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ABSTRACT 

In this thesis, circular arches with symmetric closed cross section are taken as research objects, the elastic 

stability problems of circular arches with straight components and flexible components are mainly studied. The 

elastic stiffnesses of straight components play an important role in providing stiffening effects. In another aspect, 

for flexible components, if there are directly loads applied on flexible components, generating internal forces of 

flexible components may provide a type of stiffness (so-called stiffness of pseudo-spring) to stiffen arches. 

The research work is done mainly in following aspects: 

In Chapter 1, the background, the research purpose, the past researches and outline of this thesis are introduced.  

In Chapter 2, according to two categorizing rules, one is the position of reaction force of braces, and the other 

one is the spatial relationship of the arch and braces, the stiffening patterns of single arch and cross arch are 

classified. 

In Chapter 3, formulations of elements in finite element method are mainly discussed. Linear buckling analysis 

method by using FE approach to obtain the critical load and buckling mode for the bifurcation point is 

introduced. In order to treat the buckling problems of the circular arches and rings under uniform compression 

as linear buckling problems, modified matrixes considering the follower force effects of uniform compression 

are stated. Furthermore, formulations of linear beam element and linear truss element, formulations of 

geometric nonlinear beam element and geometric nonlinear truss element in FE approach are given. 

In Chapter 4, theoretical approaches to analyze in-plane and out-of-plane elastic stability problems of circular 

arches under uniform compression are discussed. The static equilibrium differential equations built on the 

isolated infinitesimal body may be divided for in-plane stability and out-of-plane stability separately. Then 

related general solutions of displacements for in-plane stability and out-of-plane stability are given in explicit 

expressions. Buckling control equations for calculating the critical loads are also obtained, and specific 

numerical examples and FE method are used to verify these buckling control equations. 

In Chapter 5, arch-spring models are proposed to simplify arches stiffened with straight braces. By using 

general solutions of displacements, the relationship of internal forces and these displacements on isolated 

infinitesimal body can be built, then the theoretical procedures for deducing the buckling control equations for 

in-plane stability and out-of-plane stability are given respectively. In addition, no matter in-plane stability or 
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out-of-plane stability, spring ratios of the stiffnesses of the braces and arches are proved to be existing. 

Furthermore, stability problems of several stiffening patterns of single arch and cross arch, as well as hoop-rings 

stiffened with spokes, are analyzed. 

In Chapter 6, the stiffening principle of flexible components is studied. Study work shows that the stiffening 

effects of elastic stiffnesses of flexible components can be ignored, and then the generating internal tension 

aroused by external loads mainly contributes to stiffening structures. Through an example of specific curved 

cables, explicit expressions of so-called stiffnesses of pseudo-springs are given. Validities of these stiffnesses of 

pseudo-springs are proved through comparison of the results obtained by theoretical analysis and by nonlinear 

FE method on a numerical example of a column model featuring with curved cables. And as applications, the 

stability problems of a guyed mast and a circular arch featuring with curved cables are analyzed. The variations 

of critical loads in these two structure systems show that the stiffening effects of curved cables are very similar 

to the one in the example involving column. A typical characteristic of the stiffening effect of curved cables is 

that there are optimal external loads on curved cables to obtain maximum critical loads. Oversize external loads 

on cables will decrease the critical loads, and they will also make the curved cables provide stiffening effect 

analogous to hinged ended. 

In Chapter 7, three negatively pressured pneumatic structures utilized as first-aid shelters are constructed. 

During the experiments, stiffening pattern in setting ropes along the peripheral direction of multiple-arch 

skeleton can stop rotational buckling behavior and greatly increase the critical loads of the skeleton. 

Light-weight infrastructures are also verified available in the practice. Furthermore, arch model with 

pseudo-springs is proposed to simulate the stiffening effect of curved membrane in negatively pressured 

pneumatic structure in numerical analysis, and vertical load pattern and radical load pattern in numerical 

analysis are compared. Finally, through a load test experiment processed in a column structure featuring with 

curved cables, the changing of buckling shapes of the column is observed when the loads on curved cables are 

increasing, and the stiffnesses of pseudo-springs are proved to be existing in curved cables. 

In Chapter 8, the conclusions of this thesis and future work are discussed. 
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Chapter 1 Introduction 

1.1 Background and research purpose 

Arch structure is a kind of light-weight structure that mainly transmits axial compression force to the boundary 

supports. Because of the concise beauty in architecture and high strength in structure, in Japan, China, Europe 

and other places in the world, arch structures such as arch bridges and roofs structures are widely utilized. 

However in the other aspect, with the decreasing of the weights of arches, large displacements and stability 

problems may also occur.  

In order to solve such problems mentioned above, constraint components can be utilized to restrain the 

structural behaviors of arch structures. These constraint components can be sheeting, braces, or other secondary 

members, which will improve twist, rotation, warping deflection at local places of the arch structures, as well as 

prevent buckling behavior of the arch structures, as shown in Fig.1-1[144]. The existing components may also 

increase the resistance strength of the arch structures.  

   
(a) (b) (c) 

Fig.1-1 Constraint components at local places of the arch structures [144] 

In another aspect, as noted above, the axial compression forces are the dominant forces for the arch structures, 

then infrastructures in the boundary are needed to react against the forces transmitted from arch, such as the 

horizontal reaction forces at the bases. If stiffening components such braces with rational combination of arch in 

the boundary of arch, the axial compression force at arch and tension force at braces can be mostly eliminated 

by making the best use of counterbalance effect of total internal force in entire structures, and more rational 

hybrid arches could be designed. Fig.1-2 shows the single arch with braces (a) and multiply arches with 

hoop-rings (b)[26].  
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(a) (b) 

Fig.1-2 Arches with components in the boundary [26] 

Moreover, the straight strut can also be added at above brace to make the beam string structure consisting of 

arched beam in two-dimensional space (Fig.1-3(a)) [26]. And in three-dimensional space, suspen-dome pattern is 

available (Fig.1-3(b)) [26]. In addition, by combination of compression ring, tension ring and spoke (cable), a 

self-balance system called spoke structure can also be obtained (Fig.1-3(c)) [173]. 

  

(a) [26] (b) [26] 

 
(c) [173] 

Fig.1-3 Arch with components at boundary 

In above narrative, constraint components themselves can be seen as rigid structures, however there are also 

existing flexible constraint components such as curved cables or curved membranes, and the tension in these 

components helps to maintain their geometric shapes. When these flexible components connect to the arch 

structure, these flexible components may not only transmit force to the arch, but also may provide stiffening 

effect to the arch. Fig.1-4(a) [148] and Fig.1-4(b) shows arch structures supported by cable-nets. 
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(a)[148] 

 

(b) 

Fig.1-4 Arch structures supported by cable-nets 

Therefore it is need further research to understand the stiffening effect of constraint components. From Fig.1-1 

to Fig.1-4, the constraint components may be separated into two types: (1) rigid constraint components, such as 

sheetings, braces, struts, straight cables, these components themselves are structures, and their elastic stiffness is 

mainly utilized for stiffening; (2) flexible components, such as cable-nets, multistage cables, curved membranes, 

and prestress or external force should be applied to these components to generate internal tension to maintain 

their geometric shapes.  

For straight components, it is eager to know rational arrangements of them for optimal stiffening effects. As it is 

not economical to use constraint components with infinity elastic stiffnesses, then determining the suitable 

elastic stiffnesses of components corresponding to rigidity of arch structures is very importance. However, for 

flexible components, whether or not they can be treated as a new type of constraint components; it is 

straightforward to judge that oversize tension in flexible components will do harm to the stability of arch 

structures, so whether there is existing an optimal tension in flexible components or not, which can only 

increase the stability of arch structures.  

In theoretical discussion in this thesis, the arch structures are assumed as circular shapes and to have symmetric 

closed cross sections. And the types of buckling constraint components are supposed as braces and curved 

cables. 

The research purpose of this thesis is stated as follows: 

1) For straight buckling constraint components (ex. braces), theoretical procedures are aimed to be proposed to 

analyze in-plane stability and out-of-plane stability of the arch structures. Non-dimensional ratios of the elastic 

stiffnesses of the constraint components and the arches are aimed to be investigated by using formulations. 

Meanwhile, the stability problems of single arch and cross arch with different stiffening patterns are aimed to be 
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investigated respectively. 

2) For flexible buckling constraint components (ex. curved cables), the theoretical procedures and approximate 

approaches are aimed to be proposed to calculate intrinsic stiffening stiffnesses, which are generated only by 

internal tension rather than elastic stiffnesses of the flexible components. And whether or not there is an optimal 

tension in curved cable to provide the best stiffening effect is aimed to be verified. Furthermore, the buckling 

behaviors of arch structures stiffened with flexible components are aimed to be analyzed. 

3) In the practices of negatively pressured pneumatic structures, by using the straight components such as ropes 

to restrain the buckling modes of skeletons, the buckling phenomenons as well as the critical loads of skeletons 

are aimed to be investigated. And stiffening effects of membranes under negative draught head are aimed to be 

studied too. The realization possibility of light-weight infrastructures in this kind of pneumatic structure system 

is aimed to be verified. And simplified simulation models considering the stiffening effect of membranes in 

negatively pressured pneumatic structures are aimed to be proposed. 

1.2 Review of past researches 

1.2.1 Researches on the stability of arches and rings  

The elastic stability theory of arch and ring has a long history. Levy [38] (1884) gave the solution for the bucking 

of a thin-walled ring loaded by a normal pressure in-plane. Love [38] (1944) derived the relationships for the 

forces and moment resultants in terms of curvatures, strains and twists for curved rods, and he also obtained the 

equilibriums equations. Timoshenko [42] (1961) developed the stability equations for thin bars, and he obtained 

closed-form solutions for the elastic buckling of a simply supported arch of narrow rectangular cross section 

in-plane and out-of-plane when the load condition is uniform bending and uniform compression. Vlasov [43] 

(1961) and Yoo [73] (1982) substituted the generalized strains of curved beam into the strains of a straight beam 

to obtain the equilibrium differential equations. Wah [47] (1967) used equations from free vibrations of circular 

rings to obtain buckling control equations in-plane and out-of-plane. George [48] (1967) made a theoretical 

investigation of stability of pressurized toroidal ring under uniform distributed line load considering finite shear 

stiffness, extensional stiffness. John [92] (1987) derived the axial and shear strains, and substituted those into 

second variation of total potential to obtain the buckling control equations. Tomas [63] (1979) used equations of 

equilibrium from nonlinear elastic theory to analyze the stability of thin-ring, and he also developed Wah’s 

buckling theory in analyzing thick circular rings subjected to uniform compression. Yang [95] (1987) utilized the 
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principle of virtual displacements to deduce nonlinear differential equations of equilibrium for a horizontal 

curved I beam. Rajasekaran [103] (1989) used the principle of virtual work for the derivation of thin-walled 

curved beam equations. This approach to the derivation and the associated physical interpretation is associated 

with geometric stiffness matrices in finite element continuum formulations. Xiang [108] (1991) gave a summary 

of stability theory of arch by using static method and energy method as well as nonlinear FE methods. Kang [116] 

(1993) used the principle of minimum total potential energy to derive equilibrium equations governing the 

linear, the bifurcation buckling and the large displacement behavior of thin-walled curved beams. Pi [150] (2004) 

derived the finite strains and the energy equations for flexural-torsional buckling of arches based on accurate 

orthogonal rotation matrix. Kang [165] (2007) directly used energy methods and approximate functions of 

buckling modes to get the critical loads.  

