
APPLICATION OF FORMAL METHODS

TO QUANTUM CRYPTOGRAPHY

（形式的手法の量子暗号への応用）

by

Takahiro Kubota

久保田 貴大

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 13, 2013

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Masami Hagiya 萩谷 昌己
Professor of Computer Science

ABSTRACT

In general, it is difficult to verify security of cryptographic protocols. Indeed, flaws of
designs and security proofs of some protocols were found after they had been presented.
In deductive verification using formal methods, protocols and security properties are
described in formal languages, and correctness of designs and security proofs are deduced
by inference rules. While a number of formal frameworks and verification tools have been
developed and applied to classical protocols, few formal methods have been applied to
security proofs of quantum protocols. The contributions of this thesis consist of the
following three results.

First, we developed a software tool to verify bisimilarity of configurations (pairs of
processes and quantum states) of qCCS, a quantum process calculus presented by Feng
et al. Bisimilar configurations behave indistinguishably from the outside. We designed a
formal framework for the verifier, which we call nondeterministic qCCS, on the basis of
qCCS by Feng et al. While the transition system of qCCS is both nondeterministic and
probabilistic, we presented a nondeterministic and non-probabilistic transition system
for configurations, extending the definition of them. This allows the verifier to verify
bisimilarity efficiently. Next, we designed the verifier to handle security parameters
and quantum states symbolically. A purpose is to apply it to quantum cryptographic
protocols, where the dimensions of quantum states depend on security parameters. When
the verifier checks bisimulation relation of configurations, it uses user-defined equations
on the symbolic representations to check the quantum states that the outsider can access
are always equal. Besides, the verifier is sound with respect to qCCS, that is, when it
runs with two configurations as input and returns true, a symbol representing success of
the verification, the configurations are in bisimulation relation in the qCCS’s definition.

Second, we defined a notion of approximate bisimulation relation on configurations of
nondeterministic qCCS, and extended the verifier to check the approximate bisimilarity.
Approximately bisimilar configurations reveal quantum states with close trace distance
to the outsider after transitions. This property is useful in security proofs of quantum key
distribution protocols. We then proved the approximate bisimulation relation is closed
under application of evaluation contexts of processes.

Third, we formally verified Shor and Preskill’s security proof of BB84 quantum key
distribution protocol. They first considered another protocol (the EDP-based protocol)
and proved the security of BB84 and the EDP-based protocol is equivalent. They next
proved the latter is secure. For the first step of their proof, we formalized the two
protocols as configurations and formally verified that they are bisimilar. For the second
step, we defined a completely secure protocol (EDPideal) and formally verified that the
configurations of it and the EDP-based protocol are approximately bisimilar. This is the
first work where a security proof of a quantum cryptographic protocol is mechanically
verified using a software tool.

論文要旨

暗号プロトコルの安全性の検証は一般に難しく, 実際, いくつかのプロトコルの設計や安
全性証明の誤りが, 提案後に指摘されるということが起こってきた. 形式的手法を用いた導
出的な検証では, プロトコルや安全性証明を形式言語で記述し, 設計や証明の正しさを推論
規則にしたがって導出する. 古典暗号プロトコルに対しては, 検証のために多くの形式体系
や検証ツールが開発され適用されているが, 量子暗号プロトコルの安全性証明に対して形
式的手法はほとんど適用されていない. 本研究の貢献は以下の 3種類の結果からなる.

一つ目の結果は, Fengらの量子プロセス計算 qCCSのコンフィグレーション (プロセス
と量子状態の組)たちの双模倣性の検証器を実装したことである. 双模倣なコンフィグレー
ションたちは, 外から見て同じように振る舞う. まず我々は, 検証器のための形式体系であ
る非決定的 qCCSを, Fengらの qCCSに基づいて設計した. qCCSの状態遷移系は確率的
かつ非決定的であったが, 定義を拡張したコンフィグレーションに対する確率的でない状
態遷移系を提案し, 採用した. このことにより, 検証器は双模倣性を効率よく検証する. 次
に, 我々は検証器を, セキュリティパラメタや量子状態を記号的に扱うように設計した. 量
子暗号プロトコルでは, 量子状態の次元がセキュリティパラメタに依存することがあるが,

そのようなプロトコルに適用するためである. 双模倣関係の検証において, 検証器は, 外部
者がアクセス可能な量子状態が常に等しいことを確認するために, 量子状態の記号表現に
対するユーザ定義の等式を用いる. さらに, 検証器は qCCSに対して健全である. すなわ
ち, 検証器にふたつのコンフィグレーションを入力したとき, 検証成功を表す true を出力
したならば, それらは qCCSの定義での双模倣関係にある.

二つ目の結果として, 我々は, 非決定的 qCCSのコンフィグレーションたちに対して近似
双模倣関係を定義し, それを検証するよう検証器を拡張した. 近似双模倣関係にあるふたつ
のコンフィグレーションの遷移後には, 外部から見た量子状態のトレース距離が近いこと
が保証される. この性質は, 量子鍵配送プロトコルの安全性証明において有用である. さら
に, 近似双模倣関係がプロセスの評価文脈の適用に対して閉じていることを示した.

三つ目の結果は, Shorと PreskillによるBB84量子鍵配送プロトコルの安全性証明を, 検
証器を用いて形式的に検証したことである. 彼らの証明では, 第一に安全性が解析しやすい
別のプロトコル (EDPに基づくプロトコル)が考えられ, BB84と EDPに基づくプロトコ
ルの安全性が等価であることが示された. 第二に, EDPに基づくプロトコルが安全である
ことが示された. 我々は, 第一のステップに対しては, この二つのプロトコルを形式化した
コンフィグレーションが双模倣であることを検証した. 第二のステップに対しては, まず,

完全に安全な鍵配送プロトコル (EDPideal)を定義し, それと EDPに基づいたプロトコル
のコンフィグレーションが近似双模倣であることを検証した. 量子鍵配送プロトコルの数
学的な安全性を, ソフトウェアを用いて機械的に検証したのは本研究が初めてである.

Acknowledgements

I would like to express my gratitude to my supervisor, Masami Hagiya for his
advice, encouragement, and offering for me a number of valuable opportunities
to study. I am sincerely grateful to my mentor, Yoshihiko Kakutani for his guid-
ance, decisive comments, enlightening, and encouragement during the research.
He kindly welcomed any of my questions and took a lot of time for discussions
with me. Ichiro Hasuo gave me detailed advice as well as supported me men-
tally. He kindly allowed me several chances for discussions. I am indebted to
Naoki Kobayashi for constructive advice and essential comments. I would like to
thank Masahito Hasegawa, François Le Gall, and Mingsheng Ying, for valuable
comments and advice.

I express my thanks to members in NTT Communication Science Laborato-
ries, Go Kato, Yasuhito Kawano, Hideki Sakurada, and Yasuyuki Tsukada for
advice and comments on the basis of their expertise of physics and formal meth-
ods.

I am grateful to Gergei Bana, Taku Onodera, and Ben Smyth for fruitful
discussions. I was supported by a grant from Graduate School of Information
Science and Technology, the University of Tokyo.

I thank members and ex-members of Hagiya laboratory especially Kentaro
Honda, Yusuke Kawamoto, Yoichi Hirai, Masahiro Hamano, Daisuke Kimura,
Tatsuya Abe, and Yukinao Kano for useful comments, kind advice, and help.
Discussing with them, I could make vague ideas concrete and improve presenta-
tions.

Contents

1 Introduction 1
1.1 Formal Verification of Cryptographic Protocols 1

1.1.1 Background . 1
1.1.2 Existing Verification Tools 2

1.2 Formal Methods for Quantum Cryptography 2
1.2.1 Security of Quantum Key Distribution Protocols 2
1.2.2 Motivation to Apply Formal Methods to Quantum

Cryptographic Protocols . 3
1.2.3 Process Calculi for Quantum Protocols 3

1.3 Contributions . 4
1.3.1 A Software Tool to Verify Weak Bisimilarity of qCCS Con-

figurations . 5
1.3.2 Approximate Bisimulation for Quantum Processes 6
1.3.3 Application of the Verifiers to Shor and Preskill’s Security

Proof of BB84 . 7
1.4 Related Work . 8

1.4.1 Formal Approaches to Security of BB84 8
1.4.2 Quantum Process Calculi 8
1.4.3 Approximate Bisimulation 9
1.4.4 Automated Verification Tool for Classical Protocols 10

2 Preliminaries 12
2.1 Notations . 12
2.2 Basic Quantum Information . 12
2.3 Quantum Error Correcting Code 14

2.3.1 Stabilizer Formalism . 15
2.3.2 Stabilizer Codes . 16
2.3.3 CSS Quantum Error Correcting Code 18
2.3.4 Entanglement Distillation based on an Error Correcting Code 18

2.4 Quantum Key Distribution Protocols 19
2.4.1 BB84 (slightly modified) . 19
2.4.2 The EDP-based Protocol 20
2.4.3 Security of Quantum Key Distribution 21

2.5 Shor and Preskill’s Security Proof 21
2.5.1 Transformation step . 21
2.5.2 Analysis step . 23

3 Automated Verification of Bisimilarity of qCCS configurations 24
3.1 qCCS . 24

3.1.1 Syntax . 24
3.1.2 Semantics . 25
3.1.3 Lifting Relations . 27

v

3.1.4 Bisimulation . 29
3.2 Simplification of qCCS’s Syntax . 32

3.2.1 Motivation . 32
3.2.2 Simplified Syntax . 35

3.3 Simplification of Operational Semantics 35
3.3.1 Symbolic Representation of Quantum States 36
3.3.2 Simplified Operational Semantics 38

3.4 Automated Verification of Bisimilarity 39
3.4.1 Equality Test of Partial Traces 39
3.4.2 Algorithm to Check Bisimilarity 41

3.5 Soundness of Verifier1 . 42
3.5.1 The Correspondence . 48

3.6 Discussion . 51
3.6.1 On Completeness . 51

4 Approximate Bisimulation for Quantum Processes 52
4.1 Preliminaries . 52

4.1.1 Negligible Functions . 52
4.1.2 Trace Distance of Probability-Weighted Quantum States . . 52

4.2 Approximate Bisimulation with Parameters 54
4.3 Approximate Bisimulation up to Negligible Difference 59
4.4 Automated Verification of Approximate Bisimulation 62

4.4.1 Algorithm . 62
4.4.2 Correctness of Verifier2 . 63
4.4.3 Relation between the Verifiers 64

4.5 Guarantees and Limitations of Approximate Bisimulation 65
4.5.1 Application to Verification of QKD protocols’ Security . . . 65
4.5.2 Application to Other Protocols 66
4.5.3 Limitations . 66

5 Formal Verification of Quantum Cryptographic Protocols Using
the Verifiers 70
5.1 Overview . 70
5.2 Input and Output for the Verifiers 71

5.2.1 Scripts . 71
5.2.2 Outputs . 72

5.3 Policies and Techniques of Formalization 75
5.4 Formal Verification of Equivalence of BB84 and

the EDP-based Protocol . 76
5.4.1 Formalization of the EDP-based Protocol 76
5.4.2 Symbols and Operators in the EDP-based Protocol 76
5.4.3 Formalization of BB84 . 79
5.4.4 Symbols and Operators in BB84 79
5.4.5 Equations for the Formal Verification 79
5.4.6 Experiment Result . 81

5.5 Formal Verification of Security of the EDP-based Protocol 81
5.5.1 Formalization of EDP-ideal 81
5.5.2 Indistinguishability Expressions for the Verification 81
5.5.3 Experiment Result . 83

vi

6 Conclusions 85
6.1 Automated Verification of Bisimilarity of Configurations 85
6.2 Congruent Approximate Bisimulation Relation 86
6.3 Formal Verification of Security Proofs of

Quantum Cryptographic Protocols 86
6.4 Future Work . 86

References 88

vii

List of Figures

3.1 Labelled Transition Rule . 27
3.2 Examples of the Transitions (1) . 28
3.3 Examples of the Transitions (2) . 28
3.4 Simplified Semantics . 38

5.1 Formalization of Quantum Teleportation 73
5.2 Formalization of Super Dense Coding 74
5.3 Formalization of the EDP-based Protocol 77
5.4 Formalization of BB84 Protocol . 78
5.5 Equations for BB84 and the EDP-based Protocol 80
5.6 Formalization of EDP-ideal . 82
5.7 Indistinguishability Expression E1 83

viii

Chapter 1

Introduction

1.1 Formal Verification of Cryptographic Protocols

1.1.1 Background

Cryptographic protocols are essential elements of the infrastructure to ensure
secure communication and information processing. However, security proofs of
such protocols tend to be complex and difficult to verify, which is recognized
by researchers [67, 37, 19]. Indeed, flaws of designs [54, 16, 20] and security
proofs [66, 32] of cryptographic protocols were found years after they had been
presented. The difficulty of verification of cryptographic protocols is considered
to come from the following points [36].

• To define and formulate security properties, which depend on the func-
tionality of each protocol, is difficult. Indeed, the definitions are often
reconsidered [34, 28, 62, 8, 40].

• Execution models of cryptographic protocols are complex. In general, prin-
cipals in a cryptographic protocol, including adversaries, run in parallel.
Since each principal runs nondeterministically and probabilistically, execu-
tion models and security properties must be defined on the basis of paral-
lelism, nondeterminacy, and probability.

• Methods to prove that cryptographic protocols satisfy defined security prop-
erties are not self-evident. Security proofs performed on the basis of such
execution models tend to be quite complex.

Formal methods have been applied to model, analyze, and verify cryptographic
protocols [13, 4, 11, 7, 5]. They are based on formal frameworks, including formal
languages and systems to prove security properties such as inference rules. The
languages are used to formalize cryptographic protocols and security properties,
and the inference rules are used to perform formal proofs.

Advantages of formal methods are as follows.

• The use of formal languages precisely prevents ambiguity. Although math-
ematical proofs in natural languages are rigorous, ones in formal languages
can be more in terms of both description and interpretation, because the
syntax and semantics of them are defined mathematically.

• It is made to be explicit that all inferences in a proof obey pre-defined
inference rules. On the other hand in ordinary proofs, it is not always the
case. This is possibly because some inferences are apparently too obvious
to write down explicitly. However, writing such inferences is still valuable
when we put priority on rigor.

1

• Verification and proof can be partially automated. It reduces human costs
as well as prevents errors. Parts that are automated depend on software
tools. We introduce some of the tools in the next subsection.

1.1.2 Existing Verification Tools

CertiCrypt [7] is a framework where we interactively construct game-based cryp-
tographic proofs in a proof assistant Coq [26]. It has been successfully applied
to verify the security of prominent cryptographic protocols such as FDH [72]
and OAEP [6]. The effort one needs to build the machine-checked proofs in
CertiCrypt is thought to be more than moderate [5], contrasted to the high guar-
antees of security. In spite of the effort to construct the proofs, ones who read
them have only to understand the correctness of the formalization of the target
cryptographic protocol and the statement of the security to achieve. EasyCrypt

[5] further reduces users’ effort. It generates a whole machine-checked proof from
proof sketches, which are representation of essence of a security proof. It was ap-
plied to verify the security of Cramer-Shoup public key encryption scheme [21], to
which CertiCrypt had never been applied. Those approaches are computer-aided
verification of cryptographic proofs, ideas of which are in general considered by
men.

AVISPA [4] and ProVerif [13] are frameworks to analyze security protocols
in abstract models, where cryptographic primitives are idealized. For example,
ciphertexts encrypted using a public key are decrypted only using the secret key
which corresponds to the public key. In AVISPA framework, a protocol designer
describe a protocol paired with expected security properties in a formal language
HLPSL. The scripts are translated into the intermediate format and passed to
the backends including model checkers. One of them for example tries to find
attacks by exploring the transition system specified by the intermediate format.
Those approaches use a computer to exhaust execution states of protocols, whose
number is possibly too large to do by hand, rather than obtaining cryptographic
proofs.

1.2 Formal Methods for Quantum Cryptography

We may call classical cryptography, formal framework, process calculus, and so
on for non-quantum ones.

1.2.1 Security of Quantum Key Distribution Protocols

Security proofs are also complex in quantum cryptography, where we must also
consider attacks using entanglements. BB84 [10] is a prominent quantum key
distribution (QKD) protocol, which allows two remote principals to share a se-
cret key. Let us call the two principals and an adversary Alice, Bob, and Eve
respectively. A key of the security of BB84 and other QKD protocols [53, 68] is
that Alice and Bob can estimate the amount of information leakage to Eve. If Eve
tries to obtain information from quantum systems passing through a quantum
channel, she must measure some physical values of them. It possibly disturbs
the states of quantum systems. To check the disturbance, Alice sends to Bob
additional quantum systems other than those which are sources of the shared
secret key. If the information leakage is judged to be too large, they abort the
protocol. BB84 provides unconditional security that the mutual information of
Alice’s and Eve’s key is negligible with respect to the number of quantum bits

2

if Alice and Bob have not aborted the protocol. The advantage of QKD proto-
cols is that the security does not depend on adversary’s computational resources,
while the security of classical key exchange protocols are ensured on the basis of
conjectured difficulty of computing certain functions [27].

The first security proof of BB84 is presented by Mayers [55]. It is about
50 pages long and complex. Lo and Chau proposed another QKD protocol [53]
whose security proof is simple. It is based on an entanglement distillation protocol
(EDP). It has the drawback that it requires quantum computers, while BB84
only requires devices for state preparation and quantum measurement. Shor and
Preskill presented a simple proof of BB84 [65]. They showed that the security
of BB84 is equivalent to that of a modified version of Lo and Chau’s protocol
(modified Lo-Chau protocol, the EDP-based protocol) [53], whose security proof
is also simple. Our target of formal verification in this thesis is Shor and Preskill’s
proof.

1.2.2 Motivation to Apply Formal Methods to Quantum
Cryptographic Protocols

QKD protocols have advantage not to depend on conjectured difficulty of com-
puting certain functions. They are ones of the closest application to practice in
the quantum information field. Actually, several companies such as Id Quantique,
MagiQtechnologies, Toshiba, and NEC are developing commercial quantum cryp-
tographic systems. It is also possible that more complex quantum protocols be
presented in the future. Therefore, it is important to develop formal frameworks
to verify quantum protocols’ security and also make the security proofs machine-
checkable.

1.2.3 Process Calculi for Quantum Protocols

Process calculi [58, 1, 11] are formal frameworks that are suitable to verify prop-
erties of parallel systems. They have successfully applied to verification of a
number of classical cryptographic protocols such as Diffie-Hellman key agree-
ment [1], Needham-Shoroeder shared and public key protocols [11], FDH [15],
and Kerberos [14]. To clone the success in quantum information fields, several
quantum process calculi have been proposed [59, 49, 3, 31]. Feng et al. defined
a process calculus qCCS [30, 70, 31, 24, 29]. In qCCS, a quantum protocol is
formalized as a configuration LP, ρM1. which is a pair of a process P and a quan-
tum mixed state ρ that is referred by the variables in P . Gay et al. defined
a quantum process calculus CQP [59, 22], which is based on pi-calculus. In the
later version of CQP [22], a configuration is defined as a triple (σ; q̃;P) consisting
of a collective quantum pure state σ, an indicator of P ’s ownership of variables
q̃, and a process P .

An important notion in process calculi is weak bisimulation relation on pro-
cesses [58, 1]. Processes in weak bisimulation relation behave equivalently: they
perform identical actions that are visible from the outside up to invisible ones.
For example, visible actions are communications of processes via public channels,
and invisible ones are communications via private channels. Usage of the relation
is for example as follows. If we formalize some protocol and its specification as
processes and prove that they are in bisimulation relation, then we have proved
the protocol satisfies the specification.

1In [30, 70, 31, 24, 29], a configuration is written of the form 〈P, ρ〉 using angle brackets. In
this thesis, we write LP, ρM since we frequently write density operators using bra-ket notation.

3

In qCCS, weak bisimulation relation ≈ on configurations is defined. Their
definition is successful in that the relation is closed by application of parallel
composition of processes: if LP, ρM ≈ LQ, σM holds, then LP ||R, ρM ≈ LQ||R, σM
holds for all process R with which P ||R and Q||R are defined. P ||R means that
P and R run in parallel. This property of ≈ is called congruence. Similarly
in CQP, weak bisimulation relation is defined and proven to be congruent. The
congruence property is significant when we account on compositional behavioural
equivalence.

Application of Quantum Process Calculi

In qCCS, quantum teleportation, super dense coding protocols [31], and simplified
version of BB84 [24] are formalized. That they satisfy their specifications is also
verified using weak bisimulation relation. In CQP, quantum coin-flipping game
[57], quantum teleportation protocol, and quantum bit-commitment protocol are
formalized and their execution are modeled [59]. Three fold repetition quantum
error correcting code and its specification are formalized, and they are proven to
be weakly bisimilar [22].

To extend application of process calculi to security proofs, we applied qCCS to
Shor and Preskill’s security proof of BB84 [65]. We previously formalized BB84
and the modified Lo and Chau’s protocol as configurations of qCCS and proved
their bisimilarity by hand [46].

1.3 Contributions

We addressed the following three limitations of previous work.

• Automated verification techniques have never been applied to verify that a
quantum cryptographic protocol satisfies certain security criteria that are
accepted in the field of quantum cryptography. In previous work [59, 61]
security of BB84 was analyzed automatically for several fixed strategies of
the adversary Eve. One of the strategies is the intercept and resend attack :
she only intercepts each qubit through the quantum channel, chooses either
{|0〉, |1〉} or {|+〉, |−〉} basis randomly, measures the qubit in the basis,
and resends it through the quantum channel. She thus cannot make her
qubits entangled with Bob’s. On the other hand, Eve is assumed to perform
arbitrary quantum operations in quantum cryptographic proofs [55, 65].

• Verification of weak bisimilarity in any quantum process calculi has not been
automated although by-hand verification of it is often hard when objective
configurations have many long branches in their transition trees.

• Methodology to prove quantum cryptographic security using process calculi
has not been established yet while considering weak bisimilarity is useful
to verify equivalence of protocols. As for Shor and Preskill’s security proof,
equivalence of BB84 and modified Lo and Chau’s protocol is stated as weak
bisimilarity of configurations formalizing them. However, the way to state
the security of the latter has not been obvious.

Specifically, the contributions of this thesis are as follows.

4

1.3.1 A Software Tool to Verify Weak Bisimilarity of qCCS Configu-
rations

We implemented a software tool, which we call Verifier1, that formally verifies
weak bisimilarity of qCCS configurations without recursive structures. This work,
which was presented in [47], is described in Chapter 3. The overview is as follows.

• Verifier1 adopts a simplified formal framework based on qCCS.

1. In the original syntax, there are constructors of a quantum measure-
ment M [q̃;x].P and application of a quantum operator op[q̃].P . Since
we can also formalize a measurement as a special quantum operation,
we always have two ways to formalize one. We considered criteria to
select one way from the two, which is reported in [46]. We simplified
the syntax reflecting the criteria so that a user who verifies equivalence
of quantum cryptographic protocols using weak bisimulation can select
the feasible way to formalize a quantum measurement. Let P be the
set of processes defined by the simplified syntax. The simplification of
the syntax is described in Section 3.2.

2. qCCS’s transition system is probabilistic and nondeterministic. A con-
figuration is of the form LP, ρM and tr(ρ) = 1. Suppose a probability-
weighted configuration 1

2 • LP, ρM, which is interpreted to that we have
the configuration LP, ρM with probability 1

2 . Instead of considering a
probability-weighted configuration, we allow ρ satisfying 0 < tr(ρ) ≤ 1
and interpret tr(ρ) as the probability to reach the configuration. For
instance, we consider LP, 12ρM in the simplified transition system in-
stead of 1

2 • LP, ρM in the original one. The simplified one is only
nondeterministic. To verify behavioural equivalence of configurations
has become easier whether it is done by hand or tool. The simpli-
fication of the semantics is described in Section 3.3. Precisely, the
simplified operational semantics is defined as transition rules for ele-
ments in C := P×S, where S is the set of the symbolic representations
of probability-weighted quantum states. For ρ ∈ S, we write [[ρ]] as
its interpretation as a probability-weighted quantum state. For an
element in C, we use the notation {| and |} for pairing.

• Verifier1 handles quantum states symbolically and it can be applied to se-
curity proofs. In security proofs, the dimensions of quantum states are
generally unfixed, because they depend on security parameters such as the
number of qubits which Alice sends to Bob. Therefore, the way to represent
states in a software tool is not self-evident. In our verifier, security param-
eters and quantum states are represented as symbols. A user is supposed
to define in Verifier1 symbolic representations of quantum states and equa-
tions on them. To compare symbolic representations, Verifier1 applies such
user-defined equations to them and simplifies them. We call the simplified
formal framework for the verifier nondeterministic qCCS. The algorithms
of Verifier1 are described in Section 3.4.

• Although Verifier1 adopts the simplified syntax and operational semantics,
it is sound with respect to qCCS. If Verifier1 returns true with two con-
figurations and a set of valid user-defined equations as input, then the two
converted configurations in qCCS are weakly bisimilar. Soundness of Veri-
fier1 is described in Section 3.5.

5

1.3.2 Approximate Bisimulation for Quantum Processes

In formal verification using process calculi, notions of approximate bisimulation
are useful: configurations in the relation behave equivalently up to negligible
probability. This is possible usage of the notions. To evaluate security of a
system, we first consider an ideal system that is always secure. We next prove
the system and the ideal one are approximately bisimilar. This proves that the
system is secure except for negligible probability.

We defined two kinds of approximate bisimulation relations in the formal
framework for the verifier (nondeterministic qCCS), and studied properties of
them. As described in the next subsection, we applied the second notion to the
last step of Shor and Preskill’s security proof. The definitions, properties, appli-
cation, and limitations of the approximate bisimulation relations are described
in Chapter 4.

Originally, LP, ρM ≈ LQ, σM means

• trqv(P)(ρ) = trqv(Q)(σ), and

• whenever one of LP, ρM or LQ, σM can perform an action, the other can per-
form the same action up to invisible ones.

The set of quantum variables occurring in P is denoted by qv(P). A state space
corresponds to each quantum variable. When the quantum state of all quantum
variables is ρ, trqv(P)(ρ) is the quantum state that one who does not have variables
in qv(P) can access.

We relaxed the conditions up to gaps of probabilities of configurations’ per-
forming actions and trace distance d(·, ·). When we measure an arbitrary observ-
able (a physical value) of quantum states with small trace distance, we obtain
identical results with close probability.

1. The first relation ∼ζ,η, which is described in Section 4.2, is parametrized
with ζ, η satisfying 0 ≤ η, ζ ≤ 1. Roughly speaking, {|P, ρ|} ∼ζ,η {|Q, σ|}
means

• d(trqv(P)([[ρ]]), trqv(Q)([[σ]])) ≤ ζ, and

• whenever one of {|P, ρ|} or {|Q, σ|} can perform an action with prob-
ability greater than η, the other can perform the same action up to
invisible ones.

The relation is not transitive but if {|P, ρ|} ∼ζ,η {|Q, σ|} and {|Q, σ|} ∼ζ′,η′

{|R, θ|} hold, then {|P, ρ|} ∼ζ+ζ′,max{η,η′}+2(ζ+ζ′) {|Q, σ|} holds. We proved
that if {|P, ρ|} ∼ζ,η {|Q, σ|} and η > 2ζ hold, then {|P ||R, ρ|} ∼ζ,η {|Q||R, σ|}
holds for an arbitrary process R. The condition η > 2ζ is reasonable,
because the difference of outsider’s quantum states infects her behavior.

2. The second relation ∼, which is described in Section 4.3, is defined when
quantum states are functions of security parameters, with which the notion
of negligibility makes sense. Roughly speaking, {|P, ρ|} ∼ {|Q, σ|} means

• d(trqv(P)([[ρ]]), trqv(Q)([[σ]])) is negligible, and

• whenever one of {|P, ρ|} or {|Q, [[σ]]|} can perform an action with non-
negligible probability, the other can perform the same action up to
invisible ones.

6

The relation is transitive. We proved that if {|P, ρ|} ∼ {|Q, σ|} holds, then
{|P ||R, ρ|} ∼ {|Q||R, σ|} holds for an arbitrary process R. The relation ∼
is an equivalence relation and closed under parallel composition, and thus
we say it is congruent. This property is useful especially when we consider
multiple sessions of a protocol or its behavior employed as a primitive of
another protocol.

We next extended Verifier1 to verify a subset of the second approximate bisimu-
lation relation ∼. The extended verifier is called Verifier2, which is described in
Section 4.4. It uses user-defined rewriting rules of the form (ρ, σ, n) for symbolic
representations ρ, σ of quantum states, and a security parameter n. Each rule is
expected to satisfy that d([[ρ]], [[σ]]) is negligible with respect to n.

In Section 4.5, application of the relation ∼ to security proofs of quantum
key distribution protocols is described. Although we could apply the relation to
security proofs in some specific cases, whether it guarantees approximate observa-
tional equivalence [23, 2, 25, 11, 69] is not clear. We have considered probability-
weighted quantum states instead of the original distributive system for conve-
nience of implementation, but this causes a problem. An idea of its solution is
described in Section 4.5.3. The relation ∼ζ,η also has similar limitations.

1.3.3 Application of the Verifiers to Shor and Preskill’s Security Proof
of BB84

We applied Verifier1 and Verifier2 to Shor and Preskill’s security proof of BB84
[65], which is described in Chapter 5. Our formal verification consists of the
following two steps.

• In the first step of Shor and Preskill’s security proof, equivalence of BB84
and an EDP-based protocol is proven. The latter protocol is a modification
of Lo and Chau’s protocol [53]. We first verified the equivalence using
Verifier1. We formalized them as configurations based on our previous work
[46]. We then defined equations to verify equivalence of the two protocols.
The rewriting rules are obtained from properties of error-correcting codes
discussed in the original proof [65] and basic facts about measurement of
halves of EPR pairs. The input is the equations and configurations of BB84
and of the EDP-based protocol. Verifier1 returns true with the input. This
work was presented in [47].

• Second, we verified security of the EDP-based protocol. We defined an
ideal protocol called EDP-ideal, where Alice and Bob can create a shared
key leaking no information to Eve. We formalized it as a configuration in
Verifier2. We then defined rewriting rules to verify approximate equivalence
of the two protocols. They are obtained from the second step of the original
proof [65] to show the security of the EDP-based protocol. The input is the
rewriting rules and configurations of the EDP-based protocol and of the
ideal protocol. Verifier2 returns true with the input.

Formalization techniques, scripts, and experimental results are described in Chap-
ter 5. The package of Verifier1 and Verifier2 is available from
http://hagi.is.s.u-tokyo.ac.jp/~tk/qccsverifier.tar.gz. It includes a
user manual and example scripts in the directories doc and scripts.

7

1.4 Related Work

1.4.1 Formal Approaches to Security of BB84

Automated Analysis using Probabilistic Model Checking

Model checking methods have been applied to analyze security of QKD proto-
cols. Nagarajan et al. applied the probabilistic model checker PRISM 2.0 [48]
to analyze BB84 [59] by calculating the probability of eavesdropping detection.
They assumed restricted adversaries through noiseless quantum channels, and
left a full security proof in a formal framework for future work. In contrast, we
target formalization of security proofs such as Shor and Preskill’s [65], where the
quantum channel is assumed to be noisy and Eve performs arbitrary quantum
operations.

Verification Using a Sequential Quantum Programming Language

In our previous work [45], we applied program transformation methods and Hoare
logic to Shor and Preskill’s security proof of BB84. We formalized BB84 and
the EDP-based protocol using a Selinger’s QPL [64]. We then formalized their
inferences as rewriting rules of programs. Soundness of each rule was proved
on the basis of the semantics of QPL. BB84 is transformed to the EDP-based
protocol by the rewriting by the rules. We finally verified the security of the
EDP-based protocol formally using Kakutani’s quantum Hoare logic [41].

When we formally verify cryptographic protocols, an advantage of process
calculi to sequential programs is that communications and nondeterminacy are
explicitly written.

1.4.2 Quantum Process Calculi

CQP

In CQP’s transition system, a state is a triple (σ, q̃, P) called a configuration
that consists of a map σ from a quantum variable to a quantum pure state, a
set q̃ of quantum variables, and a process P . A configuration transits its state
interacting with the outsider similarly to qCCS. An example of the configuration
is as follows.

A
def≡ ([q, r 7→ 1√

2
(|00〉+ |11〉)]; r; d![measure r].Q)

There are quantum variables q and r in this configuration. The first component
means the state of 2-qubit system indicated by the variables q and r is 1√

2
(|00〉+

|11〉). The second component r means that the process d![measure r].Q has access
to r, but not to q. Instead, the outsider has access to q. The third component
d![measure r].Q is a process that sends the measurement result (i.e. classical data)
through the channel d, and executes Q.

The first state transition of the above configuration is as follows. The right-
hand side is called a mixed configuration.

A
τ−→ 1

2
([q, r 7→ |00〉]; r; d![0].Q)⊕ 1

2
([q, r 7→ |11〉]; r; d![1].Q)

def≡ B

For a mixed configuration, the density matrix of the environment qubits is defined.
For the above configuration B, the density matrix is

trr(
1

2
|00〉〈00|q,r +

1

2
|11〉〈11|q,r) =

1

2
|0〉〈0|q +

1

2
|1〉〈1|q.

8

For example, it is useful to identify the density matrix that B and the configu-
ration B′ below reveal to the outside.

B′ def≡ 1

2
([q, r 7→ |+0〉]; r; d![0].Q)⊕ 1

2
([q, r 7→ |−1〉]; r; d![1].Q)

Next, the configuration B sends the value 0 or 1, which means that it reveals
the measurement result to the outsider. When a mixed configuration is ready
to send the value to the outside like B above, it transits to an intermediate
configuration, which is a probability distribution on configurations.

B
τ−→ 1

2
([q, r 7→ |00〉]; r; d![0].Q)⊞

1

2
([q, r 7→ |11〉]; r; d![1].Q)

def≡ C

The intermediate configuration probabilistically performs one of the following
transitions to become a configuration.

C
1
2
 ([q, r 7→ |00〉]; r; d![0].Q) C

1
2
 ([q, r 7→ |11〉]; r; d![1].Q)

CQP is a successful formal framework with the definition of congruent bisim-
ulation but there is no verification tool for bisimilarity of CQP configurations.
Besides, there is no notion of approximate bisimulation.

Symbolic Bisimulation in qCCS

The authors of qCCS presented the notion of symbolic bisimulation for quantum
processes [29]. A purpose is to verify bisimilarity algorithmically. They proved
the strong symbolic bisimilarity (internal actions must be simulated) is equiva-
lent to the strong open bisimilarity, and actually presented an algorithm to verify
symbolic ground bisimilarity (outsiders do not perform quantum operations adap-
tively). Since our purpose is to apply a process calculus to security proofs where
adversarial interference must be taken into account, we implemented a tool that
verifies weak open bisimilarity on the basis of the previous version of qCCS [24].

