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Abstract. Conditions under which the compressibility can be neglected for the 
magnetospheric ballooning instability, which arises in the shear Alfv6n branch, are 
clarified in the context of ideal magnetohydrodynamic plasmas and stochastic plasmas by 
using the normal mode analysis and the energy principle. An expansion in the small 
parameter, which is equal to the ratio of the VñB o scale length to the field line curvature 
radius, shows that the incompressible assumption is valid for the ballooning instability with 
long-thin perturbations in the low-frequency regime and in the long-thin magnetospheric 
equilibrium, in which the field line curvature radius is much larger than the VñB o scale 
length. When the long-thin assumption for the equilibrium is not satisfied near the 
equator, the calculation of the energy functional for a trial function shows that the 
strongly localized ballooning mode is essentially incompressible if the plasma/3 at the 
equator is much larger than 6/F, where F is the ratio of specific heats. For the stochastic 
plasmas near the equator the strongly localized ballooning mode is essentially 
incompressible irrespective of the/3 value. These results justify the incompressible 
assumption made in a previous ballooning stability analysis for the long-thin 
magnetospheric equilibrium. It is suggested that before the substorm onset, the near-Earth 
plasma sheet becomes more taillike, and the long-thin assumption for the equilibrium 
becomes more likely to be satisfied on average, and thus the near-Earth plasma sheet 
becomes more favorable to the onset of the ballooning instability without the strong 
stabilizing influence of the compressibility. 

1. Introduction 

The investigation of the hydromagnetic stability of high-fil 
plasma confined by the magnetic fields is of interest in such 
varied fields as the study of fusion plasma confinement and 
dynamical processes in space and astrophysical plasmas. The 
ballooning instability is a pressure-driven ideal magnetohydro- 
dynamic (MHD) instability in a high-fil plasma, and it occurs 
where the pressure gradient vector Vpo and the field line 
curvature vector are in the same direction. Therefore the 

plasma sheet and the outer edge of the ring current are po- 
tentially subject to the ballooning instability [Miura et al., 1989; 
Ohtani et al., 1989a, b]. Miura et al. [1989] showed by numerical 
eigenmode analysis that the plasma sheet is subject to the 
ballooning instability, and Ohtani et al. [1989b] showed by 
numerical eigenmode analysis that the outer edge of the ring 
current is subject to the ballooning instability and/or inter- 
change instability. Vihas and Madden [1986] investigated ef- 
fects of the azimuthal shear flow on the ballooning instability 
and applied their results to the plasmapause. Lakhina et al. 
[1990] investigated the ballooning instability in the plasma 
sheet region in the presence of parallel plasma flow. Hameiri et 
al. [1991] give a general discussion of the ballooning instability 
in space plasmas. Sundaram and Fairfield [1997] studied sta- 
bility of resistive MHD tearing and ballooning modes in the 
tail current sheet. 
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Theoretical and observational investigations of the balloon- 
ing instability have centered on the plasma sheet stability 
against the ballooning instability because of great interest in 
the possible relevance of the instability to substorm dynamics 
[Roux et al., 1991a, b; Korth et al., 1991; Ullaland et al., 1993; 
Ohtani and Tamao, 1993; Hurricane et al., 1995, 1999; Samson 
et al., 1996; Lee and Min, 1996; Hurricane, 1997; Liu, 1997; Pu 
et al., 1997, 1999; Wu et al., 1998; Bhattacharjee et al., 1998; 
Cheng and Lui, 1998; Lee, 1998, 1999; Pritchett and Coroniti, 
1999; Horton et al., 1999]. The ballooning instability has also 
been studied quite intensively to investigate the origin of a 
class of geomagnetic pulsations (hydromagnetic waves) [e.g., 
Miura et al., 1989; Ohtani et al., 1989a, b; Chen and Hasegawa, 
1991; Chan et al., 1994; Cheng and Qian, 1994]. Holter et al. 
[1995] found diamagnetic hydromagnetic oscillations with pe- 
riods of -45-65 s, which are observed during the most active 
phase of the substorm breakup. These oscillations are consis- 
tent with diamagnetic ballooning modes, which are strongly 
localized near the equator [Miura et al., 1989]. 

It is well known that the ballooning instability is analogous to 
the gravitational Rayleigh-Taylor instability, in which the ef- 
fective gravity is given by equating the gravitational drift with 
the combined VB o and curvature drifts. Thus the effective 
gravity geff is given by [e.g., Goldston and Rutherford, 1995] 

(1) g eff = •- + V R c' 
where R c is the radius of curvature of the field line. When 
averaged over a thermal distribution of particle velocities vñ 
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and vii, the gcff is written as [e.g., Goldston and Rutherford, 
1995] 

2po 
#eff-- poRc. (2) 

Substitution of #eff into # in the growth rate of the gravitational 
Rayleigh-Taylor instability, which is equal to (#[V9o/9ol) 1/2 
[Chen, 1974], yields the growth rate of the interchange (flute) 
instability, which is the pressure-driven version of the Ray- 
leigh-Taylor instability, 

'¾MHD = pore ' (3) 
This growth rate of the interchange (flute) instability is also an 
important measure of the growth rate of the ballooning insta- 
bility [e.g., Miura et al., 1989]. In deriving (3) we equated the 
density scale length Ipo/po1-1 to the pressure gradient scale 
length Ipo/pol-1. Although the interchange or flute instabil- 
ity extends uniformly along the entire length of the field line, 
the ballooning instability is localized to a finite region of un- 
favorable curvature. Therefore the growth rate of the balloon- 
ing instability 3/ should be smaller than the peak value of 
?MHr•, which occurs somewhere along the field line (equatorial 
plane in the case of the plasma sheet). 

Miura et al. [1989] and Ohtani et al. [1989a] derived coupled 
eigenmode equations of the ballooning instability, which show 
the coupling of the Alfv6n mode and the slow mode in the 
one-fluid MHD and in the two-fluid equations, respectively. 
After deriving those equations, Miura et al. assumed intuitively 
that the parallel component of the velocity perturbation van- 
ishes and that the ballooning mode in the magnetosphere is 
incompressible, because the ballooning instability arises in the 
shear Alfv6n branch, and the slow mode is only stabilizing. By 
that assumption they simplified considerably the coupled 
eigenmode equations to the single second-order differential 
equation, which is amenable to the numerical analysis. Miura 
et al. solved the simplified eigenmode equation and investi- 
gated the stability of the plasma sheet against the ideal MHD 
ballooning instability using a two-dimensional (2-D) plasma 
sheet model of Kan [1973] as an equilibrium state. Miura et al. 
found that the plasma sheet is subject to the ballooning insta- 
bility and the fundamental symmetric mode is destabilized by 
the instability. Later, Lee and Wolf[1992] employed the energy 
principle [Bernstein et al., 1958] to test the stability of the Kan's 
model of the plasma sheet [Kan, 1973] against the ideal MHD 
ballooning instability. They tried several test functions of an 
arbitrary form to find an unstable solution. However, all of 
their test functions turned out to be stable, and they could not 
find an unstable solution. From their results they questioned 
the existence of the unstable ballooning mode, which was 
found by Miura et al. in the Kan's model of the plasma sheet. 
Since Lee and Wolf retained the stabilizing compressible term 
in their energy principle approach and sought a compressible 
unstable solution, the discrepancy of the above two approaches 
is due to the treatment of the compressibility in the stability 
analysis and the choice of the equilibrium state. In principle, 
the validity of the incompressible assumption can be verified a 
posteriori after obtaining the growth rate [e.g., Goldston and 
Rutherford, 1995]. However, Miura et al. did not rigorously 
prove that the incompressible assumption is valid for their 
obtained unstable mode. The purpose of the present paper is 
to show by the normal mode analysis and the energy principle 

that the incompressible assumption used for the ballooning 
instability [Miura et al., 1989] is valid for long-thin perturba- 
tions in a low-frequency regime and in the long-thin equilib- 
rium, where the magnetic field scale length parallel to the field 
line (field line curvature radius) is much larger than its scale 
length perpendicular to the unperturbed magnetic field (•'ñBo 
scale length) on average. Thus we will show that the incom- 
pressible ballooning instability is a viable MHD instability in 
the plasma sheet because the long-thin ordering of the equi- 
librium is indeed satisfied by Kan's model of the plasma sheet, 
except for a tiny region near the equator [see Miura et al., 1989, 
Figure 4]. 

