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Abstract

Since the importance of the horizontal propagation of gravity waves in the cli-
matology and its relevance to model biases is recently recognized, the horizontal
propagation characteristics of gravity waves are investigated by using observations.
The climatology and the intraseasonal-to-interannual variability of gravity waves
in the summer subtropics are also investigated because they play a dominant role in
driving the meridional circulation in the stratosphere in the summer subtropics. In
order to investigate gravity waves in the summer subtropics, an instrument that
can detect gravity waves with short horizontal wavelengths is used because gravity
waves generated by convection could have a broad range of horizontal wavelengths
including short one.

Recently, on-board satellite instruments with high horizontal and vertical reso-
lution have been developed and they allow us to detect gravity waves in a broader
wavenumber-frequency range, which has not been observed yet. Atmospheric In-
frared Sounder (AIRS) is one of such satellite instruments. The highest horizontal
resolution of 13.5 km is suitable to study gravity waves in the stratosphere. Alt-
hough the operational temperature product of AIRS was degraded to coarser hori-
zontal resolution, new data was developed by using an updated temperature re-
trieval algorithm to allow original high horizontal resolution of AIRS. In the present
study, the characteristics of gravity waves at an altitude of 39 km that is corre-
sponding to the middle stratosphere are described by using high resolution tem-
perature data made by this new retrieval algorithm and their climatology and in-
traseasonal-to-interannual variability over nine years from 2003 to 2011 is also in-

vestigated.
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Since AIRS is a nadir-view instrument, it is sensitive to gravity waves with ver-
tical wavelengths longer than about 15 km. Because vertical group velocities of
those gravity waves are large, gravity wave packets probably stay in an altitude
range in a short time period and be localized horizontally. Thus, in the present study,
the S-transform is used, which is a wavelet analysis and is suitable for the detection
of localized gravity wave packets, in order to estimate the amplitudes of tempera-
ture fluctuations, the horizontal wavelengths, and the direction of the horizontal
wavenumber vector of gravity waves. Before the analysis, the random noise origi-
nating from the temperature retrieval process was estimated in the location versus
wavelength space using the S-transform analysis to extract meaningful signals. It is
found that the noise spectra are mainly distributed in the range of horizontal
wavelengths shorter than about 70 km, and thus the temperature perturbations
with horizontal wavelengths longer than 70 km were regarded as meaningful sig-
nals of gravity waves.

The results of the present study are follows. The seasonal variation and latitu-
dinal dependence of the zonally averaged gravity wave amplitudes, horizontal
wavelengths, and direction of the horizontal wavenumber vector are investigated.
Gravity waves have larger amplitudes at the winter high latitudes and in the
summer subtropics. These peaks are likely due to the significant Doppler shift by
strong mean winds. Gravity waves tend to have vertical wavelengths that are
longer enough to be detected by AIRS. This effect is usually called as the observa-
tional filter. These latitudinal and temporal variations of observed gravity wave
variance are consistent with previous studies that used data from Microwave Limb
Sounder (MLS), which was also sensitive to longer vertical-scale fluctuations. The
horizontal wavelengths are large in the solstice season and latitudes where gravity

waves have large amplitudes. It is interesting that the mean meridional component
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of horizontal wavenumber vector near the polar night jet in the Southern Hemi-
sphere is northward (southward) at latitudes higher (lower) than 60°S. This dis-
tribution may imply that gravity waves propagate into the polar night jet axis.
Although such the propagation of gravity waves toward the polar night jet has been
suggested by a general circulation model simulation that resolved gravity waves
and also by several observational studies that analyzed mountain waves from sat-
ellite data, the present study is the first that reports an existence of gravity waves
that focus to the jet axis in a climatological sense using global observations.