1.4.3 Approximate Bisimulation

Approximate Bisimulation in qCCS

The authors of qCCS also presented the notion of approximate strong bisimula-
tion in an earlier version of qCCS [70]. The notion is different from ours in this
thesis. In the framework, the transitions of TPCP map application are defined
to be labeled, namely, not τ transitions. Approximate strong bisimulation identi-
fies transitions of TPCP maps whose diamond distance is not grater than some
parameter. While this identification is significant, we did not directly apply this
framework to our verification targets. The first reason was only strong bisimu-
lation was proposed, while the protocols that we attempted to verify formally
were thought to be weakly bisimilar but not to be strongly bisimilar. The second
reason was that there was no conditional branch in the syntax, while aborting of
an execution of a QKD protocol must be formalized.

Approximate Bisimulation in Classical Process Calculi

Ying et al. introduced a notion of approximate bisimulation in classical process
calculi [71] with labeled transition systems. In their framework, the set of actions
is a metric space. They applied the notion to verify formally approximate cor-
rectness of real time systems such as real time ACP. Our notion of approximate
bisimulation is independent of theirs: distance of quantum states is considered
but that of actions is not.

9

Approximate Bisimulation in Labeled Transition Systems with Obser-
vations

Girard et al. defined a notion of approximate bisimulation in labeled transition
systems with observations [33]. In a labeled transition system with observations,
there is an observation map that carries a state q to an observation 〈〈q〉〉, and the
set of observations Π is a metric space. The notion of approximate bisimulation
is defined based on the distance dΠ(〈〈q〉〉, 〈〈q′〉〉). Our notion of approximate bisim-
ulation appears to be similar to theirs when we substitute trace distance for dΠ
and partial trace for 〈〈·〉〉. There are three different points between our work and
theirs. First, we considered weak bisimulation relation and proved that it is closed
by parallel composition of processes, which are important peculiarly in process
calculi. Second, since our formal framework involves probability, transitions with
probability less than some threshold η (respectively, transitions with negligible
probability) is ignored in our notion. Third, since the relation ∼ incorporates
with the notion of negligibility, it is transitive.

1.4.4 Automated Verification Tool for Classical Protocols

CryptoVerif [11] is a software tool to verify security of classical protocols. It
has been applied to both high-level protocols [14, 12] that employ cryptographic
primitives and to cryptographic schemes [15] that are possibly be used as primi-
tives. There are two features of CryptoVerif that are related to our verifiers: it is
designed on the basis of a probabilistic process calculus, and it incorporates with
negligibility. Of course, it cannot be directly applied to verify security of QKD
protocols. In CryptoVerif’s framework, all data are classical and a process, which
may be an adversary, is bounded in polynomial time, while an adversary against
a QKD protocol is not.

As a proof technique, CryptoVerif applies observational equivalence of pro-
cesses. Let Pr(P a) be the probability that the process P transits to a process
that is ready to send some data through the channel a. Two processes P and Q
are observationally equivalent, written P ∼= Q here, if

|Pr(C[P] a)− Pr(C[Q] a)|

is negligible for all evaluation context2 C[] that runs in polynomial time and
channel a that is not restricted. The relation ∼= is congruent by the definition,
namely, if P ∼= Q holds, then C[P] ∼= C[Q] holds for all evaluation context
C[] running in polynomial time. When we consider C[] as a polynomial time
adversary that runs in parallel and interacts with the protocol P or Q, the ob-
servational equivalence of them is intuitively interpreted as indistinguishability
of the protocols from an adversary.

In cryptographic proofs, security of a high-level protocol is reduced to secu-
rity of the employed cryptographic primitives. Similarly, security of a crypto-
graphic scheme is reduced to assumed difficulty of computing certain functions.
In CryptoVerif, a user formalizes such assumptions as observational equivalence
of processes. CryptoVerif uses such user-defined equivalences as rewriting rules:
if a target process P is of the form C[X] and there is a user defined equivalence
X ∼= Y , then it is rewritten to C[Y]. By congruence, P ∼= C[Y] holds. Given a
process formalizing a target protocol and user-defined observational equivalences,
CryptoVerif rewrites the process repeatedly until it becomes a process that is ob-
viously secure.

2An evaluation context is composed by a hole, channel restrictions, and parallel compositions.

10

On the other hand, our tools verify bisimilarity by tracing execution paths
of configurations, not by rewriting processes. Fortunately, the bisimulation in
qCCS is congruent, and it is thus possible that a verification tool is designed
to verify bisimilarity by rewriting. With such a verifier, bisimilarity of big-
sized configurations is derived from that of some small-sized ones. Especially
in proofs of security of QKD protocols, difficulty of computing certain functions
is not assumed. Therefore, even if a verifier conducts rewriting, we possibly need
to prove bisimilarity of such small-sized configurations unlike verification using
CryptoVerif.

11

Chapter 2

Preliminaries

2.1 Notations

We use the following notations in this thesis.

• N, N+, R, and C are the set of natural numbers, the set of positive natural
numbers, real numbers, and complex numbers, respectively.

• e is the base of the natural logarithm.

• For a ∈ C, a∗ is the complex conjugate of a, and |a| =
√
a∗a.

• For a linear operator A, A† is the adjoint of A. I and O are the identity
operator and the zero operator on a vector space with the appropriate
dimension in a context. A > 0 means that A is positive.

• [1..n], (0, 1], and [0, 1] are {1, 2, ..., n}, {x ∈ R | 0 < x ≤ 1}, and {x ∈ R | 0 ≤
x ≤ 1}, respectively.

• R∗ is the reflexive and transitive closure of a binary relation R. R−1 is the
inverse relation of R.

• Pr(A) is the probability that an event A happens.

• I(X;Y) is the mutual information of discrete classical random variables X
and Y .

2.2 Basic Quantum Information

We consulted the textbooks by Nielsen and Chuang [60, Part 1] and by Ishizaka
et al. [39] in writing this section.

Quantum States and Operators

A quantum bit (qubit) is a physical system whose pure state is described as a
unit vector in a 2-dimensional complex Hilbert space. The space is called the
state space of the qubit. For a 2-dimensional complex Hilbert space H, we can
fix an orthonormal basis of H and write one as |0〉 and the other as |1〉. For
|φ〉 ∈ H, the adjoint |φ〉† of a qubit string |φ〉 is denoted by 〈φ|. For |φ〉, |ψ〉 ∈ H,
their inner product is written 〈φ|ψ〉. C

2 with the canonical inner product is an
instance of 2-dimensional Hilbert space. For all |ψ〉 ∈ C

2, there exist α, β ∈ C

satisfying

|ψ〉 = α|0〉+ β|1〉 and |α|2 + |β|2 = 1, where |0〉 :=
[

1
0

]

, |1〉 :=
[

0
1

]

,

12

and for all |φ〉, |ξ〉 ∈ C
2, if |φ〉 = a|0〉+ b|1〉 and |ξ〉 = c|0〉+ d|1〉, then

〈φ|ψ〉 = a∗c+ b∗d.

The two pure states |0〉 and |1〉 correspond to classical bit values 0 and 1. Quan-

tum states |0〉+|1〉√
2

and |0〉−|1〉√
2

are written |+〉 and |−〉.
A discrete time evolution of a qubit is a unitary operator on its state space.

For example, the following operators on C
2 are unitary.

X :=

[

0 1
1 0

]

, Y :=

[

0 −i
i 0

]

, Z :=

[

1 0
0 −1

]

, H :=
1√
2

[

1 1
1 −1

]

.

X, Y, and Z are called Pauli matrices. H is called an Hadamard transformation.
The following equations hold for the matrices.

X|0〉 = |1〉, X|1〉 = |0〉, Z|+〉 = |−〉, Z|−〉 = |+〉, Y = iXZ,

H|0〉 = |+〉, H|1〉 = |−〉.

X is said to give a bit flip, and Z is said to give a phase flip.
Let H1,...,Hn be 2-dimensional complex Hilbert spaces. The pure state of a

qubit string with bit length n is described as a unit vector in H1 ⊗ · · · ⊗ Hn.
We write |ψ1...ψn〉 as |ψ1〉 ⊗ ... ⊗ |ψn〉. The set {|x1...xn〉}x1,...,xn∈{0,1} is an
orthonormal basis and called the computational basis state. In this thesis, we
may convert |ψ〉 ⊗ |φ〉 ∈ H1 ⊗H2 and |φ〉 ⊗ |ψ〉 ∈ H2 ⊗H1 each other, where H1

and H2 are Hilbert spaces. This conversion is written as ≃.
Let |φ1〉, ..., |φm〉 be states of qubit strings with the same bit length and

p1, ..., pm satisfy
∑m

i=1 pi = 1 and 0 ≤ pi ≤ 1 for all i. The quantum mixed
state where the state is |φi〉 with probability pi for all i is denoted by the density
operator

∑m
i=1 pi|φi〉〈φi|. The set of density operators on a Hilbert space H is

written D(H). We may omit scalar multiplication when it is trivial. A local
quantum operation acting on a mixed state is represented by a trace preserving
and completely-positive (TPCP) map. A map E is positive if it maps a positive
operator to a positive operator. A map E is CP if E ⊗ I is positive for all n ∈ N,
which is the dimension of the domain of I. For each TPCP map E , there exist
V1, ..., Vk that satisfy E(ρ) = ∑k

i=1 ViρV
†
i and

∑k
i=1 V

†
i Vi = I. For each CP map

F , there exist W1, ...,Wl that satisfy F(ρ) =
∑l

j=1WjρW
†
j .

Quantum Measurement

To obtain classical information from a quantum system in a certain state, we
have to measure some physical value of the system in the state. A quantum
measurement may change the state of the target system. A physical value that
can be measured is called an observable. An observable of a system |ψ〉 ∈ H is
denoted by an Hermitian operator onH, namely, an operatorA satisfyingA = A†.
An Hermitian operator A has an eigenvalue decomposition A =

∑

i∈I λi|i〉〈i|,
where λi is an eigenvalue and |i〉 is the eigenvector corresponding to λi. A has
the unique spectral decomposition A =

∑

j∈J λjPj , where λj = λj′ implies j = j′

for all j, j′ ∈ J . Pj is called the projector to the eigenspace of λj .
When we measure an observable A =

∑

i λjPj of a system in a pure state |ψ〉,
we obtain the result λj with probability 〈ψ|Pj |ψ〉, and the post-measurement state

is
Pj |ψ〉√
〈ψ|Pj |ψ〉

. For example, if we measure an observable Z = 1|0〉〈0| + (−1)|1〉〈1|
of a state α|0〉+ β|1〉, we obtain the result 1 and the post-measurement state |0〉
with probability |α|2, and the result −1 and the post-measurement state |1〉 with

13

probability |β|2. We can calculate the probability of obtaining each measurement
result from a mixed state. Let the objective mixed state is ρ =

∑

i pi|ψi〉〈ψi|.
When we measure an observable A =

∑

i λiPi, the probability that we obtain λj
is

∑

i

pi〈ψi|Pj |ψi〉 = tr(PjρPj) = tr(Pjρ),

and the post-measurement state is

∑

i

pi〈ψi|Pj |ψi〉
tr(Pjρ)

Pj |ψi〉〈ψi|Pj
〈ψi|Pj |ψi〉

=
PjρPj
tr(Pjρ)

.

Some abbreviations about measurements are often used. We say “measure
|ψ〉 in the {|0〉, |1〉} basis” for “measure an observable 0|0〉〈0| + 1|1〉〈1| of |ψ〉”.
Similarly, we may say “measure |ψ〉 in the {|+〉, |−〉} basis” for “measure an
observable 0|+〉〈+|+ 1|−〉〈−| of |ψ〉”.

For a density operator ρ and an observable
∑

j λjPj ,
PjρPj

tr(Pjρ)
is the density op-

erator denoting the conditional probability distribution given the result λj of the
measurement. When the pre-measurement state is ρ, the probability distribution
obtained after the measurement of an observable

∑

j λjPj is

∑

j

tr(Pjρ)
PjρPj
tr(Pjρ)

=
∑

j

PjρPj .

The map Eprojmeas(ρ) =
∑

j PjρPj is a TPCPmap. For all j, the map Ejprojmeas(ρ) =
PjρPj is a CP map.

Partial Trace

Let ρ ∈ D(H1⊗H2). ρ can be written as
∑

iCi⊗Di, where Ci is a linear operator
on H1 and Di is on H2 for all i. The partial trace of ρ by H1, denoted by trH1(ρ),
is defined as

∑

i tr(Ci)Di. When one measures an observable I ⊗ (
∑

j λjPj) on

H1⊗H2, he obtains the result λj and the post-measurement state is
(I⊗Pj)ρ(I⊗Pj)
tr((I⊗Pj)ρ)

with probability tr((I ⊗Pj)ρ) for a pre-measurement state ρ. Let us write ρ2 for
trH1(ρ). We have

tr((I ⊗ Pj)ρ) = tr(Pjρ2)

and

trH1(
(I ⊗ Pj)ρ(I ⊗ Pj)

tr((I ⊗ Pj)ρ)
) =

Pjρ2Pj
tr(Pjρ2)

.

Hence, the above measurement can be considered as the measurement of the ob-
servable

∑

j λjPj for the pre-measerment state ρ2. Assume that Bob can measure
an observable only on the partial quantum system H2. For the above reason, we
may say that trH1(ρ) is the quantum state that he has access or his view, in the
following chapters.

2.3 Quantum Error Correcting Code

The quantum key distribution (QKD) protocols that are our target of formal
verification in this thesis include an error correction step after quantum commu-
nication. The error correction step is based on Calderbank-Shor-Steane (CSS)
[18] quantum error correcting code (QECC), and it is described in the stabilizer
formalism. In this section, we introduce necessary definitions and properties of
the stabilizer formalism and CSS QECC.

We rely on the textbook by Nielsen and Chuang [60, Chapter 10].

14

2.3.1 Stabilizer Formalism

Stabilizers

A quantum state |ψ〉 is stabilized by a unitary operator U if U |ψ〉 = |ψ〉. Let the
Pauli group Gn on 2n-dimensional space be defined as

Gn := {±g,±ig | g = A1 ⊗A2 · · · ⊗An, Aj ∈ {I,X, Y, Z} for all j}.
For g, g′ ∈ Gn, g and g′ is said to be commutative if gg′ = g′g and anticom-
mutative if gg′ = −g′g. For all g, g′ ∈ Gn, g and g′ are either commutative or
anticommutative.

Let S be a subgroup of Gn and a set VS be defined as

VS := {|ψ〉 | For all g ∈ S, g stabilizes |ψ〉}.
S is said to be commutative if g and g′ are commutative for all g, g′ ∈ S. VS is
a vector space and S is called the stabilizer of VS . VS is said to be non-trivial if
VS 6= {0}. The condition that VS is non-trivial is characterized as follows.

Proposition 2.3.1. VS is non-trivial if and only if S is commutative and −I /∈ S
holds.

Let {g1, g2, ..., gl} ⊆ S. If for all a ∈ S, a can be written as a product of the
elements in {g1, g2, ..., gl}, {g1, g2, ..., gl} is said to be a generator of S, and we
write S = 〈g1, g2, ..., gl〉. A generator {g1, g2, ..., gl} is said to be independent if
for all i, gi cannot be written as a product of the elements in {g1, g2, ..., gl}\{gi}.
The following proposition gives the dimension of the space of quantum codewords
in the later discussion.

Proposition 2.3.2. Let S = 〈g1, g2, ..., gn−k〉. VS is a 2k-dimensional vector
space if {g1, g2, ..., gn−k} is independent and commutative, and −I /∈ S holds.

We have the following way to check independence and commutativity of gen-
erators g1, g2, ..., gl using bit vectors and matrices. For g ∈ Gn, let r(g) be the
bit vector with the length 2n defined as

r(g) :=
[

b1 b2 ... bn bn+1 ... b2n
]

where

g = cA1 ⊗A2 ⊗ · · ·An and for all j and c ∈ {±1,±i},
if Aj = I then bj = 0 and bn+j = 0

if Aj = X then bj = 1 and bn+j = 0

if Aj = Z then bj = 0 and bn+j = 1

otherwise then bj = 1 and bn+j = 1

Next, let Λ be
[

0 I
I 0

]

.

We then have that r(g)Λr(g′) = 0 if and only if g and g′ are commutative. We
can describe a generator {g1, ..., gl} as a matrix









r(g1)
r(g2)
...
r(gl)









though it does not keep the information of scalar multiplication ±1, ±i.
In the following discussions, we assume {g1, g2, ..., gl} are independent and

commutative, and −I /∈ S holds for each stabilizer S = 〈g1, g2, ..., gl〉.

15

Unitary Operations in Stabilizer Formalism

Let VS be stabilized by a subgroup S = 〈g1, g2, ..., gl〉. Let |ψ〉 be an arbitrary
element in VS . For all unitary operator U and g ∈ S, we have

U |ψ〉 = Ug|ψ〉 = UgU †U |ψ〉.

Therefore, UVS := {U |ψ〉 | |ψ〉 ∈ VS} is stabilized by USU † := {UgU † | g ∈ S}.

Measurement in Computational Bases in Stabilizer Formalism

Let us consider the measurement of an observable

g ∈ {A1 ⊗A2 ⊗ · · · ⊗An, Ai ∈ {I,X, Y, Z} for all i} ⊆ Gn.

Assume the system is in a state |ψ〉 that is stabilized by S = 〈g1, g2, ..., gl〉. There
are two possibilities.

1. g is commutative with all g1, g2, ..., gl.

2. g is anticommutative with some of g1, g2, ..., gl. In this case, we can assume
g is anticommutative with g1 and commutative with g2, ..., gl without loss
of generality. When g is anticommutative with gi, we can relabel gi to g1
and g1 to gi. We then have that g is commutative with g1gj if gj is not
commutative with g. We can replace gj with g1gj .

In fact, the result of the measurement is as follows in each case.

1. Either g or −g is in S. If g ∈ S holds, then the measurement result is 1
with probability 1. If −g ∈ S holds, then the measurement result is −1
with probability 1. In both cases, the measurement does not change the
state |ψ〉.

2. Neither g nor −g is in S. We have the measurement result 1 or −1 with
probability 1

2 . The state after the measurement is stabilized by 〈g, g2, ..., gl〉
if the result is 1 or by 〈−g, g2, ..., gl〉 if −1.

2.3.2 Stabilizer Codes

A vector space that is stabilized by S = 〈g1, g2, ..., gn−k〉 is called [n, k]-stabilizer
code and written C(S). The elements in C(S) are called codewords. We define
the logical computational basis states as follows. Let Z̄1, Z̄2, ..., Z̄k ∈ Gn make
the set {g1, g2, ..., gn−k, Z̄1, Z̄2, ..., Z̄k} independent and commutative. The state
that is stabilized by

〈g1, g2, ..., gn−k, (−1)x1Z̄1, (−1)x2Z̄2, ..., (−1)xk Z̄k〉

is defined to be a logical computational basis state |x1x2 · · ·xk〉L. For j ∈ [1..k],
Z̄j is the logical Pauli operator Z that acts on the j-th logical qubit. Let X̄j ∈ Gn
be an operator that satisfies X̄jZ̄jX̄

†
j = −Z̄j and X̄iZ̄jX̄

†
i = Z̄i for all i with i 6= j.

X̄j is a logical X operator that acts on the j-th logical qubit.
In fact, it is sufficient to consider bit flip and phase flip errors to consider

correction of general errors. Let us take an arbitrary element E ∈ Gn acting on
C(S), where S = 〈g1, g2, ..., gn−k〉. There are the following 3 cases.

16

1. E is anticommutative with some gi for i ∈ [1..n − k]. By the error E, the
stabilizer becomes 〈g1, g2, ...,−gi, ..., gn−k〉. When the observables
g1, ..., gi, ..., gn−k are measured, the results are 1, ...,−1, ..., 1. Therefore, we
can identify the position i by the measurement.

2. E ∈ S. The error E does not change the objective state.

3. E is commutative with gi for all i ∈ [1..n−k] and E /∈ S. Such errors maps
a codeword in C(S) to a codeword in C(S). In fact, some of the errors
cannot be corrected.

Let the centralizer Z(S) of S be defined as

Z(S) := {E |Eg = gE for all g ∈ S}.

We have the following theorem.

Theorem 2.3.3. Let C(S) be a stabilizer code and {Ej}j∈J be a set of operators

in Gn. If E†
jEk /∈ Z(S)−S for all j, k ∈ J , then {Ej}j∈J is the set of errors that

can be corrected.

We describe the way to correct errors. Let S = 〈g1, g2, ..., gn−k〉 and {Ej}j∈J
be a set of errors satisfying the condition of Theorem 2.3.3. Assume that an
arbitrary error Ej has performed to an arbitrary codeword in C(S). The error
correction goes as follows.

• We measure the observables g1, g2, ..., gn−k, and let measurement results,
namely the syndrome, be β1, β2, ..., βn−k ∈ {1,−1}. EjglE

†
j = βlgl holds

for all l ∈ [1..n− k].

• If Ej is the only error that has the syndrome β1, β2, ..., βn−k, then it is
sufficient to correct the error to apply Ej to the objective system, because

EjβlglE
†
j = β2l gl = gl holds.

• If there is an error Ej′ in {Ej}j∈J that has the same syndrome as Ej , then

it is sufficient to correct the error to apply E†
j′ to the objective system.

The reason is as follows. Let P be a projector to C(S). Since Ej and

Ej′ have the same error syndrome, EjPE
†
j = Ej′PE

†
j′ holds. This implies

E†
j′EjPE

†
jEj′ = P . Because of the assumption that {Ej}j∈J satisfies the

condition of Theorem 2.3.3, E†
j′Ej ∈ S holds. Namely, E†

j′Ej stabilizes the
objective state.

Distance of Quantum Codes

Similarly to classical codes, the notion of distance of quantum codes is defined.
The weight of E ∈ Gn is defined as the number of the factors of E that are not
equal to I. The distance of a stabilizer code C(S) is defined as the minimum
weight of Z(S) − S. When C(S) is an [n, k]-stabilizer code with the distance d,
C(S) is said to be a [n, k, d]-stabilizer code. By Theorem 2.3.3, a stabilizer code
with the distance 2t+ 1 can correct arbitrary errors in t qubits.

17

2.3.3 CSS Quantum Error Correcting Code

Stabilizer Form

CSS quantum error correcting code (QECC) [18] is described in the stabilizer
formalism. It employs a classical [n, k1] code C1 and a [n, k2] code C2 satisfy-
ing C2 ⊆ C1. It is also assumed that both C1 and C⊥

2 correct t errors. Let
CSS(C1, C2) be a [n, k1 − k2] stabilizer code that is stabilized by the set whose
generator is described by the following matrix

[

H(C⊥
2) 0

0 H(C1)

]

,

where H(C⊥
2) and H(C1) are parity check matrices of C⊥

2 and C1, whose types
are (n−k2)×n and k1×n. The generators g1, g2, ..., gn−(k1−k2) are commutative
and independent since C2 ⊆ C1. The distance of CSS(C1, C2) is at least 2t+ 1.

Construction of CSS code

Let w ∈ {0, 1}k and assume |w〉 be the state to be coded. Let x = G1w ∈ C1,
where G1 is a generator matrix of C1. The codeword |x+C2〉 for w is defined as

|x+ C2〉 :=
1

√

|C2|
∑

y∈C2

|x+ y〉.

A parametrized CSSu,v(C1, C2) code defined as follows is equivalent to CSS(C1, C2)
for u ∈ C2 and v ∈ {0, 1}n − C1.

|x+ C2〉 :=
1

√

|C2|
∑

y∈C2

(−1)u·y|x+ y + v〉.

A parametrized CSSu,v(C1, C2) is considered in the discussion of equivalence of
BB84 and the EDP-based protocol.

2.3.4 Entanglement Distillation based on an Error Correcting Code

Let |β00〉 := |00〉+|11〉√
2

. Two qubits in the state |β00〉 are called an EPR pair. Let us

consider the following scenario. First, Alice prepares |β00〉⊗n ≃ ∑

i∈{0,1}n |i〉|i〉 ∈
HA ⊗ HB. Second, Alice sends the qubit string whose state is in HB to Bob
through a noisy quantum channel. Alice and Bob want to share the halves of a
smaller number k(≤ n) of EPR pairs from the given state that may be influenced
by noise. In fact, this is possible by quantum error correction if the number of
errors is small enough to be corrected.

Let {g1, ..., gn−k} be commutative, independent, and do not produce −I.
Then, C(S) with S := 〈g1 ⊗ I, ..., gn−k ⊗ I, I ⊗ g1,...,I ⊗ gn−k〉 is a [2n, 2k]-
stabilizer code. When the observables g1 ⊗ I, ..., gn−k ⊗ I, I ⊗ g1,...,I ⊗ gn−k
of the state

∑

i∈{0,1}n |i〉|i〉 are measured, the resulting state is stabilized by

〈(−1)b1g1 ⊗ I, ..., (−1)bn−kgn−k ⊗ I, I(−1)b
′
1 ⊗ g1, ..., (−1)b

′
n−kI ⊗ gn−k〉, where

b1, ..., bn−k and b′1, ..., b
′
n−k are measurement results obtained by Alice and Bob.

If there is no error, bi = b′i holds for all i because of the entanglement. In fact, the
resulting state can be regarded as |β00〉⊗k. If there are some errors, bi 6= b′i pos-
sibly holds for some positions i. In such a case, if bi = 0 and b′i = 1 for example,
then the state after the measurement is stabilized by 〈..., gi ⊗ I, ...,−I ⊗ gi, ...〉.
Alice can inform bi to Bob so that they can modify the state to be stabilized by

18

〈..., gi ⊗ I, ..., I ⊗ gi, ...〉. Similarly, by Alice’s informing her measurement result
to Bob, they can correct the difference. Let C(〈g1, ..., gn−k〉) corrects t errors. In
fact, |β00〉⊗k can be obtained even if the second halves contain at most t errors.

2.4 Quantum Key Distribution Protocols

The word BB84 does not identify one unique protocol, because there are several
possible methods for error correction and privacy amplification after the quantum
communication. In this paper, since we formalize Shor and Preskill’s proof, the
implementation of BB84 follows their paper [65]. It employs two classical linear
codes C1, C2 that satisfy C2 ⊆ C1. In this paper, the protocol is slightly modified
for simplicity: Alice only generates 2n qubits. This modification causes Bob to
store qubits in his side, but does not affect the security at all.

2.4.1 BB84 (slightly modified)

Assumptions

• The length of codeword n ∈ N and the error threshold h ∈ [0..n] are defined
and known to Alice, Bob, and Eve.

• Classical linear codes C1 and C2 with length n are defined and known to
Alice, Bob, and Eve. C1 and C2 satisfies {0n} ⊆ C2 ⊆ C1 ⊆ {0, 1}n.

• They use quantum and public classical channels. Eve can interpolate qubits
passing through the quantum channel, and listen data passing through the
public classical channel.

Protocol
We denote the following protocol as BB84n,hC1,C2

1. Alice generates two random 2n-bit strings d1, ..., d2n and b1, ..., b2n.

2. Alice prepares a 2n-qubit string q1, ..., q2n according to the randomness: for
each qi (1 ≤ i ≤ 2n), Alice prepares the state |0〉 if di = 0, bi = 0, |1〉 if
di = 1, bi = 0, |+〉 if di = 0, bi = 1, |−〉 if di = 1, bi = 1.

3. Alice sends q1, ..., q2n to Bob through the quantum channel.

4. Bob receives them and announces Alice that fact.

5. Alice announces b1, ..., b2n using the classical channel.

6. For each i, Bob measures qi in {|0〉, |1〉} basis if bi = 0; in {|+〉, |−〉} basis
if bi = 1. Let the results, which are either 0 or 1, of the measurement be
c1, ..., c2n. (If no error occurs, di = ci for all i.) Alice randomly chooses n
bits from them as check bits. Let the indices of the check bits be k1, ..., kn.
Alice tells Bob k1, ..., kn (k1 < ... < kn).

7. Bob tells Alice ck1 , ..., ckn using the classical channel. Alice counts the
number of j’s with dkj 6= ckj . If the number is greater than the threshold
h, they abort the protocol.

8. Let x be the bitstring with the length n obtained by eliminating dk1 , ..., dkn
from d1, ...d2n. Alice chooses a codeword u∈ C1 at random, and announces
u+ x.

19

9. (Error correction) Bob lets y be the bitstring with the length n obtained
by eliminating ck1 , ..., ckn from c1, ...c2n, and w̃ be u + x + y. (Ideally, the
condition x+ y = 0 is expected to hold.) Bob performs error correction of
w̃ to obtain w. If he succeeds to correct errors, w = u holds.

10. (Privacy amplification) Alice lets her secret key kA be u+C2 and Bob lets
his secret key kB be w + C2, where u+ C2 := u+

∑

y∈C2
y

BB84 is transformed into the following EDP-based protocol, which is a mod-
ification of the Lo and Chau’s protocol [53].

2.4.2 The EDP-based Protocol

Assumptions

• The length of codeword n ∈ N and the error threshold h ∈ [0..n] are defined
and known to Alice, Bob, and Eve.

• Classical linear codes C1 and C2 with length n are defined and known to
Alice, Bob, and Eve. C1 and C2 satisfies {0n} ⊆ C2 ⊆ C1 ⊆ {0, 1}n. Alice
and Bob use the CSS code constructed from C1 and C2.

• They use quantum, public classical, and a private classical channels. Eve
can interpolate qubits passing through the quantum channel, and listen
data passing through the public classical channel.

Protocol
We denote the following protocol as EDPn,hC1,C2

1. Alice prepares 2n EPR pairs (|00〉+|11〉√
2

)⊗2n and a random bitstring b1, ..., b2n.

2. For each i, Alice performs Hadamard transformation on the second half of
i-th pair of (|00〉+|11〉√

2
)⊗2n if bi = 1. She then sends the second halves of the

pairs to Bob.

3. Bob receives the halves and announces Alice that fact.

4. Alice announces b1, ..., b2n through the public classical channel. For each i,
Bob performs Hadamard transformations to i-th half if bi = 1.

5. Alice randomly chooses n pairs from the pairs for error check. Let k1, ..., kn
be the positions. Alice tells Bob k1, ..., kn.

6. For each j ∈ [1..n], Alice and Bob measure their halves of kj-th pair in
{|0〉, |1〉} basis, and share the measurement results. (If no error occurs,
they have the same values as the results.) If the number of errors is greater
than the threshold h, they abort the protocol.

7. (Entanglement Distillation) Let H(C1) and H(C⊥
2) be the parity check

matrices of C1 and C⊥
2 . Alice and Bob measures the observables which are

the generators described by the matrix
[

H(C⊥
2) 0

0 H(C1)

]

.

Alice informs the her measurement results to Bob, and Bob corrects errors
using them. The measurement results corresponding to H(C⊥

2) and H(C1)
are sent through the private and public channel respectively. If the error
correction succeeds, they share logical |β00〉⊗(k1−k2).

20

8. Alice and Bob measure their qubits in {|0〉, |1〉} basis to obtain shared secret
keys kA and kB.

2.4.3 Security of Quantum Key Distribution

We describe here the security criteria introduced in Nielsen and Chuaung’s book
[60, Chapter 12]. First, we introduce the notions of negligible and overwhelming
functions.

Definition 2.4.1. A function f : N+ → [0, 1] is negligible if for all polynomial
p(·), there exists a natural number N such that for all n ≥ N , f(n) ≤ 1

p(n) holds.
A function f is non-negligible if f is not negligible.

Definition 2.4.2. A function f : N+ → [0, 1] is overwhelming if 1−f is negligible,
where (1− f)(n) = 1− f(n).

The security criteria is defined as follows.

Definition 2.4.3. Let kA, kB, and kE are random variables of Alice’s, Bob’s,
and Eve’s keys under the probability distribution after the execution of a QKD
protocol. The protocol is secure with respect to security parameters s > 0 and
l > 0 if Alice and Bob have aborted the protocol or Pr(kA = kB) is overwhelming
with respect to s and I(kA; kE) is negligible with respect to l.

In the definition above, confidentiality of the secret key is stated as “I(kA; kE)
is negligible” and correctness of the keys is stated as “Pr(kA = kB) is overwhelm-
ing”. However, Eve can block the protocols by jamming the quantum channel
[56]. If she intercepts all qubits sent from Alice and performs some operations to
change their states and resends them to Bob, then the errors in check bits will
be large and the protocol will be aborted.

2.5 Shor and Preskill’s Security Proof

The flow of Shor and Preskill’s security proof [65] is as follows. First, BB84 is
shown to be equivalent for Eve to the EDP-based protocol. Concretely, equiv-
alence means that the information obtained by Eve who adopts an arbitrary
strategy is equal in the both protocols. We call this step the transformation step.
Next, the security of the EDP-based protocol is proven. This implies the security
of BB84. We call this step the analysis step. We explain the discussions of the
two steps briefly.

2.5.1 Transformation step

The transformation starts at EDPn,hC1,C2
. The first observation is that it does not

matter even if Alice measures her check bits before she sends the other halves of
EPR pairs to Bob. It is the same as her choosing |0〉 or |1〉 at random. Moreover,
it does not matter, even if she first measures the observables for entanglement
distillation for her code bits. In fact, this is equivalent to sending k1−k2 halves of
EPR pairs encoded by the CSSu,v(C1, C2) code for two random parameters u, v ∈
{0, 1}n. u and v are determined by the measurement results of the observables
corresponding to H(C⊥

2) and H(C1). Eventually, instead of measuring Alice’s
halves, she can encode a random k1 − k2 bit string using CSSu,v(C1, C2) with

randomly chosen u and v. The following CSSn,hC1,C2
QKD protocol is then obtained,

which is an intermediate one in the transformation.

21

CSS Codes Protocol

Assumptions
The same assumptions as the EDP-based protocol are used.
Protocol

1. Alice prepares k1−k2 code bits, u, and v at random. Alice then encodes the
code bits using CSSu,v(C1, C2) code. Alice next prepares n random check
bits and a random bitstring b1, ..., b2n. The string of code bits is Alice’s
secret key.

2. Alice randomly chooses n out of 2n positions, put check bits in the positions,
and put code bits in the remaining positions. Let k1, ..., kn be the check
positions.

3. For each i, Alice performs Hadamard transformation to the qubits in the
positions with bi = 1. She then sends the qubits to Bob.

4. Bob receives the halves and announces Alice that fact.

5. Alice announces b1, ..., b2n through the public classical channel. For each i,
Bob performs Hadamard transformations to i-th half if bi = 1.

