boundary is at r = 0.98R⊙ and the resolution
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Figure 1.8: Radial velocity vr at selected depths in Miesch et al. (2008). (a) 0.98R⊙,
(b) 0.92R⊙, (c) 0.85R⊙, and (d) 0.71R⊙.

is Nr × Nθ × Nφ = 257 × 1024 × 2048, where Nr, Nθ, and Nφ are the number of

grid points in the radial, latitudinal, and longitudinal direction, respectively. The

horizontal grid spacing is approximately 2.2 Mm at the top boundary. Fig. 1.8

shows the distribution of the radial velocity. The spectral peak of the radial velocity

is estimated at l ∼ 80, which corresponds to the horizontal scale of 55 Mm. On

account of the low viscosity due to the high resolution, a relatively proper balance

of the angular momentum transport between the meridional flow and the Reynolds

stress is established. Fig. 1.9 shows the results for the differential rotation, the

meridional flow, and the temperature distribution. Miesch et al. (2008) added the

latitudinal temperature gradient as boundary condition and established the solar-

like conical profile of the differential rotation. The origin of the counter flows near

the boundary was not well discussed; nonetheless the prominent one-cell meridional
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Figure 1.9: (a) Differential rotation, (b) angular velocity at selected latitudes, (c)
meridional flow, and (d) mean temperature perturbation in Miesch et al. (2008).

flow was reproduced in the convection zone.

3 Remaining Problems

As discussed in the previous sections, observations, theory, and the numerical

calculations have improved our understanding of the convection zone. There are

essentially two remaining problems in the numerical calculation: 1. The difficulty

in increasing the resolution. 2. The inaccessibility to the real solar surface. The

causes are explained in the next section. In this section, the reason why they are

required is explained.

There are several reasons why high resolution is required. Some are related to

the magnetic field. Zwaan (1987) reported that the magnetic flux of sunspots is

from 1020 Mx to 1022 Mx. At the base of the convection zone, the magnetic strength
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is estimated to be 5 × 104 G to reproduce the tilt angle of the sunspot pair (Weber

et al., 2011). Several studies suggest that magnetic field with this strength can be

generated by explosion processes (Rempel & Schüssler, 2001; Hotta et al., 2012a).

These results indicate that the radius of the magnetic flux tube at the base of the

convection zone is 2.5 Mm for the largest sunspot. This is comparable with the

grid spacing of the current highest resolution calculation (Miesch et al., 2008). To

avoid dissipation by numerical diffusivity, at least 10 grid points are required to

resolve the flux tube. In addition, Cheung et al. (2006) suggested that the magnetic

Reynolds number, which is determined by the resolution, has a significant impact

on the behavior of the flux tube.

There is another requirement for the higher resolution owing to local (small scale)

dynamo action. The dynamo, especially the stretching, is most effective in small

scales. Although some numerical calculations in the local small box reveals the prop-

erties of the local dynamo on the photosphere (Vögler & Schüssler, 2007; Pietarila

Graham et al., 2010), the turbulent effect on the generation and the transportation

of the magnetic field in the convection is unclear because it requires a huge number

of grid points to resolve the inertial scale of the turbulence.

A fundamental and important issue which requires high resolution, is the con-

nection between the photosphere and the convection zone. The convection scale

in the photosphere is quite small (∼ 1 Mm); hence, the calculation for both the

solar global scale (the sun’s circumference is 4400 Mm) and the photosphere’s small

convection also requires a huge number of grid points. This raises two important

questions. 1. How does small-scale convection in the near surface layer influence the

structure of large-scale convection? 2. How is the NSSL formed and maintained?
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Detailed introduction to the NSSL is given in Part IV. The NSSL is thought to be

a layer where the rotational influence drastically changes as the time scale of the

convection changes. The requirement to address these problems are the accessibil-

ity to the solar surface as well as higher resolution. Anelastic approximation, the

currently well-adopted method, however, has difficulties with both of them. A new

method is adopted in this thesis.