1.2.2 Researches on the stability of arches with constraint components 

Researchers studied the constraint effect of components in arch structures for a long time. Östlund [40] (1954) 

discussed lateral stability of bridge arches which are braced with transverse bars. Almeida [49] (1970) made his 

study on the lateral buckling of twin arch ribs with transverse bars. Sakimoto [72] (1982) investigated inelastic 

lateral instability of bridge arches associated with flexural-torsional deformation of the arch rib. Wen [94] (1987) 

studied the elastic stability of deck-type arch bridges. Xiang [108] (1991) studied the effect of horizontal beam to 

the lateral flexural-torsional buckling of hybrid arch. Nazmy [129] (1997) investigated design parameters on both 

strength and stability of a three-dimensional long-span steel arch bridge. Tanata [14] (2001) used numerical 

analysis and modeling tests to study the structural characteristics of tensegric truss arch. Ju [140] (2001) discussed 

the instability behavior of cable-arch structure by using large deflection finite element approach. Pi [144] (2001) 

discussed the elastic flexural-torsional buckling of continuously restrained arches of I-section in uniform 

bending and in uniform axial compression by using total potential formulation. Katoh [20] (2002) used numerical 

methods and experiments to study the effect of rigidity ratio, boundary condition and eccentricity to affect the 

buckling of beam string structure with arched beams. Wu [18] (2004) tested the static and dynamic behavior of a 

cable-stiffened arch models with experimental experiments and numerical analysis. Yang [154] (2005) studied 

in-plane stability of six types of circular arch stiffened by cables with respective different rise-span ratio and 

load actions by nonlinear FE approach, and he also investigated the in-plane stability of paraboloid and catenary 

arches stiffened by cables. Kang [165] (2007) talked about the arrangement of inclined cables to the stability of 

circular arch based on a cable-stayed bridge model by energy methods.  
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1.2.3 Researches on numerical analysis of arches  

Dawe [53] (1974) proposed curved finite elements for shallow and deep arches respectively. Jones [59] (1977) used 

nonlinear FE approach to investigate the buckling strength of ring and shell. Robert [74] (1982) proposed 

matrices for change the nonlinear analysis of curved beam under uniform compression into linear eigenvalue 

problem. Prathap [87] (1986) designed a three-noded curved beam element with transverse shear formation from 

field-consistency principles. Wen [107] (1991) developed a nonlinear curved-beam finite element for three 

dimensional space system by using the principle of potential energy and polynomial functions. Fuji [11] (1998) 

proposed a computational procedure in nonlinear stability analysis of tracing the bifurcation points of a pined 

circular arch subject to stepwise changing loading modes. Raveendranath [136] (1999) proposed a two-noded 

shear flexible curved beam element with three degrees of freedom at each node based on curvilinear deep shell 

theory. Pi [170] (2010) also studied the effects of the pre-buckling response on the solution of the in-plane and 

out-of-plane uniform pressure loads of pin-ended elastic circular arches. 

1.2.4 Researches on negatively pressured pneumatic structures 

Negatively pressured pneumatic structure is a kind of pneumatic structure. Comparing to the positively 

pressured pneumatic structure (e.g. Tokyo dome), there are lack of examples of negatively pressured pneumatic 

structure. One deflect of positively pneumatic structure is that support structure of boundary will be very heavy 

in order to resist the inflation force of membrane. While for negatively pressured one, it is possible to reduce the 

weight of boundary, but at the same time skeleton is needed to resist the deflection force of membrane.  

In Reference [25], Frei Otto proposed a conceptual design of the shape of a sing-layer and a double-layer 

negatively pressured pneumatic structure by directly utilizing the opposite curvature of positively pressured 

ones. He also wanted to build a roof with this system for an agricultural facility. Prof. Kawaguchi [21] designed 

the Power pavilion with negatively pressured type and put it in practice in 1970 Osaka World Exposition. Afra 
[35] and Hong [36] studied the possibility of build negatively pressured pneumatic structures with light-weight 

boundary condition, and they built several experimental models for first-aid shelters during 2012 and 2013. 

1.2.5 Summaries of past researches 

1) In past researches on the stability of arch structures with constraint components, stiffening effect of straight 

components are mostly studied. But there is lack of theoretical procedures to propose non-dimensional ratio of 
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elastic stiffness of straight components and arch structures in analyzing stability problems. In addition, there are 

not many researches carried out on the comparison of various stiffening patterns of arch structures. 

2) There is lack of researches on the theoretical analysis to prove whether or not flexible components can 

provide stiffening effect to arch structures, and if they can, how to control the optimal tension on flexible 

components to provide best stiffening effect and do not do harm to the arch structures at the meantime, is also a 

problem to be discussed. 

3) In negatively pressured pneumatic structures, curved membranes or cables under negatively draught head 

may provide stiffening effect to main skeletons. Few researches are carried on the negatively pressured 

pneumatic structures in the past. And simulation models of negatively pressured pneumatic structures are never 

mentioned in the past researches. 

1.3 Outline of this thesis 

In Chapter 1, the background, the research purpose, the past researches and outline of this thesis are introduced.  

In Chapter 2, according to two categorizing rules, one is the position of reaction force of the brace, and the other 

one is the spatial relationship of the arch and the brace, the stiffening patterns of single arch and cross arch are 

classified. 

In Chapter 3, formulations in finite element method are discussed. Linear buckling analysis method by using FE 

approach to obtain the critical load and buckling mode for the bifurcation point is introduced. In order to treat 

the buckling problems of the circular arches and rings under uniform compression as linear buckling problems, 

modified matrixes considering the follower force effects of uniform compression are stated. Furthermore, 

formulations of linear beam element and linear truss element, formulations of geometric nonlinear beam 

element and geometric nonlinear truss element in FE approach are given. 

In Chapter 4, theoretical approaches to analyze in-plane and out-of-plane elastic stability of circular arches 

under uniform compression are discussed. The static equilibrium differential equations based on the isolated 

infinitesimal body may be divided separately for in-plane stability and out-of-plane stability. Then related 

general solutions of displacements for in-plane stability and out-of-plane stability are given in explicit 

expressions. Buckling control equations for calculating the critical loads are also obtained, and FE methods are 

used to verify these buckling control equations through specific numerical examples. 
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In Chapter 5, arch-spring models are proposed to simplify the arch structures stiffened with straight braces. By 

using general solutions of displacements, and the relationship of internal forces and these displacements can be 

built, then the theoretical procedures for deducing the buckling control equations for in-plane stability and 

out-of-plane stability are given respectively. No matter in-plane stability or out-of-plane stability, spring ratios of 

the stiffnesses of the braces and the arch structures are proved to be existing. Furthermore, stability problems of 

several stiffening patterns of single arch and cross arch, as well as hoop-rings stiffened with spokes are 

analyzed. 

In Chapter 6, the stiffening principle of flexible components is studied. Study work shows that the stiffening 

effects of elastic stiffnesses of flexible components can be ignored, and then the generating internal tension 

aroused by external loads mainly contributes to stiffening structures. Through an example of specific curved 

cables, explicit expressions of so-called stiffnesses of pseudo-springs are given. Validities of these stiffnesses of 

pseudo-springs are proved through comparison of the results obtained by theoretical analysis and by nonlinear 

FE method on a numerical example of a column model featuring with curved cables. And as applications, the 

stability problems of a guyed mast and a circular arch featuring with curved cables are analyzed. The variations 

of critical loads in these two structure systems show that the stiffening effects of curved cables are very similar 

to the one in the example involving column. A typical characteristic of the stiffening effect of curved cables is 

that there are optimal external loads on curved cables to obtain maximum critical loads. Oversize external loads 

on cables will decrease the critical loads, and they will also make the curved cables provide stiffening effect 

analogous to hinged ended. 

In Chapter 7, three negatively pressured pneumatic structures utilized as first-aid shelters are constructed. 

During the experiments, stiffening pattern in setting ropes along the peripheral direction of multiple-arch 

skeleton can stop rotational buckling behavior and greatly increase the critical loads of the skeleton. 

Light-weight infrastructures are also verified available in the practice. Furthermore, arch model with 

pseudo-springs is proposed to simulate the stiffening effect of curved membrane in negatively pressured 

pneumatic structure in numerical analysis, and vertical load pattern and radical load pattern in numerical 

analysis are compared. Finally, through a load test experiment processed in a column structure featuring with 

curved cables, the variation of buckling shapes of the column is observed when the loads on curved cables are 

increasing, and the stiffnesses of pseudo-springs are proved to be existing in curved cables. 

In Chapter 8, the conclusions of this thesis and future work are discussed. 
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Chapter 2 Category of Stiffening Patterns of Arches 

2.1 Introduction  

Study on the stability problems of various stiffening patterns of arches is one of the research objects in this 

thesis. So in this chapter, and category of stiffening patterns of single arch and cross arch with circular shapes is 

the key content.  

2.2 Two types of arches 

  

(a) Single arch (b) Cross arch 

Fig.2-1 Two types of arches 

In Fig.2-1, two types of circular arches are enumerated: (a) single arch; (b) cross arch. Single arch can be seen as 

a as a basic unit for hybrid arches, such as cross arch, so that researches on single arch can help to understand 

the behavior of hybrid arches. Here three kinds of deformation of single arch under symmetric loads are 

enumerated. Fig.2-2(a) shows deformation of one arch under uniform load, the entire arch sunkens. And in 

Fig.2-2(b), when the loads near the boundary are larger than the ones near top, the arch hunches up at the top 

and sunken near the boundary. On contrast, in Fig.2-2(c) when the loads near the top are larger than the ones 

near the boundary, the arch sunkens at the top and hunches up near the boundary.  