By including in the eigenmode equation an ion diamagnetic 
drift term, which is the most dominant nonideal MHD term, 
Miura et al. [1989] showed that the ballooning instability de- 
stabilizes the drift Alfv6n mode [Tamao, 1984] in the magne- 
tosphere, which is propagating westward. Ohtani et al. [1989a, 
b] further extended the eigenmode analysis of Miura et al. by 
employing two-fluid equations. Pu et al. [1997] also used two- 
fluid equations in their study of the ballooning instability based 
on the local approximation. Although the real frequency of the 
unstable ballooning mode due to the presence of the ion dia- 
magnetic drift term in the eigenmode equation is important, 
we neglect the ion diamagnetic drift term in the present anal- 
ysis and treat only the ideal MHD ballooning instability in the 
plasma sheet. We will also show that the eigenmode analysis 
adopted by Miura et al. is equivalent to the energy principle 
approach adopted by Lee and Wolf [1992] when the energy 
minimized condition is taken into account and the compress- 
ibility term is retained. Therefore the eigenmode equations of 
Miura et al. derived by the normal mode analysis are also 
justified from the energy principle point of view. The nonideal 
MHD and kinetic effects on the ballooning instability have also 
been investigated intensively. Chen and Hasegawa [1991] in- 
vestigated effects of the anisotropic pressure and kinetic ef- 
fects on the ballooning instability. Chan et al. [1994] made a 
numerical stability analysis including the anisotropic pressure 
for the self-consistent equilibrium based on the formulation by 
Chen and Hasegawa. Cheng and Qian [1994] also studied ef- 
fects of the anisotropic pressure and kinetic effects including 
trapped particle effects and did a numerical stability analysis. 
Cheng and Lui [1998] studied stabilizing effects of trapped 
electrons and the finite ion Larmor radius. Horton et al. [1999] 
discussed the kinetic effects on the interchange mode and the 
ballooning mode in the near-Earth plasma sheet. Beyond some 
distance down the tail the field curvature radius becomes 

smaller than the ion Larmor radii of the bulk of ions (S. 
Machida, personal communication, 1998) and the nonadiabatic 
effects due to the stochastic ion dynamics [e.g., Biichner and 
Zelenyi, 1989; Chen, 1992] become important in the ballooning 
instability [Hurricane et al., 1994, 1995]. The stochastic ion dynam- 
ics may be important even as close as in the near-Earth plasma 
sheet [Lui et al., 1992]. Although the above kinetic effects on the 
ballooning instability may be important in the near-Earth plasma 
sheet, the present paper is limited to the basic ideal MHD limit 
and to the stochastic limit and investigates within these limits the 
effects of the difference of the background equilibrium configu- 
ration on the ballooning instability. 

Since the ballooning instability is a pressure-driven ideal 
MHD instability growing in a fast MHD timescale, it is tempt- 
ing to consider that this instability occurring in the geomag- 
netic tail plays a role in the tail dynamics, possibly in the onset 
of the substorm expansion phase. The importance of the near- 



MIURA: BALLOONING INSTABILITY IN THE LONG-THIN MAGNETOSPHERE 18,795 

Earth region or the geosynchronous region in the substorm 
onset has been emphasized by intensive observations and the 
localized nature of the substorm onset in the dawn to dusk 

direction is well known. The importance of the near-Earth 
region in the substorm onset has also been supported by evi- 
dence that the auroral arc that brightens first during a sub- 
storm maps to the inner edge of the plasma sheet. Whereas the 
ion tearing instability in the 2-D model of the thick quasi- 
neutral sheet is stabilized by the electron compressibility effect 
due to a normal magnetic field component [Lembege and Pel- 
lat, 1982; Pellat et al., 1991], which is stronger nearer to Earth, 
and a small ky is favorable for the tearing instability, where y is 
the dawn-to-dusk direction, a large ky is favorable for the 
ballooning instability, and the growth rate of the ballooning 
instability in the plasma sheet is larger nearer to Earth [see 
Miura et al., 1989, Figure 6]. Therefore the localized nature of 
the ballooning instability in the y direction (large ky) and its 
preference for the near-Earth region in the plasma sheet are 
favorable for the substorm onset. Roux et al. [1991a, b] sug- 
gested, on the basis of in situ observations of an isolated dis- 
persionless substorm by a geostationary satellite and ground- 
based observations, that the near-Earth plasma sheet is subject 
to the ballooning instability, and they attributed the partial 
cancellation of the tail current, the resulting particle injection, 
and the development of a westward traveling surge to the 
development of the ballooning instability. Wu et al. [1998] did 
a 3-D linear MHD stability analysis of the 2-D static equilib- 
rium in the plasma sheet and showed the presence of an un- 
stable ballooning mode. The importance of understanding the 
nonlinear process of the ballooning instability in the substorm 
onset has been emphasized [e.g., Samson et al., 1996; Hurricane 
et al., 1999]. Voronkov et al. [1997] investigated by MHD sim- 
ulations the instability of a shear flow embedded in a pressure 
gradient region (near-Earth region) in the presence of the 
gravity. They showed that the unstable mode grows faster than 
the Kelvin-Helmholtz instability growth rate, owing to the ex- 
istence of the gravitational Rayleigh-Taylor instability, which 
mimics the ballooning instability. Recently, a study of the non- 
linear development of the ballooning instability in the near- 
Earth plasma sheet was carried out by Pritchett and Coroniti 
[1999], who used a 3-D full particle simulation; their simulation 
shows that the near-Earth plasma sheet does indeed become 
subject to the ballooning instability, when the plasma/3 exceeds 
a critical/3 calculated by using the incompressible assumption 
[Miura et al., 1989]. Their simulation demonstrates clearly that 
the westward propagating drift Alfv6n wave can be destabilized 
by the ballooning instability in the parameter range predicted 
by Miura et al. [1989]. Thus their simulation supports the va- 
lidity of the incompressible assumption and the analysis of 
Miura et al. 

In the following, the minimization procedure in the energy 
principle is briefly reviewed in section 2. The relationship be- 
tween the parallel velocity perturbation and the compressibility 
in the 2-D equilibrium is clarified in section 3. The relation of 
the ballooning eigenmode equations derived by Miura et al. 
[1989] for the long-thin perturbations to the energy principle is 
discussed in section 4. The validity of the incompressible as- 
sumption for the ballooning instability with the long-thin per- 
turbations in the low-frequency regime and in the long-thin 
magnetospheric equilibrium is shown in section 5. When the 
long-thin equilibrium is not valid near the equator, a separate 
discussion of the validity of the incompressible assumption is 
presented by calculating the energy functional for a trial func- 

tion in section 6. The physical picture of why the incompress- 
ible assumption is valid in the long-thin, taillike equilibrium is 
given in section 7. Discussions and summary are given in sec- 
tion 8, and, in particular, it is shown that the long-thin equi- 
librium corresponds to the taillike equilibrium. The conditions 
of the validity of the incompressible assumption are also clar- 
ified for stochastic taillike plasmas. The explicit formula of the 
growth rate of the ballooning instability in the plasma sheet is 
also given, and the relevance of the present analysis to the 
substorm onset is discussed. 

2. Review of the Minimization Procedure 

in the Energy Principle 
Since the energy principle is derived from the normal mode 

analysis, the normal mode analysis and the energy principle are 
equivalent [Bernstein et al., 1958; Freidberg, 1987]. The eigen- 
mode equation of the ballooning instability can be derived 
from the energy principle by obtaining the Euler equation of 
the variational principle &o 2 = 0 [Bernstein et al., 1958], where 
to is the angular frequency and the perturbed quantities are 
proportional to exp ( - i tot). 

Since the powerful technique of the energy principle lies in 
the minimization of the potential energy/SWv with respect to 
the displacement, let us briefly review the minimization pro- 
cedure in the energy principle, which is employed in section 4. 
The potential energy/SWv for the ballooning instability can be 
written as [Freidberg, 1987] 

{I•B•_I2 B 2 8WF = 5 dr + --I V. g. + 2g..Kc 2 /•0 /•0 

+ plV. 12- (4) 
where P denotes the unperturbed plasma volume, g is the 
displacement vector, F is the ratio of specific heats, Kc = (e ß 
V)e, with e being the unit vector in the direction of the unper- 
turbed field Bo, and the asterisk denotes the complex conju- 
gate. The first term in the integrand represents the energy 
required to bend magnetic field lines. It is the dominant po- 
tential energy contribution to the shear Alfv6n wave. The sec- 
ond term corresponds to the energy necessary to compress the 
magnetic field and describes the major potential energy con- 
tribution to the compressional Alfvdn wave. The third term 
represents the energy required to compress the plasma in a 
finite/3 plasma (nonzero p). It is the main source of potential 
energy for the sound wave. Each of the contributions just 
described is stabilizing. The last term can be positive or nega- 
tive and thus can drive the ballooning instability. The powerful 
technique of the energy principle lies in minimizing the respec- 
tive energy term with respect to the components of the dis- 
placement vector •11 and fy, where fll is the component of the 
displacement vector parallel to the unperturbed magnetic field 
and y is directed from dusk to dawn. Since •11 appears only in 
the FpIV. gl 2 term, the general minimizing condition for/SWv 
with respect to Sell can be written as [Freidberg, 1987] 

e. V(V./Su) = 0, (5) 

where e = Bo/B o and /3Ull = 0 on the ionospheric boundary 
was used. Now let us minimize /SWr with respect to •y by 
assuming infinite ky (ballooning limit). Since •y affects /SWr 
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through V- •z term in the second and third terms in the 
integrand of (4), the minimization condition gives in the limit 
of infinite ky, [Lee and Wolf, 1992], 

BobBii + !xobp = 0. (6) 

Lee and Wolf[1992] derived the potential energy integral bWv 
for the magnetospheric configuration by using these two con- 
straints (equations (5) and (6)). 