4 Reduced Speed of Sound Technique

Before the problems with the anelastic approximation are explained, the reason

why the anelastic approximation is adopted for the numerical calculations of the

solar and stellar convection zone needs to be explained. One of the most significant

difficulties arises from the large speed of sound, and the related low Mach-number

flows throughout most of the convection zone. At the base of the convection zone,

the speed of sound is approximately 200 km s−1, whereas the speed of convection is

thought to be 50 m s−1 (e.g. Stix, 2004). The time step must therefore be shorter

on account of the CFL condition in an explicit fully compressible method even

when we are interested in phenomena related to convection. To avoid this situation,

the anelastic approximation is frequently adopted in which the mass conservation

equation is replaced with ∇ ·(ρ0v) = 0, where ρ0 is the reference density and v is the

fluid velocity. In this approximation, the speed of sound is assumed infinite and one

needs to solve the elliptic equation for pressure, which filters out the propagation

of the sound wave. Because the anelastic approximation is applicable deep in the

convection zone and the time step is no longer limited by the high speed of sound,

the solar global convection has been investigated with this method in many studies
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dealing with the differential rotation, the meridional flow, the global dynamo, and

dynamical coupling of the radiative zone (Miesch et al., 2000, 2006, 2008; Brun &

Toomre, 2002; Brun et al., 2004, 2011; Browning et al., 2006; Ghizaru et al., 2010)

as explained in the previous section.

There are, however, two drawbacks in the anelastic approximation. The first is

the breakdown of the approximation near the solar surface. Because the convec-

tion velocity increases and the speed of sound decreases in the near surface layer

(> 0.98R⊙), they have similar values and the anelastic approximation cannot be

applied. The connection between the near surface layer and the global convection

is an ongoing challenge (e.g. Augustson et al., 2011). A global calculation, however,

which includes all multiple scales, has not been achieved yet.

The second drawback is the difficulty in increasing the resolution. The pseudo-

spectral method based on spherical harmonic expansion is frequently adopted, es-

pecially for solving the elliptic equation of pressure. In this method, the nonlinear

terms require the transformation of physical variables from real space to spectral

space and vice versa at every time step. The calculation cost of the transformation

is estimated at O(N2
θ Nφ log Nφ) owing to the absence of a fast algorithm for the Leg-

endre transformation, which is as powerful as the fast Fourier transformation (FFT),

where Nθ and Nφ are the maximum mode numbers in latitude and longitude, re-

spectively. Thus, the computational cost of this method is significant and limits the

achievable resolution. Owing to this, several numerical calculations of the geody-

namo adopt the finite difference method to achieve high resolution (Kageyama et al.,

2008; Miyagoshi et al., 2010). As explained above, when the near surface layer is

included in the calculations, the typical convection scale decreases and a large num-
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ber of grid points is required. The resolution is critical to assess the solar surface.

Note that several studies using the finite difference method have been performed

in the stellar or solar context using a moderate ratio for the speed of sound and

convection velocity by adjusting the radiative flux and stratification (Käpylä et al.,

2011, 2012). Although this type of approach offers insight for the maintenance of the

mean flow and the magnetic field, proper reproduction using solar parameters, such

as stratification, luminosity, ionization effect, and rotation, and direct comparison

with observations cannot be achieved.

The reduced speed of sound technique (hereafter RSST, Rempel, 2005, 2006;

Hotta et al., 2012b) can overcome such drawbacks while avoiding the severe time

step caused by the speed of sound. In the RSST, the equation of continuity is

replaced by

∂ρ

∂t
= − 1

ξ2
∇ · (ρv). (1.19)

Then the speed of sound is reduced ξ times, but the dispersion relation for sound

waves remains; the wave speed decreases equally for all wavelengths. This technique

does not change the hyperbolic character of the equations, which can be integrated

explicitly. Owing to this hyperbolicity, only local communication is required. This

decreases the communication overhead in parallel computing. Simple algorithms and

low-cost communication significantly facilitate high-resolution calculations. Hotta

et al. (2012b) investigated the validity of the RSST in a thermal convection problem.