The seasonally averaged gravity wave amplitudes have a clear longitudinal de-
pendence in the summer subtropics, while the mean zonal wind does not change
much longitudinally. This longitudinal dependence of gravity waves is similar to
that of precipitation, and this feature is consistent with previous studies. Interest-
ingly, the maxima of the gravity wave amplitudes are shifted southward from the
South Pacific Convergence Zone (SPCZ) by about 3°. If a typical horizontal wave-
length of 225 km is used as an estimation, theoretical considerations suggest that
there are three possible mechanisms that can explain this latitudinal difference at
least partly. The first one is the stronger excitation of gravity waves due to the ex-
istence of the islands. The second one is the selective excitation of gravity waves due
to the wind shear. The last one is the refraction of gravity waves due to the merid-
1onal gradient of the zonal wind. It is noted that the total distance of gravity wave
propagation explained by the selective excitation and refraction mechanisms is 375
km in maximum, which is marginally equivalent to the latitudinal propagation of 3°
if and only if a gravity wave has a horizontal wavelength of 700 km, although such
gravity waves are rarely observed.

The author focused on the interannual variability of gravity wave amplitudes in

the austral summer subtropics because the year-to-year variation of gravity wave
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amplitudes is larger in the austral summer subtropics than in the boreal summer
subtropics. The DJF-mean time series of gravity wave amplitudes and of precipita-
tion are regressed to that of sea surface temperature anomalies in the NINO.3 re-
gion. Precipitation around the SPCZ shifts northwestward (southeastward) in the
El Nifio (La Nifia) phase and gravity wave amplitudes show similar change de-
pending on the El Nifio-Southern Oscillation (ENSO) phase. Moreover, it is shown
that the interannual variability of the regional mean precipitation in the equatorial
central South Pacific and to the east of the SPCZ are positively correlated with the
NINO.3 time series, while that to the west of the SPCZ shows negatively correla-
tions with NINO.3. Mean gravity waves exhibit a similar interannual variability to
the precipitation in all three regions. It is also shown that such regional dependence
of the interannual variability of gravity wave amplitudes cannot be explained by the
observational filter effect. It is emphasized that there are no previous studies
showing a clear relation of the longitudinal dependence of interannual variability of
gravity wave amplitudes to the ENSO.

The intraseasonal variability of gravity wave amplitudes is examined. Gravity
wave amplitude averaged over the latitudes of 0°S to 20°S is compared with the
precipitation and the zonal wind at 100 hPa, which is corresponding to the altitude
of the tropopause. It is found that large gravity wave amplitudes move eastward as
precipitation maximum moves eastward. Moreover, it is also found that gravity
wave amplitudes are weaker in regions where the zonal wind is eastward at the
tropopause level. Thus, gravity wave amplitudes in the middle stratosphere have
some relations with the precipitation maximum and the zonal wind at the tropo-
pause. The eastward wind works as critical level filtering upward and eastward
propagating gravity waves.

These results strongly indicate that the momentum transport from the tropo-
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sphere to the summer mesosphere by gravity waves has significant interannual and
Intraseasonal variabilities that depend on the convective activity in the troposphere

and the zonal wind at the tropopause in the subtropics in the austral summer.
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Chapter 1
General introduction

1.1 Role of gravity waves in the meridional circulation

The temperature structure in the middle atmosphere is significantly different
from that expected from the radiative equilibrium. In the mesosphere, the vertical
gradient of temperature is opposite to that derived from the radiative equilibrium.
Such structure is maintained by the wave-driven meridional circulation (Holton,
1983). It is considered that the meridional circulation in the mesosphere is mainly
driven by gravity waves (e.g., Andrews et al, 1987). Thus, it is impsrtant to esti-
mate the amount of the gravity wave forcing in order to understand the momentum
budget in the middle atmosphere.

Besides its importance, the direct detection of gravity waves is difficult because
the typical scale of gravity waves is small. Because of this feature, the gravity wave
forcing has been indirectly diagnosed from large-scale flows and temperature. The
gravity wave forcing in the mesosphere can be estimated from the momentum and
thermodynamic equations by using large-scale temperature data observed from
satellites (e.g. Hitchmann and Leovy, 1986; Fetzer and Gille, 1996).