(a) Deformation shape 1 (b) Deformation shape 2 (c) Deformation shape 3 

Fig.2-2 Three types of deformations 
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2.3 Stiffening patterns 

When stiffeners are used to stiffen the arch structure, the mechanical behavior of arch will change according to 

different arrangements of arches. Reference [26] makes effort to divide the stiffening patterns of lattice shell 

structures with tensioned components. Referring to division methods in Reference [26], different stiffening 

patterns of single arch and cross arch are categorized. For convenience, here the constraint components in 

arches are assumed as all straight braces. And two rules are used for the categorizing. Examples in single arch 

are discussed firstly. 

Rule one [26]: by judging the position of reaction force of braces, the stiffening patterns are divided into internal 

reaction type and external reaction type: (1) internal reaction type (Fig.2-3, Fig.2-4(a)): both sides of brace are 

connecting to the arch, and the reaction forces of brace happen only in the arch. (2) external reaction type 

(Fig.2-4(b), Fig.(2-5)): one side of brace is connecting to the arch, and the other side is connecting to a support 

in boundary. So the forces of braces will finally transmit to the boundary. 

Rule two [26]: by considering the spatial relationship of single arch and braces in-plane, the stiffening patterns 

can be divided into two kinds: (1) longitudinal direction type: braces are set up along the longitudinal direction 

of the arch (Fig.2-3); (2) radial direction type (Fig.2-4): braces are set up in the radial direction of the arch. 

   

Fig.2-3 Longitudinal direction type/Internal reaction type of single arch 

 

  

(a) Internal reaction type (b) External reaction type 

Fig.2-4 Radial direction type of single arch 
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Fig.2-5 External reaction type of single arch 

Similarly, in the case of cross arch, the category of internal reaction type (Fig.2-6, Fig.2-7(a)) and external 

reaction type (Fig.2-7(b), Fig.2-8) are also applicative. In addition, when considering the spatial relationship of 

arch and braces, the stiffening patterns can be divided into three kinds in cross arch: longitudinal direction type, 

latitudinal direction type and radial direction type. The definitions of them are as follows: (1) longitudinal 

direction type (Fig.2-6(a)): braces are set up along the longitude of arch. (2) peripheral direction type 

(Fig.2-6(b)): braces are set up along the latitude of arch. (3) Radial direction type (Fig.2-7): braces are setting up 

along radial direction. 

  

(a) Longitudinal direction type 

 

  

(b) Peripheral direction type 

Fig.2-6 Internal reaction type of cross arch 
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(a) Internal reaction type (b) External reaction type 

Fig.2-7 Radial direction type of cross arch 

 

 

(a) Peripheral direction type 

 

(b) Radial reaction type 

Fig.2-8 External reaction type of cross arch 

2.4 Summaries 

In this Chapter, stiffening patterns of single arch and cross arch are mainly classified according to two rules: one 

is by reaction force of the brace and the other one is by spatial positions of the brace and the arch. By using the 

first rule, internal reaction type and external reaction type are obtained. And by the latter rule, stiffening patterns 

of single arch are divided into longitudinal direction type and radial direction type. In another aspect, stiffening 

patterns of cross arch are divided into longitudinal direction type, peripheral direction type and radial direction 

type. 
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Chapter 3 Formulations in Finite Element Method 

3.1 Introduction 

In this chapter, formulations of elements utilized in finite element method (FE), such as linear beam element, 

linear truss element, geometric nonlinear beam element and geometric nonlinear truss element are introduced. 

In addition, for the stability problems of arches and rings under uniform compression, modified matrixes 

considering the follower force effect are introduced, with which the stability problems can be treated as the 

linear eigenvalue problems.  

3.2 Linear buckling analysis 

In a structure system, because of the work done by the external force, the potential energy functionΠ (=V-W) 

changes. Here V is the strain energy, W is the work done by the external force. The expression of potential 

energy functionΠ is [167]  

1
2

T T
TV WΠ = − = −u K u u fi i i  (3.1) 

Here KT is the tangential stiffness matrix. u is the displacement vector, f is the nodal force vector. And KT 

can be divided into the elastic stiffness matrix KE and the geometric stiffness matrix KG as follows: 

T E G= −K K K
 

(3.2) 

When the structure system arrives at an equilibrium state, the potential energy function will arrive at a stationary 

point, at this moment the first variation of potential energy functionΠ  becomes 0, then the iterative equation 

can be obtained as 

T =K u fi  (3.3) 

In order to get indifferent equilibrium state, the second variation of potential energy functionΠ  should be 0, 

then the eigenvalue equation can be gotten as [34], [162] 

( ) 0E i G iλ− =K K ψi  (3.4) 
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In Eq.(3.4), λi is the i-th order eigenvalue, and ѱi is the eigenvector corresponding to λi
.. In addition, the 

minimum positive number of λi
. is called first order critical load, and the corresponding vector is called first 

order buckling mode. 

3.3 Formulations of linear elements 

3.3.1 Linear beam element  

 
Fig.3-1 Global and local Cartesian coordinate system of 3D-beam element 

Fig.3-1 shows the global and local Cartesian coordinate system of 3D-beam element with 2 nodes. In local 

Cartesian coordinate system, axis z̅ is determined by the direction from node i to node j, axis  ̅  is 

perpendicular to axis z̅, and axis x  is parallel to plane xy in global Cartesian coordinate, axis y  in local 

Cartesian coordinate is determined by right-handed screw rule [32]. 

Assuming the direction cosine of axis z̅ in local Cartesian coordinate is  

[ ]1 2 3
Tn n n=z  (3.5) 

Assuming x  is parallel to xoy plane, then the direction cosine of axis x  can be obtained as  

2 1
2 2 1/2 2 2 1/2
1 2 1 2

0
( ) ( )

T
n n

n n n n
 

= − 
+ + 

x  (3.6) 

Finally direction cosine of axis y  can be calculated as 

= ×y z x  (3.7) 
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Noting matrix r as  

[ ]=r x y z  (3.8) 

According to the displacement sequence of ∆xi, ∆yi, ∆zi, ∆θxi, ∆θyi, ∆θzi, ∆xj, ∆yj, ∆zj, ∆θxj, ∆θyj, 

∆θzj, the elastic stiffness matrix KE and geometric stiffness matrix KG of the linear beam element in 3D 

space are [3], [32] 
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(3.9) 
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(3.10) 

Here J is Saint-Venant torsion constant. G is the shear modulus, Ix and Iy are the moments of inertia. r0 is the 

radius of gyration. And the components in Eq.(3.10) are  

0
x y

zi zj

x xi xj

y yi yj

I I
r

A
N N N
V V V
V V V

 +
=


 = = −
 = = −

 = = −

 

(3.11) 

3.3.2 Linear truss element  

By the hypothesis of small stain and small deformation, the elastic stiffness matrix KE and geometric elastic 

stiffness matrix KG of liner truss element in 3D space can refer to Reference [1], [2], [28]. Noting a direction 

cosine matrix as C, and C is 3×1 matrix, and then other two matrixes are defined as 

T
e

EA
L

=k C Ci
 

(3.12) 
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3( )T
g

N
L

= −k I C Ci  (3.13) 

In equations above, E is the Young’s modulus, A is the area of cross section, L is the member length, N is the 

axial compression force, and I3 is a 3×3 unit matrix. 

The elastic stiffness matrix KE and geometric stiffness matrix KG can be obtained as follows: 

e e
E

e e

− 
=  − 

k k
K

k k  (3.14) 

g g
G

g g

− 
=  − 

k k
K k k  (3.15) 

3.4 Formulations of geometric nonlinear elements 

3.4.1 Geometric nonlinear beam element  

In this section, geometric nonlinear beam element which has two nodes is introduced [86], [101]. And in this section, 

Eq.(3.16)~Eq.(3.55) refer to Reference [86]. This beam element is deduced through an updated Lagrangian 

approach, and it can be applied in analyzing the structure with large rotation and small strain. Fig.3-2 shows the 

displacements and internal forces of the beam element. In Fig.3-2, local Cartesian coordinate system x 1x 2x 3 is 

set up on the beam element. x 1 is along the connecting line of two nodes, x 2 and x 3 are along the direction 

of principle inertia axes in cross section respectively. And after deformation, usually two cross sections in one 

beam element are not parallel with each other anymore, x 2 and x 3 may be defined by the average values of 

principle inertia axes respectively.  

 

 

(a) 
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(b) 

Fig.3-2 Displacements and internal forces of beam element [86], [101] 

By utilizing the principle of minimum potential energy, the internal forces of beam element can be obtained as 

3 3
13 13 23

4 24( ) ( )
30 30

EI EIPl PlM
l l

θ θ= + + −  (3.16) 

3 3
23 13 23

2 4 4( ) ( )
30 30

EI EIPl PlM
l l

θ θ= − + +  (3.17) 

2 2
12 12 22

4 4 2( ) ( )
30 30

EI Pl EI PlM
l l

θ θ= + + −  (3.18) 

2 2
22 12 22

2 4 4( ) ( )
30 30

EI Pl EI PlM
l l

θ θ= − + +  (3.19) 

( )t t
GJM

l
θ=  (3.20) 

2 2 2 2
13 13 23 23 12 12 22 22

1 1[( ) (2 2 ) (2 2 )]
30 30

eP EA
l

θ θ θ θ θ θ θ θ= + − + + − +  (3.21) 

Shear deformations and warping are neglected in equations above. Then firstly from the differential forms of 

Eq.(3.16)~Eq.(3.21), the relationship of internal forced and displacements can be obtained as  

∆ = ∆S K Vi  (3.22) 
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And components in Eq.(3.22) are  

[ ]13 23 12 22, , , , , T
tM M M M M P∆ = ∆ ∆ ∆ ∆ ∆ ∆S  (3.23) 

[ ]13 23 12 22, , , , , T
t eθ θ θ θ θ∆ = ∆ ∆ ∆ ∆ ∆ ∆V  (3.24) 
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 
 
 
 

K  (3.25) 

And the components in Eq.(3.25) are  

2 2 2 23
11 13 13 23 23 12 12 22 22

4 4 (8 4 3 ) (8 4 8 )
30 300 900

EI EAe EAl EAlK
l

θ θ θ θ θ θ θ θ= + + − + + − +
 

(3.26) 

2 2 2 23
12 13 13 23 23 12 12 22 22

2 (2 6 2 ) (2 2 )
30 300 900

EI EAe EAl EAlK
l

θ θ θ θ θ θ θ θ= − − − + − − +
 

(3.27) 

13 13 12 13 22 12 23 23 22(16 4 4 )
900
EAlK θ θ θ θ θ θ θ θ= − − +  (3.28) 

14 13 12 13 22 23 12 23 22( 4 16 4 )
900
EAlK θ θ θ θ θ θ θ θ= − + + −  (3.29) 