They concluded that the RSST is valid when the Mach number, defined using the

RMS (root mean square) velocity and the reduced speed of sound ĉs, is smaller

than 0.7. Another advantage of this method is the accessibility to the real solar

surface with inhomogeneous ξ. The Mach number substantially varies in the solar
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convection zone. When moderate or no reduction in the speed of sound is used in

the near surface layer while using a large ξ around the bottom part of the convection

zone, the properties of the thermal convection, even including the surface, is properly

investigated without losing the physics. It is confirmed in Hotta et al. (2012b) that

the inhomogeneous ξ is valid when the Mach number is less than 0.7.

5 Thesis Goals

This thesis has three goals.

1. To develop the numerical code for effectively managing the huge number of

CPUs (∼ 105) in a good performance with the reduced speed of sound tech-

nique in the spherical geometry. Even with the RSST, there are further re-

quirements for treating the near surface layer in spherical geometry, such as

the partial ionization effect of hydrogen and helium and the severe time step

caused by the convergence of the grid spacing around the pole. The devel-

opment of such complex numerical code with good scaling and performance

requires sophisticated algorithms and detailed tuning for specific supercom-

puters. These steps are shown in Part II

2. To achieve the unprecedented resolution and small-scale convection with un-

precedented higher upper boundary and attain significant scale gap in the

thermal convection between the middle of the convection zone and the near

surface layer. This will enable us to address how small-scale convection in the

near surface layer influences the convection in the deeper layers. In addition,

higher resolution makes the convection significantly turbulent, which allows to
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better understand the generation and transport of small-scale magnetic field.

These are discussed in Part III. Note that, in Part III, no rotation is taken

into account to focus on the effects of turbulent convection.

3. To achieve the near surface shear layer with rotation. In this layer, the influ-

ence of the rotation is significantly different from that in the deeper convection

zone. This means that the time and spatial scales of thermal convection change

significantly. Although including these scales in the numerical calculations is

difficult and challenging, the proposed high-performance method and numeri-

cal code can do it. This is discussed in Part IV.

In Part V, we summarize the thesis results and discuss the conclusion.
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Part II

Basic Equations and Development
of Numerical Code

本章については、5年以内に雑誌等で刊行予定のため、非公開。

Part III

Structure of Convection and
Magnetic Field without Rotation

本章については、5年以内に雑誌等で刊行予定のため、非公開。

Part IV

Reproduction of Near Surface
Shear Layer with Rotation

本章については、5年以内に雑誌等で刊行予定のため、非公開。

Part V

Concluding Remarks

6 Summary of Thesis

The achievements and the important findings in this thesis are summarized in

this part. In this thesis we focus on the interaction of the small-scale and large-scale
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convection in the solar and stellar interior. Although this requires huge numerical

resources and technical innovation, we succeed in simultaneously reproducing them.

Then the achievements of this thesis provide significant understanding in the con-

vection zone, such as the convection structure itself, the generation and transport

of the magnetic field and the maintenance mechanism of the differential rotation.

6.1 Achievements

1. We significantly improve the ability of the numerical calculation of the solar

and stellar global convection.

Taking advantage of the reduced speed of sound technique as well as some other

numerical techniques introduced in Part II, we develop the efficient numerical

code for the solar global flow. The numerical code efficiently scales up to

105 cores and shows a good performance (14 % to the peak and 3 × 105 grid

update/core/s). This is able to cover the broad spatial and temporal range of

the plasma in the solar and stellar convection zone.

2. 10 Mm-scale convection is reproduced in the solar global convection for the

first time.

In the previous study, on account of lack of the resolution and large diffusivity,

only the ∼ 50 Mm-scale convection is achieved around their upper boundary

(Miesch et al., 2008). Because we succeed in increasing the resolution and

adopting the higher upper boundary, we can establish the 10 Mm-scale con-

vection even in the global computation domain for the sun. This is reported

in Part III.

