ti L

ELASTIC STABILITY OF ARCHES WITH BUCKLING

CONSTRAINT COMPONENTS AND THEIR APPLICATIONS

(FEJEAFIN S A7 77— F O£ e M
& DISHIZEET H0158)

R






ELASTIC STABILITY OF ARCHES WITH BUCKLING
CONSTRAINT COMPONENTS AND THEIR APPLICATIONS
CEEJEHRN < AT 77— F DR E M

& DI 258

Kun CHEN

bR o

in
Department of Architecture
in
Graduate School of Engineering
of

The University of Tokyo

Doctoral Supervisor:

Professor Ken’ichi KAWAGUCHI






ABSTRACT I

ABSTRACT

In this thesis, circular arches with symmetric closed cross section are taken as research objects, the elastic
stability problems of circular arches with straight components and flexible components are mainly studied. The
elastic stiffnesses of straight components play an important role in providing stiffening effects. In another aspect,
for flexible components, if there are directly loads applied on flexible components, generating internal forces of

flexible components may provide a type of stiffhess (so-called stiffhess of pseudo-spring) to stiffen arches.
The research work is done mainly in following aspects:
In Chapter 1, the background, the research purpose, the past researches and outline of this thesis are introduced.

In Chapter 2, according to two categorizing rules, one is the position of reaction force of braces, and the other
one is the spatial relationship of the arch and braces, the stiffening patterns of single arch and cross arch are

classified.

In Chapter 3, formulations of elements in finite element method are mainly discussed. Linear buckling analysis
method by using FE approach to obtain the critical load and buckling mode for the bifurcation point is
introduced. In order to treat the buckling problems of the circular arches and rings under uniform compression
as linear buckling problems, modified matrixes considering the follower force effects of uniform compression
are stated. Furthermore, formulations of linear beam element and linear truss element, formulations of

geometric nonlinear beam element and geometric nonlinear truss element in FE approach are given.

In Chapter 4, theoretical approaches to analyze in-plane and out-of-plane elastic stability problems of circular
arches under uniform compression are discussed. The static equilibrium differential equations built on the
isolated infinitesimal body may be divided for in-plane stability and out-of-plane stability separately. Then
related general solutions of displacements for in-plane stability and out-of-plane stability are given in explicit
expressions. Buckling control equations for calculating the critical loads are also obtained, and specific

numerical examples and FE method are used to verify these buckling control equations.

In Chapter 5, arch-spring models are proposed to simplify arches stiffened with straight braces. By using
general solutions of displacements, the relationship of internal forces and these displacements on isolated
infinitesimal body can be built, then the theoretical procedures for deducing the buckling control equations for

in-plane stability and out-of-plane stability are given respectively. In addition, no matter in-plane stability or
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out-of-plane stability, spring ratios of the stiffnesses of the braces and arches are proved to be existing.
Furthermore, stability problems of several stiffening patterns of single arch and cross arch, as well as hoop-rings

stiffened with spokes, are analyzed.

In Chapter 6, the stiffening principle of flexible components is studied. Study work shows that the stiffening
effects of elastic stiffnesses of flexible components can be ignored, and then the generating internal tension
aroused by external loads mainly contributes to stiffening structures. Through an example of specific curved
cables, explicit expressions of so-called stiffnesses of pseudo-springs are given. Validities of these stiffnesses of
pseudo-springs are proved through comparison of the results obtained by theoretical analysis and by nonlinear
FE method on a numerical example of a column model featuring with curved cables. And as applications, the
stability problems of a guyed mast and a circular arch featuring with curved cables are analyzed. The variations
of critical loads in these two structure systems show that the stiffening effects of curved cables are very similar
to the one in the example involving column. A typical characteristic of the stiffening effect of curved cables is
that there are optimal external loads on curved cables to obtain maximum critical loads. Oversize external loads
on cables will decrease the critical loads, and they will also make the curved cables provide stiffening effect

analogous to hinged ended.

In Chapter 7, three negatively pressured pneumatic structures utilized as first-aid shelters are constructed.
During the experiments, stiffening pattern in setting ropes along the peripheral direction of multiple-arch
skeleton can stop rotational buckling behavior and greatly increase the critical loads of the skeleton.
Light-weight infrastructures are also verified available in the practice. Furthermore, arch model with
pseudo-springs is proposed to simulate the stiffening effect of curved membrane in negatively pressured
pneumatic structure in numerical analysis, and vertical load pattern and radical load pattern in numerical
analysis are compared. Finally, through a load test experiment processed in a column structure featuring with
curved cables, the changing of buckling shapes of the column is observed when the loads on curved cables are

increasing, and the stiffnesses of pseudo-springs are proved to be existing in curved cables.

In Chapter 8, the conclusions of this thesis and future work are discussed.
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Chapter 1 Introduction 1

Chapter 1 Introduction

1.1 Background and research purpose

Arch structure is a kind of light-weight structure that mainly transmits axial compression force to the boundary
supports. Because of the concise beauty in architecture and high strength in structure, in Japan, China, Europe
and other places in the world, arch structures such as arch bridges and roofs structures are widely utilized.
However in the other aspect, with the decreasing of the weights of arches, large displacements and stability

problems may also occur.

In order to solve such problems mentioned above, constraint components can be utilized to restrain the
structural behaviors of arch structures. These constraint components can be sheeting, braces, or other secondary
members, which will improve twist, rotation, warping deflection at local places of the arch structures, as well as
prevent buckling behavior of the arch structures, as shown in Fig.1-1"*!, The existing components may also

increase the resistance strength of the arch structures.

braces secondary member
sheeting ; £ g %
arch arch arch
(@) (b) (©

Fig.1-1 Constraint components at local places of the arch structures '+

In another aspect, as noted above, the axial compression forces are the dominant forces for the arch structures,
then infrastructures in the boundary are needed to react against the forces transmitted from arch, such as the
horizontal reaction forces at the bases. If stiffening components such braces with rational combination of arch in
the boundary of arch, the axial compression force at arch and tension force at braces can be mostly eliminated
by making the best use of counterbalance effect of total internal force in entire structures, and more rational
hybrid arches could be designed. Fig.1-2 shows the single arch with braces (a) and multiply arches with

hoop-rings (b)**.
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arch arch
P/ N
-l ~
tie-bar hoop-ring
@ (b)

[26]

Fig.1-2 Arches with components in the boundary

Moreover, the straight strut can also be added at above brace to make the beam string structure consisting of
arched beam in two-dimensional space (Fig.1-3(a)) “*. And in three-dimensional space, suspen-dome pattern is
available (Fig.1-3(b)) ®®. In addition, by combination of compression ring, tension ring and spoke (cable), a

self-balance system called spoke structure can also be obtained (Fig.1-3(c)) '™\

arch arch
- BN -
" 7
cable strut cable gtrut

@ ®"

compression ring

© [17)

Fig.1-3 Arch with components at boundary

In above narrative, constraint components themselves can be seen as rigid structures, however there are also
existing flexible constraint components such as curved cables or curved membranes, and the tension in these
components helps to maintain their geometric shapes. When these flexible components connect to the arch
structure, these flexible components may not only transmit force to the arch, but also may provide stiffening

effect to the arch. Fig.1-4(a)"*® and Fig.1-4(b) shows arch structures supported by cable-nets.
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P
arch
s
cable

@ (b)

Fig.14 Arch structures supported by cable-nets

Therefore it is need further research to understand the stiffening effect of constraint components. From Fig.1-1

to Fig.1-4, the constraint components may be separated into two types: (1) rigid constraint components, such as
sheetings, braces, struts, straight cables, these components themselves are structures, and their elastic stiffness is
mainly utilized for stiffening; (2) flexible components, such as cable-nets, multistage cables, curved membranes,
and prestress or external force should be applied to these components to generate internal tension to maintain

their geometric shapes.

For straight components, it is eager to know rational arrangements of them for optimal stiffening effects. As it is
not economical to use constraint components with infinity elastic stiffnesses, then determining the suitable
elastic stiffhesses of components corresponding to rigidity of arch structures is very importance. However, for
flexible components, whether or not they can be treated as a new type of constraint components; it is
straightforward to judge that oversize tension in flexible components will do harm to the stability of arch
structures, so whether there is existing an optimal tension in flexible components or not, which can only

increase the stability of arch structures.

In theoretical discussion in this thesis, the arch structures are assumed as circular shapes and to have symmetric
closed cross sections. And the types of buckling constraint components are supposed as braces and curved

cables.
The research purpose of this thesis is stated as follows:

1) For straight buckling constraint components (ex. braces), theoretical procedures are aimed to be proposed to
analyze in-plane stability and out-of-plane stability of the arch structures. Non-dimensional ratios of the elastic
stiffnesses of the constraint components and the arches are aimed to be investigated by using formulations.

Meanwhile, the stability problems of single arch and cross arch with different stiffening patterns are aimed to be
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investigated respectively.

2) For flexible buckling constraint components (ex. curved cables), the theoretical procedures and approximate
approaches are aimed to be proposed to calculate intrinsic stiffening stiffnesses, which are generated only by
internal tension rather than elastic stiffnesses of the flexible components. And whether or not there is an optimal
tension in curved cable to provide the best stiffening effect is aimed to be verified. Furthermore, the buckling

behaviors of arch structures stiffened with flexible components are aimed to be analyzed.

3) In the practices of negatively pressured pneumatic structures, by using the straight components such as ropes
to restrain the buckling modes of skeletons, the buckling phenomenons as well as the critical loads of skeletons
are aimed to be investigated. And stiffening effects of membranes under negative draught head are aimed to be
studied too. The realization possibility of light-weight infrastructures in this kind of pneumatic structure system
is aimed to be verified. And simplified simulation models considering the stiffening effect of membranes in

negatively pressured pneumatic structures are aimed to be proposed.
1.2 Review of past researches
1.2.1 Researches on the stability of arches and rings

The elastic stability theory of arch and ring has a long history. Levy **! (1884) gave the solution for the bucking
of a thin-walled ring loaded by a normal pressure in-plane. Love "* (1944) derived the relationships for the
forces and moment resultants in terms of curvatures, strains and twists for curved rods, and he also obtained the
equilibriums equations. Timoshenko ** (1961) developed the stability equations for thin bars, and he obtained
closed-form solutions for the elastic buckling of a simply supported arch of narrow rectangular cross section
in-plane and out-of-plane when the load condition is uniform bending and uniform compression. Vlasov *’
(1961) and Yoo " (1982) substituted the generalized strains of curved beam into the strains of a straight beam
to obtain the equilibrium differential equations. Wah "' (1967) used equations from free vibrations of circular
rings to obtain buckling control equations in-plane and out-of-plane. George ™ (1967) made a theoretical
investigation of stability of pressurized toroidal ring under uniform distributed line load considering finite shear
stiffness, extensional stiffness. John ! (1987) derived the axial and shear strains, and substituted those into
second variation of total potential to obtain the buckling control equations. Tomas ! (1979) used equations of
equilibrium from nonlinear elastic theory to analyze the stability of thin-ring, and he also developed Wah’s

buckling theory in analyzing thick circular rings subjected to uniform compression. Yang ! (1987) utilized the
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principle of virtual displacements to deduce nonlinear differential equations of equilibrium for a horizontal
curved I beam. Rajasekaran "™ (1989) used the principle of virtual work for the derivation of thin-walled
curved beam equations. This approach to the derivation and the associated physical interpretation is associated
with geometric stiffness matrices in finite element continuum formulations. Xiang"™ (1991) gave a summary
of stability theory of arch by using static method and energy method as well as nonlinear FE methods. Kang e
(1993) used the principle of minimum total potential energy to derive equilibrium equations governing the
linear, the bifurcation buckling and the large displacement behavior of thin-walled curved beams. Pi'"*” (2004)
derived the finite strains and the energy equations for flexural-torsional buckling of arches based on accurate

orthogonal rotation matrix. Kang "®' (2007) directly used energy methods and approximate functions of

buckling modes to get the critical loads.

1.2.2 Researches on the stability of arches with constraint components

Researchers studied the constraint effect of components in arch structures for a long time. Ostlund ™ (1954)
discussed lateral stability of bridge arches which are braced with transverse bars. Almeida™ (1970) made his
study on the lateral buckling of twin arch ribs with transverse bars. Sakimoto '™ (1982) investigated inelastic
lateral instability of bridge arches associated with flexural-torsional deformation of the arch rib. Wen ™ (1987)
studied the elastic stability of deck-type arch bridges. Xiang"™! (1991) studied the effect of horizontal beam to
the lateral flexural-torsional buckling of hybrid arch. Nazmy'* (1997) investigated design parameters on both
strength and stability of a three-dimensional long-span steel arch bridge. Tanata ™ (2001) used numerical
analysis and modeling tests to study the structural characteristics of tensegric truss arch. Ju"*” (2001) discussed
the instability behavior of cable-arch structure by using large deflection finite element approach. Pi'"** (2001)
discussed the elastic flexural-torsional buckling of continuously restrained arches of I-section in uniform
bending and in uniform axial compression by using total potential formulation. Katoh”” (2002) used numerical
methods and experiments to study the effect of rigidity ratio, boundary condition and eccentricity to affect the
buckling of beam string structure with arched beams. Wu"™ (2004) tested the static and dynamic behavior of a
cable-stiffened arch models with experimental experiments and numerical analysis. Yang " (2005) studied
in-plane stability of six types of circular arch stiffened by cables with respective different rise-span ratio and
load actions by nonlinear FE approach, and he also investigated the in-plane stability of paraboloid and catenary
arches stiffened by cables. Kang " (2007) talked about the arrangement of inclined cables to the stability of

circular arch based on a cable-stayed bridge model by energy methods.
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1.2.3 Researches on numerical analysis of arches

Dawe ! (1974) proposed curved finite elements for shallow and deep arches respectively. Jones ™ (1977) used
nonlinear FE approach to investigate the buckling strength of ring and shell. Robert " (1982) proposed
matrices for change the nonlinear analysis of curved beam under uniform compression into linear eigenvalue
problem. Prathap ™ (1986) designed a three-noded curved beam element with transverse shear formation from
field-consistency principles. Wen "7 (1991) developed a nonlinear curved-beam finite element for three
dimensional space system by using the principle of potential energy and polynomial functions. Fuji"" (1998)
proposed a computational procedure in nonlinear stability analysis of tracing the bifurcation points of a pined
circular arch subject to stepwise changing loading modes. Raveendranath (1361 (1999) proposed a two-noded
shear flexible curved beam element with three degrees of freedom at each node based on curvilinear deep shell
theory. Pi"™ (2010) also studied the effects of the pre-buckling response on the solution of the in-plane and

out-of-plane uniform pressure loads of pin-ended elastic circular arches.
1.2.4 Researches on negatively pressured pneumatic structures

Negatively pressured pneumatic structure is a kind of pneumatic structure. Comparing to the positively
pressured pneumatic structure (e.g. Tokyo dome), there are lack of examples of negatively pressured pneumatic
structure. One deflect of positively pneumatic structure is that support structure of boundary will be very heavy
in order to resist the inflation force of membrane. While for negatively pressured one, it is possible to reduce the

weight of boundary, but at the same time skeleton is needed to resist the deflection force of membrane.

In Reference [25], Frei Otto proposed a conceptual design of the shape of a sing-layer and a double-layer
negatively pressured pneumatic structure by directly utilizing the opposite curvature of positively pressured
ones. He also wanted to build a roof with this system for an agricultural facility. Prof. Kawaguchi *" designed

the Power pavilion with negatively pressured type and put it in practice in 1970 Osaka World Exposition. Afra

(3] [36]

and Hong * studied the possibility of build negatively pressured pneumatic structures with light-weight

boundary condition, and they built several experimental models for first-aid shelters during 2012 and 2013.
1.2.5 Summaries of past researches

1) In past researches on the stability of arch structures with constraint components, stiffening effect of straight

components are mostly studied. But there is lack of theoretical procedures to propose non-dimensional ratio of
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elastic stiffness of straight components and arch structures in analyzing stability problems. In addition, there are

not many researches carried out on the comparison of various stiffening patterns of arch structures.

2) There is lack of researches on the theoretical analysis to prove whether or not flexible components can
provide stiffening effect to arch structures, and if they can, how to control the optimal tension on flexible
components to provide best stiffening effect and do not do harm to the arch structures at the meantime, is also a

problem to be discussed.

3) In negatively pressured pneumatic structures, curved membranes or cables under negatively draught head
may provide stiffening effect to main skeletons. Few researches are carried on the negatively pressured
pneumatic structures in the past. And simulation models of negatively pressured pneumatic structures are never

mentioned in the past researches.

1.3 Outline of this thesis

In Chapter 1, the background, the research purpose, the past researches and outline of this thesis are introduced.

In Chapter 2, according to two categorizing rules, one is the position of reaction force of the brace, and the other
one is the spatial relationship of the arch and the brace, the stiffening patterns of single arch and cross arch are

classified.

In Chapter 3, formulations in finite element method are discussed. Linear buckling analysis method by using FE
approach to obtain the critical load and buckling mode for the bifurcation point is introduced. In order to treat
the buckling problems of the circular arches and rings under uniform compression as linear buckling problems,
modified matrixes considering the follower force effects of uniform compression are stated. Furthermore,
formulations of linear beam element and linear truss element, formulations of geometric nonlinear beam

element and geometric nonlinear truss element in FE approach are given.

In Chapter 4, theoretical approaches to analyze in-plane and out-of-plane elastic stability of circular arches
under uniform compression are discussed. The static equilibrium differential equations based on the isolated
infinitesimal body may be divided separately for in-plane stability and out-of-plane stability. Then related
general solutions of displacements for in-plane stability and out-of-plane stability are given in explicit
expressions. Buckling control equations for calculating the critical loads are also obtained, and FE methods are

used to verify these buckling control equations through specific numerical examples.
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In Chapter 5, arch-spring models are proposed to simplify the arch structures stiffened with straight braces. By
using general solutions of displacements, and the relationship of internal forces and these displacements can be
built, then the theoretical procedures for deducing the buckling control equations for in-plane stability and
out-of-plane stability are given respectively. No matter in-plane stability or out-of-plane stability, spring ratios of
the stiffhesses of the braces and the arch structures are proved to be existing. Furthermore, stability problems of
several stiffening patterns of single arch and cross arch, as well as hoop-rings stiffened with spokes are

analyzed.

In Chapter 6, the stiffening principle of flexible components is studied. Study work shows that the stiffening
effects of elastic stiffnesses of flexible components can be ignored, and then the generating internal tension
aroused by external loads mainly contributes to stiffening structures. Through an example of specific curved
cables, explicit expressions of so-called stiffnesses of pseudo-springs are given. Validities of these stiffnesses of
pseudo-springs are proved through comparison of the results obtained by theoretical analysis and by nonlinear
FE method on a numerical example of a column model featuring with curved cables. And as applications, the
stability problems of a guyed mast and a circular arch featuring with curved cables are analyzed. The variations
of critical loads in these two structure systems show that the stiffening effects of curved cables are very similar
to the one in the example involving column. A typical characteristic of the stiffening effect of curved cables is
that there are optimal external loads on curved cables to obtain maximum critical loads. Oversize external loads
on cables will decrease the critical loads, and they will also make the curved cables provide stiffening effect

analogous to hinged ended.

In Chapter 7, three negatively pressured pneumatic structures utilized as first-aid shelters are constructed.
During the experiments, stiffening pattern in setting ropes along the peripheral direction of multiple-arch
skeleton can stop rotational buckling behavior and greatly increase the critical loads of the skeleton.
Light-weight infrastructures are also verified available in the practice. Furthermore, arch model with
pseudo-springs is proposed to simulate the stiffening effect of curved membrane in negatively pressured
pneumatic structure in numerical analysis, and vertical load pattern and radical load pattern in numerical
analysis are compared. Finally, through a load test experiment processed in a column structure featuring with
curved cables, the variation of buckling shapes of the column is observed when the loads on curved cables are

increasing, and the stiffnesses of pseudo-springs are proved to be existing in curved cables.

In Chapter 8, the conclusions of this thesis and future work are discussed.
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Chapter 2 Category of Stiffening Patterns of Arches

2.1 Introduction

Study on the stability problems of various stiffening patterns of arches is one of the research objects in this
thesis. So in this chapter, and category of stiffening patterns of single arch and cross arch with circular shapes is

the key content.

2.2 Two types of arches

(@) Single arch (b) Cross arch

Fig.2-1 Two types of arches

In Fig.2-1, two types of circular arches are enumerated: (a) single arch; (b) cross arch. Single arch can be seen as
a as a basic unit for hybrid arches, such as cross arch, so that researches on single arch can help to understand
the behavior of hybrid arches. Here three kinds of deformation of single arch under symmetric loads are
enumerated. Fig.2-2(a) shows deformation of one arch under uniform load, the entire arch sunkens. And in
Fig.2-2(b), when the loads near the boundary are larger than the ones near top, the arch hunches up at the top
and sunken near the boundary. On contrast, in Fig.2-2(c) when the loads near the top are larger than the ones

near the boundary, the arch sunkens at the top and hunches up near the boundary.

(a) Deformation shape 1 (b) Deformation shape 2 (c) Deformation shape 3

Fig.2-2 Three types of deformations
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2.3 Stiffening patterns

When stiffeners are used to stiffen the arch structure, the mechanical behavior of arch will change according to
different arrangements of arches. Reference [26] makes effort to divide the stiffening patterns of lattice shell
structures with tensioned components. Referring to division methods in Reference [26], different stiffening
patterns of single arch and cross arch are categorized. For convenience, here the constraint components in
arches are assumed as all straight braces. And two rules are used for the categorizing. Examples in single arch

are discussed firstly.

Rule one " by judging the position of reaction force of braces, the stiffening patterns are divided into internal
reaction type and external reaction type: (1) internal reaction type (Fig.2-3, Fig.2-4(a)): both sides of brace are
connecting to the arch, and the reaction forces of brace happen only in the arch. (2) external reaction type
(Fig.2-4(b), Fig.(2-5)): one side of brace is connecting to the arch, and the other side is connecting to a support

in boundary. So the forces of braces will finally transmit to the boundary.

Rule two ”*: by considering the spatial relationship of single arch and braces in-plane, the stiffening patterns
can be divided into two kinds: (1) longitudinal direction type: braces are set up along the longitudinal direction

of the arch (Fig.2-3); (2) radial direction type (Fig.2-4): braces are set up in the radial direction of the arch.

(a) Internal reaction type (b) External reaction type

Fig.2-4 Radial direction type of single arch
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Fig.2-5 External reaction type of single arch

Similarly, in the case of cross arch, the category of internal reaction type (Fig.2-6, Fig.2-7(a)) and external
reaction type (Fig.2-7(b), Fig.2-8) are also applicative. In addition, when considering the spatial relationship of
arch and braces, the stiffening patterns can be divided into three kinds in cross arch: longitudinal direction type,
latitudinal direction type and radial direction type. The definitions of them are as follows: (1) longitudinal
direction type (Fig.2-6(a)): braces are set up along the longitude of arch. (2) peripheral direction type
(Fig.2-6(b)): braces are set up along the latitude of arch. (3) Radial direction type (Fig.2-7): braces are setting up

along radial direction.

(b) Peripheral direction type

Fig.2-6 Internal reaction type of cross arch
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(@) Internal reaction type (b) External reaction type

Fig.2-7 Radial direction type of cross arch

() Peripheral direction type (b) Radial reaction type

Fig.2-8 External reaction type of cross arch

2.4 Summaries

In this Chapter, stiffening patterns of single arch and cross arch are mainly classified according to two rules: one
is by reaction force of the brace and the other one is by spatial positions of the brace and the arch. By using the
first rule, internal reaction type and external reaction type are obtained. And by the latter rule, stiffening patterns
of single arch are divided into longitudinal direction type and radial direction type. In another aspect, stiffening

patterns of cross arch are divided into longitudinal direction type, peripheral direction type and radial direction

type.
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Chapter 3 Formulations in Finite Element Method

3.1 Introduction

In this chapter, formulations of elements utilized in finite element method (FE), such as linear beam element,
linear truss element, geometric nonlinear beam element and geometric nonlinear truss element are introduced.
In addition, for the stability problems of arches and rings under uniform compression, modified matrixes
considering the follower force effect are introduced, with which the stability problems can be treated as the

linear eigenvalue problems.
3.2 Linear buckling analysis

In a structure system, because of the work done by the external force, the potential energy functionIT (=V-W)

changes. Here V' is the strain energy, W is the work done by the external force. The expression of potential

energy functionIT is (67

1
H:V—W:EuT-KT-u—uT-f 3.1
Here K7 is the tangential stiffness matrix. u is the displacement vector, f is the nodal force vector. And Ky
can be divided into the elastic stiffness matrix K and the geometric stiffness matrix K as follows:
K;=K;-K; (32)

When the structure system arrives at an equilibrium state, the potential energy function will arrive at a stationary
point, at this moment the first variation of potential energy functionIT becomes 0, then the iterative equation

can be obtained as
Kyeu=f 33)

In order to get indifferent equilibrium state, the second variation of potential energy functionIT should be 0,

then the eigenvalue equation can be gotten as B 162l

Kg—4Kg)wy, =0 (34)
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In Eq.(3.4), 4 is the i-th order eigenvalue, and ; is the eigenvector corresponding to ;. In addition, the
minimum positive number of /; is called first order critical load, and the corresponding vector is called first

order buckling mode.

3.3 Formulations of linear elements

3.3.1 Linear beam element

>y

X

Fig.3-1 Global and local Cartesian coordinate system of 3D-beam element

Fig.3-1 shows the global and local Cartesian coordinate system of 3D-beam element with 2 nodes. In local
Cartesian coordinate system, axis z is determined by the direction from node i to node j, axis X is
perpendicular to axis z, and axis X is parallel to plane xy in global Cartesian coordinate, axis y in local

Cartesian coordinate is determined by right-handed screw rule .

Assuming the direction cosine of axis z in local Cartesian coordinate is
— T
z=[n, n, n;] (3.5)

Assuming X is parallel to xoy plane, then the direction cosine of axis X can be obtained as

T

— 1y n
X=|- 0 (36
(i +m)" (nf +n3)" )

Finally direction cosine of axis y can be calculated as

y=ZxX (.7



Chapter 3 Formulations in Finite Element Method 15

Noting matrix r as
r=[x y 1z (3.8)

According to the displacement sequence of Ax;, Ay, Az, AOy, AO;, A, Ax;, ij, Az, AOy;, AD,,

A0, the elastic stiffhess matrix Ky and geometric stiffness matrix K of the linear beam element in 3D

space are B3132]
[ 12EI, 1
13
LA
13
0 0 % SYM.
6E] 4E1
0 -— Yy 0 Y
/ /
6Ez[x o o o AEL
/ /
0 0 0 0 0 s
K. - /
E
~ 121€1x o o 0 6:1221x o 12;3;5
12E1 6E] 12E1
0o =2 0 —X o0 0 0 -
/ / /
0 0 —% 0 0 0 0 0 - %
6E1 2EI 6E1 4EI
0 2 0 . 0 0 0 . 2
2 ! 2 !
6EI, 2EI 6EI, 4EI
e 0 0 0 7 0o - - 0 0 0 7
0 0 0 0 0 - % 0 0 0 0 0 %

(3.9)
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N
5l
o O
51
0 0 0 SYM.
o N o, 2w
10 15
ﬁ 0 0 0 ﬁ
10 15
2
_Mxi Myi 0 Vxl VLZ Nro
.| ! ! 6 6 ! (.10
G~ .
_6_N 0 0 0 _ﬁ M 6_N
5l 10 / 5l
M.
0 _ﬂ 0 ﬁ 0 X 0 ﬂ
51 10 / 51
0 0 0 0 0 0 0 0 0
0 _ﬁ 0 _M 0 _Vxl 0 ﬁ 0 ﬁ
10 30 6 10 15
)
N o o o M _ Ny o 2N
10 30 6 10 15
2 2
_ MXJ M)’j 0o — Vxl _VLI _ Nru Mx] _ M)’] 0 Q VLZ Nru
L ! / 6 6 / / / 6 6 [

Here J is Saint-Venant torsion constant. G is the shear modulus, /; and /, are the moments of inertia. ry is the

radius of gyration. And the components in Eq.(3.10) are

=N, =-N, 3.11)

3.3.2 Linear truss element

By the hypothesis of small stain and small deformation, the elastic stiffness matrix Kz and geometric elastic
stiffness matrix K of liner truss element in 3D space can refer to Reference [1], [2], [28]. Noting a direction

cosine matrix as C, and C is 3X 1 matrix, and then other two matrixes are defined as

k, =——C-C’ (3.12)
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N
k, :I(I3 -c.Ch (3.13)

In equations above, E is the Young’s modulus, 4 is the area of cross section, L is the member length, N is the

axial compression force, and I; is a 3X 3 unit matrix.

The elastic stiffness matrix Kz and geometric stiffhess matrix K can be obtained as follows:

ke _ke

Ke=l o & (3.14)
k -k

KG:|: o g} (3.15)
_kg kg

3.4 Formulations of geometric nonlinear elements
3.4.1 Geometric nonlinear beam element

In this section, geometric nonlinear beam element which has two nodes is introduced ***!'*"). And in this section,
Eq.(3.16)~Eq.(3.55) refer to Reference [86]. This beam element is deduced through an updated Lagrangian
approach, and it can be applied in analyzing the structure with large rotation and small strain. Fig.3-2 shows the
displacements and internal forces of the beam element. In Fig.3-2, local Cartesian coordinate system X;X,X; is
set up on the beam element. X, is along the connecting line of two nodes, X, and X5 are along the direction
of principle inertia axes in cross section respectively. And after deformation, usually two cross sections in one
beam element are not parallel with each other anymore, X, and X3 may be defined by the average values of

principle inertia axes respectively.




Chapter 3 Formulations in Finite Element Method 18
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Fig.3-2 Displacements and internal forces of beam element

[861,[101]

By utilizing the principle of minimum potential energy, the internal forces of beam element can be obtained as

4EI, 4PI 2EI, PI

M3 =( 7 +¥)913 +( ; —%)023 (3.16)

My =CED - Tho,+ (2 e, 617

M =L 200, + 2= T, (318)

My, = (@—%)012 + (if+43—13)922 (3.19)

M, = (%)et (320)

P = EA(S) + 35267 = 0,102, + 203) + <5 (263 =01y, +263)] (321)

Shear deformations and warping are neglected in equations above. Then firstly from the differential forms of

Eq.(3.16)~Eq.(3.21), the relationship of internal forced and displacements can be obtained as

AS =K-AV (3.22)
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And components in Eq.(3.22) are

AS =[AM, 3, AM 3, AM,,AM 5,,AM ., AP]' (3.23)

AV =[A6,,,A0,,,A0,,,A0,,,A0,,Ae]' (329

_Kll K12 K13 Kl4 KlS K16
K22 K23 K24 K25 K26
K33 K34 K35 K36

K= 325
SYM. Ky Kis Ky (3:25)
Kss  Ksg
L Kes

And the components in Eq.(3.25) are

4EI 4EAe EAl
K== ik Y m (8913 40,,0,; +30%) + (8912 40,,0,, + 803,) (3.26)

2EI, EAe EAl
Ky, = ] 3 —W—_(wn 60,30, +2055) - (2912 01205, +203,) (3:27)
K3 = %(16913912 — 40,30, — 40,5053 + 0130,,) (328)

EAl
Ky = %(_4913912 +160,30,; +0,30,, —40530,,) (329
Kis=0 (330)
EA

K= —(4913 —0,3) (331)

4EI 4EAe EAl
K,, = 73 L (3913 46,,0,; +80%) + (8912 46,,0,, +863,) (332)
Ky = %(—4912913 +0,30,, +160,30,, —40,30,,) (333)

EAl
Ky = 900 (012613 — 40,30, —40,30,, +160,30,,) (334)
K,s=0 (3.35)
EA

Ko :_(_913 +40,3;) (3.36)

4El, 4FEAe EAl
Ky == 2 =0 %(8013 46,50, +865;) + (8912 46,,0,, +365,) (337

2EI, EAe EAl
Ky, = ; 2 —T—_(zen 01302 +2033) (2912 60120, +205,) (3.38)
Ky =0 (339)

EA
K36 = 5(4912 —05,) (3.40)
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4El, 4FEAe EAl

K =
Moo 30 900

Ky5=0

EA
Ky = %(_912 +40,,)

GJ
Rem

Ky =—
66 /

On the other hand, equilibrium equation in local Cartesian coordinate system is

F=G-S
In Eq.(3.47), matrix G is
oL o 0010 -t
i i
o L 0o 0000 -1
i i
c:00—%01ooo
1
00-700000
00 0 -1 000 0
-1 0 0 0 00 0

Noting displacement vector Au of node in local Cartesian coordinate system as

Au=[Au, A, e« A7,]|

Then AV can be obtained as

AV =GT AT

The differential equation of Eq.(3.47) is

AF = G+AS + AG-S

The matrix AG is

EAl
+ _(89123 — 46,303 + 89223) + %(39122 —40,,0,, + 89222)

(=)

20

(341)
(342)
(343)
(3.44)
(345)

(3.46)

(347

(3.48)

(3.49)

(3.50)

(3.51)
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[—p3 /1 —py/l —py/l —py /1 O 0O
-5/ -s/1* 0 0 0 —p;
0 0 s/ s/17 0 py
0 0 0 0 0 0
0 0 0 0 0 0
aco| © 0 0 0 0 0 652
ps/l psll py /L py /00 '
s/ 8/ 0 0 0 ps
0 0 5/ -5/ 0 —-p,
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 |
InEq.(3.52), 0 =Au, — Au,, p, = — (Au, — Au,)/l, p3 =(Auy — Au,)/l.
Substituting Eq.(3.22) into Eq.(3.51), the second term of Eq.(3.51) can change into expression of Au.
AF = G+K+AV + DeAu = (G+K+G” + D)eAu == K+Au (3.53)
Noting a=(M,,+M») /I, b=(M,3+Ms3)/I*, ¢=P/1, then matrix D in Eq.(3.53) is
[0 bh —a 000 0 -b a 0 0 0]
0 000 b — 0 000
c 000 a O — 0O00O0
000 0 0 0 00O
00 0 0 0 000
. 00 0 0 000 G54
0 b —a 000 '
SYM. c 0 000
c 000
000
00
L O_

Transformation matrix of local Cartesian coordinate and global Cartesian coordinate is noted as

R= (3.55)
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Here r is a direction matrix. This transformation matrix can be obtained in Reference [119]. Then tangential

stiffness matrix in global Cartesian coordinate is

~T

K, =R-K:R (3.56)
3.4.2 Geometric nonlinear truss element
A X3
g5
/j
7 L
(0)
> o

X

Fig.3-3 Truss element in 3D space "'

Reference [151] introduced the formulation of geometric nonlinear truss element in 3D space. In this section,
Eq.(3.57)~Eq.(3.86), Eq.(3.92)~Eq.(3.98) refer to Reference [151]. This formulation of truss element is an
updated Lagrangian approach. Fig.3-3 shows a truss element with 2 nodes, the length of truss element is , and i,
j are the numbers of nodes. X;, X,, X3 are axes in global Cartesian coordinate system. The displacement

vector u at any position of truss element can be expressed by shape functions N; and N, as follows

N 0O 0 N, 0 07],

u={ 0 N, 0 0 N, 07 (3.57)
0 0 N, 0 0 N,||"
0
u3
Here the displacement vector u can be expressed as
U
u=3u, (3.58)
U3

Shape functions N; and N, in natural coordinate system ¢ are



Chapter 3 Formulations in Finite Element Method

Green-Lagrange stain form moment # to ¢ ' is defined as
; &= {; i ; S» ; 33 2; S 2; <13 2; 523}

'€ can be divided into linear strain e and nonlinear strain .