On the other hand, the meridional circulation in the stratosphere, which is
called as the Brewer-Dobson circulation (Brewer, 1949; Dobson, 1956), was consid-
ered to be mainly driven by the planetary and synoptic scale waves (Plumb, 2002).
The gravity wave forcing is, however, also important in driving the Brewer-Dobson

circulation. Okamoto et al (2011) made estimation of respective contributions of
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planetary wave forcing, synoptic-scale
wave forcing, and gravity wave drag to
the stream function of the meridional
circulation. It is well known that the
lower cells in the winter and summer
hemispheres are maintained by the syn-
optic-scale wave forcing and the upper cell
in the winter hemisphere is maintained
by the planetary waves. In addition to
those, Okamoto et al (2011) showed that
the gravity wave drag drives the upward
branch of the upper winter cell, which is
located in the summer subtropics. Thus,
the direct detection of the gravity waves
by observations in the summer subtropics

is important.

One of the observational instruments that can detect gravity waves directly is
Mesosphere-Stratosphere-Troposphere (MST) radars. Previous studies investigated
the momentum flux by gravity waves using MST radar observations in the contin-
uous altitude range. The forcing was derived by the vertical divergence of the grav-
ity wave momentum flux (Vincent and Reid, 1983; Fritts, 1984; Sato, 1990; Tsuda et
al, 1990). Data is limited at only several single stations because the MST radar is

expensive. Recently, satellite observations become to provide global data of gravity

A3 =3y FARICET
SRIENELNEI =1
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Figure 1.1: Typical visibility lim-
its as functions of horizontal and
vertical wavenumber for (green)
limb viewing satellite (CRISTA),
(red) sub-limb viewing satellite
(MLS), (pink) nadir viewing sat-
ellite (AIRS), (blue) balloon, and
(purple) radiosonde measurement
technique. Shaded regions are not
visible to any of the techniques.
Adopted from Alexander et al
(2010).

waves, although the momentum flux estimation is still indirect.
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1.2 Range of gravity waves

1.2.1 Broadness of the gravity wave spectrum

The range of horizontal and vertical wavelengths of gravity waves is broad; their
ranges are from several kilometers to several hundred kilometers horizontally and
from several hundred meters to the infinity vertically. However, the relative im-
portance of gravity waves with respective wavelengths is still unknown. Gravity
waves with shorter horizontal wavelengths transport larger amount of momentum
upward even if temperature amplitudes are the same. These gravity waves with
shorter horizontal wavelengths are considered to be important for the momentum
budget at upper altitudes. When gravity waves reach their critical levels, the ver-
tical wavelengths are expected to become shorter. Near the critical level, gravity
waves are attenuated and deposit the momentum to the background wind field.
Because of the critical level filtering, gravity waves with shorter vertical wave-
lengths are considered to be important at the observed altitude. This is the reason
why the whole range of gravity waves should be investigated.

The vertical wavelengths of gravity waves are largely altered due to the change
in background wind speed. This mechanism can be understood by the dispersion
relation of linear gravity waves: ¢ = (c — U) = N/m, where ¢, ¢, U, N, and m are
the intrinsic phase speed, the ground-based phase speed, the background zonal
wind, the Brunt-Viisila frequency, and the vertical wavenumber, respectively. As-
suming that c is small as observed, the vertical wavelength |2m/m| is roughly
proportional to |U|. Thus, for stronger (weaker) background winds, the vertical
wavenumber becomes smaller (larger), that is, the vertical wavelength becomes
longer (shorter). Thus, for the study of gravity waves, satellite instruments need to

have fine resolution both horizontally and vertically. However, there is a limitation
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in the wavelength range that can be observed by any single instrument (Alexander,

1998).

1.2.2 Observational filter

Figure 1.1 shows the visible ranges of various observations, which are called an
observational filter (Alexander et al, 2010). Atmospheric Infrared Sounder (AIRS)
1s the best in observing the shortest horizontal wavelength range. AIRS has the
highest horizontal resolution (13.5 km across the satellite orbit and 18 km along the
orbit at nadir), although the vertical resolution is relatively coarser (AIRS is sensi-
tive to gravity waves with vertical wavelength larger than 9 km). The gray shaded
region in Figure 1.1 shows the wavelength range where any instruments cannot
detect gravity waves. Thus, to detect gravity waves with shorter horizontal wave-
lengths, it is reasonable to use AIRS data. The background wind speed makes the
vertical wavelengths within or without the range of observation of AIRS. In this
study, we examine the change in gravity wave amplitudes which is not largely con-
taminated by the background wind speed.