3. The NSSL is reproduced for the first time.
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The reproduction of the NSSL requires simultaneous establishment of the

small- and large-scale convection. This means that reproduction requires a

large number of time integration and the grid points. This challenging pur-

pose is achieved in this thesis taking advantage of the good efficiency of our

developed numerical code. This is reported in IV.

6.2 Findings

1. The small-scale convection generated near the surface layer influences the rel-

atively shallower layer in the convection zone (> 0.9R⊙). In the deeper layer

(< 0.9R⊙) the influence is negligible.

2. The magnetic field preferentially appears in the downflow, because strong mag-

netic field is likely generated there. This causes the downward Poynting flux

in the convection zone. Around the base of the convection zone (< 0.85R⊙),

the magnetic energy is accumulated by the Poynting flux. The local dynamo

even in the large scale is effective.

3. The NSSL is maintained by the Reynolds stress. The convective motion under

the small influence of the rotation transports the angular momentum radially

downward. This causes the poleward meridional flow with increasing the am-

plitude along the radius in the upper convection zone. This meridional flow

again causes a positive correlation ⟨v′
rv

′
θ⟩ in the near surface layer, which then

transports the latitudinal momentum radially upward. In the deeper convec-

tion zone, the correlation ⟨v′
rv

′
θ⟩ is negative owing to the Coriolis force, which

transports the latitudinal momentum radially downward. The force by this

momentum transport maintains the NSSL in our calculation. We argue that
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this is a possible mechanism for the solar case.

7 Remaining problems and Future Work

7.1 Comparison with Helioseismology

Most recent observation by Hanasoge et al. (2012) using the local helioseismology

technique estimates the internal structure of the thermal convection. Fig. 5.10 shows

their result. They constraint the amplitude of the horizontal velocity associated

with the solar convection for the modes with horizontal harmonics ℓ < 60. The

flow speed in this scale is substantially smaller than the result with the ASH code

(by two orders of magnitude at maximum). The spectra in this thesis show similar

amplitude to that of the ASH code results even with higher resolution and the higher

upper boundary. In the current situation, both results of numerical simulation and

helioseismology are under debate. A sophisticated comparison between them should

be continued to understand the real structure of the solar global convection.

7.2 Proper Reproduction of Solar Differential Rotation

There is another problem still remaining for the differential rotation reported

from the ASH code group (Featherstone and Miesch, 2013, in prep). They investi-

gated the dependence of the differential rotation on the thermal diffusivity and the

kinetic viscosity, which is believed to be very small in the real solar interior. They

found that if the thermal diffusivity is small (< 3 × 1012 cm2 s−1), the polar region

is accelerated, i.e. anti-solar differential rotation is obtained. When the thermal

diffusivity is small, the entropy gradient near the surface becomes large and the

generated thermal convection velocity becomes larger. This means the Rossby num-
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Figure 5.10: Figure from Hanasoge et al. (2012). Solid lines show the results by
the local helioseismology. Blue and red lines are the results that correspond to
horizontal velocities at r = 0.92R⊙ and r = 0.96R⊙, respectively. Dashed-dotted
lines show the result calculated with the ASH code. Blue and red lines are the
results that correspond to horizontal velocities at r = 0.92R⊙ and r = 0.979R⊙. l
is the horizontal wavenumber.

ber becomes large. Because in the sun, the Rossby number is thought to be around

unity, i.e., the effects of the Coriolis force and the convection are similar, the slight

change in the convection velocity can cause significant change in the correlation

terms (⟨v′
rv

′
φ⟩ and ⟨v′

θv
′
φ⟩), the meridional flow and the differential rotation.

This problem might be caused by the limited resolution in the solar global

convection simulations. The turbulence in the thermal convection is thought to have

the power law distribution from the injection scale to the Kolmogorov dissipation

scale. Although the unresolved scale convection can also transport the energy, we

ignore them. As a consequence, our resolved scale must transport too much energy

and must have too large an amplitude in the velocity. The improvement in this

thesis for increasing the resolution will contribute to this fundamental issue in the

future.
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Part VI

Appendix

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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