3. Parallel Velocity Perturbation and 
Compressibility in the 2-D Equilibrium 

We remark here that in the work of Miura et al. [1989] the 
coupled set of eigenmode equations describing the ballooning 
instability were simplified considerably by assuming bull = 0. 
This assumption is based on an intuitive consideration that 
since the ballooning instability is essentially an instability of the 
shear Alfvbn mode, which has no &lll• &ill was neglected in 
their analysis for simplicity. This assumption may also be con- 
sistent with a kinetic consideration that the macroscopic par- 
allel flow velocities for electrons and ions must vanish, because 
the parallel velocity moments calculated by using perturbed 
distribution functions for electrons and ions vanish owing to 
the cancelation of contributions due to the upgoing particles 
and the downgoing particles when those particles are not pass- 
ing particles. 

We derive explicitly in this section the relationship between 
the parallel velocity perturbation •Ull and the compressibility 
factor in the 2-D equilibrium. The electromagnetic perturba- 
tions are expressed by perturbed quantities •, 6All• and •Bll , 
which are the scalar potential, the parallel component of the 
vector potential, and the parallel component of the magnetic 
field, respectively. By making use of these perturbations, per- 
turbed electric and magnetic fields are written as [Miura et al., 
1989] 

•E = -[(e. V)• -i•iSA,]e - ik•_6cI) + iro6A_k, (7) 

6B = V x (SAlle + 8A•_), (8) 

8Bii = i(e x k•_) ß 8A•_. (9) 

By linearizing the equation of motion, we obtain 

-itopoSU: jo x SB + Sj x B0- VSp. (10) 

Taking a dot product of this with e yields 

i 

bull: -- (e. j0_• x 6B - e. Vbp), (11) 

where 

j0 = j0ñ = B• -le X Vzpo. (12) 

For simplicity, let us assume as in the work of Miura et al. 
[1989] that 

k_L = kñ•', (13) 

where • is the unit vector in the y direction. If we assume that 

bA_• = bA,•n, (14) 

where n = • x e is the unit vector in the normal direction, we 
obtain 

e- (j0•_ x 8B) = -i(k•_ 'j0•_)SA,. (15) 

Since the parallel electric field must vanish in the ideal MHD, 
we obtain from (7) that 

irobAii = (e. V)8(I). (16) 

Using (15), (16), and the fact that kñ 'Joñ is constant along the 
field line in the 2-D equilibrium, we obtain from (11), 

i 

bull = to2p ø (e. V)[(k_•. j0•_)8(I) + toSp]. (17) 
By making use of (12), equations 

buñ = -B•-le x 8E_•, (18) 

bey = -ik•_b½I), (19) 

and the perturbed form of the adiabatic gas law [Miura et al., 
1989, equation (All)], 

itoSp = Su•_. V zp0 + rp0v. 8u, (20) 

we obtain 

tO2pobUll = -rp0(e' V)(V-bu), (21) 

where we used that p o is constant along the field line. Equation 
(21) is also given in the work of Freidberg and Marder [1973] 
without derivation for the 2-D MHD equilibrium. It is obvious 
from this equation that one of the minimizing conditions 
(equation (5)) in the energy principle is consistent with &ill - 
0. In other words, the assumption of bull = 0, which was 
adopted by Miura et al. [1989], leads to that V ß bu is constant 
along the field line. Miura et al. assumed that bull - 0 and thus 
that V- bu is constant along the filed line; they further assumed 
that this constant is zero, i.e., that the plasma is incompressible, 
because V. bu is nearly equal to zero near the ionosphere. 

Freidberg [1987] argues that when the operator e' V is 
nonsingular, the general minimizing condition (5) becomes 

V. •u = 0. (22) 

This means that the most unstable perturbation is incompress- 
ible. Since the unstable symmetric mode obtained by Miura et 
al. [1989, Figure 7] is monotonically decreasing toward the 
ionosphere, the nonsingular nature of the field-aligned differ- 
ential operator e. V seems to be satisfied a posteriori for their 
unstable solution. This seems to support a priori assumption of 
Miura et al. that V. 8u = 0 in the present problem of the 
ballooning instability in the magnetosphere. In other words, 
since the compressible factor V. 8u of the symmetric unstable 
mode becomes evanescently small near the ionosphere, V. 8u 
must be nearly equal to zero everywhere from the requirement 
of (5). Although this consideration of the nonsingular nature of 
the operator e. V in (5) seems to indicate that the incompress- 
ible assumption is valid in the work of Miura et al., physical 
conditions for the validity of the incompressible assumption for 
the ballooning instability in the long-thin equilibrium are clar- 
ified below, on the basis of the eigenmode analysis in section 4, 
the expansion scheme adopted by Miura et al. in section 5, and 
the calculation of the energy functional in section 6. 

4. Relation of the Ballooning Eigenmode 
Equations Derived by Miura et al. [1989] for the 
Long-Thin Perturbations to the Energy Principle 

Miura et al. [1989] derived straightforwardly the eigenmode 
equation of the ballooning instability from the MHD equations 
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by assuming long-thin and low-frequency perturbations. Here 
and in the following, the long-thin perturbations mean that the 
wavelength parallel to the magnetic field is much larger than 
the wavelength perpendicular to it, and the long-thin equilib- 
rium means that the scale length of the equilibrium field con- 
figuration is long in the direction parallel to the unperturbed 
magnetic field, but its scale length perpendicular to the unper- 
turbed magnetic filed is small. The long-thin ordering of the 
plasma equilibrium has been commonly used for mirror ma- 
chines [e.g., Weitzner, 1980; Tang and Catto, 1981; Lee and 
Catto, 1981; D7ppolito et al., 1982]. In order to adopt the 
long-thin orderings for the perturbations and the equilibrium, 
we introduce two smallness parameters e• and e2 defined by 

..... , (23) • kñ k.lñ 
--1 

respectively, where 
• I(e .V)e, and l_• • - 117ñ In Bol. Here f is the MUD 
variable. Notice that 
e 2. Miura et al. further adopted a low-frequency assumption, 
i.e., Ito 2 - kl•l/• 2 . This assumption along with the long-thin 
ordering (equation (23)) for the perturbation (e• << 1) leads to 

2 2 I to /k. << V• 2 , which could eliminate the fast magnetosonic 
mode in their derivation of eigenmode equations. Notice that 
in Kan's [1973] two-dimensional equilibrium model of the tail 
plasma sheet, which was used in the numerical eigenmode 
analysis of Miura et al., the long-thin ordering for the equilib- 
rium (e 2 << 1)that l•_/lll << 1 or IKc << Iv. In Bol 
is indeed satisfied except for a tiny region around the equato- 
rial plane [see Miura et al., 1989, Figure 4], which is only 0.4% 
of the total field line length extending from the equator to the 
ionosphere. The derivation of the ballooning eigenmode equa- 
tion by Miura et al. is transparent and straightforward, on the 
basis of the neglect of O(e• 2) and higher-order terms. Since 
their derivation of the one-dimensional eigenmode equation of 
the ballooning instability is unique in the sense that it is dif- 
ferent from the conventional derivation of the ballooning 
eigenmode equation by obtaining the Euler equation from 
minimization of to 2 in the energy principle [Bernstein et al., 
1958], it is necessary to show explicitly how the eigenmode 
equation derived by them, based on the expansion in •, is 
equivalent to the energy principle. Therefore we show in this 
section explicitly that the coupled set of eigenmode equations 
derived by Miura et al. for nonzero •Ull are equivalent to the 
energy principle [Bernstein et al., 1958], which was applied to 
the ballooning instability in the magnetosphere [Lee and Wolf, 
1992]. For this purpose we need to make the quadratic form of 
to from their basic equations. Since we treat the ideal MHD, we 
neglect the ion diamagnetic drift term tO_Li of Miura et al. The 
self-adjoint property of the force operator is essential for show- 
ing that to 2 is pure real [Bernstein et al., 1958]. 

By neglecting terms of O[(kll/kñ) 2] = O(e• 2) the diamag- 
netic relation 

BoSBii + IxoSp • 0 (24) 
is obtained [Miura et al., 1989, equation (A19)], which is the 
same as (6) derived by Lee and Wolf [1992] from the minimi- 
zation condition with respect to SOy for infinite ky. Notice here, 
however, that in the derivation of the diamagnetic equation 
(24) by Miura et al. [1989], the assumption of the infinite k. - 
ky as assumed by Lee and Wolf is not necessary. 

