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Chapter 1

Finite element analysis for
the Stokes equations under
the slip boundary condition
of friction type

1.1 Introduction

We consider the motion of an incompressible fluid in a bounded two dimen-
sional domain with some nonlinear boundary conditions, specified as the slip
boundary condition of friction type (SBCF) or the leak boundary condition of
friction type (LBCF). Intuitively speaking, SBCF (resp. LBCF) represents
a boundary condition such that as long as the magnitude of the tangential
(resp. normal) stress on the boundary is strictly less than a given threshold,
no slip (resp. leak) takes place; however, if it reaches the threshold, then
the fluid can slip (resp. leak) at the boundary.

A mathematical formulation of such frictional boundary conditions for
fluids was introduced by H. Fujita in [16], and subsequently many studies
focused on the properties of the solution, for example, existence, uniqueness,
regularity, and continuous dependence on data, for the Stokes and Navier-
Stokes equations. Details can be referred to in [16] itself or in [1], [19], [20],
[38], [39], [48], [55], [56], [57] and [59], among others. Other related nonlinear
boundary conditions are reported in [6], [10] and [35].

The frictional boundary conditions under consideration have been suc-
cessfully applied to some flow phenomena in environmental problems such
as oil flow over or beneath sand layers ([32], [61]). These numerical simu-



lations are implemented by the finite difference method, without rigorous
mathematical analysis.

Regarding to numerical methods for SBCF and LBCF in terms of the fi-
nite element method, [20] proposed an iterative algorithm of Uzawa type and
gave some numerical examples. In [19], the convergence of Uzawa method
is proved for continuous problems. However, discretization of continuous
problems or error estimate between approximate and exact solutions is not
considered in these works.

For theoretical analysis, [40] and [44] proposed a finite element approx-
imation combined with a penalty method for the stationary Stokes and
Navier-Stokes equations with SBCF. Low-order finite elements, such as the
P1/P1 element with stabilized terms, are applied to those equations in [42],
[46], and [47]. Their approach interprets the problem as an elliptic varia-
tional inequality of a tuple (u, p), which they regard as just one variable. In
these works, they presented error estimates and offered several numerical ex-
amples computed by an Uzawa algorithm. The convergence of their Uzawa
algorithm is proved for continuous problems in [49]. They also dealt with
a semi-discrete approximation for the nonstationary Navier-Stokes equation
with a regularized version of SBCF in [41].

Another approach by the P1+/P1 element, based on a saddle-point for-
mulation of the problem, is found in [3]. Some numerical examples are given,
and an error estimate is announced without a proof.

The purpose of this work is to present a framework of finite element
method for flow problems with SBCF and LBCF, including all of the exis-
tence and uniqueness result, error analysis, and numerical implementation.
To prove existence and uniqueness, we could exploit the abstract theory of
mixed variational inequalities developed by [28] for plasticity problems. In
this chapter, however, we give a more direct proof which is analogous to
the ones known in continuous problems ([16, 20]). We focus on SBCF here,
leaving the topic of LBCF in Chapter 2.

The remainder of this chapter is organized as follows. In Section 1.2,
we introduce our notation and symbols, and then review the results of the
continuous problems described in [20]. In particular, the weak formulation of
the original Stokes problem by a variational inequality is important. We also
present the discretized variational inequality, which we are going to analyze,
together with our main results. In Section 1.3, we prepare the finite element
framework using the P2/P1 element, and state several technical lemmas.

Section 1.4 is devoted to the study of approximate problems for SBCF.
We prove that the discretized variational inequality admits a unique solu-
tion and that it can be equivalently rewritten as a variational equation. In
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the error analysis, we first derive a primitive result of the convergence rate
O(h™in{e1/4}) under the H'*T¢-H€ regularity assumption with 0 < ¢ < 2.
Second we show that it is improved to O(h™™1}) under additional hy-
potheses of good behavior of the sign of the tangential velocity component
on the boundary where SBCF is imposed. A sufficient condition to obtain
O(h*), which is of optimal order when ¢ = 2, is also considered. Finally,
based on the variational equation formulation mentioned above, we propose
an Uzawa-type algorithm to perform numerical computations. What differs
from [19], [20], or [49] is that our Uzawa method applies to the discrete prob-
lem, not continuous one; thus we prove that the iterative solution converges
to the solution of the discretized variational inequality used for the error
estimates.

In Section 1.5, several numerical examples are provided to support our
theory. We observe that the results of our computation capture the features
of SBCF and that the numerically calculated errors decrease at the optimal
order O(h?).

1.2 Settings and results of continuous problems

1.2.1 Basic notation

Let Q be a polygonal domain in R?. Throughout this chapter, we are con-
cerned with the Stokes equations written in a familiar form

—vAu+Vp=/f in Q, divu=0 in €, (1.2.1)

where v > 0 is the viscosity constant; u, the velocity field; p, the pressure;
and f, the external force. As for the boundary, we assume that I' := 91 is
a union of two non-overlapping parts, that is,

F:T()Ufl, FoﬂFlz@,

where I'g,I'; are relatively nonempty open subsets of I'. Moreover, 'y is
assumed to coincide with whole one side of the polygon (2 for the sake of
simplicity. Two endpoints of the line segment I'; are denoted by M; and
Mpn+1; the meaning of the subscripts is clarified in Section 1.3.1. We note
that T() N E = {Af1,]\/fm+1}.

We impose the adhesive boundary condition on I'g, namely,

u=0 on T, (1.2.2)



whereas on I';, we impose the following nonlinear boundary condition:
up = 0, lor| < g, orur + glur| =0, on I'y, (1.2.3)

which is called the slip boundary condition of friction type (SBCF). The
function g, called the modulus of friction, is assumed to be continuous on
Iy and strictly positive on I';.

Here, the definitions of the symbols appearing above are as follows:

n = '(ny,n2) = outer unit normal defined a.e. on T,
7 ="(ng,—n1) = unit tangential vector defined a.e. on T,
un = uw-n = normal component of u defined a.e. on T,

ur =u -7 = tangential component of u defined a.e. on T',

1 [/ 0u; Ouj

i(u) = = = component of rate-of-strain tensor (1 < 1,5 < 2),
el](u) 2(81'_7 8.7/'1) Mmpo1 11 1 ( =%z )
Tij(u,p) = —pdij+2ve;j(u) = component of Cauchy stress tensor (1<i,j<2),

g
o(u,p) = < g T,L'j(u,p)nj) T stress vector defined a.e. on I',
11—
=1 ’

or =0.(u) =o(u,p) -7 = tangential component of stress vector.

Remark 1.2.1. (i) Since I'; is a segment, n and 7 are constant vectors on
r;.
(ii) o does not depend on p, which is verified by a simple calculation.

Remark 1.2.2. Replacing n with 7 and vice versa in SBCF, we obtain
U =10, lon| < g, Ontn + glun| =0, on Iy, (1.2.4)

where 0, = 0y,(u,p) = o(u,p) - n denotes the normal component of stress
vector. This boundary condition is called the leak boundary condition of
friction type (LBCF). Since oy, depends on p unlike o, it is more complicated
to treat LBCF than SBCF, especially in the point that we cannot ignore
effects of an additive constant of the pressure. Those situations will be
illustrated in Chapter 2.

1.2.2 Function spaces

We use the usual Lebesgue space L?(€2) and Sobolev spaces H" () = W"2(Q)
for a nonnegative integer r, together with their standard norms and semi-
norms For a space of vector-valued functions, we write L?(£2)2, and so on.



H(Q) is understood as L?(Q), and H{(Q) denotes the closure of C§°(£2) in
H(Q). We put

Q=1L%*Q) and @:Lg(Q):{weLz(Q)'/dea:zo}.

H?(Q) is also defined for a non-integer s > 0 by the norm

1/2
aa o 2
llecey = (w Ly [ s dwdy) |

|laf=r

where o € N? is a multi-index and s = r + 6, r and 6 being the integer and
decimal part of s respectively.

We also use the Lebesgue spaces L?(T"), L>(I") and Sobolev spaces H*(T")
for s > 0 defined on the boundary T'. Similarly as before, H°(I') means
L*(T), and H{(Ty) denotes the closure of C§°(Ty) in H'(I'1). The norm
7]l s (ry for a non-integer s > 0 is defined by

1/2
Il (nm o+ Y f[ e Sl ds(x)ds<y>) ,

|laf=r

where ds denotes the surface element of I and r is the integer part of s, 0 its
decimal part. The usual trace operator defined from H*(Q) onto H*~Y/2(T)
is denoted by v — ¥|r for s > 1/2; however, we simply write ¢ instead of
¥|p when there is no ambiguity. For a vector-valued function ¢ defined on
I" or I'y, we write ¢, and ¢, to indicate ¢-n and ¢ - 7, respectively. Since 7
is a unit constant vector on I'y, we immediately have

p7ll s (1) = 17T les (01)2 = Dl s (112 (V¢ € H*(I'1)?, ¢n =0 on I'y).

(1.2.5)
Furthermore, we need the so-called Lions-Magenes space Hol({Q (I'1) with
its norm defined by

1/2
_ (i n(a) P
ey = (M + 50 as) ™

p(z)

where p(z) = dist(x, { M1, Mp+1}) is the distance from x € I'; to the ex-
treme points of I'; along I'y. This space is also obtained from the inter-
polation between L?(I'y) and H}(T1) (see [50, Section 1.11]), and is strictly



contained in H'Y/?(T';). Tt is known ([24, Theorem 1.5.2.3]) that the trace op-
erator maps {1 € H*(Q)|¢ = 0 on 'y} onto Héf(ﬂ). The zero-extension

of n € H&é2(I‘1) to I', denoted by 7, belongs to H'/2(T'), and hence it follows
from the closed graph theorem that

ey < Clnl gy (M€ Hp"(Cn),  (L.26)

with the constant C' independent of 7.
Now, for a space of velocities which corresponds to SBCF, we introduce

Vo={ve H'(Q)?*|lv=00onTy, wv,=0o0nTy}, (1.2.7)

with its norm induced from H'(2)2. The following trace and extension
theorem is an easy consequence of [58].

Lemma 1.2.1. (i) For every v € V,, it holds that
1/2
vr € HYAT)  and lorll gz, < Cllvllan oy (1.2.8)

with the constant C independent of v.

(ii) Fvery n € Héé2(f‘1) admits an extension v € V,, such that

Ur =1 0N Fl and ||’U||H1(Q)2 < CH?]HHO%Z(IH)’ (129)

with the constant C independent of n.

Proof. (i) For v € V,, it follows from [58, Corollary 1.1(i)] that v|p, €
1/2

Hoé (F1)2 and ||U‘F1||Héé2(p1)2

of (1.2.5) we obtain (1.2.8).
(ii) For n € H0162(F1), we have n1 € HSO/Z(F1)2. By [58, Corollary

1.1(ii)], there exists v € H(Q)?, v|p, = 0 such that v = 57 on I'; and

vl )z < C||77T||Héég(rl)2 = C||77||H362(F1). Therefore, v € V,, and we

obtain (1.2.9). N

% CH'UHHl(Q)z. Since v = v;7 on I'y, in view

1.2.3 Bilinear forms and barrier terms of friction

Let us introduce

a(u,v) =2v Z /Qe,-j(u)eij(v) dx (u,v € HY(Q)?), (1.2.10)
o= —/Qdivquac (ve H'(Q), g e L2(Q), (1.2.11)
i) = | ginlds (ne L2(IT). (1212)



The bilinear forms a and b are continuous with their operator norms |al|
and ||b||, respectively, being bounded. As a readily obtainable consequence
of Korn’s inequality ([33, Lemma 6.2]), there exists a constant & > 0 such
that

a(v,v) > oz”v”lqu(mg (Vo € H'(Q)?, v =0 on Tp). {1.2.13)

This implies that a is coercive on V,. The functional j(v;|r,), denoted
by j(vr) simply, is called the barrier term of friction. It is a continuous,
positive, and positively homogeneous functional on V,.

1.2.4 Redefinition of stress vector

For all (u,p) € H™(Q)? x H(Q) with € > 1/2 satisfying divu = 0, we
obtain the following Green’s formula:

(~vBu+Vp, )z = alu,0) +0(0,p) - [ olwp)vds (Ve HIQP)
r

(1.2.14)
where the stress vector o(u,p) is defined in Section 1.2.1. In fact, the line
integral over I' appearing in the right-hand side is well-defined because
o(u,p) € H=Y2(') ¢ L*('). However, if we have only a lower regular-
ity, say (u,p) € HY()? x L*(Q), then the definition of o(u,p) in Section
1.2.1 becomes ambiguous. We thus propose a redefinition of o(u,p) as a
functional on H'/2(T"), based on (1.2.14), as follows.

Definition 1.2.1. Let (u,p) € H'(Q)? x L*(Q) with divu = 0. Assume
—vAu + Vp is represented by f € L?(Q)? in the distribution sense, that is,
in view of (1.2.14),

a(u,v) +b(v,p) = (f, 'U)LQ(Q)Z (Vv e H&(Q)Z)
Then we define o(u,p) € (HY/2(I')2) by

, = a(w,v) +b(v,p) — (f,0)r2p (v € H(Q)).

(1.2.15)
Here and hereafter, for a Banach space X, we denote the dual space of X
by X’ and the duality pairing between X and X’ by (-, -) x.

Remark 1.2.3. The functional o(u, p) is well defined according to the trace
theorem and the fact that the right-hand side of (1.2.15) vanishes if v = 0
on I, ie v e HHN)?, by virtue of (1.2.14). In addition, this definition of
o(u,p) agrees with the previous one if u and p are sufficiently smooth to
belong to HT¢(Q)? x H¢(Q) with e > 1/2.



In particular, we see that o is characterized in H(%Q (I'1) by
<UT,UT>H362(F1) = a(u,v) +b(v,p) — (f,v)r2(q)2 (veW,),

in view of Lemma 1.2.1. This kind of redefinition of o is also used in [16,
Equation (28)] or [20, Lemma 2.1].

1.2.5 Variational formulation to the Stokes problem with
SBCF

Let us introduce weak formulations of (1.2.1)-(1.2.3). Herein we assume
f e L*Q)? and g € C}(T) with ¢ > 0 on T'y. The first formulation, a
detailed description of [16, Problem 3| or [20, Problem 1], is as follows:

Problem PDE. Find (u,p) € V,, x Q such that o, = o, (u) is well-defined

in the sense of Definition 1.2.1 and (1.2.3) is satisfied, that is,
a(u,v) +b(v,p) — (or,vr) r2(ry) = (f,v)r2(0)2 (Vv € Vp),
b(u,q) =0 (Vg € Q),
or/g € L™(I') and lor| <g a.e. on Iy,

orur + glurl| =0 a.e. onIy.

1.2.16
1.2.17
1.2.18

)
)
)
1.2.19)

~—~~ A~ —~

Note that o, € L?(T) follows from (1.2.18), and thus (1.2.16) makes sense.

Another formulation by a variational inequality is proposed in [20, Prob-
lem 2]:

Problem VI. Find (u,p) € V,, x Q such that, for all v € V, and ¢ € @,

{ a(u,v —u) +bv—u,p)+ j(vr) —jlur) > (f,v— u)Lz(Q)z, (1.2.20)
b(u,q) =0. (1.2.21}

The equivalence of Problems PDE and VI, and the existence and unique-
ness results are proved in [20, Theorems 2.1 and 2.4]. Their results are
collected as follows:

Theorem 1.2.1. (i) Problems PDE and VI are equivalent in the sense that
(u,p) € Vi, x Q solves Problem PDE if and only if it solves Problem VI.
(ii) Problem VI has a unique solution.

Remark 1.2.4. In [20], another definition of o; = u%zjlf is employed and
it is supposed that I' is smooth, with I'y N I'y = (). However, some slight
modification, which is not essential, makes the proofs in [20] applicable to
our own situation.
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1.2.6 Owur main results

In order to clarify our objective, we herein state our main theorem. For
notations and precise definitions of them, see Sections 1.3 and 1.4. We
propose the following variational inequality problem in order to approximate

Problem VI:
Problem VI,. Find (up,pn) € Vo X éh such that, for all v;, € V,,;, and
qn € CD?h,
{ a(un, vh — up) + b(vh — un, pr) + Jn(var) — Jn(unr) = (f, vn — un)L2(Q)2,
b(un, qn) = 0.

Then we are going to prove:

Theorem 1.2.2. There exists a unique solution (up,pp) of Problem VIy,.
Under the reqularity assumption (u,p) € H¢(Q)? x H¢(Q) with € > 0, the
following error estimate holds:

. 1
lun — ull gy + [lpn — pll2i) < CR™mE),
Here the constant C' is independent of h.

The existence and uniqueness will be proved in Theorem 1.4.1, and then
the error estimate will be established in Theorem 1.4.2. Under the additional
assumptions on u, and upr on I'y, the above convergence order can be
improved; this will be shown in Theorem 1.4.3.

Remark 1.2.5. In our situation where € is a polygon and I'o N Ty # 0, it
is no longer trivial to verify the regularity of (u,p) assumed in the above
theorem. In fact, our setting on the boundary is beyond the scope of the
known regularity theory of [57]. However, in this thesis we focus on finite
element analysis, leaving problems concerning the regularity to a future
work.

1.3 Finite element approximation

1.3.1 Triangulation

Let {3} be a regular family of triangulations of a polygon 2, where h
denotes the greatest length of the sides of the triangles. As usual, we assume
that

e For all T\, Ty € .} such that Ty # Ty, Ty N1 is a side, a node, or (.

11



° U T = Q, and the boundary vertices belong to T'.
TeZ,

e Let RL and R3 be the diameters of the inscribed and circumscribed
circles of T' € ., respectively. Then infre 7, n>0 RlT S R2T > 0.

e Fach triangle has at least one vertex that is not on I'.

The one-dimensional meshes of I' and I'; inherited from the triangulation
I, are denoted respectively by &3, and gh‘fl. For the sets of nodes, we use

7, = set of all vertices of triangles in 7},
7 = set of all midpoints of sides of triangles in 7,
T, =X, ULy,
Lop=ToNZp,
I'yp= T1NEy ={M, Mszj9, M2, -+ , My, Myyi1/2, Mimt1},
I =T1NZh =Tip\ {M1, Mipi1}.

Here the subscripts of M;’s are numbered in such a way that

e M;’s, fori=1,2,--- ,m+ 1, are all vertices of triangles in .}, which
are located in I'; and are arranged in ascending order along T';.

® M, ,/5 is the midpoint of M; and M;4q for i =1,2,--- ,m.

In particular, I'o ,NI'1 5 = ToNI'y = {My, My,+1}. We denote each side with
endpoints M;, M;+1 by e; = [M;, M;+1] and its length by |e;| = |M; My,
fori=1,2,--- ,m.

1.3.2 Approximate function spaces

Hereafter, we denote various constants independent of A by C and those
depending on h by C(h), unless otherwise stated.

We employ the P2/P1 element, defining V;, ¢ HY(Q)? and Q; C Q =
L*() by

Vi ={on € C°Q)? |unlr € 2T (¥T € )},
Qn={an e @ |mlr e 21(T) (VT € T},

where 27 (T') denotes the set of all polynomial functions of degree k on T
(k =1,2). For vy, € Vj,, we let vp,, and vp,r denote (vp, - n)|p, and (vp - 7)|ry,

12



respectively. They are piecewise quadratic polynomials on I'; because n and
T are constant vectors on the line segment I'y. Now, to approximate V;,, and
Q, we introduce

e {vh c Vi | vp(M) =0 (VM € Tgp), vpn(M) =0 (VM € fl,h)} ,
Qn = QrN LE(Q),
together with
Vi = Ve N HE(D?, Voo = {on € Van | b(vh, q) =0 (Vg € Qn)}-

By a simple observation, we see that V,,,, C V,, Qn C Q, COQh C @, and
Vi, = Von N HE(Q)2. We also note that vy, (M) = vp(Mpmy1) = 0 if v, € Vg,
and thus vy, € HY(T1).

The quadratic Lagrange interpolation operator 7y, : C’O(ﬁ)2 — V;, and
L?-projection operator IIj, : @ — Qy, are defined in the usual sense, that is,

TwweVy and (Zpv)(M) =v(M) (Vv e V,VM € %),

g € Qn and /Q (¢ —pg)grdz =0 (Vg€ Q, Vg, € Qn).

It is easy to verify that Zv € Vyy, if v € V,, N CY(Q)? and that IIq € éh
if ¢ € Q. The following results for the interpolation error are standard and
will be used without special emphasis in our error analysis :

lo—Tnollmy < Chlllollmsay (o€ HY(Q)2),  (13.1)
lg — Maall 20y < Chllall ey (Vg € HY(Q)), (13.2)

where 0 < € < 2 and the constant C' > 0 depends only on . Note that
HY™(Q)? ¢ ¢°(Q)? by Sobolev’s theorem. For (1.3.1) with 1 < € < 2, see
[21, Lemma A.2]; the case 0 < € < 1 is proved in [14]. Estimate (1.3.2) is
found in [9, Lemma 12.4.3]. The estimate on the boundary, together with
the trace theorem, gives

|or — (IhU)T||L2(F1) < Ch1/2+6||vr||H1/2+s(pl) < Ch1/2+6||7}||H1+6(Q)2 (1.3.3)

for all v € V,, N H1*¢(Q)2.
For approximate functions defined on the boundary I'y, we define

Ay = {,uh = Co(fl) ‘ pnle € Pa(e) (Ve € éoh\rl), uh(Ml):uh(]VIm,+1):0},

A= {uh £ Ay | lun(M)| < 1 (VM € fl,h)} .

13



By a simple calculation, we find that (see also Lemma 1.3.1(i))
Ap = {vpr | vn € Var} € HE(T1) € HYA(TY).

The space Ay, becomes a Hilbert space if we define its inner product by

1 m
(Ahy pr) A, = 6 z; le] (gi)\h,iﬂh,i + 49, 1 0 i 1yl + gz‘+1/\h,i+1uh,i+1>
1=
(>\ha,uh = Ah)a (134)

which approximates fFl gApitp ds by Simpson’s formula. Here and in what
follows, we occasionally write g;, Ah,i—f—%’ .-+ instead of g(M;), )\h(]\[ﬂr%)’ o

and so on. Since g is assumed to be positive on I'; (particularly, on f’Lh),
(*;+)a, is indeed positive definite. Let us denote the projection operator
from the Hilbert space Ay, onto its closed convex subset A by Proj Ay It is
explicitly expressed as

+1 it (M) > 1
Projz, (un)(M) = { pn(M) it |pn(M)| <1 (VM € Ty p),
i) it pup(M) < -1

(1.3.5)
for each pjp € Ap.
Finally, to approximate j given in (1.2.12), we introduce j, as

, 1
nlm) =75 >_lei (gilmal + 403 slmy s + gialmninl) — (m€ M),
1=

(1.3.6)

again with Simpson’s formula in mind. Clearly, j;, is a positive, continuous,
and positively homogeneous functional defined on Aj. This definition of jp
is motivated by [23, Section IV.2.6] and [22, Section IL.5.4].