Microwave Limb Sounder (MLS), which has provided the climatology of gravity
waves with long vertical wavelengths as will be shown later, is one of the earlier
satellite instruments that observed gravity waves globally. The range of MLS ob-
servation is narrower than that of AIRS because the weighting function for tem-
perature of MLS across the line of sight is relatively narrow (about 15 km), but that
along the line of sight is wider than 200 km (Wu and Waters, 1996a). On the other
hand, AIRS scans across the satellite orbit within the angle of +49.5° from the na-
dir. Thus, the detectable temperature in phase line direction of gravity waves by

MLS largely depends on the satellite orbit but recent AIRS observation does not.
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1.3 Gravity wave activities in the subtropics

It is considered that a main source of gravity waves in the subtropics is convec-
tion. The importance of convection for the generation of gravity waves is also in-
ferred from the climatology of gravity waves. Wu and Waters (1996b) investigated
the climatology of gravity waves with long vertical wavelengths using MLS data,
which is one of the earlier satellite observations. They showed that large variances
of gravity waves at the altitude of 38 km were observed at the winter high latitudes,
where the polar night jet was located. They also showed that moderately large
gravity wave variances were observed in the summer subtropics. The gravity wave
variances in the summer subtropics have clear longitudinal dependence, which
correlates with the outgoing longwave radiation (OLR). Thus, it is reasonable to
consider that the longitudinal dependence of gravity wave variances reflects varia-
tions of wave sources such as deep convection (McLandress et al. 2000, Jiang et al,
2004). The enhancement of the gravity wave activity in the subtropical summer
monsoon season was also observed by High Resolution Dynamics Limb Sounder
(HIRDLS) satellite, which can detect gravity waves with shorter vertical wave-
lengths (Wright and Gille, 2011).

As discussed later, the generation mechanism of gravity waves by convection is
complicating. The spectrum of gravity wave amplitudes generated by convection in
the horizontal phase speed or wavelength space is controversial (Alexander et al,
1995). In addition, it is very difficult to clarify the climatology of the amplitudes of
gravity waves emitted from convection in the whole range of gravity wave spectrum
because of the observational filter. As will be shown later, the range of horizontal
wavelengths of gravity waves from convection is very wide. Since AIRS can detect

gravity waves with shorter horizontal wavelengths, AIRS data is used to investigate
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gravity waves from convection in the present study.

1.4 Variability of gravity waves

The variability of gravity waves is also important. Although the importance of
convection as a dominant mechanism that determines the climatology of gravity
waves is known, its contribution for the time variations of gravity waves has not
fully been examined. The change in gravity wave activities is affected by the change
in the generation process and the change in the background wind for the propaga-
tion condition of gravity waves. Because the upward decrease in gravity wave am-
plitudes (more strictly speaking, pseudo-momentum) implies the forcing to the
background wind fields of the gravity waves, many studies have focused on the
change in gravity wave amplitudes or the momentum flux during the propagation

process.

1.4.1 Variability of gravity wave propagation characteristics

The change in the gravity wave propagation characteristics related to the qua-
si-biennial oscillation (QBO) has received much attention in many previous studies.
In the subtropics, it is expected that small change in zonal winds associated with
the QBO is observed because the latitudinal half width of the zonal wind of the QBO
is about 12°. Thus, the modulation of the propagation condition of gravity waves by
the background wind is considered in the present study.

From the 1990s, studies using radiosonde observations showed that the QBO is
driven mainly by the momentum transport by gravity waves, not by equatorial
Kelvin and Rossby-gravity waves. Sato et al (1994) showed that gravity waves have
large energy that is comparable to or larger than that of equatorial Kelvin waves

both in eastward and westward wind shear phases. Sato and Dunkerton (1997)
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showed that the total momentum flux by gravity waves observed by radiosondes can
be about ten-times larger than that by Kelvin waves. The importance of gravity
waves for driving the QBO was also shown theoretically by Haynes (1998) and nu-
merically by Takahashi (1996) and Kawatani et al (2010). Thus, the interannual
variability of gravity waves is investigated about the amplitude change through the
propagation in relation to the QBO using satellite observations.