1
A (uy j +uy;)

So that the linear strain ,e can be expressed as
T
€= {xeu Cn e 2.6, 2e; 2t823} =Leu=LeNeu, =B, -u,

Variation and derivative of linear strain , e is
se=B «bu,

e=B -u,
Then noting

1
My = E(Uk,i'uk,j)

So that the nonlinear strain  n is
r 1 1
M= {mn Ma Mz 2 203 2ﬂ723} :E'A'H'“ :E'A'BNL'ue

Variation of nonlinear strain  n is

23

(3.59)

(3.60)

3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
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on=A<H:-5u=A-B, +Su,

And the derivative of variation of nonlinear strain 1 is

(M) = A-H:5u=A-B,,*5u

Here the components in equations above are

- v
ta 0 0 ta ta 0
X, X, o'X,
Lo d 0 d 0 d
0'X, o'X, o' X,
0 ta 0 ta ta
i X, X, X, |
N, o M 0
d'X, X,
0 —‘?N L0 0 —atN 2.
o'X, X,
0 0 atN L 0 0 atN 2
"X, X,
B, =L-N=
oN,  oN, N, N,
X, X, X, X,
N, o, N N, N
o' X, o'x, 0'X, o'X,
o N oN, 0N, N,
| o'x, 0'X, o'X; 0'X, |
8[”1 0 0 6f‘2 0 0 61“3 0
' X, 'X, 'X,
0 ‘?”1 0 ‘?“2 0 0 8,”3
X, X, X,
0 0 ?“1 0 0 6,”2 0 0
' X, 'X,
A =
Ouy Ouy 0 Ouy,  Ou, 0 Ou;  Ouy
X, X, ox, dXx, ox, X
Ou, 0 Ou,  Ou, 0 Ouy,  Ouy 0
' X, ox, d'X, o'X, 0'X,
Ou, Ou, 0 Ou,  Ou, 0 Oy

24

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)
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I t - t- T
L O - N
o'X, o'X, X,
"ty o't '
* ox, oy, 0 a’x3 0
2 2 2
t - { - t-
0 0 ;;1 0 0 gt;‘; 0 0 2;?
— X : )
A=l , . t t (3.74)
ow O 0 ow, Ou, 0 0'uy, 0ty 0
X, 09X, o'x, o'X, o'x, o'X,
o, duy o duy a0 O
X, X, 0'X, X, X, d'X,
0 o', 0 0 o'u, 0'u, 0 o'y Oy
i X, X, oX, X, Xy 09X, |
R T
0 0 0 0 0 0
ox, o'X, d'X;
H=| 0 0 0 ta tﬁ ta 0 0 0 (3.75)
ox, o'x, o'X,
0 0 0 0 0 0 0 0
i o'x, o'X, 0'X,]
_ T
oN, ON, ON, 0 0 0 0 0
ax, X, X,
0 0 0 N N aN, 0 0
X, oXx, 99X,
0 0 0 0 0 oN, ON, ON,
ox, dx, X,
B,, =H-N= (3.76)

ON, ON, 0N,
o'x, oX, X,

0 0 0 0 0 0

ON, ON, 0N,
X, 9X, 09X,

0 0 0 0 0

ON, ON, 0ON;
ox, o'Xx, 09X |

As N; and N, are functions of natural coordinate &, so that derivatives about X; (=1, 2, 3) in global
Cartesian coordinate system cannot be obtained directly. Then Chain rule is used to process a coordinate
transformation.

oy, [ax, ax, axJfav av, v ] _jfav, aN, av ] 67
& | oe  oE O ||ox, X, oX, X, 08X, oX; '
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InEq.3.77),J is

N N x' x! x!
J:|:_8 L ON, 2}. S S TR (3.78)
o8 oc || X7 X5 X;

In Eq.(3.78), [, m, n are direction cosine of the truss element. And there is
JiJ=1 (3.79)
Here I is a unit matrix. Multiplying J T at the two sides of Eq.(3.77) at the same time, we can obtain

T T
ON; ON; ON;,| _|,O0N;  ON,  ON; (3.80)
aX, oX, oX; o oe | OE

By using Eq.(3.59), Eq.(3.60) and Eq.(3.80), B; and B,; become

N LA
L L
o - o o 2 o
L L
0 0 —% 0 0 %
B =L:N=| 1 (3.81)
m Ly Ly
LI L L L
A
L L L L
o nom o onom
L L L L L]
M7 m n 1
Lm0 0 0 0 0
L L L
0o o0 o0 -L -m_n 5 o
L L L
0O 0 0 0 0 0 —% —% —%
B,, =H:N = ; (3.82)
L T 5 o0 0 0 0 0
LI L L
o o o L m o 4 o o
L L L
o 0o o0 o o o L m 12
L L L L.

The linear part K; and the nonlinear part Ky; of tangential stiffness matrix can be obtained as
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K, = Izv([Bf.ta.[BL )dtV

Ky =[ B 7By d'y

27

(3.83)

(3.84)

Here ,C is the component matrix of constitute tensor in global Cartesian coordinate system at time ¢, T is the

component matrix of Cauchy tensor in global Cartesian coordinate system.

[—=1111 —1122 —=1133 —=l1112  —I1113 —11237]
C C C C C

C

—2211 62222 62233 62212 62213 62223
. 63311 63322 63333 63312 63313 63323
tC - 51211 61222 61233 61212 61213 61223

—1311  —=1322  —I1333  —I1312 <1313 51323

C C C C C

—2311  —2322 —2333 —2312 —2313 —2323
C C C C

C C

72 B 9 0 0 0 0 0|
2 2 0 0 0 0 0 0
B3 0 0 0 0 0 0
o o o ™ M ¥ o o0 o0
T={0 0 0 2 2 72 0 0 o0
0o 0 o0 ™ B B 0 o0 o0
o 0 o0 o0 o o T F2 g8
o 0 o0 0 o0 o T? 2 7B
0o 0 0 0 o0 o0 T° TF 8

(3.85)

(3.86)

In Reference [128], the relationships of stress tensor, strain tensor and constitute tensor between global

Cartesian coordinate system and local Cartesian coordinate system are given as follows:

—ij _ 7 AN S\
T = (i eiy )i eiy)T
€a = (T i )T '+i,) Cu
—ij _ ikl =
T/ =C"eg,

A

Tab = Cabcd .ecd

(3.87)
(3.88)
(3.89)

(3.90)

In Eq.(3.87) and Eq.(3.88), 7, and 7 are the unit vectors in local Cartesian coordinate and global Cartesian

coordinate respectively.
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Substituting Eq.(3.89) and Eq.(3.90) into Eq.(3.87), the relationship of component matrix of constitute tensor in

global Cartesian coordinate system and local Cartesian coordinate system is
e T GEA G A GREAIGEA) (391)
AsC,,,, = E (Eis Young’s modulus), and defining
p:{l2 m* n* Im In mn} (3.92)
Then the expression of matrix , C  can be expressed as

,C=Ep"+p (3.93)

Assuming component 7;;0f Cauchy stress tensor in local Cartesian coordinate system at time ¢ is 7, according

to Eq.(3.87), the components of Cauchy stress tensor in global Cartesian coordinate at time ¢ are

T
: :{1__11 72 73 712 713 1—.23} =pTT (3.94)

The internal force vector Q in global Cartesian coordinate system is

Q=| Bj-td'v (3.95)
Then if assuming C = [, m, n]7, k, = EL—AC-CT , and a 3X3 unit matrix I, then Eq.(3.83), Eq.(3.84) and
Eq.(3.95) can be rewritten as
K, = & T 3.96
Pk, K, (3.96)
T4 lx _lx
k. =tk 3
M= {_13 L } (397

Q=Ar{—l -m -n | m n}T (3.9%)
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3.5 Modified matrixes

Fig.3-4 A straight beam element for the circular arch/ring 7!

In Eq.(3.4), the calculation of bifurcation points can be treated as linear eigenvalue problem. If the K in
Eq.(3.4) are constituted for a unit value of pressure load, then the minimum positive eigenvalue A can be
considered as the critical load. And this solution of positive eigenvalue 4 is only corresponding to the constant

direction pressure . In this section, Eq.(3.99)~ Eq.(3.108) refer to Reference [74].

But when the external load is uniform compression, because of the follower force effect, the normal eigenvalue
approach in Eq.(3.4) cannot get an accurate solution. In order to make the normal eigenvalue approach available

for the buckling analysis when external load is uniform compression, here modified matrixes ™ are introduced.

Considering the straight beam element in Fig.34, then energy expression association with changing direction of

uniform compression in a circular arch or ring can be written as
50=4[ > ~1?yax (3.99)
RY0
Here ¢ is the uniform compression in the radial direction of the arch/ring, and R is the radius of the arch/ring.
Assuming the generalized coordinate as
a=[a, a, a3 a, as ag) (3.100)
Then displacements « and v can be written as

u=N,-a (3.101)
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v=Ngea (3.102)
Here N; and N-are
N,=[1 x 0 0 0 0] (3.103)
Ne=[0 0 1 x x* x°] (3.104)
Then the Eq.(3.99) an be rewritten as
5°Q = aTKCq-a (3.105)
In the Equation above, K¢, is
Koy =4 [ (NT+N, ~NL-N)dx (3.106)

Here ¢ is the uniform compression, and R is the radius of arch or ring.

This is the desired matrix for uniform compression, except that it operates on the generalized coordinate rather
than the local nodal coordinate. The transformation to local nodal coordinate in Fig.3-9 is stated as follows,

which is obtained by evaluation N, N¢, and the dN,/dx at the nodes.

w] [T 000 0 07g
v | 00 10 0 0lg
g| (0001 0 0lg
wm |1 700 0 0fg (3.107)
v, 0001 1 2 P as
(%] |0 0 0 1 2/ 3/*| .

Noting T, as the square matrix in Eq.(3.119), the referring to the local nodal coordinate , then the matrix in local

nodal coordinate is
Ke =T, Ky T, (3.108)

If the linear beam element noted above is used, it is necessary to notice the difference of the setting of local

coordinate system in Fig.3-1 and in Fig.3-4, and rearrange the position of components in Eq.(3.108).

In conclusion, when the external load is a uniform compression and straight beam element is used, then

(K¢g — K¢y) is need to be substituted for geometric elastic stiffness K¢ in local Cartesian coordinate system
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before K¢ in local Cartesian coordinate is transformed into K in global Cartesian coordinate.

Fig.3-5 A straight beam element for a circular arch/ring

In addition, the same method can be used to deduce the modified matrix in 3D space. Assuming the generalized

coordinate as

a=[a, a, a3 ay as a5 a; ag ag ay ay ap] (3.109)

Then displacements u, v, w and y can be written as

u=N,-a (3.110)

v=N,a @.111)

w=N, 2 (3.112)

y=N,a (3.113)

HereN,,N,,N,,and N, are

Ny=[1 x x> x> 00000 0 0 0] (3.114)

N,=[0 0001 x x> x> 00 0 0] (3.115)

Ny=[0 000000O0T1 x 0 0] (3.116)

Ny:[O 00 0O0O0O0OO0OOO0T1 x] (3.117)

The other procedure is as same as the one in 2D space. And comparing the setting of local coordinate system in

Fig.3-1 and in Fig.3-5, the setting of axes in these two configurations are the same, so there is no necessary to
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change the position of components in K¢, any more.

3.6 Numerical example

3 L=100m Cu Vl
A=1m?
E=21GPa H'™ M

Fig.3-6 Cantilever beam under bending moment!"*”

Fig3-6 shows a cantilever under a bending moment at one side "**. The value of moment is M = nzEI/L.
Here E is the Young’s modulus, / is the moment of inertia, L is the member length. Theoretical solution of this

problem is R = EI/M= L/nz " Especially, when n=2, the equilibrium shape of beam is a closed arc.

=201

8% =0 0 20 20 60 80 100

Fig.3-7 Shape of cantilever after deformation
The geometric nonlinear beam element in section 3.4.1 is used in this example. The entire cantilever is divided
into 8 geometric nonlinear beam elements. Fig.3-7 shows the equilibrium shape of beam under different values

of moments. And Table.3-1 shows the comparison of results obtained by FE method (author’s program), by

theoretical solutions and by past researches.
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Table.3-1 Comparison of the results

u/L v/IL
" FE. Reference [159] Theo.[162] FE Reference [159] | Theo.[162]
04 -0.243 -0.243 -0.243 -0.550 -0.550 -0.550
0.8 -0.766 -0.765 -0.766 -0.720 -0.722 -0.720
12 1.156 -1.158 -1.156 -0.480 -0.479 -0.480
1.6 1.189 -1.193 -1.189 -0.137 -0.140 -0.137
20 -0.998 -1.004 -1.000 0.000 -0.004 0.000

From Table.3-1, when # is smaller than 1.6 (including 1.6), FE results and theoretical solutions is almost
identical. While » is larger than 1.6, the difference of the results between these two methods are very small and

can be ignored. Analysis results of Reference [159] are also very close to FE results in this section.

3.7 Summaries

In this chapter, the FE methods to study the stability of the structures are introduced. And formulations of FE

elements proposed in past researches are also given. The main work is summarized as follows:

1) The approach in solving linear eigenvalue problems to obtain the critical load and buckling mode by using

FE method is introduced.

2) Formulations of the linear beam element and the linear truss element based on small deformation and small
strain are given. Furthermore, formulations of geometric nonlinear beam element and geometric nonlinear truss

element based on large deformation and small strain are also deduced.

3) In order to treat the buckling problems of the circular arch or ring under uniform compression as linear
buckling problems rather than to use nonlinear FE analysis, modified matrixes considering follower force effect

of uniform compression are introduced.
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Chapter 4 Theory of Elastic Stability of Arches

4.1 Introduction

A4

Fig.4-1 Circular arch under uniform compression

In this chapter the in-plane stability and out-of-plane stability of circular arches with symmetric closed cross
section under uniform compression will be discussed. When uniform compression is applied to the line of the
circular arch which is the same as the arch axis, before buckling phenomenon occurs, axial compression force
can be considered as the main internal force in the arch, and the moments and shear forces in the arch can be

ignored. Fig.4-1 shows the configuration of a circular arch under uniform compression.

Three kinds of methods are mainly used in theoretical analysis of elastic stability of arches. Firstly, researchers
such as Wah*", Yang®™, Rajasekaran"®!, Kang"'®), firstly proposed series of equilibrium differential equations
for curved beams, then they used approximate functions of buckling modes to get the critical loads.

[108]

Secondly, researchers such as Tomas ', Xiang!'® used isolated infinitesimal body of the arch to build static

[63]

equilibrium differential equations. Especially, Tomas '’ utilized displacements in a Fourier series, Xiang''®

[108]

used approximate functions of buckling modes for the critical loads of in-plane stability. And Xiang " also

used general solutions of displacements to get the critical loads of out-of-plane stability.

Thirdly, researchers such as John™ and Kang!'®” directly used energy methods to obtain critical loads for

in-plane stability and out-of-plane stability of arches.

[108]

In this chapter, static methods introduced by Xiang" " are utilized to get the equilibrium differential equations

of the circular arch under uniform compression for in-plane stability and out-of-plane stability respectively. The

[108]

circular arch is assumed to have symmetric closed cross section. Although Xiang™ - gave the general solutions

of displacements for out-of-plane stability, he did not give the general solutions of displacements for in-plane
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stability. And then he used functions of buckling modes to obtain the critical loads. In this chapter, firstly the
general solutions of the circular arch for in-plane and out-of-plane stability are deduced respectively. And then
by using boundary conditions, buckling control equations for in-plane and out-of-plane stability are obtained

respectively. In this chapter, Eq.(4.1)~Eq.(4.20), Eq.(4.39)~Eq.(4.80) refer to Reference [108].

42 Curvatures and moments

Fig.4-2 Displacements in the isolated infinitesimal body of the arch !'®*

Fig.4-2 shows the displacements in the isolated infinitesimal body of the arch"®!. Translation displacements
and rotational displacements in any cross section of the arch around x axis (perpendicular to the arch plane,
lateral diction), y axis (pointing to the center of the arch in-plane, radial direction,) and z axis (tangential
direction in -plane) are u, v, w and £, y, @ respectively. Referring to coordinate system (x, y, z), coordinate system

(& 1, {) is the substitution of former coordinate system in the arch after deformation occurs.

The rotational displacement around x axis is
1 . v w
B =——[(v+dv)cosdp +(w+dw)sindp —v]= —(—+—) 4.1)
ds ds R
And the increment of rotational displacement around y axis is
Ay =(y +dy)cosdp + (0 +dO)sindp —y =dy +0do 42)
And increment of rotational displacement around z axis is
AO =—(y +dy)sindp + (0 +dO)cosdp —0 ~dO —ydo 43)

The rotational displacement around y axis can be obtained by
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y=u' (44)

Here K, (excluding initial curvature 1/R), K|, and K are curvatures of axis x, axis y and axis z respectively.

Then the values of curvatures around axis x, axis y and axis z are calculated as follows.

dp _d_2v+1dw

=——= — 4.5
* ds ds* R ds (45)
Ay dy+0dp dy 0 d*u 0
K =—=— " - 4 =0 4+ 4.
Y ds ds ds R ds* R (46)
AO  dO —vyd do do 1d
KZ:_:#:__L:____M (47)
ds ds ds R ds Rds

In another aspect, moments M, M,, M are the ones which appear in small length ds of the isolated
infinitesimal body after deformation around axis &, axis # and axis { respectively. The directions of moments

are stipulated in Fig.4-3 ('

9_44* """"""""""" %ﬁgg

MC Mn

n

Fig.4-3 Moments in the isolated infinitesimal body !'®*

And the material of the circular arch is assumed to conform to Hook's law. As the displacements are very small,
the geometric shape of the cross section can be assumed unchanged after buckling. The relationship of

curvatures and moments can be found as follows ['®!

EIK =-M,
ELK, =M, 4.8
GJ.K,—(EJ K.)'=M.

Here £ is the Young’s modulus, G is the shear modulus, /, is moment of inertia around axis x, /, is moment

of inertia around axis y, J, is Saint-Venant torsion constant, J,, is warping moment of inertia.
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4.3 Equilibrium differential equations

4.3.1 In-plane

Fig.4-4 Equilibrium state of forces in-plane '

In Fig4-4, shear force Qn’ axial compression force N and bending moment M; are in static equilibrium

state under external load, ¢, is distributed load in # direction and g, is distributed load in ¢ direction, m, is

the distributed bending moment around & axis '**!. From the static equilibrium conditions, we can obtain

N, +dN_.—N_cosdp—Q,sindp —q,ds =0
0, +dQ, -0, cosdp + N_sindp —q,ds =0 49)
Mg +dM; —M; +0,ds+m:ds=0

As dyp is very small, here cosdp=1, sindp=dp are supposed. Meanwhile ignoring the effect of ¢, and m,

then the equations above become

dN. _%
R

— ==
do,
ds
aM, _

ds T

NQ
[ Jp— +

In Eq.(4.10), er of the third term is substituted into the one in the first term. Meanwhile taking one time
derivative of the two sides of the third term and substituting the expression (d! Qn /ds) into the one in the second

term, we can obtain
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aNe 1AM
ds R ds

2
M, N,

s> R

4.11)

By combining these two terms in Eq.(4.11), we can obtain

d’M dM
L s +%_dsf _ _% @.12)
S

When the external load is uniform compression, referring to Reference [108], uniform compression ¢, in 7

direction after buckling can be obtained as
q,=q-NK, @13)

Here N=qR. Then substituting the first term of Eq.(4.8) and Eq.(4.13) into Eq.(4.12), we can obtain

d’K 1 dK dK
—El = =% _[F] — "X _gR=x 4.14
Tae R a4 (.19)

As the shape of the arch is assumed as circular, and ds = Rdp is a pre-established condition, then we know

d"K, 1 d"K,
ds" _F d(pn (4.15)
Substituting Eq.(4.15) into Eq.(4.14), we can obtain
3 3
d KSx +(1+ﬂ)_de =0 (4.16)
do El." do

Love"™ and Timoshenko™ assumed the circumferential strain of the centerline is 0 after buckling, by this

assumption we can obtain

dw_v 417
s R @17
The same expression of Eq.(4.17) is
aw
22y (4.18)
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Then substituting Eq.(4.18) into Eq.(4.5), then curvature K, around axis x becomes

v, 4.19
x RZ d(p2 RZ ( . )

Substituting Eq.(4.19) into Eq.(4.16), we can obtain

gR® dv

v dv
- 4+ _)(_
El, " dg?

1+
d(p5 d(p3 (

dv
+—)=0

d(p) (4.20)
Eq.(4.20) is the buckling control equation for in-plane stability of the arch. And Eq.(4.20) is identical to the
expressions in Reference [103], Reference [108] and Reference [165]. But the general solution of Eq.(4.20) is

not given by Xiang!'™

, and function of buckling mode is adapted in above three references. Due to the lack of
general solution of Eq.(4.20), here the procedure to calculate the general solution of the displacement v is

introduced.

When reviewing the derivation process of Eq.(4.20), we can find out that this equation originates from

Eq.(4.16). Thus directly taking one time integration of two sides of Eq.(4.16), then we can obtain

d’K 3
ﬁﬂ“tjj—[ﬂ% =4 421
Assuming a parameter 7 as
R3
od=14 (422)

As Eq.(4.21) is a second order linear differential equation with constant coefficient, the general solution of X is
. 4
K. =A4,sintg + 4, costo + - 4.23)
T

Then substituting Eq.(4.19) into Eq.(4.23), we can obtain

d 2\/' 2 . 2 R2

—— +v=4R"sintQ + 4R" costQ +— 4, (424
do T

Eq.(4.24) can also be seen as a second order linear differential equation with constant coefficient, the general

solution for this equation is
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2 2 2

. AR 4
5 sinTQ + COSTY +—5 4,
-7 -7 T

. AR
v:A4sm(p+Ascosq)+l2

2

In order to simplify the expression of Eq.(4.25), here we note

2 2 2
{4 B C D E}:{A4 As AR AR R—AI}

1-72 1-7% 72
Then Eq.(4.25) becomes

v=Asing + Bcosp + Csintg + Dcostp + E

Then taking one time integration of the two sides of Eq.(4.18), we can obtain the expression of w as

W:IVd(pZ—ACOS(p-i-BSil’l(p—C@-FD@-%E(pﬁ-F

The first to third derivatives of Eq.(4.28) is
v'=Acosp — Bsing + Ct costp — Dt sintg
V"= —Asing — Bcosp — Cr? sintg — Dt costp
V" =—Acosq + Bsing — Ct> coste + D1’ sinte
From the third term of Eq.(4.10), we can obtain

dM; EI, (d3v
ds R do’

dv
= +—
0, d(p)

1) Hinged ended in-plane

0.5 0.5a

Fig.4-5 Buckling of the arch in-plane
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4.25)

(4.26)

427)

4.28)

(4.29)

(4.30)

431)

432)
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In the account above, the general solutions of displacements v and w in-plane has been obtained. Now let’s
consider the boundary conditions. Firstly the boundary conditions of the circular arch are assumed as hinged

ended, and the central angle of the arch is a, and uniform compression g is considered, as shown in Fig.4-5.

The expressions of hinged ended boundary conditions are
() v=0,y"=0 w=0atp=0
2 v=0,v"=0,w=0atp=0

From these boundary conditions, we can obtain

0=B+D+FE
0=-B-Dr?
0=-4- Cl +F
T
. . 433
0=Asina + Bcosa + Csinar + Dcosat + E (433)
0=—Asina — Beosa — Cr’sinar — Dt’ cosar
0=—Acosa + Bsina —CM+DM+E(1 +F
T T
According to the sequence of 4, B, C, D, E and F,, a matrix Syp.y is assumed as
0 1 0 1 1 0]
0 1 0 ? 0 0
1 0 1 0 0 -1
Sapo = 4 434
2D-H sinoe  cosa  sinart cosat 1 0 (434)
sinad cosa t’sinar tlcosar 0 O
. cosart sinot
—cosa sino  — 1
L T T J
Then the buckling control equation can be expressed as
det(S;p.q) =0 (4.35)

Here a numerical example is used to prove the theoretical equation above. The example is given as follows:
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Table.4-1 Materials parameters of the arch

42

Young's modulus [GPa]

Poisson’ ratio

Internal diameter [mm]

External diameter [mm]

Arch

205

0.3

6

12

The circular angel of arch is 7. And its radius is Im. The arch has a hollow circular constant cross section.

Table.4-1 shows the materials parameters of arch in numerical example. In numerical analysis, 2D linear beam

element in Section 3.3.1 and the modified matrix in Section 3.5 in Chapter 3 are used. Entire arch is divided into

48 and 192 linear beam elements, and each element has the same length.

In another aspect, we also use the large finite element analysis software ANSYS 12.1 for comparison. Element

BEAM 188 is used for simulation. The division number of entire arch is 48 elements. In the later narrative, we

use symbol “ANSYS” for the results obtained by ANSYS 12.1, and symbol “FE” for author’s FE program.

Table.4-2 Comparison of the buckling modes (hinged ended: 48 elements)

First order

Second order

Third order

(FED

(FE)

(FE)

(ANSYS)

(ANSYS)

(ANSYS)

The buckling modes obtained by FE method and ANSYS with 48 elements are showed in Table.4-2. We can

obtain the first and the third order buckling modes are anti-symmetric and the second order buckling mode is

symmetric. The buckling modes obtained by FE method and ANSY'S are almost identical to each other. And

the comparison results by theoretical method, FE method and ANSYS are shown in Table.4-3. We can observe

there is small difference between these three results.
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Table.4-3 Comparison of the critical loads

, EI, EI, ) EI,
First order (F) Second order (F) Third order (F)
Theory () 3.00 8.00 15.00
48 elements 3.06 8.15 15.30
FE (¢.r)
192 elements 3.01 8.04 15.07
ANSYS (g.) | 48 elements 3.00 8.03 15.11

43

In theoretical analysis, the first order critical load with central angel 7 is 3.00, this result is identical to the one
obtained by Timoshenko™. And by comparing the results obtained by FE methods and ANSYS, we know that
with the same division of elements (48 elem.), Element 188 in ANSYS has high accuracy. But when we
compare the results obtained by FE methods with different divisions, we know higher division number will

make the results closed to the ones in the theoretical analysis.

2) Fixed ended in-plane
When the boundary conditions in Fig.4-5 are fixed ended, the boundary conditions can be expressed as

M
@

v=0,v’=0’w:Oat(p=O

v=0,v'=0,w=0atP =&

From the boundary conditions, we can obtain

0=B+D+E
0=A4+Cr
0=—A—C1+F

T

0=Asina + Bcosa +Csinar + Dcosot + E (4.36)

0= Acosa —Bsina + Ct cosat — Dt sinat

cosart sinat

0=-Acosa + Bsinoo —C————+D
T T

+af+F

Similar to the case when the boundary conditions are hinged ended, from the sequence of 4, B, C, D, E and F, a

matrix Syp.r is assumed as
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Sop-F = .
sino cosa

cosa —sina

—cosa sina

0
T 0
1
— 0
T
sinat cosart

TCcosoT —Tsinar

cosart sinat

T T

Then the buckling control equation can be expressed as

det(S,,) =0

44

437)

438)

The same numerical example in hinged ended case is used here. Table.4-4 shows the Buckling modes with 48

elements. We know the first and third order of buckling modes are anti-symmetric, and the second order one is

symmetric. The buckling modes calculated by FE method and ANSY'S are almost identical to each other.

Table.4-4 Comparison of the buckling modes (fixed ended: 48 elements)

First order

Second order

Third order

(FE)

(FE)

(FE)

(ANSYS)

(ANSYS)

(ANSYS)

The comparison of the first order to the third order critical loads calculated by theoretical method, FE method

and ANSYS are shown in Table. 4-5. In theoretical analysis, the first order critical load with central angel 7 is

8.00, this results is identical to the one obtained by Timoshenko!*”, And comparing the results of ANSYS and

FE method, we know that with the same division of elements, ANSY'S has higher accuracy. And comparing the

FE results with different divisions, we observe FE and ANSY'S results in higher division are closed to the ones

in theoretical analysis.
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Table.4-5 Comparison of the critical loads

EI, EI, . Ely
First order (R—3) Second order (F) Third order (F)
Theory (¢.) 8.00 12.90 24.00
48 elements 8.15 13.15 24.49
FE (¢.)
192 elements 8.04 12.96 24.12
ANSYS (g) | 48 elements 8.03 12.99 2431

As complements, in Appendix B we introduce other two methods to obtain critical loads for in-plane buckling

in past researches, one is using function of buckling mode!' ™ "], and the other one is utilizing simplified static
equilibrium method .

4.3.2 Out-of-plane

qe
M, \& lll Z M+dM,
m. N Q, ';NﬁdN(
p T M +dM,
O QO tdQ;
¢ Py
d
(@ (b)

Fig. 4-7 Equilibrium state of forces out-of-plane '

In this section, out-of-plane stability of circular arch with symmetric closed cross section is analyzed. Fig.4-7
shows equilibrium state of circular arch in an infinitesimal length ds when flexural-torsional buckling happens

out-of-plane %] These internal forces include lateral bending moment M,,, torsional moment M_, lateral shear

force Q., axis force N, distributed load ¢., distributed moments m, and m around axis # and axis (.
< ¢ & n ¢

Researchers John ) Rajasekaran '™, Pi " in their researches for the out-of-plane when the boundary

conditions of the arch are hinged ended in-plane and simple ended out-of-plane, they thought that the moment
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M;: (used for in-plane stability) around & axis is 0 and the axial compression force is N=gR. And Pi 150 stated
the moment M, (used in-plane stability) around ¢ axis is very small when the boundary conditions of the
arch are lateral fixed and he neglected the effect of M in studying the out-of-plane stability, and the axial
compression force is assumed as N=gR. Wah 7 Tomas !, Xiang "™, Kang™® separated the buckling
control equations of the circular arch for in-plane stability and out-of-plane stability respectively, and these
researchers also assumed axial compression force of the arch is N=¢R. In this section, the method introduced

[108]

by Xiang is utilized. Ignoring the effect of M when flexural-torsional buckling happens, we assume the

axial compression force equals gR. From the static equilibrium condition in Fig.4-7, we can obtain

>.F, =0 (4.39)
> M, =0 (4.40)
ZM =0 441
From Eq.(4.39), we can obtain
Z[i =0, +d0, +q.ds—N_sinAy —Q, cosAy =0 (442)
As Ay is small, we could assume sinAy = Ay, cosAy = 1. And Ay = ds _ K ds . Eq.(4.42) can
transform into the following equation. |
%H& CN.K, =0 443)

In another aspect, from Eq.(4.40) we can obtain
ZMT, =M, +dM, —M, cosdp+ M, sindop+mds+Q.ds=0 (444)
As sindp =~ dgp, cosdp = 1, neglecting the effect of m,, so that Eq.(4.44) can transform into

M, | M, 0.=0 (445)
+—=40. = :
ds R ¢

Finally from Eq.(4.41), we can obtain

ZMg:Mg+dMg—Mgcosd(p—Mnsind<p+mgds:0 (4.46)
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Neglecting the effect of m, and Eq.(4.46) can transform into

aM. M
—=_—1-9 (447)
ds R

The combination of Eq.(4.43) and Eq.(4.45) is

d’M, 1 dM

1
ds* E ds

“+N.K, —q. =0 449

Then buckling control equation can be expressed as

M, 1M, .
+ —q. =
ds® R ds sty T

(4.49)

Substituting the expressions of M,, M;, K,,and K. into Eq.(4.49), we can obtain

GJ. d0 ldu_, ,du 0
DT G
R ds Rds ds~ R
1 du EI d2u+9

il Dt
Rds)] R (d52 R

du 6
[EIy(F+E)]"+[ IN, —q. =0

(4.50)

do
GJ (-
[GJ.(—

And when out-of-plane buckling happens, ¢ e = q0 and N=¢R are pre-established conditions. Then Eq.(4.50)

can be simplified as
4 2 EI +GJ. d*
E[,d?+(qR—G‘£Z d_l;+(—y Z)d?:
" ds R* " ds R ds @51)
GJ +EI,_du d’0 El, '
(———)—5+GJ,—5—-——356=0
R ds ds R
Assuming two non-dimensional parameters 4 and o as
El )
A= G 4.52)
_ q
o= EI / R3 (4.53)
y

Substituting the expressions of 4 and w into Eq.(4.51), we can obtain
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d u (___ u /1+1 d 0
R
1+l a’2 d20 i
—(—— -—60=0
( R ) als2 R’
As the shape of'the arch is circular, we can obtain
d'u 1 d"'u
ds" R"do"
d'0 140
ds" R" do"

By using Eq.(4.55) and Eq.(4.56), Eq. (4.54) can transform into

4 _ 2 2
u, (@h-1)du (L+DRd’ _

do* A do? A de?
l4Adu d0

+
R do’ (al(p2

—20)=0

Firstly, from the second term of Eq.(4.57), we can obtain

d’u _ R d’0 AR
dp® 1+idp® 1+

Taking one time integration of two sides of Eq.(4.58), we can obtain

du R d6 AR

T T T ¢

do 1+rdp 1+

Then taking one time integration of both sides of Eq.(4.59) again, we can obtain

R
201 qubd¢w¢

Taking two times derivative of both sides of Eq.(4.58), we can obtain

du R d49_ AR d’0
do* 1+Ade* 1+Ado’

Substituting Eq.(4.58) and Eq.(4.61) into the first term of Eq.(4.57), we can obtain

48

454

(455)

(4.56)

@57)

458)

4.59)

(4.60)

@61)
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4 2
d 94 +(a)+2)d 92 +(1-Aw)6 =0
do do

4.62)

Eq.(4.62) is a fourth order linear differential equation with constant coefficient. Assuming parameters a and b as

a=2F2 4.63)
> '
b=1-Lw (4.64)
Then the general solution of Eq.(4.62) can be obtained as
0 = Asink,¢ + Bcoskp + Csinhk,¢ + Dcoshk,p (4.65)
Here k; and &, are
k =va+\a’ -b (4.66)
k,=N-a+~Na’ -b (4.67)
The first derivative and second derivative of two sides of Eq.(4.65) are
do . .
o Ak, cosk,p — Bk, sink,@ + Ck, cosh k,¢ + Dk, sinh k,¢ (4.68)
®
d’0 A2 _ pp2 2 2
o Ak; sink,@ — Bk; cosk,@ + Ck; sinh k,¢ + Dk, cosh k,p (4.69)
¢
Taking integration of two sides of Eq.(4.65) one time and two times respectively, we can obtain
f@d(p = —kécos ko + kﬁsin ko + kgcosh k,p + 2sinh ko+E (4.70)
1 1 2 2

A . B C . D
I(JOd(p)dq) = —Psmquo —k—zcoskltp +Fsmhk2(p +Pcoshk2q) +Ep+F 4.71)
1 1 2 2
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1) Hinged ended in-plane and simple ended out-of-plane

Fig.4-10 Buckling of the arch out-of-plane

Here an example shown in Fig.4-10 in 3D space is used to explain the applications of equations above. The
circular angel of the arch is a.. Uniform compression ¢ is applied to the arch. Assuming the boundary conditions
are hinged ended in-plane and simple ended out-of-plane. Here simple ended means the nodes at boundary can
rotate along their principal axes but be unable to rotate along the tangents to their center line **, This kind of

boundary conditions can be given as follows:
(1) 6=0atp=0andp =a
) M,I:Oat(p=0and(p=a

(3 u=0atp=0andp =«

2 2
Firstly, let’s talk about boundary condition (2). As M, is 0, we can obtainK , = 2 l; +% =0—> Z l; =0.
s ¢
2
Then from Eq.(4.58), Z 92 = 0 can be obtained. Then the boundary condition (1) and (2) can be expressed as
¢
0=B+D
0= A4sin(ak,) + Bcos(ak,) + Csinh(ak, )+ Dcosh(ak, )
0=-Bk + Dk; “72)
0 =—Ak; sin(ak,) — Bk cos(ak,) + Ck; sinh(ak, ) + Dk; cosh(ak,)
From equation set above we can obtain
B=C=D=0 473
Asin(ak,)=0 “.73)

From the boundary condition (3), by using Eq.(4.60), we can obtain
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B D

0 = _—2 + —2 + F
ok 474
A . B C . D “74)
0=——sin(ak,) —— cos(ak, ) + — sinh(ak, ) + — cosh(ak,) + Ea + F
k, ki K, K,
Substituting Eq.(4.73) into Eq.(4.74), we can obtain
E=F=0 4.75)
Finally from the second term in Eq.(4.73), sin(ctk, ) = 0 . Then we know ak; is nz, we can obtain
k=" (4.76)
a
Substituting Eq.(4.76) into Eq.(4.66), we can obtain
nm nm
(—)' =2a(=)+b=0 4.77)
a a
Then substituting expressions of a in Eq.(4.63) and b in Eq.(4.64) into Eq.(4.77), we can obtain
nrw
[(;)2 -1
o=— """ (4.78)
GOV
a

Finally substituting / in Eq.(4.52) and o in Eq.(4.53) into Eq.(4.78), the critical load ¢, can be expressed as

nrw
g, [0 =17
q.,= ?m (4.79)
a GJ

z

When the central angle o is 7. then the first order to the third order critical loads are
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EI
R_; T the first order critical load
4+
GJ.
q, = ? il , the second order critical loa (4.80)
9+—2
GJ,
EI
R_;’LZI, the third order critical load
16+—=
GJ.