15 0K =  (3.30) 

16 13 23(4 )
30
EAK θ θ= −  (3.31) 

2 2 2 23
22 13 13 23 23 12 12 22 22

4 4 (3 4 8 ) (8 4 8 )
30 300 900

EI EAe EAl EAlK
l

θ θ θ θ θ θ θ θ= + + − + + − +  (3.32) 

23 12 13 13 22 23 12 23 22( 4 16 4 )
900
EAlK θ θ θ θ θ θ θ θ= − + + −  (3.33) 

24 12 13 13 22 23 12 23 22( 4 4 16 )
900
EAlK θ θ θ θ θ θ θ θ= − − +  (3.34) 

25 0K =  (3.35) 

26 13 23( 4 )
30
EAK θ θ= − +  (3.36) 

2 2 2 22
33 13 12 23 23 12 12 22 22

4 4 (8 4 8 ) (8 4 3 )
30 900 300

EI EAe EAl EAlK
l

θ θ θ θ θ θ θ θ= + + − + + − +  (3.37) 

2 2 2 22
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EI EAe EAl EAlK
l

θ θ θ θ θ θ θ θ= − − − + − − +  (3.38) 

35 0K =  (3.39) 

36 12 22(4 )
30
EAK θ θ= −  (3.40) 
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2 2 2 22
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4 4 (8 4 8 ) (3 4 8 )
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EI EAe EAl EAlK
l

θ θ θ θ θ θ θ θ= + + − + + − +  (3.41) 

45 0K =  (3.42) 

46 12 22( 4 )
30
EAK θ θ= − +  (3.43) 

55
GJK

l
=  (3.44) 

56 0K =  (3.45) 

66
EAK
l

=  (3.46) 

On the other hand, equilibrium equation in local Cartesian coordinate system is  

F = G Si  (3.47) 

In Eq.(3.47), matrix G is   

1 10 0 0 0 1 0 0 0 0 0

1 10 0 0 0 0 0 0 0 0 1

1 10 0 0 1 0 0 0 0 0 0

1 10 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0

T

l l

l l

l l

l l

 − 
 
 −
 
 
 −=
 
 

− 
 
 −
 − 

G  (3.48) 

Noting displacement vector ∆u  of node in local Cartesian coordinate system as 

[ ]1 2 12

Tu u u∆ = ∆ ∆ ∆u i i i  (3.49) 

Then ∆V can be obtained as 

T∆ ∆V = G ui  (3.50) 

The differential equation of Eq.(3.47) is 

∆ ∆ ∆F = G S + G Si i  (3.51) 

The matrix ∆G is 
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In Eq.(3.52), δ =∆u 7 − ∆u 1,  2 = − (∆u 9 − ∆u 3)/l,  3 =(∆u 8 − ∆u 2)/l. 

Substituting Eq.(3.22) into Eq.(3.51), the second term of Eq.(3.51) can change into expression of ∆u . 

( )T∆ = ∆ + ∆ = + ∆ == ∆F G K V D u G K G D u K ui i i i i i i  (3.53) 

Noting a=(M12+M22)/l2, b=(M13+M23)/l2, c=P/ , then matrix D in Eq.(3.53) is   
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D  (3.54) 

Transformation matrix of local Cartesian coordinate and global Cartesian coordinate is noted as  

 

(3.55) 
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Here r is a direction matrix. This transformation matrix can be obtained in Reference [119]. Then tangential 

stiffness matrix in global Cartesian coordinate is  

° °T
gK = R K Ri i  (3.56) 

3.4.2 Geometric nonlinear truss element 

 

Fig.3-3 Truss element in 3D space [151] 

Reference [151] introduced the formulation of geometric nonlinear truss element in 3D space. In this section, 

Eq.(3.57)~Eq.(3.86), Eq.(3.92)~Eq.(3.98) refer to Reference [151]. This formulation of truss element is an 

updated Lagrangian approach. Fig.3-3 shows a truss element with 2 nodes, the length of truss element is L, and i, 

j are the numbers of nodes. X1, X2, X3 are axes in global Cartesian coordinate system. The displacement 

vector u at any position of truss element can be expressed by shape functions N1 and N2 as follows 
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Here the displacement vector u can be expressed as  

1

2

3

u
u
u

 
 =  
  

u  (3.58) 

Shape functions N1 and N2 in natural coordinate system ξ are 
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1 1N
L
ξ

= −  (3.59) 

2N
L
ξ

=  (3.60) 

Noting displacement vector of node ue as 

{ }1 2 3 1 2 3
1 1 1 2 2 2

T
e u u u u u u=u  (3.61) 

Green-Lagrange stain form moment t to t ' is defined as  

{ }' ' ' ' ' ' '
11 22 33 12 13 232 2 2

Tt t t t t t t
t t t t t t tξ ξ ξ ξ ξ ξ=ξ  (3.62) 

ξt t'  can be divided into linear strain et  and nonlinear strain ηt . 

, ,
1 ( )
2t ij i j j ie u u= +  (3.63) 

So that the linear strain et  can be expressed as  

{ }11 22 33 12 13 232 2 2 T
t t t t t t t e L ee e e e e e= = = =e L u L N u B ui i i i  (3.64) 

Variation and derivative of linear strain et  is  

Lt eδ δ=e B ui
 (3.65) 

Lt e=e B u& &i  (3.66) 

Then noting 

, ,
1 ( )
2t ij k i k ju uη = i  (3.67) 

So that the nonlinear strain ηt  is  

{ }11 22 33 12 13 23
1 12 2 2
2 2

T
t t t t t t t NL eη η η η η η= = =η A H u A B ui i i i i i  (3.68) 

Variation of nonlinear strain ηt  is  
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t NL eδ δ δ= =η A H u A B ui i i i  (3.69) 

And the derivative of variation of nonlinear strain ηt  is  

( )t NL eδ δ δ= =η A H u A B ui i i i i  (3.70) 

Here the components in equations above are 
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(3.76) 

As N1 and N2 are functions of natural coordinate ξ, so that derivatives about Xi (i=1, 2, 3) in global 

Cartesian coordinate system cannot be obtained directly. Then Chain rule is used to process a coordinate 

transformation.  

31 2

1 2 3 1 2 3

T T
i i i i i i iN X N N N N N NX X

X X X X X Xξ ξ ξ ξ
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
Ji i  (3.77) 



Chapter 3 Formulations in Finite Element Method                                      26 

 

In Eq.(3.77), J is  

[ ]
1 1 1
1 2 31 2
2 2 2
1 2 3

X X XN N l m n
X X Xξ ξ

  ∂ ∂
= =  ∂ ∂    

J i  (3.78) 

In Eq.(3.78), l, m, n are direction cosine of the truss element. And there is  

T =J J Ii  
(3.79) 

Here I is a unit matrix. Multiplying JT at the two sides of Eq.(3.77) at the same time, we can obtain 

1 2 3

T T
i i i i i iN N N N N Nl m n

X X X ξ ξ ξ
 ∂ ∂ ∂ ∂ ∂ ∂ 

=   ∂ ∂ ∂ ∂ ∂ ∂    (3.80) 

By using Eq.(3.59), Eq.(3.60) and Eq.(3.80), BL and BNL become 
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B H Ni  (3.82) 

The linear part KL and the nonlinear part KNL of tangential stiffness matrix can be obtained as 
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( )t LL

T t
L t t tv

d v= ∫K B C Bi i  (3.83) 

t NL

T t
NL NLv

d v= ∫K B τ Bi i  (3.84) 

Here C t  is the component matrix of constitute tensor in global Cartesian coordinate system at time t,    is the 

component matrix of Cauchy tensor in global Cartesian coordinate system. 
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 (3.85) 
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 
 

τ  (3.86) 

In Reference [128], the relationships of stress tensor, strain tensor and constitute tensor between global 

Cartesian coordinate system and local Cartesian coordinate system are given as follows: 

ˆ ˆ ˆ( )( )i j i j
a b abi i i iτ τ= i i  (3.87) 

ˆcde ˆ ˆ( ) ( )k l
c di i i i= i i kle  (3.88) 

i j ijkl
klC eτ = i  (3.89) 

ˆˆ ˆab abcd cdC eτ = i  (3.90) 

In Eq.(3.87) and Eq.(3.88), i a and ii̅ are the unit vectors in local Cartesian coordinate and global Cartesian 

coordinate respectively. 
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Substituting Eq.(3.89) and Eq.(3.90) into Eq.(3.87), the relationship of component matrix of constitute tensor in 

global Cartesian coordinate system and local Cartesian coordinate system is  

ˆ ˆ ˆ ˆ ˆ( )( )( )( )ijkl i j k l
t t abcd a b c dC C i i i i i i i i= i i i i  (3.91) 

As 1111Ĉ E= (E is Young’s modulus), and defining  

{ }2 2 2l m n lm ln mn=p  (3.92) 

Then the expression of matrix t C  can be expressed as  

T
t E=C p pi  (3.93) 

Assuming component τ̂11of Cauchy stress tensor in local Cartesian coordinate system at time t is τ, according 

to Eq.(3.87), the components of Cauchy stress tensor in global Cartesian coordinate at time t are 

τ% { }11 22 33 12 13 23 T Tτ τ τ τ τ τ τ= = p  (3.94) 

The internal force vector Q in global Cartesian coordinate system is  

t

T t
Lv

d v= ∫Q B τ%i  (3.95) 

Then if assuming C = [l, m, n] , k = EA
L C∙CT, and a 3×3 unit matrix I3, then Eq.(3.83), Eq.(3.84) and 

Eq.(3.95) can be rewritten as  

e e
L

e e

− 
=  − 

k k
K

k k  (3.96) 

3 3

3 3
NL

A
L

τ − 
=  − 

I I
K

I I  
(3.97) 

{ }TA l m n l m nτ= − − −Q  (3.98) 
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3.5 Modified matrixes  

 

Fig.3-4 A straight beam element for the circular arch/ring [74] 

In Eq.(3.4), the calculation of bifurcation points can be treated as linear eigenvalue problem. If the KG in 

Eq.(3.4) are constituted for a unit value of pressure load, then the minimum positive eigenvalue λ can be 

considered as the critical load. And this solution of positive eigenvalue λ is only corresponding to the constant 

direction pressure [74]. In this section, Eq.(3.99)~ Eq.(3.108) refer to Reference [74]. 

But when the external load is uniform compression, because of the follower force effect, the normal eigenvalue 

approach in Eq.(3.4) cannot get an accurate solution. In order to make the normal eigenvalue approach available 

for the buckling analysis when external load is uniform compression, here modified matrixes [74] are introduced. 