1.3.3 Discrete extension theorems

First let us recall the well-known inf-sup condition ([21, Corollary II.4.1]):

b () o
Bllanllz2) < sup b(vh, n) (Van € Qn), (13.7)
vReVh ||Uh||H1(Q)2

where 8 > 0 is independent of h. Since f/h C Vuh, it is immediate to see

b(vp, .
Bllgnllr2@) < sup (n, a1) (Yan € Qn). (1.3.8)

v EVan ||Uh||H1(Q)2
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The following lemma discusses discrete extensions of functions given on
the boundary I'; to those defined on the whole domain 2. The second state-
ment, a solenoidal extension theorem in the discrete sense, will be important
in the proofs of Theorems 1.4.1 and 1.4.4.

Lemma 1.3.1. (i) Every ny, € Ap, admits an extension up € Vyp, such that
Uphr = Np ON Fl and ||uh”H1(Q)2 < C’thHHSéQ(Fl) . (139)
(i) We can choose uy, in (i) in such a way that up, € Vyp .

Proof. (i) For n, € Ap C HééQ(Fl) we have n,T € H&éQ(I‘l)Q, whose zero-
extension 7,7 is a piecewise quadratic polynomial defined on I'. Using a
discrete lifting operator (see [8, Theorem 5.1]), we can find up € Vj such
that wp, = n7 on I' and [lup| )2 < ClonTllg1/2ry2- Therefore, wy, €
Vin and upr = np on Ty In view of (1.2.6), we conclude |up|lg1(gp2 <
C||77h7||H562(F1)2 = CthHHééQ(Fl)'

(i) For every np, € Ap, as a result of (i), there exists 4y, € Vyp, such that
ﬁhT =T ON Fl and

lanll @2 < Clinnll garzp,y- (1.3.10)

For such 4y, by (1.3.7), we can find (u}, p}) € Vi x Qp, satisfying the following
discrete Stokes equations (cf. [21, Theorem II.1.1]):

a(uh, vn) + b(vp, pj,) = 0 (Vo € Va), (1.3.11)
b(uk, qn) = —b(tn, gn) = (divan, qn)r2@)  (Ygn € Qn). (1.3.12)
It also follows that (cf. [21, Remark I1.1.3])

|upll ()2 < Clldivan|r2@) < C'||TihHHéé2(Fl)7 (1.3.13)

where the last inequality results from (1.3.10). Now, choosing uj, = u} +up €
Vion, we deduce that up, € Vip o from (1.3.12), that up, = tn, = 1 because
) from (1.3.10) and (1.3.13).

This completes the proof. O

uf € Vi, and that ||up||z (g < C||77h||H362

1.3.4 Properties of (-,-),, and jj

Let us establish several relationships between the inner product of A; and
the functional jp, given by (1.3.4) and (1.3.6), respectively. Although some
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of them seem to be mentioned in [2, Section XI.4] or [23, Section IV.2], we
describe them in detail to make our statements clear. We use the signature
function sgn(z) defined by sgn(z) = 1 if z > 0, sgn(z) = 0 if 2 = 0,
sgn(z) =—1ifz < 0.

Lemma 1.3.2. (i) If uy, € Vi, and A, € Ay, then |(unr, Ap)a, | < jn(tuns)-
(ii) Under the assumptions of (i), the following properties are equivalent:

(a) (unr, An)A, = Jn(unr)-

(b) (unrs An)ay, = jn(unr)-

(€) (unr,pin — An)A, <0 for all pp € Ay

(d) If M € T'vp and up (M) # 0, then Ap(M) = sgn(up, (M)).
() A\p = Proj[\h()\h + pups) for all p > 0.

(iii) When A\, € Ay, the following properties are equivalent:
(a) Ap € Ay,.
(B) (mh, An)a, < Jn(nn) for all ny € Ap.

Proof. (i) This is obvious because [\, (M)| <1 for all M € I'y if A, € Ap.
(ii) (a)=-(b) Since we have already proved the converse inequality in (i),

statement (b) immediately follows from (a).
(b)=-(c) Let (b) be valid. From (i), it holds that

(ks th — M)Ay = (Unrs th)ap — dn(uns) <0 (Vup € Ap).

(c)=(d) Assume that (c) is valid and consider an arbitrary M € IV
such that up- (M) # 0. Let us define pp, € Ap, by

(N) = An(N) if Nelin\{M}
HR) = sen(une (M) i N = M.

When M € ¥}, we can write M = M; for some 1 < i < m + 1. Now, by

assumption we have

(e~ ) = 280 (leca - feat) (Junr (M0)] = M (M) (00)) < 0

e
—
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This implies that A, (M) = sgn(up-(M)) because [A\p(M)| < 1 and up (M) #
0. Similarly, when M € ¥, we can write M = M, 1 for some 1 < i < m.
Then, by assumption we obtain

9
(Uhry th, — AR)A, = gg(M)lez'|<IUhr(JVf)l — Ah(]\/f)UhT(JVf)> i

from which A\, (M) = sgn(up,-(M)) follows.
(d)=(a) If (d) is true, then we see that

s .
(uhr, An)a,, = & 2 \ei\(gilum,z'\ +4g; 1l iy 1l +gi+1|UhT,i+1\> = jn(unr)-
1=

(c)&(e) This is a direct consequence of a general property of projection
operators. In fact, we obtain

(Whry i — AR)A, <0 (Vun € Ap)
> (An + punr — Apy i — Ap)a, <0 (Yun € Ap,Vp > 0)
> A = Projg, (A + punr) (Vp >0).

(iii) (a)=-(b) This is already shown in (i). )
(b)=-(a) Let (b) be valid and consider an arbitrary M € I'; ;. Define
h € Ap by

0 if Nelyin\{M}
mh(N) = ‘ .
+lor —1 if N =M.

When M € ¥}, we can write M = M; for some 1 < i < m + 1. By
assumption, we obtain (nn, Ap)a, < jn(nn), which leads to

%(‘ei—ﬂ + |€z’|>9(M)< + An(M) — 1) <0.

This implies that [A,(M)| < 1. We obtain the same result when M € ¥
in a similar way. Therefore, we conclude that \;, € Aj. This completes the
proof. a

The following mesh-dependent inf-sup condition is important to deduce
the unique existence of a Lagrange multiplier A\, € Aj, which appears in
Section 1.4.

Lemma 1.3.3. There exists a positive constant By, depending on h such that

Vhrs Th) A
Brllnnlla, < sup (Vhr, )

T (Y, € Ap).
VR EVnn ||Uh||I{1(Q)2
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Proof. Because both || -[| 1 /2, and | - [|o, are norms defined on Ay, which
00

)
is of a finite dimension, they are equivalent. Hence there exists a constant

C(h) depending on h such that
Il gy < COYmlla, (Y € An)

Now, we let np € Ap, and choose up € V), satisfying (1.3.9). Then we
have

2
_— (vhrs M)A, o (unesmn)a, _  llalls, h)th”HééQ(Fl)thHA
oneVon IVnllE1 @2 — lunllar@z  llunllar@e — | wnll g ()2 "
> C(h)lInnllag-
This completes the proof. ]

Remark 1.3.1. This inf-sup condition will be used only to derive the unique
existence of a Lagrange multiplier Aj in the proof of Theorem 1.4.1, where h
is always fixed. We will not consider error estimates involving Az, and thus
there occurs no problem in our theory even if g8, — 0 as h — 0.

1.3.5 Error between j and j,

First we generalize [23, Lemma IV.1.3], where g is assumed to be constant,
to the case of non-constant g.

Lemma 1.3.4. (i) There hold
Jn(m) < Cllmnllezeyy (Y € An), (1.3.14)
Innlla, < Cllnllzeeyy  (Yn € Ap), (1.3.15)

with the constant C' depending only on g and I'y.
(ii) If g € C}(Ty), then for all 0 < s < 1, we have

lin(nn) — 3(n)| < CR®|lnpllgsryy (Von € An), (1.3.16)
with the constant C' depending only on g and I'y.

Proof. (i) Let np, € Ap. On each segment e; = [M;, M;11],i=1,2,--- ,m, we
take two points MH% and MHg such that ]\f[iMH%| = &|e;| and |MZ-MZ-+%| =
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%|ei|, respectively. Let us define a piecewise constant function rp(gnn) on
fl b’y’

m
Th(gnn) = Z {ginh,iX[Mi,J\/[H%]—FQH%77h7i+%X[MZ, A/Ii+g]+gi+177h,i+1X[Mi+%,MZ-H]}7

; +§’
=1
(1.3.17)
where x4 denotes the characteristic function of A C T'y.
Then we have
Jn(nm) = /F I (gnn)| ds < [T |lren(gm)l 2 qry)- (1.3.18)
1
By direct computation, it follows that
- Jeil
lrngmliamy = & (297 + 4717, 11 + GEahis )
i=1
o el
<sup [g|* Z ?7, <77I212 + 4772,:4% + 77]21,i+1>
i=1
5 ™ e
<5 sup g|? ﬁ{%nﬁ,i ki) + 80 1 = i et + 20541 (Dhi + nh,m)}
i=1
5
=3 sup [g|* ||77h||%2(r1)- (1.3.19)
Here we have used the inequality
x? + dy? + 22 < 2(2? + 22) + 8y® — 22 + 2y(z + 2) (1.3.20)

to derive the third line. We conclude (1.3.14) from (1.3.18) and (1.3.19).

The estimate (1.3.15) follows similarly if we remark that

el

Imnli, =>_ (gmi,i +4g; 17 01 + gi+mi,i+1> :
i=1

(ii) Let np € Ap. Then,

() — 3 0m)| < /F I (gm) — gl ds < IT1Y2|lrn(gmn) — gmalz2qey)-

(1.3.21)
It follows from the proof of (i) that

71 (gmm) = gmnll c2aeyy < (Irngm)ll 2oy + lgmllczy)) < Clinllzzey)-
(1.3.22)
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Before giving an estimate of ||74(gnn) —gnn | £2(r,) which involves (|ma | g1(ry)
it should be noted that if ¢ € P (R) we have

o) — ola) = (a - )¢ (“37).

[ wm-sat = o=l (<)
= [ apwora

<2(b— a)Q/b ¢/ ())? dt. (1.3.23)

so that

9
dz

In view of the Taylor expansion of g, we apply (1.3.23) to deduce

M, , My, ,
Lile;) i= . \gﬂlhz gnu|©ds = lginni — ginn + ginn — gnw|~ ds

i

]\/[+1 ) ]V[iJr%; 5 5
§2/ ® 97 (Mh,i — nn) d8+2/ (9i — 9)°nj, ds
A

A; M;

2 |6Z| My, 2 | Z| Mo 2
< 2sup|g|”- 2 5 | Ml” ds +2 Suplgl Inh\ ds
M; M;

sup |g* sup |¢'”
< maX{ T |ei|2||77h||?{1([]»[i,]v{i+%])
< CR?|1mn 11 (e (1.3.24)
fori=1,2,--- ,m. By a similar discussion, we have
Miry 2 2 2
Ir(ei) = |9i4 1011 — 9nnl” ds < Ch¥|lnmnll7n e,y (1.3.25)
it+g
Mivg 2 2 2
I3(e;) = 1954 1n,i 1 — 9mml" ds < CPZ|Innll e, (1.3.26)
]WH%
M1
Iy(es) := / |gi+17mi1 — gnml® ds < Ch?||mnl|3n o, (1.3.27)
M. s
z+6
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for each i. Therefore, collecting (1.3.24)—(1.3.27), we obtain
Irn(gmm) — gmnllZa,y = C Y <11(€i) + Ip(ei) + Is(ei) + f4(6z‘)>
i=1

S Ch‘2 Z ||nh||%—[1(el) = Ch2||nh||%1(f‘1)a
i=1
so that
In(gnn) — gnnll L2,y < CRlnkll a1y (1.3.28)
As a consequence of (1.3.21), (1.3.22), and (1.3.28), the desired inequality

(1.3.16) follows from Hilbertian interpolation between L?(I';) and H*(Ty).
O

As will be shown in Theorem 1.4.2 below, the leading term of the error is
that between j; and j, which is estimated by (1.3.16) with s = 1/2. However,
under some additional conditions, we can obtain a sharper estimate than
(1.3.16).

Definition 1.3.1. An element n, € Ay is said to have a constant sign on
every side if, for any i = 1,2,--- ,m, either of the following conditions is
satisfied:

(8) mle, >0 or  (b) mle, <0.

Remark 1.3.2. Let i, € A have a constant sign on every side. If i, > 0
on e;—1 and 7y < 0 on e; for some 4, then ny(M;) = 0.

Lemma 1.3.5. Let g € C*(Ty). If nn, € A has a constant sign on every
side, then

[ (m) = 3 ()| < CR? [l 2 (ry)-
Moreover, if g is a polynomial of degree < 1, then jn(np) is exact, that is,

Jn(mn) = j(nn)- (1.3.29)

Proof. Let np, € Aj, have a constant sign on every side. Because 7, > 0 or
np < 0 on e; for each i =1,2,--- ,m and g is positive on I'1, we have

/ rh(gnn) ds

€

/ gnp ds
o

7

I

/ A

/ glnn|ds =
.

7

)
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where rp(gn) is defined as (1.3.17). Summing up these terms, we obtain

m

i) = [ ntamlds = [ rntgm)l ds = 3| [ rutam)as|.
L i=1 " & =1 v ¢
G (nm) :/r glnh|d8=Z/ gl ds =) /gnhds :
1 i=1v¢& i=1 V€&
Consequently, it follows that
inCmn) = 3m)] <3| [ (rmlom) = gm)ds|. (1.3.30)
i=1 v &

Let gp denote the linear Lagrange interpolation of g using the nodes in
¥, NIy Namely, gp is continuous on I’y and affine on each side e; =
[M;, M 1], satisfying gp(M;) = g(M;) for i =1,2,--- ,m. Then the Taylor
expansion of g implies
h? —
l9n(2) — g(@)| < - suplg”| (Vo eTh). (1.3.31)

Now, let us estimate each term appearing in the summation on the right-
hand side of (1.3.30) by

/_ (rn(gmm) — gnmw)ds

e;

+ [lon—glmlds. (1332

Since Simpson’s formula is exact for cubic polynomials, we can express

leil
/e_ghnh ds = o 21 <gh,i77h,i + 4gh,i+%nh,i+% + gh,i+177h,i+1)
2 1=

2|e4]
= / rr(9mm) ds + =37 (Gnir s = 9ir 1) Mhiv 1

€

Thus, due to (1.3.31), the first term of (1.3.32) is bounded from above by

1
E|€i|h2 SUP\Q”\ ‘nh,i+%|'
Note that there holds (cf. (1.3.20))

|nh,i+%|2‘ei‘
15 el 2 2 2

ol 1—5{2(?7;” + 0k 441) + 877hﬂ-+% = i it 20 i 1 (i + 77h,i+1)}
15

ZHWHQLQ(E'?) = 4||,’7h||%2(8i)
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fori=1,2,--- ,m. Then, the sum of the first term of (1.3.32) is estimated
as

m

2

1., -
> < h?sup g’ Y Iy gl leil
1=

1=1

fom 3
= —h2 sup |g"| <Z |nh,i+%‘2‘ei‘> (Z |€i|>
- i=1

|1/2

/ | (ru(gmn) — gnnn)ds

1
< ﬁiﬂ sup|g”| - 2lmnll 20y T

= ORmillaqry- (1.3.33)
Next, the second term of (1.3.32) is estimated by gh?sup|g”| fei‘ﬁhldsv
which gives

1 1
Z/ lgn — gl | ds < 2h? Suplg”l/F [l ds < gh®sup |g”| Il 2oy [T |
i 1

= Ch*|lmnll2(ry)- (1.3.34)
Hence we conclude from (1.3.30), (1.3.33), and (1.3.34) that

ldn () = ()| < CR2||nnll r2(ry)-

If g is a polynomial of degree < 1, then both terms of (1.3.32) vanish
because gn, = g, from which (1.3.29) follows. This completes the proof. [

1.4 Discretization of the Stokes problem with SBCF

1.4.1 Existence and uniqueness results

We propose approximate problems for Problem VI as follows (The first one
is already mentioned in Section 1.2.6.)

Prob!em VI,. Find (up,pn) € Van X C}h such that, for all v, € V,, and
qn € Qn,

{ a(up, vy — up) +b(vp — up, Pr) + Jn(vrr) — u(unr) = (f, v — un)r2(q)2;
b(up, qn) = 0.
Problem VI ,. Find uj, € Vp5 » such that

a(up, vp — up) + jn(Vhr) — Ju(unr) 2 (fyon —un)r2@2 (Yo € Vapo)-
(1.4.3)
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Problem VE;. F%nd (uhs Py AR) € Van X Qh x Aj, such that, for all
(Uhthauh) S Vnh X Qh X Aha

a(un, va) + b(vh, pr) + (Vhr; An)a, = (f,vn)L2(0)2, (1.4.4)
b(uhv qh) = 07 (145)
(Uhrs b — AR)A, < 0. (1.4.6)

Recall that we are assuming f € L%(Q)? and g € C°(Ty). We first
establish the existence and uniqueness of these approximate problems.

Theorem 1.4.1. (i) Problem VI, , admits a unique solution up € Vo
Furthermore, it satisfies the following equation:

a(uh,uh) + jh(uhT) = (f, Uh)LZ(Q)Q. (1.4.7)
(ii) Problems VI, 5, VI, and VEy, are equivalent in the following sense.

(a) If up € Voo is a solution of Problem VI, o, then there exists a
unique pp € @h such that (up,pr) solves Problem VIy,.

(b) If (un, ph) € Vi X Qp is a solution of Problem V1, then there exists
a unique \p, € Ap, such that (up, pn, Ap) solves Problem VEj,.

(c) If (up,phs An) € Vapr X Qp x Ap, is a solution of Problem VEy, then
up, solves Problem VIj, .

Proof. (i) Since the bilinear form a is coercive on V,,;, and the functional
Jn : Vo — R is convex, proper, and lower semi-continuous (actually, con-
tinuous) with respect to the weak topology, we can apply to Problem VI ,
a classical existence and uniqueness theorem for second-order elliptic vari-
ational inequalities (see [22, Theorem 1.4.1]). Thus, there exists a unique
up € Vphe such that (1.4.3) holds. Equation (1.4.7) follows from (1.4.3)
with vy, = 0 and 2uy,.

(ii) (a) Let up € Vpno be a solution of Problem VI, ,. Taking up, + vy,
as a test function in (1.4.3), with an arbitrary vy, € Iofh N Vah,o, We obtain

a(up,vn) = (fon)r2@e  (Yon € Vi 0 Vo).
Moreover, we deduce from (1.3.7) the unique existence of pj, € COQh such that
a(un, vp) +b(vn,pr) = (f,vn)r22  (Yon € Vi) (1.4.8)
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by a standard argument.
Now we let vy, € V5, be arbitrary. It follows from Lemma 1.3.1(ii) that
there exists some wy, € Vyp o such that wy, = vp, on I', which implies

Vp — Wh € ‘o/h and jh(v/”-) = jh(th). (1.4.9)
Since up, wy € Vph o, we conclude from (1.4.3), (1.4.8), and (1.4.9) that
a(up, vp — up) + b(vp — up, pr) + Jn(vhr) — Ju(uns) — (f, vn — un)r2(q)2
= a(up, vp — wp) + b(vn — Wk, pr) — (f, v — Wh) L2()2

+ a(up, wp, — up) + ju(whr) — ju(unr) — (f, wp — up) 202
>0.

Hence (up, pn) is a solution ofc VI,,.
(b) Let (un,pn) € Vun x Qp be a solution of VI,. Taking up £ vy, as a
test function in (1.4.1), with an arbitrary vy, € V3, we have

a(up, o) +b(vn, ) = (f,vn)r22  (Yon € Va). (1.4.10)

Therefore, since {vr € Von | (Vhr,mn)a, = 0 (Von € Ap)} = f/h, the inf-sup
condition given in Lemma 1.3.4 asserts the unique existence of A\, € Ay, (for
example, see [21, Lemma [.4.1]) such that

a(un,vp) + b(vn, pr) + (Var, An)a, = (f,v) L2(0)2 (Yup, € Var). (1.4.11)
Combining (1.4.11) with (1.4.1), we obtain
(Vhe — Uhry M)Ay < JulVhr) — Jalthr) (Yun € Van), (1.4.12)
which gives, by a triangle inequality, that
(Vhr — Uhrys An)A, < Jn(Vnr — Unr) (Vop, € Vo). (1.4.13)
From (1.4.13) together with Lemma 1.3.1(i), we deduce
(mh, An)an < Jn(mn) — (Yn € An). (1.4.14)

Hence Lemma 1.3.2(iii) implies that A, € Ay, and (1.4.4) is established. Tt
remains only to prove (1.4.6). Taking v, = 0 in (1.4.12), we have jj(up,) <
(Uhr, An)A,- This implies (1.4.6) by Lemma 1.3.2(ii). Therefore, (u, ph, An)
is a solution of Problem VEy,.
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(c) Let (upn,ph, An) € Vap X COQh x Aj, be a solution of Problem VE;. Then
we see that up, € Vpp, » from (1.4.5), and that

(Uhry Ab)A, = Jn(unr) (1.4.15)

from (1.4.6) combined with Lemma 1.3.2(ii). It follows from (1.4.4), (1.4.5),
and Lemma 1.3.2(i) that

a(uh, vh — un) + jn(vnr) = Jn(unr) — (f, vn — un)r2(Q)2
= — b(vp, — uh, pr) — (Vhr — Uhr, An)A, + Gh(VRr) — Gh(URs)
=jn(vn) — (Vhr, An)a, >0,

for all v, € V0. Hence uy, is a solution of Problem VI, ;. This completes
the proof of Theorem 1.4.1. H

1.4.2 Error analysis

Before presenting the rate-of-convergence results, we state the following:

Proposition 1.4.1. Let (u,p) and (un,pp) be the solutions of Problems VI
and VIj, respectively. Then,
(1) it holds that

lunllar @2 < 1 fllL2@)2/ o (1.4.16)
(ii) for every vy € Vi, and qp, € Qp, it holds that

allu — unlfp 2 < au — up,u = vh) +b(up — u,p — qn) +b(vh — u, ph — p)

a (Ura Uhr — UT)LQ(Fl) +j(uh'r) - jh(uhT) +jh(7]h7—) - .](uT)
(1.4.17)

(iii) for every qp, € Qp, it holds that

b a
I = pallzzr < (1+ 51 1o = aliaoe + - wnlinap. 1419

Proof. (i) Since uy, is the solution of Problem VIj , by Theorem 1.4.1(ii),
it satisfies (1.4.7). Hence Korn’s inequality (1.2.13), together with the pos-
itiveness of jp,, gives

allunlF e < a(un,un) = (f,un) 2@ — jn(uns) < [ £llz2@p2 lunll 2@,

which implies (1.4.16).
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(ii) Let vp, € Vi and gy, € éh be arbitrary. We begin with the following
equality:

a(u—up, u—up) = a(u—up, u—ovp)—a(u, up—u)—a(up, vp—up)+a(u, vp—u).