The first term in Eq.(4.80) agrees with the value obtained by Timoshenko !

2) Fixed ended in-plane and out-of-plane

\

0.50%0.50

Fig.4-11 Buckling of the arch out-of-plane

When the boundary conditions are fixed ended in-plane and out-of-plane, as shown in Fig.4-11. And this type

of boundary conditions can be given as follows:
(1) 6=0atp=0andp =«
2 u=0,u'=0at¢p=0andp =a

The expressions of u' and u can be found in Eq.(4.59) and Eq.(4.60) respectively. Then using all the boundary

conditions, we can obtain
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0=B+D
0 = A4sin(ak,) + Beos(ak,)+ Csinh(ak, )+ Dcosh(ak, )
0= —ﬁz + 22 +F
ki ks
0= —izsin(akl) —Ezcos(akl) + %sinh(akz) + Bzcosh(akz) +Fa+F
k, k; k; k, (4.81)
4 C

0=(A4k, +Ck))—A(——+—+FE
(Ak, +Ck,) (k1 A )

0 =[A4k, cos(ak,)— Bk, sin(ak,)+ Ck, cosh(ak,) + Dk, sinh(o.k, )]

- /l[—kécos(akl) + kﬁsin(akl) + kgcosh(akz) +k2sinh(ak2) +E]

1 1 2 2

According to the sequence of 4, B, C, D, E and F,, a matrix S;p.ris assumed as

i 0 1 0 1 0 O]
sin(atk,) cos(ak,) sinh(ak,) cosh(ak,) 0 0
1 1
0 o 0 — 0 1
k! ky
sin(otk,) cos(atk,) sinh(ak,) cosh(ak,)
Sy = T2 T2 2 - 2 a 1
kl kl k2 kZ
k + 2 0 k, — ~ 0 -1 0
ky k,
A Al A A .
(k, + —)cos(ak,) —(k +—)sin(ak,) (k, ——)cosh(ak,) (k,——)sinh(ak,) -4 0
L kl kl k2 k2 a
(4.82)
Then the buckling control equation which is the same expression of Eq.(4.81) is
det(S,, ) =0 (4.83)

We use a numerical model with same parameters in Section 4.3.1 here. And the results are shown in Table.4-9.
In numerical analysis, the 3D beam elements without modified matrix are utilized. We only consider
out-of-plane buckling modes but in-plane buckling modes are not stated. We analyze the two cases. The first
one has the boundary conditions that are hinged ended in-plane and simple ended out-of-plane. And second one
has the boundary conditions that are fixed ended in-plane and out-of-plane. For the first case, in software
ANSYS, the tangential stiffness matrix of this kind of boundary conditions is singularity, then we do not give
the solution by ANSY'S in this case.

Table.4-6 shows the first order to third order buckling modes and critical loads when boundary conditions are
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hinged ended in-plane and simple ended out-of-plane. And Table.4-7 ~Table.4-9 show first order to third order
buckling modes and critical loads respectively when boundary conditions are fixed ended both in-plane and

out-of-plane.

Table.4-6 Buckling modes and critical loads

Hinged ended in-plane and simple ended out-of-plane

(48 elements) (48 elements) (48 elements)
El EI El
Theory 9., =1.70— g, =621— g, =13.00—2
R R R
48 _173EL 2, EL L JEL
FE elements 9o = 1.73 R3 qer = 6.34 R3 q. = 13.28 R3
192 El El El,
elements qd. = 1.71 R; q,= 6.25 R; q, = 13.07 R;
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Table.4-8 First order buckling modes and critical loads

Fixed ended in-plane and out-of-plane

(FE: 48 elements) (ANSYS: 48 elements)

IV
Theory q, =247—
48 5, Bl
elements Gor = £ R’ 48 EI
FE ANSYS | g, =247
192 g =248 E[y elements R
elements er TS0 Ry

Table.4-8 Second order buckling modes and critical loads

Fixed ended in-plane and out-of-plane

(FE: 48 elements)

(ANSYS: 48 elements)

EI
Theory q, = 5.71R—3y
48 _ss3fh
elements Ger =2 R 48 EI
FE ANSYS q,=572—"
192 s E[y elements R
elements qer =37 R




Chapter 4 Theory of Elastic Stability of Arches 56

Table.4-9 Third order buckling modes and critical loads

Fixed ended in-plane and out-of-plane

(FE: 48 clements) (ANSYS: 48 elements)

EI
Theory q.,=1332—=
R
4% =13.61 EL,
elements Gor = 13- R’ 48 EI
FE ANSYS q, =13.41—
192 EI, elements or R’
elements q.,=13.39 R

4 4 Summaries

In this chapter, static equilibrium conditions in the isolated infinitesimal body is used to deduce the equilibrium
differential equations for in-plane and out-of-plane buckling of the arch under uniform compression respectively.

The main achievement is summarized as follows:

1) General solutions of the displacements (v and w) for in-plane stability and of the displacements (@ and u) for
out-of-plane stability are obtained respectively. By using these general solutions as well as boundary conditions,

buckling control equations for in-plane and out-of-plane stability are able to be obtained.

2) By using numerical examples, the comparison of the results calculated by FE formulations in Chapter 2, by
large finite element software ANSY'S, and by the buckling control equations are carried out. These three results

are very close to each other, and the theoretical procedures proposed in this chapter are verified.
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Chapter 5 Stiffening Effect of Straight Components

5.1 Introduction

In Chapter 4, the elastic stability of the circular arch in-plane and out-of-plane under uniform compression are
discussed. And the general solutions of displacements from equilibrium differential equations for in-plane
stability and out-of-plane stability are obtained in explicit expressions respectively. In past research, researches
mostly paid attention to the solution of first order critical load of arches or rings, because it is thought that only
the first order buckling mode seems to happen in practice and higher buckling modes may not happen after all.
But in this chapter, when constraint components are used to stiffen arches, buckling modes of arches may
transfer from lower buckling modes to higher buckling modes, so theoretical solutions of second order critical
loads and higher order critical loads are also very important for judging whether the numerical solutions

obtained by FE methods are accurate or not.

The object of this chapter is to propose the theoretical approaches for analyzing the elastic stability problems of
circular arches with straight components. And non-dimensional ratios (so-called spring ratios) of the stiffnesses
of straight components and arches are aimed to be obtained. By taking braces as constraint components,

arch-spring models are proposed and utilized for simplifications in theoretical procedures.
5.2 In-plane
5.2.1 Anti-symmetric buckling mode

1) Hinged ended in-plane

(b)
Fig.5-1 Anti-symmetric arch-spring model
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In Table4-2 in Section 4.3.1 in Chapter 4, we know the first order and the third order buckling modes of the
arch are anti-symmetric and the second order buckling modes is symmetric. Therefore two different kinds of
methods are used to establish arch-spring models. Fig.5-1(a) shows an anti-symmetric arch-spring model. A
spring with an elastic stiffness & is set up in horizontal direction at the middle of the arch. And uniform
compression g is applied in the plane of the arch. Symbols “L” and “R” in subscripts are used to distinguish the
displacements and forces at the left side and right side of the spring. From Eq.(4.27) in Chapter 4, the

expressions of displacements are assumed as
v, = A sing + B, cos@ + C; sintg + D, costo + E; 5.1
Vg =4, sing + B, cosp + C, sintg + D, costp + E, (52)

Then the first to the fourth derivatives of v; are

v, "= 4, cosp — B, sing + Cit coste — Dyt sintp (53)
v, "=—4sing — B cosp — C11'2 sintQ — D1T2 COSTQ 54
v, "=—4,cos¢ + B, sing — CI‘L'3 COSTQ + Dlr3 sint (5.5
v, "= A4;sing + B cosp + Clr sinte + Dlr COSTQ (5.6)

Similarly the first to the fourth derivatives of vy are

vp'= A4, cosp — B, sing + C,7 costep — D,Tsintg (5.7)
vp"=—4,sing — B, cosp — C212 sintg — D212 COSTQ (5.8)
vp'"=—4,cos¢ + B, sing — C213 coSTQ + D213 sintg (59

"=4,sinp + B, cosp + CZT sint + Dzr COSTQ (5.10)

In another aspect, referring to Eq.(4.28) in Chapter 4, the displacements w; and wy in tangential directions are

costp sinzg
|

w, =—A cosp + B singp - C;, ——— —+Ep+F (5.11)

cOSTQ ) sintQ
— T

Wwp =—4, cosp + B, sing - C, +E,p+F, (5.12)

Fig.5-1(b) shows the equilibrium state of forces at the position of the spring in the horizontal direction, this

equilibrium condition will be given as a boundary condition in latter narrative.
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From the second term and third term of Eq.(4.10) in Chapter 4,we can obtain

90

do,
=——"1 4R
7 q,) q,

N.=R(-
S d(p

o M _EL dK, _El d dv)
" d R do R do® do

When the boundary conditions in Fig.5-1(a) are hinged ends, we can obtain
1 v,=0,v,"=0,w, =0atp=0

2@ vp=0,1,"=0,w,=0atp=a

59

(5.13)

(5.14)

B) V=V, 0 = O, vy = v = W =y =W07_(QHL)' :_(QUR)'+kW0 ate =0.5a

Then From boundary condition (1), we can obtain
0=B+D +E
0=-B,-Ds’

0=—4-CLiF
T

From boundary condition (2), we can obtain

0=4,sina + B,cosa + C,sinar + D, cosat + E,
0=—4,sina — B, cosa —C,r* sinat — D,t° cosat

. cosar sinot
0=-4,cosa +B,sina - C, +D, +aFE, +F,
T T

From boundary condition (3), we can obtain

(5.15)

(5.16)
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El,

R3

kw, —

R

w, =—4,cos0.5a + B, sin0.5a — C,

w, = =4, cos0.50 + B, sin0.5a - C,

cos0.5ar

A sin0.50 + B, cos0.5¢ + C, sin0.5at + D, cos0.5at + E, =
A,sin0.50 + B, cos0.5¢ + C, sin0.5ar + D, cos0.5ar + E,
—A4,¢0s0.5a + B, sin0.5a — C;t* c0s0.5at + D’ sin 0.5t =
—A4,c080.50 + B, sin0.5a — C,t* cos 0.5t + D,r°sin 0.5at
A cos0.5a — B, sin0.5c + C;t cos0.5ar — D;rsin0.5at =

A, c0s0.5a — B, sin0.5a + C,t cos0.5ar — D, sin0.5at
—A4,sin0.50 — B, c0s0.5a — C;t*sin0.5at — Dr* cos0.5at =

—4,sin 0.5 — B, c0s0.5c — C,r* sin 0.5at — D,t* cos0.5at

sin0.5at

cos0.5at

+D,

1

T
sin0.5at

+0.50E, + F

+D

2

T

+0.50F, + F,

(4,sin0.5a + B, cos 0.5 + C;t*sin0.5at + Dir* cos0.5at) =

EI . .
= (4,sin0.50 + B, cos 0.5a + C,t*sin0.5at + D,t* cos0.5a1)

60

(5.17)

According to the sequence of 4, By, Cy, D\, E\, F, A, By, Cy, D5, Ey, F>, Wy, a matrix S;p.ap 1S assumed as

Sopan =

0

0
sin0.5¢
cos0.5a
cos0.5a
sin0.5¢

co0s0.5a

0

| sin0.5a

1 0 1 1
1 0 7’ 0
0 1 0 0
T
0 0 0 0
0 0 0 0
0 0 0 0
cos0.5a sin0.5at cos0.5ar 1
—sin0.5a 7°cos0.5ar —r’sin0.5ar 0
—sin0.5a tcos0.5ar —tsin0.5ar 0
cos0.5a t’sin0.5ar  7°cos0.50r 0
sin0.50 cos0.5ar _sin0.5at 0.5
T T
0 0 0
cos0.5a t*sin0.5ar 7*cos0.50r

S O O O O o O

-1
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
sina cosa sinat cosart 1 0 0
sina cosa r?sinar 2 cosat 0 0 o0
. cosart sinot
—coso sina — a 1 0
T T
—sin0.5a¢ —co0s0.5a¢ —sin0.5at —cos0.5ar -1 0 0
—cos0.5a¢ sin0.5a¢ —t’cos0.5ar t’sin0.5ar 0 0 0
—co0s0.5a sin0.5a¢  —-tcos0.5ar 7sin0.5at 0 0 0
—sin0.5a —co0s0.5¢ —t’sin0.5ar —12cos0.5atr 0 0 0
0 0 0 0 0 0 1
c0os0.5a¢  —sin0.5a cos0.5at _sin0.5az -05a -1 1
T T
. . . kR’
—sin0.5a¢ —co0s0.5a —-t"sin0.5atr —7t"cos0.5art 0 0 ﬁ
(5.18)
Then the buckling control equation which is the same expression of Eq.(5.15)~Eq.(5.17) is
det(S,p ) =0 (5.19)

We spread out the equation above according to the last column of det(S;pan), and meanwhile a

non-dimensional parameter 7;, is assumed in Eq.(5.20).

k

LEETRE (520)

And this kind of non-dimensional parameters about the ratios of the elastic stiffnesses of springs (or braces) and

arches is called “spring ratio” in latter narratives.

Then we can obtain

1xdet(S2 ) + 1 det(SE ) + 7, det(S2 1) =0 (5.21)

Here det(S;]z)_ AHL> det(S;]z)_ Amp) and det(S;]z)_ An3) are cofactors of det(Szp-an), the sizes of them are all 12X12.

As these three cofactors only contain the unknown parameter 7 and constant parameter o. We know 7 is a
function of uniform compression ¢, so from Eq.(5.21), we can judge that the critical load g, is determined by

the spring ratio r;.
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2) Fixed ended in-plane

Now another case is considered, that is, the boundary conditions of the same circular arch in Fig.5-1(a) are fixed

ended, this kind of boundary conditions can be expressed as

@O v,=0,v,"=0,w, =0atp=0

@ vp=0,v,'=0,w, =0atp=ct

) V=V G = Qe v =ve v "= Ve W, = W =y, Q) = ~(Qge) A at = 0.5

From boundary condition (1) and boundary condition (2), we can obtain

0=B+D, +E,
0=4+C
T | (522)
0=-4-C—+F
T
0=4,sina + B, cosa + C, sinat + D, cosat + E,
0=4,cosa —B,sina + C,r cosar — D,Tsinar (523)

. cosat sinart
0=-4,cosa + B,sina —C, +D, +oE, +F,
T T

Boundary condition (3) can be written as same as the one in Eq.(5.17). Then according to the sequence of 41, By,

C], Dl, E], Fl,Az, Bz, Cz, Dz, Ez, Fz, Wo, a matrix SZD-AF is assumed as

0 1 0 1 1 0
1 T 0
1 0 1 0 0 -1
T
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Sipar =| sin0.5a  cos0.5a  sin0.5ar cos0.5ar 1 0
c0s0.5a —sin0.5a t°cos0.5ar —t’sin0.5ar 0 0
c0s0.5a¢ —sin0.5a tcos0.5ar —tsin0.5at 0 0
sin0.5a  cos0.5a t’sin0.5ar 17 cos0.50r 0 0
cos0.5a —sin0.5a cos0.5az _sin0.5az -0.5a -1
T T
0 0 0 0 0
|sin0.5¢  cos0.5a t'sin0.5ar t*cos0.5ar 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
sina cosa sinat cosart 1 0 0
coso —sino T COSOT —Tsinart 0 0 0
. cosat sinot
—cosa sino - a 1 0
T T
—sin0.5a¢ —co0s0.5a¢ —sin0.5at —cos0.5ar -1 0 0
—c0s0.5¢  sin0.5a —t’cos0.5ar  7°sin0.5ar 0 0 0
—co0s0.5a sin0.5a¢  —-tcos0.5ar 7sin0.5at 0 0 0
—sin0.500 —co0s0.5a —t’sin0.50r —1*cos0.501 0 0 o0
0 0 0 0 0 0 1
c0s0.500  —sin0.5a cos0.5at _sin0.5az -05a -1 1
T T
. 4 . 4 kR3
—sin0.5a¢ —co0s0.5a¢ -7"sin0.5at -7"cos0.5at 0 0 E
(5.24)
The buckling control equation is
det(S,p .r) =0 (5.25)
Spreading out the equation above according to the last column of det(S;p.ar), We can obtain
1x det(slz%)-AFl) +1x det(slzf)-AFz) +r det(slzf)-AFs) =0 (5.26)

Here det(S;]z)_ AF1) det(S;]z)_ Arp) @nd det(S;]z)_ Ar3) are cofactors of det(Sp.ar), the sizes of them are all 12x12.

As the same in case of hinged ended, the critical load g, of the arch is also determined by the spring ratio 7.
5.2.2 Symmetric buckling mode

1) Hinged ended in-plane

Now the symmetric arch-spring model shown in Fig.5-2 (a) is discussed. And in Fig.5-2(a), a spring with elastic
stiffness & is set up in vertical direction at the middle of the arch. Fig.5-2(b) shows equilibrium state of the forces
at the position of the spring in vertical direction, and this equilibrium state of forces can be seen as one of the

boundary conditions.
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Fig.5-2 Symmetric arch-spring model

When the boundary conditions of the arch are hinged end, all boundary conditions can be expressed as
1 v,=0,v,"=0,w =0at9p=0
2) vp=0,1,"=0,w,=0atp =0
B) v, =ve=V,,0,, =k + 0, v, =v " v, "= v " w, = w, Q) =(Oyr) " ate =0.5ct

The expressions of boundary condition (1) and (2) can be found in Eq.(5.15) and Eq.(5.16), so here only the

boundary condition (3) is need to be considered, and it can be written as follows:

vy = 4, sin0.5a + B, cos0.5a + C, sin0.5at + D, cos 0.5at + E|
vy = A,sin0.5a + B, cos0.5a + C, sin0.5at + D, cos0.5at + E,
—A4,¢080.5a + B, sin0.50. — C,z° cos 0.5at + Dyt sin 0.501 =
kR’

e 4, c0s0.50 + B, sin 0.50 — C,7° cos 0.5at + D,t’sin0.5at

A4, cos0.5a — B, sin0.5a + C;t cos0.5azr — D,rsin0.5ar =

A4, co0s0.50 — B, sin0.5¢ + C,r cos0.5a1 — D,r sin0.5ar

—4,5in0.50 — B, c0s 0.5 — C;z* sin0.5at — D,v” cos 0.5at = (527)
—4,sin0.50 — B, c0s0.5a — C,t*sin 0.5t — D,t° cos0.5at

cos0.5ar sin0.5at

—4,c0s0.5¢0 + B, sin0.5a — C, +D, +0.5aE +F =
T T

—4,c080.50 + B, sin0.5q —C, $08039T | p sin030% 50
T T

A,sin0.5a + B, c0s0.5a + C;t* sin0.5at + Dt cos 0.5 =

4,sin0.5a + B, c0s 0.5 + C,r*sin0.5at + D,t* cos0.5at

According to the sequence of Ay, By, Cy, Dy, Ey, F, Ay, By, Gy, D, By, F, v, a matrix S;p.sy is assumed as
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0 1 0 1
0 1 0 T’
1 0 1 0
T
0 0 0 0
0 0 0 0
0 0 0 0
S,psu =| sin0.5a¢  cos0.5a  sin0.5at cos0.5at
0 0 0 0
cos0.5a —sin0.5a t°cos0.5ar —t’sin0.5ar
c0s0.5a —sin0.5a 7co0s0.5ar —tsin0.5at
sin0.5a¢  cos0.5a t’sin0.5ar 77 cos0.50t
08050 —sin0.50 o 0.5at _sin0.5at
T T
| sin0.5  cos0.5a  t*sin0.5ar  t*cos0.5ar
0 0 0 0
0 0 0 0
0 0 0 0
sino cosa sinar cosar
sino cosa r’sinor r’cosar
—cosol sina _cosat sinat
T T
0 0 0 0
sin 0.5 c0s0.5a sin0.5at cos0.5at
—cos0.5a sin0.5a —t’cos0.5ar 7’sin0.5ar
—c0s0.5a sin0.5a0  —tcos0.5ar 7sin0.5ar
—sin0.5a —c0s0.5a —t’sin0.5ar —1°cos0.5ar
08050 sin0.5 _cos0.5at sin0.5at
T T
—sin0.5¢ —co0s0.5a —t*sin0.5ar —7*cos0.5ar
(5.28)

The buckling control equation is

det(S,p.54) =0

1
0
0
0
0
0
1
0
0
0
0
-0.5a
0
0 0
0 0
0 0
1 0
0 0
a 1
0 0
1 0
0 0
0 0
0 0
0.5a 1
0 0

|
—

S O O O O O o O

Spreading out equation above according to the last column of det(S;p.su), and we can obtain

65

(529)
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(-Dx det(slzi)-sm) +(=Dx det(slzi)-sm) +r det(slz?)-sm) =0 (5.30)

Here det(S;]z)_SHI), det(S;]z) i) and det(S;]z) si3) are cofactors of det(Sxpsu), the sizes of them are all 12X 12.

As same as the case in Section 5.2.1, the critical load g, of the arch is determined by the spring ratio 7.

2) Fixed ended in- plane

‘When the boundary conditions of the arch in Fig.5-2(a) are fixed ended, this kind of boundary conditions can be

expressed as

1 v,=0,v,"'=0,w,=0atp=0

(2) ve=0,v'=0,w,=0atp=0
B) Ve =ve=vy, Qo =R+ O, vy = v v "= v " Wy = (9)'=(0g) " atp =05

The expressions of boundary condition (1)~(3) can be found in Eq.(5.22), Eq.(5.27) and Eq.(5.23) respectively.

According to the sequence of A, By, Cy, Dy, E\, F, Ay, By, Cs, Dy, E5, F3, v, a matrix S;p.sr is assumed as

0 1 0 1 1 0

1 T 0
1 0 1 0 0 -l

T

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
S,psr =| sin0.5a  cos0.5a  sin0.5ar cos0.5at 1 0
0 0 0 0 0 0
c0s0.5a —sin0.5a t’cos0.5ar —r’sin0.5ar 0 0
c0s0.5a —sin0.5a¢ 7cos0.5ar —7sin0.5ar 0 0
sin0.5a  cos0.5a  t’sin0.5ar 7°cos0.501 0 0
c0s0.5a —sin0.5a COSOT'SOCT _sin OT'SOCT -0.5a -1
|sin0.5¢  cos0.5a t*sin0.5ar t'cos0.5ar 0 0
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0 0 0 0 0O 0 0
0 0 0 0 0O 0 0
0 0 0 0 0O 0 O
sina cosa sinat cosart 1 0 O
cosa —sina T CosaT —TsinQrt 0 0 0
. cosart sinot
—cosa sino - a 1 0
T T
0 0 0 0 0 0 -1
sin0.5a cos0.5a sin0.5at cos0.5at 1 0 -1
. 3 3 . kR3
—c0s0.5a sin0.5a —17cos0.5ar 77sin0.5ar 0 E
—co0s0.5a sin0.5a -t cos0.5ar Tsin0.5ar 0O 0 O
—sin0.500 —co0s0.5a —t’sin0.5ar -t2cos0.5ar 0 0 O
—c0s0.5a  sin0.5¢ _c0s0.5a1 sin0.5a7 05« 1 0
T T
—sin0.5a —co0s0.5a —t*sin0.5ar —7*cos0.5ar 0 0 0
(5.31)
The buckling control equation is
det(S,p¢) =0 (532)
Spreading out the equation above according to the last column of det(S;p.sr), we can obtain
(-)x det(Slzf)_SFl) +(=1)x det(Sﬁ)_sm) +7, det(Slzf)_m) =0 (5.33)

Here det(S;]z) SFL det(S;]z) srp)and det(S;]z) sr3) are cofactors of det(S;p.sp), the sizes of them are all 12X 12. As

same as the case in Section 5.2.1, the critical load ¢, of the arch is determined by the spring ratio 7.
5.2.3 Combination analysis of two springs

1) Hinged ended in-plane

In Section 5.2.1 and Section 5.2.2, the buckling control equations of arches are deduced when the buckling
modes of arches are anti-symmetric and symmetrical respectively. It is straightforward to deduce one buckling
equation to combine the cases of anti-symmetric and symmetrical modes together. The configuration of the arch
and constraint springs is shown in Fig.5-3(a). And Fig.5-3(b) shows the equilibrium state of forces at the

position of springs.
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Fig.5-3 Circular arch stiffened by two springs

Assuming the boundary conditions of the arch are hinged ended, we can obtain
1 v, =0,v"=0,w, =0atp=0
2 va=0,%"=0,w,=0atp =0
@ vi=ve=v O = O +IF2VO’VL'ZVR"VL "=t W = we =W, =)' :_(QUR)""EWO

ato =0.50

Expressions of boundary condition (1) and (2) are in Eq.(5.15) and Eq.(5.16). And boundary condition (3) is

v, = 4,5in0.5a + B, cos0.5a + C; sin0.5az + D, cos0.5ar + E|
v, = A4,sin0.5a + B, cos0.5a + C, sin0.5at + D, cos0.5a1 + E,
— A4 c0s0.5a + B, sin0.50 — C;t’ cos0.5at + D;r’ sin0.507 =
kR’
El
A c0s0.50 — B, sin0.5a + C\7 cos 0.5at — Dt sin 0.5at =

v, — 4,¢0s0.5a + B, sin 0.5a — C,7* cos 0.5a7 + D,7° sin 0.5t

4, c0s0.5a — B, sin 0.5¢ + C,7 cos 0.5t — D,rsin0.5ar

— A4 sin0.5a — B, cos0.5a — C;t* sin0.5at — D;v° cos0.5at =

—A4,sin0.50 — B, c0s0.5a — C,t* sin0.5at — D,t° cos0.5at (5:34)
Wy = —4,c0s0.50 + B,sin0.5a — C, S8039T , py SN0S0T 5o vk
T T

W, = —4, c0s0.5c + B, sin0.50 — C, $8030T | pp sn0-3aT oo p
T T

iI; (4,sin0.50 + B, cos 0.50 + C,z* sin0.5at + Dt cos0.5ar) =

kIWO -

v . .
2 (4,sin0.5c + B, c0s 0.5 + C,r* sin0.5at + D,7* cos0.507)
I
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According to the sequence of 4,, By, Cy, D\, E\, F, A, By, Cy, D5, Ey, F5, vy, Wy, a matrix S;p.py 1S assumed as

0
0

sin0.5¢
SZD—DH = 0

cos0.5a
cos0.5a

sin0.5¢

cos0.5a

0

| sin0.5¢

0

0

0
cosa
cosa

sino

0
cos0.5a

sin 0.5

sin0.5¢
—cos0.5a
0

—sin0.5a

—cos0.5a

1 0 1
1 0 7’
0 1 0
T
0 0 0
0 0 0
0 0 0
cos0.5a sin0.5at cos0.5art
0 0 0
—sin0.5a 7°cos0.5ar —1’sin0.50t
—sin0.5a¢ tcos0.5ar —7sin0.5ar
cos0.5a 7’sin0.5ar 1°cos0.5at
C6in05¢q < 0.5at _sin0.5at
T T
0 0 0
cos0.5a 7'sin0.5ar 1*cos0.5ar
0 0 0
0 0 0
0 0 0
sinat cosat 1
r’sinar 7’ cosar 0
_cosar sinot o
T T
0 0
sin0.5at cos0.5ar
—t’cos0.5ar  7’sin0.50r 0
—tcos0.5ar 7sin0.5ar 0
—?sin0.5ar  —t’cos0.5ar 0
0 0 0
cos0.5ar _sin0.5ar 05
T T
—*sin0.5ar  —t*cos0.5ar 0

The buckling control equation is

(535)

1 0
0 0
0 -1
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0
-0.5a -1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0o -1
0o -1
) EE
EI.
0 0
0 0
0 0
-1 0
0 0

sino
sino
—cosa
0
sin0.5¢
—cos0.5a
—cos0.5a

—sin0.5a
0

cos0.5a

—sin0.5a

S O O O O

=]

kR’
EI

X
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det(S,p.p) =0 (536)

2) Fixed ended in-plane

When the boundary conditions are fixed ended, this kind of boundary conditions can be expressed as

1 v,=0,v,"'=0,w,=0atp=0

@ ve=0,v%'=0,w,=0atp =0

B vi=v%=%,0,,=0x il v, =R v = W, =Wy ZWO’_(QUL)':_(QnR)'+]:1Wo
at® =0.5c

The expressions of boundary condition (1)~(3) can be found in Eq.(5.22), Eq.(5.23) and Eq.(5.34) respectively.

According to the sequence of A, By, Cy, Dy, E, F1, Ay, By, Cs, Dy, By, F3, vy, Wo, a matrix Syp.pr is assumed as

0 1 0 1 1 0 0
1 T 0 0
1 0 1 0 0 -1 0
T
0 0 0 0 0 0 sino
0 0 0 0 0 0 cosa
0 0 0 0 0 0 —cosa
S _ sin0.5a  co0s0.5a sin 0.5at cos0.5at 1 0 0
2-DF 0 0 0 0 0 0 sin0.5a
cos0.5 —sin0.5a t7°cos0.5ar —r’sin0.5ar 0 0 —co0s0.5x
cos0.5a¢ —sin0.5a¢ tcos0.5ar —tsin0.5ar 0 0 —cos0.5x
sin0.5a¢  cos0.5a  7°sin0.5at 7°cos0.5at 0 0 —sin0.5a
c0s0.5¢ —sin0.50 2 (‘)C.Sar _sin 01:50”- -0.5a -1 0
0 0 0 0 0 0  cos0.5a
|sin0.5¢  cos0.5a t'sin0.5ar t'cos0.5ar 0 0 —sin0.5a
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
cosa sinat cosat 1 0 0 0
—sino T COSOT —Tsinart 0 0 0 0
sing _cosat sinat o | 0 0
T T
0 0 0 0 0 -1
cos0.5a sin0.5at cos0.5at 1 0 -1 0
. s . kR’
sin0.5¢ —t°cos0.5ar 7°sin0.5ar 0 0 I 0
sin0.5a -1 cos0.5ar tsin0.5ar 0 0 0 0
—c0s0.5a —1’sin0.5ar -7 cos0.5ar 0 0 0 0
0 0 0 0 0 0
—in0.5 cos0.5at sin0.5art 050 1 0 |
T T
iy s kR’
—c0s0.5a —17sin0.5ar -1" cos0.5ar 0 4
EI, |
(537)
Then the buckling control equation is
det(SZD-DF) =0 (5.38)

5.2.4 Numerical examples

spring for anti-symmetric mode

Fig.5-4 Numerical model of the arch in 2D plane

Firstly, the stability problems of the arch with only spring will be analyzed, which is set up in horizontal

direction or vertical direction at the middle of the arch. Here two spring ratios 7, and r, are assumed as
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- (5.39)

"TELR

| ~

Here a numerical example in Fig.5-4 is used to prove theoretical equations above. The materials parameters in
this example are as same as the one stated in Chapter 4. The circular angel of the arch is z. The entire arch is
divided into 48 linear beam elements with the same length respectively. The external load is assumed as

uniform compression in-plane.

Table.5-1 shows the comparison of the results by Eq.(5.29) and Eq.(5.32), and by FE method. Symbols “1st
order theo.”, “2nd order theo.” and “3rd order theo.” mean the first order, the second order and the third order
critical loads of the arch without springs respectively, and these values are calculated in Section 4.3.1. Symbol
“FE” means the results calculated by FE method. And symbol “Theo.” means the results calculated by the

buckling control equations introduced in Section 5.2.1 or Section 5.2.2.

Firstly let’s observe the results of examples with hinged ended boundary conditions in Table.5-1(a). For
anti-symmetric mode, the spring set up in horizontal direction in Fig.5-1 can cause the critical load to increase
from the first order critical load to the second critical load. And for the spring set up in vertical direction in
Fig.5-2, it can cause the critical load to increase from the second order critical load to the third critical load (the
first order critical load is ignored here). In cases of anti-symmetric and symmetric modes, we obtain spring
ratios 1, and r, for the changing of buckling modes are about 23.67 and 57.25 respectively. Especially, in the

latter narratives, the spring ratio for the last time of changing of buckling modes is called limiting spring ratio.