Considering the straight beam element in Fig.3-4, then energy expression association with changing direction of 

uniform compression in a circular arch or ring can be written as  

2 2 2
0
( )

lq u v dx
R

δ Ω = −∫  (3.99) 

Here q is the uniform compression in the radial direction of the arch/ring, and R is the radius of the arch/ring.  

Assuming the generalized coordinate as  

[ ]1 2 3 4 5 6a a a a a a=a  (3.100) 

Then displacements u and v can be written as  

Lu = N ai  (3.101) 
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Cv = N ai  (3.102) 

Here NL and NC are  

[1 0 0 0 0]L x=N  (3.103) 

2 3[0 0 1 ]C x x x=N  (3.104) 

Then the Eq.(3.99) an be rewritten as  

2 T
Cqδ Ω = a K ai  (3.105) 

In the Equation above, KCqa is  

0
( )

l T T
Cqa L L C C

q dx
R

= −∫K N N N Ni i  (3.106) 

Here q is the uniform compression, and R is the radius of arch or ring. 

This is the desired matrix for uniform compression, except that it operates on the generalized coordinate rather 

than the local nodal coordinate. The transformation to local nodal coordinate in Fig.3-9 is stated as follows, 

which is obtained by evaluation NL, NC, and the dNL/dx at the nodes. 
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    
    
 =   
    
    
    
     

 (3.107) 

Noting Ta as the square matrix in Eq.(3.119), the referring to the local nodal coordinate , then the matrix in local 

nodal coordinate is  

1T
Cq a Cqa a

− −=K T K Ti i  (3.108) 

If the linear beam element noted above is used, it is necessary to notice the difference of the setting of local 

coordinate system in Fig.3-1 and in Fig.3-4, and rearrange the position of components in Eq.(3.108).  

In conclusion, when the external load is a uniform compression and straight beam element is used, then 

(KCG − KCq) is need to be substituted for geometric elastic stiffness KCG in local Cartesian coordinate system 
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before KCG in local Cartesian coordinate is transformed into KG in global Cartesian coordinate.  

 

Fig.3-5 A straight beam element for a circular arch/ring 

In addition, the same method can be used to deduce the modified matrix in 3D space. Assuming the generalized 

coordinate as  

[ ]1 2 3 4 5 6 7 8 9 10 11 12a a a a a a a a a a a a=a  (3.109) 

Then displacements u, v, w and γ can be written as  

uu = N ai  (3.110) 

vv = N ai  (3.111) 

ww = N ai  (3.112) 

γγ = N ai  (3.113) 

Here Nu , Nv, Nw and Nγ are  

2 3[1 0 0 0 0 0 0 0 0]x x xu =N  
(3.114) 

2 3[0 0 0 0 1 0 0 0 0]x x xv =N  
(3.115) 

[0 0 0 0 0 0 0 0 1 0 0]xw =N  (3.116) 

[0 0 0 0 0 0 0 0 0 0 1 ]xγ =N  (3.117) 

The other procedure is as same as the one in 2D space. And comparing the setting of local coordinate system in 

Fig.3-1 and in Fig.3-5, the setting of axes in these two configurations are the same, so there is no necessary to 
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change the position of components in KCq any more. 

3.6 Numerical example 

 

Fig.3-6 Cantilever beam under bending moment [159] 

Fig.3-6 shows a cantilever under a bending moment at one side [159]. The value of moment is M = nπEI/L. 

Here E is the Young’s modulus, I is the moment of inertia, L is the member length. Theoretical solution of this 

problem is R = EI/M = L/nπ [162]. Especially, when n=2, the equilibrium shape of beam is a closed arc. 

 

Fig.3-7 Shape of cantilever after deformation 

The geometric nonlinear beam element in section 3.4.1 is used in this example. The entire cantilever is divided 

into 8 geometric nonlinear beam elements. Fig.3-7 shows the equilibrium shape of beam under different values 

of moments. And Table.3-1 shows the comparison of results obtained by FE method (author’s program), by 

theoretical solutions and by past researches. 
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Table.3-1 Comparison of the results 

n 
u/L v/L 

FE. Reference [159] Theo. [162] FE Reference [159] Theo. [162] 

0.4 -0.243 -0.243 -0.243 -0.550 -0.550 -0.550 

0.8 -0.766 -0.765 -0.766 -0.720 -0.722 -0.720 

1.2 1.156 -1.158 -1.156 -0.480 -0.479 -0.480 

1.6 1.189 -1.193 -1.189 -0.137 -0.140 -0.137 

2.0 -0.998 -1.004 -1.000 0.000 -0.004 0.000 

From Table.3-1, when n is smaller than 1.6 (including 1.6), FE results and theoretical solutions is almost 

identical. While n is larger than 1.6, the difference of the results between these two methods are very small and 

can be ignored. Analysis results of Reference [159] are also very close to FE results in this section. 

3.7 Summaries 

In this chapter, the FE methods to study the stability of the structures are introduced. And formulations of FE 

elements proposed in past researches are also given. The main work is summarized as follows: 

1) The approach in solving linear eigenvalue problems to obtain the critical load and buckling mode by using 

FE method is introduced. 

2) Formulations of the linear beam element and the linear truss element based on small deformation and small 

strain are given. Furthermore, formulations of geometric nonlinear beam element and geometric nonlinear truss 

element based on large deformation and small strain are also deduced. 

3) In order to treat the buckling problems of the circular arch or ring under uniform compression as linear 

buckling problems rather than to use nonlinear FE analysis, modified matrixes considering follower force effect 

of uniform compression are introduced. 
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Chapter 4 Theory of Elastic Stability of Arches 

4.1 Introduction 

 

Fig.4-1 Circular arch under uniform compression 

In this chapter the in-plane stability and out-of-plane stability of circular arches with symmetric closed cross 

section under uniform compression will be discussed. When uniform compression is applied to the line of the 

circular arch which is the same as the arch axis, before buckling phenomenon occurs, axial compression force 

can be considered as the main internal force in the arch, and the moments and shear forces in the arch can be 

ignored. Fig.4-1 shows the configuration of a circular arch under uniform compression. 

Three kinds of methods are mainly used in theoretical analysis of elastic stability of arches. Firstly, researchers 

such as Wah[47], Yang[95], Rajasekaran[103], Kang[116], firstly proposed series of equilibrium differential equations 

for curved beams, then they used approximate functions of buckling modes to get the critical loads.  

Secondly, researchers such as Tomas [63], Xiang[108] used isolated infinitesimal body of the arch to build static 

equilibrium differential equations. Especially, Tomas [63] utilized displacements in a Fourier series, Xiang[108] 

used approximate functions of buckling modes for the critical loads of in-plane stability. And Xiang[108] also 

used general solutions of displacements to get the critical loads of out-of-plane stability.  

Thirdly, researchers such as John[92] and Kang[165] directly used energy methods to obtain critical loads for 

in-plane stability and out-of-plane stability of arches. 

In this chapter, static methods introduced by Xiang[108] are utilized to get the equilibrium differential equations 

of the circular arch under uniform compression for in-plane stability and out-of-plane stability respectively. The 

circular arch is assumed to have symmetric closed cross section. Although Xiang[108] gave the general solutions 

of displacements for out-of-plane stability, he did not give the general solutions of displacements for in-plane 
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stability. And then he used functions of buckling modes to obtain the critical loads. In this chapter, firstly the 

general solutions of the circular arch for in-plane and out-of-plane stability are deduced respectively. And then 

by using boundary conditions, buckling control equations for in-plane and out-of-plane stability are obtained 

respectively. In this chapter, Eq.(4.1)~Eq.(4.20), Eq.(4.39)~Eq.(4.80) refer to Reference [108]. 

4.2 Curvatures and moments 

 
Fig.4-2 Displacements in the isolated infinitesimal body of the arch [108] 

Fig.4-2 shows the displacements in the isolated infinitesimal body of the arch [108]. Translation displacements 

and rotational displacements in any cross section of the arch around x axis (perpendicular to the arch plane, 

lateral diction), y axis (pointing to the center of the arch in-plane, radial direction,) and z axis (tangential 

direction in -plane) are u, v, w and β, γ, θ respectively. Referring to coordinate system (x, y, z), coordinate system 

(ξ, η, ζ) is the substitution of former coordinate system in the arch after deformation occurs. 

The rotational displacement around x axis is  

1 [( )cos ( )sin ] ( )dv wv dv d w dw d v
ds ds R

β ϕ ϕ= − + + + − ≈ − +  (4.1)
 

And the increment of rotational displacement around y axis is  

( )cos ( )sind d d d d dγ γ γ ϕ θ θ ϕ γ γ θ ϕ∆ = + + + − ≈ +
 

(4.2) 

And increment of rotational displacement around z axis is  

( )sin ( )cosd d d d d dθ γ γ ϕ θ θ ϕ θ θ γ ϕ∆ = − + + + − ≈ −
 

(4.3) 

The rotational displacement around y axis can be obtained by 
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'uγ =
 

(4.4) 

Here Kx (excluding initial curvature 1/R), Ky, and Kz are curvatures of axis x, axis y and axis z respectively. 

Then the values of curvatures around axis x, axis y and axis z are calculated as follows.  

2

2
1

x
d d v dwK
ds R dsds
β

= − = +
 

(4.5) 

2

2y
d d d d uK

ds ds ds R Rds
γ γ θ ϕ γ θ θ∆ +

= = = + = +
 

(4.6) 

1
z

d d d d duK
ds ds ds R ds R ds

θ θ γ ϕ θ γ θ∆ −
= = = − = −

 
(4.7) 

 

In another aspect, moments Mξ, Mη, Mζ are the ones which appear in small length ds of the isolated 

infinitesimal body after deformation around axis ξ, axis η and axis ζ respectively. The directions of moments 

are stipulated in Fig.4-3 [108]. 