6. Alice tells Bob the positions of check bits k1, ..., kn.

7. For each j ∈ [1..n], Bobs measure qubits in the position of kj in {|0〉, |1〉}
basis, and share the measurement results. If the number of errors is greater
than the threshold h, they abort the protocol.

8. Alice tells Bob u through the public classical channel and v through the
secret classical channel.

9. Bob decodes his qubits using u and v, and obtains his secret key.

Next, CSSn,hC1,C2
is transformed into BB84

n,h
C1,C2

. When the coded secret key in C1

prepared by Alice is k′A ∈ C1, the CSS codeword is

1
√

|C2|
∑

y∈C2

(−1)u·y|k′A + y + v〉.

Since Bob only wants to have k′A, the value of u is not necessary. Indeed, he can
measure the state in {|0〉, |1〉} basis to have the bitstring k′A + y0 + v for some
y0 ∈ C2. He subtracts v from it to have k′A + y0. As the secret key is the coset
k′A+C2, the value of y0 does not matter. We then assume Alice does not send u
to Bob. In Bob’s view, the state of the given qubit is the mixed state

∑

u

(
∑

y

(−1)u·y|k′A+y+v〉)(
∑

y

(−1)u·y|k′A+y+v〉)† =
∑

y

|k′A+y+v〉〈k′A+y+v|

The state of the right-hand side can be prepared taking y ∈ C2 at random. Let
us focus on Bob’s view before obtaining v. Recall that the value of k′A is also
taken uniformly. The state is the mixed state

∑

k′
A
∈C1

∑

v∈{0,1}n−C1

∑

y∈C2

|k′A+ y+ v〉〈k′A+ y+ v| =
∑

v∈{0,1}n−C1

∑

k′′∈C1

|k′′+ v〉〈k′′+ v|.

We observe that k′′+ v is uniform random in {0, 1}n. Therefore, the related part
of the protocol can be modified as follows.

22

• Alice chooses k′′ ∈ C1 and v ∈ {0, 1}n − C1 at random, and sends |k′′ + v〉
to Bob, performing Hadamard transformation randomly.

• After Hadamard transformation, Bob measures it and obtains classical bit-
string k′′ + v + ǫ, where ǫ is the error.

• Alice tells v to Bob. Bob obtains k′′ + v+ e+ v = k′′ + e. As k′′ ∈ C1, Bob
performs error correction. If he succeeds, he obtains k′′. The shared key is
the coset of k′′ in C2.

We eventually obtain BB84
n,h
C1,C2

by the transformation.

2.5.2 Analysis step

A key point is that Alice and Bob can accurately judge from the error rate
obtained at the step 6 whether the error correction will succeed. Since check bits
are randomly chosen, the numbers of errors contained in the code bits and check
bits are close (♯). The numbers of bit and phase flip errors are estimated from
the check bits with bi = 0 and bi = 1 in the step 2. Shor and Preskill uses a
lemma given by Lo and Chau [53]. If Alice and Bob share a state having fidelity
F = 1 − 2−s with |β00〉⊗k1−k2 , I(kA; kE) ≤ 2−s+log2(2(k1−k2)+s+1/ loge 2) + 2O(−2s)

holds. The fidelity is actually estimated from the following fact.

F := 〈β00|⊗mρ′|β00〉⊗m ≥ tr(Πρ) holds, where

ρ and ρ′ are the states of the pairs before and after the error correction, and

Π is the projector to the space in which errors in code bits are correctable.

By (♯), tr(Πρ) is overwhelming if they have decided not to abort the protocol.
Formally, the statement of security of BB84 is as follows.

Theorem 2.5.1 (Shor-Preskill [65]). Let [n, k1]-code C1 and [n, k2]-code C2 sat-

isfies C2 ⊆ C1, and C1 and C⊥
2 correct t errors. BB84

n,h
C1,C2

is secure with respect
to n. Concretely,

Pr(kA = kB) ≥ 1− e−
1
4
ǫ2n/(δ−δ2), where δ =

t

n
, ǫ = δ − h

n
, and

I(kA; kE) ≤ 2−s+log2(2(k1−k2)+s+1/ loge 2) + 2O(−2s) hold, where s satisfies

s ≥ 1

4
ǫ2n/(δ − δ2)

23

Chapter 3

Automated Verification of Bisimilarity of

qCCS configurations

3.1 qCCS

We introduce the qCCS formal framework presented by Deng and Feng [24].
Three data types Bool ,Real , and Qbt are used for booleans, real numbers, and
qubits, respectively. Let cVar be a countably infinite set for classical variables,
and qVar be a finite set1 qVar for quantum variables. cVar and qVar are ranged
over by x, y, z, ... and q, r, For each q ∈ qVar , its qubit-length |q| is defined.
A finite sequence of quantum variables is written q̃. When q̃ = q1, q2, ..., qn, |q̃|
represents |q1| + |q2| + · · · + |qn|. A sequence q̃ = q1, q2, ..., qn may be regarded
as a set {q1, q2, ..., qn} implicitly when there is no fear of confusion. Let Exp
be a set of real expressions, and BExp be a set of boolean expressions. Exp is
ranged over by e, e′, BExp, ranged over by b, b′, ..., is composed of constants
true, false, atomic expressions e rel e′, and logical connectives ¬,∧,∨, and →,
where rel ∈ {>,<,≥,≤,=}.

Let cChan be a set of classical channels, and qChan be a set of quantum
channels. cChan is ranged over by c, d, ..., and qChan is ranged over by c, d,

For a Hilbert space H, dim (H) denotes the dimension of H. For a linear
operator A : H → H, dim (A) denotes dim (H). For a TPCP map E : D(HA) →
D(HB), dom(E) and cod(E) denote its domain D(HA) and codomain D(HB). For
e ∈ Exp and b ∈ BExp, [[e]] and [[b]] denote their evaluations.

Let Op, ranged over by op, op1, ..., be a set of identifiers of TPCP maps. For
each op ∈ Op, a corresponding TPCP map Eop satisfying dom(Eop) = cod(Eop)
is defined.

3.1.1 Syntax

While the original syntax of qCCS allows recursive definitions of processes, we
restricted them for simplicity. The sub-language is still expressive to describe pro-
tocols including our target QKD protocols. We also eliminated the constructors
of choice +, tau τ.P and relabeling P [f] because we do not use them.

Definition 3.1.1. The syntax of qCCS process is given as follows.

Proc ∋ P,Q ::= nil | c?x.P | c!e.P | c?q.P | c!q.P
| if b then P fi | op[q̃].P | M [q̃;x].P | P ||Q | P\L

where M is an Hermitian operator and L is a set of channels.

1The set of quantum variables is countably infinite in the original qCCS and each element
represents a qubit, not a qubit string.

24

The set of quantum free variables in a process P , denoted by qv(P), is induc-
tively defined as follows.

qv(nil) = ∅ qv(c!e.P) = qv(P)

qv(c?x.P) = qv(P) qv(c!q.P) = {q} ∪ qv(P)

qv(c?q.P) = qv(P)− {q} qv(if b then P fi) = qv(P)

qv(op[q̃].P) = q̃ ∪ qv(P) qv(M [q̃;x].P) = q̃ ∪ qv(P)

qv(P ||Q) = qv(P) ∪ qv(Q) qv(P\L) = qv(P)

The constructors c?x,M [q̃;x], and c?q bind a classical variable x and a quantum
variable q. Bound quantum variables in P is denoted qbv(P). We consider
processes whose classical variables are bounded.

For a process to be legal, the following conditions are required.

1. c!q.P ∈ Proc only if q /∈ qv(P),

2. P ||Q ∈ Proc only if qv(P) ∩ qv(Q) = ∅.

We explain intuitive meanings of the constructors. The process nil does
nothing. The process c?x.P receives a value of the type Real through the channel
c, binds it to the variable x, and executes P . The process c!e.P sends a value
that is obtained evaluating the expression e through the channel c, and executes
P . The process c?q.P receives a qubit through the channel c, and executes P .
The process c!q.P sends a qubit indicated by the quantum variable q through
the channel c, and executes P . The requirement 1 says that a qubit string,
which is a physical object, becomes inaccessible after one sends it. The process
if b then P fi executes P iff the evaluation of the condition b is true. The
process op[q̃].P performs the corresponding TPCP map Eop to the Hilbert space
indicated by q̃, and executes P . The process M [q̃;x].P measures an observable
M of the quantum state indicated by q̃, stores the result of the measurement into
a classical variable x, and executes P . The process P ||Q executes the process P
and Q in parallel. The requirement 2 means that P and Q do not share quantum
systems. The process P\L executes the process P with private channels in L.

For a classical variable x and a value v of the type Real , P{v/x} is the process
obtained replacing x with v. For quantum variables q and r, P{r/q} is the process
obtained replacing q with r.

Example 3.1.2. Examples of the processes are as follows,

c!r.M1[q;x].nil

measure[r].c!r.nil

M1[q;x].M2[r, s; y].if x+ y ≤ 4 then (c!(x+ y).c!r.nil||c?z.d!z.d?t.nil) fi\{c}

where x, y ∈ cVar, q, r, s, t ∈ qVar, c, d ∈ cChan, c, d ∈ qChan. M1 = |1〉〈1|
and M2 = |001〉〈001| + 2(|010〉〈010| + |011〉〈011|) + 6|110〉〈110| with |q| = |r| =
|t| = 1 and |s| = 2. measure ∈ Op corresponds a TPCP map Emeasure(ρ) =
|0〉〈0|ρ|0〉〈0|+ |1〉〈1|ρ|1〉〈1|.

3.1.2 Semantics

For each q ∈ qVar , there assumed to be a corresponding 2|q| dimensional Hilbert
spaceHq. For q̃ = q1, q2, ..., ql, letHq̃ beHq1⊗Hq2⊗· · ·⊗Hql . LetHS =

⊗

q∈S Hq

25

for S ⊆ qVar and let H = HqVar
2. Let D(H), ranged over by ρ, σ, ..., be the

set of all density operators on H. For a process to be legal with respect to the
semantics, the following conditions are additionally required.

3. op[q̃].P ∈ Proc only if dom(Eop) = D(Hq̃),

4. M [q̃;x].P ∈ Proc only if dom(M) = Hq̃,

For Eop with dom(Eop) = Hq̃, let Eop
q̃ : D(H) → D(H) be ID(HS) ⊗ Eop ⊗ ID(HT)

for S ∪ T = qVar − q̃, where ID(HS) and ID(HT) are identity operators on D(HS)
and D(HT). Similarly, for an Hermitian operator M : Hq̃ → Hq̃ with spectrum
decomposition M =

∑

i λiE
i, Eiq̃ : H → H is defined as IHS

⊗ Ei
q̃ ⊗ IHT

.
Let Con = Proc × D(H). An element of Con is called a configuration. A

configuration consisting of P ∈ Proc and ρ ∈ D(H) is written LP, ρM3.

Example 3.1.3. Examples of the configurations are as follows,

Lc!r.M1[q;x].nil,EPRq,r ⊗ |01〉〈01|s ⊗ |−〉〈−|tM
Lmeasure[r].c!r.nil,EPRq,r ⊗ |00〉〈00|s ⊗ |+〉〈+|tM
LM1[q;x].M2[r, s; y].if x+ y ≤ 4 then (c!(x+ y).c!r.nil||c?z.d!z.d?t.nil) fi\{c},
|+〉〈+|q ⊗ |+〉〈+|r ⊗ |10〉〈10|s ⊗ |0〉〈0|tM

where the sets cVar, qVar, Op, and the Hermitian operators M1 and M2 are
defined in Example 3.1.2.

qCCS has a nondeterministic and finite-support probabilistic transition sys-
tem. The set of all finite-support probability distribution on Con is denoted
D(Con), which is ranged over by µ, ν, Namely,

D(Con) = {µ |
∑

LP,ρM∈Con

µ(LP, ρM) = 1, and for only finitely many LP, ρM,

we have µ(LP, ρM) > 0}.

For µ ∈ D(Con), we write µ = ⊞i∈Ipi • LPi, ρiM if µ(LPi, ρiM) = pi and
∑

i∈I pi = 1
hold. For a point distribution, we may simply write LP, ρM instead of 1 • LP, ρM.
We also write µ =

∑

i∈I piµi if µ(LP, ρM) =
∑

i∈I piµi(LP, ρM) for all LP, ρM ∈ Con
and µi ∈ D(Con).

Let the set of actions Actτ , ranged over by α, ..., be {c?v, c!v, c!q, c?q | c ∈
cChan, c ∈ qChan, v is of the type Real , q ∈ qVar} ∪ τ . Channel name cn(α) in
α is defined as cn(c?v) = cn(c!v) = {c}, cn(c!q) = cn(c?q) = {c}, and cn(τ) =
∅. Quantum bound variable qbv(α) in α is defined as qbv(c!v) = qbv(c?v) =
qbv(c!q) = qbv(τ) = ∅, and qbv(c?q) = {q}.
Definition 3.1.4. The relation of transitions →⊆ Con × Actτ × D(Con) is
defined by the rules in Figure 3.1. We regard

α−→ as the subset of Con ×D(Con)

for fixed α. The relation
α̂−→⊆ Con ×D(Con) is defined as follows.

α̂−→:=

{

τ−→ ∪{(LP, ρM, 1 • LP, ρM)} (α is τ)
α−→ (otherwise)

Example 3.1.5. Examples of the transitions are described in Figure 3.2 and 3.3.

2As assumed in Chapter 2, we identify H1 ⊗H2 with H2 ⊗H1 for Hilbert spaces H1 and H2.
Therefore, the order of Hq with respect to ⊗ for q ∈ S is not significant here.

3In [30, 70, 31, 24, 29], a configuration is written 〈P, ρ〉 using angle brackets. In this thesis,
we write LP, ρM since we frequently write density operators using bra-ket notation.

26

v is of the type Real

Lc?x.P, ρM
c?v−−→ LP{v/x}, ρM

(C-Inp)
[[e]] = v

Lc!e.P, ρM
c!v−−→ LP, ρM

(C-Outp)

LP1, ρM
c!v−−→ LP ′

1, ρM LP2, ρM
c?v−−→ LP ′

2, ρM

LP1||P2, ρM
τ−→ LP ′

1||P ′
2, ρM

(C-Com)

r /∈ qv(P)\{q}
Lc?q.P, ρM

c?r−−→ LP{r/q}, ρM
(Q-Inp)

Lc!q.P, ρM
c!q−→ LP, ρM

(Q-Outp)

Lop[q̃].P, ρM
τ−→ LP, Eop

q̃ (ρ)M
(Oper)

LP1, ρM
c?r−−→ LP ′

1, ρM LP2, ρM
c!r−→ LP ′

2, ρM

LP1||P2, ρM
τ−→ LP ′

1||P ′
2, ρM

(Q-Com)

LP, ρM
α−→ µ, [[b]] = true

Lif b then P fi, ρM
α−→ µ

(Cho)
LP, ρM

α−→ ⊞ipi • LPi, ρiM cn(α) ∩ L = ∅
LP\L, ρM α−→ ⊞ipi • LPi\L, ρiM

(Res)

LP, ρM
α−→ ⊞ipi • LP ′

i , ρiM qbv(α) ∩ qv(Q) = ∅
LP ||Q, ρM α−→ ⊞ipi • LP ′

i ||Q, ρiM
(IntL)

LP, ρM
α−→ ⊞ipi • LP ′

i , ρiM qbv(α) ∩ qv(Q) = ∅
LQ||P, ρM α−→ ⊞ipi • LQ||P ′

i , ρiM
(IntR)

LM [r̃;x].P, ρM
τ−→ ∑

i pi • LP{λi/x}, Eir̃ρEir̃/piM
(Meas)

where M has the spectrum decomposition

M =
∑

i

λiE
i, and pi = tr(Eir̃ρ)

Figure 3.1: Labelled Transition Rule

3.1.3 Lifting Relations

To define weak bisimilarity, the relations of transitions
α−→,

α̂−→⊆ Con×D(Con) are
lifted to subsets of D(Con)×D(Con). We introduce the definitions by Deng and
Feng [24] here with some of the useful properties. Some definitions are rephrased
in equivalent forms.

Definition 3.1.6. For R ⊆ Con × D(Con), its lifted relation R† ⊆ D(Con) ×
D(Con) is defined as the smallest relation that satisfies

• LP, ρMRµ implies 1 • LP, ρMR†µ, and

• (Linearity) µiR†νi for any i ∈ I implies
∑

i∈I piµiR†∑
i∈I piνi for any

pi ∈ [0, 1] with
∑

i∈I pi = 1, where I is a finite index set.

Proposition 3.1.7. µR†ν if and only if there is a finite set I such that

27

Figure 3.2: Examples of the Transitions (1)

Figure 3.3: Examples of the Transitions (2)

28

• µ =
∑

i∈I piLPi, ρiM,

• ν =
∑

i∈I piνi,

• LPi, ρiMRνi for all i ∈ I.

R† may be simply written R. We have that LP, ρM
α−→ µ implies LP, ρM(

α−→)†µ.

The converse is not true. Indeed, Lc!1.nil||c!1.nil, ρM(c!1−→)† 12Lnil||c!1.nil, ρM ⊞
1
2Lc!1.nil||nil, ρM holds but the statement does not hold that is obtained replacing

(
c!1−→)† to

c!1−→.
The internal action is then defined. It represents actions that are not observed

by the outsider and is important to define weak bisimilarity.

Definition 3.1.8. The internal action ⇒⊆ D(Con) × D(Con) is defined as

((
τ̂−→)†)∗.

Proposition 3.1.9. The relation ⇒ τ̂−→⇒ is equal to ⇒. The relation ⇒ α̂−→⇒ is
linear for all α.

Relations on Con is also lifted to those on D(Con).

Definition 3.1.10. For R ⊆ Con ×Con, R† ⊆ D(Con)×D(Con) is defined as

{(µ, ν) | ∃I : finite index set. µ =
∑

i∈I
piLPi, ρiM, ν =

∑

i∈I
piLQi, σiM,

∀i ∈ I. LPi, ρiMRLQi, σiM}.

Proposition 3.1.11. For R ⊆ Con × Con, R† ⊆ D(Con)×D(Con) is linear.

3.1.4 Bisimulation

The strong and weak open bisimulation relation of qCCS configurations defined
by Deng and Feng [24] is introduced. Let H

qv(P)
be

⊗

q∈qVar−qv(P)Hq.

Definition 3.1.12. A relation R ⊆ Con×Con is a strong simulation if LP, ρMRLQ, σM
implies qv(P) = qv(Q), trqv(P)(ρ) = trqv(Q)(σ) and for all TPCP map E that acts
on H

qv(P)
,

• whenever LP, E(ρ)M α−→ µ, there exists ν such that LQ, E(σ)M α−→ ν and µR†ν.

R is a strong bisimulation if R and R−1 are strong simulations. The relation ≈̇
is defined as the largest strong bisimulation. If LP, ρM ≈̇ LQ, σM, we say they are
strongly bisimilar.

Definition 3.1.13. A relation R ⊆ Con×Con is a weak simulation if LP, ρMRLQ, σM
implies qv(P) = qv(Q), trqv(P)(ρ) = trqv(Q)(σ) and for all TPCP map E that acts
on H

qv(P)
.

• whenever LP, E(ρ)M α−→ µ, there exists ν such that LQ, E(σ)M ⇒ α̂−→⇒ ν and
µR†ν

R is a weak bisimulation if R and R−1 are weak simulations. The relation ≈ is
defined as the largest weak bisimulation. If LP, ρM ≈ LQ, σM, we may simply say
they are bisimilar instead of weakly bisimilar.

29

For the bisimulation relations of qCCS configurations, ownership of quantum
variables, which represent physical objects, is significant. The first condition
qv(P) = qv(Q) implies qVar−qv(P) = qVar−qv(Q), which means the equality of
quantum variables that the outsider possesses. The second condition trqv(P)(ρ) =
trqv(Q)(σ) means the equality of quantum states that the outsider can access. In
the next condition, an arbitrary TPCP map E that acts on qVar−qv(P) is taken.
This allows the outsider to perform an arbitrary operation to quantum systems
that she can access.

Remark 3.1.14. There is another way to define probabilistic bisimulation based
on equivalence classes [50, 35, 22]. When we define by this way, an equiva-
lent notion is in fact defined. Concretely, if LP, ρMRLQ, σM holds for some strong
bisimulation relation R, then

qv(P) = qv(Q), trqv(P)(ρ) = trqv(Q)(σ), and

∀Er̃ : D(HqVar−qv(P)) → D(HqVar−qv(P)). ∀S ∈ Con/R.
(∃µ. (LP, Er̃(ρ)M α−→ µ and

∑

SRXi

µ(Xi) = p)

⇔∃ν. (LQ, Er̃(σ)M α−→ ν and
∑

SRYi
ν(Yi) = p))

hold, and conversely.

Although we consider a little different formal framework, ≈ has the following
properties. Proposition 3.1.15 and Theorem 3.1.17 are proven similarly to the
original [24]. Theorem 3.1.16 is proven similarly to the previous version [31].

Proposition 3.1.15. ≈ is an equivalence relation.

Theorem 3.1.16. LP, ρM ≈ LQ, σM if and only if qv(P) = qv(Q),
trqv(P)(ρ) = trqv(Q)(σ) and for all TPCP map E that acts on H

qv(P)
,

1. whenever LP, E(ρ)M α−→ µ, there exists ν such that LQ, E(σ)M ⇒ α̂−→⇒ ν and
µ ≈† ν,

2. whenever LQ, E(σ)M α−→ ν, there exists µ such that LP, E(ρ)M ⇒ α̂−→⇒ µ and
µ ≈† ν.

Especially, the next theorem is useful to examine equivalence of protocols
under the existence of other protocols.

Theorem 3.1.17. If LP, ρM ≈ LQ, σM,

• LP\L, ρM ≈ LQ\L, σM, and

• LP ||R, ρM ≈ LQ||R, σM

hold for all set of channels L and process R with qv(P) ∩ qv(Q) = ∅.

We also use the following properties of strong bisimulation to prove the sound-
ness of our verifier. The properties are proven similarly to those of weak bisimu-
lation [24].

Proposition 3.1.18. ≈̇ is an equivalence relation.

Proposition 3.1.19. If LP, ρM ≈̇ LQ, σM, then LP, E(ρ)M ≈̇ LQ, E(σ)M for all TPCP
map acting on H

qv(P)
.

30

Theorem 3.1.20. If LP, ρM ≈̇ LQ, σM, then

• LP\L, ρM ≈̇ LQ\L, σM, and

• LP ||R, ρM ≈̇ LQ||R, σM

hold for all set of channels L and process R with qv(P) ∩ qv(Q) = ∅.

We call the properties of ≈ and ≈̇ congruence that are stated by Theorem
3.1.17 and Theorem 3.1.20, although the relations are not closed under application
of all constructors.

Finally, we introduce some example and counter-example of bisimulation. In
the following examples, let EPR be (|00〉+|11〉√

2
)(|00〉+|11〉√

2
)†.

Example 3.1.21. The following two configurations are bisimilar for an arbitrary
process P (qA) satisfying qA ∈ qv(P (qA)) and quantum state ρE ∈ D(H{qA,qB}).

1. X
def≡ Lc!qB.measure[qA].P (qA),EPRqA,qB ⊗ ρEM

2. Y
def≡ Lmeasure[qA].c!qB.P (qA),EPRqA,qB ⊗ ρEM

A proof of the bisimilarity using Theorem 3.1.16 is as follows. For X =
LP, ρM ∈ Con, let E(X) be LP, E(ρ)M for a TPCP map E . For X and Y , the
conditions of quantum variables and partial traces are easily checked. Without
loss of generality, we can take I⊗E1 as an arbitrary TPCPmap acting onH

{qA,qB}
.

Let ρ′ be E1(ρE). For the transition

(I ⊗ E1)(X)
c!qB−−−→ Lmeasure[qA].P (qA),EPRqA,qB ⊗ ρ′M,

we have

(I ⊗ E1)(Y) ⇒ c!qB−−−→ LP (qA), (
1

2
|00〉〈00|+ 1

2
|11〉〈11|)qA,qB ⊗ ρ′M.

For the transition

(I ⊗ E1)(Y)
τ−→ Lc!qB.P (qA), (

1

2
|00〉〈00|+ 1

2
|11〉〈11|)qA,qB ⊗ ρ′M,

we have (I ⊗ E1)(X) ⇒ (I ⊗ E1)(X). To prove X ≈ Y , it is sufficient to show

Lmeasure[qA].P (qA),EPRqA,qB ⊗ ρ′M ≈ LP (qA), (
1

2
|00〉〈00|+ 1

2
|11〉〈11|)qA,qB ⊗ ρ′M (♯)

and (I ⊗ E1)(X) ≈ Lc!qB.P (qA),EPRqA,qB ⊗ ρ′M (♭).

For (♯), the condition of partial trace holds because

trqA(EPRqA,qB) = trqA((
1

2
|00〉〈00|+ 1

2
|11〉〈11|)qA,qB)

holds. Let E2 be an arbitrary TPCP map acting on H
{qA}

. For the transition

Lmeasure[qA].P (qA), E2(EPRqA,qB ⊗ ρ′)M

τ−→LP (qA), E2(
1

2
|00〉〈00|+ 1

2
|11〉〈11|)qA,qB ⊗ ρ′)M

def≡ Z,

31

we have

LP (qA), E2(
1

2
|00〉〈00|+ 1

2
|11〉〈11|)qA,qB ⊗ ρ′)M ⇒ Z

and Z ≈† Z. Next, for an arbitrary TPCP map E3 acting onH
{qA}

and transition,

LP (qA), E3(
1

2
|00〉〈00|+ 1

2
|11〉〈11|)qA,qB ⊗ ρE)M

α−→ µ,

we have the transition

Lmeasure[qA].P (qA), E3(EPRqA,qB ⊗ ρE)M ⇒ (
α−→)†µ

and µ ≈† µ holds. The case when P (qA) does not perform any transition is easily
checked.

The condition (♭) can be similarly checked.

Example 3.1.22. The following two configurations are not bisimilar in general.

1. X
def≡ Lc!qB.|1〉〈1|[qA;x].P (qA),EPRqA,qB ⊗ ρEM

2. Y
def≡ L|1〉〈1|[qA;x].c!qB.P (qA),EPRqA,qB ⊗ ρEM

We prove one of the necessary conditions of bisimulation cannot be satisfied. Let
P (qA) do not perform any transition. For the transition

X
c!q−→ L|1〉〈1|[qA;x].P (qA),EPRqA,qB ⊗ ρEM,

the only possible action by Y that perform ⇒ c!q−→⇒ is

Y ⇒ c!q−→1

2
• LP (qA){0/x}, |00〉〈00|qA,qB ⊗ ρEM

⊞
1

2
• LP (qA){1/x}, |11〉〈11|qA,qB ⊗ ρEM

def≡ ν.

Therefore, it is necessary for bisimilarity to

L|1〉〈1|[qA;x].P (qA),EPRqA,qB ⊗ ρEM ≈ ν.

However, this does not hold because trqA(EPRqA,qB) 6= trqA(|ii〉〈ii|qA,qB) for i ∈
{0, 1}.

3.2 Simplification of qCCS’s Syntax

3.2.1 Motivation

On Formalization of Measurement

qCCS’s syntax has the constructors of TPCP map application op[q̃].P and quan-
tum measurement M [q̃, x].P . Since a quantum measurement can also be formal-
ized as a TPCP map, we have two ways to formalize a measurement. For example,
quantum measurement of the quantum state |+〉〈+| is formalized in the following
two ways, where the TPCP map Emeasure(ρ) that corresponds to measure[q] is

32

|0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|, ρE ∈ HqVar−{q} is an arbitrary quantum states, and
P (q) is an arbitrary process with q ∈ qv(P (q)).

1. L|1〉〈1|[q;x].P (q), |+〉〈+|q ⊗ ρEM
τ−→ 1

2
• LP (q), |0〉〈0|q ⊗ ρEM⊞

1

2
• LP (q), |1〉〈1|q ⊗ ρEM

2. Lmeasure[q].P (q), |+〉〈+|q ⊗ ρEM
τ−→ LP (q), 1/2(|0〉〈0|+ |1〉〈1|)qM

Although the two processes apparently formalize the same deed, they are not
bisimilar.

Indeed, the way to formalize a quantum measurement is important in the
formal verification of Shor and Preskill’s security proof using qCCS. In the trans-
formation step, the EDP-based protocol is converted to the next protocol based
on the fact that nobody outside cannot distinguish the following two processes:

A. Alice measures a half of an EPR pair and then sends the other half to the
outside.

B. Alice sends a half of an EPR pair to the outside and then measures the
other half.

First, when the measurement is formalized using the constructor M [q̃, x].P , the
following two configurations are obtained formalizing the above two, where EPR =
(|00〉+|11〉√

2
)(|00〉+|11〉√

2
)†, ρE ∈ HqVar−{qA,qB} is an arbitrary quantum states, and

Q(qA) is the successive process. They are not bisimilar.

A-1. Lc!qB.|1〉〈1|[qA;x].Q(qA),EPRqA,qB ⊗ ρEM

B-1. L|1〉〈1|[qA;x].c!qB.Q(qA),EPRqA,qB ⊗ ρEM

Second, when the measurement is formalized as a TPCP map, the following two
configurations are obtained formalizing the example. They are bisimilar.

A-2. Lc!qB.measure[qA].Q(qA),EPRqA,qB ⊗ ρEM,

B-2. Lmeasure[qA].c!qB.Q(qA),EPRqA,qB ⊗ ρEM, where

Emeasure
qA (ρ) = |0〉〈0|qAρ|0〉〈0|qA + |1〉〈1|qAρ|1〉〈1|qA .

Criteria to Select the Way to Formalize

By the definition of weak bisimulation relation, whether probabilistic branches
evoked byM [q̃;x] exist or not is significant in transition trees of qCCS configura-
tions. Therefore, the two different formalization of a quantum measurement are
considered to be different from the view of the outsider. In general, it is unnatural
that the outsider recognize the existence of probabilistic branches without view-
ing configuration’s different behaviour that depends on the result of the branch.
Hence, we think that if probabilistic branches are evoked, then the insider must
perform a different labelled transition. We accordingly propose a criteria to select
one way from the two to formalize a quantum measurement.

• If transitions with different labels occur according to the result of the mea-
surement, the measurement should be formalized using the constructor
M [q̃;x].P ;

33

• otherwise, it should be formalized as a TPCP map, namely, using the con-
structor op[q̃].P .

By our criteria, we should formalize the measurement of |+〉〈+| in the first ex-
ample as

1. L|1〉〈1|[q;x].P (q), |+〉〈+|q ⊗ ρEM
τ−→ 1

2
• LP (q), |0〉〈0|q ⊗ ρEM⊞

1

2
• LP (q), |1〉〈1|q ⊗ ρEM

if P (q) performs different labeled transitions according to the result. A typical
case is when P ≡ if x = 1 then c!q.P ′ fi holds for some c and P ′. Otherwise,
we should formalize it as

2. Lmeasure[q].P (q), |+〉〈+|q ⊗ ρEM
τ−→ LP (q), 1/2(|0〉〈0|+ |1〉〈1|)qM.

Next, let us consider the processes A and B in the second example. In fact, it is
natural that we assume the successive process Q(qA) does not perform different
labeled transitions according to the result of the measurement of qA. By the
definition of the QKD protocols we consider, which channels Alice and Bob use
does not depend on the result of the measurement of qA. Hence, we should
formalize them as follows by our criteria.

A-2. Lc!qB.measure[qA].Q(qA),EPRqA,qB ⊗ ρEM

B-2. Lmeasure[qA].c!qB.Q(qA),EPRqA,qB ⊗ ρEM.

We simplified the syntax so that it reflects these criteria. We eliminated the
constructionsM [q̃;x].P and if b then P fi. Instead, we introduced a new syntax
meas q then P saem, where the observable |1〉〈1| on the space corresponding to
the qubit4 b (i.e. |b| = 1 must be satisfied.) is measured, and if the result is 1, then
it behaves like P , else it terminates. In the new syntax, the qubit b represents
the condition for the branch, which is supposed to be computed beforehand by
some TPCP map. Besides, we eliminated classical communications for simplicity.
Since classical data can be represented by quantum data, the elimination of the
use of classical data does not weaken crucially the expressiveness of the language.
Indeed, a distribution where we have the value 0 with probability p and 1 with
probability 1 − p is represented by the diagonal density operator p|0〉〈0| + (1 −
p)|1〉〈1|.

On Ownership of Quantum System

By the definition of bisimulation relation, if LP, ρM ≈ LQ, σM, then trqv(P)(ρ) =
trqv(Q)(σ). Intuitively, qv(P) is considered as the set of quantum variables of the
process P ’s own, and qVar−qv(P) is the outsider’s. trqv(P)(ρ) ∈ D(HqVar−qv(P))
is considered as the quantum states that the outsider can access. For the bisimu-
lation relation, ownership of quantum variables is significant. In the transitions of
qCCS processes, the ownership changes by the communication between the pro-
cess and the outsider by c!q and c?q. However, there are cases where ownership
changes without communication between a process and it’s outsider.

Lhadamard[q].nil, |0〉〈0|q ⊗ ρEM
τ−→ Lnil, |0〉〈0|q ⊗ ρEM

4Note that the meta variable b stands for a boolean condition in the original syntax but the
meta variable b stands for a quantum variable with length 1 in our simplified syntax.

34

In the above configurations, qv(hadamard[q].nil) = {q} and qv(nil) = ∅. The
process loses in the transition the ownership of the variable q without sending it
to the outside. We added the restriction that op[q̃].P is defined only if q̃ ⊆ qv(P),
and changed nil to a new constructor discard(q̃) that terminates keeping the
quantum variables q̃ inside. In the original qCCS, process’s termination keeping
quantum variables q̃ inside is realized for example by if false then I [q̃].nil fi,
where I is the identity operator.

3.2.2 Simplified Syntax

In the construction op[q̃].P in the original syntax (Section 3.1), op ∈ Op is a
symbol representing a TPCP map, but we use the set of symbols representing
CP maps for a technical reason, which is described in Remark 4.2.2. Let Sop be
the set. In the construction op[q̃].P , however, only TPCP maps are considered.

Definition 3.2.1. The simplified qCCS syntax is given as follows.

P ∋ P,Q ::= discard(q̃) | c!q.P | c?q.P | op[q̃].P
| P ||Q | meas b then P saem | P\L,

where b is a quantum variable with |b| = 1, and op ∈ Sop represents a TPCP
map. The set of quantum free variables qv(·) for the simplified syntax is defined
as qv(discard(q̃)) = q̃ and qv(meas b then P saem) = qv(P). For a process to
be legal, the following conditions are required.