Gong et al. (2012) analyzed AIRS data which is sensitive to gravity waves with
longer vertical wavelengths and showed that amplitudes of eastward propagating
gravity waves decrease in the eastward wind phase of the QBO although the de-
crease in the westward propagating gravity waves in the westward wind phase of
the QBO is rather unclear. Using Challenging Minisatellite Payload (CHAMP)
Global Positioning System (GPS) occultation data which enables us to detect gravity
waves with shorter vertical wavelengths, de la Torre et al (2006) showed an en-
hancement of gravity and equatorial Kelvin wave amplitudes in time and altitude
where the zonal wind is close to zero especially in the eastward wind shear phase of
the QBO. Consistent results were also obtained using Sounding of the Atmosphere
using Broadband Emission Radiometry (SABER) observation (Zhang et al, 2012;
John and Kumar, 2012), which is sensitive to gravity waves with shorter vertical
wavelengths.

The discussions of the former studies listed above are both devoted to the back-
ground wind speed and the filtering of gravity wave amplitudes. In stronger west-
ward background winds, gravity waves with eastward phase speeds are selectively
detected by the AIRS observation because their vertical wavelengths are longer. In
the eastward background winds, the vertical wavelengths of gravity waves with
eastward phase speeds become shorter. Since the upper troposphere wind is east-

erly in general, eastward propagating gravity waves are expected to dominate
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(Gong et al, 2012). It is considered that these waves tend to be filtered out by the
eastward winds. If such filtering occurs, the gravity wave amplitudes in the middle
stratosphere are also expected to be smaller in the eastward wind phase of the QBO
in the lower stratosphere. In this study, the influence of the QBO to the gravity
wave amplitude change in the middle stratosphere will be discussed.

On the other hand, the results using CHAMP were examined in terms of the
critical level filtering. It is expected that the majority of gravity waves has slow
phase speeds, reflecting the characteristics of sources such as topography and con-
vection, even if gravity waves are generated spontaneously from the jet-front sys-
tem (Yasuda et al, 2013a and 2013b). Thus, gravity waves tend to have shorter
vertical wavelengths in weaker background wind and can be detected selectively by
CHAMP and SABER. Furthermore, such gravity waves may be filtered in the weak
background wind region which acts as their critical levels (Zhang et al, 2012). Thus,
the gravity wave amplitudes may be smaller above the weaker wind region. Be-
cause Kelvin waves have an eastward phase speed, the enhancement of the wave
activity is clearer in the eastward wind shear than in the westward wind shear.

The gravity wave activity in the subtropical regions can be affected by the
change in the filtering effect by the zonal wind at the tropopause level and below
and at the lower stratosphere modulated by the QBO.

It is considered that the eastward winds at the tropopause level at the subtropics
tend to filter out gravity waves. Sato et al (2009) used gravity wave-resolving gen-
eral circulation model data (Watanabe et al, 2008) and showed that the momentum
flux in the subtropics is large in the monsoon convective region where there are
westward winds associated with the monsoon circulation located around 100 hPa.
Thus, in order to clarify the effect of the conductivity of gravity waves on the gravity

wave variability, the variability of the zonal wind at the tropopause level should be
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considered.

The latitudinal half width of the zonal wind of the QBO is about 12°. Thus, in the
subtropics, small change in zonal winds associated with the QBO is expected. Vin-
cent and Alexander (2000) analyzed long-term radiosonde observations at Cocos
Island (12°S, 97°E) and investigated the interannual change in the energy and
momentum flux of gravity waves in relation to the QBO. Krebsbach and Preusse
(2007) and Ern et al (2011) performed the spectral analysis of the time series of
SABER observation data. They indicated the influence of the QBO on the interan-

nual variability of the subtropical gravity wave and convective activities.