 
Fig.4-3 Moments in the isolated infinitesimal body [108] 

And the material of the circular arch is assumed to conform to Hook's law. As the displacements are very small, 

the geometric shape of the cross section can be assumed unchanged after buckling. The relationship of 

curvatures and moments can be found as follows [108]: 

'( ) '

x x

y y

z z w z

EI K M
EI K M

GJ K EJ K M

ξ

η

ς

 = −
 =


− =  

(4.8) 

Here E is the Young’s modulus, G is the shear modulus, Ix is moment of inertia around axis x, Iy is moment 

of inertia around axis y, Jz is Saint-Venant torsion constant, Jw is warping moment of inertia. 
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4.3 Equilibrium differential equations  

4.3.1 In-plane 

 

Fig.4-4 Equilibrium state of forces in-plane [108] 

In Fig.4-4, shear force Qη, axial compression force Nς and bending moment Mξ are in static equilibrium 

state under external load, qr is distributed load in η direction and qt is distributed load in ζ direction, mξ is 

the distributed bending moment around ξ axis [108]. From the static equilibrium conditions, we can obtain 

cos sin 0
cos sin 0

0

t

r

N dN N d Q d q ds

Q dQ Q d N d q ds
M dM M Q ds m ds

ς ς ς η

η η η ς

ξ ξ ξ η ξ

ϕ ϕ

ϕ ϕ

 + − − − =


+ − + − =
 + − + + =

 
(4.9) 

As dφ is very small, here cosdφ≈1, sindφ≈dφ are supposed. Meanwhile ignoring the effect of qt and mξ, 

then the equations above become 

r

dN Q
ds R

dQ N
q

ds R
dM

Q
ds

ς η

η ς

ξ
η


=




= − +



= −


 
(4.10) 

In Eq.(4.10), Qη of the third term is substituted into the one in the first term. Meanwhile taking one time 

derivative of the two sides of the third term and substituting the expression (dQη/ds) into the one in the second 

term, we can obtain 
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2

2

1 0

r

dN dM
ds R ds

d M N
q

Rds

ς ξ

ξ ς


+ =


 − = −

 
(4.11) 

By combining these two terms in Eq.(4.11), we can obtain 

3

3 2
1 rd M dM dq

ds dsds R
ξ ξ+ = −

 
(4.12) 

When the external load is uniform compression, referring to Reference [108], uniform compression qr in η 

direction after buckling can be obtained as  

r xq q NK= −
 

(4.13) 

Here N=qR. Then substituting the first term of Eq.(4.8) and Eq.(4.13) into Eq.(4.12), we can obtain 

3

3 2
1x x x

x x
d K dK dKEI EI qR

ds dsds R
− − =

 
(4.14) 

As the shape of the arch is assumed as circular, and ds = Rdφ is a pre-established condition, then we know 

1n n
x x

n n n
d K d K
ds R dϕ

=
 

(4.15) 

Substituting Eq.(4.15) into Eq.(4.14), we can obtain 

3 3

3 (1 ) 0x x

x

d K dKqR
EI dd ϕϕ

+ + =
 

(4.16) 

Love[38] and Timoshenko[42] assumed the circumferential strain of the centerline is 0 after buckling, by this 

assumption we can obtain  

dw v
ds R

=
 

(4.17) 

The same expression of Eq.(4.17) is  

dw v
dϕ

=
 

(4.18) 
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Then substituting Eq.(4.18) into Eq.(4.5), then curvature Kx around axis x becomes  

2

2 2 2
1 1

x
d vK v

R d Rϕ
= +

 
(4.19) 

Substituting Eq.(4.19) into Eq.(4.16), we can obtain 

5 3 3 3

5 3 3(1 )( ) 0
x

d v d v qR d v dv
EI dd d d ϕϕ ϕ ϕ

+ + + + =
 

(4.20) 

Eq.(4.20) is the buckling control equation for in-plane stability of the arch. And Eq.(4.20) is identical to the 

expressions in Reference [103], Reference [108] and Reference [165]. But the general solution of Eq.(4.20) is 

not given by Xiang[108], and function of buckling mode is adapted in above three references. Due to the lack of 

general solution of Eq.(4.20), here the procedure to calculate the general solution of the displacement v is 

introduced. 

When reviewing the derivation process of Eq.(4.20), we can find out that this equation originates from 

Eq.(4.16). Thus directly taking one time integration of two sides of Eq.(4.16), then we can obtain 

2 3

12 (1 )x
x

x

d K qR K A
EIdϕ

+ + =
 

(4.21) 

Assuming a parameter τ as  

3
2 1

x

qR
EI

τ = +
 

(4.22) 

As Eq.(4.21) is a second order linear differential equation with constant coefficient, the general solution of Kx is  

1
2 3 2sin cosx

AK A Aτϕ τϕ
τ

= + +
 

(4.23) 

Then substituting Eq.(4.19) into Eq.(4.23), we can obtain
 

2 2
2 2

2 3 12 2sin cosd v Rv A R A R A
d

τϕ τϕ
ϕ τ

+ = + +
 

(4.24) 

Eq.(4.24) can also be seen as a second order linear differential equation with constant coefficient, the general 

solution for this equation is   
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22 2
32

4 5 12 2 2sin cos sin cos
1 1

A RA R Rv A A Aϕ ϕ τϕ τϕ
τ τ τ

= + + + +
− −  

(4.25) 

In order to simplify the expression of Eq.(4.25), here we note  

{ }
22 2

32
4 5 12 2 21 1

A RA R RA B C D E A A A
τ τ τ

  =  
− −    

(4.26) 

Then Eq.(4.25) becomes 

sin cos sin cosv A B C D Eϕ ϕ τϕ τϕ= + + + +
 

(4.27) 

Then taking one time integration of the two sides of Eq.(4.18), we can obtain the expression of w as  

cos sincos sinw vd A B C D E Fτϕ τϕ
ϕ ϕ ϕ ϕ

τ τ
= = − + − + + +∫

 
(4.28) 

The first to third derivatives of Eq.(4.28) is  

' cos sin cos sinv A B C Dϕ ϕ τ τϕ τ τϕ= − + −
 

(4.29) 

2 2'' sin cos sin cosv A B C Dϕ ϕ τ τϕ τ τϕ= − − − −
 

(4.30) 

3 3''' cos sin cos sinv A B C Dϕ ϕ τ τϕ τ τϕ= − + − +
 

(4.31) 

From the third term of Eq.(4.10), we can obtain 

3

3 3( )xdM EI d v dvQ
ds dR d

ξ
η ϕϕ

= − = +
 

(4.32) 

1) Hinged ended in-plane 

 
Fig.4-5 Buckling of the arch in-plane  
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In the account above, the general solutions of displacements v and w in-plane has been obtained. Now let’s 

consider the boundary conditions. Firstly the boundary conditions of the circular arch are assumed as hinged 

ended, and the central angle of the arch is α, and uniform compression q is considered, as shown in Fig.4-5. 

The expressions of hinged ended boundary conditions are 

(1) 0v = , '' 0v = , 0w = at 0ϕ =  

(2) 0v = , '' 0v = , 0w = atϕ α=  

From these boundary conditions, we can obtain 

2

2 2

0

0
10

0 sin cos sin cos

0 sin cos sin cos
cos sin0 cos sin

B D E

B D

A C F

A B C D E

A B C D

A B C D E F

τ

τ
α α ατ ατ

α α τ ατ τ ατ
ατ ατ

α α α
τ τ

= + +


= − −


= − − +
 = + + + +
 = − − − −
 = − + − + + +  

(4.33) 

According to the sequence of A, B, C, D, E and F, a matrix S2D-H is assumed as  

2

2 2

0 1 0 1 1 0

0 1 0 0 0
11 0 0 0 1

sin cos sin cos 1 0

sin cos sin cos 0 0
cos sincos sin 1

τ

τ
α α ατ ατ

α α τ ατ τ ατ
ατ ατ

α α α
τ τ

 
 
 
 

− 
 =
 
 
 
 
 − −
 

2D-HS  (4.34) 

Then the buckling control equation can be expressed as  

det( ) 0=2D-HS  (4.35) 

Here a numerical example is used to prove the theoretical equation above. The example is given as follows:  
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Table.4-1 Materials parameters of the arch 

 Young's modulus [GPa] Poisson’ ratio Internal diameter [mm] External diameter [mm] 

Arch 205 0.3 6 12 

The circular angel of arch is π. And its radius is 1m. The arch has a hollow circular constant cross section. 

Table.4-1 shows the materials parameters of arch in numerical example. In numerical analysis, 2D linear beam 

element in Section 3.3.1 and the modified matrix in Section 3.5 in Chapter 3 are used. Entire arch is divided into 

48 and 192 linear beam elements, and each element has the same length.  

In another aspect, we also use the large finite element analysis software ANSYS 12.1 for comparison. Element 

BEAM 188 is used for simulation. The division number of entire arch is 48 elements. In the later narrative, we 

use symbol “ANSYS” for the results obtained by ANSYS 12.1, and symbol “FE” for author’s FE program.  

Table.4-2 Comparison of the buckling modes (hinged ended: 48 elements) 

First order Second order Third order 

 
（FE） 

 
（FE） 

 
（FE） 

 
(ANSYS) 

 
(ANSYS) 

 
(ANSYS) 

The buckling modes obtained by FE method and ANSYS with 48 elements are showed in Table.4-2. We can 

obtain the first and the third order buckling modes are anti-symmetric and the second order buckling mode is 

symmetric. The buckling modes obtained by FE method and ANSYS are almost identical to each other. And 

the comparison results by theoretical method, FE method and ANSYS are shown in Table.4-3. We can observe 

there is small difference between these three results.  
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Table.4-3 Comparison of the critical loads  

 First order (
EIx
R3 ) Second order (

EIx
R3 ) Third order (

EIx
R3 ) 

Theory (qcr) 3.00 8.00 15.00  

FE (qcr) 
48 elements 3.06 8.15 15.30 

192 elements 3.01 8.04 15.07 

ANSYS (qcr) 48 elements 3.00 8.03 15.11 

In theoretical analysis, the first order critical load with central angel π is 3.00, this result is identical to the one 

obtained by Timoshenko[42]. And by comparing the results obtained by FE methods and ANSYS, we know that 

with the same division of elements (48 elem.), Element 188 in ANSYS has high accuracy. But when we 

compare the results obtained by FE methods with different divisions, we know higher division number will 

make the results closed to the ones in the theoretical analysis. 

 

2) Fixed ended in-plane 

When the boundary conditions in Fig.4-5 are fixed ended, the boundary conditions can be expressed as  

(1) 0v = , ' 0v = , 0w = at 0ϕ =  

(2) 0v = , ' 0v = , 0w = atϕ α=  

From the boundary conditions, we can obtain 

0
0

10

0 sin cos sin cos
0 cos sin cos sin

cos sin0 cos sin

B D E
A C

A C F

A B C D E
A B C D

A B C D E F

τ

τ
α α ατ ατ
α α τ ατ τ ατ

ατ ατ
α α α

τ τ

= + +
 = +


= − − +
 = + + + +
 = − + −

 = − + − + + +

 (4.36) 

Similar to the case when the boundary conditions are hinged ended, from the sequence of A, B, C, D, E and F, a 

matrix S2D-F is assumed as  
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0 1 0 1 1 0
1 0 0 0 0

11 0 0 0 1

sin cos sin cos 1 0
cos sin cos sin 0 0

cos sincos sin 1

τ

τ
α α ατ ατ
α α τ ατ τ ατ

ατ ατ
α α α

τ τ

 
 
 
 

− 
=  

 
 − −
 
 − −  

2D-FS  (4.37) 

Then the buckling control equation can be expressed as  

det( ) 0=2D-FS  (4.38) 

The same numerical example in hinged ended case is used here. Table.4-4 shows the Buckling modes with 48 

elements. We know the first and third order of buckling modes are anti-symmetric, and the second order one is 

symmetric. The buckling modes calculated by FE method and ANSYS are almost identical to each other.  