1. c!q.P ∈ P iff q /∈ qv(P).

2. c?q.P ∈ P iff q ∈ qv(P).

3. P ||Q ∈ P iff qv(P) ∩ qv(Q) = ∅.

4. op[q̃].P ∈ P iff q̃ ⊆ qv(P).

5. meas b then P saem ∈ P iff b ∈ qv(P).

3.3 Simplification of Operational Semantics

We simplified the operational semantics for convenience of implementation. In-
stead of considering a probability distribution on configurations, we consider a
probability-weighted quantum states represented by probability-weighted density
operators. For example, instead of considering

Lmeas b then P saem, ρM
τ−→ p • LP,

|1〉〈1|bρ|1〉〈1|b
p

M⊞

(1− p) • Ldiscard(qv(P)),
|0〉〈0|bρ|0〉〈0|b

1− p
M,

where p = tr(|1〉〈1|bρ),

we consider

Lmeas b then P saem, ρM
τ−→ LP, |1〉〈1|bρ|1〉〈1|bM

Lmeas b then P saem, ρM
τ−→ Ldiscard(qv(P)), |0〉〈0|bρ|0〉〈0|bM.

For this purpose, we define the set of probability-weighted quantum states ∆(H) :=
{pρ | p ∈ [0, 1], ρ ∈ D(H)}. Any element ρ ∈ ∆(H) can be converted to an or-
dinary density operator ρ

tr(ρ) ∈ D(H). If there is no fear of confusion, we may

35

simply say quantum states instead of probability-weighted quantum states. In
our verification tool, elements in ∆(H) are symbolically represented, which is
described in Section 3.3.1. Let S be the set of the symbolic representations. We
again call a pair {|P, ρ|} of a process P and a symbolic representation ρ of a
probability-weighted quantum state a configuration, namely, the set of configu-
rations C is defined as P ×S. For elements in C, we use the notation {| and |} for
pairing. For a configuration {|P, ρ|} ∈ C, tr([[ρ]]) can be regarded as the probability
of reaching it from another configuration, where [[ρ]] ∈ ∆(H) is the interpretation
of ρ. By this simplification, probability was excluded from the transition sys-
tem. The simplified transition system is only nondeterministic, not probabilistic.
The transition rules are introduced in Section 3.3.2, after the description of the
symbolic representation of quantum states (Section 3.3.1).

3.3.1 Symbolic Representation of Quantum States

Since cryptographic protocols are defined with security parameters, the dimen-
sions of quantum states, which are data in protocols, are unfixed. In our verifier,
quantum states are represented as symbols. First, let Snat , Sstat , Sop be finite sets
of symbols respectively representing natural numbers, quantum states, and CP
maps are assumed.

• Snat is a set of symbols representing natural numbers. A symbol 1 is an
element of Snat .

• Sstat is a set of symbols representing quantum states.

• Sop is a set of symbols representing CP maps. The symbols proj0 and
proj1 are elements of Sop .

• A function len : qVar → Snat carries each quantum variable to its qubit-
length. b ∈ qVar is called a qubit variable if len(b) = 1.

• A function arg : Sstat ∪ Sop → ⋃

n∈N+
(Snat)

n carries each symbol of quan-
tum states or CP map to qubit-lengths of its arguments. For i ∈ {0, 1},
arg(proji) = 1. For example, an EPR pair (|00〉+|11〉√

2
)(|00〉+|11〉√

2
)†q,r is repre-

sented as EPR[q, r], where EPR ∈ Sstat , len(q) = len(r) = 1, and arg(EPR) =
(1, 1).

After the sets Snat , Sstat , Sop , len(·), and arg(·) are defined, the syntax of
symbolic representations of quantum states are defined.

Definition 3.3.1. The syntax of symbolic representations of quantum states are
given as follows,

S ∋ ρ, σ ::= X[q̃] | op[q̃](ρ) | ρ ∗σ | Tr[q̃](ρ)

where b is a qubit variable, X ∈ Sstat , and op ∈ Sop. The set of quantum variables
qv(ρ) in symbolic representations ρ are defined as follows.

qv(X[q̃]) = q̃, qv(op[q̃](ρ)) = qv(ρ),

qv(ρ ∗σ) = qv(ρ) ∪ qv(σ), qv(Tr[q̃](ρ)) = qv(ρ)− q̃.

For a symbolic representation to be legal, the following conditions are required.

1. X[q1, q2, ..., qn] ∈ S iff arg(X) = (len(q1), len(q2), ..., len(qn)).

36

2. op[q1, q2, ..., qn](ρ) ∈ S iff arg(op) = (len(q1), len(q2), ..., len(qn)) and
{q1, q2, ..., qn} ⊆ qv(ρ).

3. ρ ∗σ ∈ S iff qv(ρ) ∩ qv(σ) = ∅.

4. Tr[q̃](ρ) ∈ S iff q̃ ⊆ qv(ρ).

If ρ, σ ∈ S are syntactically equal, we write ρ ≡ σ.

Intuitive meanings are as follows. The representation X[q̃] means that q̃’s
quantum state is X. The representation op[q̃](ρ) is a quantum state obtained
after application of a CP map op that acts on q̃, to ρ. The representation ρ ∗σ
is the tensor product of states ρ and σ. The representation proji[b](ρ) means
the quantum state ρ obtained after application of the projector |i〉〈i|b. The
representation Tr[q̃](ρ) means the partial trace of ρ by q̃.

Next, we define the formal interpretation of the symbolic representations. To
define it, interpretations of the elements of Snat , Sstat , and Sop must be defined
beforehand. The interpretations depend on the security parameter. For a security
parameter λ ∈ N+, the types of the interpretations [[·]]λ are as follows.

• For n ∈ Snat , [[n]]λ ∈ N+. For q ∈ qVar with len(q) = n, Hq is 2[[n]]λ-
dimensional.

• ForX ∈ Sstat with arg(X) = (n1, n2, ..., nm), [[X]]λ is an element of a Hilbert
space with dimension 2[[n1]]λ+[[n2]]λ+···[[nm]]λ .

• For op ∈ Sop with arg(op) = (n1, n2, ..., nm), [[op]]λ is a CP map on a
Hilbert space with dimension 2[[n1]]λ+[[n2]]λ+···[[nm]]λ .

For arbitrarily fixed λ, we may simply write [[·]] as [[·]]λ. The interpretation of the
symbolic representations is then defined as follows.

• [[X[q̃]]] = [[X]] ∈ ∆(Hq̃)

• [[op[q̃](ρ)]] = [[op]]q̃([[ρ]]) ∈ ∆(Hqv(ρ))

• [[ρ ∗σ]] = [[ρ]]⊗ [[σ]] ∈ ∆(Hqv(ρ) ⊗Hqv(σ))

• [[proj0[b](ρ)]] = |0〉〈0|b[[ρ]]|0〉〈0|b ∈ ∆(Hqv(ρ))

• [[proj1[b](ρ)]] = |1〉〈1|b[[ρ]]|1〉〈1|b ∈ ∆(Hqv(ρ))

• [[Tr[q̃](ρ)]] = trq̃([[ρ]]) ∈ ∆(Hqv(ρ)−q̃)

Example 3.3.2. Let qVar = {q, r}, len(q) = len(r) = n and let [[n]]λ = λ,

[[EPR]]λ = ((|00〉+|11〉√
2

)(|00〉+|11〉√
2

)†)⊗λ
def≡ EPR, arg(EPR) = (n, n), [[measure]]λ(ρ) =

∑

j∈{0,1}λ |j〉〈j|ρ|j〉〈j|, and arg(measure) = (n). The interpretation of the sym-
bolic representation measure[q](EPR[q, r]) is calculated as follows.

[[measure[q](EPR[q, r])]]λ = [[measure]]λ ⊗ IHr
(EPRq,r)

=
∑

j∈{0,1}λ

1

2λ
|jj〉〈jj|q,r

We next define transition rules on C = P × S.

37

3.3.2 Simplified Operational Semantics

Definition 3.3.3. Let a security parameter λ be arbitrarily fixed. Let Aτ :=
{τ} ∪ {c!q, c?q | c ∈ qChan, q ∈ qVar} be the set of actions. The transition →⊆
C ×Aτ × C is defined by the rules in Figure 3.4. The transition

α̂−→ is defined as
follows.

α̂−→:=

{

τ−→ ∪{({|P, ρ|}, {|P, ρ|})} (α is τ)
α−→ (otherwise)

{|c!q.P, ρ|} c!q−→ {|P, ρ|}
(In)

r ∈ qVar − qv(P)

{|c?q.P, ρ|} c?r−−→ {|P{r/q}, ρ|}
(Out)

{|op[q̃].P, ρ|} τ−→ {|P, op[q̃](ρ)|}
(Op)

{|P, ρ|} α−→ {|P ′, ρ′|} cn(α) ∩ L = ∅
{|P\L, ρ|} α−→ {|P ′\L, ρ′|}

(Res)

{|Q, ρ|} α−→ {|Q′, ρ′|}
{|P ||Q, ρ|} α−→ {|P ||Q′, ρ′|}

(Right)

{|P, ρ|} α−→ {|P ′, ρ′|}
{|P ||Q, ρ|} α−→ {|P ′||Q, ρ′|}

(Left)

{|P, ρ|} c!q−→ {|P ′, ρ|} {|Q, ρ|} c?q−−→ {|Q′, ρ|}
{|P ||Q, ρ|} τ−→ {|P ′||Q′, ρ|}

(Comm)

[[proj1[b](ρ)]]λ 6= O

{|meas b then P saem, ρ|} τ−→ {|P, proj1[b](ρ)|}
(Meas1)

[[proj0[b](ρ)]]λ 6= O

{|meas b then P saem, ρ|} τ−→ {|discard(qv(P)), proj0[b](ρ)|}
(Meas0)

Figure 3.4: Simplified Semantics

We call a new formal framework nondeterministic qCCS whose set of config-
urations is C and transition rules are defined in Definition 3.3.3. Although our
verifier, called Verifier1, is implemented based on nondeterministic qCCS, it ver-
ifies the relation ≈ defined by Deng et al [24]. We call the property of Verifier1
soundness, which is further discussed in Section 3.5.

Verifier1 handles the configurations {|P, ρ|} that consist of a process P ∈ P and
a symbolic representation ρ ∈ S of a probability-weighted quantum state [[ρ]]λ ∈
∆(H). Verifier1 obeys the simplified transition rules defined in Definition 3.3.3
except for (Measi) for i = 0, 1: it performs the transition even if [[proji[b](ρ)]]λ =
|i〉〈i|b[[ρ]]λ|i〉〈i|b = O for ρ ∈ S.

38

3.4 Automated Verification of Bisimilarity

3.4.1 Equality Test of Partial Traces

Calculation of Partial Traces

To verify bisimilarity, the equality of partial traces must be checked. In fact, par-
tial traces can be to some extent calculated quite simply focusing on the structure
of the expression of the quantum states. For example, suppose there are 2 qubits
named q and r, and the the outsider has only r. When the quantum state of
the total system is Eq(|0〉〈0|q ⊗ |1〉〈1|r), the quantum state that the outsider can
access is trq(Eq(|0〉〈0|q ⊗ |1〉〈1|r)). We have trq(Eq(|0〉〈0|q ⊗ |1〉〈1|r)) = |1〉〈1|r for
an arbitrary operator Eq that acts on q, simply eliminating the state |0〉〈0|q and
the operator Eq. This is intuitively interpreted that the outsider cannot observe
what happens to quantum system that he or she cannot access. For the sym-
bolic representations, they can be simplified focusing on occurrence of quantum
variables. Formulating such calculation, we obtain the following rewriting rules,
where interpretation of the right-hand side of = is equal to that of the left-hand
side regardless of Snat , Sstat , Sop , their interpretations, and definitions of len(·)
and arg(·).

Tr[q̃](ρ) = Tr[r̃](Tr[s̃](ρ)) if q̃ = r̃ ∪ s̃ (3.1)

Tr[q̃](op[r̃](ρ)) = Tr[q̃](ρ) if r̃ ⊆ q̃ and op represents a TPCP map (3.2)

Tr[q̃](op[r̃](ρ)) = op[r̃](Tr[q̃](ρ)) if q̃ ∩ r̃ = ∅ (3.3)

Tr[q̃](ρ ∗ ρq̃ ∗ σ) = ρ ∗ σ, where qv(ρq̃) = q̃ (3.4)

Algorithm to Trace Out

Verifier1 uses the rewriting rules above. The procedure goes as follows. Let
Tr[q̃](E1[q̃1](...(En[q̃n](ρ1∗...∗ρm))...)) be the objective quantum state, where Ei is
a symbol representing a map which is either trace preserving (TP) or not.

1. A set S0 is initialized to be q̃.

2. For each i (1 ≤ i ≤ n), Ei’s are successively processed.

• If Ei is TP and q̃i ⊆ Si−1 holds, then Ei[q̃i] is eliminated by rule (3.2),
and Si is defined to be Si−1.

• If Ei is TP and q̃i ⊆ Si−1 does not hold, then Si is defined to be
Si−1\q̃i, which is application of rules (3.1) and (3.3).

• If Ei is not TP, then Si is defined to be Si−1\q̃i, which is application
of rules (3.1) and (3.3).

3. A set T , recording which quantum variables related to the state has been
deleted by rule (3.6), is initialized to ∅. For each j (1 ≤ j ≤ m), if qv(ρj) ⊆
Sn, then ρj is eliminated and T is updated to T ∪ qv(ρj).

4. Tr[q̃] is rewritten to Tr[q̃ − T].

Example 3.4.1. A symbolic representation

Tr[q, r, b](neg[b](proj0[b](hadamard[r](cnot[q, b](EPR[q, s] ∗ R[r] ∗ R[b])))))

39

is simplified by the trace out procedure as follows.

Tr[q, r, b](neg[b](proj0[b](hadamard[r](cnot[q, b](EPR[q, s] ∗ R[r] ∗ R[b])))))
=Tr[b](proj0[b](Tr[q, r](hadamard[r](cnot[q, b](EPR[q, s] ∗ R[r] ∗ R[b])))))
=Tr[b](proj0[b](Tr[q, r](cnot[q, b](EPR[q, s] ∗ R[r] ∗ R[b]))))
=Tr[b](proj0[b](Tr[q](cnot[q, b](Tr[r](EPR[q, s] ∗ R[r] ∗ R[b])))))
=Tr[b](proj0[b](Tr[q](cnot[q, b](EPR[q, s] ∗ R[b]))))
=Tr[b, q](proj0[b](cnot[q, b](EPR[q, s] ∗ R[b])))

User-defined Equations

Verifier1 also takes user-defined equations to verify equality of quantum states
that are symbolically represented. The equations are of the form ρ = σ, where
ρ, σ ∈ S. An equation ρ = σ is said to be valid if [[ρ]] = [[σ]].

There is a restriction on user-defined equations ρ = σ: ρ and σ must contain
the same number of proji[b] for i = 0, 1 and for all b ∈ qVar . This makes the
proof of the soundness (Theorem 3.5.11) easier.

Application of User-defined Equations

If an objective quantum state has a part that matches to the left-hand side of a
user-defined equation, the part is rewritten to the right-hand side. To apply a
user-defined equation, Verifier1 automatically solves commutativity of CP maps
or partial traces for disjoint sets of quantum variables. For example, if the ob-
jective quantum state is Tr[q](hadamard[s](EPR[q, r] ∗ X[s])) and a user defines an
equation Tr[q](EPR[q, r]) = Tr[q](PROB[q, r]) (E1), the application procedure goes
as follows.

Tr[q](hadamard[s](EPR[q, r] ∗ X[s]))
= hadamards[s](Tr[q](EPR[q, r] ∗ X[s])) (by (3.2))

= hadamard[s](Tr[q](PROB[q, r] ∗ X[s])) (by E1)

Since trace-out may have become applicable by application of user-defined rules,
trace-out procedure is applied again. In each opportunity to test the equality of
quantum states, each user-defined equation is applied only once. This guarantees
whatever rules a user defines, the equality test terminates.

Equality Test after the Rewriting

After the rewriting by user-defined equations and trace out, equality of the two
symbolic representations are checked up to exchange of the order of CP map
application and tensor product. For example, symbolic expressions

Tr[q](hadamard[s](bitflip[r](EPR[q, r] ∗ X[s]))) and
Tr[q](bitflip[r](hadamard[s](X[s] ∗ EPR[q, r])))

must be judged to be equal. Verifier1 automatically judges the equality by syntac-
tically checking disjointness of CP maps’ arguments and by sorting environment
symbols by name, which are concatenated by “∗”.

40

3.4.2 Algorithm to Check Bisimilarity

The recursive procedure to verify bisimilarity is as follows. It returns either true
or false.

1. The procedure takes as input two configurations {|P0, ρ0|}, {|Q0, σ0|} and
user-defined equations eqs on quantum states.

2. If P0 and Q0 can perform any τ -transitions of TPCP map applications, they
are all performed at this point. Let {|P, ρ|} and {|Q, σ|} be the configurations
thus obtained.

3. Whether qv(P) = qv(Q) is checked. If it does not hold, the procedure
returns false.

4. Whether Tr[qv(P)](ρ) = Tr[qv(Q)](σ) is checked using eqs . The procedure
to check equality of quantum states are described in the previous subsection.
If it does not hold, the procedure returns false.

5. A new TPCP map symbol E [qv(ρ) − qv(P)] that stands for an arbitrary
operation is generated.

6. (a) For each {|P ′, ρ′|} such that

• {|P, E [qv(ρ)− qv(P)](ρ)|} α−→ {|P ′, ρ′|} holds, and

• neither

– ρ′ ≡ proj0[b](E [qv(ρ)− qv(P)](ρ)) nor

– ρ′ ≡ proj1[b](E [qv(ρ)− qv(P)](ρ))

holds for any b ∈ qv(P),

the procedure checks whether there exists {|Q′, σ′|} such that

{|Q, E [qv(σ)− qv(Q)](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|}

holds and the procedure returns true with the input {|P ′, ρ′|}, {|Q′, σ′|},
and eqs.

(b) For each pair ({|P ′, ρ′|}, {|P ′′, ρ′′|}) such that

• {|P, E [qv(ρ)− qv(P)](ρ)|} τ−→ {|P ′, ρ′|},
• ρ′ ≡ proj0[b](E [qv(ρ)− qv(P)](ρ)),

• {|P, E [qv(ρ)− qv(P)](ρ)|} τ−→ {|P ′′, ρ′′|}, and
• ρ′′ ≡ proj1[b](E [qv(ρ)− qv(P)](ρ))

hold for some b ∈ qv(P), the procedure checks whether there exists a
pair ({|Q′, σ′|}, {|Q′′, σ′′|}) such that

• {|Q, E [qv(σ)− qv(Q)](σ)|} τ∗−→ {|Q̂, σ̂|},
• {|Q̂, σ̂|} τ−→ {|Q̂′, proj0[b](σ̂)|} τ∗−→ {|Q′, σ′|}, and
• {|Q̂, σ̂|} τ−→ {|Q̂′′, proj1[b](σ̂)|} τ∗−→ {|Q′′, σ′′|}

hold for some Q̂, Q̂′, and Q̂′′, and

• Verifier1 returns true with ({|P ′, ρ′|}, {|Q′, σ′|}) and eqs, and

• Verifier1 returns true with ({|P ′′, ρ′′|}, {|Q′′, σ′′|}) and eqs.

If there exists, it goes to the next step 7. Otherwise, it returns false.

7. For each {|Q′, σ′|} such that {|Q, E [qv(σ) − qv(Q)](σ)|} α−→ {|Q′, σ′|}, the
procedure checks the symmetric condition of the step 6. If there exists, it
returns true. Otherwise, it returns false.

41

The procedure always terminates. This is because the transition of the processes
is finite and equality check in the step 4 always terminates.

The step 2 prominently decreases the spaces to search. This is based on the
fact that Lop1[q̃].P ||op2[r̃].Q, ρM and LP ||Q,F r̃

op2(E
q̃
op1(ρ))M are bisimilar, and

F r̃
op2(E

q̃
op1(ρ)) = E q̃op1(F r̃

op2(ρ)) holds because q̃ ∩ r̃ = ∅ and qv(P) ∩ qv(Q) = ∅
hold.

In Section 3.5, when we prove soundness of Verifier1, we apply the fact that
the numbers of proji’s are equal in ρ and σ if Verifier1 returns true with {|P, ρ|}
and {|Q, σ|}. The reason is as follows. There is the restriction that the both sides
of an equation contains the same number of proji’s. This implies that rewriting
by an arbitrary user-defined equation does not change the number of proji’s in
a symbolic representation. Besides, the trace out procedure does not eliminate
proji’s. Therefore, the numbers of proji’s must be equal to have passed the
equality test in the step 4.

We make here a remark about the step 6 (b). Suppose the following transitions
are performed.

• {|P, E [qv(ρ)− qv(P)](ρ)|} τ−→ {|P ′, proj0[b](E [qv(ρ)− qv(P)](ρ))|}

• {|P, E [qv(ρ)− qv(P)](ρ)|} τ−→ {|P ′′, proj1[b](E [qv(ρ)− qv(P)](ρ))|}

To return true with {|P, ρ|}, {|Q, σ|}, and eqs, it requires the existence of {|Q′, σ′|}
and {|Q′′, σ′′|} satisfying the conditions mentioned in 6 (b), even if [[proj0[b](E [qv(ρ)−
qv(P)](ρ))]] = O holds, which means the probability of this transition is 0. As
for this case, in fact, only the existence of {|Q′′, σ′′|} is necessary in the proof of
the soundness but that of {|Q′, σ′|} is not. Therefore, the condition that Verifier1
returns true with {|P, ρ|} and {|Q, σ|} is stronger than the condition that the two
qCCS configurations corresponding to them are bisimilar.

Memoization

We also employ a memoization technique. Let {|P, ρ|} and {|Q, σ|} have the transi-
tions {|P, ρ|} α−→ {|P ′, ρ′|} and {|Q, σ|} α−→ {|Q′, σ′|}, and assume {|P ′, ρ′|} ≈ {|Q′, σ′|}.
When checking whether {|P, ρ|} ≈ {|Q, σ|} holds, Verifier1 first checks {|Q, σ|}
simulates {|P, ρ|}’s transition. For {|P, ρ|} α−→ {|P ′, ρ′|}, Verifier1 finds {|Q, σ|} α−→
{|Q′, σ′|}, and then recursively checks {|P ′, ρ′|} ≈ {|Q′, σ′|}. Verifier1 then checks
{|P, ρ|} simulates {|Q, σ|}’s transition. For the transition {|Q, σ|} α−→ {|Q′, σ′|}, it
finds the transition {|P, ρ|} α−→ {|P ′, ρ′|}, and next checks {|Q′, σ′|} ≈ {|P ′, ρ′|}.
Since ≈ is a symmetric relation, the last condition has been already obtained
when checking {|P ′, ρ′|} ≈ {|Q′, σ′|}. Verifier1 reuses the result.

3.5 Soundness of Verifier1

Verifier1 is designed to be sound in the following sense. For arbitrarily-fixed secu-
rity parameters λ, if Verifier1 returns true for two configurations {|P, ρ|}, {|Q, σ|} ∈
C, and some valid user-defined equations, then the corresponding two configura-
tions that are elements of Con are bisimilar in the original qCCS. Our goal is to
prove Theorem 3.5.11 that states the correspondence formally. In this section, we
prepare lemmas to prove it. In the following arguments, let security parameters
λ be arbitrarily fixed.

Suppose {|P, ρ|} α−→ {|P ′, ρ′|} holds. We say the transition
α−→ is caused by

rule’s name, where rule’s name is either (In), (Out), (Op), (Meas1), or (Meas0),
if the derivation tree begins with the application of the rule and (Comm) rule is

42

not used. If (Comm) rule is used, we say the transition is caused by (Comm). We
first prepare the notation to focus on a part of a process that causes a transition.

Definition 3.5.1. The evaluation contexts are defined as follows.

C[] ::= | C[]‖P | P‖C[] | C[]\L

Lemma 3.5.2. If {|P, ρ|} c!q−→ {|P ′, ρ′|}, then P = C[c!q.P0] and P
′ = C[P0] hold

for some process P0 and evaluation context C[] that does not restrict c.

Proof. We prove it by induction of the number n of application of the transition
rules.
(Case 1) Assume n = 1. The only rule to derive

c!q−→ with one time application is
(Out). Therefore, P = c!q.P0 holds.
(Case 2) Assume n > 1. The last rule applied is either (Res), (Right), or (Left).
We prove the case of (Res) as other cases are similar. The last derivation is

{|P1, ρ|} c!q−→ {|P ′
1, ρ|} c /∈ L

{|P1\L, ρ|} c!q−→ {|P ′
1\L, ρ|}

,

where P = P1\L and P ′ = P ′
1\L hold, for some L. By I.H., P1 = C[c!q.P2]

and P ′
1 = C[P2] for some C[] and P2. We take an evaluation context C ′[] =

C[]\L. As c /∈ L, C ′[] does not restrict c. We then have P = C ′[c!q.P2] and
P ′ = C ′[P2].

Lemma 3.5.2 is for transitions caused by (Out). Transitions caused by (In),
(Op), (Measi), and (Comm) have a similar property since the derivations start
from those and proceed by applying (Left), (Right), (Res) rules. The original
qCCS also has a similar property.

Next, we define the correspondence of processes in P and those in Proc, where
P is the set of the processes of nondeterministic qCCS and Proc is the set of the
processes of original qCCS.

Definition 3.5.3. The function cnv : P → Proc is inductively defined as follows.

cnv(discard[q̃]) = if false then I[q̃].nil fi

cnv(c!q.P) = c!q.cnv(P)

cnv(c?q.P) = c?q.cnv(P)

cnv(op[q̃].P) = op[q̃].cnv(P), where Eop = [[op]]

cnv(meas b then P saem) = |1〉〈1|[b;x].if x = 1 then cnv(P) fi

cnv(P ||Q) = cnv(P)||cnv(Q)

cnv(P\L) = cnv(P)\L

For an evaluation context C[], cnv(C)[] is the context of original qCCS process
obtained applying cnv to all processes in C[].

By the definition, we have the following proposition.

Proposition 3.5.4. qv(P) = qv(cnv(P)) holds. If cnv(P) = cnv(Q), then P =
Q.

We then prove lemmas that state correspondence of original and Verifier1’s
frameworks.

43

Lemma 3.5.5. {|P, ρ|} α−→ {|P ′, ρ′|} and tr([[ρ]]) = tr([[ρ′]]) hold, then

Lcnv(P),
[[ρ]]

tr([[ρ]])
M
α−→ µ and µ(≈̇)†1 • Lcnv(P ′),

[[ρ′]]
tr([[ρ′]])

M

hold for some µ ∈ D(Con).

Proof. (α is c!q) By lemma 3.5.2, P = C[c!q.P0] and P
′ = C[P0] holds for some

evaluation context C[] and process P0. Since

cnv(P) = cnv(C[c!q.P0]) = cnv(C)[c!q.cnv(P0)] and cnv(P ′) = cnv(C[P0])

hold, Lcnv(P), [[ρ]]
tr([[ρ]])M

c!q−→ Lcnv(P ′), [[ρ]]
tr([[ρ]])M holds. The conclusion of the lemma

holds because identity is a strong bisimulation.
(α is c?q or τ caused by Comm) Similar to the above case.
(α is τ caused by Op) Similar to the above cases except that the quantum state
changes. The correctness of the statement is checked observing that ρ′ = op[r̃](ρ)

for some op[q̃]and Eopr̃ ([[ρ]]
tr([[ρ]])) =

[[ρ′]]
tr([[ρ′]]) holds because Eop is trace-preserving.

(α is τ caused by Meas1) Similarly to lemma 3.5.2, P = C[meas b then P0 saem]
and P ′ = C[P0] holds for some evaluation context C[] and process P0. By
tr([[ρ]]) = tr([[ρ′]]) = tr([[proj1[b](ρ)]]) = tr(|1〉〈1|b[[ρ]]),

Lcnv(C)[|1〉〈1|[b;x].if x = 1 then cnv(P0) fi],
[[ρ]]

tr([[ρ]])
M
τ−→

1 • Lcnv(C)[if 1 = 1 then cnv(P0) fi],
|1〉〈1|b[[ρ]]

tr(|1〉〈1|b[[ρ]])
M

holds. Since

Lif 1 = 1 then cnv(P0) fi,
|1〉〈1|b[[ρ]]|1〉〈1|b
tr(|1〉〈1|b[[ρ]])

M(≈̇)†Lcnv(P0),
|1〉〈1|b[[ρ]]|1〉〈1|b
tr(|1〉〈1|b[[ρ]])

M

and |1〉〈1|b[[ρ]]|1〉〈1|b = [[ρ′]] hold,

1•Lcnv(C)[if 1 = 1 then cnv(P0) fi],
|1〉〈1|b[[ρ]]|1〉〈1|b
tr(|1〉〈1|b[[ρ]])

M(≈̇)†1•Lcnv(P ′),
[[ρ′]]

tr([[ρ′]])
M.

holds by the congruence of ≈̇ (Proposition 3.1.20).
(α is τ caused by Meas0) Similar to the case of Meas1.

Lemma 3.5.6. {|P, ρ|} τ∗−→ α̂−→ τ∗−→ {|P ′, ρ′|} and tr([[ρ]]) = tr([[ρ′]]) holds, then

Lcnv(P), [[ρ]]
tr([[ρ]])M ⇒ (

α̂−→)† ⇒ µ and µ(≈̇)†Lcnv(P ′), [[ρ′]]
tr([[ρ′]])M holds for some µ ∈

D(Con).

Proof. By assumption, we have

• {|P, ρ|} τ−→ {|P1, ρ1|} τ−→ · · · τ−→ {|Pk, ρk|} α̂−→ {|P̂ , ρ̂|} τ−→ {|P ′
1, ρ

′
1|}

τ−→ · · · τ−→
{|P ′

m, ρ
′
m|},

• tr([[ρ]]) = tr([[ρ1]]) = · · · = tr([[ρ′]]), and

• {|P ′
m, ρ

′
m|} = {|P ′, ρ′|}

44

for some k, m, P1,...,Pk,P̂ ,P
′
1,...,P

′
m ρ1,...,ρk,ρ̂,ρ

′
1,...,ρ

′
m. By {|P, ρ|} τ−→ {|P1, ρ1|}

and tr([[ρ]]) = tr([[ρ1]]) and the previous lemma,

Lcnv(P),
[[ρ]]

tr([[ρ]])
M
τ−→ µ1(≈̇)†1 • Lcnv(P1),

[[ρ1]]

tr([[ρ1]])
M

holds for some µ1 ∈ D(Con). Next, we prove for all i (1 ≤ i ≤ k − 1) that
{|Pi, ρi|} τ−→ {|Pi+1, ρi+1|} and tr([[ρi]]) = tr([[ρi+1]]) and

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ µi(≈̇)†1 • Lcnv(Pi),

[[ρi]]

tr([[ρi]])
M for some µi

imply

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ µi+1(≈̇)†1 • Lcnv(Pi+1),

[[ρi+1]]

tr([[ρi+1]])
M for some µi+1.

By {|Pi, ρi|} τ−→ {|Pi+1, ρi+1|} and tr([[ρi]]) = tr([[ρi+1]]) and the previous lemma,
we have

Lcnv(Pi),
[[ρi]]

tr([[ρi]])
M ⇒ µ′i+1(≈̇)†1 • Lcnv(Pi+1),

[[ρi+1]]

tr([[ρi+1]])
M for some µ′i+1.

By µi(≈̇)†1 • Lcnv(Pi),
[[ρi]]

tr([[ρi]])
M and Lcnv(Pi),

[[ρi]]
tr([[ρi]])

M ⇒ µ′i+1, µi ⇒ µi+1 and

µi+1(≈̇)†µ′i+1 holds for some µi+1. We then have

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ µi ⇒ µi+1(≈̇)†µ′i+1(≈̇)†1 • Lcnv(Pi+1),

[[ρi+1]]

tr([[ρi+1]])
M,

namely,

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ µi+1(≈̇)†1 • Lcnv(Pi+1),

[[ρi+1]]

tr([[ρi+1]])
M for some µi+1.

Applying this argument repeatedly, we have

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ µk(≈̇)†1 • Lcnv(Pk),

[[ρk]]

tr([[ρk]])
M for some µk.

By the similar argument, we have

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ (

α̂−→)†µ̂(≈̇)†1 • Lcnv(P̂),
[[ρ̂]]

tr([[ρ̂]])
M for some µ̂.

Furthermore, we have

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ (

α̂−→)† ⇒ µ(≈̇)†1 • Lcnv(P ′),
[[ρ′]]

tr([[ρ′]])
M for some µ.

Lemma 3.5.7. If

• {|P, ρ|} = {|C[meas b then P0 saem], ρ|} τ−→ {|C[P0], proj1[b](ρ)|} def
= {|P ′, ρ′|}

and

• {|P, ρ|} τ−→ {|C[discard(qv(P0))], proj0[b](ρ)|} def
= {|P ′′, ρ′′|}

hold, then

45

• Lcnv(P), [[ρ]]
tr([[ρ]])M

τ−→ µ and

• µ(≈̇)† tr([[ρ
′]])

tr([[ρ]]) • Lcnv(P ′), [[ρ′]]
tr([[ρ′]])M +

tr([[ρ′′]])
tr([[ρ]]) • Lcnv(P ′′), [[ρ′′]]

tr([[ρ′′]])M

hold for some µ ∈ D(Con).

Proof. We have

Lcnv(P),
[[ρ]]

tr([[ρ]])
M = Lcnv(C)[|1〉〈1|[b;x].if x = 1 then cnv(P0) fi],

[[ρ]]

tr([[ρ]])
M

τ−→tr(|0〉〈0|b[[ρ]])
tr([[ρ]])

• Lcnv(C)[if 0 = 1 then cnv(P0) fi],
|0〉〈0|b[[ρ]]|0〉〈0|b
tr(|0〉〈0|b[[ρ]])

M

+
tr(|1〉〈1|b[[ρ]])

tr([[ρ]])
• Lcnv(C)[if 1 = 1 then cnv(P0) fi],

|1〉〈1|b[[ρ]]|1〉〈1|b
tr(|1〉〈1|b[[ρ]])

M
def
= µ.