We start with a basic equation describing the ideal MHD 
ballooning instability [Miura et al., 1989, equation (A20)], 

V•2Bo(e ß 17)[B[•k•(e ß 17)8(I)] + 

= 2B0p•toSp(k•_ x e) ß Kc. (25) 

Equation (25) must be accompanied by the adiabatic law 
(equation (20)) to express 8p in the right-hand side of (25) by 
8(I). In deriving (25) the diamagnetic condition (24) was al- 
ready used. If there is no right-hand side, (25) is the equation 
of the shear,Alfv6n wave, which is guided along the field line. 
In order to dose (25), we need to express the compressible 
factor V. 8u in (20) by 8(I). Miura et al. [1989] simplified the 
coupled equations by assuming that •Ull - 0 everywhere along 
the field line, which led to V. 8u - const along the field line 
(see equation (21)). They further assumed that the constant is 
zero, i.e., V. 8u = 0 along the field line. Thus they eliminated 
the slow mode, which has nonzero Bull and nonzero V. 
Then substitution of (18), (19), and (20) with V. 8u = 0 into 
the right-hand side of (25) gives the one-dimensional eigen- 
mode equation used in their numerical eigenmode analysis. 

If we do not assume that V. 8u - 0, then the minimizing 
condition (5) with respect to sell must be used for the explicit 
calculation of V. 8u. The integration of (5) with the aid of the 
boundary condition •Ull - 0 at the ionosphere gives [Freidberg, 
1987; Lee and Wolf, 1992] 

• B•17 ß 8u•_ ds Sb 

17' au = const = , (26) 

'• B• • ds $b 

where s is the coordinate along the field line, which satisfies 
s = -s• at the southern ionosphere, s = 0 at the equator, and 
s = s• at the northern ionosphere. From ideal MHD equa- 
tions we obtain [Miura et al., 1989, equation (A12)] 

V ß au•_ = i½oB•aBii- au•_. (•c + •b), (27) 

where • = V•_ In B o. The force balance of the static equi- 
librium gives [Miura et al., 1989, equation (A6)] 

v = - (28) 

From (20), (24), (27), and (28) one obtains 

17./•uñ = -2/•uñ' •c- F/x0P0B•217 ß /•u. (29) 

Using 8(I), the n component of 8u•_, which appears in the first 
term in the right-hand side of (29), can be written as 

8u n = iB•(e x kx). nS(I). (30) 

Integration of (29) from the southern ionosphere to the north- 
ern ionosphere with the aid of (26) and (30) yields 

.b B•2( e x kñ)' Kcl•(I) ds $b 

17. au = -2i . (31) 

B• • ds + F/•0P0 B• 3 ds 
Sb Sb 

Since the fast mode was eliminated, this compression factor 
must be due to the slow mode compression or rarefaction. 
From (20), (25), (30), and (31) we obtain the integrodifferen- 
tial ballooning eigenmode equation for finite compressibility, 
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V•Bo(e' V)[B•-•kl(e ß V)StI)] + 

= 2Bop• -1 B•-lafI)(e x kñ)' Vñp0- 2Fpo 

. 

• B•2(e x kz) ß •ca• ds 
ß • (kzxe).Rc. (32) 

B• 1 ds + Fg0P0 m• 3 ds 
Sb Sb 

Equation (32) was obtained for long-thin perturbations (e• << 
1) by using only the minimization condition (5) of b Wv with 
respect to •Ull and the diamagnetic condition (24). Notice that 
in the ener• principle of Lee and Wolf [1992] the diamagnetic 
condition (6) was obtained from the minimization condition of 
b We with respect to • and by assuming infinite kx. However, 
in the analysis ofMiura et al. [1989] the fast mode is eliminated 
automatically because of the low-frequency assumption of ]•2] 
• k•V• and the long-thin perturbations, and the diamagnetic 
condition is obtained from the neglect of O(e•) terms. There- 
fore, in derivation of the diamagnetic condition (24) by Miura 
et al., the assumption of infinite kx is not necessa•. 

By multiplying (32) by V5 2B• lk •2•, (complex conjugate 
of b•) and then by integrating from the southern ionosphere 
to the northern ionosphere, we obtain the following quadratic 
form: 

b m 2 V•2B•-•[ 8• [ 2 ds 
Sb 

b __ B-1 2 . V)a(i)[2 - o kñl(e ds- 2/Xo 
$b 

b ß B/•3[(e x kñ). Vñp0][(e x kñ). R,][8•] 2 ds 
•b 

'" B72(e x kñ). R•S(I) ds 3b 

+ 4Flxopo , (33) 

B• • ds + F/x0p0 B(• -3 ds 
3b Sb 

where we used that 8(I) vanishes at the ionosphere. The right- 
hand side of (33) agrees with the potential energy aWF derived 
by Lee and Wolf [1992]. When a WF or 0) 2 is negative, the 
configuration is unstable. The first term in the right-hand side 
of (33) is positive definite and represents stabilization by the 
line bending. This term vanishes for the interchange (flute) 
mode. The last term in the right-hand side is also positive 
definite and represents stabilization by the slow mode com- 
pression or rarefaction. The second term in the right-hand side 
is negative if V_•oo ' •c > 0 and represents the driving term 
of the ballooning instability. Therefore we could prove that the 
set of eigenmode equations derived by Miura et al. [1989] for 
the low-frequency and long-thin perturbations is equivalent to 

the energy principle in this specific problem of the ballooning 
instability in the magnetosphere [Lee and Wolf, 1992]. It is 
easily shown that if we minimize 0)2 calculated from (33) and 
obtain the Euler equation, the Euler equation becomes equal 
to the eigenmode equation (equation (32)). 

It is obvious that the stabilizing term by the slow mode 
compression or rarefaction (the last term in the right-hand side 
of (33)) vanishes for the field-aligned antisymmetric mode. 
However, for field-aligned symmetric modes (atI) is symmetric 
with respect to the equator) the last term in the right-hand side 
of (33) gives a stabilizing term. In the numerical calculation of 
Miura et al. [1989] the last term in the right-hand side of (32) 
is neglected, on the basis of the assumption of the incompress- 
ibility. Let us assume, for the moment, that the long-thin as- 
sumption for the equilibrium is valid along the entire field line. 
Then the order of magnitude calculation of each term in (32) 
using (28), 10)2 2 2 •' kit Vj, and the long-thin orderings for the 
perturbations and the equilibrium assuming e •- e• •- e2 << 1 
shows that both terms in the left-hand side of (32) are O(1). 
The first and second terms in the right-hand side of (32) are 
O(e) and O(e2), respectively. Therefore the neglect of the 
compressible term of O(e 2) in (32) in Miura et al.'s analysis 
for the long-thin equilibrium is justified. The discrepancy be- 
tween numerical results of Miura et al. and Lee and Wolf[1992] 
concerning the stability can therefore be attributed to the ab- 
sence of the stabilizing compressible term in the analysis of 
Miura et al., which is justified for their long-thin equilibrium. 
The reason why Lee and Wolf could not find any unstable trial 
function seems to be due to the fact that they used shorter field 
lines [Lee, 1999] than the field lines of Miura et al. 

In summary, the one-dimensional ballooning eigenmode 
equation obtained straightforwardly by the low-frequency as- 
sumption (1o21 and the long-thin assumption for 
perturbations (el << 1) is equivalent to the energy principle. 
The neglect of V. 8u term in the numerical analysis of Miura 
et al. [1989] is justified by the fact that the compressible stabi- 
lizing term (the last term in the right-hand side of (32)) is 
O(e 2) for the low-frequency perturbation (lol and 
the long-thin orderings for the perturbations and the equilib- 
rium, which mean that • •- el •- •2 << 1. 

5. Validity of the Incompressible Assumption for 
the Long-Thin Perturbations and Equilibrium 

In this section we show directly by a normal mode analysis 
without using the minimization condition (5) and the diamag- 
netic condition (24) that V. 8u can be neglected in the basic 
equations for the low-frequency assumption and long-thin or- 
derings for the perturbations and the equilibrium (• - e• - •2 
<< 1). The validity of the incompressible assumption of Miura 
et al. [1989] could have been verified a posteriori using the 
growth rate obtained by using these assumptions. Such an 
assumption of the incompressibility is quite commonly used in 
the stability analysis of the instabilities, which are essentially 
the instability of the shear Alfv6n branch, because the shear 
Alfv6n mode is incompressible. Goldston and Rutherford [1995] 
showed a posteriori that the incompressible assumption is valid 
under the normal conditions for the pressure-driven Rayleigh- 
Taylor instability (interchange or flute instability) and the re- 
sistive-tearing instability in the poloidal plane with a strong 
toroidal field, both of which arise in the linearly polarized 
shear Alfv•n branch. Following a procedure of Goldston and 
Rutherford, we will now verify the validity of the incompress- 
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ible assumption for the ballooning instability for the long-thin 
perturbations in the long-thin magnetospheric equilibrium 
(• '" • '" •2 << 1), which also arises in the shear Alfv•n 
branch. 