Table.4-4 Comparison of the buckling modes (fixed ended: 48 elements) 

First order Second order Third order 

 

(FE) 
 

(FE) 
 

(FE) 

 
(ANSYS) 

 
(ANSYS) 

 
(ANSYS) 

The comparison of the first order to the third order critical loads calculated by theoretical method, FE method 

and ANSYS are shown in Table. 4-5. In theoretical analysis, the first order critical load with central angel π is 

8.00, this results is identical to the one obtained by Timoshenko[42]. And comparing the results of ANSYS and 

FE method, we know that with the same division of elements, ANSYS has higher accuracy. And comparing the 

FE results with different divisions, we observe FE and ANSYS results in higher division are closed to the ones 

in theoretical analysis. 
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Table.4-5 Comparison of the critical loads  

 First order (
EIx
R3 ) Second order (

EIx
R3 ) Third order (

EIx
R3 ) 

Theory (qcr) 8.00 12.90 24.00 

FE (qcr) 
48 elements 8.15 13.15 24.49 

192 elements 8.04 12.96 24.12 

ANSYS (qcr) 48 elements 8.03 12.99 24.31 

As complements, in Appendix B we introduce other two methods to obtain critical loads for in-plane buckling 

in past researches, one is using function of buckling mode[108], [165], and the other one is utilizing simplified static 

equilibrium method [42].  

4.3.2 Out-of-plane  

   

(a) (b) 

Fig. 4-7 Equilibrium state of forces out-of-plane [108] 

In this section, out-of-plane stability of circular arch with symmetric closed cross section is analyzed. Fig.4-7 

shows equilibrium state of circular arch in an infinitesimal length ds when flexural-torsional buckling happens 

out-of-plane [108]. These internal forces include lateral bending moment Mη, torsional moment Mζ, lateral shear 

force Qξ, axis force Nς, distributed load qξ, distributed moments mη and mζ around axis η and axis ζ.  

Researchers John [92], Rajasekaran [103], Pi [144] in their researches for the out-of-plane when the boundary 

conditions of the arch are hinged ended in-plane and simple ended out-of-plane, they thought that the moment 
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Mξ (used for in-plane stability) around ξ axis is 0 and the axial compression force is Nς=qR. And Pi [150] stated 

the moment Mξ (used in-plane stability) around ξ axis is very small when the boundary conditions of the 

arch are lateral fixed and he neglected the effect of Mξ in studying the out-of-plane stability, and the axial 

compression force is assumed as Nς=qR. Wah [47], Tomas [63], Xiang [108], Kang [116] separated the buckling 

control equations of the circular arch for in-plane stability and out-of-plane stability respectively, and these 

researchers also assumed axial compression force of the arch is Nς=qR. In this section, the method introduced 

by Xiang [108] is utilized. Ignoring the effect of Mξ when flexural-torsional buckling happens, we assume the 

axial compression force equals qR. From the static equilibrium condition in Fig.4-7, we can obtain  

0Fξ =∑  (4.39) 

0Mη =∑  (4.40) 

0Mς =∑  (4.41) 

From Eq.(4.39), we can obtain 

sin cos 0F Q dQ q ds N Qξ ξ ξ ξ ς ξγ γ= + + − ∆ − ∆ =∑  (4.42) 

As ∆γ is small, we could assume sin∆γ ≈ ∆γ, cos∆γ ≈ 1. And y
y

ds K dsγ
ρ

∆ = = . Eq.(4.42) can  

transform into the following equation. 

0y

dQ
q N K

ds
ξ

ξ ς+ − =
 

(4.43) 

In another aspect, from Eq.(4.40) we can obtain 

cos sin 0M M dM M d M d m ds Q ds= + − + + + =∑ η η η η ζ η ξϕ ϕ  (4.44) 

As sindφ ≈ dφ, cosdφ ≈ 1, neglecting the effect of mη, so that Eq.(4.44) can transform into   

0
dM M

Q
ds R

η ς
ξ+ + =  (4.45) 

Finally from Eq.(4.41), we can obtain 

cos sin 0M M dM M d M d m dsς ς ς ς η ςϕ ϕ= + − − + =∑  (4.46) 
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Neglecting the effect of mζ, and Eq.(4.46) can transform into 

0
dM M
ds R

ς η− =  (4.47) 

The combination of Eq.(4.43) and Eq.(4.45) is  

2

2
1 0y

d M dM
N K q

ds R ds
η ς

ς ξ+ + − =  (4.48) 

Then buckling control equation can be expressed as  

2

2
1 0

0

y

d M dM
N K q

ds R ds
dM M
ds R

η ς
ς ξ

ς η


+ + − =


 − =

 (4.49) 

Substituting the expressions of Mη, Mζ, Ky, and Kz into Eq.(4.49), we can obtain 

2 2

2 2

2

2

1[ ( )]" [ ( )]' ( ) 0

1[ ( )]' ( ) 0

z
y

y
z

d u GJ d du d uEI N q
ds R R ds R ds ds R

EId du d uGJ
ds R ds R ds R

ς ξ
θ θ θ

θ θ


+ + − + + − =


 − − + =

 (4.50) 

And when out-of-plane buckling happens, qξ ≈ qθ and Nς=qR are pre-established conditions. Then Eq.(4.50) 

can be simplified as 

4 2 2

4 2 2 2

2 2

2 2 2

( ) ( ) 0

( ) 0

y zz
y

z y y
z

EI GJd u GJ d u dEI qR
ds R ds R ds

GJ EI EId u dGJ
R ds ds R

θ

θ
θ

+
+ − + =

 +− + − =

 (4.51) 

Assuming two non-dimensional parameters λ and ω as 

y

z

EI
GJ

λ =
 

(4.52) 

3/y

q
EI R

ω =  (4.53) 

Substituting the expressions of λ and ω into Eq.(4.51), we can obtain 
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4 2 2

4 2 2 2 2

2 2

2 2 2

1 1( ) ( ) 0

1( ) 0

d u d u d
ds R R ds R ds

d u d
R ds ds R

ωλ λ θ
λ

λ θ λ
θ

 +
+ − + =


+− + − =

 (4.54) 

As the shape of the arch is circular, we can obtain 

1n n

n n n

d u d u
ds R dϕ

=
 

(4.55) 

1n n

n n n

d d
ds R d

θ θ
ϕ

=
 

(4.56) 

By using Eq.(4.55) and Eq.(4.56), Eq. (4.54) can transform into  

4 2 2

4 2 2

2 2

2 2

( 1) ( 1) 0

1 ( ) 0

d u d u R d
d d d

d u d
R d d

ωλ λ θ
ϕ λ ϕ λ ϕ

λ θ λθ
ϕ ϕ

 − +
+ + =


+− + − =

 (4.57) 

Firstly, from the second term of Eq.(4.57), we can obtain 

2 2

2 21 1
d u R d R
d d

θ λ
θ

ϕ λ ϕ λ
= −

+ +  
(4.58) 

Taking one time integration of two sides of Eq.(4.58), we can obtain 

1 1
du R d R d
d d

θ λ
θ ϕ

ϕ λ ϕ λ
= −

+ + ∫  (4.59) 

Then taking one time integration of both sides of Eq.(4.59) again, we can obtain 

( )
1 1

R Ru d dλ
θ θ ϕ ϕ

λ λ
= −

+ + ∫ ∫  (4.60) 

Taking two times derivative of both sides of Eq.(4.58), we can obtain 

4 4 2

4 4 21 1
d u R d R d
d d d

θ λ θ
ϕ λ ϕ λ ϕ

= −
+ +  

(4.61) 

Substituting Eq.(4.58) and Eq.(4.61) into the first term of Eq.(4.57), we can obtain 
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4 2

4 2( 2) (1 ) 0d d
d d

θ θ
ω λω θ

ϕ ϕ
+ + + − =  (4.62) 

Eq.(4.62) is a fourth order linear differential equation with constant coefficient. Assuming parameters a and b as  

2
2

a ω +
=  (4.63) 

1b λω= −  (4.64) 

Then the general solution of Eq.(4.62) can be obtained as  

1 1 2 2sin cos sinh coshA k B k C k D kθ ϕ ϕ ϕ ϕ= + + +  (4.65) 

Here k1 and k2 are  

2
1k a a b= + −  

(4.66) 

2
2k a a b= − + −  

(4.67) 

The first derivative and second derivative of two sides of Eq.(4.65) are  

1 1 1 1 2 2 2 2cos sin cosh sinhd Ak k Bk k Ck k Dk k
d

θ ϕ ϕ ϕ ϕ
ϕ

= − + +  (4.68) 

2
2 2 2 2
1 1 1 1 2 2 2 22 sin cos sinh coshd Ak k Bk k Ck k Dk k

d
θ ϕ ϕ ϕ ϕ

ϕ
= − − + +  (4.69) 

Taking integration of two sides of Eq.(4.65) one time and two times respectively, we can obtain  

1 1 2 2
1 1 2 2

cos sin cosh sinhA B C Dd k k k k E
k k k k

θ ϕ ϕ ϕ ϕ ϕ= − + + + +∫  (4.70) 

1 1 2 22 2 2 2
1 1 2 2

( ) sin cos sinh coshA B C Dd d k k k k E F
k k k k

θ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − − + + + +∫ ∫
 

(4.71) 
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1) Hinged ended in-plane and simple ended out-of-plane  

 
Fig.4-10 Buckling of the arch out-of-plane  

Here an example shown in Fig.4-10 in 3D space is used to explain the applications of equations above. The 

circular angel of the arch is α. Uniform compression q is applied to the arch. Assuming the boundary conditions 

are hinged ended in-plane and simple ended out-of-plane. Here simple ended means the nodes at boundary can 

rotate along their principal axes but be unable to rotate along the tangents to their center line [42]. This kind of 

boundary conditions can be given as follows: 

(1) 0θ = at 0ϕ = andϕ α=  

(2) 0Mη = at 0ϕ = andϕ α=  

(3) 0u = at 0ϕ = andϕ α=  

Firstly, let’s talk about boundary condition (2). As Mη is 0, we can obtain
2 2

2 20 0y
d u d uK
ds R d

θ
ϕ

= + = → = . 