1.4.2 Variability of gravity wave sources

The gravity waves from convection have a broad spectrum. Three simplified
mechanisms were proposed about the generation of gravity waves by convection.

The first one is the generation by thermal forcing (Beres et al, 2002), which is
related to a diabatic heating term in the linearized thermal equation. Most domi-
nant vertical and horizontal wavelengths of gravity waves generated by this
mechanism are considered to be twice the depth and the horizontal scale of heating
(Salby and Garcia, 1987; Alexander et al, 1995; Piani et al, 2000). The second is an
obstacle effect (Pfister et al, 1993). The heating changes the isothermal surface,
which makes a form drag analogous to topographic wave generation. The horizontal
wavelength is expected to be determined by the horizontal scale of isothermal sur-
face. The last is a mechanical oscillator effect (Fovell et al, 1992), which is regarded
as a periodic and localized source term for the momentum equation. Gravity waves
generated by this mechanism tend to have wave frequencies equal to the oscillation
frequencies. The expected horizontal wavelengths are in a broader range. All these

mechanisms can generate gravity waves with various horizontal wavelengths. Thus,
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in the subtropics, it i1s essential to study gravity waves with shorter horizontal
wavelengths as well as longer ones. AIRS is suitable for studying such gravity
waves. In the present study, precipitation is used as a rough index of convection to
describe source of gravity waves because all these mechanisms are directly and/or
indirectly related to the latent heat release associated with water vapor condensa-
tion. The expected vertical wavelengths vary depending on the mechanisms above
(Alexander et al, 1995). It should be noted that the vertical structure of convection
cannot be investigated using precipitation data. Thus, the vertical wavelength dis-
tribution of gravity waves is not discussed in the present study.

It is well known that convective activities have clear variability in intraseason-
al-to-interannual time scales. In the interannual time scale, the geographical dis-
tribution of precipitation is largely modified by the El Nifio-Southern Oscillation
(ENSO). Many studies reported that precipitation in the equatorial central Pacific
increases in the El Nifo phase (e.g., Wallace et al, 1998) and that precipitation in
the South Pacific convergence zone (SPCZ) shifts northeastward in the El Nifo
phase (Vincent, 1994). In the intraseasonal time scale, it is well known that the
eastward migration of large scale convective systems is observed in association with
the Madden-Julian oscillation (MJO, Madden and Julian, 1972). These variations
are characterized by the temporal change in the longitudinal distribution of con-
vection.

Some studies showed the correlation between the gravity wave activity and
convective activity using the long term radiosonde observations (e.g. Vincent and
Alexander, 2000; Gong et al., 2010). However, no previous study of gravity waves
has investigated the relationship between the longitudinal distributions of gravity
waves and convection. Because AIRS provides continuous observation data from

May 2002 up to now, interannual variability can be examined from AIRS data. Thus,
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in the present study, the longitudinal distributions of intraseasonal and interannual
variability of gravity waves are revealed. Because the AIRS observation has a long
duration over ten years, it is usable to investigate interannual variability of gravity

waves.

1.4.3 Strategy for the analysis

The present study will discuss the causes of the variability of gravity waves in a
following manner. At first, the interannual to intraseasonal variability of gravity
wave amplitudes is detected. Next, the correlation between the variability of gravity
waves and the variability of the wave sources is revealed. Finally, the filtering effect
due to the change in the zonal winds at the tropopause level and the lower strato-

sphere is investigated.

1.5 Relation to gravity wave parameterizations

Effects of gravity waves need to be parameterized in most general circulation
models. The conventional gravity wave parameterizations (e.g., Hines, 1997) were
based on quite simplified assumptions such as the uniform distribution of
non-orographic gravity wave sources. This is only a first approximation of such
sources, which change their location depending on weather conditions. Some studies
have tried to extend gravity wave parameterizations by including the observational
features of gravity waves (Song and Chun, 2008; Richter et al, 2010). The results
from the present study provide observational characteristics of the intraseason-
al-to-interannual variability of gravity waves, which needs to be expressed in the

model results using such parameterizations.
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1.6 Propagation characteristics of gravity waves

In the present study, the climatology of the meridional propagation of gravity
waves 1s examined by using AIRS data and compared with the results from the
studies using the gravity wave-resolving general circulation model. This is moti-
vated by the recently recognized importance of the horizontal propagation of gravity
waves in improving model biases. This point is described in detail below.