Majorize the second term of the right-hand side by (1.2.20) with v = wy,
the third one by (1.4.1) with vy, itself, and rewrite the fourth one by (1.2.16)
with v = v;, — u. Then we have

a(u — up,w — up)
<a(u —up,u — vp) + b(up — u, p) + j(unr) — jur) — (f, un — u)r2(q)2
+ b(vh — uh, ph) + Jn(vhr) — Ja(unr) = (f,vh — un)r2(0)2
—b(vh —u,p) + (07, Var — ur)p2(ry) + (f, vn — ) L2(0)2
=a(u — up,uw —vy) + blup, — u,p — qn) + b(vy — u, pp, — p)
+ (0, Vhr — Ur) p2ry) + 5 (unr) — Ju(tnr) + 3r (V) — j(ur).

Combining this with Korn’s inequality (1.2.13), we conclude (1.4.17).
(iii) Taking w £ v as a test function in (1.2.20), with an arbitrary v €
HE(Q)?, gives

a(u,v) +b(v,p) = (f,0)r2@2 (Vv € Hg(Q)?).

On the other hand we know that (1.4.10) holds, and therefore, by subtraction
we obtain

a(u — up,vp) + b(vp,p —pr) =0 (Vop, € Vh) (1.4.19)
Now let g, € @h. It is clear that
Ip = prll2@) < llp — anllz2) + llan — prllr2(@)- (1.4.20)

From (1.3.7) and (1.4.19) we have

b(vh, gn — pn b(vh, g — p) + b(Vh, P — Ph
Bllan — pullzaqay < sup mdh = Ph) _ g, B )+ b )
vpEVh thHHl(Q)Q vREV), ||Uh||H1(Q)2
b —p) — a(u — up,
— s (v, gn — p) — a(u — up, vp)
oneVh a1 ()2
< [l6ll lp = gnllL2(@) + lall lu — wall g ()2- (1.4.21)
The desired inequality (1.4.18) follows from (1.4.20) and (1.4.21). O
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We are now in a position to state the primary result of our error esti-
mates, assuming only the regularity of the exact solution.

Theorem 1.4.2. Let (u,p) be the solution of Problem VI and (up,pn) be
that of Problem VI, for 0 < h < 1. Suppose g € CY(T'y) and (u,p) €
HY(Q)% x HY(Q) with 0 < € < 2. Then we have

. il
lu — whll gy + lp — Phll 2oy < Chmme1), (1.4.22)

Proof. We recall the interpolation error estimates (1.3.1)—(1.3.3).
Taking vy, = Zpu, qp, = Ipp in (1.4.17) and (1.4.18), we find that

alju — uh||§p(9)2 < a(u —up, v — Ipu) + b(up, — u, p — Upp) + b(Zpu — u, py, — p)

+ (07, @nw)r — ur)p2ry) + |7 (wne) — jn(unr)]

+ in(Znu)r) = 5((Znw)o)] + 1 ((Znw)r) — 5 (uq)l,
(1.4.23)

and that

Ip — prllr2@) < C (Ilp — Mrpll L2 + llu — unllgr)2)
< O(h + [lu — whl r2ge2)- (1.4.24)

Each term of the right-hand side in (1.4.23) is estimated as follows:
1.

|la(u—up, u=Tpu)| < |[al| lu—un| g (@2 llu—Tnhul Q)2 < Ch|lu—up| 1 (@)2-
2.

|b(un—u, p—Inp)| < [|b]| [[u—unll g1 (@2 lp—npl L2(0) < CAlu—un | mi(a)2-
3. From (1.4.24),

b(Znu — u, ph — p)| < [l [ Znu — wll g1 @)z llpn — Pll2()
< C(h2€ + hf||u — uh”Hl(Q)2).

4.
(07, @n)r — ur) ooy | < lorllp2ey (@nw)r — urllper,) < CRYAHE,
5. By Lemma 1.3.4(ii) together with Proposition 1.4.1(i),

|7 (unr) = Jn(uns)| < Chl/?”UhrHHl/?(rl) = Ch1/2”uh”H1(Q)2 < ChHE,
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6. Since ||Ihu||H1(Q)2 <||Znu —u||H1(Q)2 + ||u||H1(Q)2 <C, Lemma 1.3.4(ii)
implies

5((@hu)r)=in(Znu)r)] < CRY2||(Zhw)rl grasaey) < CHY? | Tnull maye < CRY2.
7.
5((Znw)r) — (ur)] < gl 2 l(@h)r — urll 2y < CRYZH.

Combining these seven estimates with (1.4.23), we deduce

lu — unl 2 < C <h€||u — up e + A2 + A2 4 h1/2) ;

so that o

[ — wnll gz < Ch™™&ad, (1.4.25)
We conclude (1.4.22) from (1.4.24) and (1.4.25), and this completes the
proof. a

The previous theorem reveals that the rate of convergence is O(h'/4)
at best even when the solution is sufficiently smooth. However, it can be
improved if additional conditions about the signs of up, and (Zpu); on I'y
are available. To formulate the result, we make the following assumptions
(recall Definition 1.3.1):

(S1) (Zpu)r has a constant sign on every side.

(S2) wup, has a constant sign on every side.

(S3) sgn(ur) =sgn((Zpu)r) on I'y.

Theorem 1.4.3. In addition to the hypotheses in Theorem 1.4.2, we assume
g € C*(T'1) and that (S1)—(S3) are satisfied. Then we have

lu — Uh||H1(Q)2 + |l — phllr2@) < ChRPmsl, (1.4.26)
Moreover, if g is a polynomial function of degree < 1, we have
v — unllmr ()2 + [P — Prllr2@) < CR°. (1.4.27)
Proof. We first verify that (S3) implies
or(Zpu)r + g|(Zpu)-| =0 a.e. on I'y. (1.4.28)

In fact, for each side e € &|r,, if u, vanishes on a subset of e containing
more than three points, then the quadratic polynomial (Z,u), vanishes on
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the whole e. Otherwise, we have |u,| > 0 a.e. on e; hence we deduce from
(1.2.19), namely,
orur + glurl| =0 a.e. on I'y, (1.4.29)

that o, = —gsgn(u,) = —gsgn((Zpu);) a.e. on e. In both cases, it follows
that o-(Zpu)r + g/(Zpu)-] =0 a.e. on e. Thus (1.4.28) is valid.
It follows from (1.4.28) and (1.4.29) that
(07, (Thu)r — ur)r2(ry) + 3((Znu)r) — j(ur) = 0.
Therefore, taking v, = Zpu and ¢, = Ip in (1.4.17) gives, instead of
(1.4.23),
allu —unl|F (g < alu —un, u—Tyu) +b(up — u,p — Mip) + b(Znu — u, pr — p)

+ 13 (unr) = jnlune )l + [ja((Zh)r) = 5((Znu)r)]-
(1.4.30)

Let us give estimates for each term on the right-hand side. We can evaluate
the first three terms by the same way as in the proof of Theorem 1.4.2. By
assumptions (S1) and (S2), we can apply Lemma 1.3.5 to estimate the forth
and fifth terms as follows:
5 (unr) = jn(unr)| < ChZ|lunr || L2ry) < CR?|lunll (@ < CH?,
|in(Znw)r) = §((Znu)r)| S CR?|[(Tnu)e |l 2y < CR2 || Tnull g aye < CH2.

Consequently, we obtain

lu — unll3 e < C (llu — wnll g1y + B> +h?), (1.4.31)
which leads to .

||u _ uh||H1(Q)2 < Chmm{e,l}.

The estimate for |[p — pl|r2(q) is similar to the proof of Theorem 1.4.2, and
then, (1.4.26) follows.

Finally, if g is affine then the fourth and fifth terms in (1.4.30) vanish
exactly, according to Lemma 1.3.5. Hence we have

s — wnl2a e < C (ellu — wnl s aye + h%)
instead of (1.4.31), from which (1.4.27) follows. O

Remark 1.4.1. Conditions (S1)—(S3) are not so artificial. Assume that u
is continuous on 2 and that the isolated zeros of u, on I'; are contained in
I'y . If we make h sufficiently small, then we see that (S1) and (S3) are
satisfied. Therefore, since Theorem 1.4.2 implies up, — uy in HY/ 2(Ty), we
can expect (S2) to also be valid; however, its rigorous proof is not easy.
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1.4.3 Numerical realization

We propose the following Uzawa-type method to compute the solution of
Problem VE;, (therefore, Problem VI;,) numerically.

Algorithm 1.4.1. Choose an arbitrary )\511) € Aj, and p > 0. Iterate the
following two steps for k =1,2,---:
Step 1: With )\Elk) known, determine (ugk),pgk)) € Vun X Qp such that

{ () o) + b(vn, b)) = (f, vm) 202 — (ks A Ay (1.4.32)
b(up”, qn) =0, (1.4.33)

for all (vp,qn) € Van X éh.

Step 2: Renew )\gfﬂ) € Ap, by

A — Projz (WP + pul®). (1.4.34)

Remark 1.4.2. (i) The unique existence of (u,(lk), pgc)) satisfying (1.4.32)
and (1.4.33) is guaranteed by the inf-sup condition (1.3.8).
(ii) We can regard (1.4.34) as an approximation of

Ap = PrOjAh ()\h + puhT), (1.4.35)
which is equivalent to (1.4.6) by Lemma 1.3.2(ii).

Following standard techniques for Uzawa methods (e.g. [22, p. 66]), we
prove the convergence of Algorithm 1.4.1.

Theorem 1.4.4. Let (up, pp, An) be the solution of Problem VEy. Under
the same notation as Algorithm 1.4.1, there exists a constant pg > 0 inde-
pendent of h such that if p satisfies 0 < p < po, then the iterative solution
(ugk),p,(lk), )\gc)) converges to (up, ph, An) in HY(Q)2x L2(Q) x Ap, as k — occ.

Proof. Subtracting (1.4.32) from (1.4.4) with test functions in V5 ,, we
obtain

alup —ul op) + (e, Ay = ANA, =0 (Yop € Vipe).  (1.4.36)

Take vy, = ugk) —up € Voo in (1.4.36) and apply Korn’s inequality (1.2.13)
to obtain
k k k
Ky = —a(ugl ) _ uh,ug ) _ up) < —a||u§1 ) _ uh||%{1(9)2.
(1.4.37)

(uh? = e, N = An)
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Next, we note that Proj; ~given in (1.3.5) satisfies

IProjz, (1n) — Projz, (m)lla, < llun —nalla, — (Vin,mn € Ap), (1.4.38)

as a result of a general property of a projection operator. It follows from
(1.4.38) with n = A + pul? and n, = M\ + pups, (1.4.34), (1.4.35), and
(1.4.37) that

k+1 k k
I R, < IS — an + (@l — w3,
k k k k
= 1A = a3, + 20w — wpe, AP A, + 220 — w3,

k k k
< AR = MR, — 20pllup”) — unlZp gy + PPllul — uncll3,-

; k k k
Therefore, since ||u§”) — Upr|la, < C’||u§”) — uprllL2ry) < C||u§b ) up || g ()2
in view of Lemmas 1.3.4(i) and 1.2.1(i), we obtain

k+1 k k
MY — Aul, < AR = MnlZ, — @ap — Co?)llut? — unl 2 qye, (1.4.39)
and thus
k k k+1
(2ap — Cp)|u? —unllnqye < IAY = Mll3, — MY — Aul,. (1.4.40)

On the other hand, by virtue of Lemma 1.3.1(i)(ii), we can choose wy, €
Vh,o such that wp, = )\gc) — AponI'y and

k k
lwnll e < CINS = Mll o,y < COINT = Mlla,, (1441

where the constant C'(h) concerns the equivalence of the norms on the finite
dimensional space Aj. Hence, it follows from (1.4.36) with vj, = wy, that

A — MlZ, = (whe, AP = A)a, = —a(ul®) — up, wy,)
k
< llall [1u? — wnll g1 2 lwnll g1 @2
k k
< cm)llallllul® — unllmr@pel AL — Anllan,
so that
k k
—Cm)llallllug® — unll gy < — AL — Anlla,. (1.4.42)

Since the constant C' in (1.4.39) is independent of p (and even of h), if we
choose 0 < p < po := 2% then it follows from (1.4.39) and (1.4.42) that

k+1 2ap — Cp? | (k
AR = Mlla, < \/1 = SoaE I = Al
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where we may assume C(h)2||al|? > 2ap — Cp? (see the remark below).
Consequently, we obtain

2ap — Cp?

k—1
T2
SOL > A = Anlla, =0 (k — oo).

k
1A® Xl < (1—

Then, from (1.4.40) it also follows that ugk) — up, in HY(Q)? as k — 0.
Finally, subtracting (1.4.42) from (1.4.4) with test functions in V}, gives

a(up — u;lk), vp) + b(vn, pp, — p;zk)) =0 (Vop, € ‘G/h)

Combining this equation with (1.3.7), we have

k k
(k) b(vh,pg )~ pn) —a(ug I Up, Up)
Bllpy, " —prllr2@ < sup ———"———= = sup =0 (k—o0).
wetn Nwnllm@2 o cv lonllaa)e
This completes the proof. O

Remark 1.4.3. (i) If C(h)?||a||? < 2ap—Cp?, we replace C(h) by \/2ap — Cp2/|al,
keeping (1.4.41) valid.
(ii) The convergence speed, which can be evaluated by how much the

constant /1 — % is less than 1, may depend on h.

1.5 Numerical examples

Let Q be the unit square (0,1)2. The boundary T' = 99 consists of two
portions I'g and I'y given by

Lo={(0,9)[0<y<1}U{(z,0)[0 <z <1}U{(1,y)|0<y <1},
I ={(z1}|0<z< 1}

In particular, the set of extreme points is o N Ty = {(0,1), (1,1)}.
Let us consider

ui(z,y) = 202*(1 - z)%y(1 - y)(1 - 2y),
uz(z,y) = —20z(1 —z)(1 - 2z)y*(1 - y)?,
p(z,y)  =40z(1 —z)(1 —2z)y(1 —y)(1 - 2y)
+4(62° — 15z* + 102%)(2y — 1) — 2,

(1.5.1)
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which turns out to be the solution of the Stokes equations (1.2.1) under the
adhesive boundary condition u|r = 0. Here, we set the viscosity constant
v =1, and give the external force f by

fl(xvy) = Oa
fal@,y) =120(22 — 1)y*(1 - y)?
+80z(1 — z)(1 — 2z)(6y? — 6y + 1) + 8(62° — 15z* + 1023).

By direct computation, we have

max 07| = max [20z%(1 — z)?| = 5/4 = 1.25.
T, 0<z<1

Now, instead of the adhesive boundary condition, we impose SBCF on I'y,
with g being constant. Then it is immediate to see that

{g >1.25 == (1.5.1) remains a solution.

g <1.25 = (1.5.1) is no longer a solution and a non-trivial slip occurs.

Our numerical solution, shown in Figure 1.5.1, does indicate such a phe-
nomenon. In fact, some slip up, # 0 takes place on I'y for ¢ = 0.1 and
g = 0.8, whereas no slip is observed for ¢ = 2.0. We also find that the
bigger (resp. smaller) the threshold g of a tangential stress becomes, the
more difficult (resp. easier) it becomes for a non-trivial slip to occur.

1 - g e T 1
i B ._-\'\'.: B ¥ i Paseaeeie S @ i e e B 98 N B
08 0 5 o 0.8 paml —e. ~. S 0.8 Pems, i Wb )
b= % t A N AR L
NMEYFZa R S & N IR 2ot & BN I R eai R
AR ATE AN AR IR ] S AT LA R
S A R A R A N RS A R
t E‘\_,/'/'/‘f l\\i\—'///f x{l\_,///f
0.2 & E\\’_V'//’ 0.2 ¥ N \\_,/v//'ﬂ 0.2 N \N_,/v/')'ﬂ

%G 02 04 06 08 1 %G 02 04 06 08 1 g 02 04 06 08 1
a) g=0.1 b) g =0.8 c) g=2.0
g g

Figure 1.5.1: Solution velocity field of the Stokes equations with SBCF

Let us explain details of our numerical experiments. For the triangu-
lation .7}, of Q, we employ a uniform N x N Friedrichs—Keller type mesh,
where N denotes the division number of each side of the square Q. Choos-
ing the parameter p > 0, fixed for each g, and the starting value )\Ell), we

34



Table 1.5.1: Values of the Lagrange multiplier A\;, and tangential velocity

up, on I'y
g 0.1 0.8 2.0 20 | 20
p 1000.0 50.0 3.0 1.0 | 3.0
NS 0.0 0.0 0.0 00 | 02
z Ah Upr An Upr A Upr An A
00 0.0 00 | 00 0.0 0.0 0.0 00 | 00
01 | —=1.0 —0.02 | —0.26 —88E-6|—0.09 —1.6E-5| —0.09 | —0.09
02 | 1.0 —0.05 | —0.90 —3.5E-6 | —0.25 —9.8E-7 | —0.25 | —0.25
03 | —1.0 —0.09| —1.0 —0.01 | —0.42 +9.1E-6 | —0.42 | —0.42
04 | 1.0 —-012| —=1.0  —0.03 | —0.55 +1.7E-5 | —0.55 | —0.55
05 | —1.0 —0.13| —=1.0  —0.04 | —0.60 +2.0E-5 | —0.60 | —0.59
06 | —1.0 —012| —=1.0  —0.03 | —0.55 +1.9E-5 | —0.56 | —0.55
0.7 | =1.0 —0.09 | —1.0  —0.02 | —0.43 +1.4E-5 | —0.43 | —0.43
0.8 | —1.0 —0.06 | —0.94 —1.6E-6| —0.26 +5.0E-6 | —0.26 | —0.25
0.9 | —1.0 —0.02 | —0.26 —2.0E-6 | —0.09 —5.7E-6 | —0.09 | —0.09
1.0 00 00 | 00 0.0 0.0 0.0 00 | 0.0
| Kite 18 | 29 | 45 | 52

compute the numerical solution (

(k)

k
U’h 7p§7,)7

stopping criterion for the iteration in Algorithm 1.4.1 is

Hu(k)

R T U

(k-1

)HHl(Q)? <1075,

)\gf)) by Algorithm 1.4.1. The

(1.5.2)

The number of iterations required to attain (1.5.2) is denoted by Kit;.
Figure 1.5.1 shows the plots of uj, computed when N = 10. The concrete

choice for g, p, /\21) are listed in Table 1.5.1, together with the resulting

values of A\, and up, on I'1. The meaning of )\21)

is that )\,(ll)(M') = 0.2 for each M € fl,h- By comparing the three results
for g = 2.0, we see that the result, except for ki, does not depend on the
choice of p or )\g).

Next, we consider the behavior of the Lagrange multiplier A. It follows

from (1.4.6), combined with Lemma 1.3.2(ii), that for each M € I'1

[An(M)] <1
Ap(M)=+1lor —1

= 0.2 in the last column

if wpr (M) = 0,

if up, (M) # 0. (15.3)

Comparing the values of Aj with those of up, in Table 1.5.1, we find that
our numerical solution indeed reveals behavior like (1.5.3).
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Table 1.5.2: Convergence behavior of ||up, — Uref||H1(Q)2 and ||pn —pref||L2(Q)
for g =0.8 and g = 2.0

g=2038 g=20

N | Hl-error rate ‘ L%-error rate ‘ kite || H'-error rate ‘ L%-error rate ‘ Kitr

10 | 1.6E-2 — 1.6E-2 — | 18 1.3E-2 — 1.3E-2
12 | 1.1E-2 1.9 | 1.1E-2 20 | 19 9.3E-3 1.9 | 1.0E-2
15 | 7.0E-3 21 | 6.3E-3 25 | 22 6.0E-3 1.9 | 5.9E-3
20 | 3.9E-3 20 | 35E-3 21 | 20 3.4E-3 2.0 | 3.1E-3
24 | 2.6E-3 21 | 27E3 13 | 21 24E-3 2.0 | 2.0E-3
30 | 1.7E-3 20 | 15E-3 26 | 18 1.5E-3 2.0 | 1.3E-3
40 | 9.0E-4 21 | 85E4 2.0 | 18 8.7E-4 2.0 | 7.0E4

2.6
24
2.3
2.2
2.1
2.1

29
25
19
16
16
16
16

Finally, we evaluate the error between approximate solutions and exact
ones as the division number N increases, when g = 0.8 and g = 2.0. Since
we do not know the explicit exact solutions when g = 0.8, we employ the
approximate solutions with N = 120 as the reference solutions (uef, Pret),
and numerically calculate ||up — uref|| g1()2 and [[pn — pretl|L2(q)- On the
other hand, we know the exact solution (1.5.1) when g = 2.0, and thus we
take uret = u, pref = p in this case. Then, as Table 1.5.2 shows, we observe
the optimal order convergence O(h?) for both cases.
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Chapter 2

Finite element analysis for
the Stokes equations under
the leak boundary condition
of friction type

2.1 Introduction
Consider the incompressible Stokes equations
—vAu+Vp=f, divu=0 in €, {2.1.1)

where (2 is a bounded domain in R? (d = 2,3) with the Lipschitz boundary
I' = 99Q. For the boundary condition (abbreviated as b.c. in the sequel),
we assume I' = ToU T}, ToN T = 0, where 'y and 'y are nonempty open
subsets of I'. Iy is subject to the adhesive b.c. (Dirichlet b.c.), that is,

u=0 on I, (2.1.2)
whereas the following leak b.c. of friction type (LBCF) is imposed on I';:
ur =0, |op| <g, opun+glun| =0 on IY. (2.1.3)

Here, n denotes the outer unit normal, and o = —pn + v(Vu + (Vu)?)n
stands for the stress vector. The normal and tangential components of a
vector U are indicated as U, = U -n and U, = U — Uy,n respectively. Finally,
g is a given positive function on I'; and called the friction parameter.
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The physical interpretation of (2.1.3) is as follows. From the second and
third conditions, we see that g represents a threshold of the normal stress
such that

lo|<g=un=0, uy>0=0p=—9, un<0=o0,=g. (2.1.4)

If g = 0 then (2.1.3) reduces to the usual leak b.c.: ur = o, = 0. Thus
LBCF can be regarded as a non-linearized leak b.c. obtained from imposing
some friction law against leak phenomena of a fluid.