Besides, we have

Lcnv(C)[if 0 = 1 then cnv(P0) fi],
|0〉〈0|b[[ρ]]|0〉〈0|b
tr(|0〉〈0|b[[ρ]])

M

≈̇ Lcnv(C)[if 0 = 1 then I[qv(P0)].nil fi],
|0〉〈0|b[[ρ]]|0〉〈0|b
tr(|0〉〈0|b[[ρ]])

M = Lcnv(P ′′),
[[ρ′′]]

tr([[ρ′′]])
M,

and

Lcnv(C)[if 1 = 1 then cnv(P0) fi],
|1〉〈1|b[[ρ]]|1〉〈1|b
tr(|1〉〈1|b[[ρ]])

M

≈̇ Lcnv(C)[cnv(P0)],
|1〉〈1|b[[ρ]]|1〉〈1|b
tr(|1〉〈1|b[[ρ]])

M = Lcnv(P ′),
[[ρ′]]

tr([[ρ′]])
M.

We have the conclusion of the lemma by the linearity of (≈̇)†.

Lemma 3.5.8. If

• {|P, ρ|} τ∗−→ {|C[meas b then P ′ saem], ρ′|} τ−→ {|C[P ′], proj1[b](ρ′)|} τ∗−→
{|P1, ρ1|},

• {|C[meas b then P ′ saem], ρ′|} τ−→ {|C[discard(qv(P ′))], proj0[b](ρ′)|} τ∗−→
{|P0, ρ0|}, and

• tr([[ρ]]) = tr([[ρ′]]) = tr([[ρ0]]) + tr([[ρ1]])

hold, then

• Lcnv(P), [[ρ]]
tr([[ρ]])M ⇒ µ and

• µ(≈̇)† tr([[ρ0]])tr([[ρ]]) • Lcnv(P0),
[[ρ0]]

tr([[ρ0]])
M + tr([[ρ1]])

tr([[ρ]]) • Lcnv(P1),
[[ρ1]]

tr([[ρ1]])
M

hold for some µ ∈ D(Con).

Proof. By the same argument as the proof of Lemma 3.5.6, we have

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ µ0(≈̇)†1 • Lcnv(C[meas b then P ′ saem]),

[[ρ′]]
tr([[ρ′]])

M

46

for some µ0. By the previous lemma, we have

1 • Lcnv(C[meas b then P ′ saem]),
[[ρ′]]

tr([[ρ′]])
M ⇒ µ1, and

µ1(≈̇)†
tr([[proj0[b](ρ′)]])

tr([[ρ]])
• Lcnv(C[discard(qv(P ′))]),

[[proj0[b](ρ′)]]
tr([[proj0[b](ρ′)]])

M

+
tr([[proj1[b](ρ′)]])

tr([[ρ]])
• Lcnv(C[P ′]),

[[proj1[b](ρ′)]]
tr([[proj1[b](ρ′)]])

M.

for some µ1. By

tr([[ρ′]]) = tr([[proj0[b](ρ′)]]) + tr([[proj1[b](ρ′)]]),

tr([[proj0[b](ρ′)]]) ≥ tr([[ρ0]]), and

tr([[proj1[b](ρ′)]]) ≥ tr([[ρ1]]),

we have tr([[proj0[b](ρ′)]]) = tr([[ρ0]]) and tr([[proj1[b](ρ′)]]) = tr([[ρ1]]). Let
tr([[ρ0]])
tr([[ρ]])

def
= p0 and tr([[ρ1]])

tr([[ρ]])

def
= p1. Now, we apply the same argument as the proof

of Lemma 3.5.6 to each configuration. We have

X
def
= Lcnv(C[discard(qv(P ′))]),

[[proj0[b](ρ′)]]
tr([[proj0[b](ρ′)]])

M ⇒ µ2(≈̇)†Lcnv(P0),
[[ρ0]]

tr([[ρ0]])
M

and

Y
def
= Lcnv(C[P ′]),

[[proj1[b](ρ′)]]
tr([[proj1[b](ρ′)]])

M ⇒ µ3(≈̇)†Lcnv(P1),
[[ρ1]]

tr([[ρ1]])
M

for some µ2 and µ3. We then have

µ1(≈̇)†p0 •X + p1 • Y ⇒ p0µ2 + p1µ3 (♯) and

p0µ2 + p1µ3(≈̇)†p0 • Lcnv(P0),
[[ρ0]]

tr([[ρ0]])
M + p1 • Lcnv(P1),

[[ρ1]]

tr([[ρ1]])
M.

By (♯), we have µ1 ⇒ µ and µ(≈̇)†p0µ2 + p1µ3 for some µ. Therefore,

Lcnv(P),
[[ρ]]

tr([[ρ]])
M ⇒ µ0 ⇒ µ1 ⇒ µ and

µ(≈̇)†p0 • Lcnv(P0),
[[ρ0]]

tr([[ρ0]])
M + p1 • Lcnv(P1),

[[ρ1]]

tr([[ρ1]])
M

hold.

Lemma 3.5.9. If Lcnv(P), [[ρ]]
tr([[ρ]])M

α−→ µ holds and µ is a point distribution, then

{|P, ρ|} α−→ {|P ′, ρ′|} and µ(≈̇)†1 • Lcnv(P ′), [[ρ′]]
tr([[ρ′]])M for some {|P ′, ρ′|}.

Proof. (α is c!q) There exist a qCCS’s evaluation context D[] that does not
restrict c and process P̃ ∈ Proc such that cnv(P) = D[c!q.P̃]. There exist an
evaluation context C[] of simplified processes not restricting c and P0 ∈ P such
that D[] = cnv(C)[] and P̃ = cnv(P0). Therefore, cnv(P) = cnv(C[c!q.P0])

holds. By Proposition 3.5.4, P = C[c!q.P0] holds. We then have {|P, ρ|} c!q−→
{|C[P0], ρ|}. We also have

Lcnv(P),
[[ρ]]

tr([[ρ]])
M

c!q−→ LD[P̃],
[[ρ]]

tr([[ρ]])
M = Lcnv(C[P0]),

[[ρ]]

tr([[ρ]])
M

47

(α is c?q) This case is similar to the above case.
(α is τ caused by application of a TPCP map or communication) These cases are
also similar to the case of c!q.
(α is τ caused by measurement) We assume the result of the measurement is
1 with probability 1. The argument of the other case is similar. We omit the
similar argument as that in the case of c!q. We have

• P = C[meas b then P0 saem],

• Lcnv(P), [[ρ]]
tr([[ρ]])M

τ−→ LD[if 1 = 1 then P̃ fi], |1〉〈1|b[[ρ]]|1〉〈1|btr(|1〉〈1|b[[ρ]]) M

• LD[if 1 = 1 then P̃ fi], |1〉〈1|b[[ρ]]|1〉〈1|btr(|1〉〈1|b[[ρ]]) M(≈̇)†LD[P̃], |1〉〈1|b[[ρ]]|1〉〈1|btr(|1〉〈1|b[[ρ]]) M, and

• D[P̃] = cnv(C[P0])

for some C[], b, P0, D[], and P̃ .

Lemma 3.5.10. If Lcnv(P), [[ρ]]
tr([[ρ]])M

α−→ µ holds and µ is not a point distribution,
then

1. α is τ ,

2. {|P, ρ|} = {|C[meas b then P ′ saem], ρ|} for some evaluation context C[],
qubit variable b, process P ′,

3. {|P, ρ|} τ−→ {|C[discard(qv(P ′))], ρ1|} def
= {|P1, ρ1|},

4. {|P, ρ|} τ−→ {|C[P ′], ρ2|} def
= {|P2, ρ2|}, and

5. µ(≈̇)† tr([[ρ1]])tr([[ρ]]) • Lcnv(P1),
[[ρ1]]

tr([[ρ1]])
M + tr([[ρ2]])

tr([[ρ]]) • Lcnv(P2),
[[ρ2]]

tr([[ρ2]])
M

Proof. Since µ is not a point distribution, the transition is caused by measurement
(1). Therefore, we have P = C[meas b then P ′ saem] for some evaluation context
C[], qubit variable b, and process P ′ (2). We have (3) and (4) immediately. We
also have

µ =
tr([[ρ1]])

tr([[ρ]])
• Lcnv(C)[if 0 = 1 then cnv(P ′) fi],

[[ρ1]]

tr([[ρ1]])
M

+
tr([[ρ1]])

tr([[ρ]])
• Lcnv(C)[if 1 = 1 then cnv(P ′) fi],

[[ρ2]]

tr([[ρ2]])
M

(≈̇)†
tr([[ρ1]])

tr([[ρ]])
• Lcnv(P1),

[[ρ1]]

tr([[ρ1]])
M

+
tr([[ρ2]])

tr([[ρ]])
• Lcnv(P2),

[[ρ2]]

tr([[ρ2]])
M.

3.5.1 The Correspondence

The following theorem states the soundness of Verifier1.

Theorem 3.5.11. If Verifier1 returns true with the input {|P, ρ|}, {|Q, σ|} ∈
P × S satisfying tr([[ρ]]) = tr([[σ]]) = 1, and a set of valid equations eqs, then
Lcnv(P), [[ρ]]M ≈ Lcnv(Q), [[σ]]M holds.

48

Proof. We assume that Verifier1 uses a simplified algorithm without the step 2
in which TPCP maps are performed without any transition. The theorem is still
proven to hold with the step 2 extending the proof.

Assume all equations in eqs are valid. We define

Reqs :=

{

(X,Y)
X ≈̇ Lcnv(P), [[ρ]]

tr([[ρ]])M, Y ≈̇ Lcnv(Q), [[σ]]
tr([[σ]])M, and

Verifier1 returns true with {|P, ρ|} and {|Q, σ|} using eqs.

}

.

We then have Lcnv(P), [[ρ]]MReqsLcnv(Q), [[σ]]M if Verifier1 returns true with the
input {|P, ρ|}, {|Q, σ|} ∈ C, tr([[ρ]]) = tr([[σ]]) = 1, and eqs. It is sufficient to show
that Reqs is a weak bisimulation relation. Let (X,Y) be an arbitrary element in
Reqs . The condition of quantum variable is satisfied by the definition of cnv().
The condition of partial trace is checked as follows.

trqv(cnv(P))(
[[ρ]]

tr([[ρ]])
) =

1

tr([[ρ]])
[[Tr[qv(P)](ρ)]] (by the definition of [[·]])

=
1

tr([[σ]])
[[Tr[qv(Q)](σ)]] (by validity of eqs)

= trqv(cnv(Q))(
[[σ]]

tr([[σ]])
) (by the definition of [[·]])

Next, we check the condition of simulation. Let Er̃ be an arbitrary TPCP
map acting on r̃ ⊆ qVar − qv(P). Assume X

α−→ µ. By strong bisimulation,

Lcnv(P), Er̃([[ρ]]
tr([[ρ]]))M

α−→ µ′ and µ(≈̇)†µ′ hold.

(Case 1) Assume µ′ is a point distribution. By lemma 3.5.9, {|P, Ē [r̃](ρ)|} α−→
{|P ′, ρ′|} interpreting Ē as Er̃, and µ′(≈̇)†Lcnv(P ′), [[ρ′]]

tr([[ρ′]])M hold for some {|P ′, ρ′|}.
Since Verifier1 returns true, there exists {|Q′, σ′|} such that {|Q, Ē [r̃](σ)|} τ∗−→ α̂−→ τ∗−→
{|Q′, σ′|} holds and Verifier1 returns true with {|P ′, ρ′|}. This implies tr([[σ′]]) =
tr([[ρ′]]) = tr([[Ē [r̃](ρ)]]) = tr([[Ē [r̃](σ)]]). Now, we can apply Lemma 3.5.6. We
have

Lcnv(Q), Er̃(
[[σ]]

tr([[σ]])
)M ⇒ α̂−→⇒ ν ′(≈̇)†1 • Lcnv(Q′),

[[σ′]]
tr([[σ′]])

M

for some ν. Next, by strong bisimulation, Y ⇒ α̂−→⇒ ν and ν ′(≈̇)†ν. We then
have

µ(≈̇)†Lcnv(P ′),
[[ρ′]]

tr([[ρ′]])
M and ν(≈̇)†Lcnv(Q′),

[[σ′]]
tr([[σ′]])

M.

By the definition of (·)†, µ can be written as
∑

i piX
′
i and X

′
i ≈̇ Lcnv(P ′), [[ρ′]]

tr([[ρ′]])M

for all i. Similarly, ν can be written as
∑

j qjY
′
j and Y ′

j ≈̇ Lcnv(Q′), [[σ′]]
tr([[σ′]])M for

all j. Since Verifier1 returns true with {|P ′, ρ′|} and {|Q′, σ′|}, XiReqsYj for all

i, j. holds. Therefore,
∑

i,j piqjXiR†
eqs

∑

i,j piqjYj holds. This is equivalent to

µR†
eqsν.

(Case 2) Assume µ′ is not a point distribution. By lemma 3.5.10, {|P, Ē [r̃](ρ)|} τ−→
{|P1, ρ1|} and {|P, Ē [r̃](ρ)|} τ−→ {|P2, ρ2|} interpreting Ē as Er̃, and

µ′(≈̇)†
tr([[ρ1]])

tr([[ρ]])
• Lcnv(P1),

[[ρ1]]

tr([[ρ1]])
M +

tr([[ρ2]])

tr([[ρ]])
• Lcnv(P2),

[[ρ2]]

tr([[ρ2]])
M

hold. Since Verifier1 returns true, there exists configurations {|Q1, σ1|} and
{|Q2, σ2|} such that

49

• {|Q, Ē [r̃](σ)|} τ∗−→ {|D[meas b then Q′ saem], σ′|},

• {|D[meas b then Q′ saem], σ′|} τ−→ {|D[Q′], proj1[b](σ′)|} τ∗−→ {|Q1, σ1|},

• {|D[meas b then Q′ saem], σ′|} τ−→ {|D[discard(qv(Q′))], proj0[b](σ′)|}
τ∗−→ {|Q2, σ2|},

hold for some D, b,Q′ and σ′, and

• Verifier1 returns true with {|P1, ρ1|}, {|Q1, σ1|}, and eqs.

• Verifier1 returns true with {|P2, ρ2|}, {|Q2, σ2|}, and eqs.

Moreover, tr([[σ]]) = tr([[σ′]]) holds; Otherwise, tr([[σ]]) > tr([[σ′]]) holds. Since
Verifier1 returns true with two pairs {|P, ρ|} and {|Q, σ|}), the numbers of proji’s
occurring in ρ and σ are equal (Section 3.4.2). Let the number be N . In ρ1,
there are N +1 proji’s. By the transition, there are more than N +2 proji’s or
N + 2 proji’s in σ1. This contradicts that Verifier1 returned true with {|P1, ρ1|}
and {|Q1, σ1|}, and thus the numbers of proji’s in ρ1 and σ1 are equal.

Next, by the validity of eqs , tr([[ρ1]]) = tr([[σ1]]) and tr([[ρ2]]) = tr([[σ2]]) hold.
Thus we have tr([[σ1]]) + tr([[σ2]]) = tr([[ρ1]]) + tr([[ρ2]]) = tr([[ρ]]) = tr([[σ]]) =
tr([[σ′]]). Now, we can apply the Lemma 3.5.8 to have

Lcnv(Q),
[[σ]]

tr([[σ]])
M ⇒ ν ′

ν ′(≈̇)†
tr([[ρ1]])

tr([[ρ]])
• Lcnv(Q1),

[[σ1]]

tr([[σ1]])
M +

tr([[ρ2]])

tr([[ρ]])
• Lcnv(Q2),

[[σ2]]

tr([[σ2]])
M

for some ν ′. By strong bisimulation, Y ⇒ ν and ν ′(≈̇)†ν hold for some ν. We
then have

µ(≈̇)†
tr([[ρ1]])

tr([[ρ]])
• Lcnv(P1),

[[ρ1]]

tr([[ρ1]])
M +

tr([[ρ1]])

tr([[ρ]])
• Lcnv(P2),

[[ρ2]]

tr([[ρ2]])
M
def
= U

ν(≈̇)†
tr([[ρ1]])

tr([[ρ]])
• Lcnv(Q1),

[[σ1]]

tr([[σ1]])
M +

tr([[ρ2]])

tr([[ρ]])
• Lcnv(Q2),

[[σ2]]

tr([[σ2]])
M
def
= V

Let A,B,C andD be Lcnv(P1),
[[ρ1]]

tr([[ρ1]])
M, Lcnv(P2),

[[ρ2]]
tr([[ρ2]])

M, Lcnv(Q1),
[[σ1]]

tr([[σ1]])
M, and

Lcnv(Q2),
[[σ2]]

tr([[σ2]])
M, respectively. By the definition of (·)†, µ is written as

∑

i∈I piXi+
∑

j∈J qjXj with I∩J = ∅, and U is written as
∑

i∈I piA+
∑

j∈J qjB,

and Xi ≈̇A for all i ∈ I, and Xj ≈̇B for all j ∈ J .
∑

i∈I pi = tr([[ρ1]])
tr([[ρ]]) and

∑

j∈J qj =
tr([[ρ2]])
tr([[ρ]]) hold. Similarly, ν is written as

∑

k∈K p
′
kYk+

∑

l∈L q
′
lYl withK∩L = ∅, and V is written as

∑

k∈K p
′
kC+

∑

l∈L q
′
lD,

and Yk ≈̇C for all k ∈ K, and Yl ≈̇D for all l ∈ L.
∑

k∈K p
′
k = tr([[ρ1]])

tr([[ρ]]) and
∑

l∈L q
′
l =

tr([[ρ2]])
tr([[ρ]]) hold. Since Verifier1 returns true with

({|Pm, ρm|}, {|Qm, σm|}) (m = 1, 2), XiReqsYk for all i ∈ I, k ∈ K, and XjReqsYl
for all j ∈ J, l ∈ L. We then have the conclusion µ(Reqs)

†ν observing

µ =
tr([[ρ]])

tr([[ρ1]])

∑

i,k

pip
′
kXi +

tr([[ρ]])

tr([[ρ2]])

∑

j,l

qjq
′
lXj and

ν =
tr([[ρ]])

tr([[ρ1]])

∑

i,k

pip
′
kYk +

tr([[ρ]])

tr([[ρ2]])

∑

j,l

qjq
′
lYl.

By definition of R, R is symmetric and thus R−1 also satisfies the conditions.

50

3.6 Discussion

3.6.1 On Completeness

Let us consider an “ideal” verifier that can test equality of partial traces per-
fectly. It takes two configurations {|P, ρ|} and {|Q, σ|}, but does not take a set
of user-defined equations. In the step 4 of the algorithm, it goes to the next
step if and only if [[Tr[qv(P)](ρ)]] = [[Tr[qv(Q)](σ)]]. Let us then consider the
following statement. For {|P, ρ|}, {|Q, σ|} ∈ P × S, if tr([[ρ]]) = tr([[σ]]) = 1 and
Lcnv(P), [[ρ]]M ≈ Lcnv(Q), [[σ]]M hold, then the ideal verifier returns true with the
input {|P, ρ|}, {|Q, σ|}. We call this the completeness of nondeterministic qCCS
with respect to qCCS. In fact, this statement is not true. A counter example is
as follows.

{|P, ρ|} def
= {|meas b then discard(b, q) saem, |ψ〉〈ψ|b ⊗ |0〉〈0|q ⊗ ρE |} and

{|Q, σ|} def
= {|discard(b, q), |ψ〉〈ψ|b ⊗ |0〉〈0|q ⊗ ρE |}, where

|ψ〉 =
√

1

3
|0〉+

√

2

3
|1〉.

The two transitions of LP, [[ρ]]M are

{|P, ρ|} τ−→ {|discard(b, q), 1
3
|0〉〈0|b ⊗ |0〉〈0|q ⊗ ρE |} and

{|P, ρ|} τ−→ {|discard(b, q), 2
3
|1〉〈1|b ⊗ |0〉〈0|q ⊗ ρE |}

but partial traces of them (13ρ
E and 2

3ρ
E) are not equal to that of {|Q, σ|} (

namely ρE). In our simplified formal framework, two configurations {|P0, ρ0|}
and {|Q0, σ0|} with tr(ρ0) 6= tr(σ0) are always separated even if Lcnv(P0),

[[ρ0]]
tr([[ρ0]])

M

and Lcnv(Q0),
[[σ0]]

tr([[σ0]])
M are identified. To identify such configurations, we must

withdraw the simplification of operational semantics.
However, there seem to be a number of cases where we can assume that

processes behave differently according to the result of quantum measurements.
In general, we can formalize a QKD protocol of the form

...abort flag[...,b, ...].meas b then P ′ saem...,

where an operator abort flag calculates the number of errors in check bits and
sets a bit b representing whether to abort the protocol. Alice and Bob continue
to communicate only if the protocol has not aborted, which the outsider can
recognize.

Besides, with our criteria discussed in Section 3.2.1, we expect that there is
a transition of R with a label c!q or c?q, when a process meas b then R saem is
considered. Only for processes satisfying the condition, it is still possible that
the completeness holds. It needs to be discussed precisely.

51

Chapter 4

Approximate Bisimulation for Quantum

Processes

Two notions of approximate bisimulation are defined in the formal framework
for the verifier (nondeterministic qCCS): the relations are on C = P × S with
simplified operational semantics. The relation ∼ζ,η is defined in Section 4.2 and
the relation ∼ is in Section 4.3. The extension of the verifier to check approximate
bisimilarity is described in Section 4.4. Finally, application and limitations of
approximate bisimulation are discussed in Section 4.5. Before the definitions, we
introduce some preliminaries.

4.1 Preliminaries

4.1.1 Negligible Functions

Definition 4.1.1. A function f : N+ → [0, 1] is negligible if and only if for all
polynomial p(·), there exists a natural number N such that f(n) ≤ 1

p(n) holds for
all n ≥ N . f is non-negligible if f is not negligible.

Remark 4.1.2. A function f
g (n)

def
= f(n)

g(n) can be non-negligible even if f is neg-

ligible and g is non-negligible. For example, let f(n) = 1
2n and

g(n) =

{

1
2n (n is even)
1
n2 (otherwise).

In this thesis, we say g is greater than negligible if the function f
g is negligible

for all negligible function f .

Proposition 4.1.3. If f and g are negligible, then f + g and cf is negligible for
all c ≥ 0.

4.1.2 Trace Distance of Probability-Weighted Quantum States

Trace distance is a metric on a set of linear operators. To compare quantum
states, trace distance on D(H) is usually considered [60, Chapter 9]. Since we con-
sider probability-weighted quantum states, we consider trace distance on ∆(H),
and discuss an interpretation of it with respect to our transition system.

Let
√
A be

∑

i

√
λiPi for an Hermitian operator A with the spectrum decom-

position
∑

i λiPi. Let |A| be
√
A†A.

Definition 4.1.4. Trace distance d : ∆(H)×∆(H) → [0, 1] is defined as

d(A,B) =
1

2
tr|A−B|.

52

If tr(A) = tr(B) = 1, trace distance can be thought as a generalization of Kol-
mogorov distance. Indeed, if A and B are diagonal with respect to orthonormal
basis {|i〉}i, then A =

∑

i pi|i〉〈i|, B =
∑

i qi|i〉〈i|, and d(A,B) = 1
2

∑

i |pi − qi|
hold for some unique pi’s and qi’s satisfying

∑

i pi =
∑

i qi = 1. We introduce
some useful properties of trace distance as follows.

Proposition 4.1.5. If tr(A) = tr(B) = 1 holds, then

d(A,B) = max{tr(πA)− tr(πB) |π is a projector.}
holds.

Proposition 4.1.6. If tr(A) = tr(B) = 1 holds, then d(E(A), E(B)) ≤ d(A,B)
holds for all TPCP map E.

Proposition 4.1.6 can be extended to trace non-increasing cases. In the proof,
we use the fact that tr| · | is a norm on a set of linear operators.

Proposition 4.1.7. d(E(A), E(B)) ≤ d(A,B) for all trace non-increasing posi-
tive map E.
Proof. Let

∑

i λi|i〉〈i| be an arbitrary eigenvalue decomposition of A − B. We
obtain the proposition by the following calculation.

tr|E(A−B)| = tr|
∑

i

λiE(|i〉〈i|)|

≤
∑

i

|λi| · tr|E(|i〉〈i|)| (by the axiom of trace norm)

≤
∑

i

|λi| · tr(|i〉〈i|) (E is trace non-increasing and positive.)

=
∑

i

|λi| = tr|A−B|

For a configuration {|P, ρ|} ∈ C, tr([[ρ]]) is interpreted as the probability to

reach {|P, ρ|}, and the quantum state is [[ρ]]
tr([[ρ]]) . The next proposition gives a way

to interpret that d([[ρ]], [[σ]]) is small for two configurations LP, ρM, LQ, σM ∈ C.
Proposition 4.1.8. Let A,B : N+ → ∆(H) be functions and regard d(A,B) :
N+ → [0, 1] as a function. d(A,B) is negligible iff |tr(A) − tr(B)| and tr(A) ·
d(A

tr(A) ,
B

tr(B)) are negligible.

Proof. (⇒) As tr(·) is a TPCP map, d(A,B) ≥ d(tr(A), tr(B)) = 1
2 |tr(A) −

tr(B)|. |tr(A)− tr(B)| is negligible by Proposition 4.1.3. tr(A) · d(A
tr(A) ,

B
tr(B)) is

shown to be negligible by the following calculation.

tr(A) · d(A

tr(A)
,

B

tr(B)
) ≤ tr(A) · (d(A

tr(A)
,

B

tr(A)
) + d(

B

tr(A)
,

B

tr(B)
))

= d(A,B) + |tr(A)− tr(B)| · tr| B

tr(B)
|

= d(A,B) + |tr(A)− tr(B)|

(⇐) By triangle inequality, we have d(A, tr(A)tr(B)B)+ d(tr(A)tr(B)B,B) ≥ d(A,B). This

is equivalent to tr(A) · d(A
tr(A) ,

B
tr(B)) + d(tr(A)tr(B)B,B) ≥ d(A,B). The left-hand

side is shown to be negligible by the calculation d(tr(A)tr(B)B,B) = |tr(A)− tr(B)| ·
tr| B

tr(B) |.

53

For {|P, ρ|}, {|Q, σ|}, assume d([[ρ]], [[σ]]) is negligible. It is equivalent to that

|tr([[ρ]]) − tr([[σ]])| and tr([[ρ]]) · d([[ρ]]
tr([[ρ]]) ,

[[σ]]
tr([[σ]])) are negligible. By Proposition

4.1.5, we have that tr([[ρ]]) · tr(π [[ρ]]
tr([[ρ]])) − tr([[ρ]]) · tr(π [[σ]]

tr([[σ]])) is negligible for all

projector π. As |tr([[ρ]]) - tr([[σ]])| is negligible, we have that tr([[ρ]]) · tr(π [[ρ]]
tr([[ρ]]))−

tr([[σ]]) · tr(π [[σ]]
tr([[σ]])) is negligible. tr([[ρ]]) · tr(π

[[ρ]]
tr([[ρ]])) is the joint probability that

a process reaches {|P, [[ρ]]|} and observes the measurement result corresponding to
the projector π. Therefore, that d(tr([[ρ]]), tr([[σ]])) is negligible implies that the
difference of the joint probabilities is negligible for an arbitrary measurement.

4.2 Approximate Bisimulation with Parameters

We define the first approximate bisimulation relation that is parametrized by
ζ, η ∈ [0, 1]. To interpret symbolic representations as quantum states, security
parameter λ must be fixed. In this section, a security parameter is arbitrarily
fixed, while they are not in the next section (for the relation ∼).

In the following discussions, we may simply write tr(ρ) and d(ρ, σ) as tr([[ρ]]λ)
and d([[ρ]]λ, [[σ]]λ) for ρ, σ ∈ S and fixed λ.

Definition 4.2.1. Let 0 ≤ ζ, η ≤ 1. A symmetric relation R ⊆ C × C is called
an (ζ, η)-bisimulation if for all {|P, ρ|}, {|Q, σ|},{|P, ρ|}R{|Q, σ|} implies

1. qv(P) = qv(Q)
def
= q̃,

2. d(trq̃(ρ), trq̃(σ)) ≤ ζ, and

3. For an arbitrary CP map E [r̃] acting on r̃ ⊆ qVar − q̃, if {|P, E [r̃](ρ)|} α−→
{|P ′, ρ′|} and tr(ρ′) ≥ η hold, then {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and
{|P ′, ρ′|}R{|Q′, σ′|} hold for some {|Q′, σ′|}

We call the conditions 1 and 2 the static conditions, and the condition 3 the
simulation condition.

Precisely in the condition 3, it is possible that [[E [r̃](ρ)]]λ = O /∈ ∆(H) holds
for some interpretation [[E [r̃]]]λ. We exclude such CP maps in our discussions.

Remark 4.2.2. An arbitrary CP map by the outsider is applied to the quantum
state ρ in the condition 3 above, while a TPCP map is originally considered
(Definition 3.1.13). We needed the assumption to prove that the relations are
closed by parallel composition of processes. This assumption does not weaken the
ability of the outsider, because CP is more general than TPCP. It also does not
matter in verification in most cases, which is discussed in Section 4.4.3.

Definition 4.2.3. We define

∼ζ,η:= {({|P, ρ|}, {|Q, σ|}) | {|P, ρ|}R{|Q, σ|} holds for some (ζ, η)-bisimulation R}.

We say {|P, ρ|} and {|Q, σ|} are (ζ, η)-bisimilar if {|P, ρ|} ∼ζ,η {|Q, σ|}.

The relation ∼ζ,η has the properties similar to the bisimulation relations de-
fined in qCCS or other process calculi have [58].

Lemma 4.2.4. ∼ζ,η is a (ζ, η)-bisimulation.

54

Proof. By definition of ∼ζ,η, it is symmetric. By {|P, ρ|} ∼ζ,η {|Q, σ|}, there
exists a (ζ, η)-bisimulation R satisfying {|P, ρ|}R{|Q, σ|}. The static conditions
are easily checked. Next, we have that for all CP map E [r̃] that acts on r̃ ⊆
qVar − qv(P), if {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} and tr(ρ′) ≥ η hold, then there exists

{|Q′, σ′|} satisfying {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|}R{|Q′, σ′|}. This
implies {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|}.

Lemma 4.2.5. {|P, ρ|} ∼ζ,η {|Q, σ|} if and only if

1. qv(P) = qv(Q)
def
= q̃,

2. d(trq̃(ρ), trq̃(σ)) ≤ ζ,

3. and for an arbitrary CP map E [r̃] acting on r̃ ⊆ qVar − q̃,

• if {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} and tr(ρ′) ≥ η hold, then {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→
{|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|} hold for some {|Q′, σ′|}

• if {|Q, E [r̃](σ)|} α−→ {|Q′, σ′|} and tr(σ′) ≥ η hold, then {|P, E [r̃](ρ)|} τ∗−→ α̂−→ τ∗−→
{|P ′, ρ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|} hold for some {|P ′, ρ′|}

Proof. (⇒) proven as the previous lemma.
(⇐) We define R̂ :=∼ζ,η ∪{({|P, ρ|}, {|Q, σ|})} ∪ {({|Q, σ|}, {|P, ρ|})}. R̂ is sym-

metric by the definition. It is sufficient to show R̂ is a (ζ, η)-bisimulation relation.
Let ({|P0, ρ0|}, {|Q0, σ0|}) be an arbitrary element of R̂.

1. Suppose ({|P0, ρ0|}, {|Q0, σ0|}) ∈∼ζ,η. Since ∼ζ,η is a (ζ, η)-bisimulation, the
static conditions are satisfied. Next, let E [r̃] be an arbitrary CP map acting
on r̃ ⊆ qVar−qv(P0), and assume {|P0, E [r̃](ρ0)|} α−→ {|P ′, ρ′|} and tr(ρ′) ≥ η

hold. By the previous lemma, we have {|Q0, E [r̃](σ0)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|}
and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|} for some {|Q′, σ′|}. This implies {|Q0, E [r̃](σ0)|} τ∗−→ α̂−→ τ∗−→
{|Q′, σ′|} and {|P ′, ρ′|}R̂{|Q′, σ′|} for some {|Q′, σ′|} since ∼ζ,η⊆ R̂.

2. Suppose ({|P0, ρ0|}, {|Q0, σ0|}) = ({|P, ρ|}, {|Q, σ|}). The static conditions
are easily checked. The simulation condition holds by the assumption and
∼ζ,η⊆ R̂.

3. Suppose ({|P0, ρ0|}, {|Q0, σ0|}) = ({|Q, σ|}, {|P, ρ|}). The proof is similar to
the previous case.

Proposition 4.2.6. {|P ||Q, ρ|} ∼0,0 {|Q||P, σ|}.

Proof. This is proved by the definition of the transition rules, where (Left) and
(Right) rules are symmetric.

Lemma 4.2.7. If {|P, ρ|} ∼ζ,η {|Q, σ|} and {|P, ρ|} τ∗−→ {|P ′, ρ′|} and tr(ρ′) ≥ η,

then {|Q, σ|} τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|} hold for some {|Q′, σ′|}.

Proof. Assume {|P, ρ|} τ−→n {|P ′, ρ′|} and let {|Pi, ρi|} be i-th configuration with
0 ≤ i ≤ n. The case when n = 0 is trivial. Let n > 0. Since ρ = ρ0 ≥
ρ1 ≥ · · · ≥ ρn = ρ′ and tr(ρ′) ≥ η hold, tr(ρi) ≥ η holds for all i. Therefore,

{|Q, σ|} τ∗−→n {|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|} hold for some {|Q′, σ′|}.

55

Lemma 4.2.8. If {|P, ρ|} ∼ζ,η {|Q, σ|} and {|P, ρ|} τ∗−→ α̂−→ τ∗−→ {|P ′, ρ′|} and tr(ρ′) ≥
η hold, then {|Q, σ|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|} hold for some
{|Q′, σ′|}.

Proof. It is proven similarly to the previous lemma.

The relation ∼ζ,η is closed under application of an arbitrary CP map by the
outsider, namely, one acts on qVar − q̃. This is one of the similar properties as
the original qCCS’s largest bisimulation relation ≈ has [24].

Lemma 4.2.9. If {|P, ρ|} ∼ζ,η {|Q, σ|}, then {|P, E [r̃](ρ)|} ∼ζ,η {|Q, E [r̃](σ)|} holds
for all CP map E acting on r̃ ⊆ qVar − qv(P).

Proof. We use (⇐) implication of Lemma 4.2.5. By Lemma 4.1.7, d(E [r̃](ρ), E [r̃](σ)) ≤
d(ρ, σ) holds for all CP map E [r̃] and thus the static condition on partial trace
holds. Since E [r̃] ranges over arbitrary CP map in the definition, the simulation
condition holds.

The relation ∼ζ,η is reflexive and symmetric but not transitive because of the
condition of trace distance. Instead, it has the following properties.

Proposition 4.2.10. 1. If {|P, ρ|} ∼ζ,η {|Q, σ|}, ζ ≤ ζ ′, and η ≤ η′ hold, then
{|P, ρ|} ∼ζ′,η′ {|Q, σ|} holds.