Furthermore, let’s observe the results of examples with fixed ended boundary conditions in Table.5-1(b). And
the variation tendency of the critical loads in the examples of anti-symmetric mode and symmetric mode are
similar to the cases which have the hinged ended boundaries. In cases of anti-symmetric and symmetric modes,

limiting spring ratios 7, and r, are obtained as about 37.73 and 87.15 respectively.
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Table.5-1 Comparison of the results obtained by theory and FE

(a) Hinged ended in-plane
9.00 1 17.00 1
g2 EI,
R A= 4 [—R; 1
] 15.00 A
x  Theo. 13.00 A —— FE
= = lst order theo. x Theo.
....... 21nd order theo. der 1100 | = = 2nd order theo.
_________________________ 3rd order theo.
9.00 1
150 A
0.00 . . . . . . . 7.00 . . . .
000 500 10.00 1500 20.00 2500 30.00 35.00 0.00 20.00 40.00 60.00 80.00
r r
(1) Anti-symmetric mode (2) Symmetric mode
(b) Fixed ended in-plane
1, 2800 7
o
25.00
22.00
—ea— FE
x  Theo. q., 1900 | FE
— — st order theo. o x Theo.
....... 2nd order theo. 16.00 1 = = 2nd order theo.
......................... 3rd order theo.
W e e e o - e - - - - - - - - - - - - -
200 13.00
6.00 . . . . . s 10.00 . . . . .
0.00 10.00 20.00 30.00 40.00 50.00  60.00 000 2000 4000  60.00  80.00  100.00
r r
(3) Anti-symmetric mode (4) Symmetric mode

In another aspect, from Table.5-1 it is straightforward to observe that in these four configurations, the theoretical
results are almost in accordance with the ones obtained by FE method. The small differences exist because of
the different division numbers of beam elements in FE methods. And the higher division number of elements is,

the higher accuracy of FE results becomes.

Next the cases with double springs at the same time are analyzed. Firstly the example with hinged ended

boundary conditions is analyzed. We assume the spring ratio 7, is a constant equaling 51.12 (spring stiffness

k, =10000N / m ), from the configuration (1) in Table.5-1, we know when 7, is 51.12, we can ensure the first

order buckling mode is symmetric mode, and then increase another parameter 7, from 0 to observe the variation
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tendency of the first order critical load. The comparison of the results obtained by theoretical method in
Eq.(5.36) and by FE method is shown in Fig.5-5. The variation of these two results is identical to each other,
small differences between them attribute to the division number of elements in FE methods. In another aspect,

from Fig.5-5, when ry is 51.12, we can observe the limiting spring ratio r, is 45.24 in FE analysis.

[i{ : 17.00 1 Condition: 7=51.12

15.00)0 ecececcocscccsncsentcsarsosrsssnscsassssnssonsssanse

13.00 A —s— FE

qer x  Theo.
11.00 - = 2nd order theo.
------ 3rd order theo.
9.00 A
7.00

0.00 20.00 40.00 60.00 80.00
T
2

Fig.5-5 Comparison of the results with hinged ended boundaries

(2) =51.12; =0 (b) n=51.12; ,=45.24

Fig.5-6 First order buckling modes (=51.12)
Fig.5-6(a) and Fig.5-6(b) show the first order buckling modes when r; and r, are (r=51.12; r,=0) and
(m=51.12; r,=45.24) respectively. The first order buckling mode in Fig.5-6(a) is symmetric, while the one in
Fig.5-6(b) is anti-symmetric. Comparing the bucking modes in Table.4-2 in Chapter 4, we will find the
buckling modes do not always change from lower buckling modes to higher bucking modes, the setting of

springs will change the variation tendency oppositely.

Fig.5-7 shows the variation tendency of anti-symmetric modes. When 7, and r, are both large enough, the

corresponding first order buckling mode will coincide to the third order critical load when #; and 7, are 0.
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Critical load (r1, r2): n * %

1st anti—sym. (0, 0): 3.06

3rd anti—sym. (0, 0): 15.30

Ist anti—sym. (57.10, 5.11e4): 15.29
Ist anti—sym. (5.11e4, 5.11e4): 15.31

Initial shape L

\', -~

3rd anti—sym. (0, 0)

Ist anti—sym. (5.11e4, 5.11e4)
AN

1st anti—sym. (57.10, 5.11e4)

AN
1st anti—sym. (0, 0)

Fig.5-7 Variation of anti-symmetric modes with hinged ended boundaries

Next we discuss the case when the boundary conditions are fixed ended. Similar to the case with hinged ended
boundary conditions, if we keep the spring ratio 7 as 102.24 (spring stiffhess ];1 =20000N /m), from
configuration (3) in Table.5-1 we can ensure the first order buckling mode is symmetric mode, then we increase

another spring ratio 7, from 0 to get the first order critical load. The comparison of the results obtained by

theoretical method in Eq.(5.38) and by FE method is shown in Fig.5-8.

From Fig.5-8, firstly we can observe the variation tendency of the results obtained by Eq.(5.38) and by FE
method is almost identical to each other, the small differences also attributes to the division number of elements

in FE methods. Secondly, we assume 7 keeps 102.24, then the limiting spring ratios r, is about 40.18.

EI 25.00 1
)

22.00 Condition: 7,=102.24
19.00 A

qer — FE
16.00 A X Theo.

= = 2nd order theo.

13.00 ¥ 2> oo _____ e 3rdorder theo
10.00

0.00 10.00  20.00  30.00  40.00  50.00  60.00
.
2

Fig.5-8 Comparison of the results with fixed ended boundaries

Fig.5-9(a) and Fig.5-9(b) show the first order buckling modes of arches when 7y and r, are (+=102.24; ,=0)
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and (=102.24; ,=40.18) respectively. The variation tendency of buckling modes is similar to the case with

hinged ended boundary conditions, here we no longer describe reiteratively.

(a) r=102.24; =0 (b) 1=102.24; r,=40.18
Fig.5-9 First order buckling modes (=102.24)

Fig.5-10 gives the variation of anti-symmetric buckling modes. Especially, when 7y and r, are both large enough,
the corresponding first order buckling mode will close to the third order critical mode in the case when | and r,

are 0, but these two buckling modes are not identical to each other. Especially, if 7, and 7, are both very large

4 .. . EI
values, for example they both equals 5.11x 10", then by FE method, the first order critical load is 22.59 R; ,
. . . .. El . . o .
while the corresponding theoretical solution is22.13 2 this FE result is about 2.1% larger than theoretical
result.
Critical load (r1,12) :n * %
Ist anti—sym. (0, 0): 8.15
3rd anti-sym. (0, 0): 24.49
Ist anti—sym. (153.36, 5.11e4): 20.47
2nd anti—sym. (153.36, 5.11e4): 32.89
Ist anti—sym. (5.11e4, 5.11e4): 22.59 s
—
Initial shape o i - L e .
3rd anti—sym. (0, 0) pey - Y ~
2nd anti-sym. (153.36, 5.1 le4\\ — S
>,
O’ N \~
O’ -
Ist anti—sym. (153.36, 5.11e4)
\ 3
A N XS
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] \)
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{J \l
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Fig.5-10 Variation of anti-symmetric modes with fixed ended boundaries
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5.3 Out-of-plane

5.3.1 Buckling control equations

é ku ;
QgLT l QéR 5[_>

(b)

Fig.5-11 Arch-spring model out-of-plane

Fig.5-11(a) shows a circular arch stiffened with one spring k out-of-plane, and this spring is perpendicular to the
plane of the arch. Fig.5-11(b) shows the equilibrium state of forces at the position of the spring. Symbols “L”

and “R” in subscripts are used to distribute the displacements and forces at the left side and right side of the

spring in Fig.5-11(b), then QO L and QiR are shear forces at the left and right side of the spring respectively.
Firstly substituting Eq.(4.58) into Eq.(4.6) in Chapter 4, and using ds = Rdg, we can obtain

1 d*o
(

| du 0 1 R d0 IR, 0
1+Ado> 1+ R R(A+A) do’

(

""Rde’ R R ) (5.40)

Then the first derivative of M, in the second term of Eq.(4.8) is

dM dK | EI, 46 do
t=El =) (541)
do dp R(+A) do° do
In another aspect, using Eq.(4.45) and using identical equation ds = Rdp, we can obtain
_ 1 dMn M«:
0; = R do R (542)

As a preparation, in chapter 4 the general solution of 8 in Eq.(4.65) have been obtained. In addition, the first and
second derivatives of ¢ for the central angel ¢ can be found in Eq.(4.68) and Eq.(4.69) in Chapter 4. The third

derivative of 6is
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d’6
do’

=—Ak] cosk,p + Bk sink,@ + Ck; cosh k, + Dk; sinh ko (5.43)

And the expressions of 6, and 0 are
0, = 4 sink,p + B, coskp + C, sinh k,¢ + D, cosh k¢ (544)
0, = 4, sink,p + B, cosk,p + C, sinh k,¢ + D, cosh k¢ (545)

The boundary conditions of the arch in Fig.5-11(a) are assumed as hinged ended in-plane and fixed ended

out-of-plane, then the expressions of the boundary conditions can be considered as follows:
1 0,=0,u,=0,u,'=0atp=0
2 6,=0,u,=0,u,'=0atp=0
(B) u, =up =y =uy" O +hug=0:p,0 =0, 0,"=0,",0 "=0;"atp=0.5x

From boundary condition (1), we can obtain

0=B+D,
0:—£2‘+%‘+F1

kK (546)
0=(4k, +C1k2)—l(—i+%+El)

1 2
From boundary condition (2), we can obtain

0=4,sinak, + B, cosak, + C,sinhak, + D, coshak,

O:—ﬁsinak —icosak +&sinhak +&coshak +akFE, +F,
kz 1 kz 1 kz 2 kz 2 2 2
1 1 2 2

0=[4,k, cos(ak,) — B,k sin(ak,) + C,k, cosh(ak,) + D,k, sinh(ak, )] (5.47)

—A[—%cos(akl) + %sin(akl) + %cosh(akz) + %sinh(akz) +E,]

1 1 2 2

From boundary condition (3) we can obtain
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Uy, = i(Al sin0.5ak, + B, cos0.5ak, + C,sinh 0.5ak, + D, cosh0.5ak,)
I+A

_ IXRA (_%sin 0.5ak, —%cos 0.50k, + %sinh 0.50k, +%cosh0.50ck2 +0.50E, + F)
+ ; 1 E 2

Uy = —1 fl (4,sin0.5ak, + B, cos0.5ak, + C, sinh0.5ak, + D, cosh0.5¢k,)

_ llRA (—%Sin 0.5ak, —%cosO.Soﬁ’c1 +%sinh 0.5ak, +%cosh 0.5ak, +0.50F, + F,)
+ ; 1

2 2

—iCOSO.SakI +isin0.5(x/’c1 +Qcosh0.50¢k2 +£sinh0.50¢k2 +E =
kl kl kZ kZ

—ﬁcosO.Sockl +isin0.5ak1 + gcoshO.Sakz +&sinh0.50zk2 +E,
k k k k

1 1 2 2
EI
———"—(=Ak;] cos0.50k, + Bk sin0.5ak, + Ck; cosh0.5ak, + Dk, sinh0.50k, ) + ku, =
R*(1+21)
El 3 3 3 3
—————(=4k; cos0.5ak, + B,k; sin0.5ak, + C,k; cosh0.5ak, + D,k, sinh0.5ak, )
R (1+2)
A sin0.5ak, + B, cos0.5ak, + C,sinh 0.5ak, + D, cosh0.5ak, =
A,sin0.5ak, + B, cos0.5ak, + C, sinh0.5ak, + D, cosh0.5ak,
Ak, cos0.5ak, — Bk, sin0.50k, + C k, cosh0.5ak, + Dk, sinh 0.5ak, =
Ak, c0s0.5ak, — B,k sin0.5ak, + C,k, cosh0.5ak, + D,k, sinh 0.50k,
— Ak sin0.5ak, — B,k cos0.5ak, + C,k; sinh 0.5ak, + D,k; cosh0.5ak, =

— Ak} sin0.5ak, — Bk cos 0.5k, + C,k; sinh 0.5ak, + D,k; cosh0.5ak,

(548)
In order to simplify Eq.(5.48), here assuming symbols as

g, =sinak,

h; =cosak;

g, =sinhak,

h, =coshok,

m; =sin0.5ak, (549)
n; =cos0.5ak,

m, =sinh0.5ak,

n, =cosh0.5ak,

According to the sequence of A, By, Cy, Dy, E\, Fy, Ay, By, Cs, Dy, E5, F3, 1y, and a matrix Ssp._s is assumed as
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0 1 0 1 0
0 —Lz 0 iz 0
kl k2
k, +i 0 k, A 0 A
1 kZ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Sipsk = A A A
ISE m -i-k—lzm1 n +k—12nl m, —k—zzm2 1, —k—zzn2 -0.5a2
0 0 0 0 0
o m [N my |
k, k, k, k,
kn, —k'm, —k;n, —kym, 0
m, n, m, n, 0
kn, —k,m, k,n, k,m, 0
| —kim, —kin, kim, Kn, 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
& h & h, 0 0
kl kl k2 kZ
A A A A
ki +—h kg —-—g kh—-—h kg-—g - 0
1 kl 2 k2
0 0 0 0 0 0
A A A
m, + 2 m, n +k—12n1 m, Emz n, —k—zzn2 —0.5a1r -2
s ! . - 10
kl kl k2 k2
—kn, kim, kn, kym, 0 0
—m, -n, —m, -n, 0 0
—kn, kym, —k,n, —k,m,
kim, kin, —km, —kin,

(5.50)

The buckling control equation which is the same expressions of Eq.(5.46)~Eq.(5.48) is

S O O O

oS O O O

80
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det(S;p ) =0 .51
Spreading out the left side of equation above according to the last column of det(Ssp.sg), then we can obtain
_(1+4)

(1+2)

det(S? +
R et( )

3D-SF2

1+ )R’k
det(slsf)-sn) - % det(slﬁ)-sm) =0 (5.52)

Here det(S;]z) SFL) det(S;]z)_SFz) and det(S;]z) sr3) are cofactors of det(Ssp.sr), the sizes of them are all 12x12.

Then a spring ratio 7, is assumed as

k
r, = EI—/R3 (5.53)
Then Eq.(5.52) is identical to the following equation
det(sz)-sn) + det(sz)-sm) - det(sl;)-sm) =0 (5.54)

These three cofactors all contain parameters 4 in Eq.(4.66) and k&, in Eq.(4.67), and these two parameters also

refer to the critical load g, so the critical load g, for out-of-plane stability is determined by spring ratio 7;.

5.3.2 Numerical examples

The materials parameters and element division of the arch are as same as anterior numerical examples in this
chapter. As the cross section of the arch is hollow circular section, so /,=/,=/ is established. The central angle of

the arch is 7. The setting of the spring and external load are as same as the ones in Fig.5-11.

Firstly, let’s talk about the example of the arch with hinged ended boundary conditions. The results calculated
by theoretical method and by FE method is shown in Fig.5-12. Firstly we state the meanings of symbols in
Fig.5-12. Symbol “FE” is the result obtained by FE method. Symbol “Theo.(3D)” is the first order critical load
of the arch with stiffening spring out-of-plane, which is calculated by Eq.(5.51). Symbols “1st-Theo.(3D)”” and
“2nd-Theo.(3D)” are the first order and second order critical load of the arch without spring respectively, and
buckling modes happen out-of-plane (Referring to Table4-7, Table 4-8 in Chapter 4). Symbol “1st-Theo.(2D)”
is the first order critical load of the arch without spring, and buckling mode happens in-plane (Referring to

Table4-3.)

From Fig.5-12, in FE analysis, when the spring ratio r, is 0.84, the buckling mode changes from out-of-plane
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(refereeing to Table.4-7) to the one in-plane (referring to the mode in the first column in Table.4-2). Meanwhile

the limiting spring ratio 7, is obtained as 0.84.

—=] 600 1
R3O e HoveeNenrerrrnnnanaaarraeNYhrrrrnnaaannnrnnanaananenadX
X
5.00 A
X
4 X ——
4.00 FE
qcr ] X Theo.(3D)
3.00 = =[st-Theo.(3D)
------- 2nd-Theo.(3D)
2.00 A — « =Ist-Theo.(2D)
1.00 A
0.00

0.00 5.00 10.00  15.00  20.00 25.00  30.00

V),

Fig.5-12 Relationship of 7,,and g,,-with hinged ended boundaries in-plane

In another aspect, when the boundary conditions of the arch are both fixed ended in-plane and out-of-plane, the
relationship of 7, and g, is shown in Fig.5-13. In numerical analysis, when r, is 5.24, the buckling mode
changes from translation mode out-of-plane (referring to Table.4-7) to rotational buckling mode out-of-plane

(referring to Table.4-8). And limiting spring ratio 7, is 5.24 in this case.

In addition, because the “Ist-Theo.(2D)” is higher than ‘“2nd-Theo.(3D)”, then even we increase the stiffness of

spring, the buckling phenomenon firstly happens out-of-plane rather than in-plane.

P X |—— FE

X Theo.(3D)
= =Ist-Theo.(3D)
....... 2nd-Theo.(3D)
= . =1st-Theo.(2D)

0.00 5.00 10.00  15.00 20.00 25.00 30.00

Ty

Fig.5-13 Relationship of 7;, and g,-with fixed ended boundaries in-plane
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5.4 Stiffening patterns of arches

5.4.1 Single arch

a) Two-dimensional arch

In Section 2.3 of Chapter 2, the stiffening patterns of arches are classified. Then in this section, the stiffening
effects of typical stiffening patterns will be discussed. Firstly, Fig.5-14 shows three basic stiffening patterns of
single arch in-plane. In order to simplify the expressions in latter narrative, they are noted as Pattern A, Pattern B
and Pattern C respectively. The anterior two patterns are longitudinal direction type (internal reaction type), and
the latter one is radial direction type (external reaction type). And by the combination of the three basic
stiffening patterns in Fig.5-14, we can obtain other three hybrid stiffening patterns in Fig.5-15. And in Fig.5-14

and Fig.5-15, the continuous line symbolizes the arch, and the broken line symbolizes the braces.

(c) Pattern C

Fig.5-14 Three basic stiffening patterns in-plane

(a) Pattern AB (b) Pattern AC
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(c) Pattern BC

Fig.5-15 Three hybrid stiffening patterns in-plane
1) Hinged ended in-plane

Next we use FE method to discuss the stability of these stiffening patterns in Fig.5-14 and Fig.5-15. Firstly, we
discuss two-dimensional arch when boundary conditions are hinged ended. The materials parameters of the
arch are as same as the one shown in Table.4-1 in Chapter 4.The radius of the arch is 1m. The central angle of
the arch is 7. The entire arch is divided into 48 linear beam elements, and each beam element has the same
length. And E_A. is the elastic stiffness of the brace, and E.4. can be seen as a variable in numerical analysis.

Each brace is divided into one linear truss element. The external load is assumed as uniform compression.

Here “I” is used to symbolize the moment of inertia, as the cross section of the arch is hollow circular, and
I=I=I is established. The moments of inertia /; and /, here are around axis x and axis y respectively, the
configurations of axis x and axis y are shown in Fig.4-2 in Chapter 4. In Section 5.2 and Section 5.3, by
theoretical analysis in arch-spring models, it is known that when using straight constraint components to stiffen
the arch, no matter in-plane stability or out-of-plane stability of the arch, the spring ratio 7, in Eq.(5.20) or the
spring ratio 7, in Eq.(5.53) can determine the critical loads of the arch. Then the stability problems of arches

with different stiffening patterns are studied by FE methods, it is reasonable to use spring ratio which is ratio of

the elastic stiffnesses of the brace and the arch. So a spring ratio r,, is defined as r, = (Ejfc) / (% in FE

analysis.
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Fig.5-16 Relationship of 7, and first order critical load g, (hinged ended)

Fig.5-16(a) and Fig.5-16(b) show the relationship of spring ratio 7, and the first order critical load g,,- when the
boundary conditions of the arch are hinged ended. From Fig.5-16(a), we can see the first order critical load of
Pattern A almost keeps constant even though 7, increases. And comparing the critical loads of other patterns,
when r,, €[0, 51.12], the first order load of Pattern C is larger than the one in Pattern B; when r, €(51.12,

153.36], the first order load of Pattern C is smaller than the one in Pattern B.

In another aspect, comparing the images in Fig.5-16(a), we can see the first order critical loads of Pattern AC
and Patter BC are very close to each other. The first order critical loads of these two stiffening patterns are larger
than the one in Pattern A, Pattern B or Pattern C. And the first order critical load of AB is almost identical to
Pattern B, so it is not shown in Fig.5-16(a). In Fig.5-16(b), we can observe only when r,, is very large until the

first order critical load of Pattern C approach maximum value. The theoretic analysis of Pattern C is discussed in
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Appendix C.

86

In order to understand the variation tendency of first order critical load in Fig.5-16, here we take Pattern BC and

Pattern C as examples to observe the variation of their first order buckling modes with the increasing of spring

ratio 7,. Table.5-2 and Table.5-3 shows the variation of first order buckling modes of Pattern BC and Pattern C

respectively.

Table.5-2 Variation tendency of buckling modes of pattern BC

(a) r,=0

(b) r,=6.13

(©) ,=57.76

Table.5-3 Variation tendency of buckling modes of pattern C

(© r,=102237

(d) r,=6134.25
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And Table.5-4 shows the finial shapes of the first order buckling modes of all stiffening patterns.

Table.5-4 Final first order buckling modes

Pattern A Pattern B

Pattern AC Pattern BC Pattern AB

2) Fixed ended in-plane
El .25
I~
20 e o 7Y

W —=—Pattern A
15 —Pattern B
9er
Pattern C
10

——Pattern AC
5 —<Pattern BC
0 T T T T T T T )
0 80 160 240 320 - 400 480 560 640

p

Fig.5-17 Relationship of 7, and first order critical load g.. (fixed ended)

Now we consider the examples when the arches have fixed ended boundaries. Fig.5-17 shows the relationship
of spring ratio ,, and first order critical load with fixed ended boundaries. From Fig.5-17(a), when r, €[0,
204.47], we can observe that the critical load from largest one to smallest one are Pattern BC, Pattern AC,
Pattern C, Pattern B and Pattern A. In another aspect, in Fig.5-17(b), when r,, €[204.47, 613.42], Pattern B will
surpass Pattern C and Pattern AC when the value of 7;, is about 204.47. The variation tendency of the first order

critical load in Pattern AB is almost identical to the one in Pattern B, then the first order critical load of Pattern
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AB is omitted in Fig.5-17.

Similar to the case with hinged ended boundaries, here we take the Pattern BC as an example, and then we
observe the variation of first order buckling modes with the increasing of the spring ratio r,. Table.5-5 shows
the variations of the first order buckling modes of Pattern BC. And Table.5-6 shows the finial first order

buckling modes of all stiffening patterns when 7, is very large.

Table.5-5 Variation tendency of buckling modes of pattern BC

(¢) r,=30.67 (d) r,=51.12 () r,=613.42

Table.5-6 Final first order buckling modes

Pattern A Pattern B Pattern C

Pattern AC Pattern BC Pattern AB
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b) Three-dimensional single arch

Fig.5-18 shows two stiffening patterns of three-dimensional single arch stiffened by braces out-of-plane. And
Pattern D and Pattern E (external reaction types) are thought to be basic stiffening patterns of single arch

out-of-plane.

In Pattern D, two braces are located at the two sides of the arch, the distance of the positions of the boundaries
of braces is 2R. The connecting line of the positions of the boundaries of braces is perpendicular to the plane of

the arch.

In Pattern E, two braces located at each side of the arch symmetrically. The positions of braces connecting to the
arch are at 45° central angle. The combination of Pattern D and Pattern E is shown in Fig.5-19. The materials

parameters and division of elements in FE analysis are identical to the ones in numerical examples above.

(a) Pattern D (b) Pattern E

Fig.5-18 Two basic stiffening patterns out-of-plane

Pattern DE

Fig.5-19 Hybrid stiffening pattern out-of-plane
1) Hinged ended in-plane and fixed ended out-of-plane

Firstly, the boundary conditions of the arch are assumed as hinged ended in-plane and fixed ended out-of-plane,

that is, among the six DOF of node at each side of boundary, only moment around ¢& axis is free, other two
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rotational DOF and three translational DOF are all constraint.
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Fig.5-20 Relationship of 7, and first order critical load g.,

Fig.5-20 shows the relationship of spring ratio 7, and first order critical load of ¢,,. In Fig.5-20, the stiffening

effect of Pattern DE is always the best. When 7, is smaller than 2.79, Pattern D is better than Pattern E. When

Tp

is larger than 1.19, the first order critical load g, of Patten D almost keeps constant.

In order to understand the configurations in Fig.5-20, here Pattern DE is taken as an example, and we observe

the variation of first order buckling modes. Table.5-7 shows four different first order buckling modes of Pattern

DE with the increasing of spring ratio 7,,.

Table.5-7 Variation tendency of buckling modes of Pattern DE

© r,=21.67

(d) r,=102.24
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Table.5-8 shows the final first order buckling modes of all stiffening patterns, which are corresponding to the
first order critical loads in Fig.5-20. When 7, is very large, we can observe that the first order buckling modes of

Pattern D and Pattern DE happen in-plane, while the one of Pattern E happens out-of-plane.

Table.5-8 Final first order buckling modes

Pattern D Patterm E Pattern DE

2) Fixed ended in-plane and out-of-plane

Secondly, the boundary conditions of the arch are assumed as fixed ended both in-plane and out-of-plane, that is,

among six DOF of node at each side of boundary are constrained.

b EI ! 20
R 18 —
/'
16 /
14
q 12 // —e—Pattern D
cr 10
g / Pattern E
6 - - - +— —*Pattern DE
4 .
) |
0 40 80 120 160 200 240 280 320
7
P

Fig.5-21 Relationship of 7, and first order critical loads g

Fig.5-21 shows the relationship of the spring ratio 7, and the first order critical loads with fixed ended
boundary conditions. In Fig.5-21, the stiffening effect of Pattern DE is the best. When 7, is smaller than 35.78,

Pattern D is better than Pattern E, although for pattern D, its limiting spring ratio r,, is 7.41.

Similar to the case with hinged ended in-plane, here we also take Pattern DE as an example and we observe the

variation of first order buckling modes. Table.5-9 shows four different first order buckling modes of Pattern DE
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with the increasing of spring ratio 7,,.

Table.5-9 Variation tendency of buckling modes of Pattern DE

(©) r,=102.24

(d) r,=306.71

Table.5-10 shows the final first order buckling modes of all stiffening patterns. When 7, is very large, the first

P

order buckling modes of Pattern D, Pattern E and Pattern DE all happen out-of-plane.

Table.5-10 Final first order buckling modes

Pattern D

Patterm E Pattern DE

5.4.2 Cross arch

(a) Pattern F
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(c) Pattern H
Fig.5-22 Three basic stiffening patterns of cross arch

Now the stiffening effects of the braces in cross arch are discussed. In Fig.5-22, three basic stiffening patterns of
cross arch are defined: Pattern F, Pattern G and Pattern H. In another aspect, according to the category rule
introduced in Chapter 2, Pattern F and Pattern H are peripheral direction type, and Pattern G is longitudinal

direction type. All of these three patterns are internal reaction type.

In addition, by combination of Pattern F and Pattern H, and Pattern G and Pattern H, we also propose two

hybrid stiffening patterns as shown in Fig.5-23.

(a) Pattern FH (b) Pattern GH

Fig.5-23 Two hybrid stiffening patterns of cross arch

Firstly, let’s talk about the case with hinged ended boundary conditions, that is, among the six DOF of node at
each side, three translational DOF are constrained, and the other three rotational DOF are free. The materials
parameters, uniform compression, and the shape of the arch are as same as the ones in above numerical

analysis.

When there is no braces used to stiffen the cross arch, by FE method we can obtain the first to third order critical
EI El EI . . . ..

loads g, are1.16—-,3.03— and 4.67 —- respectively(The theoretical solution for the first order critical load
R R R

can refer to B.3 in Appendix B). The corresponding first order to third order buckling modes are shown in
Fig.5-24 to Fig.5-26.
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(a) Perspective drawing (b) Plane graph

Fig.5-24 First order buckling mode of cross arch

(a) Perspective drawing (b) Plane graph

Fig.5-25 Second order buckling mode of cross arch

(@) Perspective drawing (b) Plane graph
Fig.5-26 Third order buckling mode of cross arch
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Fig.5-27 Relationship of 7, and first order critical load g, (hinged ended boundaries)

Fig.5-27 shows the relationship of spring ratio #,, and first order critical load g, when the boundary conditions
of cross arch are hinged ended. From Fig.5-27, we can obtain that the first order critical load of Pattern F keeps
constant even though spring ratio 7, increases. And Pattern G has the same critical load as Pattern F, here we

omit Pattern G in Fig.5-27.

By comparing the first order critical loads of Pattern H, Pattern FH and Pattern GH, we can obtain when 7, is
below 30.57, these three stiffening patterns have almost same first order critical load. When 7,, is large than
30.57, the first order critical load of Pattern FH is largest, the value of Pattern GH is in the middle level, and
value of Pattern H is the smallest. The maximum first order critical loads of these three patterns are almost

identical.

In order to understand the configurations in Fig.5-27, here Pattern H is taken as an example, and the variation of
first order buckling modes is aimed to be observed. Table.5-11 shows four different first order buckling modes

of Pattern DE with the increasing of spring ratio 7,,.
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Table.5-11 Variation tendency of buckling modes of Pattern H

(@) r,=0

(b) r,=35.78

(©) r,=76.68

(d) r,=250.48

Table.5-12 shows the final first order buckling modes of call stiffening patterns. And Pattern F and Pattern G

have the same buckling modes. The buckling modes of Pattern H, Pattern FH and Pattern GH are almost

identical.

Table.5-12 Final first order buckling modes

(c) Pattern H

(d) Pattern FH

(e) Pattern GH

Next let’s talk about the cases when the arch has hinged ended boundary conditions, that is, among the six DOF

of node at each boundary, the three translational DOF and three rotational DOF are all constrained. The

materials parameters, uniform compression, and the shape of the arch are as same as the ones in above

numerical analysis. When there is no braces, by FE method we can obtain the first to third order critical loads g,

are 5.83£§ ,8.86E—€ and13.15— respectively. The corresponding buckling modes are shown in Fig.5-28 to
R R

Fig 5-30.

EI
R
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(a) Perspective drawing (b) Plane graph

Fig.5-28 First order buckling mode of cross arch

(@) Perspective drawing (b) Plane graph

Fig.5-29 Second order buckling mode of cross arch

(a) Perspective drawing (b) Plane graph
Fig.5-30 Third order buckling mode of cross arch
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Fig.5-31 Relationship of 7, and the first order critical load ., ( fixed ended boundaries)

Fig5-31 shows the relationship of spring ratio 7, and first order critical load ¢, when the boundaries
conditions of cross arch are fixed ended. The first order critical load of Pattern F keeps constant even though
spring ratio 7, increases. And the first critical load of Pattern G is identical to the one of Pattern F, here its

P

configuration is omitted.

And the first order critical loads of Pattern FH, Pattern GH are as same as the value of Pattern H, here their
configurations are also omitted in Fig.5-31. And Pattern F and Pattern G have the same buckling modes. The

buckling modes of Pattern H, Pattern FH and Pattern GH are identical.

Similar to the case with hinged ended boundaries, here we take the Pattern H as an example, and then we
observe the variation of first order buckling modes with the increasing of spring ratio 7,,. Table.5-13 shows
three different first order buckling modes of Pattern H. And Table.5-14 shows the finial first order buckling

modes of all stiffening patterns when r,, is very large.

Table.5-13 Variation tendency of buckling modes of pattern H

(b) ,=76.68 (c) r,=408.95
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(c) Pattem H

(d) Pattern FH

(e) Pattern GH

5.4.3 Hoop-ring

Fig.5-32 Hoop-ring stiffened with spokes

As an application, here the buckling behavior of hoop-ring stiffened by spokes is analyzed. Fig.5-32 shows one

example of this kind of hoop-ring, 8 spokes are set up at each side of hoop-ring respectively, the central angel

between adjacent spokes along circumferential direction is 45°. Uniform compression ¢ is applied in the plane

of hoop-ring.
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Fig.5-33 Buckling problem of ring in-plane

Firstly, let’s deduce the critical load of ring in-plane. The configuration of ring is shown in Fig.5-33. The

boundary conditions of symmetric buckling mode can be expressed as
D w=0,v'=0 ,0,=0atp =0

) w=0,v'=O,Q,7 =0atp =7

From the Eq.(4.27), Eq.(4.28) and Eq.(4.32) in Chapter 4, we can find the expressions of displacements v , w,

and shear force O,. From the boundary conditions, we can obtain

0:—A—£+F

T
0=4+Cr
0=—4-Ct’

. (5.55)
0=4-Cc  pT LB+ F
T T

0=—A+ Crcosnt — Drsinnt
0=A—Crt’cosnt + Dt’sinzt

In Eq.(5.55), from the second term and third term, we can obtain A=C=0. Then from the first term we know
F=0. Then the remaining parameters are D and E. If D is 0, then from the forth term, we can obtain £<0. As we
know when buckling happens, 4~F cannot be 0 at the same time, then we know D cannot be 0. As a result,

from the fifth or sixth term, we can obtain
sinzt =0 (5.56)

As tis larger than 1, the minimum positive integer for z is 2, then we know the critical load g, is
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3EI,
qcr = R 3

(5.57)

Eq.(5.57) is identical to the one obtained by Timoshenko **.

And if there is no spokes in hoop-ring, for the stability of hoop-ring out-of-plane, we can find the first order

critical load in the first term of Eq.(4.76) in Chapter 4

El 9

y

R® 4+EI [(GJ)

4. (5.58)

Next a numerical example is used to calculate the first order critical loads and first order buckling modes for
in-plane stability and out-of-plane stability. The radius of hoop-ring is 1m. The materials parameters of the
hoop-ring are as same as the ones in numerical examples above. The entire hoop-ring is divided into 96 linear

beam elements, and each element has the same length.

@) (b)

Fig. 5-34 First order buckling modes in-plane and out-of-plane

EI,
Fig.5-34(a) shows the first order buckling mode in-plane, and the corresponding critical load is 3.0017 I

which is almost identical to the one in Eq.(5.57). Fig.5-34(b) shows the first order buckling mode out-of-plane,

EL
the corresponding critical load g, is 1.6984 R—3y. In another aspect, from Eq.(5.58), we can obtain the theoretical
.. . El y
critical load g, is 1.6981 ek

Next the buckling of hoop-ring with 8 spokes in Fig.5-32 is discussed. From Eq.(C-6) in Appendix C, an
equivalent elastic stiffness of spokes which mainly contributes the stiffening effect out-of-plane is given, and the

value of this elastic stiffhess in Fig.5-32 can be calculated as
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_2(0.5h)° E. A,
(0.25h° + R*) \J0.251> + R?

(5.59)

E

Here E¢ is the Young’s modulus of the spoke, A is the area of cross section. And a parameter b is assumed as

b=h/R, then kj transforms into

050" E.A.
F0250* + 1) R

(5.60)

Assuming b=1, then we take EcAcas a variable to observe variation of the first order critical loads. In theoretical

analysis, when of hoop-ring wave is 8, from the third term of Eq.(4.76), the first order critical load is

EI EI
g == 130058° Y

R 16420 R (5.61)

GJ,

A spring ratio 7, is assumed as
— kE

"SRR (5.62)

y

Fig.5-35 shows relationship of parameter #, and the critical load g.. And Fig.5-36 shows the variation of

buckling modes.