Although frictional b.c.’s are treated mainly in the context of elasticity
(e.g. [33]), they have been considered also in fluid dynamics since the pioneer
work [16]. On one hand, the slip b.c. of friction type (SBCF), obtained by
replacing n with 7 and vice versa in (2.1.3), is a direct transplant of friction
problems for solids, and many researchers focus on it from mathematical
and numerical points of view (e.g. [3, 39, 41, 43, 55]). On the other hand,
LBCF, in which case a material is allowed to penetrate the boundary but
not allowed unless the flow is strong enough, is also worth considering in the
context of fluid dynamics [51]. Applications of SBCF or LBCF to realistic
problems arising in computational fluid dynamics are addressed in [32] and
[61]. Nonstationary SBCF and LBCF problems are studied in [18, 30].

Before explaining what our discrete scheme aims at, we review the results
shown in the study of continuous problems ([16, 20]). A weak form for (2.1.1)
with (2.1.2)—(2.1.3) is the following variational inequality:

Problem VI. Find (u,p) € V;, x Q such that, for all (v,q) € V,, x Q,
{ a(ua vi—= u) + b(v - uaP) —I—j(?)n) - j(un) > (f,?) - u)a (215&)
b(u,q) =0. (2.1.5b)

Here, employing the standard notation of Lebesgue and Sobolev spaces, we
define function spaces and functionals which appear above as follows:

V=@

Vo={veV]jv=0onTy, wv=0o0nT4},

Q = L* (),
and

i 14 (9u7-, auj 8’01‘ 8vj . 8
a(u,v) = 5/9 <8xj + &Ez‘) (8% + 3%‘) dz, blu,q) = —/Q(dlvu)qu,
i = [ alnlds, ()= (a1 1=1- laaa
j |
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If the Lagrange multiplier A := —o,/¢ is introduced, Problem VI is
proved to be equivalent to the following variational equation problem [20,
Theorem 3.4]:

Problem VE. Find (u,p,\) € V;, x Q x A such that

a(u,v) +b(v,p) + (vn, A)a = (f,v) (Vv € Vy), (2.1.6a)
b(u,q) =0 (Vg € Q), (2.1.6b)
(U, — A)p <0 (Vu € A). (2.1.6¢)

Here, a Hilbert space A and its closed convex subset A are defined by
A=L*T1), ()a=(g")r2wy, A={r€A| [N <1lae onTy},

where g > 0 is supposed to belong to L*°(I';). Further assumptions on g
will be specified later in Section 2.3. With this A, (2.1.4) is expressed as

N<l=u,=0, u,>0=A=1, u,<0=A=-1, (2.1.7)
which we call the leak/no-leak detecting condition.

Remark 2.1.1. We refer to (2.1.6a)—(2.1.6¢) as a variational equation prob-
lem since inequality (2.1.6¢) can also be interpreted as an equation. In fact,
it is equivalent to A = IE’()\—I— puy), Vp > 0, where P is the projection operator
from A onto A.

Well-posedness of Problems VI and VE is established in [16, 20]. It
should be noted that an additive constant of pressure is uniquely determined
if leak occurs, i.e. up # 0 on I'y, but that otherwise it may not be unique
(see [16, Remark 3.2]).

Summarizing the arguments above, we find that:

(1) Problems VI and VE are equivalent.
(2) A detects whether leak or no-leak occurs.

(3) Uniqueness of an additive constant of p depends on whether leak occurs
or not.

The purpose of this chapter is to propose a discretization of the LBCF prob-
lem which preserves (1)—(3) above in a discrete sense. A triangular finite
element framework, based on the P1/P1-stabilized, P1b/P1, and P2/P1 el-
ements, is presented. We show that an approximation of j(-) in terms of
some numerical integration enables us to accomplish our aim. We notice
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that such an approximation itself, together with convergence analysis, was
already considered in friction problems (e.g. [2, 22, 23, 25, 26, 27]); never-
theless its connection with points (1)—(3) above was not clear.

Preserving properties (1)-(3) is indispensable for our theory, and has
more meaning than the fact that it is desirable just numerically. For in-
stance, our error analysis and numerical implementation are respectively
based on discrete versions of Problems VI and VE. Thus it is the equiva-
lence between them that guarantees the consistency between our theory and
numerical computation.

The plan of this chapter is as follows. In Section 2.2 we introduce no-
tations and lemmas for our FEM. Well-posedness of discrete problems and
error analysis are established in Section 2.3. Numerical implementation is
discussed in Section 2.4, and we present numerical examples in Section 2.5.

2.2 Finite element framework for the LBCF prob-
lem

Henceforth, C' denotes a generic constant depending only on €2 unless oth-
erwise stated. When we need to specify its dependency on other quantities,
we write C(f,g),C(h) etc.

2.2.1 Finite element spaces

In the rest of this chapter, we assume that € is a polygon (d = 2) or
polyhedron (d = 3) and that T'; coincides with whole one side (d = 2) or
face (d = 3) of Q. In particular, n is constant on Ty, and 9Ty = To N T,
consists of two adjacent vertices of €2 (d = 2) or line segments surrounding
I'h (d=3).

Remark 2.2.1. When I'; is a finite union of sides or faces, the constraint
ur = 0 on I'y implies u = 0 at corners (d = 2) or edges (d = 3) contained
in I'; (if w is continuous). We can extend our results presented below to
such I'y, provided that those Dirichlet conditions are incorporated in the
approximate spaces.

Let 9, be a standard triangulation of Q with h = max{hr|T € F},
hp = diam T. We assume {7, }p0 is regular, i.e. hy < Cpy for all T € .,
where pr denotes the diameter of the inscribed ball of T'. To refer to sets of
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nodes, we put

Y ={M € Q| M is a vertex of some T € .7, },
¥? = {M € Q| M is the midpoint of an edge of some T € .7, }.

The d — 1 dimensional triangulation of I'; inherited from .7, is denoted by
p, which is also assumed to be regular.

To approximate velocity and pressure, we consider one of the P1/P1,
P1b/P1, and P2/P1 elements which we refer to as ! =1, 1 = 1b, and | = 2
respectively. That is to say, we employ the following approximate spaces:

{op € C(Q)?| wplr € 21(T)? (VT € G)} if 1=1,
V=< {vn e CQ)?¢| wplr e 21(T) 0 B(T)? (VT € F)} if 1=1b,

{’Uh < C(ﬁ)d‘ Uh|T & L@Q(T) (VT S %)} if I=2,
Qn={n € CQ)| anlre 2(T) (T € F)},

where 2 (T) and A(T) respectively denote the space of the polynomials of
degree < k and that spanned by the bubble function on T. Based on these
spaces, we define

Vi = Vi NHH Q)Y Vi = {vn € Vi |b(on,qn) = 0 (Van € Vi)},
Vi =ViN Vi, Vine = Vin N Ve, Qn=QnNL3(Q),

where L§(Q) = {q € L*(Q)| [, ¢dxz = 0}. As is well known, the following
inf-sup condition holds with a constant 8 > 0 depending only on €:

b(vh, g
Bllanlle < sup (v, 40

+7C|hVanll  (Ygn € Qn), (2.2.1)
wevr, Ionllv

where y=1ifl=1,and y=0if | = 15, 2.
Since n is constant on I'1, Ay = {vpn|r, | vn € Vi} coincides with

As — {nn € C(T1) |np =00n 0Ty, npls € 21(S) (VS € HA)} if 1=1,1b,
{nn € C(T1)|np =0o0n ATy, npls € P2(S) (VS € HA)} if 1 =2.

(Note that the bubble function for 7' vanishes on 97" in the case | = 1b.)
The sets of boundary nodes on I'y and 'y =T \ 9I'; are indicated by

Ty =TS} (f 1=1,18), Typ=TiN(ThUE?) (if 1=2), @'y =T1s\O0L.

The following discrete trace and lifting theorem is frequently used in the
subsequent arguments.
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Lemma 2.2.1. (i) For vy, € Vi, we have vy, € Ap and ||Uh”||H1/2(F1) <
00
Cllonlly-
(ii) For mp € Ap, there exists vy, € Viy such that vp, = np on I'y and
lonllv: < Cllnall gy, -
(ili) Let I = 1b or 2. In (ii) above, if [, npds =0, then we can choose
vy in such a way that vy € Vi 4.

Proof. (i) This follows from a standard trace theorem. For the trace and

lifting theorem involving the space Héé2(1“1), see [33, Section 5.3].

(ii) Since np, € Ap, C H(%Q(Fl), the zero-extension of npn to I', denoted by
fin, belongs to H'/?(T")?, with its norm bounded by C’||“r)h||H1/z(F1). Applying
a discrete lifting theorem [8, Theorem 5.1] to 7y, we obtah(l)othe conclusion.

(iii) Take an extension o5, of 1y, given in (ii). By the inf-sup condition
(2.2.1), there exists vy € f/h, such that

b(vh, qn) = —b(Ph,qn)  (Yan € Qn), (2.2.2)

with |lvj[lv < C||divonl|2@) < CHT}hHH&ég(FI Setting v, = Op, + v}, we

)

obtain vy, = np, on 'y and ||vp|lv < C’||77h||Hééz(Fl . Because [ nnds =0,

)
b(vh,l):—/ vhnds:—/ npds =0,
Ty Ty

which, combined with (2.2.2), implies v, € Vj ». This completes the proof.
O

we have

Remark 2.2.2. In [8], they present a lifting theorem only in a 2D domain
(although extension to d = 3 is mentioned at Remark 3 there). Nevertheless,
their proof of the theorem is sufficient to prove the 3D case, if combined with
an interpolation-operator theory given in [9, Section 4.8] which is valid for
all space dimensions.

Next we give a Vp,-Qp type inf-sup condition, which is rather delicate
compared with the Vh—éh type, that is, (2.2.1). Such an inf-sup condition
seems to be known (e.g. [15, p. 1687]) but its detailed proof is not found, so
that we present it here.

Lemma 2.2.2. The inf-sup condition of the form (2.2.1), with Vi, and Qp,
replaced by Vi, and Qp, also holds.
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Proof. First let us prove there exists 0y, € Vi, such that
b(f)h, 1)/”17},,”\/ >C>0. (2.2.3)

In fact, solving a d — 1 dimensional finite element problem gives n, € Ay
such that

(V' Vi) 2ryya-1 = (=1, pr) 2y (Ven € Ag),

where V' denotes the gradient operator on I';. Then we see that — fFl npds =
||V’77h||%2(r1)d,1 > C, because 7y, converges in H'(I'1) to the weak solution
of A'n = 1in I';, n» = 0 on 9I'y, which is obviously non-constant (A’ is
the laplacian on I'1). Lifting np, to 05 € Vi, by Lemma 2.2.1(ii), we obtain
b(9p, 1) = — [p, nnds > C and ||oy]lv < C, which implies (2.2.3).
Now, we let ¢, € Qp be arbitrary and split it as q, = ¢, + on, wWhere
gn € COQh and 6y, = ﬁ(qh’ 1)g. By (2.2.1) there exists v} € V;, such that
b(vfu (jh)

i 2 Blldnlle —YClIhV ]|
AR @

Setting v, = v /||v}||v + &0k /|| 0n|lv, we deduce that |jup||yv < 14& and that
(We may assume d;, > 0 and £ > 0; if 65 < 0 then consider —¢ instead of £.)

b(f}h, 1)
h A
[|on v

b(n, qn)
| On v

b(vy, qn) b(On,qn)  b(v5,qn)
b v L qn) = ho ‘I‘ d 9 — h? +
©n o) = o T Ty~ el S

> (8= &)lldnllg + £Con — vC|[hV g .

Choosing ¢ = /2, we conclude b(vp, qn) > Cllgnllg — YC||hVgy]|, so that
the desired inf-sup condition follows. l

+ &0

2.2.2 Approximation of j(-) and (-,-)» by numerical integra-
tion

In what follows we assume g € C(I';) and g > 0. We label nodes on each
S € .9, as follows:

e When d = 2, the two endpoints of S are denoted by M2, M2; the
midpoint of S is indicated by mg.

e When d = 3, the three vertices of S are denoted by Mg, M3, M 3; the
midpoint of the opposite side to Mg is indicated by mf.
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Then, based on the trapezoidal and Simpson formulas, we define an approx-
imation of j(n), for n € C(T'1), by

Jn(n)

> ‘g' > glnl(ME)

SeS, =1

> “E'(Zgw(m) + dgln|(ms))

Se.s, i=1

15| ;
> 5 2 gll(My)

Se., i=1

\SEyh

ifd=2and !l =1,1b,

ifd=2and !l =2,

ifd=3and l =1,1b,

3 3
Z |*§|<(1 — K) ZQW(A{%) + mZg\nng)) ifd=3and =2,
i=1 1=1

where 0 < £ < 1 is a constant and g(M)[n(M)| is written as g|n|(M), etc.
Accordingly, we define a scalar product (A, u)a, , for A\, u € C(T'y), by

()\’/’L)Ah
e -
> B o)
Se., i=1

SeS,

=1

> ‘g' ( > gau(ME) + 4gx\u«(ms)>

3

> B oantard)

Se.F i=1

5]

3 3
e (1=w) > gAu(ME) + mZgAu(mfé))

ifd=2andl=1,1b,

ifd=2and =2,

ifd=3and l=1,1b,

ifd=3and =2,

where gAp(M) means g(M)N(M)p(M) etc. We find that (-,-)a, is bilin-
ear, symmetric and positive definite, so that Aj; becomes a Hilbert space
equipped with this inner product.

Remark 2.2.3. When d = 3 and [ = 2, the assumption « # 1 (and g > 0)
is essential to obtain the positive definiteness of (-,-)a,. This is why we do
not employ the pure Simpson formula which corresponds to x = 1. For a
concrete value of , a formula which is exact for cubic functions [54, p. 402]
suggests the use of k = 17/20.

44



Combining Lemma 2.2.1(ii) with the equivalence of ||- |5, and ||- ||H1/2(F1)
00

on the finite dimensional space Ay, we have an h-dependent inf-sup condition

Uhn, Th) A
C(h)|Innlla, < sup M

(Vi € Ap). (2.2.4)
'Uhe‘/hn ||Uh||V

This can be proved by the same way as in Lemma 1.3.3 of Chapter 1.
We introduce a closed convex subset of Ay, by

[\h = {)\h € Ah| |)\h| <1 at f‘lh}-

Note that constraints are imposed only at nodes. The projection operator
from Ay, onto Ay, denoted by Py, is characterized by the node-based relation
Ph(nh) = max{—1,min{l,n,}} at g

The rest of this subsection is devoted to the proof of relations between jp,
and (-, "), First, we prove that a discrete version of j(n) = sup|y<1(n, A\)a
is valid. Such a relation in a discrete sense would not necessarily hold if we
did not introduce numerical-integration approximation of j(-) and (-, -)a.

Lemma 2.2.3. (i) Let n, € A, and M\, € Ay. Then (ks An)A, < Jn(nn)-
(ii) Under the assumptions of (1), following (a)—(d) are equivalent to each
other:

(@) (mn, An)a, = Jn(nn)-

(b) (M, it — M), < O for all pp, € Ap.

(¢) mAn = |mnl at Iip.

(d) An = Pu(An =+ pnn) for some (actually, all) p > 0.

Proof. (i) This is obvious because \;, € Ay, implies gnpAp < glnn| at Tis.
(i) (a)=(b): Let (a) be valid and pp € Ap. Since (nn, pn)a, < jn(nn)
by (i), we have (mn, fth — An)a, < 0. 3
(b)=-(c): Let (b) be valid and M € I'yj,. Define puj, € Ay, by

mn(M)/lm(M)] i N = M and ns (M) # 0,
pr(N) =40 it N =M and n(M) =0,
A(N) if N e I'ip\ {M}.
It follows from (b) that g|nn|(M) < gnpAn(M), so that the equality holds
since [Ap(M)| < 1. Hence we obtain (c).
(c)=(a): It is immediate to see (a) follows from (c).
(b)&(d): This is a direct consequence of a general property of the pro-
jection onto the convex set Ap,. O
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Next we state a discrete analogue of the fact that L>°(I'1) is the dual of
LY(Ty).
Lemma 2.2.4. Let A\, € A,. Then Ay € Ay if and only if (p, An)n, <
Jn(nn) for all np € Ap,.
Proof. We only prove for the case d = 3 and [ = 1, 1b, since a proof for the
other cases is similar. From Lemma 2.2.3(i) we already know the “only if”
part, and thus we show the other part. For fixed M € Flh, define n, € Ay
by

nh(M) :)\h(]\/f), nh(N) =0 if N eFlh\{M}.

By assumption we see that

gl aPn) >0 ISI/B < gll(d) Y 18I/,

MeSe, MeSeS,
so that |[Ap(M)| < 1. Hence \;, € Ay O

Finally, we establish a discrete counterpart to the fact that the orthog-
onal complement of L3(T'y) := {n, € L?(T'1)| Jp, mds =0} in L?(T'y) is R.
When d = 3 and [ = 1, 1b, we assume the following connectivity condition
(cf. [34, p. 173]) throughout this chapter; we do not need it if d =2 or I = 2.
In a practical computation, it is not a restrictive assumption.

(Co) Any two nodes in Iy, can be connected by a polygonal line contained
n Fl.

Lemma 2.2.5. (i) Let | = 1, A\, € Ap, and assume (Co) if d = 3. Then
(Mh, An)A, = 0 for all ny, € AhﬂLO(Fl) if and only if g\, is constant at i,
(i) Let d = 2, 1 = 2 and A, € Ap. Then (np, Ap)a, = 0 for all ny, €
Ap N LO(Fl) if and only if g\p, is constant at Flh
(i) Let d = 3, 1 = 2 and A\, € Ap. Then (Mhys An)a, = 0 for all ny, €
AhﬁLO(Fl) if and only if \p, =0 at FlhﬂEh and gAp, s constant at FlhﬂE

Proof. (i) We prove only for d = 3. First, assume g\, =6 € R at I 1, and
let np, € AN L3(T'1). Then, in view of the trapezoidal formula, we conclude

that
(175 An) A —62 Z’?h (ME) _5/ iy, ds = 0.
I

Se. s, =1

Let us prove the converse direction. Let S € ., and My, My € SN f’lh
be distinct two points. Define i, € Ay, by

m(Mi) =&,  m(M2)=-&, mN)=0 if NeTly\{M,M},
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where § = > g5y [S]/3, i = 1,2. Then the trapezoidal formula leads to
Jo, mmds = &np(Ma) + Samn(Mz) = 0, Le. np € L3(Ty). By assumption it
follows that

0= (Mh, An)a, = E1&2(gAn(M1) — gAn(M2)),

and thus gAp(M1) = gA\n(Mz). In view of (Co), we can repeat the same

argument to deduce g\, = Const. at I'1p.
Proofs of (ii)—(iii) are similar, so we omit them. (In (iii), note that
Jo,mmds =3 gcq, 1S1/3 S22 nn(mi) does not involve values at Ty, N X} .)
[]

2.2.3 Error between j and j,

For brevity, we prove the results of this subsection only for d = 3, but we
can treat d = 2 in a similar (even easier) way. The d = 2 case is studied in
[23, Chapter 4] where g is a constant, or in Section 1.3.5 of Chapter 1 where
[ = 2. We begin with the following elementary result.

Lemma 2.2.6. Let S be a triangle with vertices O(0,0), A(a1, az), B(b1,b2),
and 1 be a polynomial of degree < 2 with respect to x1,x2. Then it follows
that

[ Intas,22) = n(O)* doxdz < a(diam )2 Tz
Proof. Any point P(z1,z2) in S can be represented as
z1 =t(l —s)ay +tsby, x2 =1t(1— s)ag + tsby (0<t,s<1).
Writing 7(t, s) = n(z1,z2), we have
/S|77(x1,g;2) —1(0)|* dardwy = /01/01 |7i(t, s) — 7(0, 5)|°J dtds,  (2.2.5)
where J = 2|S|t is the Jacobian of the transformation (¢,s) — (z1,z2).
Here, since n(z1,22) is a quadratic polynomial, 7(t,s) is a quadratic

polynomial of t for fixed s, so that 97/9t is linear in ¢t. By the midpoint
formula, we have

_ - Lon,, , o0 ([t 1 Tz
n(t,s>—n<o,s>—/0 St 8)dl =t (§> =104 vn (5. 2),
where @ = (1} t)O? Therefore,
e 2
I7i(t, s) — 70, 5)|? < (diam S)>2 1Vn (% %)‘ . (2.2.6)
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From (2.2.5) and (2.2.6) we deduce

/ln 21, 22) — 9(0)|* dardars < (diam S) // 0 (2.2) ‘ J dtds
l'l 1'2 .
= (diam S) /‘V — dmldmggél(dlamS) ||V77||L2(S)
This completes the proof. d

Each S € .%}, is divided into 6 sub-triangles S;, i = 1, ..., 6, as follows:

S1 = AGsMimZ, Sy = AGsMim3, S3 = AGsM2Zm3,
Sy = AGgMZm}, S5 = AGgM32ms, Se = AGgM3m3,

where G is the barycenter of S. For n € C(T'y), we introduce the following
piecewise constant approximations defined a.e. on I'y:

n(M2) on S1U Ss, n(mg) on S4U S5,
T}L(n) = 77(]”52*) on 53 U 547 7"}21(77) = n(m%) on SG U Sl;
n(Mg) on S5 U Sg, n(m?é) on Ss U Ss.

We see that 7} and 77 are kind of lumping operators and that jj, is repre-
sented as

o ey Ira(gn)l ds if1=1,1b,
e {(1 — &) Jp, Iri(gn)lds + & [ [ri(gn)lds  ifl=2.

Lemma 2.2.7. Let n, € Ay,. Then
(1) ||7“;1ﬂ7h||L2(F1) and ||7'1%77h”L2(F1) are bounded by C||77h||L2(F1)-
(i) [lrann—nnll2ery) and |lrinn—nnll 20,y are bounded by Chlln || g (ry)-

Proof. (i) Consider | = 2 and estimate |7} r2(r,)- Combining the con-
crete expression of ||77h||2L2(F1) (see [22, p. 97]) with the following identical
inequality

a? +b% + 2 a2+ 4+ 8

< L@ TR B, B
3 30 - 3 1 +15( +e*+ )

ab + bc + ca 8

2 y
_T+B(de+ef+fd)_ﬁ(a€+bf+Cd) §

we obtain ||7"i2ﬂ7h||%2(rl) < 30||77h||%2(rl). In the same manner we have ||r}1l17h||%2(rl) <
30||77h||2L2(F1)' For | = 1,1b, a similar computation yields ||7“}1th||%2(F

4||77h||%2(r1)-
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(ii) From Lemma 2.2.6 we obtain
3
Ikl = 3050 [ lmnn(Mis)? ds < 40219 e
Se.s, i=1 7 52i-1U52
r2nn — ma | £2(ry) can be estimated similarly. O
Remark 2.2.4. A similar argument proves [|np/[a, < C(g)l7nllz2(ry)-
We are ready to give an estimate for the error j, — j.