Taking a dot product of (10) with kñ yields 

-iropok_•' •u = •B. (k_• x J0) + B0' (k• x •j) - ik•p. 

(34) 

For a 2-D equilibrium configuration used by Miura et al. [1989], 
kz x Jo = 0 holds. Therefore the first term in the right-hand 
side of (34) vanishes. Then substitution of 

= x (35) 

into (34) yields after some algebra 

-iwpok:' •u = •B0(e ß V)(k:. •B) 

-ik:(•p + •B0•Bii). (36) 

Using V. •B = 0 in (36) shows that the first term in the 
right-hand side of (36) is O(e 2) smaller than the last term in 
the right-hand side. Therefore, by neglecting terms of O(e 2) in 
the right-hand side, we obtain from (36) 

-iwp0k•' •u = -ik•(•p + •B0•Bll). (37) 

Notice that in deriving (37) we only neglected the first term in 
the right-hand side of (36), which is O(eS). We did not neglect 
other terms, so (37) may include other O(e) or higher-order 
terms. The purpose of the following calculation is to express 
the right-hand side of (37) by using only V ß •u and •u: in 
order to compare the compressible factor V ß •u with the term 
ik: ß •u, which is a dominant constituent term of V ß •u. For 
this purpose we use the adiabatic gas law (equation (20)) and 
the induction equation. Therefore (37) does not contradict 
(24), because the left-hand side of (37) may be O(e) or higher 
order. •though the left-hand side of (37) indeed turns out to 
be O(e) smaller than the right-hand side, our purpose in the 
following is to show that V- •u is negligible and not to show 
that (24) is valid. Therefore we do not neglect O(e) or higher- 
order terms until we can express the right-hand side of (37) by 
using only V. •u and •u•. 

The perturbed form of the induction equation is 

-iw•B = -B0V' •u + (B0' V)•u - (•u. V)B0, (38) 

and the parallel component of this is 

-iw•B, = -BoV' •u + e. [(B0' V)•u] - e. [(•u. V)B0]. 

(39) 

Substitution of (20) and (39) into (37) yields after some algebra 

-wsp•z -au=ik• (auz'Vz) P0+2•0J 

+ (Fp0 +/*•-•B•)V ß au- p(•-•B•e. [(e. V)au] 

+ • •ull(e. V)B• . (40) 
For the interchange or flute instability there is no field-aligned 
variation of the perturbation. Then, for (e. V)B o --- 0, (40) 

becomes similar to (19.24) of Goldston and Rutherford [1995] 
derived for the interchange (flute) instability. Using the vector 
identity 

and 

e. [(e. V)$u_•] = -Kc' $u_• 

( (i!iu_• ß V) Po + 2/*0/ = 

(41) 

where we used 

(e. V) B0]' (46) 

V.n = -Kc'n. (47) 

From (16) and (46) we obtain 

I I ' (48) 
Making use of (42) and (48) and noting that 

lags anl' (49) 
we obtain that the ratio of the first term in the right-hand side 
of (43) to the left-hand side of (43) is O(1). Therefore the 
left-hand side of (43) is comparable to the first term in the 
right-hand side of (43). Here it is important to notice from 
(30), (48), and (49) that •Uy and •u,• are of the same order. It 
is also easily shown that the magnitude of the third term in the 
right-hand side of (43), which is e -• larger than the fourth term 
in the right-hand side of (43), is smaller than the magnitude of 
the second term in the right-hand side of (43). This means that 
the magnitude of the second term in the right-hand side of (43) 
must be at most comparable to or smaller than the magnitude 
of the left-hand side of (43). Therefore, from (43) and I,ol -• 

2 2 

k[i V•, we obtain 

ik_•. 8u -< Fp0 + /*•lB• 
Therefore the compressible factor V. 8u is much smaller than 
one of its constituent parts, i.e., ik_L ß 8u. This indicates that the 
incompressible assumption that V. 8u --- 0 is valid for the 

we obtain 

(40) can be further reduced to 

-roSp0kñ ß 8u = ikSz 2(8uñ. Vñ) P0 + 
+ (rp0 + •;•B•)V ß au - p;•B•(e ß V)aull 

+ • •u,(e. V)B• . (43) 
By substituting (21) into (43), the right-hand side of (43) can be 
expressed only by using V. •u and •uz. In the left-hand side of 
(43), kz ß •u = ky•uy holds. From 

8A = 8Ann + &Alle (44) 

and the Coulomb gauge 

V. a• = o, (45) 

/*•B•Suz '•c, (42) 
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ballooning instability with long-thin perturbations in the low- 
frequency (Io'1 kVS) regime and in the long-thin equilib- 
rium. This is in strong contrast with situations for other insta- 
bilities, which do not arise in the shear Alfvdn branch. For 
example, for the Kelvin-Helmholtz instability in the 2-D trans- 
verse configuration [Miura and Pritchett, 1982; Miura, 1997], in 
which the magnetic field is transverse to the plane including 
the sheared flow, the compressibility gives a strong stabilizing 
influence. Therefore the compressibility cannot be neglected 
for calculation of the growth rate except for the case with the 
fast mode Mach number much smaller than unity, and the 
growth rate is reduced substantially by the compressibility, 
because the Kelvin-Helmholtz instability in such a configura- 
tion arises in the fast magnetosonic branch. 

By using (28) the ratio of the second term in the right-hand 
side of (20) to the first term in the right-hand side of (20) 
(convective change of the pressure) is expressed by using (50) 
as 

•P0 
(5•) 

Therefore it is indeed justified to neglect the second term in 
the right-hand side of (20) compared with the first term in the 
right-hand side of (20). This again shows that the incompress- 
ible assumption is valid for the long-thin perturbations and 
equilibrium. By comparison of the first term in the right-hand 
side of (37) with the left-hand side of (37) it is easily shown by 
using (20) and (51) that the left-hand side of (37) is indeed 
O(e) smaller than the first term of the right-hand side of (37). 
Thus (37) and (24) are consistent. 

When the compressibility is neglected, the eigenmode equa- 
tion (32) can be written as 

Bo(V.4/kñ)2(e ß V)[(k2z/Bo)(e ß V)•(I)] + (602 q- 3/2MHD)•J(I) 

In the numerical analysis of Miura et al. the growth rate of the 
ideal MHD ballooning instability is given by 3/--• 0.85 3/MUD 
(see their Figure 6), where 3/MUD is defined at the equator. 
Therefore, (57) with 3/MUD calculated at the equator gives a 
fairly good approximate formula for their numerically obtained 
growth rate. 

6. Calculation of the Energy Functional 
for a Trial Function 

If the long-thin assumption for the equilibrium is valid along 
the whole field line, the discussion in sections 4 and 5 is enough 
to show that the incompressible assumption is valid in the 
ballooning instability in the magnetosphere. However, in Kan's 
model of the plasma sheet shown in Figure 4 of Miura et al. 
[1989], the long-thin assumption for the equilibrium is valid on 
average, but it is not satisfied in the tiny region around the 
equator. Therefore it seems more likely that the long-thin 
equilibrium in the magnetosphere includes necessarily a region 
near the equator, where the long-thin assumption for the equi- 
librium is not valid. In such a case, the previous discussion in 
sections 4 and 5 is not valid near the equator, and we need a 
separate discussion to see whether the incompressible assump- 
tion is valid near the equator. Therefore, in this section we 
calculate and compare each energy term in the right-hand side 
of (33) to clarify when the compressible stabilizing term can be 
neglected. We consider here that IKcl >> I•l is valid at Isl -< 
Is•l near the equator and that I•cl is strongly peaked at the 
equator as is valid for the field line A in Kan's model of the 
plasma sheet shown in Figure 4 of Miura et al. Furthermore, 
we assume that the contribution to the integral in the numer- 
ator of the second term of the right-hand side of (32) from the 
long-thin part, where << I•l is satisfied, is negligible. 
Then the integral in the numerator of the second term of the 
right-hand side of (32) can be written as 

= 0, 

where 3/MUD is given by (3). Using the WKB approximation for 
the field-aligned differentiation, the dispersion equation of the 
ideal MHD ballooning instability with incompressible assump- 
tion, which is also equation (14) of Miura et al. [1989] without 
the ion diamagnetic drift term, can be obtained from (52) as 

3/2 3/2MH D 2 2 = - (53) 

where 3/is the growth rate (6o = 6or + i 3/= i 3/). The necessary 
condition for the instability is therefore 

2 2 

3/•4HD > kl] V•4, (54) 

B•-2(e x k.). KclSdP ds • B•2(e x kñ) ß •clSdP ds. 
Sb S• 

(58) 