14

12 -«

10 /.
qC}" 8

y
,
[

0 T T T T T 1
0 20 40 60 80 100 120

Fig.5-35 Relationship of parameter #, and the first order critical load g,
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()r,~0 (b) 1,=25.60 (©) r,=67.12

Fig.5-36 Variation tendency of the first order buckling modes

5.5 Summaries

In this chapter, straight braces are used to stiffen the circular arch structures. And the stability problems of arches
stiffened by braces are discussed. In addition, stability problems of various stiffening patterns of the single arch
and cross arch, as well as hoop-rings stiffened by spokes are analyzed. The main achievements are stated as

follows:

1) Arch-spring models for in-plane stability and out-of-plane stability of arches are proposed. By using general
solutions of displacements obtained in Chapter 4, buckling control equations are able to be obtained. FE

methods are used to verify these buckling control equations.

2) Spring ratio r, of arch-spring model in-plane and spring ratio #, of arch-spring model out-of-plane are
available through the analysis of respective buckling control equations, and study work also shows that when

the spring ratios are larger than limiting spring ratios, the critical loads of the arches cannot increase any more.

3) The variations of critical loads and buckling modes of various stiffening patterns of single arch and cross arch
are analyzed, and study work shows by restraining their buckling modes efficiently can greatly increase the
critical loads, and limiting spring ratios are also proved to be existing. The stiffening effect of spokes in

hoop-ring structure is very similar to the stiffening effect of braces.
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Chapter 6 Stiffening Effect of Flexible Components

6.1. Introduction

In Chapter 5, the stiffening effects of straight components are discussed. It is known that the elastic stiffness of
the straight components play an important role in stiffening effect [ISLO7L26L IS4 T6S] 1y g Chapter, stiffening
effect of flexible components such as curved cables will be discussed. The obvious difference between straight
components and flexible components is that the elastic stiffness of the latter one cannot attribute to the stiffening

effect because they are in mechanistic state when buckling of main structures happens.

gy iy

(a) Component stiffening method (b) External force stiffening method
Fig.6-1 Two kinds of stiffening methods

In order to distinguish the traditional stiffening methods by using straight component and the new method stated
in this chapter, here we nominate these two methods respectively. The former one is called component

stiffening method (Fig.6-1(a)), and the latter one called external force stiffening method (Fig.6-1(b)).

Table.6-1 Comparison of two stiffening methods

Stiffening methods Transfer order of loads Shape of components
Components stiffening method Main Loads—® Arch— brace Straight line
External force stiffening method Part of Loads—® brace—> Arch Curved line

Next the characteristics of these two stiffening method shown in Table.6-1 will be discussed. In the case of
component stiffening method, external forces are only applied to the arch, and the elastic stiffnesses of braces
are directly used to stiffen the arch. And the shapes of braces are straight all the time. In another aspect, in the
case of external force stiffening method, parts of external forces are directly applied to the cables, and the shapes
of cables become curved; and other external forces are applied to the arch. In this chapter, the stiffening

principle of flexible components will be discussed.
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6.2 Stiffening effects of elastic stiffness and interal force

Before we discuss the flexible components’ stiffening effect, we use a simple example to explain the effect of
elastic stiffness and internal force in stiffening a column structure, as shown in Fig.6-2. To study the column

structures can help us understand the case of arch structures.

h
d F |FHT T
KB E.A -+
A y cable ky
/1.
l, column
Ly
Eul, | Epd, EJ, | Ed,
X X
- 7777 I I i 7777 ]_Jj
(@ (b)

Fig.6-2 Column stiffened by straight cables

Symbols used in Fig.6-2(a) are as follows: for cables, E, is the Young’s modulus, A, is the area of cross
section, 7'is the internal force just prior to buckling, /. is the member length. For column, £, is the Young’s
modulus, 4, is the area of cross section, 7, is moment of inertia, /, is the member length. A concentrated
load F' is applied at the top of column. We assume E,4;, > E A, so that the component of elastic stiffnesses

of cables in x direction can be ignored.
The model in Fig.6-2(a) is equivalent to a simple one in Fig.6-2(b), and £, in Fig.6-2(b) is the entire stiffhess
aroused from cables, the calculation procedure is introduced in Appendix C. The value of %, is

_2’E A 20T
R - A LA

c

6.1)

k, in the equation above can be divided into two parts: one is caused by the elastic stiffness £.4., noting ;

and another one is caused by internal force 7, noting k7. Then &z and &r are given as follows:
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b 20 EA,
E lf lc
2T

TR

62)

The sign of k7 relates to internal force 7, and there is

kp >0, if Tistension.
kp <0, if T'is compression. (63)
kp =0, if TisO.

In another aspect, the proportion of first term and second term in Eq. (6.2) is

2° T
ky 1L _(h
ky 2d* E A,

2o

T
3)2 7 (64)

c

Usually, E.4.>>T is pre-established, so that the stiffness k7 originating from 7 can be ignored, the column

is mainly stiffened by elastic stiffness k5 of cables.

column

EI (EI,)

jd
- T 7

Fig.6-3 Column stiffened by curved cables

In contrast to the situation above, another situation is considered, that is, the stiffhess k7 originating from
internal force of cables contributes to stiffening the column, and stiffness 4z originating from the elastic
stiffnesses of cables can be ignored. Fig.6-3 shows such an alternative stiffening method: a column is stiffened
by curved cables, and concentrated loads /V are directly applied to curved cables and another concentrated load
F is applied at the top of the column. When buckling of the column happens, curved cables will experience

mechanistic movements, and elastic stiffnesses of cables cannot provide stiffening effect to the column.



Chapter 6 Stiffening Effect of Flexible Components 107

6.3 Derivation of stiffhess of pseudo-spring

In this section, the stiffening effect of cables shown in Fig.6-3 is discussed. As mechanistic movements of
curved cables happen after buckling of the column, it is necessary to consider the equilibrium shapes of cables

and the column. Stability problems of the column in-plane and out-of-plane will be analyzed respectively.

6.3.1 In-plane

Fig.6-4 Mechanistic movements of cables in-plane

Firstly, the mechanistic movements of curved cables in-plane in 2D space are discussed. Axes X, y and z in
the local Cartesian coordinate system xyz in Fig.6-4 are parallel to axes x, y and z in global Cartesian
coordinate system xyz in Fig.6-3 respectively. And symbols I and II in Fig.64 represent the equilibrium

states before and after movements.

In Fig.64, point C is assumed to experience a movement with a displacement v along axis y in Xy plancto a
new position C'. Then point B also moves to a new position B'. Here the initial coordinates of A is (0, 0, 0), C is

0, ¥, 0),and B'is (X, ¥, 0). Then it is straightforward to determine the coordinate of C'is (0, y+v, 0).
The concentrated load N is assumed to be constant, the internal forces in cables during the shift from state [
to state Il will change to arrive at a new equilibrium state. As v is very small, if the lengths of cables are
supposed to be almost identical in state I and I, then we can obtain

65)

{Y%- +V5 =R
X+ Vp =V V)z = Rz2

So that the coordinate of B' can be calculated as
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Xp = (—\/RIZ —73,2)

_ R-R+@.+v)
S T |

(6.6)

In the equilibrium state II , from the relationship of reaction forces at point C' and equilibrium of moment at
point A, we can obtain

FC,; _ —XB'

Foy Yet+v=Jp 6.7)
Ny = o (5 +)

The solutions of Eq.(6.7) is
FC'}
FCW - —Xp
Ye+V=Vp 6.8)
FC'} :_]\]A
Vet+v

Substituting Eq.(6.6) into Eq.(6.8), we can obtain

NG +v)' = (R - R))")

F..=
2T AV AT AV R (B =B+ (e +v)) o
N R -R 69)
For=—(=—735+D
2 (T +v)

Based on the symmetry of curved cables shown in Fig.6-3, the resultant force F), at point C'in y direction
would be calculated as

NG +v)' = (R -R))’)
2T +V) (AR (T +v) = (R =R +(Fe +v)')')

F; = FC'y (- FC'y (-v)=

N(G.—v)'-(R'-R))
— 2 2 — 2 2 2, — 2\2 (6.10)
2T V) (AR T —v) — (R~ R + (T —v)))

‘When the value of v approaches to 0, the limiting ratio of , and v is

hm_} — ( 2?6‘ + 2(Rl2 - R22)2
Sy AR (R R AV VAR (R - RV
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L (RP =R}’ ~F)QR! +2R; ~277))
V(AR}V~ (R = R + 7))

)N 6.11)

Here assuming a stiffness £, as

k _( 2?6‘ + 2(R12_R22)2
v ) ) _ — —
JARTL (R -R 4727 FaJ4R VL~ (R — R+ L)

(R — RS’ ~FQR: +2R ~232)
T ARTE — (R - R + 7)) (6.12)

From Eq.(6.12), it is known that £, contains an independent variable N without the elastic stiffness £.4. of

curved cables . For very small value of v, there is an approximate equation as follows:

F ~k,v (6.13)

xy

Then k,, can be seen as a relationship between force and displacement, which is similar to the elastic stiffness
of a spring, so here £, is called “stiffness of pseudo-spring”. In other aspect, when the value of v is very small,

the resultant force F' in x direction is

R*—-R?
F,=Fo.(")+ Foy (V) = N(1+—=—2) (6.14)
C

Especially, when R; = R, = [., we can obtain

xy (4[3 _yé)(3/2) .

F ~N (6.16)

X
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6.3.2 Out-of-plane

Fig.6-5 Mechanistic movements of curved cables out-of-plane

Fig.6-5 shows mechanistic movements of cables out-of-plane in 3D space. And symbols 1 and III represent
the equilibrium states before and after movements. The coordinates of point A and point C are as same as the
ones in Section 6.3.1. In local Cartesian coordinate system xyz, the point C moves with a displacement v along
axis z in Xz plane to a new position C', and the coordinate of C' is (0, ¥, v). Similar to the discussion in
Section 6.3.1, the lengths of cables are supposed to be constant after movements. Assuming the coordinate of B'

18Xz, Yy, Zp). From the geometric relationship after movement, we can obtain

— =2 = 2
Xp+ Ve +Zp =R,

X+ (Vp —Te) +(Ep V) =R (6.17)
L
Ve Ve

So that the coordinate of B' can be obtained as

Xp =—R} =72 — 73
3 (R -R)-(Fe+v)
B 2
S, (6.18)
Ye
_ v o_
Zp=—"Vp
Ye

From the relationship of reaction force at point C' and equilibrium of moment at point A , we can obtain
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Fo. %z
Foy _Ye=T 6.19)
F.. —Xz

N\/yB +Z% = \/( +v)

Substituting Eq.(6.18) into Eq.(6.19), we can obtain the reaction forces at point C'

=2 =2 2
po oy ATt (R R () 620
Jor v 27 +v)
Ve—Tp NI (R, —R)' - (7 +v'))
Foy === Fo, = — Ri - (6.21)
X 2T A VWAR P +7) — (R =R = (7 4V ) (e +7)
v—2Zp WN((R; —R}) = (7% +v)?)
Foz=———Fon = ————— —— (622
s AT VIR T V1) — (R =R = (72 + 1) (7 +V)
Considering the symmetry in Fig.6-3, then resultant force F, at point C' in z direction is
F.=2F,.(v) (623)
) N(R-RY -7t
== =2 (624)
v yc\/4R1 Ve— (R -R yc

Similar to the notation of stiffness of pseudo-spring £, in-plane in 2D space, here we assume a stiffness of

pseudo-spring k., out-of-plane in 3D space as

_ -N(RI-R-F1)
VAR VL — (R - R — L)’

(625)

From the expression of k., in Eq.(6.25), we know k. only contains an independent variable N without the

elastic stiffness £.4, of cables. For very small value of v, we can again use an approximate expression

F. ~k_v (6.26)

In another aspect, for very small value of v, the resultant force F, atpoint C' in direction x is

F =2F.. (W~ N1+ = R-R 627)

C
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And resultant force £, atpoint C' in direction y is
F,=F.,(v)—F;(v)=0 (6.28)
Especially, when R;=R,=I., Eq.(6.25) and Eq.(6.27) become

N

ky=———%m 6.29
@ =5 ©2

F.xN (6.30)

6.4 Judging the buckling plane

Now comparing the two stiffnesses of pseudo-springs &, in-plane and k.. out-of-plane:
(D If N = 0, then it is self-evident that k., = k., = 0.

(@ If N = 0, then the difference between k,, and k. is

bk TR RV SV — R 1R — R+ 16 RAR] — R2Y
v VARV~ (R~ R + 7))

) (631)

It is necessary to judge the plus or minus sign of the right side of Eq.(6.31). Firstly, let’s consider formula

(4R32 — (R} — B3 +32)") in the denominator of Eq.(6.31).

Fig.6-6 Initial geometric shape of curved cables

Fig.6-6 shows the initial geometric shape of curved cables in state [ in Fig.6-4(or Fig.6-5). Based on this

geometric shape, we can obtain
R -a’=R; -V’ (632)

Substituting equation b=y — a into equation above, we can obtain
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R —R +3%=2ay, (6.33)
Then substituting Eq.(6.33) into (4R77% — (R} — R3 + yzc)z), then we can obtain
ARTVe—(RF =Ry +3¢) =43e(Rf —a*) >0 (634)
Secondly, the numerator in Eq.(6.31) is taken into consideration, assuming the numerator as a function m.
m=(V¢=3(R —R)') +8Ve (R — B ~12(R] ~R)' + 16V R (R - R))’ (6.35)

In order to judge the plus-minus sign of m, here two parameters s and g are noted as follows.

s=R-R
L, (6.36)
g=Ye
As Ri —R3 +7%> 0 and Rf — R3 — 2 < 0,so that |s| < g.
Then substituting Eq.(6.36) into Eq.(6.35) and simplifying the function m, we can obtain
m=(g’ —3s>) +4s’(2g —3s)+16gs’R. (637)

In the equation above, the parameter s can be seen as a constant number, and the parameter g can be seen as
an independent variable, meanwhile the function m can be seen as a dependent variable. The first and second

derivatives of the function m are

dm

—=8s"+(16R, —12g)s* +4g” (638)
dg
dzm 2 2 2 2
—=12g" -12s"=12(g" —57)>0 (6.39)
dg
d*m m . . . . dm . ..
As — >0, — isamonotone increasing function, when g = s, — arrives minimum.
dg dg dg
M| g+ (16R, —125)s’ + 45’ =16R, >0
E eos =887 +(16R, —125)s” +4s° =16R, > (6.40)

Because d_>0’ so that the function m is monotone increasing too. When g = s, the function m arrives its
g



Chapter 6 Stiffening Effect of Flexible Components 114

m|,., =165'R; >0 641)

It is clear that m > 0, since the numerator and the denominator in Eq.(6.31) are demonstrated to be positive,
kyy, > ky, is therefore affirmed. If the cross section of the column is symmetric closed cross section, and
moments of inertia around axis z and axis y have a relationship that 7,=/,. Then buckling phenomenon of
the 3D-column in Fig.6-3 may happen out-of-plane rather than in-plane as if the column has no preexisting

imperfection.
6.5 One pseudo-spring system

lF +Fx XT |4

=+ Wﬁ ks (k)

<]

! M
EI (EL) é/
x|
X, 4 E
A 4 'L I—’
- 7777 y y
(a) (b)

Fig.6-7 One pseudo-spring system

Firstly, in-plane stability of the column in Fig.6-3 in 2D space is considered. Fig.6-7(a) is a simplification of the
model in Fig.6-3. In Fig.6-7(b), the effects of shearing deformation and shortening of beam axis are ignored,

according to Eq.(C-19) in Appendix C, the equilibrium differential equation can be written as

F+F. (I-x) (F+F)v
n+ X — _F + X X
4 El " EL El 642)
Assuming a parameter 4 as
o F+F,
= EIL 6.43)

Then substituting Eq.(6.13) and Eq.(6.43) into Eq.(6.42), we can obtain
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kyv

" 2., X) 2
y'+ 2 y——EIZ (I=x)+A% (6.44)
The general solution of Eq.(6.44) is
. kxyv
y=Acos),x+Bs1n),x—lel (-x)+v (6.45)

The boundary conditions in Fig.6-7(b) are

1 y=0,y=0atx=0

2 y=vatx=I

Utilizing the above boundary conditions, we can obtain

k.l k., .
[(1221 —l)cosil—}L}E{I sinAl/lv=0 (6:46)

z z

As the value of v is an arbitrary small displacement, then the solution of Eq.(6.46) is

k1 k, .
(lzél —1)cosil—msmll:0 (647)

z

Eq.(6.47) is the buckling control equation of in-plane stability of the column in 2D space. The relationship of

the critical load F,. and the concentrated load /V is need to be examined.
(D If N = 0, then it is self-evident that k,,, = 0. The buckling control equation in Eq.(6.47) becomes
cosAl=0 (6.48)

The minimum positive value of Al satisfying Eq.(6.48) is 0.5z, the corresponding critical load F,., is

_ m’El
"= anE (6:49)

ky
(2 If N#0, then k,, # 0. We assume two notations u = i/, and r=E1j13' Here u and r are

non-dimensional parameters. Then the buckling control equation in Eq.(6.47) thus becomes

tanu = u — 2 (6.50)
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As Eq.(6.50) is a transcendental equation, numerical method can be used for the value of u.

Assuming a pseudo-critical load P, = u? %, so that from Eq.(6.43) the critical load F',, can be calculated as

EI R’ —R}
2 Zzz _N(l_{_(l?—zz)) (6.51)

C

F‘L‘Y = PL‘F _FX ~ u

In 3D-column analysis, for axial compression column with biaxial symmetric cross section, buckling modes of
the column may be flexural buckling or torsional buckling. For example, flexural buckling typically occurs
when the column has H-type cross section; torsional buckling is more common when the column has a
crisscross cross section or X-type cross section. If only the flexural buckling of the column is considered, then

k.. is substituted for £,

> and El, is substituted for E7, the critical load F, for out-of-plane stability can be

obtained.

6.6 Numerical example

Here a numerical example in Fig.6-8 is used to show the variation tendency of the critical load F,,. and

pseudo-critical load P, with the increasing of the concentrated load N.

0.337m

- 77T T v
Fig.6-8 Column featuring with curved cables

Table.6-2 Materials parameters of numerical example

Young's modulus [GPa] | Poisson’ratio | Internal diameter [mm] | External diameter [mm]

Cable 205 - - 0.7

Column 2.82 0.38 4 6
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The cross sections of the column and cables are hollow cross section and solid circular cross section
respectively. The materials parameters of the column and cables are shown in Table.6-2. In the static analysis by
using nonlinear FE method, the entire column is divided into 30 geometric nonlinear beam elements introduced
in Section 3.4.1, and each beam element has the same length. And one cable is divided into one geometric
nonlinear truss element only, which is introduced in Section.3.4.2. The column is supposed to have no

preexisting imperfection in FE analysis.

a) In-plane stability
1) Theoretical solution

In Section 6.3, the solutions of stiffnesses of pseudo-springs ,, in Eq. (6.12) and k.. in Eq.(6.25) are given. And
then in Section 6.5, a procedure to get the theoretical solution of the critical load F,, in Eq.(6.51) is also
discussed. As a preparation, parameters in Fig.6-8 (definitions of y ., /. and /refer to Section 6.3) are obtained

as

Vo =2c0s45° =2,

2
=5 () (6.52)
[=0.337(m)

Firstly, let’s consider the model in Fig6-8 in 2D space. Because the lengths of AB and BC are identical, then

from Eq.(6.15), the theoretical stiffness of pseudo-spring £,,, is

4NI? N
v (413 _?zc)(m) = \/51_ =10N (6.53)

c

The non-dimensional parameter 7 can be obtained as

ek 2N /L
EI./I’ EI /I

(6.54)

In theoretical analysis, by substituting Eq.(6.54) into Eq.(6.50), u# in Eq.(6.50) corresponding to different

concentrated loads N can be obtained. Then substituting u into Eq.(6.51), the critical load F,. can be obtained.
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2) FE approach

For static analysis based on nonlinear FE method, when the critical load F_,- at the top of the column is aimed
to be obtained, which corresponds to defined concentrated load N on the cables, two steps are used to get the
critical load F, during the FE analysis process: Step 1: Keeping F as ON, then we increase N from 0 to a
predetermined value and the system of column and cables arrives an equilibrium state; Step 2: Keeping V to the
new determined value, then we increase F' from ON to a new value where minimum positive eigenvalue of

tangential stiffhess matrix reaches 0. This freshly defined value of ' is the critical load F,.

Here a specific example is given to show how to calculate the critical load F., by using nonlinear FE method.
In this example, the concentrated load N is assumed as 5N. It is usually quite difficult to attain a minimum
positive eigenvalue equaling 0. So as minimum positive eigenvalue of tangential stiffness matrix approaches 0,
we will expect buckling of the column to have happened. Fig.6-9(a) and Fig.6-9(b) show the relationships of
minimum positive eigenvalue of tangential stiffness matrix and the concentrated load N, and the concentrated
load F respectively. By observing Fig.6-9(a) and Fig.6-9(b), the minimum positive eigenvalue firstly increases,
and then decreases to 0. When the concentrated load N equals 5N, at the same time the concentrated load F
equals 10.2N, the minimum eigenvalue in Fig.6-9(b) becomes 2.5x 10, so buckling of the column is thought

to have occurred.

Fig.6-10 shows the relationship of displacement of point B in x direction with concentrated loads N and F. The

displacement in x direction is monotone decreasing in step 1 and step 2.

Fig.6-11 shows the relationship of tension of cable @ with concentrated loads N and F. In step 1 in Fig.6-11(a),
when the concentrated load ' remains ON, tension is increasing in almost linear fashion with each increment
added to the concentrated load N. However, in step 2 in Fig.6-11(b), when the concentrated load N remains 5N,

even as the concentrated load F increases, tension of cable almost remains nearly unchanged.
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Fig.6-9 Relationship of minimum positive eigenvalue with N and F
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Fig.6-11 Relationship of tension of cable with NV and F'

N/, .
Fig.6-12 shows relationship of the non-dimensional parameter LR the critical load F,.,. and the

pseudo-critical load P,,.. Symbols for “num.” and “theo.” represent the respective results by FE method and by
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theoretical analysis. P, is the critical load of axial compression column with only one side fixed and the other
side free, and P, = 72EL/(2])*. And P, is the critical load of axial compression column with one side fixed
and the other side restrained by hinged ended, and P, = 72 EIZ/(O.7I)2.

From Fig.6-12, it can be observed that the FE results of P, and F,, are almost as same as the results
obtained by theoretical method; and this affirms the validity of theoretical method proposed in this section and
the stiffhess of pseudo-spring in-plane proposed in Section 6.3.1. Therefore it can be concluded that it is tension

rather than the intrinsic elastic stiffness of cables that contributes to the stiffening effect of the column.

m’El,

125 4

+FCr(num')
2.0

—— P (num.)
L5 X F_(theo.)
1.0 ® P,(theo)
0.5 TTh

......... P2
0.0 :

N/, .
Fig.6-12 Relationship of Y F_ and P, in-plane

In another aspect, from variation tendency of pseudo-critical load P,,.(num.) in Fig.6-12, it can be observed that

. . N/l . . .
with the increment of ﬁ, P,, changes from P; to P,; this means the side of the column connecting to
Z

the cables is restrained from a free situation to a state that is analogous to a hinged ended. And by inspecting the

.. . N/ . . .
variation tendency of the critical load F.,., when o /;3 €[0,16.73), F,, is monotone increasing; on contrast,

z

N/,
EL/P

when €[16.73, 46.24], F,, is monotone decreasing. This suggests, although in limiting scope, that the

concentrated load N can contribute to stiffening the column, but any overlarge value of the concentrated N will
lead to a decrease in F.,. The maximum value of the critical load F., is 0.9472°EL/ 1%, which is about 3.76P,
or 0.46P,. This means comparing to a column with one side fixed and the other side free, the maximum critical

load F, of the column has increased about 2.76 times.
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Fig.6-13 First order buckling modes in-plane by FE method

Fig.6-13 shows the first order buckling modes by FE method. The broken line is the original shape and
continuous line is the buckling mode. With the increment of the concentrated load N, the first order bucking

modes have experienced transference in-plane.

(keeping constant)

i F=0.68ZLL
;

B
N=28.2-EL N=28.2-ELL
I I

(decreasing to 0) (decreasing to 0)

7777

Fig.6-14 Off-loading schematic plot

In another aspect, although Fig.6-12 shows the critical loads F, corresponding to different concentrated loads N,
it is also necessary to find out the safety zone of the whole structure. Here a off-loading schematic plot in

Fig.6-14 to explain how to use the configuration in Fig.6-12. In this example, the load pattern in Fig.6-14 is

N/, T2EL
identical to the position (D (28.20, 0.68) in Fig.6-12. In other word, when o /;3 =28.2, F:O.68[—2 can be

z

obtained.

72EL
During the discussion, F:0.681—2 is assumed as constant, the concentrated loads N applied to the curved
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/1,

EL/P

cables are decreased at the same time. The coordinate position @) in Fig.6-12 is (6.58, 0.68). When is
in the field (6.58 28.2), from Fig.6-12 it is known that if the column start to buckling, the values of F" are all

EL . . . T2EL M.
larger than 0.681—2, this means the column is safe in all the load patterns when F=0.68 2 and ELP

€

2El

a N,
(6.58, 28.2); and the column will collapse in the load patterns when F=0.68 2 and

EL/P

€ (0, 6.58).

Therefore, Fig.6-12 is very useful to design the load patterns for keeping the column safe.

b) Out-of-plane stability

Next the buckling analysis in Fig.6-8 for out-of-plane stability of the column in 3D space is addressed. Similar
to the case of in-plane stability of the column in 2D space, the two critical loads of the column are assumed to

be P, = rEL,/(2ly, P, = wEL,/(0.7]). In static analysis based on nonlinear FE method, the column is

presumed to have no preexisting imperfection.

n’El

Y -
[ 2 12.5
20 —®— [, (hum.)
—*— P (num.)
1.5 x F,.(theo.)
1.0 e P_.(theo)
0.5 —oh
T Ry P,
0.0 !
50.0
3
EL /I
N/,

Fig.6-15 Relationship of F,and P,, out-of-plane

3
EL/I
. L . . N, ”
Fig.6-15 shows the relationship of non-dimensional parameter vk the critical load F,. and the
v

pseudo-critical load P,,. In Fig.6-15, the nonlinear numerical results of £, and P, are almost the same as
the results obtained by theoretical methods introduced in this section noted above, so that correctness of the

stiffness of pseudo-spring out-of-plane proposed in Section 6.3.2 is also proved.

The variation tendency of pseudo-critical load P,.(num.) also changes from P; to P,, but the maximum of
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P, (num.)is 1.77712E1y /I, while in 2D situation, the maximum of P, (num.) is 1.9622EL /I’

In another aspect, the critical load F,(num.) in Fig.6-15 also firstly increases and after reaching a maximum
value 0.42712E1y / I, which is about 1.68 times of Py and 0.21 times of P,, and then it begins to decrease.

Compared to the critical load P; of column with one side fixed and the other side free, the maximum of £,

has increased about 0.68 times.

The maximum of F,,(num.) is 0.947°EL/ P in2D space, but when I,=1, is considered, F,(num.) in the

out-of-plane case, it can be observed that the critical load is about 0.45 times the maximum of the critical load

F,,(num.) in-plane.

X K
- Yy
N, N

EIy/l3 =0.02 (b) F,, ismax.:

N/,

- =4173
EL/I

(a) Nis small:

c . .
Ely/l3 =19.92 (c) F,, is0:

Fig.6-16 First order buckling modes out-of-plane by n FE method

Fig.6-16 shows the transference of first order buckling modes. The broken line is the original shape and

continuous line is buckling mode.
6.7 Applications of external force stiffening method

In this pursuit the stability problems of a guyed mast and an arch structure featuring with curved cables are
analyzed. When external forces are applied directly to curved cables, curved cables under direct loads could
provide a stiffening effect to the main structures. And the stiffening principle of the curved cables is similar to

the example of the column in Section 6.5.
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6.7.1 Guyed mast

Fig.6-17 Guyed mast Fig.6-18 Shape of curved cables

Fig.6-17 shows a guyed mast with one side fixed and other side connecting to four curved cables symmetrically.
Among the four cables, two of them are located in xz plane and other two cables are located in xy plane. In
nonlinear FE analysis, each curved cable is divided into 4 geometric nonlinear truss elements, and each element
has the same length. The entire column is divided into 30 geometric nonlinear beam elements, and each element
has the same length. As for one curved cable, it is divided into 4 geometric nonlinear truss elements. Because
each curved cable is flexible, the generalized inverse matrix is utilized to avoid the singularity of tangential
stiffness matrix, and no elongation displacement method is adapted during calculation, which is introduced in

Appendix A.

Concentrated loads /V are applied to curved cables symmetrically, and the direction of the concentrated load N is
perpendicular to a line connecting the endpoints of cables, e.g., direction of the concentrated load /N in xz plane
in -x position is [1/+/2, 0, — 1/+/2]. During numerical analysis, the direction of the concentrated load N is
presumed to be constant and follower force effect of concentrated load AV is not considered here. In addition, the

guyed mast has self-weight with the distributed load ¢ in unit length.

Table.6-3 Materials parameters of the guyed mast

Young's modulus [GPa] | Poisson’ratio | Internal diameter [mm] | External diameter [mm)]

Cable 205 - - 2

Column 205 0.3 20 40

The guyed mast exhibits buckling with the concentrated load N and self-weight distributed load g. The
elevation of the guyed mast is 10m. Fig.6-18 shows the shape of curved cables, which is a part of circle. And

Table.6-3 shows the materials parameters of the guyed mast in FE analysis. And nonlinear FE method is used
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to analyze buckling phenomenon of the guyed mast.

_m’El 1 5.00
b
4.00
G 3.00
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0.00 4 . , : > ,
000 020 040 060  0.80 1.00
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EI/?
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Fig.6-19 Relationship of IR and critical distributed load ¢,

In Fig6-19, I is moment of inertia, which has the same value as [, and I.. With increasing of
non-dimensional parameter %, the variation tendency of the critical distributed load ¢, is very similar to
the variation tendency of F,(num.) in the numerical examples of the column in-plane in Section 6.6. When
lz is about 0, ¢, = 0.8222Ell" ; and when ;]\/Ilz is 0.1077, g, arrives the maximum value equaling
44 72ENT, which has increased 4.38 times comparing to the one in the situation when the concentrated load N

. N . . . .
is 0; and when 7 0.8198, g, equaling 0 is obtained.

(a) Nis small: = 0.1077 © g, s0: = 0.8198

N
EI/P

. N
= 0.0004 (®) g, ismax. T2

N
EI/P
Fig.6-20 First order buckling modes by FE method

Fig.6-20 shows the transference of the first order buckling modes of the guyed mast. The broken line is the

original shape and continuous line is the buckling mode.
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6.7.2 Arch structure

Fig.6-21 Arch featuring with curved cables

Fig.6-21 shows an arch structure featuring with one pair of curved cables. In fact, Fig.6-21 is a simplified
special example of the arch with cable-nets shown in Fig.1-4 in Chapter 1. To analyze the buckling behavior of
the arch in simple stiffening pattern shown in Fig.6-21 helps to understand the stiffening effect of cable-nets in

Fig.1-4 in Chapter 1.

In Fig.6-21, two curved cables are located at the two sides of the arch in yz plane symmetrically. The shape of
curved cables and direction of the concentrated loads N are as same as the ones in Fig.6-18. The radius R of the
arch is 1 m. The central angel of the arch is 7. In FE analysis, the entire arch is divided into 48 geometric
nonlinear beam elements with 3.75 along circumferential direction of the arch, and each beam element has the
same length. Each curved cable is divided into 4 geometric nonlinear truss elements, and each truss element has
the same length. Excluding the concentrated loads NV applied to curved cables, there is another concentrated load
P applied to the top of the arch. The boundary conditions of the arch are assumed as fixed ended, and the
boundary conditions of cables are assumed as hinged ended overall. Table.6-4 shows the materials parameters

of the arch and cables in numerical example.

Table.6-4 Materials parameters of the arch and cables

Young's modulus [GPa] | Poisson’ratio | Internal diameter [mm] | External diameter [mm)]

Cable 205 - - 1

Arch 205 0.3 6 7

Before the stability of the arch featuring with curved cables in Fig.6-21 is analyzed, the stability of single
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circular arch without stiffening cables in 3D space shown in Fig.6-22 should be discussed firstly.

B
hinged end in y direction

Fig.6-22 Circular arch model

At the top of the arch, a hinged ended is used to support the arch in y direction. A concentrated load P is applied
at the top of the arch. The first order critical loads for the arch without and with hinged ended at the top are
noted as P; and P, respectively. The other conditions, such as geometric shape, boundary conditions, materials

parameters of the arch are as same as the ones in Fig.6-21.

Fig.6-23 shows the relationship of displacement and concentrated load in — direction in three dimensional

space. From Fig.6-23, Pi=46.8N, P,=104.3N can be obtained.
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Fig.6-23 The relationship of displacement and load in —z direction

Then the stability of the model in Fig.6-21 is analyzed. Fig.6-24 shows the relationship of the concentrated load
on cables and the critical load. The symbols in Fig.6-24 are noted as follows: F, is the first order critical load,
which is applied at the top of the arch when buckling happens. £, is the resultant force which is transmitted from

cables to the top of the arch in -z direction. And P,,, is the pseudo-critical load, and P,,=F,+F’.

From Fig.6-24, it can be observed that with the increment of the concentrated load N, the critical load F, firstly



Chapter 6 Stiffening Effect of Flexible Components 128

increases, after it arrives maximum, it decreases to 0. When the concentrated load N is 4.7N, the critical load F,.
arrives maximum, and F,,=75.0N. When the concentrated load N is 25.4N, the critical load F,, equals ON. In
another aspect, the variation tendency of pseudo-critical load P,, is from P, to P,, that is, the increasing of

concentrated load NV on cables will provide a stiffening effect which is analogous to the case with hinged ended

supports.
[N]120.00 1

100,00 s
FC"
80.00 - = F,
—— P,
60.00 - ---P
____________________________ P,

40.00 A

20.00 A

0.00 T T d
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N[N]

0.00 5.00 10.00

Fig.6-24 Relationship of the concentrated load on cables and the critical load

State (a) ~.--" Q=== .< Initial shape
-, 3

Fig.6-25 Equilibrium shapes of the arch before buckling

Fig.6-25 shows the Equilibrium shapes of the arch before buckling. Black broken line symbolizes the initial
shape, and continuous lines (“blue line , “red line” and “violet line”’) symbolize the equilibrium shapes before
buckling happens. “State (a)” is the state when N=10"(N); F,,=46.8(N); “State (b)"” is the state when N=4.7(N);
F,=75.0(N); and “State (c)” is when N=25.4(N); F,=0.0(N).
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(b) N=4.7(N); F,,=75.0(N); P,=96.2(N)

1,

() N=254(N); F,=0.0(N); P, =104.3(N)

Fig.6-26 First order buckling modes of the arch with curved cables

Buckling modes (continuous line) corresponding to three equilibrium states in Fig.6-25 are shown in Fig.6-26.
These buckling modes are plotted by directly adding the buckling modes on the equilibrium states before
buckling. The broken line symbolizes the initial shape, and the continuous line symbolizes the buckling modes.
From Fig.6-26(a) and Fig.6-26(b), for the two cases when N is small and F, arrives maximum, the buckling

modes are translating to out-of-plane of the arch. Meanwhile, from Fig.6-26(c), for the case when F, is 0, the
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buckling mode is rotational shape (Fig.6-26(c)).