2. If {|P, ρ|} ∼ζ,η {|Q, σ|} and {|Q, σ|} ∼ζ′,η′ {|R, θ|} hold, then

{|P, ρ|} ∼ζ+ζ′,max{η,η′}+2(ζ+ζ′) {|R, θ|}

holds.

Proof. 1. It is sufficient to prove that ∼ζ,η is a (ζ ′, η′)-bisimulation. The re-
lation ∼ζ,η is symmetric by Lemma 4.2.4. The static conditions is checked
observing d(trq̃(ρ), trq̃(σ)) ≤ ζ ≤ ζ ′. For the simulation condition, assume

{|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} and tr(ρ′) ≥ η′ for a CP map E [r̃]. Since tr(ρ′) ≥
η′ ≥ η, there exists a configuration {|Q′, σ′|} satisfying {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→
{|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|}.

2. We define a relation R ⊆ C × C as follows.

R′ :={({|P, ρ|}, {|R, θ|}) | {|P, ρ|} ∼ζ,η ◦ ∼ζ′,η′ {|R, θ|}}
R :=R′ ∪R′−1

The assumption implies {|P, ρ|}R{|R, θ|}. It is sufficient to prove that R is a
(ζ + ζ ′,max{η, η′}+2(ζ + ζ ′))-bisimulation. By definition, R is symmetric.
(Case 1) Let an arbitrary element ({|P, ρ|}, {|R, θ|}) ∈ R′. There exists
{|Q, σ|} satisfying {|P, ρ|} ∼ζ,η {|Q, σ|} and {|Q, σ|} ∼ζ′,η′ {|R, θ|}. The
static condition is checked observing d(trq̃(ρ), trq̃(θ)) ≤ d(trq̃(ρ), trq̃(σ)) +

d(trq̃(σ), trq̃(θ)) ≤ ζ+ζ ′. For the simulation condition, assume {|P, E [r̃](ρ)|} α−→
{|P ′, ρ′|} and tr(ρ′) ≥ max{η, η′} + 2(ζ + ζ ′) for a CP map E [r̃]. Since
tr(ρ′) ≥ η and {|P, ρ|} ∼ζ,η {|Q, σ|} hold, there exists {|Q′, σ′|} satisfy-

ing {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|}. Apply-
ing Lemma 4.2.9 to {|Q, σ|} ∼ζ′,η′ {|R, θ|}, we have {|Q, E [r̃](σ)|} ∼ζ′,η′

{|R, E [r̃](θ)|}. We also have tr(σ′) ≥ tr(ρ′)−2ζ ≥ η′. By Lemma 4.2.8, there

exists {|R′, θ′|} satisfying {|R, E [r̃](θ)|} τ∗−→ α̂−→ τ∗−→ {|R′, θ′|} and {|Q′, σ′|} ∼ζ′,η′

56

{|R′, θ′|}. We also have {|P ′, ρ′|}R′{|R′, θ′|}.
(Case 2) Let an arbitrary element ({|R, θ|}, {|P, ρ|}) ∈ R′−1. The proof is
similar to the previous case.

Examples of the relation are as follows. Precisely, ρ is a symbolic represen-
tation of a quantum state for {|P, ρ|} ∈ C but we write a quantum state in the
following examples for convenience. This is not harmful, because the security
parameter is arbitrarily fixed in the setting in this section, and thus symbolic
representations are interpreted to quantum states.

Example 4.2.11.

(1) {|meas b then c!b.discard() saem, |+〉〈+|b ⊗ |+〉〈+|q|}

∼ 1
2
, 1
2
{|meas b then c!b.discard() saem, (

1

2
|00〉〈00|+ 1

2
|11〉〈11|)b,q|} holds.

(2) {|meas b then c!q.discard() saem, |ψ〉〈ψ|b ⊗ |0〉〈0|q|}
∼0, 1

4
{|meas b then c!q.discard() saem, |ψ〉〈ψ|b ⊗ |1〉〈1|q|} holds, where

|ψ〉 =
√
3|0〉+ |1〉

2
(3) {|discard(), |+〉〈+|b|} ∼ 1

2
,0 {|discard(), |0〉〈0|b|} holds.

We prove that the relation ∼ζ,η is closed under application of evaluation con-
texts on the condition η > 2ζ. We first show that ∼ζ,η is closed under restriction.

Lemma 4.2.12. If {|P, ρ|} ∼ζ,η {|Q, σ|} holds, then {|P\L, ρ|} ∼ζ,η {|Q\L, σ|}
holds.

Proof. Let R := {({|P\L, ρ|}, {|Q\L, σ|}) | {|P, ρ|} ∼ζ,η {|Q, σ|}}. It is sufficient
to show that R is an approximate bisimulation relation. R is symmetric by
the definition. Let ({|P\L, ρ|}, {|Q\L, σ|}) be an arbitrary element of R. The
static conditions are easily checked. Assume {|P\L, E [r̃](ρ)|} α−→ {|P ′\L, ρ′|} and
tr(ρ′) ≥ η. This implies {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} and cn(α) ∩ L = ∅. We
have {|P, E [r̃](ρ)|} ∼ {|Q, E [r̃](σ)|} from {|P, ρ|} ∼ζ,η {|Q, σ|}. We then have

{|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|} for some {|Q′, σ′|}.
As cn(α̂) ∩ L = ∅ and cn(τ) = ∅, we have {|Q\L, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′\L, σ′|}
and {|P ′\L, ρ′|}R{|Q′\L, σ′|}.

The relation ∼ζ,η is not closed under parallel composition of processes for
all ζ and η. For example, {|discard(), |+〉〈+|b|} ∼ 1

2
,0 {|discard(), |0〉〈0|b|} holds

(Example 4.2.11) but

{|discard()||meas b then c!b.discard() saem, |+〉〈+|b|}
6∼ 1

2
,0{|discard()||meas b then c!b.discard() saem, |0〉〈0|b|}.

Nevertheless, the relation ∼ζ,η is closed under parallel composition of the pro-
cesses if η > 2ζ. The condition η > 2ζ is reasonable, because the difference of
outsider’s quantum states infects her behavior.

Theorem 4.2.13. If {|P, ρ|} ∼ζ,η {|Q, σ|} and η > 2ζ hold, {|P ||R, ρ|} ∼ζ,η

{|Q||R, σ|} holds for all process R.

57

Proof. We define

R̂ := {({|P ||R, ρ|}, {|Q||R, σ|}) | {|P, ρ|} ∼ζ,η {|Q, σ|}, R ∈ P}.

As ∼ζ,η is symmetric, R̂ is symmetric. It is sufficient to show R̂ is a (ζ, η)-

bisimulation. Let ({|P ||R, ρ|}, {|Q||R, σ|}) be an arbitrary element in R̂. The static
conditions are checked as follows. By the definition of qv(·) and the condition

qv(P) = qv(Q) obtained from {|P, ρ|} ∼ζ,η {|Q, σ|}, q̃ def
= qv(P ||R) = qv(P) ∪

qv(R) = qv(Q) ∪ qv(R) = qv(Q||R) holds. Next,

d(trq̃(ρ), trq̃(σ)) = d(trqv(R)(trqv(P)(ρ)), trqv(R)(trqv(Q)(σ)))

≤ d(trqv(P)(ρ), trqv(Q)(σ)) ≤ ζ.

holds. We then show that the simulation condition is satisfied. Let E [r̃] be an ar-
bitrary TPCP map acting on r̃ ⊆ qVar − q̃. A transition of a parallely-composed
process is either the 3 cases by the transition rules.
(Case 1)The transition is performed only by P . Assume {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|}
and tr(ρ′) ≥ η hold. By {|P, ρ|} ∼ζ,η {|Q, σ|}, there exists {|Q′, σ′|} satisfying

{|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ζ,η {|Q′, σ′|}. Hence, {|Q||R, σ|} τ∗−→ α̂−→ τ∗−→
{|Q′||R, σ′|} holds by (Left) rule and {|P ′||R, ρ′|}R̂{|Q′||R, σ′|} holds by the defini-
tion of R̂.
(Case 2) The transition is performed only by {|R, ρ|}. Assume {|R, E [r̃](ρ)|} α−→
{|R′, ρ′|} and tr(ρ′) ≥ η hold. Because R has a redex that causes the transition
α−→, {|Q||R, E [r̃](σ)|} α−→ {|Q||R′, σ′|} holds for some σ′ even if the transition is
trace-decreasing by the following reasons.

• ρ′ = F [s̃]◦E [r̃](ρ) and σ′ = F [s̃]◦E [r̃](σ) hold for some CP map F [s̃] acting
on s̃ ⊆ qv(R).

• We have d(ρ′, σ′) ≤ d(ρ, σ) ≤ ζ, which implies |tr(ρ′)− tr(σ′)| ≤ 2ζ.

• We have tr(σ′) ≥ η − 2ζ > 0.

It is thus sufficient to show {|P, ρ′|} ∼ζ,η {|Q, σ′|} by the definition of R̂. ρ′ = F [s̃]◦
E [r̃](ρ) and σ′ = F [s̃] ◦ E [r̃](σ) hold for some CP map F [s̃] acting on s̃ ⊆ qv(R).
As {|P, ρ|} ∼ζ,η {|Q, σ|} and s̃, r̃ ⊆ qVar − qv(P) hold, {|P, ρ′|} ∼ζ,η {|Q, σ′|} holds

by Lemma 4.2.9. This implies {|P ||R′, ρ′|}R̂{|Q||R′, σ′|}.
(Case 3) The transition is performed by communication of P and R. As the com-
munication rule is applied, the P ||R can be written as {|C1[c!q.P

′]||C2[c?r.R
′], E [r̃](ρ)|}

for some evaluation contexts C1[], C2[], processes P ′, R′, and non-restricted
channel c. The transition to consider is

{|C1[c!q.P
′]||C2[c?r.R

′], E [r̃](ρ)|} τ−→ {|C1[P
′]||C2[R

′], E [r̃](ρ)|}.

Assume tr(ρ) ≥ η. By {|C1[c!q.P
′], ρ|} ∼ζ,η {|Q, σ|} and {|C1[c!q.P

′], E [r̃](ρ)|} c!q−→
{|C1[P

′], E [r̃](ρ)|}, {|Q, E [r̃](σ)|} τ∗−→ c!q−→ τ∗−→ {|Q′, σ′|} and {|C1[P
′], E [r̃](ρ)|} ∼ζ,η

{|Q′, σ′|} hold for some {|Q′, σ′|}. This implies c is not restricted in Q and thus
receive redex c?r in C2[c?r.R

′] can be react. The reaction does not influence the
quantum state σ′. Therefore,

{|Q||R, E [r̃](σ)|} τ∗−→ {|Q′||C2[R
′], σ′|} and {|C1[P

′]||C2[R
′], E [r̃](ρ)|}R̂{|Q′||C2[R

′], σ′|}

hold by the definition of R̂.

58

By the two previous lemmas and Proposition 4.2.6, we have the following
corollary.

Corollary 4.2.14. If {|P, ρ|} ∼ζ,η {|Q, σ|} and η > 2ζ hold, {|C[P], ρ|} ∼ζ,η

{|C[Q], σ|} holds for all evaluation context C[].

4.3 Approximate Bisimulation up to Negligible Difference

In this section, we define the second approximate bisimulation based on the notion
of negligibility. Although a security parameter is arbitrarily fixed in Chapter 3
and in the previous section, we do not fix if in this section. Instead, we treat
[[ρ]] = [[ρ]](λ) as a function of a security parameter λ for ρ ∈ S. Accordingly, trace
tr([[ρ]]) and trace distance d([[ρ]], [[σ]]) are a functions of the security parameter,
namely, tr([[ρ]])(λ) = tr([[ρ]]λ) and d([[ρ]], [[σ]])(λ) = d([[ρ]]λ, [[σ]]λ). Hence, the
statements such as “tr([[ρ]]) is non-negligible” and “d([[ρ]], [[σ]]) is negligible” make
sense. If d([[ρ]], [[σ]]) and d([[σ]], [[θ]]) are negligible, then d([[ρ]], [[θ]]) is negligible. As
a result, the second approximate bisimulation relation ∼ is transitive and thus is
an equivalence relation.

Since the operational semantics on C is defined with fixed security parameter
(Definition 3.3.3), we modify the operational semantics on C with unfixed security
parameter. The rules that need modification are (Meas0) and (Meas1), because
λ must be fixed to determine the preconditions of them. We modify the rules as
follows.

[[proj1[b](ρ)]]λ 6= O for infinitely many λ

{|meas b then P saem, ρ|} τ−→ {|P, proj1[b](ρ)|}
(Meas1’)

[[proj0[b](ρ)]]λ 6= O for infinitely many λ

{|meas b then P saem, ρ|} τ−→ {|discard(qv(P)), proj0[b](ρ)|}
(Meas0’)

In the following discussions, we may simply write tr(ρ) and d(ρ, σ) as tr([[ρ]])(·)
and d([[ρ]], [[σ]])(·) for ρ, σ ∈ S. The definition of the approximate bisimulation
relation is as follows.

Definition 4.3.1. A symmetric relation R ⊆ C × C is called an approximate
bisimulation if for all {|P, ρ|}R{|Q, σ|},

1. qv(P) = qv(Q)
def
= q̃,

2. d(trq̃(ρ), trq̃(σ)) is negligible, and

3. for an arbitrary CP map E [r̃] acting on r̃ ⊆ qVar − q̃, if {|P, E [r̃](ρ)|} α−→
{|P ′, ρ′|} holds and tr(ρ′) is non-negligible, then {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|}
and {|P ′, ρ′|}R{|Q′, σ′|} holds for some {|Q′, σ′|}.

We call the above conditions 1, 2 the static conditions and 3 the simulation
condition.

Remark 4.3.2. For a configuration {|P, ρ|} ∈ C = P×S, the branching structure
of its transition does not depend on the security parameter. Except for transition
rules (Meas0) and (Meas1) (Section 3.3.2), whether each rule can be applicable
is determined only by a process, but there is no constructor depending on the
security parameter in the syntax of the processes in P (Section 3.2.2). Recall
that op in the construction op[q̃].P is a symbol representing a TPCP map, and

59

a transition caused by (Op) is one-step τ -transition. Whether the rules (Meas0′)
and (Meas1′) can be applicable depends on interpretations but does not on values
that the security parameter take.

Definition 4.3.3. We define

∼= {({|P, ρ|}, {|Q, σ|}) | {|P, ρ|}R{|Q, σ|} holds for some approximate bisimulation R}.

We say {|P, ρ|} and {|Q, σ|} are approximately bisimilar if {|P, ρ|} ∼ {|Q, σ|}.

There is another possible definition of the relation. Let us replace the re-

quirement “tr(ρ′) is non-negligible” in the condition 3 with “ tr(ρ′)
tr(E[r̃](ρ)) is non-

negligible”, and let ≃ be the relation defined similarly to Definition 4.3.3. Since
tr(ρ′)

tr(E[r̃](ρ)) ≥ tr(ρ′) holds, ≃⊆∼ holds. In fact, the relation ≃ has properties that
are similar to those discussed in the following propositions, lemmas, and theorem.
We adopt Definition 4.5.1 for the following reason. It is natural that we assume
a configuration {|P0, ρ0|} satisfies tr(ρ0) = 1 when it formalizes a protocol. Sup-

pose we have {|P0, ρ0|} α0−→ · · · αk−→ {|P, ρ|} α−→ {|P ′, ρ′|}, that tr(ρ) is non-negligible
and that tr(ρ′) is negligible. The probability to reach {|P, ρ|} is non-negligible
and to reach {|P ′, ρ′|} is negligible. Therefore, we want to care {|P, ρ|} but ig-
nore {|P ′, ρ′|}. However, a case is possible where a configuration {|Q0, σ0|} must
simulate the transition {|P, ρ|} α−→ {|P ′, ρ′|} to satisfy {|P0, ρ0|} ≃ {|Q0, σ0|}. This

is because tr(ρ′)
tr(ρ) can be non-negligible even if tr(ρ′) is negligible and tr(ρ) is

non-negligible by the definition of negligible functions. We thus cannot ignore
{|P ′, ρ′|}.

The following lemmas are proven similarly to the previous section.

Lemma 4.3.4. {|P, ρ|} ∼ {|Q, σ|} holds, iff

1. qv(P) = qv(Q)
def
= q̃,

2. d(trq̃(ρ), trq̃(σ)) is negligible, and

3. for an arbitrary CP map E [r̃] acting on r̃ ⊆ qVar − q̃,

• if {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} holds and tr(ρ′) is non-negligible, then

there exists {|Q′, σ′|} satisfying {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and
{|P ′, ρ′|} ∼ {|Q′, σ′|}, and

• if {|Q, E [r̃](σ)|} α−→ {|Q′, σ′|} holds and tr(σ′) is non-negligible, then

there exists {|P ′, ρ′|} satisfying {|P, E [r̃](ρ)|} τ∗−→ α̂−→ τ∗−→ {|P ′, ρ′|} and
{|P ′, ρ′|} ∼ {|Q′, σ′|}.

Lemma 4.3.5. If {|P, ρ|} ∼ {|Q, σ|}, then {|P, E [r̃](ρ)|} ∼ {|Q, E [r̃](σ)|} for all CP
map E [r̃] that acts on r̃.

Proposition 4.3.6. {|P ||Q, ρ|} ∼ {|Q||P, σ|}.

We then prepare lemmas to prove transitivity of the relation ∼.

Lemma 4.3.7. If {|P, ρ|} ∼ {|Q, σ|} and {|P, ρ|} τ∗−→ {|P ′, ρ′|} and tr(ρ′) is non-

negligible, then {|Q, σ|} τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ {|Q′, σ′|} hold for some
{|Q′, σ′|}.

60

Proof. Assume {|P, ρ|} τ−→n {|P ′, ρ′|} and let {|Pi, ρi|} be i-th configuration with
0 ≤ i ≤ n. The case when n = 0 is trivial. Let n > 0. Since ρ = ρ0 ≥
ρ1 · ·· ≥ ρn = ρ′ holds and tr(ρ′) is non-negligible, tr(ρi) is non-negligible for

all i. Therefore, {|Q, σ|} τ∗−→n {|Q′, σ′|} and {|P ′, ρ′|} ∼ {|Q′, σ′|} hold for some
{|Q′, σ′|}.

Lemma 4.3.8. If {|P, ρ|} ∼ {|Q, σ|} and {|P, ρ|} τ∗−→ α̂−→ τ∗−→ {|P ′, ρ′|} and tr(ρ′) is

non-negligible, then {|Q, σ|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ {|Q′, σ′|} for some
{|Q′, σ′|}.

Proof. It is proven similarly to the previous lemma.

Proposition 4.3.9. The relation ∼ is an equivalence relation.

Proof. (Reflexivity) Let IdC be the identity relation on C. For all {|P, ρ|} ∈ C,
{|P, ρ|}IdC{|P, ρ|} holds. It is sufficient to show IdC is an approximate bisimulation.
Assume ({|P, ρ|}, {|P, ρ|}) is an arbitrary element in IdC and tr(ρ) is non-negligible.
The static conditions are easily checked. Let E [r̃] be an arbitrary CP map and
assume {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} and tr(ρ′) is negligible. As {|P ′, ρ′|}IdC{|P ′, ρ′|}
holds, IdC is an approximate bisimulation.
(Symmetry) (⇒) implication of Lemma 4.3.4 is the condition that ∼ is an
approximate bisimulation. An approximate bisimulation relation is defined to be
symmetric.
(Transitivity) It is sufficient to show ∼ ◦ ∼ is an approximate bisimulation
relation. Let ({|P, ρ|}, {|R, θ|}) be an arbitrary element of ∼ ◦ ∼. There exists
{|Q, σ|} satisfying {|P, ρ|} ∼ {|Q, σ|} and {|Q, σ|} ∼ {|R, θ|}. The static conditions
are easily checked using triangle inequality of trace distance d(·, ·). Let E [r̃] be
an arbitrary CP map acting on r̃ ⊆ qVar − qv(P) and assume {|P, E [r̃](ρ)|} α−→
{|P ′, ρ′|} and tr(ρ′) is non-negligible. By {|P, ρ|} ∼ {|Q, σ|}, there exists {|Q′, σ′|}
satisfying {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|} ∼ {|Q′, σ′|}. By its static
conditions, we have d(trqv(P ′)(ρ

′), trqv(Q′)(σ
′)) is negligible. This implies |tr(ρ′)−

tr(σ′)| is negligible and thus we have that tr(σ′) is non-negligible. We have
{|Q, E [r̃](σ)|} ∼ {|R, E [r̃](θ)|} applying lemma 4.3.5 to {|Q, σ|} ∼ {|R, θ|}. Next by

lemma 4.3.8, we have {|R, E [r̃](θ)|} τ∗−→ α̂−→ τ∗−→ {|R′, θ′|} and {|Q′, σ′|} ∼ {|R′, θ′|} for
some {|R′, θ′|}. Therefore, {|P ′, ρ′|} ∼ ◦ ∼ {|R′, θ′|}.

We prove congruence of the relation ∼. We first show that ∼ is closed by
restriction.

Lemma 4.3.10. If {|P, ρ|} ∼ {|Q, σ|} holds, then {|P\L, ρ|} ∼ {|Q\L, σ|} holds.

Proof. It is proven similarly to Lemma 4.2.

The next theorem states that the relation ∼ is closed under parallel compo-
sition of processes. With this theorem and Lemma 4.3.10, we immediately have
that ∼ is closed by application of an arbitrary evaluation context. The structure
of the proof is same as Theorem 4.2.13.

Theorem 4.3.11. If {|P, ρ|} ∼ {|Q, σ|}, then {|P ||R, ρ|} ∼ {|Q||R, σ|} for all pro-
cess R.

Proof. We define

R := {({|P ||R, ρ|}, {|Q||R, σ|}) | {|P, ρ|} ∼ {|Q, σ|}, R ∈ P}.

61

It is sufficient to show R is an approximate bisimulation. R is symmetric by the
definition. Let ({|P ||R, ρ|}, {|Q||R, σ|}) be an arbitrary element in R. The static
conditions are checked similarly to Theorem 4.2.13. The simulation condition is
checked similarly to Theorem 4.2.13 for (Case 1) and (Case 3). For (Case 2),

we used the fact that the function (f − g)(n)
def
= f(n) − g(n) is non-negligible if

f is non-negligible and g is negligible.

Similarly to the discussion in the previous section, we have the following
corollary.

Corollary 4.3.12. If {|P, ρ|} ∼ {|Q, σ|} holds, then {|C[P], ρ|} ∼ {|C[Q], σ|} holds
for all evaluation context C[].

We have proved that the relation ∼ is equivalence and closed by application
of an arbitrary evaluation context. We thus say it is congruent. The congruence
property is useful in practice. For example, it allows us to infer equivalence of
multiple sessions of protocols.

Corollary 4.3.13. If {|P1, ρ1∗ρE1 |} ∼ {|Q1, σ1∗ρE1 |}, {|P2, ρ2∗ρE2 |} ∼ {|Q2, σ2∗ρE2 |}
and qv(P1)∩qv(P2) = qv(P1)∩qv(Q2) = qv(Q1)∩qv(P2) = qv(Q1)∩qv(Q2) = ∅
hold for all ρE1 , ρ

E
2 , then {|P1||P2, ρ1∗ρ2∗ρE |} ∼ {|Q1||Q2, σ1∗σ2∗ρE |} holds for all

ρE.

Proof. We have {|P1, ρ1∗ρ2∗ρE |} ∼ {|Q1, σ1∗ρ2∗ρE |} by substituting ρ2∗ρE for ρE1
in the assumption. By congruence, we have {|P1||P2, ρ1∗ρ2∗ρE |} ∼ {|Q1||P2, σ1∗ρ2∗ρE |}.
Similarly, we have {|Q1||P2, σ1∗ρ2∗ρE |} ∼ {|Q1||Q2, σ1∗σ2∗ρE |}. By transitivity
of ∼, we obtain the conclusion.

Let configurations {|Pi, ρ∗ρEi |} and {|Qi, σ∗ρEi |} formalize an actual and an
ideal protocols for i = 1, 2. By the above corollary, we have {|P1||P2, ρ1∗ρ2∗ρE |} ∼
{|Q1||Q2, σ1∗σ2∗ρE |}. This means that {|P1||P2, ρ1∗ρ2∗ρE |} is approximately se-
cure, provided that the ideal protocol is secure even if they run in parallel. The
latter condition depends on protocols but possibly be satisfied. In fact, EDP-ideal
protocol that we consider in the next chapter satisfies the condition, because Al-
ice and Bob generate a shared key using pre-shared EPR pairs. Another example
of application is discussed in the subsection Outputting Secret Keys in Section
5.3.

Although we use only the relation ∼ for the verification in this thesis, the
relation ∼ζ,η will be useful when we evaluate the gap of two configurations
quantitatively. By {|P, ρ|} ∼ {|Q, σ|}, the value of the trace distance is simply
understood to be negligible, but it cannot be evaluated more explicitly. Us-
ing the relation ∼ζ,η, the gap can be evaluated concretely. For example, if
{|Pi, ρi∗ρEi |} ∼ζ,η {|Qi, σi∗ρEi |} holds for all ρEi with qv(ρEi) = qVar − qv(Pi)
and for all i ∈ [1..k] and qv(P1) ∩ · · · ∩ qv(Pk) = ∅ holds, then we have

{|P1|| · · · ||Pk, ρ1∗ · ∗ρk∗ρE |} ∼ζ′,η′ {|Q1|| · · · ||Qk, σ1∗ · ∗σk∗ρE |} for all ρE ,

where ζ ′ = kζ and η′ = (k − 1)(k + 2)ζ + η.

4.4 Automated Verification of Approximate Bisimulation

4.4.1 Algorithm

We extended Verifier1, which is described in Chapter 3, to verify the approximate
bisimilarity. Let us call the extended verifier Verifier2. We applied Verifier2 to

62

the second part of Shor-Preskill’s security proof. This is described in the next
chapter.

Verifier2 takes as input two elements in P ×S, a user-defined set of equations
eqs on symbolic quantum states, and additionally a user-defined set of triples
inds ⊆ S × S × Snat , which we call indistinguishability expressions. An indistin-
guishability expression (ρ, σ, n) intuitively means the trace distance of ρ and σ is
negligible with respect to n.

We modified the steps 1, 4, 5, 6, and 7 in the algorithm described in Section
3.4.2. The new algorithm of the recursive procedure is as follows.

1. The procedure takes as input two configurations {|P0, ρ0|}, {|Q0, σ0|} and
user-defined equations eqs and indistinguishability expressions inds on quan-
tum states.

2. If P0 and Q0 can perform any τ -transitions of TPCP map applications,
they are all performed at this point. Let {|P, ρ|} and {|Q, σ|} be obtained
configurations.

3. Whether qv(P) = qv(Q) is checked. If it does not hold, the procedure
returns false.

4. Whether Tr[qv(P)](ρ) = Tr[qv(Q)](σ) is checked using eqs and inds. If it
does not hold, the procedure returns false.

5. A new CP map symbol E[qv(ρ) − qv(P)] that stands for an arbitrary
operation is generated.

6. For each {|P ′, ρ′|} such that {|P, E[qv(ρ) − qv(P)](ρ)|} α−→ {|P ′, ρ′|}, the
procedure checks whether there exists {|Q′, σ′|} such that

{|Q, E[qv(σ) − qv(Q)](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and the procedure returns
true with input {|P ′, ρ′|}, {|Q′, σ′|}, and eqs. If there exists, it goes to the
next step 7. Otherwise, it returns false.

7. For each {|Q′, σ′|} such that {|Q, E[qv(σ) − qv(Q)](σ)|} α−→ {|Q′, σ′|}, the
procedure checks whether there exists {|P ′, ρ′|} such that

{|P, E[qv(ρ) − qv(P)](ρ)|} τ∗−→ α̂−→ τ∗−→ {|P ′, ρ′|} and the procedure returns
true with input {|P ′, ρ′|} and {|Q′, σ′|}, and eqs. If there exists, it returns
true. Otherwise, it returns false.

The way to use inds to test Tr[qv(P)](ρ) = Tr[qv(Q)](σ) is similar to that of eqs,
that is, for (ρ, σ, n) ∈ inds, a part in an objective quantum state that matches to
ρ is rewritten to σ.

4.4.2 Correctness of Verifier2

A user-defined set inds is said to be valid if for all element (ρ, σ, n) ∈ inds,
d([[ρ]], [[σ]]) is a negligible function of [[n]]. Let eqs and inds be valid. Let a
relation Reqs,inds ⊆ C × C be defined as follows.

Reqs,inds := {({|P, ρ|}, {|Q, σ|}) | Verifier2 returns true with

{|P, ρ|}, {|Q, σ|} using eqs and inds.}

The relation Reqs,inds is an approximate bisimulation relation.
The argument about the correctness of Verifier2 is basically similar to that

about the original one. We focused on the two different points. The first is

63

that whether the trace distance of objective quantum states is negligible or not
is tested instead of the equality of the states. The second point is about the
simulation condition.

On the Static Condition of Partial Trace

It is necessary to check the partial rewriting of quantum states done by Veri-
fier2 is correct. It rewrites a symbolic representation of the form ρl ∗ ρ ∗ ρr to
the symbolic representation ρl ∗σ ∗ ρr given (ρ, σ, n) ∈ inds. The correctness is
guaranteed from the fact that d(X,Y) = d(Xl ⊗X ⊗Xr, Xl ⊗ Y ⊗Xr) holds for
all X,Y,Xl, Xr ∈ ∆(H). If (ρ, σ, n) is valid, namely d([[ρ]], [[σ]]) is negligible with
respect to [[n]], then d([[ρl ∗ ρ ∗ ρr]], [[ρl ∗σ ∗ ρr]]) is negligible with respect to [[n]] be-
cause d([[ρl ∗ ρ ∗ ρr]], [[ρl ∗σ ∗ ρr]]) = d([[ρl]]⊗[[ρ]]⊗[[ρr]], [[ρl]]⊗[[σ]]⊗[[ρr]]) = d([[ρ]], [[σ]])
holds.

On the Simulation Condition

The simulation condition of approximate bisimulation is only required to transi-
tions with non-negligible probability, stating

• If {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} holds and tr(ρ′) is non-negligible, then

{|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|}R{|Q′, σ′|} hold for some {|Q′, σ′|}.
However, Verifier2 does not check whether the probability of a transition is non-
negligible or not. It returns false when a transition cannot be simulated even
if the probability is negligible. As for simulation, the condition that Verifier2
returns true is strictly stronger than the simulation condition of the approximate
bisimulation.

4.4.3 Relation between the Verifiers

Before the extension, the steps 6 and 7 required the correspondence of qubit
variable b when there is a transition caused by (Meas0) or (Meas1) rules. The
proof of Verifier1’s soundness was made easier by this condition. Verifier2 does
not check such correspondence, which straightforwardly checks the conditions
stated in the definition of the relation ∼. On this point, Verifier1 checks more
strict condition. On the other hand, for the step 5, Verifier2 generates a CP map
symbol representing the outsider’s operation, which is not necessarily TPCP,
while Verifier1 generates a TPCP map symbol. On this point, Verifier2 checks
more strict condition.

In fact, whether an outsider’s operation is TPCP or CP does not matter
in verification in most cases. Only the rewriting rule (3.2) of partial traces in
Section 3.4.1 cannot be applied if op is a CP map symbol. Except for it, quantum
operators are treated equivalently in the both verifiers whether they are TPCP
or CP. Moreover, even if outsider’s operators are TPCP, the rule (3.2) cannot be
applied to them in most cases, where we assume the outsider has her own “local
memory”. Assume she does not send a quantum variable qE to the insider (the
process). It is in the domain of her operation E in general. Hence, an arbitrary
symbol generated in the step 5 is of the form E[· · · , qE , · · ·]. However, she does
not send qE to the process. Therefore, in any expressions of the form

Tr[q̃](· · · E[· · · , qE , · · ·] · · ·),
which appear in the test of equality of partial traces, qE /∈ q̃ holds and thus the
rule (3.2) cannot be applied.

64

Let us now consider a new verifier, which we call Verifier3, that generates CP
maps in the step 5 but executes the same algorithm as Verifier1. We have that
Verifier3 verifies more strict condition than Verifier2, in other words, if Verifier3
returns true with configurations {|P, ρ|}, {|Q, σ|}, and user-defined equations eqs,
Verifier2 returns true with the same input.

4.5 Guarantees and Limitations of Approximate Bisimulation

4.5.1 Application to Verification of QKD protocols’ Security

We explain about feasibility of the relation ∼ for verification of security of QKD
protocols. In the next chapter, we will verify {|P, ρ|} ∼ {|Q, σ|}, where {|P, ρ|} and
{|Q, σ|} are configurations formalizing the EDP-based protocol (Section 2.4.2) and
EDP-ideal (Section 5.5). Assume {|P, ρ|} ∼ {|Q, σ|} and

{|P, E [r̃](ρ)|} α−→ {|P1, E1[r̃1](ρ1)|} α1−→ · · · ska!kA−−−−→ {|P ′, ρ′|}

and tr(ρ′) is non-negligible, where the last transition
ska!kA−−−−→ represents that Al-

ice’s key kA is created1. Then, there exists the following transition

{|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q1, E1[r̃1](σ1)|} τ∗−→ α̂1−→ τ∗−→ · · · τ∗−→ ska!kA−−−−→ τ∗−→ {|Q′, σ′|}
such that d(trqv(P ′)(ρ

′), trqv(Q′)(σ
′)) is negligible. By Proposition 4.1.8, we have

that

|tr(ρ′)− tr(σ′)| and |tr(ρ′) · tr(π
trqv(P ′)(ρ

′)

tr(ρ′)
)− tr(σ′) · tr(π

trqv(Q′)(σ
′)

tr(σ′)
)|

are negligible for all projector π. Especially, let π be the projector to the subspace
where i-th bits of Alice’s key and Eve’s key are equal. We can rephrase the above
expression as follows.

|Pr(A)− Pr(B)| and |Pr(A) Pr(kA,i = kE,i|A)− Pr(B) Pr(k′A,i = k′E,i|B)|
are negligible, where

• kA,i and kE,i are random variables of i-th bits of Alice’s and Eve’s keys in
the EDP-based protocol,

• k′A,i and k
′
E,i are those in EDP-ideal, and

• A and B are the events that {|P, ρ|} reaches {|P ′, ρ′|} and {|Q, σ|} reaches
{|Q′, σ′|}.