From (28) we also obtain 

V zPo • I.r•'B•c (59) 
at Isl Isl. Since kñ 'Joñ = -B•'(e x kñ) ß V_ao o is 
constant along the field line, (58) can be rewritten by using (58) 
and (59) as 

•" Bl•2(e x kz). •clSdP ds 3b 

which can be rewritten as 

/3 > J•crt : k•mpgc: •P•H• c , (55) 

where Lii : kl•-' and Lp = l•7po/po1-1. Since 6o21 = 3/2 
k•V• 2 from the low-frequency assumption, we obtain from (53) 

3/2 2 2 1 '"-' kll •'" % '"-' • 3/2MHDo (56) 

Therefore we obtain 

1 

3/ •" -• 3/MHD' (57) 

• •l¾1B{71(e X kz). 17ñp0 B{73/5• ds, (60) 
--Sb 

where we replaced in the integral in the right-hand side of (60) 
the interval (-s•, s•) for the integration with (-s•,, s•,) by 
assuming that the contribution to the integral from the inte- 
gration from s = - s• to s = - s • is negligible. Then (32) can 
be rewritten as 

V•Bo(e' V)[B•lk•(e ß V)a•] + 

[ 2(b•)] (61) = -2p•k•(Rc ß V•o) • - 2 ' 



MIURA: BALLOONING INSTABILITY IN THE LONG-THIN MAGNETOSPHERE 18,801 

where we defined a weighted flux average of •7(s) with the 
weighting function B•3(s) by 

b B•3(s) •7(s) ds Sb 

(9(s)) = . (62) 

.h B•3(s) ds Sb 

By dividing both sides of (61) by 2 2 V•B o k ñ, multiplying them by 
{5ci)*, and integrating from s = -st, to st,, we obtain after some 
algebra 

{5 W• = {5 W• + {5 W•, (63) 

where 

tSW: (e. v)a13, 

{SW• = -2/x02(B• • Vzp0 )2 

ß (<1s13 - 2 2 

+ (t 

(64) 

(65) 

(66) 

where we assumed that {5ci) (-+st,) -- 0 and where we used a 
simplification similar to (58)-(60) in deriving (66). Equation 
(66) is also valid for the interchange (flute) mode ({5ci)(s) = 
const), if we use a different boundary condition (e ß 
V)tScI)(+-st,) = 0, which is satisfied for zero ionospheric con- 
ductivities. Notice that (63) is a simplified form of the qua- 
dratic form of (33). The functional {SW• is proportional to the 
energy functional {SWF in (4), {SWb is proportional to the 
energy required to bend the magnetic field lines, and {SW[: is 
proportional to the part of the energy functional including the 
curvature term. More specifically, the first term in the bracket 
of the right-hand side of (66) is the ballooning driving term, 
and the second term is the compressional stabilizing term. 

In order to calculate the weighted average quantities in 
(64)-(66) we need a specific model ofBo(s ) and a specific trial 
function 8cI)(s). In the long-thin equilibrium the weighting 
function B•-3 (s) is strongly peaked at the equator [see Miura 
et al., 1989, Figure 3]. Therefore we assume as a specific model 
of B•-3(s), 

B•3(s) = B•3(0) exp (- sl/sB), 

where we assume that s B << st,. Then we obtain simply 

(67) 

(/3-•(s)) = 3/3-•(0), (68) 

where/3(0) is the plasma/3 at the equator. For the specific field 
model (equation (67)) we obtain the stability condition of the 
interchange (flute) mode ((e. V){ScI)(s) = 0) by setting 
{5ci)(s) = {5ci)(0) in (66) and substituting (68) into (66). From 
{SW[: > 0 we find that the interchange mode is completely 
stabilized by the compressibility when/3(0) > 6/F, where F = 
5/3 for the adiabatic 3-D plasma. This is consistent with the 
findings of Horton et al. [1999] that the interchange mode is 
stabilized by the compressibility when /3(0) > 1.5-3.0. The 
difference of the critical/3(0) between the present calculation 
and that of Horton et al. is due to the difference of the specific 
field models. We also find from (66) that for/3(0) << 6/F the 
interchange (flute) mode becomes essentially incompressible. 

Since the ballooning mode is strongly localized near the 
equator [see, e.g., Miura et al., 1989, Figure 7], we can use as a 
trial function of the energy principle 

{5ci)(s) - {5ci)(0) exp (- sl/s,), (69) 

where we assume that S(i, << St,. Then {5 W• can be calculated 
as 

= ' Vpo 

s, 2 ( s, ) 2] ß -- - . (70) s, + 2sB 6 s, + s• 
+ t3-(0) 

Equation (70) indicates that when/3(0) >> 6/F, the compress- 
ible stabilizing term can be neglected in {SW[: for so << s•/4. 
This means that when the ballooning eigenmode function is 
more strongly peaked than B•3(s) at the equator, where/3(0) 
>> 6/F is satisfied, the ballooning mode becomes essentially 
incompressible. In such a limit we obtain 

iSW•- •W• + •W•- -B•(0)l•cI)(0)l 2 (2L}eq- •32(0)s•,) 2 , 

4 S •)S Bm peq 

where L pe q is the pressure scale length at the equator, which is 
defined by 

B•(s)l V•p01 = const = B•(0) P0 (72) 
m peq ' 

From (71) the condition for the ballooning instability in the 
same incompressible limit is 

mpeqRceq 
/3(0) > s•' (73) 

where Rce q is the curvature radius at the equator, which is 
calculated by using (59) at the equator. This condition for the 
ballooning instability is similar to the instability condition (55) 
obtained by the WKB approximation. Since the unstable bal- 
looning eigenmode found by Miura et al. [1989, F•igure 7] using 
the incompressible assumption satisfies /3(0) >> 6/F and is 
strongly localized near the equator, the incompressible as- 
sumption in their calculation can be justified a posteriori. In 
the numerical eigenmode analysis of the ballooning instability 
in the outer edge of the ring current by Ohtani et al. [1989b], 
however, the long-thin equilibrium is not valid along the entire 
length of the dipole-like field line [see Ohtani et al., 1989b, 
Figure 2], and /3(0) >> 6/F is not satisfied at the equator. 
Therefore the coupled eigenmode equations including both 
Alfvfin mode and slow mode were solved in their calculation. 

7. Physical Picture of the Validity 
of the Incompressible Assumption 

The detailed discussion in sections 4-6 suggests that the 
incompressible assumption is more valid in the long-thin equi- 
librium including the equatorial region, where the long-thin 
ordering for the equilibrium may not be valid. In order to 
understand physically why the incompressible assumption is 
more valid in the long-thin equilibrium, we must compare the 
relative importance of each term in the bracket of the right- 
hand side of (32). Notice that the second term in the bracket of 
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(a) - vp Force 

ension 

Earth • 

Force 

(b) - vp Force 

Earth • 
Figure 1. Schematic view of field lines of dipole-like field and taillike field. (a) In the dipole-like field, IK•,] 
<< IKcl holds, and the pressure gradient force (solid arrow) is nearly balanced with the tension force (open 
arrow) owing to the field line curvature. (b) In the taillike field the long-thin assumption for the equilibrium 

>> hods on average, and the pressure gradient force (solid arrow) is nearly balanced with the 
magnetic pressure gradient force (open arrow). 

the right-hand side of (32) including the flux integral comes 
from the compressional term Fpo V. 15u in the right-hand side 
of (20), whereas the first term comes from the convective term 
15uz ß V_d9o in the right-hand side of (20). We multiply the 
operator e. V on both sides of (21) and use (6), (20), (28), and 
V .e = -e. V(lnBo) to obtain 

2 2 

w2V ß •u + V•2 + c 2 (e. V)2V ß •u s 

2 co212•uñ '•c + •ull(e ' V) In B0] V•2 + Cs ' (74) 

2 Fpo/Po Equation (74) means that when •c :/: 0, where Cs = ß 
the Alfv6nic perturbation •u,• becomes a source of V ß •u 
perturbation and V. •u propagates along the field line with the 
slow mode speed. By taking into account only curvature effect, 
which means that Icl >> I•1, Southwood and Saunders [1985] 
showed that the coupling of the Alfv6n mode and the com- 
pressible slow mode is important in such a case. Therefore (74) 
is consistent with their findings. Since the stability analysis 
studies the steady state, when the perturbation becomes 
steady, the compressional effect given at the equator is aver- 
aged along the field line and V. •u is homogeneously distrib- 
uted and becomes constant along the field line. This is what the 
minimization condition (5) means. Notice that the minimiza- 
tion condition (5) is derived from the minimization of I V. •12 
term in (4), and this is consistent with the above physical 
picture. Although the ballooning driving term, which is the first 
term in the bracket of the right-hand side of (32) is a local 
quantity depending on s and is strongly peaked at the equator, 
the compressional stabilizing term, which is the second term in 
the bracket of the right-hand side of (32), is a constant global 
quantity, which arises from the spreading of the compressional 
effect over the entire field line. When the magnetic field lines 
are more stretched and the long-thin orderings for the pertur- 
bations and the equilibrium are more satisfied, on average, the 
local instability driving term is more strongly peaked near the 
equator, but the compressional stabilizing term is averaged 
along the entire field line, however strongly the field lines 
become stretched and taillike. Therefore the local ballooning 
driving term becomes more important than the global com- 
pressional stabilizing term near the equator. Thus the incom- 
pressible assumption is more likely to be satisfied in the long- 
thin equilibrium. 