The climatology of gravity waves has been examined using a gravity-wave re-
solving general circulation model (Watanabe et al, 2008; Sato et al, 2009). The
zonal winds, the temperature structure, and a QBO-like zonal wind oscillation in
the equatorial lower stratosphere were simulated well in their model. Thus, the
characteristics of simulated gravity waves are expected to be similar to the charac-
teristics of observed gravity waves. The reality of their results needs to be confirmed
1n comparison with the real atmosphere using observations, however. AIRS is useful
to provide such information even though AIRS can only detect gravity waves with
longer vertical wavelengths.

Sato et al. (2009) showed that the momentum flux characteristics of simulated
gravity waves; negative (positive) w'w’ is dominant in eastward (westward) back-
ground zonal wind, where u’ and w’ are zonal and vertical wind components of
gravity waves, and the over bar shows the time mean. The horizontal propagation
direction corresponds to the direction of momentum flux of gravity waves, if they
propagate energy upward. It is implied that the propagation direction relative to
the background winds is westward (eastward) in the winter (summer) hemisphere
in the middle atmosphere where the dominant background wind direction is east-
ward (westward). They also showed that both dominant momentum fluxes origi-

nating from the subtropics in summer and those from the middle to high latitudes
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in winter are focused toward the mesospheric jet axis of the respective hemispheres.
In their Figure 2 (a), the axis of the maximum positive momentum flux is at about
15°N at 200 hPa and at 20°N at 3 hPa in summer and that of the negative mo-
mentum flux is at about 45°S (75°S) at 200 hPa and at 55°N (65°N) at 3 hPa in
winter.

Such meridional propagation is considered as a result of the refraction and/or
advection of gravity waves. Sato et al. (2009) conducted the ray tracing calculation
and showed that the meridional gradient of the background zonal wind refract
gravity waves so as to generate a meridional component of the wavenumber vector
pointing to the jet axis. Sato et al (2012) showed that the gravity waves generated
by mountains are advected by the background winds which have a component per-
pendicular to the horizontal wavenumber vector of generated gravity waves. In ad-
dition, some observational case studies (e.g., Preusse et al, 2002; Eckermann et al.,
2007; Jiang et al, 2013) showed the evidence of wide distribution of gravity waves
at the middle to high latitudes originating from Andes, Antarctic Peninsula, and
Scandinavia.

Recently, it is considered that the meridional propagation of gravity waves is
important for the reduction of the bias of the climate models. For example, McLan-
dress et al. (2011) suggested that a bias of a significant delay of about 20 days of the
polar vortex breakdown in the Southern Hemisphere in late spring is likely due to
the missing gravity wave drag at 60°S in the gravity wave parameterization em-

ployed in climate models.

1.7 Overview of this thesis

In the present study, the new dataset of AIRS observation with a fine horizontal

resolution, which is the same as the original footprint size, is used to clarify the
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climatology and intraseasonal-to-interannual variability of gravity waves in the
stratosphere. A wavelet analysis is applied to AIRS data, which allows us to esti-
mate the amplitudes, horizontal wavelengths, and direction of the horizontal
wavenumber vector of gravity waves locally. In Chapter 2, details of the
high-resolution AIRS observation data and the method of analysis are described.
The climatology of gravity waves is shown in Chapter 3. In Chapter 4, the inter-
annual variability of gravity waves related to ENSO is investigated in terms of the
longitudinal distribution. The intraseasonal variability of gravity waves is clarified
and its relation to the MJO is discussed in Chapter 5. In Chapter 6, the possible
mechanisms that explain the difference in the maximum latitudes between gravity
wave amplitudes and precipitation are discussed in terms of lateral propagation
and selective generation of gravity waves. Summary and concluding remarks are

given in Chapter 7.
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