Moreover, we have

|Pr(A) Pr(kA,i = kE,i|A)− Pr(B) Pr(k′A,i = k′E,i|B)|
≤Pr(A)|Pr(kA,i = kE,i|A)− Pr(k′A,i = k′E,i|B)|
+ Pr(k′A,i = k′E,i|B)|Pr(A)− Pr(B)|

=Pr(A)|Pr(kA,i = kE,i|A)−
1

2
|+ 1

2
|Pr(A)− Pr(B)|.

The equation Pr(k′A,i = k′E,i|B) = 1
2 holds by the definition of EDP-ideal. If

Pr(A) is greater than negligible, we have that |Pr(kA,i = kE,i|A)− 1
2 | is negligible.

It seems possible to derive that the mutual information of Alice’s and Eve’s keys
is negligible. Similarly, it is derived that Alice’s and Bob’s keys are identical with
overwhelming probability.

1In Chapter 5, we actually formalize the protocols as configurations that do such transitions.
This point is discussed in Section 5.3

65

4.5.2 Application to Other Protocols

As long as we aim to verify security of an actual protocol {|P, ρ|} by proving
{|P, ρ|} ∼ {|Q, σ|} for an ideal protocol {|Q, σ|}, we can discuss similarly to the
previous subsection. Concretely, if {|P, ρ|} ∼ {|Q, σ|}, then for all {|P ′, ρ′|} such
that

{|P, E [r̃](ρ)|} α−→ {|P1, E1[r̃1](ρ1)|} α1−→ · · · αm−−→ {|P ′, ρ′|}
and tr(ρ′) is non-negligible, there exists {|Q′, σ′|} such that

{|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q1, E1[r̃1](σ1)|} τ∗−→ α̂1−→ τ∗−→ · · · τ∗−→ α̂m−−→ τ∗−→ {|Q′, σ′|}

and {|P ′, ρ′|} ∼ {|Q′, σ′|}. The last condition implies d(trqv(P ′)(ρ
′), trqv(Q′)(σ

′)) is
negligible. By proposition 4.1.8, we have

|tr(ρ′)− tr(σ′)| and tr(ρ′)d(
trqv(P ′)(ρ

′)

tr(ρ′)
,
trqv(Q′)(σ

′)

tr(σ′)
)

are negligible. We thus have the following conclusions.

1. The probability to reach {|P ′, ρ′|} from {|P, ρ|} is negligibly close to that to
reach {|Q′, σ′|} from {|Q, σ|}.

2. The greater tr(ρ′) we have, the less d(
trqv(P ′)(ρ

′)

tr(ρ′) ,
trqv(Q′)(σ

′)

tr(σ′)) we have. Es-

pecially, if tr(ρ′) is greater than negligible, then d(
trqv(P ′)(ρ

′)

tr(ρ′) ,
trqv(Q′)(σ

′)

tr(σ′)) is
negligible.

When the protocol {|P, ρ|} is for generation of certain data, the data will be sent to

the outside by the final transition
αm−−→ of the form

c!q−→, whereHq is the state space
of the data. By the condition 2 above, we have that whenever the probability
to reach {|P ′, ρ′|} from the start point {|P, ρ|} is greater than negligible, the data
have been almost correctly generated at {|P ′, ρ′|}.

4.5.3 Limitations

Since single transition sequences are considered in Section 4.5.1 and 4.5.2, what
is verified is that for each transition sequence of an actual protocol {|P, ρ|}, there
exists a corresponding transition sequence of an ideal protocol {|Q, σ|}. Such
reasoning of security can be applicable only if we could find an ideal protocol,
like EDP-ideal, where security is guaranteed for each sequence.

However, guarantees of ∼ with respect to the original qCCS are not clear:
even if we have {|P, ρ|} ∼ {|Q, σ|}, it seems difficult to prove that Lcnv(P), [[ρ]]M and
Lcnv(Q), [[σ]]M are “approximately bisimilar” in the original qCCS by the follow-
ing reason. When the approximate bisimilarity ∼ is considered, each transition
caused by (Meas0′) or (Meas1′) is treated independently as a nondeterministic
transition, while a pair of the two transitions caused by a part of a process of the
form meas b0 then P0 saem (we may call one a measurement sentence) actually
represents one probabilistic transition in the original qCCS.

Let us explain about the problem more concretely by an example. Let C[] be
an evaluation context, and let {|P, ρ|} be {|C[meas b then P ′ saem], ρ|}. Assume
{|P, ρ|} ∼ {|Q, σ|} and we aim to prove that Lcnv(P), [[ρ]]M and Lcnv(Q), [[σ]]M are

66

“approximately bisimilar”. The configuration Lcnv(P), [[ρ]]M performs the follow-
ing probabilistic transition in the original qCCS.

Lcnv(P), [[ρ]]M = LC[|1〉〈1|[b;x].if x = 1 then cnv(P ′) fi], [[ρ]]M

τ−→p0 • LC[if 0 = 1 then cnv(P ′) fi],
[[ρ0]]

p0
M⊞

p1 • LC[if 1 = 1 then cnv(P ′) fi],
[[ρ1]]

p1
M

≈̇ p0 • Lcnv(C[discard(qv(P ′))]),
[[ρ0]]

p0
M⊞ p1 • Lcnv(C[P ′]),

[[ρ1]]

p1
M
def≡ µ,

where C[] = cnv(C)[], ρ0 = proj0[b](ρ), ρ1 = proj1[b](ρ), p0 = tr(ρ0), and
p1 = tr(ρ1). In our simplified system, the configuration {|P, ρ|} performs the
following transitions that are caused by the same measurement sentence. The
following pair of the transitions represents the above transition by Lcnv(P), [[ρ]]M.

{|P, ρ|} τ−→ {|C[discard(qv(P ′))], ρ0|} and

{|P, ρ|} τ−→ {|C[P ′], ρ1|}

By {|P, ρ|} ∼ {|Q, σ|}, there exist configurations {|Q0, σ0|} and {|Q1, σ1|} satisfying

{|Q, σ|} τ∗−→ {|Q0, σ0|} and {|C[discard(qv(P ′))], ρ0|} ∼ {|Q0, σ0|}
{|Q, σ|} τ∗−→ {|Q1, σ1|} and {|C[P ′], ρ1|} ∼ {|Q1, σ1|}.

Let ν be a distribution tr(σ0)•Lcnv(Q0),
[[σ0]]
tr(σ0)

M⊞tr(σ1)•Lcnv(Q1),
[[σ1]]
tr(σ1)

M. Even if

{|Q, σ|} τ∗−→ {|Q0, σ0|} and {|Q, σ|} τ∗−→ {|Q1, σ1|} hold, the condition Lcnv(Q), [[σ]]M ⇒
ν is not guaranteed. This is because measurements performed in the τ∗-transitions
are not necessarily caused by the same measurement sentence.

To verify “approximate bisimilarity” of Lcnv(P), [[ρ]]M and Lcnv(Q), [[σ]]M focus-
ing on the transitions of {|P, ρ|} and {|Q, σ|} in our simplified system, one possible
way is to treat two transitions caused by the same measurement sentence as a
pair, similarly to Verifier1 (step 6 (b) in Section 3.4.2). Let us introduce the
following new relation which requires similar conditions to what Verifier1 checks.

Definition 4.5.1. A symmetric relation R ⊆ C ×C is called a near bisimulation
if for all {|P, ρ|}R{|Q, σ|},

1. qv(P) = qv(Q)
def
= q̃,

2. d(trq̃(ρ), trq̃(σ)) is negligible, and

3. for an arbitrary CP map E [r̃] acting on r̃ ⊆ qVar − q̃,

• If

– {|P, E [r̃](ρ)|} α−→ {|P ′, ρ′|} holds,

– tr(ρ′) is non-negligible, and

– tr(E [r̃](ρ))− tr(ρ′) is negligible,

then {|Q, E [r̃](σ)|} τ∗−→ α̂−→ τ∗−→ {|Q′, σ′|} and {|P ′, ρ′|}R{|Q′, σ′|} holds for
some {|Q′, σ′|}.

• If

– {|P, E [r̃](ρ)|} ≡ {|C[meas b then P ′ saem], E [r̃](ρ)|} def≡ X,

67

– X
τ−→ {|C[discard(qv(P ′))], ρ0|},

– X
τ−→ {|C[P ′], ρ1|}, and

– both tr(ρ0) and tr(ρ1) are non-negligible

for some C[], b, P ′, ρ0, ρ1, then

– {|Q, E [r̃](σ)|} τ∗−→ {|D[meas b then Q′ saem], σ̂|} def≡ Y ,

– Y
τ−→ {|D[discard(qv(Q′))], σ̂0|} τ∗−→ {|Q0, σ0|},

– Y
τ−→ {|D[Q′], σ̂1|} τ∗−→ {|Q1, σ1|},

– {|C[discard(qv(P ′))], ρ0|}R{|Q0, σ0|}, and
– {|C[P ′], ρ1|}R{|Q1, σ1|} hold

for some D[], Q′, σ̂, σ̂0, σ̂1, {|Q0, σ0|}, and {|Q1, σ1|}.

We write {|P, ρ|} ≃ {|Q, σ|} if {|P, ρ|}R{|Q, σ|} holds for some near bisimulation
R, and say {|P, ρ|} and {|Q, σ|} are nearly bisimilar.

In fact, the properties similar to Proposition 4.3.9, Theorem 4.3.11, and Corol-
lary 4.3.12 hold for the relation ≃, which are proved by a similar line of arguments
to that of the properties of ∼.

Proposition 4.5.2. The relation ≃ is an equivalence relation.

Theorem 4.5.3. If {|P, ρ|} ≃ {|Q, σ|} holds, then {|C[P], ρ|} ≃ {|C[Q], σ|} holds
for all evaluation context C[].

If we aim to prove that {|P, ρ|} ≃ {|Q, σ|} implies “approximate bisimilarity”
of Lcnv(P), [[ρ]]M and Lcnv(Q), [[σ]]M, we could draw similar arguments to those of
the soundness of Verifier1 (Section 3.5), replacing “equal” with “approximately
equal”. Precisely, whether we can prove the statement depends on the definition
of approximate bisimilarity of Lcnv(P), [[ρ]]M and Lcnv(Q), [[σ]]M, which is an open
problem.

Let us note a problem when defining a notion of approximate bisimulation in
the original qCCS. In the notions of approximate bisimulation in nondeterministic
qCCS, which are defined in this chapter, transitions with negligible probability are
ignored. In general, however, if too many transitions are ignored, the gap of two
configurations could be non-negligible in total. In nondeterministic qCCS, the
number of ignored transitions is always constant, since the branching structures
of the transition trees of configurations do not depend on a security parameter
(Remark 4.3.2). In contrast, a probabilistic branch in the original qCCS possibly
depends on a security parameter. For example, let n be a security parameter,
the qubit length of a variable q be n, and M =

∑2n

i=1 i|i〉〈i|. The configuration
LM [q;x].P, ρM performs a probabilistic transition with 2n branches. If we define
a notion of approximate bisimulation in the original qCCS similarly to the way
in this chapter, we may need to assume (possibly by restricting the syntax) that
the branching structures of the transition trees of configurations in qCCS do not
depend on a security parameter.

Another important way to examine guarantees of the relation ≃ is to de-
fine observational (or testing) equivalence [23, 2, 25, 11, 69] with approximation,
and compare them. To define “approximate observational equivalence” in our
simplified framework is future work. Even before approximation, it is still an
open problem to define observational equivalence in the original qCCS that co-
incides with intuition [69], including formulation of the intuition. For example,

68

the configurations described in Section 3.2.1,

1. L|1〉〈1|[q;x].P (q), |+〉〈+|q ⊗ ρEM
τ−→ 1

2
• LP (q), |0〉〈0|q ⊗ ρEM⊞

1

2
• LP (q), |1〉〈1|q ⊗ ρEM

2. Lmeasure[q].P (q), |+〉〈+|q ⊗ ρEM
τ−→ LP (q), 1/2(|0〉〈0|+ |1〉〈1|)q ⊗ ρEM

are not bisimilar although they intuitively do the same thing, because both
|1〉〈1|[q;x] and measure[q] are measurement of q. Yasuda defined an observational
equivalence that identifies several configurations which are intuitively equivalent,
including two configurations similar to the above [69].

69

Chapter 5

Formal Verification of Quantum

Cryptographic Protocols Using the Verifiers

5.1 Overview

We implemented a software tool to verify weak bisimilarity (being in the relation
≈) of configurations of the original qCCS [24]. In Chapter 3, we described the
design and soundness of the verifier, which we call Verifier1. In Chapter 4, we
defined the approximate bisimulation relation ∼ and extended the verifier to
verify approximate bisimilarity (being in the relation ∼). We call the extended
one Verifier2. We summarized the difference of them in Table 5.1. The package of

Verifier1 Verifier2

syntax of processes P P
the outsider performs TPCP maps CP maps
rewriting using eqs eqs and inds
the relation to verify ≈ in the original [24] ∼ defined in Chapter 4
applied to verify BB84 ≈ EDPbased BB84 ∼ EDPbased ∼ EDPideal

Table 5.1: Difference of the Verifiers

the verifiers is available from the following URL. http://hagi.is.s.u-tokyo.
ac.jp/~tk/qccsverifer.tar.gz

In this chapter, we describe the applications of the verifiers to Shor and
Preskill’s security proof of BB84. The formal verification consists of the following
2 steps.

1. BB84 and the EDP-based protocol are formalized as configurations BB84

and EDPbased. Bisimilarity of the configurations is verified by Verifier1.

2. A new protocol EDP-ideal is defined. In the protocol, Alice and Bob ini-
tially share EPR-pairs, whose number is the same as that of the secret
key’s bit length. Apart from that, they executes the same protocol as the
EDP-based protocol before creating their secret keys. When the protocol
is not aborted, they create their secret keys just measuring their halves of
pre-shared EPR-pairs. Since the pre-shared EPR pairs will not be influ-
enced by Eve, Alice and Bob can create a shared secret key without leaking
any information. The protocol EDP-ideal is formalized as a configuration
EDPideal. Approximate bisimilarity of EDPbased and EDPideal is verified
by Verifier2.

70

5.2 Input and Output for the Verifiers

5.2.1 Scripts

Input files, which we call scripts, contain the following descriptions. Although
the algorithms are different, scripts for the verifiers are almost the same: only
Verifier2 takes indistinguishability expressions.

Before formalizing processes and quantum states, symbols need to be declared.

• natural number symbols, which are elements of Snat , in the form
nat n;.

• channel names, which are elements of qChan, in the form
channel c : n;,
where n is a natural number symbol defined beforehand. Through channel
c, quantum variables with length n are communicated.

• quantum variables, which are elements of qVar , in the form
qvar q : n;,
where n is the qubit-length of q.

• symbols of quantum states, which are elements of Sstat , in the form
dsym X : n1,...,nk;.
X is a quantum state which k quantum variables with qubit-length n1, ..., nk
are in. “dsym” stands for “density operator symbol”.

• symbols of TPCP maps, which are elements of Sop , in the form
operator op : n1,...,nk;.
The operator op acts on quantum variables with qubit-length n1, ..., nk.
The set Sop is the set of CP maps, including proji for i ∈ {0, 1}, but a
user can only define TPCP maps. Recall that for the process construction
op[q̃].P , op is assumed to be a TPCP map.

Processes, quantum states, configurations, and equations on quantum states are
then defined.

• A process is defined in the form
process process name
P
end.

• A quantum state is defined in the form
environment environment name
ρ
end.

• A configuration is defined in the form
configuration

proc process name
env environment name
end.

• An equation is defined in the form
equation equation name
ρ = σ
end,

71

where ρ and σ are quantum states. For a quantum state, description [q̃]
is permitted, which matches arbitrary quantum state of q̃.

Only for Verifier2, indistinguishability expressions on quantum states are defined.

• An indistinguishability expression is defined in the form
indistinguishable indexpression name n
ρ = σ
end,
where n is a natural number symbol, and ρ and σ are quantum state sym-
bols. For a quantum state, description [q̃] is permitted, which matches
arbitrary quantum state of q̃. Moreover, as a CP map, description [q̃] is
permitted, which matches an arbitrary CP map acting on q̃.

5.2.2 Outputs

If no option is set, the verifiers find two configuration in a script, verify their
(approximate) bisimilarity using the defined equations (and indistinguishability
expressions), and then output true or false. The verifiers have options with which
they show information for debugging. The information is about the reason why
the recursive procedure returns false. Concretely, for configurations {|P, ρ|} and
{|Q, σ|}, the verifiers show

1. P , Q, qv(P), and qv(Q) if qv(P) 6= qv(Q).

2. trqv(P)(ρ) and trqv(Q)(σ) if trqv(P)(ρ) 6= trqv(Q)(σ)
(or d(trqv(P)(ρ), trqv(Q)(σ)) is not verified to be negligible.)

3. α, P , and Q if Q 6 α−→ and P
α−→, or P 6 α−→ and Q

α−→.

Especially, the information 2 can be used for finding equations that are necessary
for the verification. For more details, readers can find user manual of the verifier
contained in the package.

We next introduce as examples formal verification of correctness of the quan-
tum teleportation protocol and the super dense coding protocol using Verifier1.
The protocols were formally verified in [31] using bisimulation. Our way of for-
malization is slightly different from theirs, because we represent classical data as
quantum data.

Example 5.2.1. An example of formal verification of the quantum teleportation
protocol is shown in Figure 5.1. The protocol is formalized as a configuration
Tel. A configuration TelSpec is a specification of the protocol, which merely
swaps input’s and output’s quantum states. With equation E1 and E2, Tel and
TelSpec are automatically proven to be bisimilar.

The interpretations of natural number symbols, TPCP maps and quantum
states in the script of Example 5.2.1 are as follows.

• The natural number symbol 2 is interpreted to the natural number 2. m is
interpreted to an arbitrary natural number m.

• The quantum state symbols are interpreted as follows.

– [[EPR]] = (|00〉+|11〉√
2

)(|00〉+|11〉√
2

)†

– [[ZERO]] = |00〉〈00|

72

nat 2;

nat m;

channel c : 2;

channel d : 1;

qvar q : 1;

qvar q1 : 1;

qvar q2 : 1;

qvar x : 2;

qvar qE : m;

dsym EPR : 1,1;

dsym ZERO : 2;

dsym AFTER : 1,1,2;

dsym ANY : 1;

dsym EVE : m;

operator cnot : 1,1;

operator hadamard : 1;

operator measure : 1,1,2;

operator telproc : 2,1;

operator swap : 1,1;

process Tel_Proc

((cnot[q,q1].

hadamard[q].

measure[q,q1,x].

c!x.discard(q,q1)

||

c?y.telproc[y,q2].

d!q2.discard(y)

)/{c})

end

environment Tel_Env

EPR[q1,q2] * ZERO[x]

* ANY[q] * EVE[qE]

end

configuration Tel

proc Tel_Proc

env Tel_Env

end

process TelSpec_Proc

swap[q,q2].d!q2.discard(q1,x,q)

end

environment TelSpec_Env

EPR[q1,q2] * ZERO[x]

* ANY[q] * EVE[qE]

end

configuration TelSpec

proc TelSpec_Proc

env TelSpec_Env

end

equation E1

telproc[x,q2](measure[q,q1,x](

hadamard[q](cnot[q,q1](

EPR[q1,q2] * ZERO[x] * ANY[q])

)))

=

ANY[q2] * AFTER[q,q1,x]

end

equation E2

swap[q,q2](EPR[q1,q2] * ANY[q])

=

EPR[q1,q] * ANY[q2]

end

Figure 5.1: Formalization of Quantum Teleportation

– [[AFTER]] = 1
4(|0000〉〈0000|+ |0101〉〈0101|+ |1010〉〈1010|+ |1111〉〈1111|)

– ANY and EVE are interpreted to arbitrary quantum states with dimen-
sion 1 and m.

• The TPCP map symbols are interpreted as follows.

– [[cnot]]q,r is CNOT operator in which the control qubit is q and the
target qubit is r.

– [[hadamard]]s is Hadamard transformation to s.

– [[swap]]t,u is the operation swapping the state of t and u.

– [[measure]](·) = A(·)A†, where A = |00〉〈00| ⊗ I ⊗ I + |01〉〈01| ⊗ I ⊗
X + |10〉〈10| ⊗X ⊗ I + |11〉〈11| ⊗X ⊗X.

– [[telproc]](·) = B(·)B†, where B = |00〉〈00| ⊗ I + |01〉〈01| ⊗ X +
|10〉〈10| ⊗ Z + |11〉〈11| ⊗XZ.

73

nat 2;

nat m;

channel c : 1;

channel d : 2;

qvar q : 2;

qvar q1 : 1;

qvar q2 : 1;

qvar x : 2;

qvar qE : m;

dsym EPR : 1,1;

dsym ZERO : 2;

dsym ANY2bit : 2;

dsym EVE : m;

operator cnot : 1,1;

operator hadamard : 1;

operator swap : 2,2;

operator measure : 1,1,2;

operator sdcproc : 2,1;

process Sdc_Proc

((sdcproc[q,q1].

c!q1.discard(q)

||

c?y.cnot[y,q2].

hadamard[y].

measure[y,q2,x].

d!x.discard(y,q2)

)/{c})

end

environment Sdc_Env

EPR[q1,q2] * ZERO[x] *

ANY2bit[q] * EVE[qE]

end

configuration Sdc

proc Sdc_Proc

env Sdc_Env

end

process SdcSpec_Proc

swap[q,x].d!x.discard(q,q1,q2)

end

environment SdcSpec_Env

EPR[q1,q2] * ZERO[x] *

ANY2bit[q] * EVE[qE]

end

configuration SdcSpec

proc SdcSpec_Proc

env SdcSpec_Env

end

equation E1

Tr[q1,q2,q](

measure[q1,q2,x](

hadamard[q1](

cnot[q1,q2](

sdcproc[q,q1](

EPR[q1,q2] * ZERO[x]

* ANY2bit[q])))))

=

ANY2bit[x]

end

equation E2

swap[q,x](ZERO[x] * ANY2bit[q])

=

ANY2bit[x] * ZERO[q]

end

Figure 5.2: Formalization of Super Dense Coding

Under the above definitions of interpretations, validity of equations E1 and E2

are checked by hand.

Example 5.2.2. An example of formal verification of the super dense cording
protocol is shown in Figure 5.2. The protocol is formalized as a configuration
Sdc. A configuration SdcSpec is a specification of the protocol, which merely
swaps input’s and output’s quantum states. With equation E1 and E2, Sdc and
SdcSpec are automatically proven to be bisimilar.

The interpretations of natural number symbols, TPCP maps and quantum
states in the script of Example 5.2.2 are as follows.

• The natural number symbol 2 are interpreted to the natural number 2. m

is interpreted to an arbitrary natural number m.

74

• The quantum state symbols are interpreted as follows.

– [[EPR]] = (|00〉+|11〉√
2

)(|00〉+|11〉√
2

)†

– [[ZERO]] = |00〉〈00|
– The symbol ANY2bit is interpreted to either |00〉〈00|, |01〉〈01|, |10〉〈10|,

or |11〉〈11|.
– The symbol EVE is interpreted to arbitrary quantum states with di-

mension m.

• TPCP map symbols are interpreted as follows.

– [[cnot]]q,r is CNOT operator in which the control qubit is q and the
target qubit is r.

– [[hadamard]]s is Hadamard transformation to s.

– [[swap]]t,u is the operation swapping the state of t and u.

– [[measure]](·) = A(·)A†, where A = |00〉〈00| ⊗ I ⊗ I + |01〉〈01| ⊗ I ⊗
X + |10〉〈10| ⊗X ⊗ I + |11〉〈11| ⊗X ⊗X.

– [[sdcproc]](·) = B(·)B†, where B = |00〉〈00| ⊗ I + |01〉〈01| ⊗ X +
|10〉〈10| ⊗ Z + |11〉〈11| ⊗XZ.

Under the above definitions of interpretations, validity of equations E1 and E2

are checked by hand.

5.3 Policies and Techniques of Formalization

Naming of Quantum Variables

There are principals Alice, Bob, and Eve in QKD protocols that we consider.
For readability, quantum variables that Alice, Bob, and Eve initially have are
appended with A, B and E respectively in the scripts. The exception is that
EVE 2[r B] is initially the state of Eve’s variable but she will be able to send it
to Bob through c2?r B because c2 is public. This means that arbitrary quantum
state that Eve has prepared can be sent to Bob through the public channel.

Formalization of Channels

As in general QKD protocols, three kinds of channels are used: public quantum
channels, private classical channels, and public no-interpolate classical channels.
Whether values themselves are quantum or classical does not matter here, since
classical values are expressed as quantum states. A diagonal density operator can
be regarded to represent a classical value. Let us say that a quantum variable q
is assigned a classical value when q’s quantum state is represented as a diagonal
operator.

Since the syntax has channel restriction P\L, formalization of the private
channels is straightforward. The public quantum channels and the public no-
interpolate classical channels are realized by copying the data. If a quantum
variable q that is assigned a classical value is sent through a public no-interpolate
channel c, this is formalized as

...copy[q,Q].c!q.d!Q...\{..., c, ...},

where Q is a new quantum variable, an operator copy copies the value of q to
Q, and d is a new non-restricted channel. Concretely, the operator copy[q,Q]

75

initializes the state of Q to |0 · · · 0〉〈0 · · · 0| and apply CNOT with each qubit of q
as the control and each qubit of Q as the target. The variable q will be securely
sent through the restricted channel c and Eve obtains the same value accessing
Q through the public channel d.

Aborting

Error checking and aborting is important in QKD protocols. When Alice and
Bob decide to abort an execution of a protocol, what they do after the aborting
is often not explicitly written [10, 65]. Although there are several possibilities,
we merely write processes that do nothing after the aborting.

Outputting Secret Keys

In our formalization, the processes of QKD protocols send the completed secret
keys to the outside and terminate keeping quantum variables that need not be
sent to the outside. The purpose is to verify that the protocols produce the
identical keys in BB84 and the EDP-based protocol (or approximately identical
keys in the EDP-based protocol and EDP-ideal).

Congruence of the relation ∼ (Theorem 4.3.12, in Chapter 4) is useful in
checking the behavior of the configurations of QKD under the presence of ad-
ditional processes. Let us write the configurations of EDP-ideal and BB84 as
{|EDPideal , ρ|} and {|BB84 , σ|}. By congruence, if {|EDPideal , ρ|} ∼ {|BB84 , σ|}
holds, which can be verified using Verifier2, we have

{|EDPideal ||PAlice||PBob, ρ|} ∼ {|BB84 ||PAlice||PBob, σ|},
where PAlice and PBob are processes that run after given the secret keys from
EDPideal or BB84 . Moreover, we have

{|(EDPideal ||PAlice||PBob)\{cka, ckb}, ρ|} ∼ {|(BB84 ||PAlice||PBob)\{cka, ckb}, σ|},
where cka and ckb are secret channels to communicate Alice’s and Bob’s key.
This suggests that we immediately have that PAlice and PBob behave equivalently
with secret keys created by {|EDPideal , ρ|} and {|BB84 , σ|}.

5.4 Formal Verification of Equivalence of BB84 and

the EDP-based Protocol

The scripts of formalization of the EDP-based protocol and BB84 is shown in
Figure 5.3 and 5.4.

5.4.1 Formalization of the EDP-based Protocol

The EDP-based protocol employs CSS quantum error correcting code (QECC),
which is constructed from two classical linear codes C1, C2. CSS QECC can be
parametrized with u ∈ C2 and v ∈ {0, 1}n − C1. We write CSSu,v(C1, C2) for
CSS code parametrized u and v that employ codes C1 and C2.

5.4.2 Symbols and Operators in the EDP-based Protocol

Quantum State Symbols

• Alice first prepares EPR pairs. Let quantum variables q and r be of the
length n, where n interpreted as an arbitrary natural number n. EPR[q, r]
is interpreted to EPR pairs ((|00〉+|11〉√

2
)(|00〉+|11〉√

2
)†)⊗nq,r .

76

process EDPbased

((hadamards[q2_A,r2_A,s_A].

shuffle[q2_A,r2_A,t_A].

c1!q2_A.c2!r2_A.c3?a_A.

copyN[t_A,T_A].c4!t_A.d1!T_A.

copy2n[s_A,S_A].c5!s_A.d2!S_A.

measure[q1_A].

c6?u_A.

abort_alice[q1_A,u_A,b1_A].

copy1[b1_A,b2_A].

copy1[b1_A,B_A].

c7!b1_A.d3!B_A.

meas b2_A then

css_projection[r1_A,x_A,z_A].

copyn[x_A,X_A].

css_decode[r1_A,x_A,z_A].

measure[r1_A].

c8!x_A.d4!X_A.

c9!z_A.barrier!f_A.

cka!r1_A.

discard(q1_A,b2_A,a_A,

u_A,v1_A,v_B)

saem

||

c1?q_B.c2?r_B.

c3!a_B.d5!A_B.

c4?t_B.unshuffle[q_B,r_B,t_B].

c5?s_B.hadamards[q_B,r_B,s_B].

measure[q_B].

copyn[q_B,Q_B].c6!q_B.d6!Q_B.

c7?b_B.

meas b_B then

c8?x_B.c9?z_B.

css_syndrome[r_B,x_B,z_B,

sx_B,sz_B].

css_correct[r_B,sx_B,sz_B].

css_decode[r_B,x_B,z_B].

measure[r_B].

barrier?f_B.

ckb!r_B.

discard(b_B,s_B,t_B,x_B,

z_B,sx_B,sz_B,f_B)

saem)/{c3, c4, c5, c6, c7, c8,

c9, barrier})

end

environment EDPbased_ENV

EPR[q1_A,q2_A] * EPR[r1_A,r2_A]

* RND_2n[s_A] * RND_N[t_A] *

Z_1[b1_A] * Z_1[b2_A] * Z_n[x_A]

* Z_n[z_A] * Z_2n[S_A] *

Z_N[T_A] *

Z_1[B_A] * Z_n[X_A] * Z_1[f_A]

* Z_1[a_B] * Z_1[A_B] * Z_n[Q_B]

* Z_n[sx_B] * Z_n[sz_B]

* EVE[q_E] * Z_n_n[v1_A,v_B]

* EVE1[q_B] * EVE2[r_B]

end

configuration EDPbased

proc EDPbased

env EDPbased_ENV

end

Figure 5.3: Formalization of the EDP-based Protocol

• RND 2n[q] RND N[r] are interpreted to (12 |0〉〈0|+ 1
2 |1〉〈1|)⊗2n

q and (12 |0〉〈0|+
1
2 |1〉〈1|)⊗Nr , where N is represented by a natural number symbol N. N is
interpreted to N = ⌈log2(2n!)⌉. This is the randomness to determine check
bits.

• Z 1[q], Z n[r], Z 2n[s], and Z n n[t, u], are interpreted to
|0〉〈0|q, |0〉〈0|⊗nr , |0〉〈0|⊗2n

s , and |0〉〈0|⊗nt ⊗ |0〉〈0|⊗nu , respectively.

• EVE, EVE1 and EVE2 are arbitrarily interpreted. They express quantum
states that are prepared by the adversary. EVE is one for a quantum variable
with length m, where m is interpreted as an arbitrary natural number m.
EVE1 and EVE2 are ones for quantum variables with length n.

TPCP Map Symbols

• hadamards[q, r, s] randomly performs Hadamard transformation to qubit-
string q, r according to a bitstring s which serves as a seed of randomness.

77

process BB84

((hadamards[q2_A,r2_A,s_A].

shuffle[q2_A,r2_A,t_A].

c1!q2_A.c2!r2_A.c3?a_A.

copyN[t_A,T_A].c4!t_A.d1!T_A.

copy2n[s_A,S_A].c5!s_A.d2!S_A.

c6?u_A.

abort_alice[q1_A,u_A,b1_A].

copy1[b1_A,b2_A].

copy1[b1_A,B_A].

c7!b1_A.d3!B_A.

meas b2_A then

cnot[r1_A,x_A].

copyn[x_A,X_A].

cnot_and_swap[x_A,r1_A].

key[r1_A].

c8!x_A.d4!X_A.

barrier!f_A.

cka!r1_A.

discard(q1_A,b2_A,a_A,

z_A,u_A,v1_A,v_B)

saem

||

c1?q_B.c2?r_B.

c3!a_B.d5!A_B.

c4?t_B.unshuffle[q_B,r_B,t_B].

c5?s_B.hadamards[q_B,r_B,s_B].

measure[q_B].

copyn[q_B,Q_B].c6!q_B.d6!Q_B.

c7?b_B.meas b_B then

c8?x_B.

measure[r_B].

cnot[x_B,r_B].

copyn[x_B,r_B].

syndrome[r_B,sx_B].

correct[r_B,sx_B].

key[r_B].

barrier?f_B.

ckb!r_B.

discard(b_B,s_B,t_B,

x_B,sx_B,sz_B,f_B)

saem)/{c3, c4, c5, c6,

c7, c8, barrier})

end

environment BB84_ENV

PROB[q1_A,q2_A] *

PROB[r1_A,r2_A]

* RND_2n[s_A] * RND_N[t_A]

* Z_1[b1_A] * Z_1[b2_A]

* RC1[x_A] * RC2[z_A]

* Z_2n[S_A]

* Z_N[T_A] * Z_1[B_A] * Z_n[X_A]

* Z_1[f_A] * Z_1[a_B]

* Z_1[A_B]

* Z_n[Q_B] * Z_n[sx_B]

* Z_n[sz_B] * Z_n_n[v1_A,v_B]

* EVE[q_E] * EVE1[q_B]

* EVE2[r_B]

end

configuration BB84

proc BB84

env BB84_ENV

end

Figure 5.4: Formalization of BB84 Protocol

• shuffle[q, r, s] randomly permutates the bits of qubit-string q, r accord-
ing to the randomness s. In the formalization, q A and r A are supposed
to be used as check bits and to generate secret keys. By this procedure,
they are uniformly shuffled. Later, they are reverted by unshuffle[q, r, s]
procedure.

• copy2n[q, r] copies the value of q with length 2n to r, where q is supposed to
be assigned a classical value. copyN[q, r] and copy1[q, r] are for quantum
variables with length N and 1.

• measure[q] is the projective measurement of q.

• abort alice[q, r, s] compares two bitstrings q and r, and sets the value 0
to a bit s if the difference between q and r is lower than the threshold h, else
sets the value 1 to s. The threshold h does not occur in the symbolic rep-
resentation abort alice[q, r, s], but it is defined when the interpretation

78

[[abort alice]] is defined. The threshold h can be defined appropriately so
that the indistinguishability expressions are valid that are used to verify
approximate bisimilarity of the EDP-based protocol and EDP-ideal.

• css projection[q, r, s] is the measurement of the observable of q’s state
that is described by the parity check matrix determined from C1 and C2

(Section 2.4.2, Step 7). EPR pairs q are converted to a random codeword of
CSSx,y(C1, C2), where parameters x, y are also uniformly distributed. The
value of x and y are stored in r and s.