Lemma 2.2.8. Let n; € Ay, and g € WH°(T'y) € C(T1). Then we have

gn(nn) = (mn)l < C@R°Imnll ey (0<s <),

Proof. We prove only for [ = 1,1b since [ = 2 can be treated similarly. We
simply write 7, to indicate r}. First, by a triangle inequality and Schwarz’s
inequality,

lin(n) — ()l < | Ire(gnn) — gnnl ds < v/|Talllrn(gnn) — gnnll L2 ry)-

I
(2.2.7)
On one hand, since r,(gnn) = rh9 - TR0 and ||rhg||Loo(F1) < ||g||Loo(F1), we
see from Lemma 2.2.7(i) that

I7r(gmm) — gnnllz2@yy < Cllgllpee @ lnnllzzry)- (2.2.8)
On the other hand, it holds that

Irn(gnn) — gnnll L2y < llrenn(reg — Ol 2y + 9(rnnn — mo)ll L2y

In view of Lemma 2.2.7(i) and the Taylor expansion for g, the first term
is bounded by Ch||V'gl|ee(r;)2[mnllL2(r;). Thanks to Lemma 2.2.7(ii), the
second term is majorized by Chl|g||zee(r,)lnnllm1(r,). Consequently,

Irn(gmn) — gnnllL2y) < Chllgllw ey lmnlla ry)- (2.2.9)

The desired estimate follows from (2.2.7)-(2.2.9) in conjunction with an
interpolation inequality between L?(T;) and H(T';). O
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2.3 Analysis of discrete problems for LBCF

2.3.1 Existence and uniqueness

We propose two discrete problems approximating Problems VI and VE as
follows:

Problem VI;. Find (up,pn) € Vin X Qp, such that, for all vy, € V3, and
qn € Qn,

{a(uh, v, — up) + b(vh — un, Pr) + Jr(Vhn) — Jn(unn) = (f,vn —up), (2.3.1a)
b(un, qn) = cr(ph, an)- (2.3.1b)

Problem VEj,. Find (up,pn, An) € Vin X Qn X Ay, such that

a(uh, Uh) + b(vh,ph) + (’U}m, ’\h)Ah, = (f, Uh) (VU}L € V}m), (2.3.2&)
b(un, qn) = cn(Ph, qn) (Ygn € Qn), (23.2b)
(Whns i — An)A,, <0 (Vup € Ap).  (2.3.2¢)

Here, cp(-, ) is a pressure-stabilizing term (effective only when [ = 1) given
by
ch(Phy qn) = v(hVpr, hV qn),

where y =1if I =1, v =01if | = 1b,2 is the same as in (2.2.1).

Remark 2.3.1. For brevity and in order to focus on essence of LBCF, we
work with the simplest form of stabilizing terms. See e.g. [15] for more
involved ones.

Theorem 2.3.1. Problems VI, and VEy are equivalent.

Proof. Let (un,pr) be a solution of Problem VIj. Taking up + vy, as a test
function in (2.3.1a), with v, € Vi arbitrary, we have a(up,vp) + b(vp, pp) =
(f,vn). Since Vi, = {vr € Vin | (Vhn, n)A, = 0 (Vi € Ap)}, it follows from
the inf-sup condition (2.2.4) that there exists a unique A\, € Ay such that
(2.3.2a) holds. Plugging this into (2.3.1a) gives

(U — Whny An)an < F0(08n) — Ju(Uan) < T0(0nn —Uhn) (Yo € Vin),
(2.3.3)
so that (np, An)a, < jn(nn) for all g, € Ap. By Lemma 2.2.4 this implies
M\ € Ap. Taking vy, = 0, 2up, in (2.3.1a) and v, = up, in (2.3.2a), we obtain
(Uhns An) = Jn(unn). Thus (2.3.2¢) follows from Lemma 2.2.3(ii). Therefore
(uh, ph, A\n) solves Problem VEj,.
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Conversely, let (up, pn, An) be a solution of Problem VEj. It follows from
(2.3.2a) and (2.3.2c), combined with Lemma 2.2.3, that

a(un, vh — up) + b(vh — un, pr) + Ju(van) — jn(unn) — (f, vn — un)
= Uk M)y, — I8 (Uan) — (Unns An)as, + Ju(0rn) = 0,
which implies (up, pp) solves Problem VIj. O

In the next theorem we show the well-posedness of Problem VE; and
hence that of Problem VI, together with a discrete analogue of point 3)
raised in Introduction. Before stating the results, we remark the coercivity
of a, i.e. Korn’s inequality:

a(v,v) > allv||¥ (Vv e V, v=0o0nTy), (2.3.4)
where a > 0 is a constant depending only on Q (see [33, Lemma 6.2]).

Theorem 2.3.2. (i) There exists a solution (up,pp,Ap) of Problem VEj,
up, being uniquely determined.
(i) If (un,py, A%) is another solution, then for some 6, € R we have:

o Whend=2 orl=1,1b, pp = pj + op and A\, = A}, + 6n/g atflh.

o When d =3 and | = 2, it holds that py, = pj + Kép and A\, = A} at
TNk, A = AL +8/g at Ty N T3,

(iii) In (i) above, if up, # 0 on 'y, then 6, = 0. Namely, the uniqueness
of Problems VEy, is valid.

Proof. (i) When [ = 1b,2, a standard theory of elliptic variational inequal-
ities (e.g. [22]) leads to the existence and uniqueness of up € Vip such
that

a(un,vp — up) + ja(Vhn) — Jn(unn) > (fron —up)  (Yop € Vine). (2.3.5)

Restricting test functions yields a(up,vy) = (f,vn), Yor € Vipe N Iofh, SO
that, by (2.2.1), there exists a unique pj, € @}, such that

a(un,vp) +b(vn,pr) = (fron)  (Vop € V).

As done in the proof of Theorem 2.3.1, there exists a unique An € Ay such
that

a(un, vh) + b(vh, Br) + (Vs An)an = (f20n) (Yun, € Vip). (2.3.6)
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Plugging this into (2.3.5) gives the same as (2.3.3), but this time only for
all vy, € Vipo. Therefore, in view of Lemma 2.2.1(iii), we get (1, )D\h)Ah <
gn(mn), ¥on € Ap 0 L3(I'1). The Hahn-Banach and Riesz representation
theorems then assert existence of some A\, € A} satisfying

(Mhs Ar)an < Jn(mn) (Y € Ap)  and (i, Ae—An)a, =0 (Vny € ApNL3(T1)).
By Lemma 2.2.4, A\p, € Ap. We see from Lemma 2.2.5 that, for some op, € R,

A= An+0n/g at T ifd=2or!l=1b,
A=A atTipnDh Ay=Xn+dn/g atTipnXE? ifd=3and =2
Setting pp, = ﬁh—l—Sh (pn = ]O)h—I—I‘QSh if d = 3,1 = 2) and noting that fF1 Uy dS
can be represented by a numerical integration formula corresponding to
(*s-)An, we deduce b(vn, pr) + (Vhn, An)a, = b(Vh, Pr) + (Vhn, An)A,, Which,
combined with (2.3.6), gives (2.3.2a). The derivation of (2.3.2c) is similar
to that done in Theorem 2.3.1. 3
When [ = 1, there exists a unique (up, pp) € Vin X Qp, such that

Bh(umpm Up — Uh, Ph — qh) —I—jh(vhn) = jh(u,m) > (f’ vp — Uh)
(V(’Uh,qh) € th X éh)a (237)

where Vi, = {v € Vi | b(vp,1) = — fFl vpn ds = 0}, and

B (un, pn; vh, gn) = a(up,vpn) + b(vn, pp) — b(un, qn) + ch(pn, qn)

is coercive on Vp, x @h (but not on Vp,, x Qp). Using (2.3.7) instead of
(2.3.5), we can proceed as in [ = 1b,2 to obtain the conclusion.

(ii) This can be proved by a calculation similar to that in the proof of
(i).

(iii) Because (2.3.2c) implies that up,Ap = |upn| at I'p by Lemma
2.2.3(ii), the following discrete leak /no-leak detecting condition is valid at
Flhl

Ml < 1l= gy =0, Upn>0=X3=1, tpa <0=Ap=-1 {2.3.8)

Therefore, since up, #Z 0 and fF1 Upp ds = 0, A\, must attain +1 and —1

somewhere at I 1h- Now let (un,ps,A;) be another solution of Problem
VEp. Then, since A} € Ay, [A;| < 1 at I'y,. This prevents 65, in (ii) from
being other than 0. O
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2.3.2 Convergence proof under minimal regularity

We know the exact solution (u,p) belongs to H'(Q)? x L2(£2); however,
whether it has higher regularity seems unknown in our setting. (For smooth
Q with non-mixed b.c. case, i.e. To N Ty = ), [57] establishes H%-H'! regu-
larity, and results for Poisson’s equation in a polygon or polyhedron with
mixed b.c. are found in [4].) Thereby we prove convergence without assum-
ing higher regularity.

Theorem 2.3.3. Let g € W1(I'1), and assume (u,p) and (up,pn) are
solutions of Problems VI and VI respectively. Then up — u strongly in V
and pp, — p weakly in Q, where p = p — ﬁ(p, l)g € Q, ete.

Proof. Taking vp, = 0, 2uy, in (2.3.1a), we obtain
alun, un) + jn(unn) +7[0VDR|? = (f,un). (2.3.9)

According to (2.3.4) and ji(-) > 0, this implies |up||v + Y||AVpr|l < C(f).
From Lemma 2.2.2 and (2.3.2a) we find that

Bllpnlo < sup 20w = ot n) = ©Ohny A,
~ on€Vin l|vnllv

(2.3.10)
where we have used ||vpy|la, < C(g)]|vn]lv (see Remark 2.2.4) and Ay, € Ap,.
Therefore, (up,pn) admits a subsequence, denoted by the same sym-
bol, which converges to some (u,p) weakly in V;, x ). Let us prove (u,p)
solves Problem VI. In view of density arguments, it suffices to show (2.1.5a)—
(2.1.5b) for smooth v and ¢g. Then there exists (vp, qn) € Vin X Qp, such that
vp = vinV, g, — qin Q and hVq, — 0in L?(Q)¢ when h — 0 (see (2.3.13)
below). Here, it follows from (2.3.1a)-(2.3.1b) (especially, b(un,pn) > 0)
that

a(un, vp) + b(vp, pr) + Jr(vrn) — (f,vn) = a(up, up) + jn(urn) — (f, un).
(2.3.11)
Since ||U/m||H1/2(F1) < C(f), Lemma 2.2.8 combined with up, — uy, in

L3(Ty) leads to

Ijh(uhn) - J(Un)l < ‘Jh(uhn) - ](uhn)l I I.j(uhn) - ](un>| — 0.

Similarly, jp(vhn) — j(vyn). Taking the (lower) limit in (2.3.11) and (2.3.1b)
concludes (2.1.5a)—(2.1.5b). The strong convergence with respect to velocity
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derives from (2.3.9) and its analogue for (2.1.5a) as follows:

a(u — up,u —up) + ’y||thh||2 = a(u,u) — 2a(u, up) + a(up, up) + ’y||thh||2
= a(u,u) — 2a(u,up) + (f,un) — jn(unn)
= _a(uau) e (fa u) - ](un) =0.

By the uniqueness for Problem VI up to an additive constant of p, the whole
sequence py, actually converges weakly. O

Remark 2.3.2. If u,, # 0 and thus p is also uniquely determined, then we
can prove the whole-sequence convergence for pj, instead of py,.

2.3.3 Convergence order estimates
We begin with:

Proposition 2.3.1. Let g € W1°°(T'y) and (u,p), (up,pp) be solutions of
Problems VI and VIy,. Then, for arbitrary vy, € Vip, qn € Qp and 0 < s < 1,
we have

lu = upllv + lp — PrllQ + V1AV pall

1/2
< C(f,9,w.8) (I = wnllv + Ip = anllg + v Vel + llun — onall ot

172 s 1/2
+ h1/2||1}hn||];1(1—\1) + h /2||’U,hn||]{/5(r1)>

Proof. 1t is obvious that a(u — up,u — up) = a(u — up,u — vp) + a(u, vy —
u) — a(u, up —u) — a(up, v, —up). Using (2.3.4) to the LHS and substituting
(2.1.6a), (2.1.5a), and (2.3.1a) into the second, third, and fourth terms of
the RHS respectively, we deduce

allu — up|lf < a(u — up,u — vp) + b(up — vh, P — ph)
— (AN Vhn — un)A + J(unn) — Jn(unn) + jn(vhn) — j(un).
Since b(up, qn) = vh*(Vpn, Var) for g, € Qp, and divu = 0, it follows that
e

< G(U — Up, U — Uh) I b(u — Uh,P — ph) i b(Uh —U,p— Qh) I ’Yh2(vph7VQh)
— (A vhn — un)A + 3 (Whn) — Jr(Uhn) + Gr(Vhn) — j(un). (2.3.12)

Furthermore, denoting by ||al|, [|b]| the operator norms of a,b and noticing
that

a(u — up,vp) + b(vp, p—pr) =0 (Yon € Vi),
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which is obtained thanks to (2.1.6a) and (2.3.2a), we find from (2.2.1) that

L bl 4wl + 2 o~ )

1P —pnllg < (1 + )Ilp—q le + =~
< 0||p— alle + Cllu = uhnv +7C|IhVpa] +vChIIthII-
Let us estimate each term appearing in the RHS of (2.3.12) as follows.
1) la(u = up,u—vp)| < Fllu —unllf + Cllu — vall}-
2) b(u —vn,p—pn) = b(u —vp,p — Pr) + b(u — v, |—(12[(p —pn,1)g), and
e |b(u — vp,p — pr)| is bounded by

aQ Y
Cllu—thI%/JrCHp—thI?frleu—uhll%/+ZIIthhIIQMChQIIthIIQ-
o |b(u — vp, ﬁ(p — pn,1)g)| is bounded by

C(llpllq + ||thQ)/ [un — vin| ds < C(f, g,p)llun — vanllL2(ry)-

1
3) [b(un —u,p — qn)| < llu— sl + Cllp — anlly-
4) [vh*(Vpw, Van)| < FIhVpr|* + Ch?([Vgnl|*.

)
)

5) [(A vn — un)al < C(g)llun — vhnllL2(ry)-

6) By Lemma 2.2.8, [j(unn) — ja(unn)| < C(g)h°||unnll ms(ry)-
) J

7) n(ven) — §(un) = jn(Vhn) — 3 (Vrn) + 5 (Van) — j(un), and

® |jn(vhn) = §(vnn)| < C(g)hHUhnHHl(Fl)-
o IJ(Uhn) - ](un)| < C(g)Hun - Uhn||L2(F1)'
Collecting these estimates, we obtain the conclusion. ]

Remark 2.3.3. Estimation for ||p —pp| g is not trivial, because we have to
deal with the error between (vpy,, Ap)a, and (Vpn, A)a-

Here we presume the regularity v € H2(Q)?, p € H'(Q2), which is not
guaranteed in general as pointed out in Section 2.3.2. However, we can
provide a situation where it holds. For instance, it is valid when (2 is convex
and v = 0 in a neighborhood (w.r.t. I') of 9I';, which can be achieved if g is
sufficiently large there.
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Letting I, : V,, N C(ﬁ)d — Vin and Ry @ Q — Qp be the Lagrange
interpolation and a local regularization operators respectively, we find that

{||u — Inully + b2 |lup — (Inw)nll r2ry) < Chull gr2q)a (2.3.13)

lp — Rupllq < Ch|pll a1 (a)

and that || (Iyu)nll g1 (ry) < Cllull g2y, [Brpll @) < Cllpllm ). Choosing
vy, = Ipu and ¢, = Rpp in Proposition 2.3.1 Wlth 5 = 1/2 (note that
lurnll grire(ryy < C(f) by Theorem 2.3.3) leads to the following theorem.

Theorem 2.3.4. Under the assumptions of Proposition 2.3.1, we assume
u € H?(Q)? and p € HY(Q). Then

lu —un|lv + [Ip — Brllg < C(f, g,u, p)h*/%.

If an inverse inequality between H'(I'1) and H'/?(T) is available, one
can improve the rate of convergence to O(h'/?). In fact, it follows that
whnll 1y < lunn — Tpw)nll gy + 1 Tnw)nll ey
< Ch™Y2||upy — (Inwnll grrzqryy + Cllull g2o)e
< Oh™Y2||un, — Inull ) + C||u||Hzm a
< Ch P lun = ull g1 @) + Cllull g2

Therefore,

) S Ch'/4||u — uh||1/2 )—I-C'(u)hl/2,

which combined with Proposition 2.3.1 for s = 1 concludes the following
result.

L TN

Corollary 2.3.1. Under the assumptions of Theorem 2.3.4, if %}, is a quasi-
uniform mesh of 'y, then

lu = unlv + [Ip — Brllg < C(f, g,u, p)h*/2.

Remark 2.3.4. In particular, ||upn| g1(r,) is bounded uniformly in A.

2.3.4 Sign-conditions to obtain optimal convergence

The error estimate O(h'/?) shown in the previous section is suboptimal,
but is the best possible one as far as we rely on Lemma 2.2.8 to bound
lin(nn) — j(nr)|. Thereby one might ask if the result of Lemma 2.2.8 can
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be improved. Unfortunately, this possibility is not promising for a general
integrand ny, in view of [31, Section 4] showing an example of n;, such that
(k) = 3 ()l = CR®||null s (ry) for s =1/2.

However, for a special 1, which does not change its sign so rapidly from
plus to minus or vice versa, it can be improved. Actually j;, becomes even
exact in some cases. For instance, provided that ny, is positive (or negative)
definite on I'; and that g is a constant, it is immediate to see jn(nx) = j7(1n)
except in the case d = 3,1 = 2 (cf. Remark 2.2.3).

The aim of this subsection is to present a reasonable sufficient condition
to obtain an optimal rate of convergence for d =2, [ = 1 or 1b, in terms of
the sign of normal component of velocity on I';. Such a strategy is already
considered in several unilateral problems (e.g. [2, 5, 7]).

Henceforth we focus on d = 2, I = 1 or 1b, and denote by i, the one-
dimensional P1 Lagrange interpolation operator defined on C(T'y). In par-

ticular, ip(vy,) = (Ipv)y, for v € V, N C(1), since n is constant on I'y.

Lemma 2.3.1. Let g € W2>°(Ty). Then, for all ny, € A, we have

lgnn — in(gm)llzrry) < Ch2|gllwzee @y Il e (ry)-

Proof. Because 7y, is piecewise linear, its second derivative vanishes on each
S € %,. Therefore, a local interpolation result tells us that

> lgmn —inlgm)licisy < > CR2llgnallwzas)
SeS, SeSn

< CR*|lgllwzee ey lmmll oy
which completes the proof. l

For n € C(T), we introduce

Prin)={S € FHA|n>00n 8}, Npn)={Se€ S| n<0on S},
Zp(n) =\ (Pr(n) UN&(n)).

Because we are considering P1 finite elements on I'y, it holds that
Pr(n) C Prlinn),  Na(n) C Ni(inn). (2.3.14)
We are now ready to state the following result.

Theorem 2.3.5. In addition to the setting of Corollary 2.5.1, we assume
that d =2, 1l =1 or 1b, that g € W2°°(I'1), and that
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(A1) p—pr € Q.
(A2) u, € Whoo(Ty).
(A3) the cardinary numbers of Zp(uy,) and Zp(upy,) are bounded uniformly
wn h.
Then we obtain
lw — unllv +1lp — prllQ < C(f, 9, u, p)h.
Proof. Let us go back to (2.3.12) where v, = Ipu and g, = Rpp. Assumption
(A1) implies p—pp, = p—p, so that the first four terms in the RHS of (2.3.12)
does not cause any sub-optimality if they are treated in the same way as in
Proposition 2.3.1. Therefore it suffices to prove that the remaining terms
—(A vhn — un)A + J(unn) — Jn(tnn) + Jn(Vhn) — J(un),
can be estimated by C(f, g, u,p)h?. One notices that this expression equals
_()‘7 Uhn)/\ + jh(vhn) I ](Uhn) - jh(uhn)a

since opuy, + glun| =0 and o, = —gA.

First we give an estimation for —(\, vpn)a + jr(vhn). It follows from
(2.1.7) and (2.3.14), together with a triangle inequality, that this quantity
is bounded by

Z /S‘_gvhn -+ Z.h(g'uhn)‘ ds

SEPR (un)UNp (urn)
2 (/glvhn—un|ds+/ |un|ds+—§jg|un| MS>
SeZplun) W2

By Lemma 2.3.1 the first term is estimated as Ch?||g|lw2.c(r,)llull p2(o)
If S € Zp(up), then u,, admits a zero point in S, and hence |up|f~(sy <
h|[wn|lw.0(s)- This observation combined with (A3) shows that the second
term is bounded by C(g,u)h?. Consequently, | — (A, vpn)a + Jn(vhn)| <
C(g,u)h?.

Next we give an estimation for j(up,) — jn(upy). This is bounded by

> / —gum +intgu) s+ 3 { [ (g glms)lunl as

SEP (Unn )UNp (Unn) SezZp( Uhn)
o
g(ms) / |upn| ds — ] Z\u hn(ME) > + = 15} Z ms) ]V[S))|uhn(]ws)\}.

<0
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By Lemma 2.3.1 and Remark 2.3.4, the first term is estimated as C(f, g, u, p)h>.
The second terms is bounded by Chl|g|lwr.ecry)[unnllLe ) X sez, (up,) 19
(for the inequality at the underbrace, see [22, Theorem 5.4]). Theretore,
assumption (A3) concludes |j(upn) — jn(una)| < C(f,g,u,p)h?, and this
completes the proof of Theorem 2.3.5. ]

Remark 2.3.5. (i) If g is a constant, the boundedness of ||upy|| g1(r,) (and
thus the quasi-uniformity of .#,) and that of the cardinary of Z(uny,) are
not necessary.

(ii) We can drop assumption (A2) at the expense of replacing the esti-
mate O(h) with O(h|logh|'/?), by arguing as in [7, Lemma 2.5].

(iii) Extension of the above strategy to d = 3 or | = 2 is not trivial. For
d = 2,1 = 2, Theorem 1.4.3 of Chapter 1 provides a sufficient condition
for the optimal convergence O(h?) in the slip b.c. problem, which is more
restrictive than (A2)-(A3). For d = 3, we have to start from finding a good
counterpart to (A3), which does not seem to be reported in the existing
works.