6.8 Summaries

In this chapter, a new concept of stiffening methods called external force stiffening method is proposed. The
characteristic of this method is by applying external loads directly to flexible components to stiffen the

structures. The major achievements are summarized as follows:

1) In external force stiffening method, the elastic stiffnesses of curved cables can no longer provide stiffening
effect to structures, and the external force in components can produce a stiffness called stiffhess of

pseudo-spring to stiffen structures.

2) By using a column model featuring with curved cables, the stiffhesses of pseudo-springs both in-plane and
out-of-plane are deduced. Meanwhile, the buckling control equations of this structure system are also derived.
And by comparing the results obtained by nonlinear FE method and by theoretical approach, the validities of

theoretical approach and formulations of stiffnesses of pseudo-springs are proved.

3) External force stiffening method can be applied to a guy mast structure and an arch structure featuring with
curved cables. The stiffening effects of curved cables and variation of the critical load are very similar to the
ones in anterior column’s example. And transferences of buckling modes in these two application examples are

also studied.

4) External force stiffening methods have a similar characteristic: if there are external loads applied to flexible
components, and the other loads applied in main structure. Then in limiting scope, the external loads on flexible
components can enhance the stability of structures, but these oversize external loads will also lower the stability
of structures. In other word, there are optimal values of loads on flexible components to obtain the best

stiffening effects.
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Chapter 7 Model Experiments

7.1 Introduction

As in positively pressured pneumatic structure system, heavy and strong maintenance structure in boundary is
needed to resist the inflation force of membrane. For this reason, it cannot uttermost exert the convenience of
pneumatic structure. Then we begin to consider the possibility of the negatively pressured one for the
application in the first-aid shelter, because in first-aid shelter the facility of construction work is mostly
emphasized. In this chapter, we discuss three experimental shelters with negatively pressured pneumatic type.
The main skeletons of these structures are made of arches. These three shelters are called hemispheric shelter,

rectangle shelter and a round shelter respectively.

In the type of negatively pressured pneumatic structure, membranes or cables may deform into curved shape
when they are under negative draught head. These kinds of flexible components under directly loading may
provide stiffening effect to the main structure, as are discussed in the Chapter 6. Then a load test experiment is

processed in a column structure featuring with curved cables to verify this view.
7.2 Shelters with negatively pressured pneumatic structures
7.2.1 Hemispheric shelter

The object of this experiment is to observe the buckling phenomenon of skeleton. In addition, ropes are used as

a kind of constraint components to stiffen the skeleton and the stiffening effect of the ropes are investigated.

1) Model of the skeleton

Fig.7-1 Miniature model of hemispheric shelter Fig.7-2 Special joint at the top

The shape of hemispheric shelter is a dome, the skeleton of which is made of 6 semi-circular arches. Fig.7-1
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shows a miniature model. In experiments of the full-scale model, we made a special joint for all the semi-circle
arches, as shown in Fig.7-2. And Fig.7-3 shows the PVC pipes, which are the materials of skeleton. The PVC
pipes are hollow circular cross section, and the external diameter of pipes is 32cm, their thickness is 3.5cm. And

Fig.7-4 shows the joints of PVC pipes. Fig.7-1 ~Fig.7-4, and the construction materials refer to Reference [36].

T——

Fig.7-3 PVC pipes

(@ (b)
Fig.7-4 Joint of PVC pipes

In the full-scale experiment is carried out at the terrace of EW building of the Institute of Industrial Science in
the University of Tokyo in January 12th, 2012. The diameter of semi-circular arches in design is 6m. The shape

of boundary is dodecagon, the radius of internal tangential circle is 3m.

Fig.7-5 Setting of stiffening rope

Totally 36 cotton ropes are used to stiffen the skeleton of semi-circular arches. Fig.7-5 shows the arrangement

of ropes between two adjacent arches. Two cross ropes are set up between adjacent arches. And one additional
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rope is put in horizontal direction.

The procedure of experiment is carried out as follows™":

Step 1): The positively pressured pneumatic structure is constructed. And PVC pipes are used to make 6 circular

cross arches inside (Fig.7-6). The membrane contacts skeleton naturally without any connecting joints.

Step 2): The air to make the negatively pressured one is deflated. Gradually the skeleton began to resist the
draught head and suddenly buckling phenomenon of skeleton happens (Fig.7-7). At this time, the draught head

is measured as approximately -50Pa.

Step 3): The air is deflated again. The skeleton is modified to the shape in Fig.7-6, and then 36 ropes are utilized
to stiffening the skeleton (Fig.7-5). After finishing the stiffening work, the air is deflated again. Fig.7-8 shows a

stabilization state of skeleton with ropes. Buckling phenomenon occurs at approximately -70 Pa (Fig.7-9).

(@) Outside view (b) Inside view

Fig.7-6 Construction of skeleton (+110Pa)

(a) Outside view (b) Inside view

Fig.7-7 Buckling phenomenon in step 2 ( =-50Pa)
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(@) Outside view (b) Inside view

Fig.7-8 Stabilization state in step 3 (-30Pa~-40Pa)

(@) Outside view (b) Inside view
Fig.7-9 Buckling phenomenon in step 3 ( ~-70Pa)
2) Numerical analysis

(@) Perspective drawing (b) Plane graph

Fig.7-10 Numerical model

Numerical analysis is carried out for comparison, its model is shown in Fig.7-10. The radius of semi-circular
arches is 3m. In FE analysis, the entire arch is divided into 12 linear beam elements with same length. And each

cable is divided into one linear truss element. And external loads are calculated by the draught head and
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approximate projection areas between two circular arches (the edges of triangle or quadrangle parallel to
horizontal plane keep constant, the heights of them in projection plane are all assumed as one-sixth of the
radius), and the external loads are applied in the radial direction™”. The boundary conditions are assumed as

hinged ended. The materials parameters are shown in Table.7-1. Young’s modulus and Poisson’s ratio of PVC
pipes refer to standard of Japan PVC Pipe and Fittings Association.

Table.7-1 Materials parameters of numerical example

Young's modulus [GPa] | Poisson’sratio | Internal diameter [mm] | External diameter [mm]
Rope 10.8%! - - 10.5
Arch 333 0.38 25 32
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(a) Perspective drawing

(b) Plane graph
Fig.7-11 First order buckling mode without ropes (First order critical load=-8.6Pa)

WO = N W

(a) Perspective drawing

(b) Plane graph
Fig.7-12 First order buckling mode with ropes (First order critical load=-44.0Pa)

Fig.7-11 and Fig.7-12 shows the first order buckling modes of dome without and with stiffening ropes. Both
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shapes of these two modes are rotating along the longitudinal direction of dome. When there are stiffening ropes,
during the static calculation, for -1Pa draught head, the internal force of inclined ropes and horizontal rope are
positive value and negative value respectively. Then all the horizontal ropes are omitted in Fig.7-12 and the
numerical model is modified (omitting the horizontal rope in Fig.7-5). The result of modified model is shown in

Fig.7-13. In static analysis, the internal force of inclined cables becomes positive value for -1 Pa draught head.
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(a) Perspective drawing (b) Plane graph
Fig.7-13 First order buckling mode with ropes  (First order critical load=-25.2Pa)

3) Summary of results of experiments and numerical analysis

a) The experiment results in Fig.7-7 and numerical result in Fig.7-11 are compared. The critical load in
experiment is approximately -50Pa, while the numerical result is -8.6Pa, about 17% of experimental one. And
the buckling phenomenon in experiment and the first order buckling mode in Fig.7-11 are both rotational

modes along the longitudinal direction of dome.

b) When the buckling phenomenon in Fig.7-9 is investigated, we can observe most of the horizontal ropes are
slack. So it is better to use the numerical results in Fig.7-13 for comparison. The critical load in experiment is
approximately -70Pa, while in numerical analysis, the result is -25.2Pa, about 36% of experimental one. It can
be observed the inclined ropes increase the strength of dome. While comparing the buckling modes in Fig.7-9
and in Fig.7-13, in Fig.7-9 the buckling phenomenon of dome is local buckling, e.g. pipes are indenting in
specific arches, and in Fig.7-13 the buckling mode of dome is global buckling behavior translating along the

axis of symmetry.

c) As the experimental model is only a testing model, and there are a lot of initial imperfection existing in the

skeleton, and the internal force in every arches may have great difference and then focus on some specific
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components. In fact, the shapes of arches may not be semi-circular and the force transmitting to arch from
membrane are unknown in experiments. The boundary conditions are also complex, which is not identical to

hinged ended used in numerical analysis.

7.2.2 Rectangle shelter

In order to welcome the 2012 Open Campus of Institute of Industrial Science in June 1st and June 2nd in 2002,
we constitute a new rectangle shelter for exhibition at the same place of former shelter. The dwelling space for
dwelling is considered to be able to afford 5 people, which is assumed as be basic unit of family. Fig.7-14 shows
the design sketch of rectangle shelter™. And Fig.7-15 shows a miniature model of skeleton™’. In this section,
Fig.7-14~Fig.7-15, Fig.7-17~Fig.7-21 are provided by two co-operators in the same experiment Afra® and

Hong Bel,

Fig.7-14 Design sketch of rectangle shelter Fig.7-15 A miniature model of skeleton

The skeleton of shelter is mainly made by six semi-circular arches, two arches are on the ground, two arches is
45-degree inclining to the ground, two arches are perpendicular to the ground, and the other two are located at
ground. In order to maintenance the shape of membranes and skeleton, we use net and ropes as constraint
components between the skeletons. The skeleton are also made of PVC pipes as same as the ones used in

former shelter. All the construction materials are stated in Reference [36]. The design size is shown in Fig.7-16.

rope net arch
— i net rope arch
. \.. 2. —E
£ =
‘ 3.9m
{ 3.9m t 10m
10m

(@) Plane graph (b) Vertical view
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2.8m

(c) Sectional view

Fig.7-16 Design size of rectangle shelter

The experiments are carried out two times. The first time is a pre-experiment, it is at 25th April, 2012. The
constriction procedure are written explicitly by co-operators in this experiment Afra® and Hong % The size

of PVC membrane is a square with lateral length 14m. Fig.7-17 shows configuration of rectangle shelter in 25th

Fig.7-17 Rectangle shelter

During experiment, we extend the surplus membrane to the ground as long as possible, and then we deflate the
air to turn the structure into a negatively pressured one (Fig.7-17(b)). During the increment of draught head, we
could observe that PVC membrane in the ground is beginning to cling to the ground. Finally we succeed in
making the negatively pressured pneumatic structure without additional maintenance structure in the boundary.
And when the draught head is about -30 Pa, the buckling phenomenon happens obviously in the arches and
then we stop deflating. Fig.7-18 shows the buckling phenomenon of skeleton. In another aspect, during the
experimental experience in Fig.7-17 and Fig.7-18, we also find out that if the average length of surplus PVC
membrane in the boundary is approximate 1.5m, the negatively pressured pneumatic structure is easily to

realize.
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Fig.7-18 Buckling of skeletons of rectangle shelter in April (=-30Pa)

In addition, in order to estimate the effect of surplus PVC membrane in the boundary, we put the surplus PVC
membrane inside of skeleton, as shown in Fig.7-19. But at this time, even though we try to deflate the air, but
the draught head cannot be reduced. For investigation of the reason, we can consider that when surplus
membranes are put inside of the skeleton, air leakage is very remarkable during deflating, so the negatively

pressured pneumatic structure cannot be made successfully.

Fig.7-19 New folding method of membranes in the boundary

In the second time of experiment during 23th-25th May, 2012. This time we constitute negatively pressured one
according to the original design sketch in Fig.7-15. And Fig.7-20 shows the accomplished skeleton and the

whole structure with membranes. The construction works totally takes about 4hours with the help of 7 people.

Fig.7-20 Rectangle shelter in May

The deflating experiment is totally carried out three times. The explicit experimental process is introduced in
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Reference [36]. Here only the experimental results are listed. Fig.7-21 shows three configurations during all the
experiments in May, 2012. In Fig.7-21(a), when the draught head is -33Pa, no obvious buckling phenomenon is
observed. When the draught head becomes about -42Pa, two horizontal bars between the semi-circular arches at
the waist area indent suddenly. And the draught head is reduced to about -71Pa, the horizontal bar between the
semi-circular arches at the peak area is indenting too. Meanwhile, we can observe buckling of the erected two

semi-circular arches also happens.

() Stable state (b) Two horizontal bars buckling (c) Global buckling
(Draught head~-33Pa) (Draught head~-42Pa) (Draught head~-71Pa)

Fig.7-21 Deflating experiment in May
7.2.3 Round shelter

1) Constructions of round shelter in practice

(b)

Fig.7-22 Design sketches of round shelter !

In the anterior two experiments in negatively pressured pneumatic structure, the skeletons are mainly
constituted by PVC pipes, the buckling phenomenon of skeletons is observed. So this time we use mental
materials with higher strength to constitute the skeleton. In this section, Fig.7-22~Fig.7-23, Fig.7-26~Fig.7-31
are provided by the co-operator in this experiment Afra ™. Aluminum pipes are elected because of the
light-weight merit. The external diameter of pipes is 32mm, and the thickness is 3mm. The design sketch of

round shelter is shown in Fig.7-22.
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Fig.7-23 shows the design size of round shelter **. The main skeleton of this shelter is made of five
semi-circular arches. Four of them is used to constitute two circles. And other one is used to make the ceiling at

the top. Ten ropes are used to connect the top arch to the circle at the middle.

%T”\\A 4D

(@ (b)
Fig.7-23 Design size of round shelter

We also design the specific columns and joints in the design, as shown in Fig.7-24. We divided the column into
two types: type I and type IT.And the number of type I column is 4, and of type Il column is two. And Fig.7-25

shows two types of joints, the number of crisscross type joints and T-type joints are two respectively.

._3 R

T_,
60 gyt o QE: 4Q,
40 [ ]
DJJ__B_ 1800 1700 3

1740

mﬁum T
(a) Column type I (b) Column type IT
Fig.7-24 Two types of columns
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Fig.7-25 Two types of joints
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Fig.7-26 Components of round shelter

Fig.7-26(a) shows the constituted components of skeleton. And Fig.7-26(b) shows the actual objects used in
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construction. Polycarbonate sheets are used to make the wall of round shelter.

The experiment is carried out during 7th-11th in the buckling of white rhino at CHIBA Experimental Station in
the University of Tokyo. During the construction process, as the dome has a height of about 3.5m, so it is hard
to lift up whole heavy PVC membrane after the accomplishment of entire skeleton. Then we think out a method

in the construction. The construction procedure is carried out in four steps as follows:

column
(a) Step one
P/VC membrane
column
(b) Step two
pPVC membrane
arch
column

(c) Step three
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PVC membrane

(d) Step four

Fig.7-27 Construction procedure

() Outside view (b) Inside view

Fig.7-28 Accomplished configuration at daytime

Fig.7-28 shows the accomplished structure. And we also extend the surplus PVC membrane in the boundary as
long as possible (Fig.7-28(a)). The red type in Fig.7-28(a) is the location of door. We totally take four times
deflating experiments. The minimum of draught head is about -60 Pa. We don’t reduce the ultimate draught

head make the skeleton buckling. Fig.7-29 shows one of the experimental configurations.

Fig.7-29 The experimental configuration

And Fig.7-30 shows dwelling experience in the round shelter during the night in January 10th, 2014.



Chapter 7 Model Experiments 145

Fig.7-30 Dwelling experience in the night

Fig.7-31 Construction of shelter outdoors

In order to simulating the real construction outdoor, we built this round shelter on the grass in CHIBA campus
of the University of Tokyo, shown in Fig.7-31. As there are too much gaps on the grass, even though we use the
400w blower to deflate, the draught head almost not changed. The purpose to realize the negatively pressured

pneumatic structure fails outdoors.

2) Simulation of negatively pressured pneumatic structures

'S membrane

z X y ,r'//
R R A
o (0,0)

Fig.7-32 Model of the arch Fig.7-33 Mechanistic movements of the membrane

Now let’s take discussion on the stiffening effect of membranes under negative draught head in round shelter.



Chapter 7 Model Experiments 146

We take the semi-circular arch at the top in Fig.7-23 as the research object. And other four semi-circular arches

are taken into consideration this time.

We also make some assumptions. When membrane is under negatively draught head, we assume the angles
between the membranes and horizontal plane are all 30°, and membranes are in curved shape under the
concentrated loads A, as shown in Fig.7-32. The total loads of negative draught head are simplified as several

same concentrated loads applied in membranes, and membranes are assumed be curved lines.

The configuration in Fig.7-33 is parts of the membranes in Fig.7-32. In Fig.7-33, membranes (seen as curved
lines) experience mechanistic movements of membrane in x direction. The coordinates of A, B' and C' after
movements are (0, 0), (a, b), and (r+v, r) respectively. The top circular arch in round shelter is 1.7m. Appendix

D gives the stiffnesses of pseudo-springs by using the model in Fig.7-33.

Now the buckling problem of the arch considering the stiffening effect of membrane is analyzed. In numerical
analysis, the entire arch is divided into 46 linear beam elements, and these elements have the same length. We
use stiffness of pseudo-springs to substitute the curved membranes, and then model in Fig.7-32 will be equal to

the one in Fig.7-34 (a).

In theoretical analysis in Chapter 4, the load pattern of the arch is assumed as uniform compression, but in
practice external force may not always be this kind of load pattern, in Fig.7-34 (a), P\~ Py; are the resultant
forces transmits from membrane to the arch, and these loads are all in vertical direction. In order to comparing
the results in Fig.7-34 (a), load pattern with uniform compression in radial direction is also assumed in
Fig.7-34(b). And the loads and corresponding pseudo-springs in Fig.7-34(b) are as same as the ones in
Fig.7-34(a).

(a) Vertical load pattern (b) Radial load pattern

Fig.7-34 Arch models with pseudo-springs

In order to obtain these resultant forces in Fig.7-34(a) and Fig.7-34(b), all the external forces in membranes are



Chapter 7 Model Experiments 147

assumed to be equally distributed in to 49 concentrated loads  in Fig.7-32 at each side. The total external force
is calculated by multiply of draught head and superficial area of one quarter sphere. By this assumption, when
draught head is -1Pa and the radius R of the arch is 1.7m, the concentrated load N at all the nodes are 0.1853N.
The relationships of the concentrated load N and P~ Py; are given in Appendix D. Here a line load ¢ (unit:
N/m) is assumed. And if the draught head is negative and equals -1Pa, the value of ¢ can be calculated as
0.1853%3.3461x49/1.7/pi=5.6887N/m.

Table.7-2 Materials parameters of numerical example

Young's modulus [GPa] | Poisson’sratio | Internal diameter [mm] | External diameter [mm]

Pipe 68.6 0.34 26 32

The materials parameters of pipes are given in Table.7-2. In numerical analysis, the boundary conditions of
pipes are assumed to be fixed ended both in-plane and out-of-plane. The moments of inertias /.and /,, in local
coordinate referring to toFig.4-2 in Chapter 4 are the same, and 1=/, =/ is established. Table.7-3 shows the

comparison of the first order critical loads and buckling models in vertical load pattern and radial load pattern.

Table.7-3 Comparison of the first order critical loads and buckling modes

(a) Vertical load pattern (b) Radial load pattern

Models without

pseudo-springs

Models with

pseudo-springs
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7.3 Loading test experiment

In Chapter 6, a concept called external force stiffening method is proposed. And in Section 7.2.3, simulation of
curved membranes under negative draught head is discussed. In this chapter in-plane stability of a column

featuring with curved cables is studied through loading test experiment.

Parallel pipes - -
out-of-plane Loading point 1 | Loading point 2
e Zosi i R a I —

‘7;17 ‘ \ —_

g
“
3

EI: (EI))
X, V4
- 77T [4&
(a) Experimental model (b) Numerical model

Fig.7-37 Experimental model and numerical model

We carry out a loading test experiment of column with curved cables in 15th November, 2012 in the Laboratory.
Fig.7-37(a) shows the experimental model. The column is made of a PVC pipe, the external diameter of PVC
pipe is 6mm, its internal diameter is 4mm. We insert one side of the column into a screw to fix it. Two curved
cables connect to the top of column symmetrically. At the same time, two parallel pipes are set up at the top of
the column to prevent the out-of-plane movement of column. The material of cables is cotton, its diameter is
Imm. During the experiment, same weights are applied at loading point 1 and loading point 2 in Fig.7-37(a).

Then another weight is applied at loading point 3 gradually until buckling of the column happens.

According the Japan PVC Pipe and Fittings Association, the Young’s modulus of PVC Pipe is 3.33GPa, and the
Poisson’s ratio is 0.37~0.38. Pre-experiment is carried out to determine the Young’s modulus of the PVC pipe.
The length of PVC pipe excluding the support boundary is about 83.2cm, and the model of simply supported
beam is used. A 30g weight is applied at the center of the PVC pipe. The measurements of vertical
displacements at the center are 2.6cm, 2.5cm and 2.5cm, the average value of displacements is assumed as
2.5cm. For a simply supported beam with a length L, the vertical displacement with the concentrated load ' at
the middle position can be obtained through formulation Au = FL? /48EI By using this formulation the

approximate Young’s modulus of PVC pipe is obtained as 2.82GPa. And the Poisson’s ratio is assumed as 0.38.
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Fig.7-37(b) shows the numerical model. The length of column is 0.337m excluding the length of screw in the
boundary. The angel of the curved cable and the horizontal line is about 45°. In numerical analysis, the column
is divided into 30 geometric nonlinear beam elements, and each of elements has the same length. And one cable
is divided into one geometric nonlinear truss element. Referring to Reference [23], the Young’s modulus of the

cotton cable is assumed as 10.8GPa.

When there is no preexisting imperfection of column, by nonlinear FE analysis we can obtain at N=15.0N,
F=8.4N, buckling of the column happens. In another aspect, by using the theoretical procedures in Section 6.5,
we can obtain at N=15.0N, F=8.47N, buckling of the column happens.

25
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Fig.7-38 Relationship of displacement and total load

In another aspect, the preexisting imperfection of the column is considered, in FE analysis a disturbing load
with value 0.01N is applied in y direction at the position C in Fig.7-37(b). Fig.7-38(a) and Fig.7-38(b) show the
relationship of displacements in -x direction/ y direction and total load respectively. Here the total load means

the absolute value of resultant force at the position C in—x direction, which comes from N and F.

From Fig.7-38(a) we can observe the displacement in —x direction is monotone increasing during the loading
process. And when N=15N, if F is larger than 8.2N, the displacement in x direction increase very quickly, we
can suppose the column starts to collapse at the conditions when N=15.0N, and F=8.2N. Comparing to the case
without preexisting imperfection, as the results of critical loads in these two cases are closed to each other, in the

latter analysis only the numerical results in the case without preexisting imperfection are given.

From Fig.7-38(b), because of the preexisting imperfection, when N and F are both ON, the displacement in y
direction is 0.886 mm. Then in numerical analysis, firstty we keep F=0.0N, then N is increased from ON to
15.0N, we can observe the preexisting displacement in y direction is decreasing, this phenomenon can be seen
as that the curved cables begin to provide the stiffening effect. And when N arrives 15.0N, we keep N constant

then we increase the F from ON to 8.4N, then the displacement in y direction increases again.
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Table.7-4 Comparison of results in experiment and numerical results

No. Experimental results Numerical results (no-preexisting imperfection)
1
N=10"N; F,=3.IN
2-1
-y
I=90.2kg  0.2kg
N=0.2kg; F=0.5kg
2-2
3
N=0.5kg; F,=1.0kg N=5N; F.,=102N
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4-1
N=1.5kg; F=0.5kg
'
42
N=1 Skg; F,=0.7kg N=15N; F,,=8 4N
5
N=2kg; F,=0.5kg N=20N; F,=42N

Table.7-4 shows the comparison of results of the critical loads and buckling modes in experiment and FE
analysis. From Table.7-4, the buckling modes in experiment and numerical examples can be observed to be

very similar to each other.

7.4 Summaries

In this chapter, experiments of three negatively pressured pneumatic structures used as first-aid shelters are
introduced, and their skeletons are mainly made of semi-circular arches. In addition, a column experiment is
used to show the stiffening effect of curved cables under direct loads. The major achievements are summarized

as follows:

1) In the experiment of hemispheric shelter, when there is no stiffening cables, although the critical load in
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numerical analysis is about 17% of experimental one, their buckling modes are both rotational modes. In
another aspect, when ropes are used to stiffen the skeleton, the critical load in numerical analysis is about 36%
of experimental one. In experiment, the buckling phenomenon of skeleton is local buckling, while in numerical

analysis the buckling mode of skeleton is global buckling behavior translating along one symmetrical axis.

2) In the experiment of rectangle shelter, light-weight infrastructures are proved to be available in the negatively
pressured pneumatic structures. And in the experiment of round shelter, arch models with pseudo-springs for the

simulation of negatively pressured pneumatic structure are proposed.

3) A loading test experiment is processed in a column structure featuring with curved cables. And study work
shows loading on curved cables can change the buckling behavior of columns, and the critical loads and
buckling modes in experiment and in FE analysis are very similar to each other. In addition, the existences of

stiffnesses of pseudo-springs in flexible components are also verified.
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Chapter 8 Conclusions

&.1 Main conclusions

The main conclusions are as follows:

1) Theoretical formulations based on arch-spring models show that spring ratios of elastic stiffnesses of the
braces and the arches can determine the buckling behaviors of arches, and when the spring ratios are large than

limiting spring ratios, these ratios almost cannot increase the critical loads of arches anymore.

2) The stiffening effects of various types of single arch and cross arch, which are stiffened by straight braces, are
compared and summarized. The stability of hoop-ring structure stiffened with spokes is also analyzed. Study
work shows restraining the buckling modes of these structures by straight constraint components can increase

critical loads efficiently, and limiting spring ratios are also proved to be existing.

3) Flexible components such as curved cables have a similar characteristic, that is, their elastic stiffenesses
cannot provide stiffening effect to the main structure as what the straight components do, only internal forces in
these flexible components can provide a stiffhess of pseudo-spring to stiffen the main structures. And the
assumption of stiffhess of pseudo-spring is proved by formulations based on a column model featuring with

curved cables.

4) There are optimal internal forces of curved cables generating by external forces applied on them to provide
best stiffening effects. Oversize external loads on curved cables will lower the stability of stiffened structure.
And the phenomenons of optimal internal forces are also observed in the applications of a guyed mast structure

and an arch structure featuring with curved cables.

5) The experiment of hemispheric shelter of negatively pressured pneumatic structures shows that curved
membranes under negative draught head may provide stiffening effect, and by restraining the buckling modes
of skeleton through straight components has greatly increased the critical loads about 40%. And the light-weight
infrastructures in this type of pneumatic structures are available during the practice construction of rectangle
shelter. And based on the model of round shelter, arch model with pseudo-springs is proposed to simulate the

stiffening effect of membranes under negatively draught head.

6) A loading test experiment is processed in a column structure featuring with curved cables. And study work

shows loading on curved cables can change the buckling shapes of the column, and the critical loads and
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buckling modes in experiments and in FE analysis are similar to each other. In addition, the existences of

stiffhesses of pseudo-springs in flexible components are also verified.

8.2 Future work

Arch structure is a kind of structure with brief shape and high-strength quality. Constraint components can
effectively enhance the stability of arches, and the researches in this field are innovative and important.

Researches can be continuously done in several aspects as follows:

1) Arches with symmetrical closed cross section are mainly taken as the research objects in this thesis. While for
practical usage in the projects of arch structures, researches on other types of cross sections such as ‘T’ type

cross section and “T” type cross section are needed.

2) In linear FE buckling analysis, the in-plane buckling modes and out-of-plane buckling modes of arches are
observed to happen independently. Then in theoretical procedures in this thesis the buckling control equations
for in-plane stability and out-of-plane stability are divided separately. In future work, the coupling effect of these
two kinds of buckling modes should be studied.

3) Although some works are carried out in studying the stiffening effects of flexible components, for efficiently
utilizing of negatively draught head in negatively pressured pneumatic structures, new reliable pseudo-spring
models according to the accurate experimental monitoring dates should be built. In addition, the optimal
prestresses of cables in arch structures stiffened with cable-nets in practice in engineering fields should be

studied.



REFERENCES 155

REFERENCES

1. Kawaguchi K.. Theory of unstable structures and its applications. Ph.D Thesis of the University of Tokyo,
1990 (in Japanese: )| Afd— : NZEREMIOHGR & £ OB 2098, AR5 EEK
WL, 1990)

2. Hangai Y., Kawaguchi K.. Morphological analysis-generalized inverse matrix. Baifukan Co., Ltd., 1991
(in Japanese: AHEZ, )IORE— : TEREMHT—R0Y T8 & ZOIGH, BFREE, 1991)

3. Kawai T, Hujitani Y.. Buckling problems analysis. Basement and application of finite element
method-Series 11, Baifukan Co., Ltd., 1991 (in Japanese: JIIF-E, BEAFE - FEERTSMHT, ATR
SERIEOFERE LIS ) — X 11, BEJEAHE, 1991)

4. Hisada T.. Basement of tensor analysis for nonlinear finite element method. Maruzen Co., Ltd., 1992 (in

Japanese: /AERA : JERPEATRESRIEDT-ODT o ) /UIENT OFERE, IEREAE, 1992)

5. Noguchi H., Hisada T.. Integrated FEM formulation for total/updated-lagrangian method in geometrically
nonlinear problem. The Japan Society of Mechanical Engineers (A), Vol. 59, No. 559, pp. 332-338, 1993
(inJapanese: EFFIHVA, MR « S AU ERRERTEIZI51T 5 total/updated Lagrange #85TEA
FRESEEERIL, AN e (A), Vol.59, No.559, pp.332-338, 1993)

6. Noguchi H., Hisada T.. Development of a sensitivity analysis method for nonlinear buckling load. The
Japan Society of Mechanical Engineers (A), Vol. 59, No. 561, pp. 181-188, 1993 (in Japanese: B FI#A/A,
ICHPRE (A BRI Z 30\ T 2 RS Ay BT A DBIYE, FAREIR 25w U (A),
Vol. 59, No. 561, pp.181-188, 1993)

7. Abe M., Tatemichi 1., Kawaguchi M.. Thin-walled domes stiffened by tensegrig systems. ALl J. Technol.
Des., No. 1, pp. 96-101, 1995 (in Japanese: FiiBfE, ~mEfid, JInf: 70wV v o7 « 27
LI VA ST F—L01R%E, AAREEREINREE, No.1, pp.96-101, 1995)

8. Miyamura T.. Bifurcation analysis of wrinkling on tension membrane and the experiment. Ph.D Thesis of
the University of Tokyo, 1995 (in Japanese: ‘=41 a] : SR/ 21T D LD /BRI I OFR,
HORRFANEERGR L, 1995)

9.  Ishihara M.. Large-rotation and large-strain analysis of a beam by finite-element method. The Japan



REFERENCES 156

10.

11.

12.

13.

14.

15.

16.

17.

Society of Mechanical Engineers (A), Vol. 62, No. 599, pp. 174-180, 1996 (in Japanese: 1518 3L : IR
FAIZ L 2RO KEME « KRBT, H AR5 (A), Vol. 62, No.599, pp. 174-180,
1996)

Wu Minger. A basic study on a hybrid structure consisting of cables and rigid structures. Ph.D Thesis of
the University of Tokyo, 1997 (in Japanese: ‘2R : /r—7)L & fIlAAESEIC L D E SRS OMEESE
BB 5 FERERORISE, RO ARG, 1997)

Fujii F., Mori A., Kawahara K.. Tracing the bifurcation points of a pinned circular arch subjected to
stepwise changing loading modes. Journal of Structural Engineering (ALJ), Vol. 44A, pp. 293-298, 1998
(in Japanese: ISR, AT, NIFDEE : BEUEE— RO DIENT —F D55z
JEOEEE R, M TS (AL)), Vol.44A, pp.293-298, 1998)

Kaneko M.. Inflation analysis of pneumatic structure by using molecules of included gas. Master Thesis
of the University of Tokyo, 2000 (in Japanese: < : PNEIKURD 73 FE N C L 2 225
DA > 7 L— MW, HRCRFEAGERREL, 2000)

Kuwamura H.. Mechanics in architecture-theory of elastic and its applications. Gihodo Shuppan Co., Ltd.,
2001 (in Japanese: ZAM— : FEEED J)F—iianm & 2 OISH, BB SE, 2001)

Tabata H., Okada A., Saitoh M.. Study on structural characteristics of tensegric truss arch. J. Struct. Contr.
Eng., AlJ, No. 549, pp. 91-98, 2001 (in Japanese: FHAMEE, [MHE, 7EAY 787V v -
I T AT —F OREERAEZ BT D078, QAT -SSR CE, No.549, pp. 9198, 2001)

Wu Minger, Sasaki M., Ohmori H.. Buckling behavior of a compressive member stiffened by tensile
members: geometrically nonlinear analysis and buckling test. J. Struct. Contr. Eng., AlJ, No. 556, pp.
93-99, 2002 (in Japanese: SRV, Vex REY, RERMTE] : 7 2 a RS I 0l S 7o
M OBEFIEIRICBES DHIIE : TP HITARNT K OVRIE IR, ARG AR ERiRm SR, No.
556, pp. 93-99, 2002)

Nakashino K.. Study on the analysis method for structures constituted by membranes and cables. Ph.D

Thesis of Institute of Space and Astronautical Science, 2002 (in Japanese: H&EAS — : 7 —7 /L
MO IR DREEOfHTE BT 20198, TR I A GmERam s, 2002)

Kanayama T.. Stiffening effect of supplementary parts for orthogonal grid single-layer lattice shell. Ph.D
Thesis of the University of Tokyo, 2003 (in Japanese: 414K : [EAZ 517 ) v ROHJEZ F A



REFERENCES 157

18.

19.

20.

21.

22.

23.

24.