8. Discussion and Summary 
The present analysis shows that the incompressible assump- 

tion of the perturbation in the ballooning instability is valid for 
low-frequency perturbations and long-thin assumptions for the 
perturbations and the equilibrium. Even if the long-thin equi- 
librium is not valid near the equator, the results in section 6 
show that the incompressible assumption is still valid for the 
ballooning mode, which is strongly localized near the equator, 
where/3(0) >> 6/F. Since the understanding of the long-thin 
equilibrium is the key to understanding the validity of the 
incompressible assumption, we clarify here what kind of equi- 
librium configuration the long-thin equilibrium corresponds to. 
The smallness parameter 82 for the long-thin equilibrium is 
•. = Icl/lol. Therefore the long-thin equilibrium corre- 
sponds to the case for e2 << 1 or Icl << I•l. In such a case 
we obtain from (28) 

Vzp0 • -•B• = -V• 2•0/' 
This means that the pressure gradient force is balanced with 
the magnetic pressure gradient force. Such an equilibrium is 
possible only when the equilibrium is taillike and the field lines 
are stretched substantially, so that the field line curvature is 
small except for a tiny region around the equator. Figure lb 
shows schematically this case, where the long-thin assumption 
for the equilibrium is valid, on average, and the configuration 
is taillike. The extreme limit (e 2 = 0) of this case is the one- 
dimensional neutral sheet (Harris sheet), in which the pressure 
gradient force is outward away from the neutral plane, and this 
force is balanced with the magnetic pressure gradient force 
directing toward the neutral plane. In the highly stretched 2-D 
plasma sheet, such a long-thin assumption for the equilibrium 
is likely to be satisfied except near the equator. It is indeed 
shown in Figure 4 ofMiura et al. [1989] that Kan's model of the 
plasma sheet satisfies the long-thin assumption except for a 
tiny region around the equator. In the opposite limit e 2 >> 1 or 
Icl >> I•l (short-thick equilibrium) we obtain from (28) 

V_•o • •;-•B•c. (76) 

This means that the pressure gradient force is balanced with 
the magnetic tension force due to the field-line curvature. 
Therefore this case corresponds to the case where the field line 
is substantially curved or dipole-like. Figure l a shows schemat- 
ically this case, where the field line is substantially curved and 
the tension force is nearly balanced with the pressure gradient 
force. We expect that the outer edge of the ring current is an 
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example of the short-thick equilibrium, because the field line is 
not strongly stretched from the dipole as in the plasma sheet. 
Ohtani et al. [1989b] obtained by numerical iteration a model 
equilibrium representing the outer edge of the ring current. It 
is shown in Figure 2 of Ohtani et al. that the short-thick 
assumption (lcl > is valid in their model. 

Although there is no quantitative definition of the taillike 
configuration and the dipole-like configuration, which is im- 
portant in understanding the dynamical change of the magne- 
tospheric configuration in substorms, the above consideration 
suggests that a good criterion of the equilibrium configuration 
determining whether it is taillike or dipole-like is the smallness 
parameter e2. That is, when e2 << 1, the configuration is 
considered to be taillike, and when e2 >> 1, the configuration 
is considered to be dipole-like. Here we should note that since 
the dipole field is a zero-/3 field (Po = 0), the dipole field 
satisfies K c - K•, as is obvious from (28). This means that in the 
dipole field the tension force by the field line curvature is 
balanced with the magnetic pressure gradient force. It follows 
from this consideration that the incompressible assumption for 
the ballooning instability is more likely to be satisfied when the 
equilibrium configuration becomes more taillike. Since the 
near-Earth plasma sheet is stretched and is taillike during the 
growth phase [Kaufmann, 1987], the long-thin ordering for the 
equilibrium is more likely to be satisfied before the onset of the 
expansion phase. Therefore we conjecture that the incom- 
pressible assumption for the ballooning instability becomes 
more likely to be valid before the expansion phase onset in the 
near-Earth plasma sheet. 

It is interesting to point out here that a different long-thin 
ordering was used by Schindler [1972] to obtain a 2-D static 
equilibrium of the distant plasma sheet. The smallness param- 
eter e2 adopted in his calculation is equal to Lz/L x instead of 
z./z, - Icl/ll, where L x and Lj are scale lengths along the 
x and z directions, respectively; the x axis points along the tail, 
and the z axis is along the dipole axis. By using this smallness 
parameter as the ordering parameter, Lakhina et al. [1990] 
investigated the stability of the distant tail plasma sheet and 
the plasma sheet boundary layer with a sheared parallel flow 
and found that the distant tail plasma sheet with the parallel 
flow is subject to the ballooning instability. 

From (3) and (57) the growth rate of the incompressible 
ballooning instability in the long-thin equilibrium can be writ- 
ten as 

I P_0 1 ] •/2 'Y = Do mpeqRceq ' (77) 
where P o and Po are the unperturbed pressure and density at 
the equator, respectively, and L pe q and R ce q are the perpen- 
dicular pressure scale length and the field line curvature at the 
equator, respectively. Since Po = nok(Ti + Te) holds, (77) 
can be rewritten as 

I k(T, + Te) 1 i = , (78) 3/ m i mpeqgceq 
where m i is the ion mass and T i and T e are ion and electron 
temperatures at the equator, respectively. Korth et al. [1991] 
and Pu et al. [1992] measured L pe q and R ce q in the near-Earth 
plasma sheet prior to the substorm onset. According to their 
results shown in Table 2 of Korth et al., the average values of 
Lpe q and Rce q prior to the onset are 4000 and 3500 km, re- 
spectively. If we further assume that kTi (>>kTe) [Korth et al., 

1991; Pu et al., 1999] is typically 10 keV [Korth et al., 1991; Pu 
et al., 1992], (78) gives the e-folding time (3, -•) or the growth 
time of the ballooning instability in the near-Earth plasma 
sheet equal to 3.8 s. This e-folding time is fast enough to 
account for the rapid onset of the substorm expansion phase. 
Notice that although the present incompressible ballooning 
instability arises in the shear Alfv6n branch, this e-folding time 
is much smaller than the bounce time of the Alfv6n wave 

between the ionospheres of both hemispheres. This is because 
the Alfv6n wave is trapped in a region around the equator 
(effective potential well) and is not bouncing back and forth 
between the ionospheres. If we use more modest parameters 
such as kT• = 1 keV and Lpe q and Rce q are both 10,000 km at 
the equator, (78) gives the e-folding time of 32 s. This is still 
fast enough to explain the rapid substorm onset. According to 
Hurricane et al. [1999] and Cowley andArtun [1997], for systems 
in which the equilibrium is evolving slowly through marginal 
stability, any linearly unstable evolution must be slow com- 
pared to the Alfv•n time, i.e., 3'r.4 < 1, where r.4 = L/V.4 is 
the Alfvdn time defined by the characteristic scale length L. 
Since the Alfvdn wave is trapped near the equator and not 
bouncing back and forth between ionospheres, the character- 
istic length L in the ballooning instability should be R ce q at the 
equator. Therefore r_4 = Rceq/V.4. Since (28) holds and •, 
and •c are in the same direction at the equator, we obtain 

Lpeq = [ P0 P0 P0 -- - < •cl (79) 
at the equator. Therefore, from (77) and (79) we obtain 

I P_0 1 I 1/2 Rceq 'yT A = }o0LpeqRce q •-A < l. (8O) 

Thus the present growth rate (equation (77)) obtained for the 
ballooning instability satisfies the above requirement of the 
unstable evolution 3'r_4 < 1. It follows that the incompressible 
ballooning instability for the long-thin equilibrium seems to be 
a candidate mechanism for the rapid near-Earth substorm 
onset. Korth et al. [1991] found in their statistical study of the 
substorm onset that the instability conditions (equation (55)) 
obtained by assuming the incompressibility were satisfied prior 
to most of their substorm onsets. Pu et al. [1992] also showed 
by studying substorm onsets that the scale length of the ion 
pressure gradient is typically of the order of 10PLi, which is the 
average Larmor radius of energetic ions, and all plasma and 
field parameters are favorable to the onset of the ballooning 
instability. Ullaland et al. [1993] also found in a single substorm 
influenced by a storm sudden commencement (ssc) that the 
instability condition (55) is nearly satisfied prior to the sub- 
storm onset. These observational results seem to support the 
present view that the incompressible ballooning instability in 
the long-thin equilibrium is a relevant instability related to the 
near-Earth substorm onset. 