2.4 Numerical implementation

By virtue of Lemma 2.2.3(ii), Problem VEj, is rewritten as:

a(uh, Uh) + b(vh,ph) + (’U}m, ’\h)Ah, = (f, Uh) (Vvh € V}m), (2.4.1&)
b(uns qn) = ch(Ph, 4n) (Yan € Qn), (2.4.1b)
Ah = Pp(An + punn) (p > 0). (2.4.1c)

In what follows, we present two approaches to compute a numerical solu-
tion of (2.4.1a)—(2.4.1c). The first method is based on a classical Uzawa
algorithm.

Algorithm 2.4.1 (Uzawa method).
Step 1. Choose )\](11) € A, and p> 0.

Step 2. With )\gﬂ) known, determine (u%k),pgf)) € Vin X Qp such that

{ a(u® op) + b(vn, p) = (£,08) = W A)a, (Yo € Vin), (2.4.2a)
b(u”, gn) = (P}, an) (Vgn € Qp). (2.4.2b)

The well-posedness of (2.4.2a)—(2.4.2b) is guaranteed by Lemma 2.2.2.
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Step 3. Set )\](lkﬂ) = ]5h()\§f) -+ pu(k)).

hn

Step 4. Iterate Steps 2-3 until convergence.

The second method is motivated by a primal-dual active set (PDAS)
strategy known in optimal control theory (e.g. [60]).

Algorithm 2.4.2 (Active/inactive set method).

Step 1. Choose p > 0 and set the initial state to the no-leak one, that is, find
ut € Vi, piY € Qn, ALY € Ay, such that (2.4.2a)—(2.4.2b) holds with
k=1

Step 2. With (uék_l),p%k_l), )\,(f_l)) known, define the active set Ay by

Ap={M €Ty | MY 4 pu ) > 1 at M)

Determine )\gf) at Ag by

Agk) = I:’h(/\gk_l) +- pug;_l)) at Ag.

Step 3. Define the inactive set I, = flh\Ak. Determine (ugk),pgk)) € Vi X Qp,
such that up, = 0 at I, and

(k)

a(u;lk),yh) + b(vh,P;(f)) = (£, o) — (Vhn, Agk))Ah (Yo, € Vi, vpn = 0 at 1),
b(“i(lk)’%) = cn(py, s qhn) (Van € Qn).

Determine /\glk) at I in such a way that

(s AUV = (fy o) — a(ul o) = b, p))  (Yon € Vi)

Step 4. Iterate Steps 2-3 until convergence.
Let us discuss the convergence of these two algorithms.

Theorem 2.4.1. (i) In Algorithm 2.4.1, there exists po = po(g,€2) such that
if p < po then (uglk),pglk), A;Lk)) converges to a solution of Problem VE},.
(i) In Algorithm 2.4.2, if Ay is invariant for k > ko, then the same

conclusion as in (i) holds.

60



Proof. (i) The convergence proof for uglk) is standard, but that for an additive
constant requires a delicate argument. Let (up,pn, An) be a solution of
Problem VE;. We use the notations aﬁf) = u,(lk) — uyp, etc., and pp, = pp —
(pn,1)g/|?| etc. Then, for all vy, € Vj,, and g), € Q), one obtains

(k (k)

a@f, vn) + b(on, B + (o, MO)a, =0, b(@l, an) = cn(Bh, an).

3 (2.4.3)
Since Py, is a contraction, it follows that

y(k+1 5 (k _(k S (k (k) —(k _(k
IMTVIR, < I3 + o 13, = INIR, + 20087 @, + 2l |13,
which, combined with the equations above, gives

<k _(k) ¢ _(k < (k
MR+ 2ap — C@)P) @R 17 + 200V 112 < MNP, (2.4.4)

()

If 0 < p <2a/C(g) =: po, we find that ||5\§lk)||Ah is decreasing in k and that

u® up, when k — oo. Then the inf-sup condition (2.2.1) yields ﬁ(k) — Dh.
h h
Let us discuss the convergence of & }(Lk) = p;}k) — ;ﬁgk) and )\Elk). The uniform

)is obvious, and that of Sék) also follows from Lemma

2.2.2. Therefore, there exist subsequences & ,(lkl) — 6 and /_\glkl) — Ay, for some

5n € R and M\, € Ap. Now we claim that

boundedness in k of ;\gf

j\hzgh/g at flh- (2.4.5)

When d = 3 and | = 2, we need to replace (2.4.5) and some relations below
by their counterparts (cf. Theorem 2.3.2(ii)), but to save space we omit the
detail.

Let us prove (2.4.5) by contradiction. If (2.4.5) is false, then there exists
a positive constant C' = C'(h, g, A, 0), independent of &/, such that

i —( b(v; g(k’)) + (Vhn ;\(kl))/\
U168 g + IA |Ia,) < sup =22 -
(H h HQ h h) W E Vi ||Uh||V

(2.4.6)

In fact, taking n;, € Ay, such that o, = szl) — S}Sk/)/g at flh and lifting it to
vp, € Vi, by Lemma 2.2.1(i), we see that ||vp ||y < C and that

b(vp, 6}(116,)) + (vhn, X;lk )>Ah = —Sl(lk ) / Uhn ds + (Vhn, /_\glk ))Ah
Iy

— k/ - k/ — k/ —_ k/
= (Whm, A = 55D 1g)n, = IAF) 58D g2

h
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Here, the notation “1/¢g” means pp € Ap, such that up, = 1/g at flh (1n
is not necessarily equal to 1/g everywhere on I'1). By assumption, the last
line is bounded from below by some C > 0. Hence we obtain (2.4.6). Then
(2.4.4) and (2.4.6) yield

(k") v (k") _a(ﬂgkl)v“h) - b(vh,ﬁ
C1oy "llg + 1IN, “lla,) < sup
i E Wi |onllv

(k'))

k' o(k' &
< llalllul? = unlly + 1811E — Ballo,

the RHS converging to 0 when ¥’ — co. We have thus 6, = A, = 0, but this

contradicts with the assumption A, # 6y, /g at I'15. This proves (2.4.5).
Since ||5\§lk) ||a, is decreasing and hence converges as a whole, we deduce

from (2.4.5) that 6, and A, do not depend on a choice of the subsequences.

Therefore, the whole sequences Si(lk) and S\gk) converge, and consequently,

A

— pp + 0n and A;Lk) —>)\h+(§h/g€1ih.
(up, pr + Op, An + 0n/g) satisfies (2.4.1a)—(2.4.1c), and this completes the
proof of (i). )

(ii) The invariant A, k > ko, is denoted by A, together with I = I'y; \ A.
For ny, € Ay, we denote by 1y, 4 the element in Ay, which equals 7, and 0 at

A and [ respectively. We use the notation ﬂglk) = u,(Tk) — uglk_l) etc. fA=0

and thus ugk) € Vj, we can easily get the conclusion; thereby we assume

A # () in the following.
A calculation similar to that deriving (2.4.4) shows, for k > ko + 1,

3 (k+1 ‘ _(k _(k s (k
INETVIR, + ap — Clo)pA)la 1% + 209IRVEY |12 < IIALIR,, (24.7)

where we have used ug;) = u%_l) = 0 at I. By summation we get Zi‘;ko 11 ||1Z§Lk) 12 <

||5\,(lkf4+1)||ih for arbitrary K, which implies that uzk) is convergent. In view

of (2.2.1), Zfzkoﬂ ||z3§f)||23 is bounded independently of K, so that ;Bl(lk) is
also convergent. In a similar manner, we can continue to proceed as in (i),

concluding that pék) and /\,(lk) are convergent. The limit satisfies (2.4.1a)—
(2.4.1c), and this completes the proof of Theorem 2.4.1. O
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2.5 Numerical examples

In the first example, let Q = (0,1)? and T'; = {y = 1} NT. We consider the
following exact solution satisfying v = 0 on I':

ui(z,y) =202%(1—2)?y(l - y)(1 - 2y),
uz(z,y) =—20z(1—z)(1—22)y*(1 - y)?
plz,y) =40zl —2)(1 = 2z)y(1 —y)(1 - 2y)
+4(62° — 152* + 1023)(2y — 1) — 2,

(2.5.1)

where v = 1, and the external force f is suitably defined. By a direct
computation, maxg, |0, = 2. The additive constant “—2” of p in (2.5.1)
is chosen in such a way that the minimum minser maxg, [on(u,p + dj =2
is attained. Now we consider the Stokes problem with f and LBCF on I'y,
g > 0 being a constant. Then one finds that

g > 2= (2.5.1) remains a solution. = No-leak occurs.
g < 2= (2.5.1) is no longer a solution. = Leak occurs.

Such behavior is clearly shown by our numerical solutions in Figure 2.5.1.
In addition, from Table 2.5.1 we observe that the leak/no-leak detecting
condition:

M| < 1= tpn =0, upn>0=Ap=1, upp<0=Ap=—1 at I,

which is proved at (2.3.8), is indeed valid numerically. Table 2.5.1 also
indicates that:

o If g = 1.2 and thus up, # 0 on I'y, then §;, := pp(0,0) is independent

of a choice of )\21).

e If g = 3.0 and thus up, = 0 on I'7, then ¢ varies depending on )\Ell).
This is consistent with the uniqueness results in Theorem 2.3.2.

The detail of our numerical computation is as follows. For the trian-
gulation .7, of Q, we use a uniform Friedrichs—Keller type mesh with 2N?
triangles, where N denotes a division number of each side of the square
Q. We employ [ = 2, i.e. the P2/P1 elements. We compute our numerical
solutions based on Algorithm 2.4.1 with the following stopping criterion:

ul® — WD) < 1075, (2.5.2)
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Figure 2.5.1: Solution velocity field in € in the first example (left: g = 0.1,
middle: g = 1.2, right: ¢ = 3.0).

Table 2.5.1: Values of \p, upp, and 8, = pp(0,0) in the first example.

g 0.1 1.2 1.2 3.0 3.0
P 20.0 30.0 30.0 2.0 1.0
A 0.0 0.0 0.2 0.0 0.2
z Ap Uhn A Uhn An An Uhn An
0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
011 -1.0 -0.09 —1.0 —0.03 —-1.0 | —-0.63 —4.3E-6 | —0.43
021 -10 -0.11 —1.0 —0.03 -1.0 | —-0.57 —-1.3E-6 | —0.37
03| -1.0 -0.10 -1.0 —0.01 —1.0 | —0.45 —-43E-7| —-0.25
04| -10 -0.06 | -0.83 —1.2E-6 | —0.83 | —0.25 —6.5E-7 | —0.05
0.5 -1.0 -0.002 | —0.06 —2.5E-7 | —0.06 | —0.02 —5.2E-7 | +0.18
0.6 | +1.0 +0.05 | +0.67 —T7.0E-7 | +0.67 | +0.22 —3.0E-7 | +0.42
0.7 | +1.0 +40.10 | +1.0 +0.01 +1.0 | +0.43 —7.6E-7 | +0.63
0.8 | +1.0 +0.11 +1.0 +0.03 +1.0 | +0.58 —5.3E-7 | +0.78
09| +1.0 +40.09 | +1.0 +0.03 +1.0 | +0.66 —1.2E-6 | +0.86
1.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 2.0 2.0 2.0 2.0 14
kitr 21 12 14 30 29

Table 2.5.2: Number of iterations ki required for Algorithms 2.4.1 and 2.4.2
to converge in the first example.
[g=01[g=12]g=30]

‘ Algorithm 2.4.1

21

12

30

‘ Algorithm 2.4.2 7

4

6
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Figure 2.5.2: Solution velocity field on I'y in the second example (left: N =
40, right: N = 80).

Table 2.5.3: Convergence behavior of ||u—uyl||v and ||p—pn||g in the second
example.
‘ N ‘ ||Uref — uhHV rate ‘ Hpref _thQ rate ‘ Kitr ‘

20 2.63 — 0.437 — 1
30 1.71 1.05 0.364 045 | 4
40 1.32 0.91 0.244 1.39 | 4
50 1.05 1.01 0.218 0.50 | 6
60 0.78 1.62 0.168 143 6
80 0.64 0.68 0.107 1539 5
100 0.51 1.08 0.077 143 5

The number of iteration required to attain (2.5.2) is denoted by kit,. Figure
2.5.1 presents the plots of ugc“") for three values of ¢ when N = 10. The

concrete values of ug;i“), A;Lk“‘r) on I'; and 5,(11%) = pgzki“‘)((), 0), together with

the parameters p and )\21), are listed in Table 2.5.1.

Next let us compare the performance of Algorithms 1 and 2 in terms of
Eitr under the same stopping criterion (2.5.2). The result is reported in Table
2.5.2. We see that Algorithm 2.4.1 is rather slow at convergence and that
Algorithm 2.4.2 gives much fewer number of iterations. Here, p is chosen
to make ki, as small as possible and /\511) = 0 in Algorithm 2.4.1, whereas
p =1 in Algorithm 2.4.2.

In the second example, €2, 'y, and the triangulation .7, are the same as
above. We employ | =1 i.e. the P1/P1 finite element method with pressure
stabilization (for v we set v = 0.1 instead of 1). The purpose here is to give
a numerical evidence for the convergence result presented in Theorem 2.3.5.
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For the data, we adopt ¥ = 1 and

300sin(4rz) if y > 5/6,

0 otherwise,

f=fuf  H=0, f2:{
g= 2(1 + COS(47TI)) + 017

in order to make wu, change its sign on I'; rather drastically. In fact, the
sign changes 11 times according to Figure 2.5.2. Algorithm 2.4.2 (with
p = 1) is used to compute numerical solutions (up,pp). Since the explicit
exact solution is unknown, we regard the numerical solution for the mesh
N =400 as a reference solution (uyef, pref). In Table 2.5.3 we report ||uref —
up|lv and ||prer — pall, together with the rate of convergence evaluated by
w. The result reveals the O(h) convergence and is consistent
with Theorem 2.3.5.
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Chapter 3

Solvability of the
non-stationary Navier-Stokes
equations under slip or leak
boundary conditions of
friction type

3.1 Introduction

Let © be a bounded smooth domain in R?(d = 2,3), and fix T > 0. We
suppose that the boundary I' = 9€) consists of two nonempty open compo-
nents I'g and I'y, that is, L =Ty Uy, T'oN Ty = 0. We are concerned with
the non-stationary incompressible Navier-Stokes equations in {2:

{ v+ (u-Viu—vAu+Vp=f in Qx(0,7), (3:1:1}
divu =0 in Qx(0,7T), (312
with the initial condition

u = ug in Qx {0}. (3.1.3)

Here, v, u, p, and f denote a viscosity constant, velocity field, pressure, and
external force respectively; v’ means the time derivative %.

As for the boundary condition, we impose the adhesive b.c. on I'y:

u=0 on Iy (3.1.4)
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On the other hand, we consider one of the following nonlinear b.c. on I';:
up =0, lor| < g, orur +glus | =0, on IYy, (3.1.5)

which is called the slip boundary condition of friction type (SBCF), and
iy = 0, lon| < g, Ontn + glup| =0, on Iy, (3.1.6)

which is called the leak boundary condition of friction type (LBCF). Here,
n is the outer unit normal vector defined on I', and we write u, := u - n
and u; := u — upn. The stress tensor T = (Tj;); j=1,..4 i given by Tj; =

—pbij + z/(g;‘; + %)’ d;; being Kronecker delta. We define the stress vector

o = o(u,p) as 0 = Tn, and write 0, := 0 - n and o, := 0 — o,n. One can
easily see that ¢, = o, (u,p) may depend on p, whereas o, = o-(u) does
not.

The function g, given on I'1 and assumed to be strictly positive, is called
a modulus of friction. Its physical meaning is the threshold of the tangential
(resp. normal) stress. In fact, if |o-| < g (resp. |o,| < g) then (3.1.5)
(resp. (3.1.6)) implies ur = 0 (resp. u, = 0), namely, no slip (resp. leak)
occurs; otherwise non-trivial slip (resp. leak) can take place. We notice that
if we make g = 0 formally, (3.1.5) and (3.1.6) reduce to the usual slip and
leak b.c. respectively. In summary, SBCF and LBCF are non-linearized slip
and leak b.c. obtained from introduction of some friction law on the stress.

It should be also noted that the second and third conditions of (3.1.5)
(resp. (3.1.6)) are equivalently rewritten, with the notation of subdifferential,
as

or € —g0|us| (resp. op € —gd|unl).

Although we will not pursue this matter further, one can refer to [11, 36] for
the Navier-Stokes equations with general subdifferential b.c. See also [12],
which considers the motion of a Bingham fluid under b.c. with nonlocal
friction against slip.

SBCF and LBCF are first introduced in [16, 20] for the stationary Stokes
and Navier-Stokes equations, where existence and uniqueness of weak solu-
tions are established. Generalized SBCF is considered in [38, 39]. The
H?-H'! regularity for the Stokes equations is proved in [57]. In terms of
numerical analysis, [3, 42, 45, 46, 47] deal with finite element methods for
SBCF or LBCF. Applications of SBCF and LBCF to realistic problems,
together with numerical simulations, are found in [32, 61].

For non-stationary cases, [17, 18] study the time-dependent Stokes equa-
tions without external forces under SBCF and LBCF, using a nonlinear
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semigroup theory. The solvability of nonlinear problems are discussed in
[41] for SBCF, and in [1] for a variant of LBCF. They use the Stokes opera-
tor associated with the linear slip or leak b.c., and do not take into account
a compatibility condition at t = 0.

The purpose of this chapter is to prove existence and uniqueness of a
strong solution for (3.1.1)-(3.1.4) with (3.1.5) or (3.1.6). We employ the
class of solutions of Ladyzhenskaya type (see [37]), searching (u,p) such
that

w€ B0, T; HY )Y, « e L={0,T: LX) n L2(0,T; HYQ)%),
p € L*(0,T; L2(Q)).

There are several reasons we focus on this strong solution. First, from
a viewpoint of numerical analysis, we would like to construct solutions in a
class where uniqueness and regularity are assured also for 3D case. Second,
we desire an L*-estimate with respect to time for p, which may not be ob-
tained for weak solutions of Leray-Hopf type (cf. [62, Proposition III.1.1]).
Third, in LBCF, it is not straightforward to deduce a weak solution be-
cause of (3.1.7) below. Similar difficulty already comes up in the linear leak
b.c. (see [52])

The rest of this chapter is organized as follows. Basic symbols, notation,
and function spaces are given in Section 3.2.

In Section 3.3, we investigate the problem with SBCF. The weak for-
mulation is given by a variational inequality, to which we prove uniqueness
of solutions. To show existence, we consider a regularized problem, approx-
imate it by Galerkin’s method, and derive a priori estimates which allow
us to pass on the limit to deduce the desired strong solution. Using the
compatibility condition that ug must satisfy SBCF, we can adapt ug to the
regularized problem, which makes an essential point in the estimate.

Section 3.4 is devoted to a study of the problem with LBCF. There are
two major differences from SBCF. First, as was pointed out in the station-
ary case [16, Remark 3.2], we cannot obtain the uniqueness of an additive
constant for p if no leak occurs, namely, u,, = 0 on I';. Second, under LBCF,
the quantity

1
/ {(u-V)v-v}dm - —/un|u|2ds (if divu=0) (3.1.7)
Q 2 Jr
need not vanish because wu, can be non-zero. This fact affects our a priori

estimates badly, and we can extract a solution only when the initial leak
[wonl|£2(ry) is small enough. Incidentally, if we use the so-called Bernoulli
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pressure p + %|u\2 instead of standard p, the mathematical difficulty arising
from (3.1.7) are resolved; nevertheless the leak b.c. involving the Bernoulli
pressure is known to cause an unphysical effect in numerical simulations (see
[29, p.338]). Thereby we employ the usual formulation.

Finally, in Section 3.5 we conclude this chapter with some remarks on
higher regularity.

3.2 Preliminaries

Throughout this chapter, the domain €2 is supposed to be as smooth as
required. For the precise regularity of 2 which is sufficient to deduce our
main theorems, see Remarks 3.3.5 and 3.4.3. We shall denote by C various
generic positive constants depending only on 2, unless otherwise stated.
When we need to specify dependence on a particular parameter, we write
as C' = C(f,g,uo0), and so on.

We use the Lebesgue space LP(2) (1 < p < o0), and the Sobolev space
H™(Q) = {oe L2(Q) | ||¢||?{T(Q) =2 al<r ||8°‘¢||%2(Q) < oo} for a nonnegative
integer r, where H°(£2) means L2(2). H*(f2) is also defined for a non-integer
s > 0 (e.g. [21, Definition 1.2]). We put L}(Q) = {q € L*(Q) | [, qdz = 0}.
For spaces of vector-valued functions, we write LP(€2)?, and so on.

The Lebesgue and Sobolev spaces on the boundary I', I'g, or I'y, are also
used. HY(T'y) means L?(T'y), and we put L§(T1) = {n € L*(T1)| Jp, nds =
0}, where ds denotes the surface measure. For a positive function g on I'y,
the weighted Lebesgue spaces Lg(I'1) and L‘f?g(Fl) are defined by the norms

]
g = [ snlds  and lallig ey = ess.sup
1

'

respectively. The dual space of Lj(T'1) is L37,(I'1) (see [16, Lemma 2.1]).

The usual trace operator ¢ — ¢|p is defined from H'(Q) onto H/2(I").
The restrictions ¢|r,, ¢|r, of ¢|r, are also considered, and we simply write
¢ to indicate them when there is no fear of confusion. In particular, n,, and
nr means (1 - n)|r and (n — (17 - n)n)|p respectively, for n € HY?(T')?. Note
that [l v/ar) < Clnllagrys a0 [l < Cllnllzaqoys because
n is smooth on I

The inner product of L?(Q)? is simplified as (-,-), while other inner
products and norms are written with clear subscripts, e.g., (,-)r2r,) or
| - [l ()e- For a Banach space X, we denote its dual space by X’ and
the dual product between X’ and X by (-,-) . Moreover, we employ the
standard notation of Bochner spaces such as L?(0,T; X), H(0,T; X).
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For function spaces corresponding to a velocity and pressure, we intro-
duce closed subspaces of H'(Q)? or L2(12) as follows:

V={ve Hl(Q)d|v =0onTo}, V={ve HI(Q)dlv =0on I'},

Vn:{U€V|’Un:00DF1}, VT:{UGV‘UT:()Ollrl},

Q= L*(%), Q= Lj().
To indicate a divergence-free space, we set H1(Q)? = {v € H}(Q)? |divv =
0}. We use the notation V, = V n HLYQ), V, = V N H{(Q)4, V., =

Vo NHX(Q)?, and V;» = V> N HA(Q)%.
Let us define bilinear forms ag, b, and a trilinear form a; by

ou; 8’U,j ov; 8@] ) .
d HYQ
(w.0) Z / <8U‘J 5Uz‘> <8$] 8:5,) t (u,v € (),

a1 (u,v,w) = ./Q {(u-V)v}- wdz (u,v,w € Hl(Q)d),

b(v,q) = —/Qdivqum (v e HY(Q)Y, q € L*(Q)).