= UTHT 2 3= O hFU B DAFGE, SRR AAEERGR S, 2003)

‘Wu Minger, Komatsu H., Sasaki M.. Experimental studies on an arch stiffened by cables. J. Struct. Contr.
Eng., AlJ, No. 584, pp. 87-94, 2004 (in Japanese: ‘R, /IMAZAE, fex A - 7 —7 LY
FIN S AL T —F BT 5 TR, AL &R U, No. 584, pp. 87-94, 2004)

Fukushima T., Saitoh M.. Study on the buckling behavior of grid dome stiffened by strings. 2004 AlJ
Kanto Research Report, pp. 109-111, 2004 (in Japanese: f&fes2Fis, AHEAY « A MU > ZHI S
T GRS~ R — D O BEEREN B % FRERIRIIIL, 2004 4R 0 AR 2RI RCH I SIS
£, pp. 109-111, 2004)

Katoh C., Uchiyama M., Nakajima H., Miyasato N., Kita S., Okada A., Nishiya T., Saitoh M.. Research
on buckling behavior of beam string structures consisting of arched beam. 2008 ALl Kanto Research
Report, pp. 145-148, 2008 (in Japanese: AT, NI, HE%E, EHED, 056k, [HE,
VaRlEZ, TRIRNTS © 7 — T RS SR KRG OPERMEIRIC BT 0158, 2008 A ARG -
HOCHWIFFEEELE, pp. 145-148, 2008)

Kawaguchi M.. Structure and emotion II (membrane and pneumatic structure). Hosei University
Architectural Institute Alumni Association, 2008 (in Japanese: JI| A4 : #8185 LR (L 28RO

1), EBORFEYFRFZRE, 2008)

Kawaguchi K., Ke Wang-ling, Miki M.. Minimal surface with constraint conditions and steepest descent
method. J. Struct. Contr. Eng., ALJ, Vol. 73, No. 632, pp. 1773-1777, 2008 (in Japanese: JI| AffE—, fisd
1, =R AR & i Nl & — R b el FYAICRE 20198, I A -G R
FSCEE, Vol. 73, No.632, pp. 1773-1777, 2008)

Sekijima K., Kawakami K., Tamaru T., Izumo J.. Evaluation of properties of continuous fiber rope (part 2).
Journal of Institute of Science and Technology, Kanto Gakuin University, No. 36, pp. 11-20, 2008 (in
Japanese: PSR, 1| EERE, HOLE, T dEpaiie e — 7 ormEMn G52 )., B
FEFERSE TS AIFEATER 36, pp. 11-20, 2008)

Kawaguchi K., Ozawa Y.. Linear inverse analysis of stress and shape control of structures with members
of variable length. J. Struct. Contr. Eng., AlJ, Vol. 74, No. 639, pp. 849-856, 2009 (in Japanese: )| [1{#—,
INBIERSE . T T a = 2R — Ny 7 VT DREEDIRE < ST IR ORI ATIE,
AAEL AR TE R SCEE, Vol. 74, No. 639, pp. 849-856, 2009)



REFERENCES 158

25.

26.

27.

28.

29.

30.

31

32.

33.

Frei Otto. Natural structure. [Iwamura Kazuo (Trans.)]. Kajima Institute Publishing Co., Ltd., 2010 (in
Japanese: 7T A + A b— (&) [ERFER GO BAREER, SRS, 2010)

Architectural Institute of Japan. Buckling and proof stress of lattice shells. Maruzen Co., Ltd., 2010 (H A
BEGUED - TF AL VOREE L), ERGSEE, 2010)

Nakajima H., Uchiyama M., Nishiya T., Okada A., Miyasato N., Katoh C., Saitoh M.. Research on
buckling behavior of beam string structures consisting of arched beam. J. Struct. Constr. Eng., AlJ, Vol.
76, No. 659, pp. 89-96,2011 (in Japanese: 1128, WL, Paaker, [MHE, =HEED, T
18, REAT « 7 — T RS O EMEIRI Z RIS DAL, A AR o Ran SUEE, Vol
76, No. 659, pp.89-96, 2011)

Kawaguchi K.. Generalized inverse matrix and its applications in structural engineering (Computational
Engineering Series 1). Corona Publishing Co., Ltd., 2011 (in Japanese: )| F1fdt—: —fuif 751 &t T
PO GHRTFV Y —X1), 2wt 2011)

Fujii F,, Ohsaki M., lkeda K.. Bifurcation mechanics of structures and materials. (Computational
Engineering Series 3), Corona Publishing Co., Ltd., 2011 (in Japanese: JEHCS, Kildrhl, Mgz :
WG L MBS GHR I ) —X3), aar )+, 2011)

Chen Kun, Hong Wenhan, Kawaguchi Ken’ichi,, Fundamental study on the buckling behavior and
reinforcement for the skeleton supporting a negatively pressured pneumatic structure. Research Report on
Membrane Structure 2011, No. 25, pp. 17-24, 2012 (in Japanese: BiitH, S0, IO AFRIzE
SRS D SRR ORI EAE) & AT R OV T O S22, BRI s CEE 2011, No.
25, pp. 17-24, 2012)

Miki M.. Searching of the equilibrium shapes of structures by three-term method and dual estimate. Ph.D
Thesis of the University of Tokyo, 2012 (in Japanese: — AR : —TEJE &L AHIEEIZ L HHEEM O
105 O TRROBRR, FOXRFFGERGRSC, 2012)

Inoue K.. Fundamental study on deployable planar network and ultra-thin structure to be utilized in space.

Master Thesis of the University of Tokyo, 2012 (in Japanese: F Ffdt— : SEHAIIH A BHs L7 EHA
WAy bV — 7 &R B D AR, HORORFIAGE SRR, 2012)

Chen Kun, Kawaguchi Ken’ichi. Fundamental study on stiffening effect of tensioned components under

load. Research Report on Membrane Structure 2012, No. 26, pp. 13-19, 2013 (in Japanese: [, ) 1|1



REFERENCES 159

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

— ARSI OFFT 1 BRI I T O\ N T OISR i3k ST 2012, No. 26,
pp. 13-19, 2013)

Furuichi S.. Fundamental study on ultra-light large planar structure to be utilized for space solar power
system. Master Thesis of the University of Tokyo, 2013 (in Japanese: il : FHH AR IEE S A
7 LD AR L7 BN s 2 B9 5 BRI, OO RaR L,
2013)

Afra Pradana Rahman. Development of disaster relief first-aid shelters in Asia. Master Thesis of the
University of Tokyo, 2013 (in Japanese: 7 7~ « 775 « 55 7 VT OFERIZRIT DIt
AMEEEORIFI R DHE, R GERRSC, 2013)

Hong Wenhan. Basic study on negatively pressured pneumatic structures by using solar power system.
Master Thesis of the University of Tokyo, 2013 (in Japanese: 30T : KGR E L AT 2% VW&
JEPRZE SIS B 2 SO, ARORSEPARERER G, 2013)

C. Oran. Tangent stiffness in space frames. ASCE J Structure Div., Vol. 99, pp. 987-1001, 1937
A.E. H. Love. A treatise on the mathematical theory of elasticity (4th Edition). New York, 1944
S. P. Timoshenko, D. H. Young. Theory of structures. McGraw-Hill book company, 1945

L. Ostlund. Lateral stability of bridge arches braced with transverse bars. Transactions of Royal Institute of

Technology, Stockholm, Sweden, No. 84, pp. 27-33, 1954
Winter G.. Lateral bracing of columns and beams. Transactions of ASCE, Vol. 125, pp. 807-845, 1960
S. P. Timoshenko, J. M. Gere. Theory of Elastic Stability. McGraw-Hill, 1961

Vlasov. V. Z.. Thin-walled elastic beams (2nd edition). Israel Program for Scientific Translation, Jerusalem,
1961

Taylor A.C., Ojalvo M.. Torsional restraint of lateral buckling. Journal of the Structural Division, Vol. 92,
pp. 115-129, 1966

Lay M. G., Galambos T. V.. Bracing requirements for inelastic steel beams. Journal of the Structural

Division, Vol. 92, No. 1, pp.207-227, 1966

C. R. Calladine, S.Pellegrino. First-order infinitesimal mechanism. International Journal of Solids and



REFERENCES 160

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Structures, Vol. 27, No. 4, pp. 471-488, 1967

Thein Wah. Buckling of thin circular rings under uniform pressure. International Journal of Solids and

Structures, Vol. 3, pp.967-974, 1967

George E. Weeks. Buckling of a pressurized toroidal ring under uniform external loading. National

Aeronautics and Space Administration, 1967

Almeida, N. F. Lateral bucking of Twin arch ribs with transverse bars. Thesis presented to Ohio State
University, at Columbus, Ohio, 1970

Column Research Committee of Japan. Handbook of structure stability. Corona Publishing Company,

1971

Bruce. C. Mutton. Stiffness requirement for lateral bracing. Journal of the Structural Division, Vol. 99, No.

10, pp. 2167-2182, 1973

Nethercot, D A. Buckling of laterally of torsionally restrained beams. Journal of Engineering Mechanics,

Vol. 99, No. EM4, pp. 773-791, 1973

D. J. Dawe. Curved finite elements for the analysis of shallow and deep arches. Computer& Structures,

Vol. 4, pp. 559-580, 1974

C. T. Li, N. K. Srivastava. Analysis of pneumatic shells with or without cable net; general finite- element

formulation. Computer & Structures, Vol. 4, pp. 813-828, 1974

R.F. Jones, JR, M. G. Costello, T. E. Reynolds. Buckling of pressure loaded rings and shells by the finite

element method. Computers & Structures, Vol. 7, pp. 267-274, 1975

M. Epstein, D. W. Murray. Three-dimensional large deformation analysis of thin walled beams.

International Journal of Solids and Structures, Vol. 12, pp. 867-876, 1976

Ojakvi. M., Chambers, R. S., Effect of warpring restraints on I beam Buckling. Journal of the Structural
Division, Vol. 103, pp. 2351-2360, 1977

R. D. Wood, O. C. Zienkiewicz. Geometrically nonlinear finite element analysis of beams, frames, arches,

and axisymmetric shells. Computers & Structures, Vol. 7, pp. 729-735, 1977

R. F. Jones, M. G. Costello, T. E. Reynolds. Buckling of pressure loaded rings and shells by the finite



REFERENCES 161

60.

61.

62.

63.

65.

66.

67.

68.

69.

70.

71.

element method. Computer & Structure, Vol. 7, pp.267-274, 1977

T. Belytschko, L. Schwer, M. J. Klein. Large displacement, transient analysis of space frames.

International Journal for Numerical Methods in Engineering, Vol.11, pp. 65-84, 1977

A. K. Noor, W. H. Greene, S. J. Hartley. Nonlinear finite element analysis of curved beams. Computer

Methods in Applied Mechanics and Engineering, Vol. 12, pp. 289-307, 1977

J. H. Argyris, P. C. Dunne, M. Haase, J. Orkisz. Higher-order simplex elements for large strain
analysis-natural approach. Computer Methods in Applied Mechanics and Engineering, Vol. 16, pp.
369403, 1978

Thomas Michael Juliano. Inplane and out of plane buckling of thick rings subjected to hydrostatic

pressure. Ph.D Thesis of New Jersey’s Science & Technology University in USA, 1979

K. J. Bathe, S. Bolourchi. Large displacement analysis of three-dimensional beam structures. International

Journal for Numerical Method in Engineering, Vol. 14, pp. 961-986, 1979

E. Riks. An incremental approach to the solution of snapping and buckling problems. International Journal
of Solids and Structures, Vol. 15, pp. 529-551, 1979

Medland L C.. Buckling of interbraced beam systems. Engineering Structures, Vol. 2, No. 2, pp. 90-96,
1980

José Mario Martinez. Solving nonlinear simultaneous equations with a generalization of brent’s method.

Bit, Vol. 20, pp. 501-510, 1980

S. I. Oh. Finite element analysis of plane-strain sheet bending. International Journal of Mechanical

Sciences, Vol. 22, pp. 583-594, 1980

N. Yamaki, A. Mori. Non-linear vibrations of a clamped beam with initial deflection and initial axial

displacement, part [ : theory. Journal of Sound Vibration, Vol. 71, No. 3, pp. 333-346, 1980

M. Papadrakakis. Post-buckling analysis of spatial structures by vector iteration methods. Computers

Mechanics, Vol. 14, No. 5-6, pp. 393-402, 1981

M. A. Crisfield. A fast increment/iterative solution procedure that handles “snap-through”. Computers &

Structures, Vol. 13, pp. 55-62, 1981



REFERENCES 162

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

&3.

Tatsuro Sakimoto, Sadao Komatsu. Ultimate strength of arches with bracing systems. Journal of the

Structural Divisions, Vol. 108, No. 5, pp. 1064-1076, 1982

Chai Hang Yoo, M. ASCE. Flexural-torsional stability of curved beams. Journal of the Engineering
Mechanics Divisions, Vol. 108, No. 6, pp. 1351-1369, 1982

Robert D. Cook, Feng Zhaohua. Deflection and buckling of rings with straight and curved finite elements.

Computers & Structures, Vol. 15, No. 6, pp. 647-651, 1982

John Argyris. An excursion into large rotations. Computer Methods in Applied Mechanics and
Engineering, Vol. 32, pp. 85-155, 1982

J. Donea, S. Giuliani, J. P. Halleux. An arbitrary Lagrangian-Eulerian finite element method for transient
dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, Vol. 33,

pp. 689-723, 1982

Svensson, S.E., Plum, C, M.. Stiffener effects on torsional buckling of column. Journal of Structural

Engineering, Vol. 109, No. 3, pp. 758-772, 1983

R. Rubinstein, S. N. Atluri. Objectivity of incremental constitutive relations over finite time steps in
computational finite deformation analyses. Computer Methods in Applied Mechanics and Engineering,

Vol. 36, pp. 227-290, 1983

M. A. Crisfield. An arc-length method including line searches and accelerations. International Journal for

Numerical Methods in Engineering, Vol. 19, pp. 1269-1289, 1983

Karl Schweizerhof, Ekkehard Ramn. Displacement dependent pressure loaded in nonlinear finite element

analysis. Computers & Structures, Vol. 18, No. 6, pp. 1099-1114, 1983

B. A. Schrefler, S. Odorizzi, R. D. Wood. A total lagrangian geometrically non-linear analysis of combined

beam and cable structure. Computers & Structures, Vol. 17, No. 1, pp. 115-127, 1983

E. N. Dvorkin, K. J. Bathe. A continuum mechanics based four-node shell element for general nonlinear

analysis. Engineering Computations, Vol. 1, pp. 77-88, 1984

Karl Schweizerhof, Ekkehard Ramm. Displacement dependent pressure loads in nonlinear finite element

analyses. Computers & Structures, Vol. 18, No. 6, pp. 1099-1114, 1984



REFERENCES 163

84.

85.

86.

87.

88.

89.

90.

91

92.

93.

94.

9s.

E. F. Punch, S. N. Atluri. Development and testing of stable, invariant, isoparametric curvilinear 2- and
3-D hybrid-stress elements. Computer Methods in Applied Mechanics and Engineering, Vol. 47, pp.
331-356, 1984

J. L. Meek, Hoon Swee. Tan. A stiffness matrix extrapolation strategy for nonlinear analysis. Computer

Methods in Applied Mechanics and Engineering, Vol. 43, pp. 181-194, 1984

J. L. Meek, Hoon Swee Tan. Geometrically nonlinear analysis of space frames by an incremental iterative

technique. Computer Methods in Applied Mechanics and Engineering, Vol. 47, pp. 261-282, 1984

G. Prathap, C. Ramesh Babu. An isoparametric quadratic thick curved beam element. Journal for

Numerical Methods in Engineering, Vol. 23, pp. 1583-1600, 1986

Peter Gerstoft, A. G. Davenport. A simplified method for dynamic analysis of a guyed mast. Journal of

Wind Engineering and Industrial Aerodynamics, Vol. 23, pp. 487499, 1986

Yeong-Bin Yang, A. M. ASCE, Shyh-Rong Kuo. Static stability of curved thin-walled beams. Journal of
Engineering Mechanics, Vol. 112, pp. 821-841, 1986

K. Kondoh, S. N. Atluri. A simplified finite element method for large deformation, post-buckling analyses
of large frame structures, using explicitly derived tangent stiffness matrices. International Journal for

Numerical Method in Engineering, Vol. 23, pp. 69-90, 1986

J. Oliver, E. Onate. A total lagrangian formulation for the geometrically nonlinear analysis of structures
using finite elements. Part II: arches, frames and axisymmetric shells. International Journal for

Numerical Method in Engineering, Vol. 23, pp. 253-274, 1986

John P. Papangelis, Nicholas S. Trahair, M. ASCE. Flexural-torsional buckling of arches. Journal of

Structural Engineering, Vol.113, No. 4, pp. 889-906, 1987

S. L. Chan, S. Kitipornchai. Geometric nonlinear analysis of anti-symmetric thin-walled beam-columns.

Engineering Structures, Vol. 9, pp. 243-254, 1987

Robert K. Wen, M. ASCE, Khaled Medallah. Elastic stability of deck-typed arch bridges. Journal of
Structural Engineering, Vol. 113, No. 4, pp. 757-768, 1987

Yeong-Bin Yang, A. M. ASCE, Shyh-Rong Kuo. Effect of curvature of stability of curved beams. Journal
of Structural Engineering, Vol. 113, No. 6, pp. 1185-1202, 1987



REFERENCES 164

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

P. Wriggers, W. Wagner, C. Miche. A quadratically convergent procedure for the calculation of stability
points in finite element analysis. Computer Methods in Applied Mechanics and Engineering, Vol. 70, pp.
329-347, 1988

Siulai Chan. Geometric and material nonlinear analysis of beam-columns and frames using the minimum
residual displacement method. International Journal for Numerical Methods in Engineering, Vol. 26, pp.

2657-2669, 1988

Y. M. Desai, N. Popplewell, A. H. Shah, D. N. Buragohain. Geometric nonlinear static analysis of cable

supported structures. Computers & Structures, Vol. 29, No. 6, pp. 1001-1009, 1988

Tong G. S., Chen S. F. Buckling of laterally and torsionally braced beams. Journal of Constructional Steel

Research, Vol. 11, No. 1, pp. 41-55, 1988

Tong G. S., Chen S. F. The elastic buckling of inter-braced girders. Journal of Constructional Steel

Research, Vol. 14, No. 2, pp. 87-105,1989

J. L. Meek, S. Loganathan. Large displacement analysis of space-frame structures. Computer Methods in
Applied Mechanics and Engineering, Vol. 72, pp. 57-75, 1989

K. S. Surana, R. M. Sorem. Geometrically non-linear formulation for three dimensional curved beam
elements with large rotations. International Journal for Numerical Methods in Engineering, Vol. 28, pp.

43-73, 1989

Sunaramoorthy Rajasekaran, S. Padmanabhan. Equations of curved beams. Journal of Engineering

Mechanics, Vol.115, No.5, pp. 1094-1111, 1989

W. R. Spillers. Geometric stiffness matrix for space frames. Computers & Structures, Vol. 36, No. 1, pp.

29-37, 1990

J. L. Meek, S. Loganathan. Geometric and material non-linear behavior of beam-columns. Computers &

Structures, Vol. 34, No. 1, pp. 87-100, 1990

M. A. Crisfield. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements.

Computer Methods in Applied Mechanics and Engineering, Vol. 81, pp. 131-150, 1990

Robert K. Wen, Member ASCE, Bambang Suhendro. Nonlinear curved beam element for arch structures.

Journal of Structural Engineering, Vol. 117, No. 11, pp. 3496-3515, 1991



REFERENCES 165

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120

Haifan Xiang, Guangdong Liu. Stability and vibration of arch structures. China Communications Press,

1991 (in Chinese: I, XIPEAE : StESknfeE 545, ARASEHIRAE, 1991)

Roddeman DG. Finite element analysis of wrinkling membrane. Communications in Applied Numerical

Methods, Vol. 7, pp. 299-307, 1991

Andrew Kwok Wai So, Siulai Chan. Buckling and Geometrically nonlinear analysis of frames using one

element/member. Journal of Constructional Steel Research, Vol. 20, pp. 271-289, 1991

G. A. Holzapfel, Graz. A shear deformation shell theory for finite rotations and its numerical solution with

the finite-difference method. Acta Mechanica, Vol. 92, pp. 193-207, 1992

Siulai Chan. Large deflection kinematic formulations of three-dimensional framed structures. Computer

Methods in Applied Mechanics and Engineering, Vol. 95, pp. 17-36, 1992
Trahair, N. S. Flexural-torsional buckling of structures. E & FN Spon, London, 1993

L. A. Crivelli C. A. Felippa. A three-dimensional nonlinear timoshenko beam based on the
core-congruential formulation. International Journal for Numerical Methods in Engineering, Vol. 36, pp.

3647-3673, 1993

Siulai Chan. A non-linear numerical method for accurate determination limit and bifurcation points.

International Journal for Numerical Methods in Engineering, Vol. 36, pp. 2779-2790, 1993

Young J. Kang, Chai H. Yoo. Thin-walled curved beams [ : Formulation of nonlinear equations. Journal

of Engineering Mechanics, Vol. 120, No. 10, pp. 2072-2101, 1993

Young J. Kang, Chai H.Yoo. Thin-walled curved beams 1II: Formulation of nonlinear equations. Journal

of Engineering Mechanics, Vol. 120, No. 10, pp. 2102-2125, 1994

A. Becker, L. Kramer. Linear stability analysis for bifurcations in spatially extended systems with

fluctuating control parameter. Physical Review Letters, Vol. 73, No. 7, pp. 955-958, 1994

Zhuyan Shen, Yongfeng Luo. Transition matrix of coordinate of beam-column element under large
rotation. Shanghai Journal of Mechanics, Vol. 15, No. 4, pp. 13-19, 1994 (in Chinese: JL#H7¢, ki
TIRINRBAA FROGAL A TAS AR, /)%, Vol 15, No.4, pp.13-19, 1994)

. R. Reitinger, Kai-Uwe. Bletzinger, E. Ramm. Shape optimization of buckling sensitive structures.



REFERENCES 166

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

Computing Systems in Engineering, Vol. 5, No. 1, pp. 65-75, 1994

Masashi ITura. Effects of coordinate system of the accuracy of co-rotational formulation for
bernoulli-euller's beam. International Journal of Solids and Structures, Vol. 31, No. 20, pp. 2793-2806,
1994

Levy R, Spillers W. Analysis of geometrically nonlinear structures. Chapman and Hall, 1995

E. Onate. On the derivation and possibilities of the secant stiffness matrix for nonlinear finite element

analysis. Computers Mechanics, Vol. 15, pp. 572-593, 1995
K. J. Bathe. Finite Element Procedures. Prentice Hall, 1996

Yong-Lin Pi, N. S. Trahari. In-plane inelastic buckling and strengths of steel arches. Journal of Structural
Engineering, Vol. 122, pp. 734-747, 1996

R. Sygulski. Dynamic stability of pneumatic structures in wind: theory and experiment. Journal of Fluids
and Structures, Vol. 10, pp. 945-963, 1996

Siulai Chan. Large deflection dynamic analysis of space frames. Computers & Structures, Vol. 58, No. 2,
pp- 381-387, 1996

M. A. Cirisfield. Nonlinear Finite Element Analysis of Solids and Structures. Vol.1~2, Wiley, 1997

A. S. Nazmy. Stability and load-carrying capacity of three dimensional long-span steel arch bridges.

Computers & Structures, Vol. 65, No. 6, pp. 857-868, 1997

R. Sygulski. Numerical analysis of membrane stability in air flow. Journal of Sound and Vibration, Vol.

207, No. 3, pp. 281292, 1997

J. G. Teng, T. Hong. Nonlinear thin shell theories for numerical buckling predictions. Thin-walled
Structures, Vol. 31, pp. 89-115, 1998

J. L. Meek, Qiang Xue. A study on the instability problem for 3D frames. Computer Methods in Applied
Mechanics and Engineering, Vol. 158, pp. 235-254, 1998

L. Griindig. Minimal surfaces for finding forms of structural membranes. Computers& Structures, Vol. 30,

No. 3, pp. 679-683, 1998

Lip H. I, Murray J. Clarke. Co-rotational and lagrangian formulations for elastic three-dimensional beam



REFERENCES 167

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

finite elements. Journal of Constructional Steel Research, Vol. 48, pp. 123-144, 1998

K. Kebiche, M. N. Kazi-Aoual, R. Motro. Geometrical non-linear analysis of tensegrity systems.

Engineering Structures, Vol. 21, pp. 864-876, 1999

P. Raveendranath, Gajbir Singh, B. Pradhan. A two-noded locking fiee shear flexible curved element.

International Journal for Numerical Methods in Engineering, Vol. 44, pp. 265-280, 1999

Junming Chen. Nonlinear study on static and dynamic properties and stability for single-layer reticulated

shells. Ph.D Thesis of Wuhan University of Technology in China, 2000

Marcus Riiter, Erwin Stein. Analysis, finite element computation and error estimation in transversely
isotropic nearly incompressible finite elasticity. Computer Methods in Applied Mechanics and

Engineering, Vol. 190, pp. 519-541, 2000

P. F. Pai, T. J. Anderson, E. A. Wheater. Large-deformation tests and total-lagrangian finite-element
analyses of flexible beams. International Journal of Solids and Structures, Vol. 37, No. 21, pp. 2951-2980,

2000

Jinsan Ju, Yanglin Guo. Instability behavior in the plane of cable-arch structure. Journal of Building
Structures, Vol. 22, No. 2, pp. 84-87, 2001 (in Chinese : 25—, FREM, SR-HEEAPmPFEEH:
fge, HEALERIFH, Vol.22, No.2, pp.84-87, 2001)

Hyo-Gyoung Kwak, Do-Yeon Kim, Hwan-Woo Lee. Effect of warping in geometric nonlinear analysis of
spatial beams. Journal of Constructional Steel Research, Vol. 57, pp. 729-751, 2001

Wenyi Lin, Kuo Mo Hsiao. Co-rotational formulation for geometric nonlinear analysis of doubly
symmetric thin-walled beams. Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.
6023-6052, 2001

S. Reese, T. Raible, P. Wriggers. Finite element modeling of orthotropic material behavior in pneumatic

membranes. International Journal of Solids and Structures, Vol. 38, pp. 9525-9544, 2001

Y-L. Piy M. A. Bradford. Elastic flexural-torsional buckling of continuously restrained arches.

International Journal of Solids and Structures, Vol. 39, pp. 2299-2322, 2001

Y.-L. Pi, M. A. Bradford, B. Uy. In-plane stability of arches. International Journal of Solids and Structures,

Vol. 39, pp. 105-125, 2002



REFERENCES 168

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

Jinsan Ju, Yanlin Guo. In-plane elastic buckling of arch. Tsinghua Science and Technology, Vol. 7, No. 3,
pp. 322-325, 2002

P. Harikrishna, A. Annadurai, S. Gomathinayagam, N. Lakshmanan. Full scale measurements of structural

response of a 50 m guyed mast under wind loading. Engineering Structures, Vol. 25, pp. 859-867, 2003

Xiaoming Yang. Study on the type and stability of cable-arch structure. Ph.D Thesis of Xi'an University of

Architecture and Technology in China, 2004

Jinjun Li, Siulai Chan. An integrated analysis of membrane structures with flexible supporting frames.

Finite Elements in Analysis and Design, Vol. 40, pp. 529-540, 2004

Young-Lin Pi, Mark Andrew Bradford. Elastic flexural-torsional buckling of fixed arches. Quarterly

Journal of Mechanics & App. Maths., Vol. 57, No .4, pp. 551-569, 2004

Hongxia Wan. Theory research on form finding of cable nets and membrane structures. Ph.D Thesis of

Wuhan University of Technology in China, 2004

X. Q. Peng, J. Cao. A continuum mechanics-based non-orthogonal constitutive model for woven

composite fabrics. Composites: Part A, Vol. 36, pp. 859-874, 2005

Jianxin Gu, Siulai Chan. A refined finite element formulation for flexural and torsional buckling of

beam-columns with finite rotations. Engineering Structures, Vol. 27, pp. 749-759, 2005

Xiaoming Yang. Study of the type and stability of cable-arch structure. Ph.D Thesis of Xi’an University of

Architecture and Technology in China, 2005

K.-U. Bletzinger, R. Wiichner, F. Daoud, N. Camprubi. Computational methods for form finding and
optimization of shells and membranes. Computer Methods in Applied Mechanics and Engineering, Vol.

194, pp. 3438-3452, 2005

Wenging Zhang, John L. Leonard, Michael L. Accorsi. Analysis of geometrically nonlinear anisotropic

membranes theory and verification. Finite Elements in Analysis and Design, Vol. 41, pp. 963-988, 2005

Xihu Jiang. The procedure and model technology analysis of pneumatic membrane structure. Ph.D Thesis

of Tongji University in China, 2006

Yasuyuki Miyazaki. Wrinkled/slack model and finite element dynamics of membrane. International



REFERENCES 169

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

Journal for Numerical Methods in Engineering, Vol. 66, pp. 1179-1209, 2006

Linyuan Zhou, Qiao Li. Updated lagrangian co-rotational formulation for geometrically nonlinear FE
analysis of 3-D beam element. Journal of Southwest Jiaotong University, Vol. 41, No. 6, pp. 690-695,
2006 (in Chinese : JElZi, 2577 : J&T UL VAW CR FIR =4 stonit Rk, TimsSilRess:
i, Vol.41, No.6, pp.690-695, 2006)

A. ]. Gil, J. Bonet. Finite element analysis of prestressed structural membranes. Finite Element in Analysis

and Design, Vol. 42, pp. 683-697, 2006

A. J. Gil. Structural analysis of prestressed Saint Venant-Kirchhoff hyperelastic membranes subjected to

moderate strains. Computers & Structures, Vol. 84, pp. 1012-1028, 2006

Xinmin Wang. ANSY'S engineering structure analysis. China Communications Press, 2007 (in Chinese:
TR . ANSYS TREESHIE T, ABSS@EHiEE, 2007)

P. Mata, S. Oller, A. H. Barbat. Static analysis of beam structures under nonlinear geometric and
constitutive behavior. Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp.
4458-4478, 2007

R. A. Arciniega, J. N. Reddy. Tensor-based finite element formulation for geometrically nonlinear analysis
of shell structures. Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 1048-1073,
2007

Houjun Kang. The research on stability and vibration of cable-arch structure. Ph.D Thesis of Hunan

University in China, 2007

J. Bonet, R. D. Wood. Nonlinear continuum mechanics for finite element analysis (2nd Edition).

Cambridge University Press, 2008

Pan Zeng. Fundamentals of finite element analysis. Higher Education Press, 2009 (in Chinese : &% : 5

PROCHRIBERE, 2 i, 2009)

Yan Xu. Precision and deployment analysis research for membrane inflatable antenna. Ph.D Thesis of

Zhejiang University in China, 2009

J. G. Valdés, J. Miquel, E. Onate. Nonlinear finite element analysis of orthotropic and prestressed

membrane structure. Finite Elements in Analysis and Design, Vol. 45, pp. 395405, 2009



REFERENCES 170

170. Y-L. Pi, M. A. Bradford. Effects of prebuckling analyses on determining buckling loads of pin-ended

circular arches. Mechanics Research Communications, Vol. 37, pp. 545-553, 2010
171. Wentao Qiao. Study of cable supported structure system. Ph.D Thesis of Tianjin University in China, 2010

172. Hongbo Liu. Study on the construction control theory and temperature effect of suspen-dome structure.

Ph.D Thesis of Tianjin University in China, 2011

173. Kun Wang. Research and design of the architectural form of the spoke structure. Master Thesis of

Tsinghua University in China, 2011

174. Kun Chen, Ken’ichi Kawaguchi Preliminary research on stiffening effect of tensioned members with
mechanism system and its applications. Journal of Structural Engineering (AlJ), Vol. 60B, pp. 179-187,
2014



Appendix A 171

Appendix A
Calladine ! has discussed a first order infinitesimal state, in which small mechanism movements will bring the
system from mechanism to a structure. For example, plane membrane or straight cable without prestress.

If a concentrated load which is perpendicular to the plane membrane or straight cable is applied to them, when
we use FE method, we know that tangential elastic stiffhess of plane membrane or straight cable is singularity,
so it is difficult to get the solution of elastic displacement. The following passage introduces two methods in A.1

and A.2 to obtain the displacement.

A.1 Hypothesis damping term method '°!

The discretization of equilibrium equation can be written as follows:
Q(u)=F (A-1)

Here Q is the internal force vector, F is external vector, and u is the displacement vector. By using

Newton-Raphson method to solve Eq.(A-1), the reiterative calculation at m-th step can be expressed as
K("w)+(""u-"u)=F-Q("u) (A-2)
In Eq.(A-2), K("u) is a tangential stiffness matrix at m-th step.

Here a plane membrane without prestress is taken for example. In the initial state the presstress is 0, when
external load which is perpendicular to the membrane is applied to the plane membrane, the components of
tangential stiffness matrix in the same direction of the external load is 0. As the tangential stiffness matrix is a
singular matrix, the process of iteration in Eq.(A-2) cannot go on. At this time, the method in quasi dynamic

problem is utilized. A damping term matrix D is added to Eq.(A-1), and Eq.(A-1) becomes
Deu+Q(u)=F (A-3)
The damping term matrix D can be calculated as follows.
D="ul (A4)

InEq.(A4), m, is a damping coefficient at m-th step, and I is a unit matrix. The increment of u is
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o= (A-5)
Substituting Eq.(A-5) into Eq.(A-3), and utilizing Eq.(A-2), then we can obtain
m 1 m+ m m
[K( u)+ED]°( 'u—"u)=F-Q("u) (A-6)

If the numerical solution becomes convergence, there is

"u—"u=(aAt) >0 (A-7)
Then Eq.(A-6) returns to Eq.(A-1).
In the numerical calculation, the damping coefficient 'x at the first step of iteration can be 1. And damping

coefficient ™u at m-th step can be 0.5 time of damping coefficient m'ly at (m-1)-th step as follows:

"=0.5""pn (A-8)

A.2 No elongation displacement method ' 2+ %]

Researchers Hangai™ and Kawaguchi[”’ LB have used the Moore-Penrose generalized inverse matrix in the
morphological analysis. If a matrix A can satisfy the following four conditions at the same time, then A" is

called Moore-Penrose generalized inverse matrix.
Condition1: AA*A=A
Condition2: ATAA"=A"
Condition3: (AA") = AA"
Condition4: (A*A)" =A*A
Then the usage of Moore-Penrose generalized inverse matrix in the FE program is introduced. When there is no

prestress in the initial state, components of internal force vector Q('u) are all 0. Here assuming the following

two equations

f=F-Q (A9)
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A" la=""u-"u (A-10)
Then substituting Eq.(A-9) and Eq.(A-10) into Eq.(A-2), we can obtain
K("u)A"'u=f (A-11)
Using the Moore-Penrose generalized inverse matrix, we can obtain the general solution of Eq.(A-11)
AMu=K("u) f+[I1-K("u)" *K("u)]a (A-12)

At the right side of Eq.(A-12), the first term is called particular solution, and the second term is called

complementary solution. Here a: is an arbitrary small scalar.

Firstly, the component of external force corresponding to the elastic elongation is noted as f;, and the
component of external force to the no elongation displacement method is noted as f,, these two parameters are

given as follows:
f =K("u)K("u)" of (A-13)

£, =[T- K("u)" «K("u)]+f (A-14)

The no elongation displacement A”*'u  can be obtained by using the following equation.

A" a=af, (A-15)

In the initial state, prestress in the membrane is 0, so when external force perpendicular to the membrane is
applied, £;=0. Then we can use Eq.(A-15) to get the no elongation displacementA™"'u . After updating the
shape of membrane with this no elongation displacement, the tangential stiffness matrix is no longer singularity,

then Eq.(A-2) can be used to get the elongation displacement.