When the field line becomes very taillike, so that the field 
line curvature radius at the equator becomes smaller than the 
ion Larmor radius, the ion motion becomes stochastic, and the 
stochastic ion dynamics becomes important [e.g., Biichner and 
Zelenyi, 1989; Chen, 1992] and must be taken into account in 
the ballooning stability analysis [Hurricane et al., 1995]. Exis- 
tence of such stochastic plasmas has also been suggested by 
observations in the near-Earth plasma sheet by Lui et al. 
[1992]. We found that the ions should be stochastic near the 
equator for the field line A in Figure 1 of Miura et al. [1989], 
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although they are likely to remain adiabatic for field lines B 
and C near the equator in the same figure. Therefore, for the 
field line A we must include the stochastic ion dynamics. Ac- 
cording to the formulation of Hurricane et al. [1995, equation 
(23)], the ballooning eigenmode equation including the sto- 
chastic dynamics is similar to (61), but the compressibility term 
2(/5ci))/(1 + 2F-•(/3-•)) in the right-hand side of (61) must be 
replaced by a weighted average of the form 

B2(s)lcl ds Sb 

B2(s)lcl ds Sb 

(8•) 

This indicates that the effective compression term in the sto- 
chastic plasma can also be represented by the weighted average 
of/5ci) with the weighting function B•2(s)l•cl . Since the sto- 
chastic dynamics is only important where Icl is very large near 
the equator, we reasonably assume that Icl >> I•1 is satisfied 
at Isl < Is•l near the equator and that the integral from s = 
-s • to s = s • contributes most to the above weighted integral 
(equation (81)). Since (59) holds at Isl < Ism[ and 
B•-•(s)lV zPol is constant along the field line, we obtain 

B•2(s)l•cl•>(s) ds • ds 
Sb S• 

• t•LoB• -1 V_LPo B•3(s)•(s) ds 
S• 

'b --• •oB• -• v_kpo B•-3(s)•i•(s) ds, (82) 
Sb 

where we assumed that the contribution to the final integral 
from the interval from s - -st, to s = -s• is negligible. 
Therefore the eigenmode equation for the stochastic taillike 
plasma can be written as 

V•2Bo(e ß V)[B;lk2z(e ß V)/ScI)] + 

= -2p;'k•(•c. V•0)[a• - <a•)], (83) 

where (•} is the same weighted average of • with the 
weighting function B•3(s) as used in the ideal MHD case in 
section 6. Therefore, by the similar calculation as used in 
section 6, •W• for the stochastic plasma can be written as 

•W•(stochastic) = -2p•(B• V•01)•(<l• •>- I<•>l•). 

(84) 

From (84) it is obvious that there is no unstable interchange 
mode with •(s) = const and that the interchange mode is 
only marginal in the stochastic plasma, because •W•(stochas- 
tic) = 0 for such interchange mode. For the same ballooning 
trial function (equation (69)), •W•(stochastic) becomes 

•W•(stochastic) = -2p•(B• V•0l) 2 •(0) 2 

[ s, ( s, ß - . s.+ 2s• s.+s• 

Since • W•(stochastic) is always negative, the ballooning mode 
in the stochastic plasma cannot be completely stabilized by the 

compressibility alone. For s a, << s B the effective compres- 
sional term in the stochastic plasma, which is the second term 
in the bracket of the right-hand side of (85), can be neglected, 
and the ballooning eigenmode equation (83) under such a 
condition in the stochastic plasma becomes the same as the 
ideal incompressible MHD eigenmode equation. This is very 
reasonable, because the stochastic dynamics are to change the 
equation of state from the adiabatic equation of state used in 
the ideal MHD analysis. Since the incompressible treatment 
does not use the equation of state and instead uses a mechan- 
ical equation V ß/Su = 0 for closure of the fluid equations, the 
incompressible equation should be valid in the appropriate 
limits considered above irrespective of whether the plasma is 
adiabatic or stochastic. Notice that there is no condition for 

plasma/3 for the validity of the incompressible assumption in 
the stochastic plasma, although there is a critical/3, which is set 
by the stabilizing tension force. By comparing (70) to (85) it is 
obvious that for/3(0) >> 6/F the stochastic plasma is less stable 
than the ideal adiabatic MHD plasma, owing to the appear- 
ance of factor 2 in the compressional stabilizing term in (70). 
This is consistent with the findings of Hurricane et al. [1995]. 

The plasma/3 exceeds a few hundred at the equator for the 
field line A in Figure 1 of Miura et al. [1989], and therefore the 
field line A is not an appropriate field model in the near-Earth 
plasma sheet. However, according to Lui et al. [1992], the 
plasma/3 as large as ---70 has been observed in the near-Earth 
plasma sheet before the substorm onset. Therefore the plasma 
/3 much larger than 1 may not be a rare case in the near-Earth 
plasma sheet before the substorm onset. Therefore the present 
result in section 6 showing that the ideal MHD ballooning 
mode, which is strongly localized near the equator, is essen- 
tially incompressible for/3(0) >> 6/F is valid in the near-Earth 
plasma sheet before the substorm onset, where such modest 
high-/3 is not a rare case. When the plasma in the near-Earth 
plasma sheet is stochastic, the incompressible assumption is 
valid irrespective of the/3 value. For such high-/3 the kinetic 
effect may also be important as has been discussed by Cheng 
and Lui [1998] and Horton et al. [1999]. 

Bhattacharjee et al. [1998] showed by an eigenmode analysis 
that a 2-D magnetotail, obtained by 2-D time-dependent sim- 
ulations of the magnetotail in the high-Lundquist-number re- 
gime, is subject to an ideal compressible ballooning instability 
(symmetric mode) with high wave number along y. They also 
showed that the same magnetotail configuration is not subject 
to the ideal incompressible ballooning instability. Lee [1998] 
also showed that the analytic model equilibrium or the 2-D 
plasma sheet that includes the Earth's 2-D dipole field is sub- 
ject to the ideal compressible ballooning instability, and there- 
fore Lee supported the view of Bhattacharjee et al. Hurricane 
[1997] showed that a sheared MHD equilibrium with the azi- 
muthal magnetic field component is subject to the compress- 
ible ballooning instability by the shear destabilization. As 
shown in section 4, the compressibility has always a stabilizing 
influence on the ballooning instability. Therefore it is not cer- 
tain why the calculation of Bhattacharjee et al. showed that the 
same equilibrium is subject to the compressible ballooning 
instability but is not subject to the incompressible ballooning 
instability, because if an unstable compressible mode is found 
by the eigenmode analysis, that mode should become an un- 
stable trial function in the energy principle, in which the com- 
pressible stabilizing term is neglected. The reason why Bhat- 
tacharjee et al. could not find an incompressible unstable mode 
may be due to the fact that they used a dynamic equilibrium 
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solution instead of the static equilibrium. The present analysis 
shows that whether the incompressible assumption is valid or 
not depends on the background profiles of IK•,[ and I•cl along 
the field line. Although there are several numerical eigenmode 
analyses of the ideal MHD ballooning instability [Miura et al., 
1989; Ohtani et al., 1989b; Hurricane, 1997; Bhattacharjee et al., 
1998; Lee, 1998, 1999], background profiles of I•1 and I•cl are 
only shown by Miura et al. [1989] and Ohtani et al. [1989b] in 
spite of the importance of those equilibrium quantities. It is 
not likely that the long-thin ordering for the equilibrium is 
always satisfied for the magnetospheric equilibrium. However, 
it is quite likely as discussed previously that during the growth 
phase of the substorm the field line in the near-Earth plasma 
sheet becomes more taillike and the plasma sheet becomes 
thinner [Kaufmann, 1987], and thus the long-thin ordering for 
the equilibrium becomes more likely to be satisfied, on aver- 
age, in the near-Earth plasma sheet, so that the stabilizing 
compressible effect vanishes. 

Although the present analysis is limited to the ideal MHD 
and stochastic plasmas without consideration of the full kinetic 
effects, within these limits the present results are useful in 
studying the linear stability of the long-thin, taillike magneto- 
spheric equilibrium against the ballooning and interchange 
instabilities including the case where the long-thin assumption 
for the equilibrium is not valid near the equator. The present 
results justify the incompressible assumption made in the bal- 
looning stability analysis of Miura et al. [1989] for a taillike 
equilibrium. Furthermore, the present results suggest that 
when the critical /3 due to the stabilizing tension force is ex- 
ceeded, the ballooning instability is a viable instability in the 
near-Earth plasma sheet, which is strongly localized near the 
equator and which may become essentially incompressible be- 
fore the substorm onset. It is also suggested that in the incom- 
pressible limit the growth time of the ballooning instability in 
the taillike equilibrium can become as short as the field line 
curvature radius at the equator divided by the Alfvdn speed. 
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