The bilinear forms ag,b are continuous, and from Korn’s inequality ([33,
Lemma 6.2]) there exists a constant a > 0 such that

ap(v,v) > a||v”?{1(md (Vv e V). (3.2.1)
Concerning the trilinear term a1, we obtain the following two lemmas.

Lemma 3.2.1. (i) When d = 2, for all u,v,w € H'(Q)? it holds that

1/2
L2(Q)d

jax (u,v,w)| < C|lull P ayalwl e (322)

lull i gyallolla@yallwllze

(ii) When d =2 ord =3, for all u,v,w € H'(Q)? it holds that

1/4 3/4 1/4 3/4
a1 (u, 0, w)| < Cllull aqaallvll s qyallvll iz @yallwl gyl 3 qa (3:2:3)
Remark 3.2.1. In particular, we see from (3.2.3) that
lax (0, 0)] < Cllullpaplolm@elwlm e (3:24)
Proof. These are well-known classical results; see e.g. [37, 62]. O
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Lemma 3.2.2. (i) For all u € Vy,, and v € HY(Q)?, a;(u,v,v) = 0.
(ii) For all u € V;, and v € HY(Q)4, a1 (u,v,v) = %fﬂ up|v]? ds, and
a1 (,5,9)] < llmll ey 1912 e (3.2.5)

where vy is a constant depending only on €.

Proof. By integration by parts, we have
a1(u,v,w) + a1 (u, w,v) = —/ divu (v-w)dz + / up (v-w)ds,
Q r

from which the conclusion of (i) and the first assertion of (ii) follow. Combin-
ing Holder’s inequality with the continuity of the trace operator H(Q) —
L4(T) (see [53, Theorem 11.6.2]), we obtain (3.2.5). O

Remark 3.2.2. Whether 7, is small or not, especially when compared to
a in (3.2.1), is a very crucial point in our a priori estimates for LBCF (see
Proposition 3.4.1). This is why we distinguish ~; from other constants C
and do not combine 7 with them. As Lemma 3.2.2(i) shows, this problem
does not happen when we consider SBCF.

The following, which are readily obtainable consequences of standard
trace and (solenoidal) extension theorems ([21, Theorems 1.1.5-6, Lemma
1.2.2], see also [33, Section 5.3|), are frequently used in subsequent argu-
ments.

Lemma 3.2.3. (i) For v € V,,, it holds that [vellgrr2yye < Cllvll g ya-
(ii) Forn e H 1/ 2(Fl)d satisfying n, = 0 on I'y, there exists v € V}, , such
that v, =7 on I'v and [|v]| g1y < Clinll gz, )a-

Lemma 3.2.4. (i) For v € V7, it holds that [[vn | g1/2(r,) < Cllv| g1
(ii) For n € HY?(T';) (vesp. n € HY/?(I'1) N LE(T})), there exists v € V;
(vesp. v € V7o) such that v, =7 on I't and [|v]| griqye < Cllnll gz,

The definition of o(u,p) given in Section 3.1 becomes ambiguous when
(u,p) has only lower regularity, say v € HY(Q)% p € L2*(Q). Thus we
propose a redefinition of it, based on the following Green formula:

(—vAu + Vp,v) + / o(u,p) - vds = ap(u,v) + b(v,p) (if divu=0).
I?
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Definition 3.2.1. Let u(t) € V,, p(t) € Q, v/(t) € L*(Q)%, f(t) € L*(Q)%.
If (3.1.1) holds in the distribution sense for a.e. t € (0,7, that is,

(', ) + ao(u,v) + a1 (u, u,v) + b(v,p) = (f,v)  (VweV), (3.26)
then we define o = o'(u, p) € (H/2(I'1)?) by
(0,0) grar,ye = ao(u,v) + b(v,p) — (F,v)y (Vv e V), (3.2.7)
where F(t) € V' is given by (F,v)y, = (f,v) — (¢/,v) — a1(u,u, v).

The above o is well-defined by virtue of the trace and extension theorem.
It coincides with the previous definition when (u,p) is sufficiently smooth.
In addition, by Lemmas 3.2.3 and 3.2.4, 0, = o — (0 - n)n € (HY2(I'1)4)y
and 0, =0-n € Hl/Q(Fl)’ are characterized by

(o7, 77n>H1/2(F1)d =0 (Vn < H1/2(F1))7
(o, vr) gzr,ye = ao(u,v) +b(v,p) — (F,v)y, (Vv € V),
and
(On, Un)Hl/Z(Fl) = aO(U"U) + b(’U,p) — (B U)VT (VU S VT)v
respectively. By Lemma 3.2.3(ii), o, actually does not depend on p.

3.3 Navier-Stokes Problem with SBCF

3.3.1 Weak formulations

Throughout this section, we assume f € L2(Q x (0,7))%, up € Vi e, and
g € L*(T1 x (0,7)) with g > 0. Further regularity assumptions on these
data will be given before Theorem 3.3.2. In addition, we introduce

Jeltem) = / gB)lnlds  (ne LAT)Y), (3.3.1)

which is just written as j(n), to simplify notation, until the end of this
section. j is obviously nonnegative, positively homogeneous, and Lipschitz
continuous for a.e. t € (0,7). A primal weak formulation of (3.1.1)-(3.1.4)
with (3.1.5) is as follows:

Problem PDE-SBCEF. For a.e. t € (0,T), find (u(t),p(t)) € Vy, x Q such
that «/(t) € L2(Q)%, w(0) = ug, o, is well-defined in the sense of Definition
3.2.1, |or| < g a.e. on I'y, and o7 - ur + glur| =0 a.e. on I';.
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Remark 3.3.1. The precise meaning of “|o,| < ¢” is that o, € (H'/?(T'1)%)
actually belongs to Li"}g(l})d with ||0T||L<1x; (r;)¢ < 1. In particular, one has
g

or € L2 (F1)d.

Throughout this section, we refer to Problem PDE-SBCF just as Prob-
lem PDE. Similar abbreviation will be made for other problems.

One can easily find that a classical solution of (3.1.1)—(3.1.4) with (3.1.5)
solves Problem PDE, and that a sufficiently smooth solution of Problem

PDE is a classical solution. As the next theorem shows, Problem PDE is
equivalent to the following variational inequality problem.

Problem VI,-SBCEF. For a.e. t € (0,T'), find u(t) € V,, » such that u'(t) €
L)%, u(0) = up, and

(ula U= u) + ao(u, U= u) +ai (’U,, U, U — u) +](UT) _j(uT) > (f’ U= u) (332)
for all v € V;, 5. Here j = j-(t;-) is defined in (3.3.1).
Theorem 3.3.1. Problems PDE and VI, are equivalent.

”

Remark 3.3.2. The precise meaning of “equivalent” above is that if (u,p)
solves Problem PDE, u(t) solves Problem VI,;; if u solves Problem VI,,
there exists unique p such that (u, p) solves Problem PDE. Hereafter we will
frequently use the terminology “equivalent” in a similar sense.

Proof. Let (u,p) solve Problem PDE. Then, for v € V,, it follows that
(v, v) + ao(u,v) + a1(u, u,v) + b(v,p) — (07, v7) 20 ya = (frv). (3.3.3)
Using this equation together with |o;| < g and o, - u; + glu,| = 0, we have
(v v —u) + ap(u,v — u) + ay(u, u,v —u) + j(vr) — j(ur) — (f,v —u)

= —(0r,vr —ur)paqryya + j(or) — jlur) = /F (glv7| = orvr)ds 2 0,
1

for all v € V;, ;. Hence u is a solution of Problem VI,.
Next, let u be a solution ofOProblem VI,. Taking u+v as a test function
in (3.3.2), with arbitrary v € V,, we find that

(', v) + ap(u, v) + a1 (u, u,v) = (f,v) (Vo € Vy). (3.3.4)

By a standaord theory (see [62, Propositions 1.1.1 and 1.1.2]), there exists
unique p € Q such that (3.2.6) holds. Therefore, o, € (HY?(T'1)%) is well-
defined, and thus

(u’,v)+a0(u,v)+a1(u,u,U)+b(v,p)—<07,UT>H1/2(F1)d = (f,v) (Vv € V).
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Combining this equation with (3.3.2), we obtain
(0, Uy — ) sy < /F g(lor] = lusl)ds (o€ Vo), (3.35)
1
and as a result of triangle inequality, | (o7, vr) 2yl < fFl glv-| ds for
v € Vno. In view of Lemma 3.2.3(ii), this implies that for n € H/2(I')?

‘ <Ur,77>H1/2(r1)d| = | <0n777>H1/2(r1)d | < HUT”L;(Fl)d = ||77||L;(F1)d-

By a density argument, we can extend o, to an element of (L; (I')?) such
that

oM parpe | < llpyeye (V0 € Lg(T1)?).

Since (L}J(Fl)d)’ = L‘f‘/’g(Fl)d, we conclude |o| < g. Then o, -ur+glus| =0

follows from (3.3.5) with » = 0. Hence (u,p) is a solution of Problem
PDE. O

3.3.2 Main theorem. Proof of uniqueness.

We are now in a position to state our main theorem. We assume:
(S1) fe HY0,T; L2 (Q)%).
(S2) g € HY(0,T; L*(Ty)) with ¢g(0) € HY(Ty).
(S3) up € H2(2)Y NV, 4, and SBCF is satisfied at ¢ = 0, namely,
lor(uo)] < g(0) and or(ug) - uor + g(0)|uor| =0 a.e.on T'.

Note that o, (ug) can be defined in a usual sense because ug € H 2(Q)d.

Theorem 3.3.2. Under (S1)—(S3), when d = 2 there exists a unique solu-
tion w of Problem VI, such that

u€ L®0,T;Vao),  u' €L®0,T;L3()%) N LY0,T; Vi o).

When d = 3, the same conclusion holds on some smaller time interval

0, 7).

We call the solution in the above theorem a strong solution of Problem
VI,. First we prove the uniqueness of a strong solution. The existence will
be proved in Section 3.3.4 after some additional preparations.

75



Proposition 3.3.1. Ifu; and uy are strong solutions of Problem VI, then
Ul = us.

Proof. Taking v = ug and v = w; in (3.3.2) for u; and that for us respec-
tively, and adding the resulting two inequalities, for a.e. t € (0,7) we obtain

(u) — ub,ug — ug) + ap(uy — ug, uy — ug)
< aq(ur, ur, up — uy) + ag (ug, ug, ug — ug)

= —al(ul — U2,U2,U1 — UQ) — al(u2,u1 — U2,U1] — UQ). (336)
We deduce from (3.2.3), together with Young’s inequality, that

1/2 3/2
a1 (ur — ug, ug, 1 —u2)| < Cllus — u2||L(2(Q)d||u1 — u2||;1(9)d||u2||H1(Q)d

o ) g 3
< 5”“1 = U2||H1(Q)d + C||U2||H1(Q)d”U1 — U2||L2(Q)d,

7/4 1/4
a1 (uz, ur = uz, w1 — ua)| < Cllual g @yellur — uall 1 gallun = uall ooy

o 2 8 2
< EHUI - U2||H1(Q)d + CHUZHHl(Q)dHul - U2||L2(Q)d-

Combining (3.2.1) and these estimates with (3.3.6), we have

d
EHUI - U’QH%?(Q)d - C(H“ﬂﬁ{l(g)d + ||u2||§'{1(Q)d)||u1 - UQH%Q(Q)d‘
By Gronwall’s inequality, we conclude

EC(||lug|? +||usal|® dt

g (£) — (£ | 22y < elo Clluallips gatluzllyn g)0) 141 (0) ~u2(0) | 2pa = O,
since u;(0) = u2(0) = ug. (Note that fg(||u2||%p(md+ ||UQ||§{1(Q)[1) dt remains
finite because u € L>(0,T; H*(2)?).) Thus uy (t) = ua(t). O
Remark 3.3.3. In the case of SBCF here, the last term of (3.3.6) vanishes,
according to Lemma 3.2.2(i). We did not use that fact because we would

like to make our proof of uniqueness remain unchanged when we deal with
LBCF.

Concerning the associated pressure, we find:

Proposition 3.3.2. Under the assumptions of Theorem 3.3.2, let u be the
strong solution of Problem V1, and p be the associated pressure obtained in

the proof of Theorem 3.3.1. Then p € L>(0,T; Q)
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Proof. Fora.e.t € (0,T), the well-known inf-sup condition (see [21, I.(5.14)]),
together with (3.3.3), (3.2.4), and |o;| < g a.e. on I'y, yields

b(v,
Pl £2(0) < sup b(v,p)
veV ”UHHl(Q)d

< l'll 2gye + Cllull grays + Cllullzngye + Cllgliay + 1 fllz2@)e-

Since RHS is bounded uniformly in ¢, p is in L>(0,T; Q). O

3.3.3 Regularized problem

To prove the solvability of Problem VI, , we consider a regularized variational
inequality, which is shown to be equivalent to a variational equation.
Before stating those problems in detail, for fixed € > 0 we introduce

jeln) = / gpen)ds  (n e LAT1)?),

where p, is a regularization of | - | having the following properties:
(a) pe € C%(RY) is a nonnegative convex function.

(b) It holds that
lpe(z) = |2]| <€ (VzeRY). (3.3.7)

(c) If ae denotes Vpe, then

lac(2)] €1 and ac(z)-2>0  (VzeRY). (3.3.8)

In particular, as a result of the convexity, the Hessian of p., denoted by S,
is semi-positive definite, that is,

"YBe(z)y 20 (Vy,z €RY), (3.3.9)

where ‘y means the transpose of y. Such p. does exist; for example, pe(z) =
V/|2|2 + €2 enjoys all of (a)—(c) above.

Remark 3.3.4. One could use the Moreau-Yoshida approximation of | - |
as pe, which is considered in [57], but it is only in C'1(R%), not in C2(RY).
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Since p, is differentiable, the functional j. is Gateaux differentiable, with
its derivative Dj(n) € (HY?(T'1)?) computed by

<Dje(77)>§>H1/2(F1)d = /F gae(n) - €ds (n.€e H1/2(F1)d)-
1
We are ready to state the regularized problems mentioned above.
Problem VI;-SBCF. For a.e. t € (0,7), find ue(t) € Va,» such that u,(t) €
L2(Q)4, ue(0) = u§ and

(U/E,U - us) + aO(UEa v — ue) + al(um Ue, UV — ue) +je(UT) - je(uﬂ')
>(f,v—u) (Vv € Vo).
(3.3.10)

Problem VES-SBCF. For ae. t € (0,7), find uc(t) € Vi such that
ul(t) € L2(Q)%, ue(0) = u§ and

(u'e,v)—|—ao(u€,v)—|—a1(u6,us,v)—l—/ goe(ter) - vrds = (f,v) (Vv € Vpo).

Iy
(3.3.11)
Here, uf is a perturbation of the original initial velocity ug. The way one
obtains uf from wg is described later. By an elementary observation (e.g.
[13, Section 3.3] or [57, Lemma 3.3]), we see that:

Proposition 3.3.3. Problems VI and VE; are equivalent.

Now we focus on the construction of a perturbed initial velocity ug.
Since up € H?(Q2)? satisfies SBCF by (S3), it follows from the Green formula
ao(uo,v) = (—vAug,v) + fF1 o (ug) - vy ds, for v € V,, o, that

ao(uo,v—uo)—l—/ g(0)|vT|ds—/ g(0)|uor| ds > (—vAug,v—ug). (3.3.12)

Ty I¥

Here we consider the regularized problem: find u§ € V,, , such that

aofuy v —ut) + [ gO)pelor)ds— [ gO)pelut,)ds = (~viuo,v )
T Iy
' (Vv € Vo),
(3.3.13)

which is equivalent to (cf. Proposition 3.3.3)

ao(ug, v) +/ 9(0)ae(uf,) - v ds = (—vAug, v) (Vv € Vip). (3.3.14)
'y
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By a standard theory of elliptic variational inequalities [22], (3.3.13) admits
a unique solution ug, which is the perturbation of ug in question. With this
setting, we find:

Lemma 3.3.1. (i) When € — 0, ufj — ug strongly in H'(Q)%.
(i) u§ € H*(Q)? and

[ugl 2y < C(llvAuoll + [lg(0)[z1(ry))- (3.3.15)

Proof. (i) Taking v = ug in (3.3.13) and v = uf in (3.3.12), adding the
resulting two inequalities, applying Korn’s inequality, and using (3.3.7), we
conclude

el — wolfs oo < [ 9] = pelut))ds + [ 9(0)(peluo) ~ uol)ds

1 ry

§26/ g(0)ds -0  (e—0).
By

(ii) Since g(0) € HY(I'1) by (S2), we can directly apply the regularity
result [57, Lemma 5.2] to the elliptic variational inequality (3.3.13), and
obtain (3.3.15). Though our p. and a. are different from those of [57], it
makes no difference in the proof of that lemma. O

Remark 3.3.5. (i) As a result of (i) above, for sufficiently small € > 0 we
have

lugllizz@ye < 2lluollze@ye  and  [Jugllgroye < 2[luollgr)e. (3.3.16)

(ii) Concerning the regularity of the domain, [57] assumes that Iy and
I'; are class of C2 and C? respectively, which is sufficient for our theory as
well.

Remark 3.3.6. In [57], dealing with the stationary problem, the author
stated that g € H'/2(T';) was enough to derive u € H2(Q)% and p € H(Q).
However, it turned out that his proof presented there worked only for g €
H1(T'y); see the errata by the same author. This is why we have assumed
g(0) € H'(T';) in (S2), not ¢(0) € HY?(T;).

3.3.4 Proof of existence

Due to Proposition 3.3.3, we concentrate on solving Problem VE{. In do-
ing so, we construct approximate solutions by Galerkin’s method. Since
Vae C H 1(Q)d is separable, there exist members wy,ws,... € V4, linear
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independent to each other, such that (J;,_; span{wy}}, C Vi dense in
H'(Q)?. Here € is fixed, and thus we may assume w; = u§.

Problem VEZ"-SBCF. Find ¢, € C%*([0,7])(k = 1,..,m) such that
U, € Vp o defined by w,, = Y 5w ck(t)wy satisfies uy, (0) = uf and

(ot w05} - 2y W) - (i iy 1) / 00 (e - 0, 1)

Iy
(k=1,...,m).
(3.3.17)

Since a. € C'(RY)?, the system of oordinal differential equations (3.3.17)
admits unique solutions ¢, € C*([0,T]) (k = 1,...,m) for some T < T. The

a priori estimate below shows T' can be taken as T', so that we write T'
instead of T' from the beginning.

Proposition 3.3.4. Let (S1)-(S3) be valid and € be small enough so that
(3.3.16) holds.

(i) When d = 2, uy, € L®(0,T; Vo) and uh, € L®(0,T; L2(Q)%) N
EA(0. T Vo) are bounded independently of m and €.

(ii) When d = 3, the same conclusion holds for some smaller interval
(0,7"), which can be taken independently of m and e.

Proof. Due to space limitations, we simply write |||z, ||gllz2, ||f]z2, etc.

instead of [[ullr2(qyas 19/l z2(ry)s [1fll2(q)as ete.
(i) Multiplying (3.3.17) by cx(t), and adding the resulting equations for
k=1,...,m, we obtain

(ulm, U'm) + GO(Um, Um) T /I‘ gae(umT) * Yo 8 = (fa Um),
1

where we have used Lemma 3.2.2(i). It follows from (3.2.1) and (3.3.8) that

1d

> y o 1 .
5 llumlZs +allumlBp < (F,um) < [ fllzellumll < Slhuml + 51,

which gives
d 2 2 2
glumllzz +allumli < ClfIL.. (3.3.18)

Consequently, for 0 <t < T,

ok i
(e +a [ Nunlnde < gla+C [ 1517t (3319
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From (3.3.16), we find that ||um/| e (0,7;22) and |[um| r2(0,1,v;, ) are bounded
by C(f,wuo) independently of m and e.

Next, we differentiate (3.3.17) with respect to ¢, which is possible because
ci(t)’s are in C2([0,T1]), to deduce

(U{r/n, I‘Uk) o G‘O(ulrnv 'LUk-) in al(ufrrm Um, wk‘) i al(uma u;na wk)
+/ g ae(ums) - wrrds +/ g ‘W Bewgr ds = (f,wy)  (k=1,...,m).
Fl Fl

Multiplying this by ¢}, (t), and adding the resulting equations, we obtain

<u;Ju;)+—mﬂugmu;)+—aau;,um,u;>+—/£ o ety e
1

+/ 9 "t Be(tmer iy ds = (f',u,),  (3.3.20)
I
where we have again used Lemma 3.2.2(i). Here,

a1 (U, U, U) < Clltg|| g2l tml e lupll g (by (3.2.2))

«
& lwmllzn + Cllum 5 [l Z2, (3.3.21)

IN

IA

/Fg’ae(umf)wmds 9"l z2llwmr | L2ryye - (by (3.3.8))
E

< C\d' || 2wy | 1 (by Lemma 3.2.3(i))

@
< Zlup, iz + Cllg'l132,
/ g "l Be (U )il ds > 0, (by g > 0 and (3.3.9))
'y
/] / ! « ! 12 /112
|(Fs um)| < N 2 llupllar < 6||um||H1 + ClIf I ze-

Collecting these estimates, it follows from (3.3.20) that for 0 <t <T

d

Ell%lliz +alluplin < CUF 172 + 19 172) + Cllumllin lum 72 (3.3.22)

If the second term of LHS is neglected, Gronwall’s inequality leads to

T
cfr wm |2, d
(@1 < (@ +0 [ (1712 + 1/13a)ae ) el
(3.3.23)
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Provided that ||uj,(0)||3. is bounded independently of m and e, estimate
(3.3.23) gives the boundedness of ||uy,|| (o 1;r2) because we already know
that of [[uml|r20,7,v;,.,) due to (3.3.19). Then, by (3.3.18) and (3.3.19) we
have

allum(®)2 < CI 1% + il 2llumllz2 < C(f, g, wo),

which implies ||um| L= (0,1,v;, ) is bounded. Finally, integrating (3.3.22), we
see that [|ug,|lz2(0,7v;, ) is also bounded.

To show the boundedness of [|u/,(0)]|2,, we multiply (3.3.17) by c}(t),
add the resulting equations, and make ¢ = 0, arriving at

[urn (0)]|Z2 + ao(uf, us, (0)) + a1 (uf, uf, up, (0)) +/ 9(0)ae(ufy) - - (0)ds
't

= (£(0), u,(0))- (3.3.24)

From the construction of uf, especially (3.3.14), we have

ao (1, 1w (0)) + / 9(0)xe(us,) - ey (0)ds

= |(=vAug, u, (0))]

< Clluoll g2 ||urm (0)]| L2-
(3.3.25)

Furthermore, by Schwarz’s inequality, Sobolev’s inequality and (3.3.15),

a1 (uf, uf, i (0)] < Cllufllzoo llufll g1 1wy (0)l] 22 < Cllufllze]lu, (0)]] 22

< Cllluollmz + g(0)ll 1)l (0) | 2

Combining these estimates with (3.3.24), we obtain

17 (0122 < 1£(0)llz2 + Clluoll a2 + C(lluoll = + lg(0) | 2)?,

which proves the boundedness of |uj,(0)||3.. This completes the proof of
(i).