Comparing to the hypothesis damping term method in A.1 and no elongation displacement method in A.2, it is
more convenient to utilize the latter one. Because there is no additional damping term matrix needed to be

added to tangential stiffness matrix, only thing we do is to use Eq. (A-15) in the calculation.
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A.3 Numerical example

Fig.A-1 shows a quadrangular plane membrane under a concentrated load in perpendicular direction. The plane
of membrane is parallel to plane uv. The size of plane membrane is 6.096mx6.096m. The thickness is
0.1058mm. And the Young’s modulus of the membrane is 206Gpa, Poison’s ratio is 0.3. A concentrated load
with magnitude 44458N is applied in —w direction. The initial prestress of the membrane is 551.6MPa. And in

FE analysis, the membrane is divided into 32 isoparametric triangular elements **1'°!

Fig.A-1 Quadrangular plane membrane ' [0t1%)

Table.A-1 shows the comparison of results with past researches. We can observe the numerical results of

displacements by this appendix is very approaching to the ones in the past researches.

Table.A-1 Comparison of results with past researches (with prestress)

Node Displacement [mm] Prestress [351.6Pa]
Levy ' Gill'e" Valdés"® | This appendix
u 038 0.36 0.36 0.37
17 v 038 0.36 0.36 0.37
w -36.35 -36.14 -36.30 -36.36
u 043 043 0.43 0.43
18 v 0 0 0 0
w -66.17 -66.04 -66.17 -66.18
u 0 0 0 0
13 v 0 0 0 0
w -168.71 -168.30 -168.30 -168.78

In another aspect, when there is no prestress in the membrane in the initial state, then the methods introduced in
A.l and A2 can be used to get the displacement. In the latter calculation of Eq.(A-15), the parameter « is
assumed to be 10, In the same numerical example, Valdés"® utilizes generalized-o: integral method to obtain

the displacement when there is no prestress in the initial state. The comparison of the results obtained by using
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the methods in appendix and past research is shown in Table.A-2.

Fig.A-2 shows the relationship of displacement and concentrated load with and without prestress. In the case of
no prestress, the results obtained by the hypothesis damping term method and the no elongation method are

almost identical to each other.

Table.A-2 Comparison of results with past research (without prestress)

Prestress [0 Pa]
Displacement Valdés '®) This appendix
Node
[mm] Generalized-o. integral Hypothesis damping No elongation
method term method displacement method
13 w 234.75 23592 23591
x 10"
prestress [556.1Mpa] : o ©
4F no prestress—hypothesis o @
damping term method :
. no prestress—no elogation ¢ ¢
8 E displacement method :
EE
g8
SRS 2t d
é |3 o°°°°° @
5 k= °°°° @&0
1 o°° <><><>
o°° ® 09
0® 4
0°° ° o @ N
G i 9. i A A
0.05 0.1 0.15 0.2

disp. of node 13 in —w direction [m]

Fig.A-2 Relationship of displacement and concentrated load
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Appendix B

B.1 Simple methods for in-plane stability of the arch

In Section4.4.1 of Chapter 4, we have obtained the general solution of displacements v and w, and then
calculated the critical loads of circular arch with hinged ended and fixed ended. Here by taking the example of
arch with hinged ended boundary conditions, we introduce other two methods in the past researches. Firstly, we
talk about a method by using approximate functions of buckling modes "***!"®!'%*l The boundary conditions
are assumed as hinged ended: v=0, v"=0 at =0 and g=a. Then a function of buckling mode satisfying the

boundary conditions can be assumed as !+ ®H10]

v=AsinZ (B-1)
(04

Then Substituting Eq.(B-1) into buckling controlling equation Eq.(4.20) in Chapter 4, we can obtain

AR 2T o2 o
7l )][(a) l]Acosaw—O (B-2)

X

2n

(=) -1-
04

As A is an arbitrary number, then the solution of Eq.(B-2) is

EI

27 2
L =(— —1 X -
er [(a) ]R3 (B-3)
Especially, when a = =, the first order critical load ¢, is
_3EI
Qer = R3 (B-4)

Another method to obtain critical load of the circular arch with hinged ended is introduced by Timoshenko %/,

given in Eq.(B-5)~ Eq.(B-12).
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0.500.50
Fig.B-1 Circular arch with hinged ended boundaries

Fig.B-1 shows a circular arch with hinged ended. From the first term of Eq.(4.5) and Eq.(4.8) in Chapter 4, the

expression of moment M can be obtained as

dv 1dw
M,=-ElI K =-El (—+—— -
13 x rx ,x(dsz RdS) (BS)

Substituting the pre-establish condition (jTW = % in Eq.(4.17) into Eq.(B-5), we can obtain
S

dv, v _ M 6
ds R EI, B-6)
As the shape of the arch is assumed as circular, then ds = Rdp is a pre-established condition, then the same
expression of Eq.(B-0) is
d’v R’

40" tv=—mr M (B-7)

From Eq.(B-1) we can obtain the moment M in arbitrary cross section C is
M. =qRv (B-8)
Substituting Eq.(B-8) into Eq.(B-7), we can obtain

d*v R’
d(p2 +( +2—1)v =0 (B-9)

x

The general solution of Eq.(B-9) is

v = Acosta + Bsinta (B-10)
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The expression of 7 can be found in Eq.(4.22) in Chapter 4. Then from the boundary conditions, we can obtain

0=4
0=-4
0= Acos(nt) + Bsin(zt) (B-11)

0=—Ar’cos(nt)— Br’sin(nt)
Then we can obtain A=0, at this time B cannot be 0, the buckling control equation is
sin(rt) =0 (B-12)

Because 7 is larger than 1, then the minimum positive value of ¢ which satisfies Eq.(B-12) is 2. The

corresponding critical load is same as the one in Eq.(B4).
B.2 Approach to solve the fifth order linear differential equation

Another method to obtain the general solution of the five order linear differential equation in Eq.(4.20) in

Chapter 4 is introduced. We assume the general solution of displacement v as
v=e'® B-13)
Then substituting Eq.(B-13) into Eq.(4.20), and utilizing the expression of 7 in Eq.(4.22), we can obtain
[+ @2+ D)7+ e =0 (B-14)
The characteristic equation can be obtained as

[+ @2+ ) +12r =0 (B-15)

Then we know the solution of 7 in Eq.(B-15) is /=0 or r* + (% +1)r? +72 = 0 . From the latter equation, we

know

2 (B'16)

R e E V(R0 et (e £ ) :{—1

2 2 -

The four solutions of » in Eq.(B-16) are # =i,%» =—i,r3 =7i,7, =—7i. Then including =0 in above

narrative, the general solution of Eq.(4.20) can be expressed as
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v=Asing + Bcosp + Csintgp + Dcostp + E (B-17)

Eq.(B-17) is identical to Eq.(4.27) in Chapte4.

B.3 Buckling of the arch out-of-plane

Now another kind of boundary conditions in Fig.4-10 in Chapter 4 is considered. The boundary conditions are
assumed as hinged ended in-plane and out-of-plane, that is, among the six DOF of the node at each side of the
arch, three translation DOF are constrained, and the other three rotational DOF are free. This kind of boundary

conditions can be expressed as
) Mn=0at(p=0and(p=a
¥l MC:Oat(p=0and(p:a

3) u=0at¢p=0andp =a

Firstly, the boundary condition (1) is identical to K, = 0 . From Eq.(4.6) and identical relation ds=Rdo, we

duv 0 1 d*u
> +—=0>——+
ds R Rdo

can obtain K, = +0=0atp =0and@ =« . In addition, Eq.(4.58) is substituted into

2

. . d-o
previous equation, then —

+ 6 = 0 is obtained. Then boundary condition (1) can be expressed as

0=B+D - Bk} + Dk.
0= Asin(ak,) + Bcos(ak,) + Csinh(ak,) + D cosh(ak,) (B-18)
— Ak} sin(ak,) — Bk cos(ak,) + Ck; sinh(ak, ) + Dk; cosh(ak,)

Similarly, the boundary condition (2) is identical to curvature K, =0 . From Eq.(4.7) andds = Rd¢ , we can

obtain K :ﬁ—ld—uzo —)ﬁ—lﬂzo atg@=0and @ =a . Substituting Eq.(4.59) into previous
ds R ds dp Rdo

equation, thenj—e + I 0d o = 0 is obtained. Then boundary condition (2) can be expressed as
®
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O=Ak1+Ck2—k£+k£+E

1 2

0= Ak, cos(ak,) — Bk, sin(ak,) + Ck, cosh(ak, ) + Dk, sinh(ck, ) (B-19)

- kﬁ cos(ak,) + kﬁ sin(otk,) + k£ cosh(ak,) + kB sinh(ok,) + E

1 1 2 2

Finally, from boundary condition (3), we can obtain

O:B+D—A(—£2+ D +F)

KK

0= Asin(ak, )+ Beos(ak,) + Csinh(ak, ) + D cosh(ak,) (B-20)

- }t(—k—/isin(akl) —%cos(akl) +k—Czsinh(ak2) + k—ecosh(akz) +aE+F)
2

1 1 2

According to the sequence of 4, B, C, D, E and F,, a matrix Ssp.p; is assumed as

Siper =
[ 0 1-k? 0 1+ k2 0 0]
(1-k})sin(ak,)  (1-k})cos(ak,)  (1+k;)sinh(ak,) (1+k})cosh(ak,) O 0
k, _L 0 k, + RS 0 1 0
kl k2
1 1. . 1 1. .
(k, ——)cos(ak)) (=k +—)sin(ak,) (k,+-—)cosh(ak,) (k,+-—)sinh(ak,) 1 0
kl kl k2 kZ
0 1+ iz 0 1- iz 0 -2
kl k2

A A A A
(1 +k_2) sin(ak,) (1 +F)cos(akl) (I—k—2)51nh(ak2) (1 —F)cosh(akz) Ao -4
1 1 2 2 _

(B21)

Then the buckling control equation can be expressed as
det(Ssp.p,) =0 (B-22)

Here a numerical model with same parameters in Section 4.3.1 in Chapter 4 is used. By using Eq.(B-22), the

1,
R

first order critical loadis ¢, =1.13
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B.4 The critical load of stiffening pattern C in Section 5.4.1

}\ \0.5R 0.5R , /¢

45
R

Fig.B-2 Pattern C

As complement in Section 5.4 in Chapter 5, here the critical load of stiffening pattern C in Fig.B-2 when the
buckling mode is symmetric in-plane in 2D space is deduced. The boundary conditions of the arch are hinged
ended. A spring ratio  is defined as

EA | EI
)7
0.5R" R

r=( (B-23)

In Section 5.4.1, a spring ratio r, has been noted, and by its definition we should be aware that 7,=0.5r.
Fig.B-3(a) shows the configuration of the arch when symmetric buckling mode happens. And Fig.B-3(b) shows

the equilibrium state of forces at the position of the spring. Here ¢ in Fig.B-3(a) is assumed as 0.25a.

Q”LléTQﬂR ”J_>

(@) (b)
Fig.B-3 Circular arch with hinged ended boundary conditions
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When the boundary conditions of the arch are hinged ended, the boundary conditions can be expressed as
1 v,=0,v,"=0,w, =0atp=0
@ 9x=0,v,"=0,w,=00¢=0.50
B) V=V =V,,0,,=kvy+ 0, v, =" v, "=, " w, = w, (0,)' =(0;) atep =0.25a

From the boundary condition (2), we can obtain

0=-4,cos0.5a + B, sin0.5¢ - C2r3 cos0.5at + D2‘53 sin0.5at B-24)

0= 4, cos0.5a — B, sin0.5a + C,t cos 0.5at — D,7 sin0.5at (B-25)

0=—4, c0s0.5a + B, sin0.5¢ — C, $B5039T  py SN0S0T o s v (B-26)
T T

The expression of boundary condition (1) and (2) are omitted here. A matrix Syp.syc is assumed as

0 1 0 1 1 0

1 0 T’
1 0 1 0 0 -l

T

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
S,psuc =| sin0.25a  co0s0.25a  sin0.25ar cos0.25ar 1 0
0 0 0 0 0 0
c0s0.25a —sin0.25a 7°cos0.25ar —1’sin0.25ar 0 0
c0s0.25«¢ —sin0.25a tco0s0.25ar —7sin0.25ar 0 0
sin0.25a  c0s0.25a  t’sin0.25ar 17 cos0.2501 0 0
c0s0.250 —sin025a = O'TZSOCT _sin O'TZSO” -0.25a -1
| sin0.25a  cos0.25a  t*sin0.25ar  t°cos0.25ar 0 0
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0

0

0
—cos0.5a

cos0.5a

—co0s0.5a

0
sin0.25a

—c0s0.25¢

—c0s0.25a
—sin0.25a

—c0s0.25¢

—sin0.25a

0

0

0
sin0.5¢

—sin0.5a

sin0.5¢

0
co0s0.25a

sin0.25a

sin0.25a
—c0s0.25c

sin0.25a

—c0s0.25c

The buckling control equation is

0 0

0 0

0 0
—t7cos0.5art 7°sin0.5ar
7 cos0.5at —tsin0.5ar

cos0.5at sin(0.5ar
T T
0 0
sin0.25at cos0.25ar

—7 c0s0.2501

—tcos0.25at
—?sin0.2501

_ cos0.25ar

738in0.25a1

Tsin0.25at
—?c0s0.25ar

sin0.25at

T
—*sin0.2501

(B-27)

det(S,p guc) =0

T
—*c0s0.25ar

S O O o O

0.5a

0.25a

S O O o O

183

(B-28)

Here the same example in Section. 5.4.1 is used, the central angel of the arch is o=x. The results obtained by

using Eq.(B-18) and by FE method are shown in Fig.B-4. From Fig.B-4, we can observe that the maximum

difference of the two results is about 2.2%.

El.155
el

9er14.0

15.0 -

14.5 +

13.5

-&-Theo.

13.0 +
125 -+

300

4300

8300
r

12300

16300

Fig.B-4 Comparison of the results by theoretical method and FE method
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B.5 Coupling effect of in-plane stability and out-of-plane stability

(a) In-plane (b) Out-of-plane

Fig B-5 Isolated infinitesimal body of the arch (in Chapter 4) "*!
In Chapter 4, the in-plane stability and out-of-plane stability of the arch are discussed respectively. In analyzing
the out-of-plane stability, the assumptions in past researches are used, whichare M, =0and N_=gR .Ifwe
do not consider these assumptions but consider all the equilibrium forces, we can obtain
S F =0

2.5, =0
DM, =0

-29
S -0 (B-29)
> M, =0
DM =0
From (B-29), we can obtain
ng =N_+dN_—N_cosdp -0, sindp—q,ds+Q,sinAy =0
ZF;, =0, +d0, -0, cosdp+ N_sindp —q,ds =0
DM, =M, +dM, - M, cosAy +Q,ds+m.ds+M_ sinAy =0 B30

D F. =0, +dQ, +q.ds—N_sinAy — O, cosAy =0
> M, =M, +dM, - M, cosdp + M, sindp +m,ds+Q.ds =0
ZMQ =M_+dM_—M_cosdp—M, sindp—M,sinAy +m_ds=0

The underline terms in Eq.(B-30) are the ones considering the coupling effect of all moments and forces in
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equilibrium, and these terms are not taken into consideration in Chapter 4.

In Eq.(B-30), we neglect the effect of m¢, m,, m. and q,, and as dp, Ay is very small, here we suppose

cosdp=1, sindp=dp, cosAy=1, sinAy=Ay, then Eq.(B-30) transforms into

dN. 0O
2 Z 0K =0
ds R 2K,
w0 N
ds R
am
¢ _
s +0,+M.K =0 B
do,
s +q5—NgKy=0
aM. M
1+—=+0,=0
ds R N
M. M,
<1 MK, =0
ds R :

Now let’s talk about the solution of Eq.(B-31). Firstly, from the third term and fifth term in Eq.(B-31), we can

obtain O, and O, as

0,= M v,k
n T ds Ty
(B-32)
ng—dM"—&
° ds R

Secondly, from the combination of first term and second term in Eq.(B-30), at the same time utilizing the

expressionof Q, in Eq.(B-32) we can obtain

d’0, dq,
—R2ﬁ+R2g—Qn +RQ§K}, =0 (B-33)

Substituting Eq.(B-32) in to Eq.(B-33), we can obtain

’M d(M.K)) am aMm, M
R —f 4 P ——= +R2%+—5+M4K,+R(— 1_TE)K =0 (B-34)
ds ds ds ds z ds R’

In another aspect, the combination of the fourth term and fifth term in Eq.(B-31), we can obtain
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d°M. 1 dM
n_ - ¢ + -NK = (B-35)
ds* R ds % '

Then the independent equations of Eq.(B-31) are as follows:

M dM.K,) am am, M
R? 35+R2 £ +R2%+—§+M§K,+R(— 1-—£)K =0
ds ds ds ds —2 s R
d°M_ 1 dM
n ¢ B
M 1 -NK =0 (B-36)
ds2 R ds qé ¢y
aM. M
g_—”—MgK;o
ds R 2

When consider the unlined terms in Eq.(B-36), multiply term of moment and curvature makes it different to get

closed form solutions of the critical loads.
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Appendix C
C.1 Comparison of two stiffening effects
F
I H—d"l
i Ecdc cable
T/l
I, column
Ey | Evdp
X
v avarars \—

y
Fig.C-1 Column stiffened by straight cables '

Fig.C-2 Movement of straight cable

Fig.C-1 shows a column stiffened by two straight cables. Symbols in Fig.(C-1) refer to Section 6.2 in Chapter 6.
Fig.C-2 shows the movements of cable in y direction. Here symbol “R” is used to substitute for symbol “/.” in
Fig.C-1. In Fig.C-2, position C moves in y direction to a new position C' with a small displacement v. T is
assumed as the internal force of the cable before buckling. Then from the geometrical relationship after

movement, the increment of the length in cable is

AR =\[I* +(d +v)’ —~R=\R* +2dv+V* —R (C-1)

And the increment of internal force of the cable after movement is
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ar =L zp (C-2)

1)Case 1: 7=0

The reaction force at position C' after movement is

Fooar——dtv  _Ecde AtV (@ oai —R)
\/R2-|-2dv+v2 R \/R2-|-2dv+v2

F. =AT h _ B h (VR* +2dv+v* —R)

\/R2+2dv+v2 R \/R2+2dv+v2

(€3)

Then considering the symmetry of cables in Fig.C-1, the resultant force £}, in y direction can be obtained as

F,= FC,;(V) - FC,;(—V)

_EA  drv ([ avev —ry-Ede 4TV (R odviv - R) (C4)

R \/R2+2dv+v2 R \/R2—2dv+v2

‘When the value of v approaches to 0, the limiting ratio of F, and v is

. F, 2d*E A
lim—% = LZA (C-5)
Vo0 y R° R
Here a parameter k is assumed as
2d* E A,
k,=——"<¢% C-6
FT R R (C-6)
In another aspect, the resultant force in global Cartesian coordinate in x direction is
F =F. (W+F. . (-v) (C-7)
When the value of v is small value, the limiting value of F, is
2 2 2 2
hmFX:hmECAch(z_R\/R +v7 +2dv + R +v 2dvy )
V=0 =0 R VR £ + 2dv R +v2 - 2dv

2)Case2:T #0

Here the stiffening effect of elastic stiffnesses of cables is temporarily ignored, let's only talk about the stiffening
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effect of internal force 7. Assuming 7 keeps constant after movement. Then from the geometrical relationship

of the cable, we can obtain the reaction forces at position C' are

o= r__d+tv.
’ NR® +2dv+V* c9
h €9
For=l——
VR +2dv+V*
Similarly, the resultant force £}, in global Cartesian coordinate in y direction can be obtained as
d+v d—v
F=F. WM-F. (=T =T C-10
’ < Cy \/R2+2a’v+v2 \/R2—2dv—i-v2 ¢ )
Then the limiting ratio of 7, and v when v approaches to 0 is
d+v 3 d—v
2
limi:Tlim(\/Rz +2dv+v: R =2dv+1 ):%1 (C-11)
v—>0 =0 v R° R
When the value of v is very small, assuming a parameter k7 as
20 T
T ?E (C-12)
The sign of kris
ky >0, if Tis tension.
ky <0, if T is compression. (C-13)
ky =0, if TisO.
The resultant force F, in global Cartesian coordinate in x direction is
F=F -(W)+F.-(-v)=T h +T h
oo o \/R2 +2dv+V* \/R2 —2dv+v* €19
When the value of v is small, the limiting value of resultant force F, is
lim F, = lim Th( 1 + 1 )=ﬁ (C-15)
V0 V0 \/R2 +2dv+V* \/R2 —2dv+V* R

In another aspect, comparing kz in Eq.(C-6) and &7 in Eq.(C-12), we can obtain
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20 T
ky R. R hy, T
—_—= =(— —1
k, 2d’ E.A. (d) E A (C-16)
R® R

In usuval, EcA- > T, then the stiffening effect of 7" can be ignored. And Table.C-1 is a summary of three

stiffening patterns.
Table.C-1 Comparison of three kind stiffening patterns
F F f
EA EA
N N
T=0 T l T l
s 7777 7777
(a) Stiffening pattern [ (b) Stiffening pattern I (c) Stiffening pattern Il
o . Stiffening effect is aroused by EA | Stiffening effelct is only aroused by
tiffe ffect
ZA ening effect is aroused by and 7, but stiffening effect of 7 can | 7, and £4 does not provide stiffening
' be ignored. effect.

C.2 Stability of a column stiffened by one spring

X
\F L
k S\ R
EI ] |
o
X :y
s
JT7TT B %’y
(@) (b) (©)

Fig.C-3 Column stiffened by one spring at top

Fig.C-3(a) shows a column stiffned by one spring at top. Fig.C-3(b) shows the shape of the column after
buckling happens. And Fig.C-3(c) shows the isolated infinitesimal body of the column. The relationship
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between curvature and moment can be expressed as
Ep"=-M (C-17)
And from Fig.C-3(c), moment at abritary cross section is
M=kv(l-x)-F(v-y) (C-18)

Substituting Eq.(C-18) into Eq.(C-17), we can obtain

F —kv(l —x)+ Fv
"ty C-19
Y I (C-19)
Here a parameter 4 is assumed as
F
A =— C-20
I (C-20)
Then Eq.(C-19) transforms into
kv
"+ y=——(1-x)+ A C-21
YAy =g (=) (C-21)
The general solution of Eq.(C-21) is
_ AcosAx+ BsinAx+v——2_ (- x) (C-22)
g EI

The boundary conditions are : =0, =0 at x=0; y=v at x=/. By using these boundary conditions, we can obtain

A+v—-—5—=0
AEI
)LB+2£:0 (C-23)
AEI
AcosAl+ BsinAl+v=v

Substituting 4 in the first term and B in the second term into the third term in Eq.(C-23), we can obtain

! )cos Al +

k
1-
(« AEI LEI

sinAl)v=0 (C-24)

Eq.(C-24) is the buckling control equation.
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1) If elastic stiffness of the spring & = 0, Eq.(C-24) transforms into
(cosAl)v=0 (C-25)
As value of v is an arbitrary number, there is
cosAl=0 (C-26)

As the minimum positive value (4/) satisfying Eq.(C-26) is 0.5z, then we can obtain

A== 2
) (C-27)

Substituting Eq.(C-27) into Eq.(C-20), the critical load £, is

cr (2 1)2 ( . )
2) If elastic stiffness of the spring & # 0, the solution of Eq.(C-24) is
(1- K )cos Al + sinA/=0 C-29
A’EI AEI ©2)
Here noting two non-dimensional parameters  and 7 as
u=A»Al
k (C-30)
y=—
EIIT
Substituting # and r into Eq.(C-29), we can obtain
u}
tanu =u —— (C-31)

Numerical method can be used to get the solution of u in Eq.(C-31). Especially, when £ is infinity, #=4.493 can

be obtained. The corresponding critical load F, is

F,=u'>r (C-32)
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Table C-2 Materials parameters of the column

193

Young’s modulus | Poisson’sratio | Internal diameter External diameter Length
Column 205[GPa] 03 10[cm] 30[cm] 10[m]
Table.C-3 First order buckling modes of column by FE method
< \ <
=0 r=62.11 r=1.24x10°
2 2 2
F, =027 F =1967 5 F =202
/ / /

Table.C-2 shows the materials parameters of the column in numerical analysis. And Table.C-3 gives the results

obtained by FE methods. In another aspect, the critical loads calculated by Eq.(C-31) are almost identical to the

ones obtained by FE methods, so their values are omitted here.
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Appendix D
D.1 Approximate approach for the stiffness of pseudo-spring

From Eq.(6.9) in Section 6.3.1 of Chapter 6, reaction forces F..; and F¢. are given as follows:

N(@+v)' - (R -R)))

FC'7=2— 2\/4— 2p2 _(p2_ p2, (= 242
Ge+V) VAT +V) R = (R =Ry + (Y +v))

i

D-1
N, R -R ®©-H
ex=o (5 +D
2 (Yc+v)
Especially, when R,=R,, Eq.(D-1) transforms into
N@e+v)
Fey =
2J4R} — (T + V)
(D-2)
N 1
cx=—(——=+D
2 (Yety)
o . . V2o 1
Here the same example in Section 6.6 of Chapter 6 is used. Assuming N=1, R, = 10 Vo= \/ERl = 3
According to Eq.(6.15), the accurate value of stiffness of pseudo spring is
x _ 4NR? _10
accurate W - 03_3)
On contrast, here an approximate of stiffness of pseudo-spring is defined as follows:
kappr(). = [FC'T(J'_V) - FC'}(_V)] / v 03_4)

Table. D-1 Approximate value of Kyppro.

v 10* 10° 10”
Feooy () 0.50050038 0.50503788 055416880
Fes () 049950037 049503712 045341026

Fappro 10.0001 10.0008 10.0759

If the value of v is known, then by static method the reaction forces £, (+v) and F;..;,(-v) can be obtained.

Table.D-1 shows the results of three different values of v. From table.D-1, we can obtain when v is 10™ or 107,
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the approximation of k. is close to the accurate value in Eq.(D-3), therefore this approximate approach can

be used to obtain the stiffness of pseudo-spring.

D.2 Extension of approximate approach

Next the approximate approach to get the stiffness of pseudo-spring in numerical example in Section 7.2.3 of
Chapter 7 will be introduced.

v, v
e

yI
0,0 r
e (0,0)

Fig.D-1 Mechanistic movement of the membrane

FigD-1 shows the mechanistic movement of the membrane (seen as a curved line) in x direction. The
coordinates of A, B' and C' after movements are (0, 0), (a, b), and (r+v, r) respectively. The distances of line AB

and line BC are assumed to keep constant after movement. Then from the geometric relationship we can obtain

a’+b* =R’ D)
(a—r—v)Y +(b-r) =R? )
The solution of (a, b) in Eq.(D-5) is
a=~R -b
b 2a(r+v)+(r+v) +r’ (D-6)
2r
In another aspect, the relationship between F and F, is
i _r=b
F. r+v-a (D-7)

X

Meanwhile, from the equilibrium condition of the moment at the position A, we can obtain
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N

2

(a+b)+For=F,(r+v) (D-8)

Substituting the expression of F}, in Eq.(D-7) into Eq.(D-8), the expression of F, can be obtained as

N

«(a+b)
V2
F=—"% (D9)

o(r+v)—r

r+v-—a

In Fig.D-1, assuming r=1.7, then the value of R in Fig.D-1 is R=1.24448637. For these conditions the
approximate stiffness of pseudo-spring is noted k. And N is assumed as 1(N). By using Eq.(D-9) and Eq.(D-4),

F. (+v), F; (-v) and & corresponding to different values of v are shown in Table.D-2.

Table.D-2 Approximate values of &

v 10" 10° 107
F.(+v) 0.96654714 0.97217320 1.03208550
F.(-v) 0.96530527 0.95975404 0.90736341

k 12.4187 12.4192 12.4722

47

"2 g

“ Tn .
Fig.D-2 Heights of nodes in the circular arch

In FE analysis, the entire arch is divided into 48 linear beam elements along circumferential direction, and each

element has the same length. Fig.D-2 shows the heights of nodes in the circular arch.

In Table.D-2, the approximate stiffnesses of pseudo-spring when  is 1.7m have been obtained. By using the
same method in equations above and assuming v as 10 and N=1, we can get other stiffnesses of
pseudo-springs at different nodes. The results are given in Table.D-2. In Table.D-3, symbol 7, is means the
height of the u-th node.
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Table.D-3 Approximate stiffnesses of pseudo-springs

1”47:1.71'11 r12:1.2021m r120.1112m ry

ky | 124187N/m | 17.5624N/m | 189.8542 N/m | kyXry/ 1,

In another aspect, if v=0, from Eq.(D-7) and Eq.(D-9), we can obtain

N a+b)
o2 AT b N (a+b)r—b)

vor=b r—a 2 (a-byr (D-10)

s

r—a

Considering the symmetric of mechanistic membrane, the resultant force P, in y direction is 2F), and their

values are given in Table D4 (assuming N=1.).

Table.D-4 Resultant forces in y direction

Ty7 2 r Ty

P, 3.3461 3.3461 3.3461 3.3461
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Appendix E

E.1 Arch-spring models

a) In-plane

0.5a570.5a 0.50570.5a

(a) Anti-symmetric arch-spring model (b) Symmetric arch-spring model
Fig.E-1 Arch-spring models in-plane
The arch has a hollow circular constant cross section with external diameter equaling 12mm and internal
diameter equaling 6mm. The Young's modulus is 205Gpa and the Poisson’s ratio is 0.3. The entire arch is
divided into 48 linear beam elements, and each beam element has the same length. One brace is divided into

one linear truss element. The radius of the arch is 1m. The central angular of the arch is z. The external force is

. . . . E El
assumed as uniform compression. Spring ratios 7, and r, are assumed as r, = k/ (R—f , 1y =k/ (R—3y)

respectively.

Table.E-1 Critical loads g (unit: EIX/R3-hinged ended boundaries)
7y (a) Anti-symmetric (b) Symmetric
0 3.06 8.15

5.11 4.16 8.88
10.22 5.26 9.59
15.34 6.36 10.29
20.45 7.46 10.98
25.56 8.15 11.65
30.67 8.15 12.29
40.90 8.15 13.53
51.12 8.15 14.67
61.34 8.15 15.30
66.45 8.15 15.30
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Table.E-2 Critical loads g, (unit: £L/R-fixed ended boundaries)
7y (a) Anti-symmetric (b) Symmetric
0 8.15 13.15
5.11 8.88 13.89
10.22 9.59 14.61
20.45 10.98 16.05
30.67 12.29 17.45
40.90 13.15 18.82
51.12 13.15 20.16
61.34 13.15 2145
71.57 13.15 22.69
81.79 13.15 23.89
92.01 13.15 24.50
97.13 13.15 24.50
b) Out-of-plane
Fig.E-2 Arch-spring model out-of-plane
Table.E-3 Critical loads g, (unit: £I,/R’)
p (a) Hinged ended in-plane (b) Fixed ended in-plane
7 and fixed ended out-of-plane and out-of-plane
0 2.52 2.52
0.51 2.85 2.85
1.53 3.06 3.50
2.56 3.06 4.15
3.58 3.06 4.79
4.60 3.06 543
7.67 3.06 5.83
1534 3.06 5.83
25.56 3.06 5.83
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E.2 Single arch stiffened by braces

a) In-plane

(e) Pattern AC (f) Pattern BC
Fig.E-3 Stiffening patterns of single arch in-plane

Parameters: R-radius of the arch; E~Young’s modulus of the brace; Ac-area of cross section of the brace;

E-Young’s modulus of the arch; /-inertia of moment, and /=/,=/,. Spring ratio of the brace and the arch is

assumed as 7, = (EC;C)/ (% .

Table.E-4 Critical loads g,, (unit: EJ/R’-hinged ended boundaries)

Ty Pattern A Pattern B Pattern C Pattern AB Pattern AC Pattern BC
0 3.06 3.06 3.06 3.06 3.06 3.06
5.11 3.06 3.84 741 3.84 741 8.20
2045 3.06 6.17 9.46 6.17 11.28 11.36
51.12 3.06 10.83 10.87 10.83 14.49 14.79
76.68 3.06 14.68 11.69 14.68 15.31 15.32
102.24 3.06 15.30 12.28 15.30 15.31 15.33
15335 3.06 15.30 13.07 15.30 15.31 15.34
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Table.E-5 Critical loads g, (unit: EIR-fixed ended boundaries)
Ty Pattern A Pattern B Pattern C Pattern AB Pattern AC Pattern BC
0 8.15 8.15 8.15 8.15 8.15 8.15
5.11 8.15 8.67 11.20 8.67 11.20 11.66
2045 8.15 10.18 15.88 10.18 16.58 1742
51.12 8.15 12.97 19.01 12.97 19.01 19.71
76.68 8.15 15.00 19.51 15.00 19.51 20.22
102.24 8.15 16.70 19.74 16.70 19.74 20.51
153.35 8.15 19.03 19.97 19.03 19.97 20.87
204.47 8.15 20.27 20.07 20.27 20.07 21.13
b) Out-of-plane

1) Hinged ended in-plane and fixed ended out-of-plane

(a) Pattern D

(b) Pattem E

(c) Pattern DE
Fig E-4 Stiffening patterns of single arch out-of-plane

Table.E-6 Critical loads g,, (unit: EI/R’)

7y Pattern D Pattern E Pattern DE
0 2.52 2.52 2.52
0.51 2.75 2.62 2.85
1.53 3.06 2.82 3.52
5.11 3.06 3.45 4.61
25.56 3.06 5.44 10.09
51.12 3.06 6.29 13.04
76.68 3.06 6.65 14.75
102.24 3.06 6.85 1532
153.36 3.06 7.05 1532
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2) Fixed ended both in-plane and out-of-plane

Table.E-7 Critical loads g,, (unit: EJ/R’)

7y Pattern D Pattern E Pattern DE
0 2.52 2.52 252
0.51 2.75 2.62 2.86
1.53 321 2.82 3.52
5.11 4.82 345 5.68
25.56 5.83 5.44 10.09
51.12 5.83 6.29 13.04
76.68 5.83 6.65 14.75
102.24 5.83 6.85 15.70
153.36 5.83 7.05 16.63

E.3 Cross arch stiffened by braces

(e) Pattern GH
Fig.E-5 Stiffening patterns of cross arch
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Table.E-8 Critical load ¢, (unit: EI/R3—hinged ended boundaries)

"p Pattern F Pattern G Pattern H Pattern FH Pattern GH
0 1.16 1.16 1.16 1.16 1.16
5.11 1.16 1.16 2.30 2.30 2.30
20.45 1.16 1.16 5.61 5.61 5.61
51.12 1.16 1.16 9.23 10.99 9.91
76.68 1.16 1.16 9.81 11.80 11.36
102.24 1.16 1.16 1025 11.89 11.90
153.35 1.16 1.16 10.98 11.94 11.96
204.47 1.16 1.16 11.56 11.96 11.99

Table.E-9 Critical loads g, (unit: EJ/R’-fixed ended boundaries)

Ty Pattern F Pattern G Pattern H Pattern FH Pattern GH

0 5.83 5.83 5.83 5.83 5.83
5.11 5.83 5.83 6.77 6.77 6.77
20.45 5.83 5.83 9.33 9.33 9.34
51.12 5.83 5.83 13.03 13.03 13.04
76.68 5.83 5.83 14.74 14.74 14.75
102.24 5.83 5.83 15.69 15.69 15.70
15335 5.83 5.83 16.61 16.61 16.63
204.47 5.83 5.83 17.03 17.03 17.07