• css decode[q, r, s] decodes q as CSSx,y(C1, C2) codeword when the value
of r and s are x and y.

• unshuffle[q, r, s] is the inverse of shuffle[q, r, s].

• css syndrome[q, r, s, u, v] calculates the error syndrome of q as a codeword
of CSSx,y(C1, C2) when r and s have the value x and y, and stores the
syndrome in u and v.

• css correct[q, u, v] is error correction with the syndrome stored in u, v.

5.4.3 Formalization of BB84

BB84 employs classical codes C1 and C2 with C2 ⊆ C1, which correspond to
CSSx,y(C1, C2) in the EDP-based protocol.

5.4.4 Symbols and Operators in BB84

Quantum State Symbols

• Alice first prepares two same random bitstrings. This initial state is repre-
sented by PROB[q, r] with q for Alice and r for Bob, which is interpreted
as (12 |00〉〈00|+ 1

2 |11〉〈11|)⊗nq,r .

• RC1[q] is interpreted as
∑

u∈C1

1
|C1| |u〉〈u|.

• RC2[q] is interpreted as
∑

v∈C2

1
|C2| |v〉〈v|.

TPCP Map Symbols

• syndrome[q, r] calculates the error syndrome of q using as a codeword in
C1 and store the syndrome to r.

• correct[q, r] corrects errors of q with the syndrome r.

• key[q] calculates with respect to C2 the coset of the value that is an element
of C1 and stored in q.

5.4.5 Equations for the Formal Verification

We defined 6 equations in Verifier1. They are described in Figure 5.5. The
equations E1, E2, and E3 are obtained formalizing the inferences in Shor and
Preskill’s security proof. The equations E4, E5, and E6 are formalization of basic
properties of linear operators.

79

equation E1

measure[r1_A](

css_decode[r1_A,x_A,z_A](

copyn[x_A,X_A](

css_projection[r1_A,x_A,z_A](

EPR[r1_A,r2_A] *

Z_n[x_A] * Z_n[z_A] *

Z_n[X_A]))))

=

key[r1_A](

cnot_and_swap[x_A,r1_A](

copyn[x_A,X_A](

cnot[r1_A,x_A](

PROB[r1_A,r2_A] *

RC1[x_A] *

RC2[z_A] * Z_n[X_A]))))

end

equation E2

measure[r_B](

css_decode[r_B,x_A,z_A](

css_correct[r_B,sx_B,sz_B](

css_syndrome[r_B,x_A,z_A,

sx_B,sz_B](

cnot_and_swap[x_A,r1_A](

copyn[x_A,X_A](

cnot[r1_A,x_A](

PROB[r1_A,r2_A] *

__[r_B] * RC1[x_A] *

RC2[z_A] * Z_n[sx_B] *

Z_n[sz_B] * Z_n[X_A])))))))

=

key[r_B](

correct[r_B,sx_B](

syndrome[r_B,sx_B](

copyn[x_A,r_B](

cnot[r_B,x_A](

measure[r_B](

cnot_and_swap[x_A,r1_A](

copyn[x_A,X_A](

cnot[r1_A,x_A](

PROB[r1_A,r2_A] * __[r_B]

* RC1[x_A] * RC2[z_A]

* Z_n[sx_B] * Z_n[sz_B] *

Z_n[X_A])))))))))

end

equation E3

measure[r2_A](

css_decode[r2_A,x_A,z_A](

css_correct[r2_A,sx_B,sz_B](

css_syndrome[r2_A,x_A,z_A,

sx_B,sz_B](

cnot_and_swap[x_A,r1_A](

copyn[x_A,X_A](

cnot[r1_A,x_A](

__[r1_A,r2_A] *

RC1[x_A] * RC2[z_A] *

Z_n[sx_B] * Z_n[sz_B] *

Z_n[X_A])))))))

=

key[r2_A](

correct[r2_A,sx_B](

syndrome[r2_A,sx_B](

copyn[x_A,r2_A](

cnot[r2_A,x_A](

measure[r2_A](

cnot_and_swap[x_A,r1_A](

copyn[x_A,X_A](

cnot[r1_A,x_A](

__[r1_A,r2_A] *

RC1[x_A] * RC2[z_A] *

Z_n[sx_B] * Z_n[sz_B] *

Z_n[X_A])))))))))

end

equation E4

Tr[q1_A](EPR[q1_A,q2_A])

=

Tr[q1_A](PROB[q1_A,q2_A])

end

equation E5

Tr[r1_A](EPR[r1_A,r2_A])

=

Tr[r1_A](PROB[r1_A,r2_A])

end

equation E6

measure[q1_A](EPR[q1_A,q2_A])

=

PROB[q1_A,q2_A]

end

Figure 5.5: Equations for BB84 and the EDP-based Protocol

80

5.4.6 Experiment Result

Experiment 1

We ran Verifier1 with the input of shor-preskill.scr. We used a laptop with
Intel Core i5 CPU M 460 @ 2.53GHz and 1GB memory. The transition tree of
the EDP-based protocol has 621 nodes and 165 paths, and that of BB84 has 588
nodes and 165 paths. The verifier checked the bisimilarity of the two protocols
in 30.38 seconds. The recursive procedure was called 753 times. The number of
configurations in the history was 653 and history was hit 653 times. The number
of application of each equation is described as follows. The equations E1, E2, E3,
E4, E5, and E6 are applied 55, 24, 9, 73, 271, and 11 times, respectively.

5.5 Formal Verification of Security of the EDP-based Protocol

The last protocol EDP-ideal is a sort of cheating protocol. Alice and Bob initially
share EPR pairs in the protocol. They execute the same protocol as the EDP-
based protocol until the decision of continue or aborting by the result of the error
checking. Only when they decide to continue, they create the secret keys using
pre-shared EPR pairs instead of pairs obtained after the entanglement distillation
protocol.

5.5.1 Formalization of EDP-ideal

The pre-shared EPR pairs are formalized as EPR[rx A, rx B]. The code of EDP-
ideal is almost the same as the EDP-based protocol. When Alice and Bob de-
cide to continue the protocol, Alice creates her secret key from rx A and re-
names to r1 A operating create key[rx A, r1 A]. Bob creates his key similarly
by create key[rx B, r B].

5.5.2 Indistinguishability Expressions for the Verification

We defined 24 indistinguishability expressions Verifier2. One of the expressions
E1 is described in Figure 5.5.2. The expression’s meaning is as follows.

1. The probability that they do not abort the protocol is negligibly close in
the both protocols.

2. If the both protocols are not aborted, Alice’s secret key that is created
from halves of qubit pairs whose states are obtained after the entanglement
distillation in the EDP-based protocol is indistinguishable from Alice’s key
that is created from EPR pairs.

The indistinguishability expressions are prepared for each Eve’s choice: she can
choose to interfere or not to interfere communications through the public quantum
channels c1 and c2. For example, if she interferes c1 and does not interfere c2, a
possible scheduling is as follows.

· · · τ−→{|(c1!q2 A.c2!r2 A. · · · ||c1?q B.c2?r B. · · ·)\{c3, · · · }, ρ|}
c1!q2 A−−−−→ c1?q B−−−−→{|(c2!r2 A. · · · ||c2?r B. · · ·)\{c3, · · · }, ρ′|}

τ−→{|(· · · || · · ·)\{c3, · · · }, ρ′′|}

E1 is for the case where Eve chooses the scheduling
c1!q2 A−−−−→ c1?q B−−−−→ and

c2!r2 A−−−−→ c2?r B−−−−→. The order of sending and receiving does not matter here. As for

81

process EDP-IDEAL

((hadamards[q2_A,r2_A,s_A].

shuffle[q2_A,r2_A,t_A].

c1!q2_A.c2!r2_A.c3?a_A.

copyN[t_A,T_A].c4!t_A.d1!T_A.

copy2n[s_A,S_A].c5!s_A.d2!S_A.

measure[q1_A].

c6?u_A.

abort_alice[q1_A,u_A,b1_A].

copy1[b1_A,b2_A].

copy1[b1_A,B_A].

c7!b1_A.d3!B_A.

meas b2_A then

css_projection[r1_A,x_A,z_A].

css_decode[r1_A,x_A,z_A].

copyn[x_A,X_A].

measure[r1_A].

c8!x_A.d4!X_A.

c9!z_A.

create_key[rx_A,r1_A].

barrier!f_A.

cka!r1_A.

discard(q1_A,b2_A,

a_A,u_A,rx_A)

saem

||

c1?q_B.c2?r_B.

c3!a_B.d5!A_B.

c4?t_B.unshuffle[q_B,r_B,t_B].

c5?s_B.hadamards[q_B,r_B,s_B].

measure[q_B].

copyn[q_B,Q_B].c6!q_B.d6!Q_B.

c7?b_B.

meas b_B then

c8?x_B.c9?z_B.

css_syndrome[r_B,x_B,

z_B,sx_B,sz_B].

css_correct[r_B,sx_B,sz_B].

css_decode[r_B,x_B,z_B].

measure[r_B].

create_key[rx_B,r_B].

barrier?f_B.

ckb!r_B.

discard(b_B,s_B,t_B,x_B,z_B,

sx_B,sz_B,f_B,rx_B)

saem)/{c3, c4, c5, c6,

c7, c8, c9, barrier})

end

environment EDP-IDEAL_ENV

EPR[q1_A,q2_A] * EPR[r1_A,r2_A]

* RND_2n[s_A] * RND_N[t_A]

* Z_1[b1_A] * Z_1[b2_A]

* Z_n[x_A]

* Z_n[z_A] * Z_2n[S_A]

* Z_N[T_A]

* Z_1[B_A] * Z_n[X_A] * Z_1[f_A]

* Z_1[a_B] * Z_1[A_B] * Z_n[Q_B]

* Z_n[sx_B] * Z_n[sz_B]

* EVE[q_E]

* EVE1[q_B] * EVE2[r_B]

* EPR[rx_A,rx_B]

end

configuration EDP-IDEAL

proc EDP-IDEAL

env EDP-IDEAL_ENV

end

Figure 5.6: Formalization of EDP-ideal

this point, we needed 4 types of indistinguishability expressions for the cases
where Eve interferes both c1, c2, only c1, only c2, and does not interfere both.

The indistinguishability expressions are also prepared for certain steps of the
protocols: after completing the keys, Alice and Bob output their keys but who
sends the first is non-deterministic. For instance, the quantum variable r B is in
the expression Tr[b1 A,b2 A,q1 A,q B,r B,rx A,rx B,s A,t A,x A,z A] in the
first line and this is for the step where Alice has already sent her key r1 A to
the outside by cka!r1 A but Bob has not yet his secret key r B by ckb!r B. As
for this point, we needed 3 types of indistinguishability expressions for the cases
where the outsider has obtained only Alice’s key, only Bob’s key, and both.

We have explained the reason why we needed 3× 4 = 12 indistinguishability
expressions. Finally, for each expression, we needed one equivalent expression
obtained replacing the order of the CP maps, because the pattern matching
algorithm for CP maps does not solve commutativity completely. Hence, we

82

indistinguishable E1 n

Tr[b1_A,b2_A,q1_A,q_B,r_B,rx_A,rx_B,s_A,t_A,x_A,z_A](

create_key[rx_A,r1_A](proj1[b1_A](measure[r1_A](

copyn[x_A,X_A](css_decode[r1_A,x_A,z_A](

css_projection[r1_A,x_A,z_A](proj1[b2_A](

copy1[b1_A,B_A](copy1[b1_A,b2_A](

abort_alice[q1_A,q_B,b1_A](measure[q1_A](

copyn[q_B,Q_B](measure[q_B](

hadamards[q_B,r_B,s_A](copy2n[s_A,S_A](

unshuffle[q_B,r_B,t_A](copyN[t_A, T_A](

__[q2_A,r2_A,q_E,q_B,r_B](

shuffle[q2_A,r2_A,t_A](hadamards[q2_A,r2_A,s_A](

EPR[q1_A,q2_A] * EPR[r1_A,r2_A] * EPR[rx_A,rx_B] *

RND_2n[s_A] * Z_2n[S_A] * RND_N[t_A] * Z_N[T_A] *

Z_1[b1_A] * Z_1[b2_A] * Z_1[B_A] * Z_n[Q_B] *

Z_n[x_A] * Z_n[X_A] * Z_n[z_A] *

__[q_B] * __[r_B] * __[q_E]

)))))))))))))))))))))

=

Tr[b1_A,b2_A,q1_A,q_B,r_B,s_A,t_A,x_A,z_A](

proj1[b1_A](measure[r1_A](

copyn[x_A,X_A](css_decode[r1_A,x_A,z_A](

css_projection[r1_A,x_A,z_A](proj1[b2_A](

copy1[b1_A,B_A](copy1[b1_A,b2_A](

abort_alice[q1_A,q_B,b1_A](measure[q1_A](

copyn[q_B,Q_B](measure[q_B](

hadamards[q_B,r_B,s_A](copy2n[s_A,S_A](

unshuffle[q_B,r_B,t_A](copyN[t_A, T_A](

__[q2_A,r2_A,q_E,q_B,r_B](

shuffle[q2_A,r2_A,t_A](hadamards[q2_A,r2_A,s_A](

EPR[q1_A,q2_A] * EPR[r1_A,r2_A] *

RND_2n[s_A] * Z_2n[S_A] * RND_N[t_A] * Z_N[T_A] *

Z_1[b1_A] * Z_1[b2_A] * Z_1[B_A] * Z_n[Q_B] *

Z_n[x_A] * Z_n[X_A] * Z_n[z_A] *

__[q_B] * __[r_B] * __[q_E]

))))))))))))))))))))

end

Figure 5.7: Indistinguishability Expression E1

prepared 12× 2 = 24 expressions.

5.5.3 Experiment Result

Experiment 2

We performed the experiment in the same environment as the previous part
of the formal verification described in Section 5.4. We ran Verifier2 with the
input of edp-edpideal.scr, where the EDP based protocol and EDP-ideal are
formalized. As for the transition tree, the both protocols have 621 nodes and 165
paths. Verifier2 checked the bisimilarity of the two protocols in 112.50 seconds.
The recursive procedure was called 907 times. The number of configurations in

83

the history was 763 and history was hit 620 times. The number of application of
each equation is described as follows. The equations E1, E2, E3, E1-2, E2-2, and
E3-2 are applied 6, 12, 6, 12, 24, and 12 times, respectively. The equations F1,
F2, F3, F1-2, F2-2, and F3-2 are applied 2, 4, 2, 4, 8, and 4 times, respectively.
The equations G1, G2, G3, G1-2, G2-2, and G3-2 are applied 2, 4, 2, 4, 8, and 4
times, respectively. The equations H1, H2, H3, H1-2, H2-2, and H3-2 are applied
1, 2, 1, 2, 4, and 2 times, respectively.

Experiment 3

We ran Verifier2 with the input of bb84-edp.scr, which is identical to the script
of Experiment 1. It checked the bisimilarity of the two protocols in 39.50 seconds.
The recursive procedure was called 1039 times. The transition tree of the EDP-
based protocol has 621 nodes and 165 paths, and that of BB84 has 588 nodes
and 165 paths, which is the same result as the Experiment 1. The number of
configurations in the history was 796 and history was hit 653 times. The number
of application of each equation is described as follows. The equations E1, E2, E3,
E4, E5, and E6 are applied 132, 24, 9, 73, 458, and 11 times, respectively.

Discussion about the Results

Although the number of the call of the recursive procedure is close, it took more
time, 112.50 seconds, in Experiment 2 compared to 30.38 seconds in Experiment
3. There are following two reasons. The first is that the algorithm of the Verifier2
is more complex than that of Verifier1: wild card of CP map symbol [q̃] is per-
mitted in indistinguishability expressions. The algorithm to match the left-hand
side of the expressions is more complex for the sake of the wild card matching.
The second is that both the number of indistinguishability expressions and the
sizes of them are larger. For each time of testing indistinguishability, the pro-
cedure checks for each indistinguishability expression whether it matches to the
left-hand side of the objective quantum states.

Let us compare Experiment 1 and Experiment 3. Although we used the
same input file, the number of calling the recursive procedure is different. This is
because the existence or absence of the requirement that a branch caused by meas

should be matched, which we mentioned in Section 4.4.1. With the requirement,
to simulate a transition caused by meas, the number of transitions which are
candidate for success of the simulation is more limited: Verifier1 only seeks a τ
transition caused by meas by the same qubit variable.

84

Chapter 6

Conclusions

6.1 Automated Verification of Bisimilarity of Configurations

Impact of Automation

Our automatic verification methods broaden the range of application of qCCS. In
security proofs, equivalence of protocols is often discussed. It can be described as
bisimilarity but it is difficult to check by hand when state transitions of processes
have many long branches. Besides, equality of outsider’s views between two pro-
tocols must be checked in each step. Outsider’s view is calculated from collective
quantum state, which is possibly denoted by a huge matrix. One might prove
bisimilarity with the insight of state transitions without tracing them. However,
it is not always possible and possibly contradicts a purpose of formal methods,
namely, to make implicit inferences in proofs explicit. Our verifiers do exhausting
parts of proofs of behavioural equivalence: it checks correspondence of all state
transitions up to invisible ones and equality of outsider’s views using equations
and indistinguishability expressions. Let us call equations and indistinguisha-
bility expressions axioms here. On the other hand, a user only has to examine
the correctness of formalization of protocols and validity of axioms. It could be
difficult to find all appropriate axioms for a proof immediately. The verifiers
are also able to show quantum states, outsider’s views, and/or processes when
the recursive procedure returns false. With the information, a user can modify
axioms to input.

Equations and Indistinguishability Expressions

Formal verification of validity of axioms is important but not in the scope of
this thesis. Most of the axioms in Chapter 5 are obtained formalizing properties
of CSS-QECC [18] or Lo and Chau’s theorem [53] and their validity is not self-
evident. Nevertheless, the validity can be verified as just equality or negligible
trace distance of density operators. One does not have to consider communica-
tion of principals and nondeterminism of execution models to verify the axioms,
because conditions about them are verified using the process calculus.

Application of a sequential quantum programming language such as QPL
[64] is a possible way to verify axioms. In QPL’s semantics, the programs are
interpreted to TPCP maps. The bodies of symbolically-represented TPCP maps,
such as css projection[q, r, s] and css syndrome[q, r, s] described in Chapter 5,
are possibly formalized as QPL programs. Validity of axioms could be verified as
equivalence or “indistinguishability” of the programs.

85

6.2 Congruent Approximate Bisimulation Relation

The notion of bisimulation proposed by Feng et al. [24] was applicable to verify
equivalence of BB84 and the EDP-based protocol [46]. The configurations that
are bisimilar in the original qCCS’s definition behave equivalently from the out-
side. However, it seemed not to applicable directly to verify the security proof
of the latter. To do it, it seemed to be a possible way to consider an ideal pro-
tocol and prove that they behave almost equivalently from an adversary Eve. In
Chapter 4, we defined two approximate bisimulation relations ∼ζ,η and ∼ on non-
deterministic qCCS configurations, and studied properties of them. Some of the
properties, such as those stated in Proposition 4.2.6, 4.3.6, Lemma 4.2.5, 4.3.4,
and 4.3.7, are analogy of those of existing bisimulation relations [58, 31, 24]. As
stated by Lemma 4.2.10, the relation ∼ζ,η has a transitivity-like property. The
relation ∼ is an equivalence relation, which is stated in Proposition 4.3.9. Fur-
thermore, ∼ζ,η and ∼ are closed under application of an arbitrary evaluation
context as stated in Corollary 4.2.14 and 4.3.12. The property is useful in prac-
tice, concretely, when we consider multiple sessions of a protocol or its behavior
employed as a primitive of another protocol.

We discussed guarantees and limitations in Section 4.5. The configurations in
the relation ∼ reveal quantum states with negligible trace distance to the outsider
after transitions. As described in Section 4.5.1 and Section 5.5, the notion of
approximate bisimulation ∼ was applicable to verify formally the security proof
of the EDP-based protocol. However, as described in 4.5.3, we do not have any
precise definition of approximate bisimulation in the original qCCS. Even if we
have {|P, ρ|} ∼ {|Q, σ|}, it is not clear whether Lcnv(P), [[ρ]]M and Lcnv(Q), [[σ]]M
behave “approximately indistinguishably” in the original qCCS. It is future work
to define approximate bisimulation in the original qCCS and study end guarantees
of the relation ∼ (and ≃ defined in Section 4.5.3).

6.3 Formal Verification of Security Proofs of

Quantum Cryptographic Protocols

We formally verified Shor and Preskill’s security proof of BB84 [65] using our ver-
ifiers. Verifier checked bisimilarity of BB84 and EDPbased and Verifier2 checked
approximate bisimilarity of BB84, EDPbased, and EDPideal. To the best of our
knowledge, this is the first work where cryptographic security of a quantum cryp-
tographic protocol is mechanically verified using a software tool.

Shor and Preskill’s security proof is simple compared to other proofs [56, 44],
where more general execution models are assumed. Actually, Shor and Preskill’s
proof is clearly understood by researchers in quantum cryptography [56, 44, 52]
and it seems not to be an emergent task to verify it formally. We consider our
work as a step to apply formal methods practically to general quantum protocols.

6.4 Future Work

Although we applied our verifiers to Shor and Preskill’s security proof, we did
not to other proofs. For B92 [9] and the six-state protocol [17], which are QKD
protocols, the proofs [68, 51] that are similar to Shor and Preskill’s have been
presented: the security of the objective protocol is reduced to an EDP-based
protocol, and the latter is proven to be secure. Similarly to what we have done
for BB84, it seems possible to make valid equations and indistinguishability ex-
pressions for B92 and the six-state protocol.

86

There are also several security proofs of BB84 with different assumptions. To
broaden the range of formal verification using process calculi, we have to consider
the way to verify proofs with different patterns of arguments.

As mentioned in Section 6.1, formal verification of validity of axioms is future
work. Furthermore, to broaden the range of automation, the algorithms must
be improved to test equality and indistinguishability of symbolically-represented
partial traces using the axioms. In this thesis, we adopt a quite simple algorithm
for the tests: each axiom is applied only once for each test in the order of user’s
definition. Although such simple algorithm is applicable to verify relatively sim-
ple verification objectives such as Shor and Preskill’s security proof, improved
strategies help us to verify more general ones. It is possible to improve our veri-
fiers to call external procedures for completion [43, 38] such as Maxcomp [42] or
mkbTT [63] to construct confluent and terminating term rewriting systems from
equational systems consisting of the axioms. With a complete rewriting system,
equality and indistinguishability of the symbolic representations are decided.

If quantum cryptographic protocols are formalized as configurations and proven
(approximately) bisimilar, we expect they are (approximately) equivalent in purely
quantum cryptographic sense. However, correspondence between bisimilarity and
physical equivalence is only intuitively understood. Compared to the tools we in-
troduced in Section 1.1.2, our verifiers seems to be relatively close to verifiers of
quantum cryptographic proofs in that they do not idealize cryptographic prim-
itives. To consider physical semantics of quantum process calculi is also future
work.

87

References

[1] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In ACM SIGPLAN Notices, volume 36, pages 104–115.
ACM, 2001.

[2] Mart́ın Abadi and Andrew D Gordon. A calculus for cryptographic protocols:
The spi calculus. In Proceedings of the 4th ACM conference on Computer
and communications security, pages 36–47. ACM, 1997.

[3] Pedro Adao and Paulo Mateus. A process algebra for reasoning about quan-
tum security. Electronic Notes in Theoretical Computer Science, 170:3–21,
2007.

[4] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, et al. The avispa tool for the automated
validation of internet security protocols and applications. In Computer Aided
Verification, pages 281–285. Springer, 2005.

[5] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer. In
Advances in Cryptology–CRYPTO 2011, pages 71–90. Springer, 2011.

[6] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. Beyond provable security verifiable ind-cca security of oaep. In
Topics in Cryptology–CT-RSA 2011, pages 180–196. Springer, 2011.

[7] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal
certification of code-based cryptographic proofs. In ACM SIGPLAN Notices,
volume 44, pages 90–101. ACM, 2009.

[8] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In
Proceedings of the twenty-sixth annual ACM symposium on Theory of com-
puting, pages 544–553. ACM, 1994.

[9] Charles Henry Bennett. Quantum cryptography using any two nonorthogo-
nal states. Physical Review Letters, 68(21):3121, 1992.

[10] Charles Henry Bennett and Gilles Brassard. Quantum cryptography: Public-
key distribution and coin tossing. IEEE International Conference on Com-
puters, Systems and Signal Processing, pages 175–179, 1984.

[11] Bruno Blanchet. A computationally sound mechanized prover for secu-
rity protocols. Dependable and Secure Computing, IEEE Transactions on,
5(4):193–207, 2008.

88

[12] Bruno Blanchet. Automatically verified mechanized proof of one-encryption
key exchange. Cryptology ePrint Archive, Report 2012/173, 2012. http:

//eprint.iacr.org/.

[13] Bruno Blanchet et al. An efficient cryptographic protocol verifier based on
prolog rules. In csfw, volume 1, pages 82–96, 2001.

[14] Bruno Blanchet, Aaron D Jaggard, Andre Scedrov, and J-K Tsay. Com-
putationally sound mechanized proofs for basic and public-key kerberos. In
Proceedings of the 2008 ACM symposium on Information, computer and
communications security, pages 87–99. ACM, 2008.

[15] Bruno Blanchet and David Pointcheval. Automated security proofs with
sequences of games. In Advances in Cryptology-CRYPTO 2006, pages 537–
554. Springer, 2006.

[16] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the rsa encryption standard pkcs# 1. In Advances in Cryptology―
CRYPTO’98, pages 1–12. Springer, 1998.

[17] Dagmar Bruß. Optimal eavesdropping in quantum cryptography with six
states. Physical Review Letters, 81(14):3018, 1998.

[18] Arthur Robert Calderbank and Peter Williston Shor. Good quantum error-
correcting codes exist. Phys. Rev. A, 54(2):1098–1105, Aug 1996.

[19] Ran Canetti and Jonathan Herzog. Universally composable symbolic anal-
ysis of mutual authentication and key-exchange protocols. In Theory of
Cryptography, pages 380–403. Springer, 2006.

[20] Iliano Cervesato, Aaron D Jaggard, Andre Scedrov, Joe-Kai Tsay, and
Christopher Walstad. Breaking and fixing public-key kerberos. Informa-
tion and Computation, 206(2):402–424, 2008.

[21] Ronald Cramer and Victor Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In Advances in
Cryptology―CRYPTO’98, pages 13–25. Springer, 1998.

[22] Timothy A. S. Davidson, Simon J Gay, Rajagopal Nagarajan, and It-
toop Vergheese Puthoor. Analysis of a quantum error correcting code using
quantum process calculus. EPTCS 95, pages 67–80, 2012.

[23] Rocco De Nicola and Matthew CB Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34(1):83–133, 1984.

[24] Yuxin Deng and Yuan Feng. Open bisimulation for quantum processes. In
Jos C.M. Baeten, Tom Ball, and Frank S. Boer, editors, Theoretical Com-
puter Science, volume 7604 of Lecture Notes in Computer Science, pages
119–133. Springer Berlin Heidelberg, 2012.

[25] Yuxin Deng, Rob Van Glabbeek, Matthew Hennessy, and Carroll Morgan.
Testing finitary probabilistic processes. In CONCUR 2009-Concurrency
Theory, pages 274–288. Springer, 2009.

[26] The Coq development team. The Coq Proof Assistant Reference Manual
Version 8.3.

89

[27] Whitfield Diffie and Martin Hellman. New directions in cryptography. In-
formation Theory, IEEE Transactions on, 22(6):644–654, 1976.

[28] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography.
SIAM review, 45(4):727–784, 2003.

[29] Yuan Feng, Yuxin Deng, and Mingsheng Ying. Symbolic bisimulation for
quantum processes. arXiv preprint arXiv:1202.3484, 2012.

[30] Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. Probabilis-
tic bisimulations for quantum processes. Information and Computation,
205(11):1608–1639, 2007.

[31] Yuan Feng, Runyao Duan, and Mingsheng Ying. Bisimulation for quantum
processes. SIGPLAN Not., 46(1):523–534, January 2011.

[32] David Galindo. Boneh-franklin identity based encryption revisited. In Au-
tomata, Languages and Programming, pages 791–802. Springer, 2005.

[33] Antoine Girard and George J Pappas. Approximate bisimulations for nonlin-
ear dynamical systems. In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages 684–
689, 2005.

[34] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
computer and system sciences, 28(2):270–299, 1984.

[35] Jean Goubault-Larrecq, Catuscia Palamidessi, and Angelo Troina. A proba-
bilistic applied pi–calculus. In Programming Languages and Systems, pages
175–190. Springer, 2007.

[36] Masami Hagiya and Yasuyuki Tsukada, editors. Formal Approach to Infor-
mation Security. Kyoritsu Shuppan, 2010. Supervised by The Japan Society
for Industrial and Applied Mathematics, the series of industrial and applied
mathematics volume 1 (in Japanese).

[37] Shai Halevi. A plausible approach to computer-aided cryptographic proofs.
IACR Cryptology ePrint Archive, 2005:181, 2005.

[38] Gérard Huet. A complete proof of correctness of the knuth-bendix com-
pletion algorithm. Journal of Computer and System Sciences, 23(1):11–21,
1981.

[39] Satoshi Ishizaka, Tomohiro Ogawa, Akinori Kawachi, Gen Kimura, and
Masahito Hayashi. Introduction to Quantum Information Science (量子情報
科学入門). Kyoritsu Shuppan, 2012. (in Japanese).

[40] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant elec-
tronic elections. In Proceedings of the 2005 ACM workshop on Privacy in
the electronic society, pages 61–70. ACM, 2005.

[41] Yoshihiko Kakutani. A logic for formal verification of quantum programs.
In Advances in Computer Science-ASIAN 2009. Information Security and
Privacy, pages 79–93. Springer, 2009.

[42] Dominik Klein and Nao Hirokawa. Maximal completion. 2011.

90

[43] Donald E Knuth and Peter B Bendix. Simple word problems in universal
algebras. j. leech, editor, computational problems in abstract algebra, 263–
297, 1970.

[44] Masato Koashi and John Preskill. Secure quantum key distribution with an
uncharacterized source. Physical review letters, 90(5):057902, 2003.

[45] Takahiro Kubota, Yoshihiko Kakutani, Go Kato, and Yasuhito Kawano. A
formal approach to unconditional security proofs for quantum key distribu-
tion. In Unconventional Computation, pages 125–137. Springer, 2011.

[46] Takahiro Kubota, Yoshihiko Kakutani, Go Kato, Yasuhito Kawano, and
Hideki Sakurada. Application of a process calculus to security proofs of
quantum protocols. Proceedings of WORLDCOMP/FCS2012, Jul 2012.

[47] Takahiro Kubota, Yoshihiko Kakutani, Go Kato, Yasuhito Kawano, and
Hideki Sakurada. Automated verification of equivalence on quantum cryp-
tographic protocols. Symbolic Computation in Software Science, page 64,
2013.

[48] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 2.0: A
tool for probabilistic model checking. In Proceedings of First International
Conference on the Quantitative Evaluation of Systems, pages 322–323. IEEE,
2004.

[49] Marie Lalire. Relations among quantum processes: bisimilarity and congru-
ence. Mathematical Structures in Computer Science, 16(3):407–428, 2006.

[50] Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing.
Information and computation, 94(1):1–28, 1991.

[51] Hoi-Kwong Lo. Proof of unconditional security of six-state quatum key
distribution scheme. Quantum Information and Computation, 1(2):81–94,
2001.

[52] Hoi-Kwong Lo. Method for decoupling error correction from privacy ampli-
fication. New Journal of Physics, 5(1):36, 2003.

[53] Hoi-Kwong Lo and Hoi Fung Chau. Unconditional security of quan-
tum key distribution over arbitrarily long distances. Phys. Rev. Lett.,
283(5410):2050–2056, Mar 1999.

[54] Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol
using fdr. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 147–166. Springer, 1996.

[55] Dominic Mayers. Unconditional security in quantum cryptography. 1998.

[56] Dominic Mayers. Unconditional security in quantum cryptography. J. ACM,
48:351–406, May 2001.

[57] David A Meyer. Quantum strategies. Physical Review Letters, 82(5):1052,
1999.

[58] Robin Milner. Communicating and mobile systems: the pi calculus. Cam-
bridge university press, 1999.

91

[59] Rajagopal Nagarajan, Nikolaos Papanikolaou, Garry Bowen, and Simon
Gay. An automated analysis of the security of quantum key distribution.
In Proc. 3rd International Workshop on Security Issues in Concurrency
(SecCo’05), 2005.

[60] Michael A. Nielsen and Issac L Chuang. Quantum Computation and Quan-
tum Information. Ohmsha, 2004. Translated to Japanese by Tatsuya
Kimura.

[61] Nikolaos K Papanikolaou. Model checking quantum protocols, 2009. Mas-
ter’s Thesis.

[62] Charles Rackoff and Daniel R Simon. Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack. In Advances in Cryptology―
CRYPTO ’91, pages 433–444. Springer, 1992.

[63] Haruhiko Sato, Sarah Winkler, Masahito Kurihara, and Aart Middeldorp.
Multi-completion with termination tools (system description). In Proc. 4th
IJCAR, volume 5195 of LNAI, pages 306–312, 2008.

[64] Peter Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14:527–586, 2004.

[65] Peter Williston Shor and John Preskill. Simple proof of security of the bb84
quantum key distribution protocol. Phys. Rev. Lett., 85(2):441–444, Jul
2000.

[66] Victor Shoup. Oaep reconsidered. In Advances in Cryptology―CRYPTO
2001, pages 239–259. Springer, 2001.

[67] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.

[68] Kiyoshi Tamaki, Masato Koashi, and Nobuyuki Imoto. Unconditionally
secure key distribution based on two nonorthogonal states. Physical review
letters, 90(16):167904, 2003.

[69] Kazuya Yasuda. Observational equivalence using schedulers for quantum
processes. The University of Tokyo, 2014. Bachelor’s Thesis.

[70] Mingsheng Ying, Yuan Feng, Runyao Duan, and Zhengfeng Ji. An algebra
of quantum processes. ACM Transactions on Computational Logic (TOCL),
10(3):19, 2009.

[71] Mingsheng Ying and Martin Wirsing. Approximate bisimilarity. In Algebraic
Methodology and Software Technology, pages 309–322. Springer, 2000.

[72] Santiago Zanella-Beguelin, Gilles Barthe, Benjamin Grégoire, and Federico
Olmedo. Formally certifying the security of digital signature schemes. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 237–250. IEEE,
2009.

92