(ii) The discussion before (3.3.21) and the observation for ||u/,(0)||z2 are
the same as (i). What changes from the case d = 2 is that when d = 3,
instead of (3.3.21), we only have (by (3.2.3) and Young’s inequality)

1/2 372
a1 (Ul Uy )| < Cllaty || M2 et | 1 [ |2

< Yuml gl + Cllml | g 72,

for a constant v > 0 which can be arbitrarily small. We choose ~ satisfying
Yuollgr < 5%, and from (3.3.16) we obtain vy|uf|lgr < 5. Let TV > 0,
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which may depend on m, e at this stage, be the maximum value of ¢ such

that y||um )|z < §. I y|um(t)||g < § forall 0 <t <T, weset T' =T.

Since v[|um (0)||gr < § and wun,(t) is continuous with respect to t, such 7"

does exist, and furthermore if 77 < T then 7||um (t)|[ g1 = §.
Therefore, in place of (3.3.22) we obtain

d
Tl Tz el < CUS 1L HIG L)+ C umm lullz. - (0 <t <T"),

which leads to the boundedness of ||uy,||r2(0,77v;, ) and |lur, L 077:12),
together with ||um||Loo(07T/;Vn,U).

Finally, let us prove that T’ is bounded from below independently of m
and e. In fact, if 7" < T then we see that

« T
To7 < (™)t = (@) < n(T") = wn(O) 11 = H /0 )]

T/
< /0 it ()| 2t < VI ke 20,7737,

Since we already know ||uy,||z2(0,77,v, ) 18 bounded, we obtain the lower
bound for 7”. This completes the proof of Proposition 3.3.4. O

Remark 3.3.7. (i) A naive computation gives, by (3.3.8),

/F 9(0)ate () -y (0) 5| < 1g(O) 2oy tonr (O) 12y
1

but ||y, (0)|| 2(r, )« cannot be bounded by ||uy, (0)]| 12(q)« in general. There-
fore, the perturbation of ug, which is based on the compatibility condition
in (S3), is essential in deriving (3.3.25).

(ii) If d = 3 and f, g, uo are sufficiently small, we can prove y||um (t)|| g1(q)e
< g forall 0 <¢<T, and consequently the existence of a global solution.

As a final step for our proof of the existence, we discuss passing to the
limits m — oo and € — 0. The proof below is valid for both d = 2, 3, except
that when d = 3 we have to replace T with 7" given in Proposition 3.3.4.

Proposition 3.3.5. (i) Under the assumptions of Proposition 3.3.4, there
exists a solution uc of Problem VI such that all of ||ue|| Lo 0.1, )5 |uel L2007,V 0)5
and |[ugll Lo (0.1 12(0)) are bounded independently of e.

(ii) There exists a strong solution of Problem VI,.
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Proof. (i) As a consequence of Proposition 3.3.4, we can extract a subse-
quence of {u,,}5°_,, denoted by the same symbol, such that

U, — Ue  Weakly- in L°(0,T; Vy o),

ul, —u.  weakly in L2(0,T; Vy,) and weakly-+ in L>(0, T; L2(Q)9),

m €

for some ue € L=(0,T;Vy ), ul € L2(0,T;Vae) N L®(0,T; L2(Q)4). The
norms of u, and u. in those spaces are uniformly bounded in e.

Let us prove u, solves Problem VIS. By Proposition 3.3.3, it suffices to
show ue solves Problem VE;. For ¢ € C§°(0,T), it follows from (3.3.17)
that

i
/ ¢(t){(ulm,wk)+ao(um7wk)+a1(um,um,wk)+/ gote(Umyr) - Wirds
0 Iy

—(fron)pdt=0  (h=1,.,m).
(3.3.26)

By standard compactness results (see [62, Theorem III.2.1], [53, Theorem
11.6.2]), wm — ue strongly in L%(0,T; L*(2)?) and umr — uer strongly in
L*(T; x (0, T))d. In particular, u,,; — ue a.e. on I'y x (0,7), and thus
the continuity of ac(z) yields ae(ums) — ac(uer) a.e. From Lebesgue’s
convergence theorem combined with a density argument, we see that (3.3.26)
holds, with u,, and wy, replaced by u. and arbitrary v € V,, , respectively.
Hence (3.3.11) holds for a.e. t, which implies that u. solves Problem VE.

(ii) As a result of (i), we can extract a subsequence of {u}¢ o, denoted
by the same symbol, such that

ue —u  weakly-* in L°(0,T; Vo),

ul =o' weakly in L*(0,T; Vp,,) and weakly-+ in L>(0, T; L*(Q)%),
for some u € L®(0,T;Vag), W € LA0,T; Vo) N L®(0,T;L4(Q)%). 4As
before, one sees that ue — u strongly in L?(0,T; L*(Q)?) and uer — us
strongly in L?(I'y x (0,7)). In addition, ue — u weakly in L(0,7; Vy o),
and thus it follows that fOT ao(u,u) dt <lim,_q fOT ao(te, ue) dt.

Let @ € L*(0,T;Vyns) be arbitrary. We take v = 9(¢) in (3.3.10) and
integrate the resulting equation over (0,7') to deduce

T
{08 — ) + a5 = 0 + 01 (s 15—
0

o+ Ge(r) = Jeluier) = (£, = u) fdt > 0.
(3.3.27)
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In view of (3.3.7), together with triangle inequality and Lipschitz continuity
of j, we have fOTjE(ﬁT)dt — fOTj(fJT) dt and fOTje(ug)dt — foTj(uT)dt
when € — 0. Therefore, taking the lower limit, we see that (3.3.27), with .
replaced by u, holds. Then, a technique using the Lebesgue differentiation
theorem (see [13, p.57]) enables us to conclude that w satisfies (3.3.2) at
a.e. t.

For the initial condition, Lemma 3.3.1(i) leads to u(0) = lime o ue(0) =
lime_o uf = up. Hence u is a strong solution of Problem VI,. O

Propositions 3.3.1 and 3.3.5(ii) complete the proof of Theorem 3.3.2.

3.4 Navier-Stokes Problem with LBCF

3.4.1 Weak formulations

Throughout this section, we assume f € L*(Q x (0,7))4, ug € V;,, and
g € L%y x (0,7)) with g > 0. Further regularity assumptions on these
data will be given before Theorem 3.4.2. As in SBCF, we introduce

Julti ) = /F g(t)lnlds  (n € L3(Ty)), (3.4.1)

which is simply written as j(n) until the end of this section (note that n
is scalar). A primal weak formulation of (3.1.1)-(3.1.4) with (3.1.6) is as
follows:

Problem PDE-LBCEF. For a.e. t € (0,7), find (u(t),p(t)) € Vr x Q such
that u'(t) € L?(Q)¢, u(0) = uo, 0, is well-defined in the sense of Definition
3.2.1, |on| < g a.e. on I'y, and o, uy, + glu,| =0 a.e. on I'y.

Throughout this section, we refer to Problem PDE-LBCF just as Problem
PDE. Similar abbreviation will be made for other problems. Next, as in
SBCF, we propose a variational inequality problem:

Problem VI,-LBCF. For a.e. t € (0,T), find u(t) € V7, such that v'(t) €
L2(Q)4, u(0) = up and

(v, v—u)+ap(u,v—u)+ag(u,u,v—u)+j(vy) —j(un) > (f,v—u) (3.4.2)

for all v € V; . Here j = j,(t;-) is defined in (3.4.1).

Unlike the case of SBCF, Problem VI, is not exactly equivalent to Prob-
lem PDE, as is shown in the following theorem.
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Theorem 3.4.1. (i) If (u,p) solves Problem PDE, then u solves Problem
Vi

(i) If u solves Problem VI, then there exists at least one p such that
(u,p) solves Problem PDE. If another p* satisfies the same condition, then
for a.e. t € (0,T) there exists a unique 6(t) € R such that

p(t) =p*(t) +6(t) and on(u(t),p(t)) = on(u(t),p*(t)) — 6(t). (3.4.3)

(iii) In (ii), if we assume furthermore uy(t) # 0, then 6(t) = 0. Namely,
the associated pressure is uniquely determined.

Proof. (i) This can be proved by the same way as Theorem 3.3.1.
(ii) For a.e. t € (0,T) and v € V;, it follows from (3.4.2) that (u/,v) +
ap(u,v) + a1 (u,u,v) = (f,v), and thus there exists unique p € @ such that

(v, v) 4+ ao(u, v) + a1 (u, u,v) + b(v,p) = (f,v) (Vo e V).
According to Definition 3.2.1, ¢,, = oy, (u, p) is well-defined, so that
(u', v)+ao(u, v)+b(v, p)+a1(u, u, v)—(Gn, vn) gr/2ry) = (£, ) (Vv e V7).

Substituting this equation into (3.4.2), we obtain —(dy,, v, — Un) gi/2ry) <
J(vn) — j(uy) for all v € V4. It follows from Lemma 3.2.4(ii) that

(G M sr1/20y)| < / glnlds  (¥ne HY2(Ty)n L3(T0)).
il

The Hahn-Banach theorem allows us to extend &, to a linear functional
On Lé(l’l) — R satisfying the same inequality as above for all € L;(Fl).
Therefore, o, € L‘f‘;g(Fl) and |o,| < ¢g. In addition, opu, + glup| = 0
follows.

Since &, — 0, vanishes on H'/2(T'}) N L3(T}), there exists a constant
§(t) such that 6, — o, = (t). Now, by setting p(t) = p(t) + d(t), it follows
that o,, given above actually equals o, (u(t), p(t)) and that (u(t), p(t)) solves
Problem PDE. Relation (3.4.3) can be verified by a similar argument.

(ili) Since [p unds = [ydivudzr = 0, the assumption un(t) # 0 im-
plies that there exist subsets Ay, A_ of I'; with positive d — 1 dimensional
Lebesgue measure satisfying u,(t) > 0 on Ay and u,(t) < 0 on A_. Because
lon| < g and opuy, + glun| =0 on I'y, 0 = —g(t) on A4 and o, = g(t) on
A_. Hence §(t) in (3.4.3) cannot be other than zero. O

Remark 3.4.1. Since |0y, < g, 6(t) is no more than 2¢(¢) nor less than
—29(t).
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3.4.2 Main theorem

Let us state our main theorems for the case of LBCF. As in SBCF, some
compatibility condition is necessary; it is rather complicated because normal
stress at ¢ = 0 involves a pressure at ¢ = 0, which is not given as a data.
The precise description is as follows: we say that LBCF is satisfied at ¢t =0
if up € H?(2)4 N V;, and there exists po € H'(2) such that

lon(uo, po)| < ¢g(0) and  op(uo, po)uon + g(0)|uon] =0 a.e. on Ty
(3.4.4)
We remark that a similar compatibility condition appears in nonlinear semi-
group approaches (see [17, 18]).

Furthermore, in order to overcome a difficulty arising from (3.1.7), we
need no-leak condition at ¢t = 0, that is, ug, = 0 on I';. In view of (3.4.4),
this is automatically satisfied if |0y, (1o, po)| < ¢(0) on I';. Examining our
proof of the a priori estimates carefully, one finds that this assumption can
be weaken to the condition that |[uon | r2(r,) is sufficiently small.

Including what we have discussed above, we assume the following:
L1) f € HY(0,T; L2(Q)%).

(L1)

(L2) g € HY(0,T; L2(T})) with ¢(0) € HL(T).

(L3) ug € H*(Q)?N V; 4, and LBCF is satisfied at ¢ = 0.
(L4)

L4) wg, =0 a.e. on I'y.

Theorem 3.4.2. Under (L1)-(L4) above, there exists a unique solution u
of Problem V1, on some interval (0,T"), with T" < T, such that

u e L®(0,T;Vr ), w' e L°(0,T'; L2()Y) N L0, T; Vi.p ).

The uniqueness can be proved by the same way as Proposition 3.3.1.
We can also obtain p € L>(0,T"; L?(Q2)) by a similar manner to Proposition
3.3.2, using the rather infamous inf-sup condition (see [57, Lemma 2.2])

b(v,p
Clipllaq < sup —P)_

L3(Q)).
S Tolme L)

The rest of this section is devoted to the proof of the existence. To state
regularized problems, for fixed € > 0 we introduce

o) = / gocn)ds (1€ L3(T)),

87



where p. is a function satisfying properties (a)—(c) for the case d = 1, con-
sidered at the beginning of Section 3.3.3. We use the notation introduced
there such as a, = dp/dz and B = d?p/dz>.

Now let us state the regularized problems.

Problem VI -LBCEF. For a.e. t € (0,T), find u(t) € V;, such that u,(t) €
L2(Q)4, uc(0) = u§ and

(UIE, v—= ue) + aO(uea v = ue) + al(ua Ue;, U — ue) + je(vn) - je(uen)
>(f,v— ue) (Vv € Vip).

Problem VE{-LBCF. For a.e. t € (0,7), find uc(t) € V;, such that
ul(t) € L2(Q)?, ue(0) = u§ and

(ul,v) + ag(te, v) + a1 (ue, e, v) —l—/ 90 (Uen)vnds = (f,v) (Vv € Vrg).
Iy

As in Proposition 3.3.3, Problems VIS and VE{ are equivalent. The
construction of the perturbed initial velocity w is similar to that of SBCF.
In fact, since LBCF holds at t = 0 by (L3), the Green formula leads to

ao(uo, v — ug) + / g(0)|vp| ds — / 9(0)|uon| ds > (—vAug 4+ Vpo, v — up),
Fl I‘1
for v € V;». Consider the regularized problem: find u§ € V., such that

ol s — ) + / 9(0)pe(vn) ds — / 9(0)pe(t) ds

Fl I‘1
>(—vAug + Vpo, v — ug) (Vv € Vi 5), (3.4.5)

which is equivalent to (cf. Proposition 3.3.3)

ao(ug, v) —{—/ 9(0)ae(ugy,)vn ds = (—vAug + Vpo, v) (Vv € Vo).
Iy

(3.4.6)
The elliptic variational inequality (3.4.5) admits a unique solution uf, which
is the perturbation of ug in question. With this setting, we find:

Lemma 3.4.1. (i) When € — 0, u§ — ug strongly in H(Q)?. In particular,
it follows that u§ — 0 in L*(T'y).
(ii) u§ € H*(Q)? and

4Gl mr2(0)a < CllvAuo + Vol z2@)e + [19(O0) ] (ry))- (3.4.7)
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Proof. (i) is proved by the same way as Lemma 3.3.1(i). Since ¢(0) € H(T';)
by (L3), (ii) is a direct consequence of [57, Lemma 4.1]. O

Remark 3.4.2. By (i) and (L4), for sufficiently small € > 0 we have

(e
[ubl L2(ya < 2luollr2ya,  [ubllm@)e < 2uwollgr@ye,  Nutnllrzw,) < g

871
3.4.8)

?

—~

where a and v; are the constants in (3.2.1) and (3.2.5) respectively.

Remark 3.4.3. As in SBCF, if I'g is C? and I'; is C*, then we can apply
Lemma 4.1 of [57]. On the other hand, ¢(0) € H'/?(T'y), stated in [57], is
actually insufficient to deduce the H2-H! regularity (see the errata of [57]).

To solve Problem VES, we construct approximate solutions by Galerkin’s
method. Since V;, C HI(Q)d is separable, there exist wy,ws,... € Vi,
linear independent to each other, such that | J;-_, span{wy}}",; C V;, dense
in H'(Q)?. Here we may assume w; = u§.

Problem VE;"-LBCEF. Find ¢, € C*([0,T]) (k = 1, ..., m) such that u,, €
Vr.o defined by upy, = Y770 cx(t)wy satisfies up, (0) = uf and

(u;na wk) == aO(uma wk) el al(“my Um, wk) + / gae(umn)wknds = (fa wk)
1!
' (k=1,...,m).

Since ae € C'(R), there exist unique solutions c; € c2([0,T]) (k =
1,...,m) for some T, which may depend on m and € at this stage.

Proposition 3.4.1. Assume (L1)—(L4), and let € > 0 be sufficiently small
so that (3.4.8) holds. Then there exists some interval (0,T") such that u,, €
L%(0,T";Vy5) and ul, € L®(0,T'; L2(Q)4) N L23(0,T"; V7) are uniformly
bounded with respect to m and €. Here, T' is independent of m and €.

Proof. Due to space limitations, we sometimes simply write ||u .2, || gll L2, ---,
instead of [|ullz2(qy2; l9llz2(r,)s ---» When there is no fear of confusion.

First we consider the case d = 2. Multiplying (3.4.9) by ci(t) for k& =
1,...,m, adding them, and using (3.2.1), (3.2.5) and (3.3.8), we obtain

1d

S alumllZa + (@ = llwmall o) lemliZn < (Frum). (3:4.10)

Since || umn(t)| £2(r,) is continuous with respect to ¢ and (3.4.8) holds, there
exists a maximum value T1 € (0, 7] of ¢ such that 71 ||umn(t)l2ry) < 7- I
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this inequality holds for all 0 < ¢ < T, we take T} = T.. Noting [LFs )| =
umll2 + 211 £1132, we find from (3.4.10) that

d

—lumllze + allumlfn <ClIfIL: (0<t<Th).

Hence u,, € L>(0,T1;L?) N L?(0,Ty; Vr o) is uniformly bounded in m and
€.

Next, differentiating (3.4.9), multiplying the resulting equation by ¢} (t),
and adding them, we obtain

(s ) + @0 (Unps i) + a1 (U, Uiy ) + @1 (U, gy, 01,

+/ QIQE(Umn)ulmn d5+/ 956(u7nn)|u;nn‘2d5: (flyulm) (3-4-11)
Fl 1—‘1

Here, we estimate each term in (3.4.11) as follows:

|01 (tn tms g )| < Cllta || p2 [t | 12 |z || 2

(] E
< iz + Cllumllzn |2, (3.4.12)

«
|a1 (um, thy, up, )| < Yilltmnll L2y lum, 7 < ZHU‘/WLH%—[I’

< Sl +Clig 132,

«
/r 9 e (tmn )ty ds| < Cllg'll pellumllm <
1.

/ 956(“77171)‘“/rrm|2 ds > 0,
Iy
«Q
()] < Sl + CUF 2

Collecting these estimates, we derive from (3.4.11) that for 0 <t < T

d
e + allinllfn < CUSIZe + 1911ZE2) + Clluml g lumllZe. (3.4.13)

Combining the technique used in Proposition 3.3.4 with (3.4.6) and (3.4.7),
we observe that ||up, || Lo (0,7;22), Ul 20,113V )5 @04 [[um | e 0,1y517,,) are
bounded by C(f, g, uo, po)-

It remains to show that T3 is bounded from below independently of m, e.
If 71||umn(T1)||L2(p1) < a/4 and thus T} = f‘, we can extend wu,,(t) beyond

t =T and repeat the above discussion until we reach either

2% Yillumn(E)lz2ry) < @/4 o yullumn(Ty)llz2qy) = /4.
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In the former case Ty = T'. In the latter case, we have

«
8y = [wmn (T1) | 2(ry) = l[wmn (0)] L2(ry) < Nlwmn(T1) = wmn(0)llz2(ry)

T T
< /0 e () 20yt < € /0 sl g1 yedt < Cv/Trdlnll 207370

Hence T3 is bounded from below, and we complete the proof for d = 2.
Second let us consider the case d = 3. What changes from d = 2 is that
(3.4.12) is replaced with

142 3/2
a1 (s )] < Cladty || 252 [t g 2t 25

< Yellum|l g llun 13 + Cllm|| g 1w, I,

where 7, can be arb1trar11y small. We choose 72 satisfying va||luo|| g1 < £5, 8
that yo||lug|| g1 < 55 by virtue of (3 4.8). Let T5 be the maximum value of t €
(0,7 such that ot ()| g1 < T3~ If this inequality holds for all ¢ € (0, T,
we set Ty = T. Such T, does exist, and if Ty < T then o[t (T%)|| g1 = s
Therefore, setting 7" = min (7}, T»), instead of (3.4.13) we get

d
Zlmllze el < CUS LG ) +Cllumllm lwmlze - (0 <t < T

As a consequence, we observe that ||up, |lz20.17v; ), |UmllLee(0,77;,02), and
[um || zo<(0,77;v,. ,) are bounded by C(f, g, uo, po).
Now, if T} < T or Ty < T then T’ are bounded from below as follows:

T/
(e%
tor < ™)z = N Olrs) < [ Imallzage

Tl
<C [ lunlmat < OV T im0,
« ’ T
o < um ()1 = lum (0)] S/ lumnll g dt < VT |l |l 20,7757, -
2472 0
When Ty = T and T = T, we can extend u,,(t) beyond ¢t = T and repeat

the above discussion. This completes the proof of Proposition 3.4.1. O

The last step of the proof, i.e. passing to the limits m — oo and € — 0,
proceeds in the same way as Proposition 3.3.5, with n replaced by 7 and vice
versa. This proves that a solution of Problem VI, exists, which, combined
with the uniqueness result, completes the proof of Theorem 3.4.2.
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Remark 3.4.4. At first glance one may think Theorem 3.4.2, where we get
only a time-local solution in spite of a smallness assumption on ug even if
d = 2, is too poor. However, in view of the fact that we obtain only time-
local solutions in 2D case under the linear leak b.c. (see [29, Theorem 6] or
[52]), such limitations cannot be avoided to some extent.

Remark 3.4.5. Under additional smallness assumptions on the data f, g, uo,
po, we can derive global existence results for both d = 2 and d = 3.

3.5 Concluding Remarks

By the discussion presented above, we have established the existence and
uniqueness, while we did not get in touch with higher regularity, such as u €
L0, T; H*(Q)Y), p € L>=(0,T; H'(Q)). This is because some regularity
results for the elliptic cases are not available. For instance, Problem VI,-
SBCF is rewritten as

ao(u,’u— u) +.j7(t;v’r) _jT(t;uT) 2 (fvv_u) - (ulav_u) _al(uvuav _u)
=: (F(t),v — U>Vn,a (Vv € Vo),

with F(t) € LP(Q)? for some p < 2. If we prove this elliptic variational
inequality has a unique solution in W27P(Q)d when p < 2, then a technique
similar to [62, Theorems II1.3.6 and II1.3.8] allows us to deduce u(t) €
H?(Q)?. Thereby, we need to extend the regularity theory of [57] to cases

p#F 2.
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