Then from Eq.(4.58),
2

2 0d
d

θ
ϕ

= can be obtained. Then the boundary condition (1) and (2) can be expressed as 

1 1 2 2
2 2
1 2
2 2 2 2
1 1 1 1 2 2 2 2

0
0 sin( ) cos( ) sinh( ) cosh( )
0
0 sin( ) cos( ) sinh( ) cosh( )

B D
A k B k C k D k

Bk Dk
Ak k Bk k Ck k Dk k

α α α α

α α α α

= +
 = + + +
 = − +
 = − − + +

 (4.72) 

From equation set above we can obtain 

1

0
sin( ) 0

B C D
A kα

= = =
 =

 (4.73) 

From the boundary condition (3), by using Eq.(4.60), we can obtain 
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2 2
1 2

1 1 2 22 2 2 2
1 1 2 2

0

0 sin( ) cos( ) sinh( ) cosh( )

B D F
k k
A B C Dk k k k E F
k k k k

α α α α α

 = − + +

 = − − + + + +


 (4.74) 

Substituting Eq.(4.73) into Eq.(4.74), we can obtain 

0E F= =  (4.75) 

Finally from the second term in Eq.(4.73), 1sin( ) 0kα = . Then we know αk1 is nπ, we can obtain 

1
nk π
α

=  (4.76) 

Substituting Eq.(4.76) into Eq.(4.66), we can obtain 

4 2( ) 2 ( ) 0n na bπ π
α α

− + =
 

(4.77) 

Then substituting expressions of a in Eq.(4.63) and b in Eq.(4.64) into Eq.(4.77), we can obtain 

2 2

2

[( ) 1]

( )

n

n

π
αω
π λ

α

−
=

+  
(4.78) 

Finally substituting λ in Eq.(4.52) and ω in Eq.(4.53) into Eq.(4.78), the critical load qcr can be expressed as   

2 2

3
2

[( ) 1]

( )

y
cr

y

z

n
EI

q EInR
GJ

π
α
π

α

−
=

+
 

(4.79) 

When the central angle α is π. then the first order to the third order critical loads are  
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3

3

3

9 , the first order critical load 
4

64 , the second order critical load
9

225 , the third order critical load
16

y

y

z

y
cr

y

z

y

y

z

EI
EIR
GJ

EI
q EIR

GJ
EI

EIR
GJ




 +



= 
 +





+
  

(4.80) 

The first term in Eq.(4.80) agrees with the value obtained by Timoshenko [42]. 

 

2) Fixed ended in-plane and out-of-plane  

 
Fig.4-11 Buckling of the arch out-of-plane  

When the boundary conditions are fixed ended in-plane and out-of-plane, as shown in Fig.4-11. And this type 

of boundary conditions can be given as follows: 

(1) 0θ = at 0ϕ = andϕ α=  

(2) 0u = , ' 0u = at 0ϕ = andϕ α=  

The expressions of u' and u can be found in Eq.(4.59) and Eq.(4.60) respectively. Then using all the boundary 

conditions, we can obtain 
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1 1 2 2

2 2
1 2

1 1 2 22 2 2 2
1 1 2 2

1 2
1 2

1 1 1 1 2 2 2 2

0
0 sin( ) cos( ) sinh( ) cosh( )

0

0 sin( ) cos( ) sinh( ) cosh( )

0 ( ) ( )

0 [ cos( ) sin( ) cosh( ) sinh( )

B D
A k B k C k D k

B D F
k k
A B C Dk k k k E F
k k k k

A CAk Ck E
k k

Ak k Bk k Ck k Dk k

α α α α

α α α α α

λ

α α α α

= +
= + + +

= − + +

= − − + + + +

= + − − + +

= − + +

1 1 2 2
1 1 2 2

]

[ cos( ) sin( ) cosh( ) sinh( ) ]A B C Dk k k k E
k k k k

λ α α α α















 − − + + + +


 (4.81) 

According to the sequence of A, B, C, D, E and F, a matrix S3D-F is assumed as  

1 1 2 2

2 2
1 2

1 1 2 2
2 2 2 2
1 1 2 2

1 2
1 2

1 1 1 1 2 2 2 2
1 1 2 2

0 1 0 1 0 0
sin( ) cos( ) sinh( ) cosh( ) 0 0

1 10 0 0 1

sin( ) cos( ) sinh( ) cosh( ) 1

0 0 0

( )cos( ) ( )sin( ) ( )cosh( ) ( )sinh( ) 0

k k k k

k k
k k k k

k k k k

k k
k k

k k k k k k k k
k k k k

α α α α

α α α α
α

λ λ
λ

λ λ λ λ
α α α α λ



−

− −=

+ − −

+ − + − − −


3D-FS


 
 
 
 
 
 
 
 
 
 
 
 
 



 

(4.82) 

Then the buckling control equation which is the same expression of Eq.(4.81) is  

det( ) 0=3D-FS  (4.83) 

We use a numerical model with same parameters in Section 4.3.1 here. And the results are shown in Table.4-9. 

In numerical analysis, the 3D beam elements without modified matrix are utilized. We only consider 

out-of-plane buckling modes but in-plane buckling modes are not stated. We analyze the two cases. The first 

one has the boundary conditions that are hinged ended in-plane and simple ended out-of-plane. And second one 

has the boundary conditions that are fixed ended in-plane and out-of-plane. For the first case, in software 

ANSYS, the tangential stiffness matrix of this kind of boundary conditions is singularity, then we do not give 

the solution by ANSYS in this case.  

Table.4-6 shows the first order to third order buckling modes and critical loads when boundary conditions are 
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hinged ended in-plane and simple ended out-of-plane. And Table.4-7 ~Table.4-9 show first order to third order 

buckling modes and critical loads respectively when boundary conditions are fixed ended both in-plane and 

out-of-plane.  

Table.4-6 Buckling modes and critical loads 

Hinged ended in-plane and simple ended out-of-plane 

 

 
(48 elements) 

 

 
(48 elements) 

 

(48 elements) 

Theory 31.70 y
cr

EI
q

R
=  36.21 y

cr

EI
q

R
=  313.00 y

cr

EI
q

R
=  

FE 

48 
elements 31.73 y

cr

EI
q

R
=  36.34 y

cr

EI
q

R
=  313.28 y

cr

EI
q

R
=  

192 
elements

 
31.71 y

cr

EI
q

R
=

 
36.25 y

cr

EI
q

R
=  313.07 y

cr

EI
q

R
=  
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Table.4-8 First order buckling modes and critical loads 

Fixed ended in-plane and out-of-plane 

 

 
(FE: 48 elements) 

 

 

(ANSYS: 48 elements) 

Theory 
32.47 y

cr

EI
q

R
=  

FE 

48 
elements 32.52 y

cr

EI
q

R
=  

ANSYS 48 
elements 32.47 y

cr

EI
q

R
=  

192 
elements

 
32.48 y

cr

EI
q

R
=

 

 

Table.4-8 Second order buckling modes and critical loads 

Fixed ended in-plane and out-of-plane 

 

 
(FE: 48 elements) 

 

 

(ANSYS: 48 elements) 

Theory 35.71 y
cr

EI
q

R
=  

FE 

48 
elements 35.83 y

cr

EI
q

R
=  

ANSYS 48 
elements 35.72 y

cr

EI
q

R
=  

192 
elements

 
35.74 y

cr

EI
q

R
=
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Table.4-9 Third order buckling modes and critical loads 

Fixed ended in-plane and out-of-plane 

 

 
(FE: 48 elements) 

 

 

(ANSYS: 48 elements) 

Theory 313.32 y
cr

EI
q

R
=  

FE 

48 
elements 313.61 y

cr

EI
q

R
=  

ANSYS 48 
elements 313.41 y

cr

EI
q

R
=  

192 
elements

 
313.39 y

cr

EI
q

R
=

 

4.4 Summaries 

In this chapter, static equilibrium conditions in the isolated infinitesimal body is used to deduce the equilibrium 

differential equations for in-plane and out-of-plane buckling of the arch under uniform compression respectively. 

The main achievement is summarized as follows: 

1) General solutions of the displacements (v and w) for in-plane stability and of the displacements (θ and u) for 

out-of-plane stability are obtained respectively. By using these general solutions as well as boundary conditions, 

buckling control equations for in-plane and out-of-plane stability are able to be obtained. 

2) By using numerical examples, the comparison of the results calculated by FE formulations in Chapter 2, by 

large finite element software ANSYS, and by the buckling control equations are carried out. These three results 

are very close to each other, and the theoretical procedures proposed in this chapter are verified.  
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Chapter 5 Stiffening Effect of Straight Components 

5.1 Introduction  

In Chapter 4, the elastic stability of the circular arch in-plane and out-of-plane under uniform compression are 

discussed. And the general solutions of displacements from equilibrium differential equations for in-plane 

stability and out-of-plane stability are obtained in explicit expressions respectively. In past research, researches 

mostly paid attention to the solution of first order critical load of arches or rings, because it is thought that only 

the first order buckling mode seems to happen in practice and higher buckling modes may not happen after all. 

But in this chapter, when constraint components are used to stiffen arches, buckling modes of arches may 

transfer from lower buckling modes to higher buckling modes, so theoretical solutions of second order critical 

loads and higher order critical loads are also very important for judging whether the numerical solutions 

obtained by FE methods are accurate or not.  

The object of this chapter is to propose the theoretical approaches for analyzing the elastic stability problems of 

circular arches with straight components. And non-dimensional ratios (so-called spring ratios) of the stiffnesses 

of straight components and arches are aimed to be obtained. By taking braces as constraint components, 

arch-spring models are proposed and utilized for simplifications in theoretical procedures. 

5.2 In-plane 

5.2.1 Anti-symmetric buckling mode  

1) Hinged ended in-plane 

  
(a) (b) 

Fig.5-1 Anti-symmetric arch-spring model 
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In Table.4-2 in Section 4.3.1 in Chapter 4, we know the first order and the third order buckling modes of the 

arch are anti-symmetric and the second order buckling modes is symmetric. Therefore two different kinds of 

methods are used to establish arch-spring models. Fig.5-1(a) shows an anti-symmetric arch-spring model. A 

spring with an elastic stiffness k is set up in horizontal direction at the middle of the arch. And uniform 

compression q is applied in the plane of the arch. Symbols “L” and “R” in subscripts are used to distinguish the 

displacements and forces at the left side and right side of the spring. From Eq.(4.27) in Chapter 4, the 

expressions of displacements are assumed as 

1 1 1 1 1sin cos sin cosLv A B C D Eϕ ϕ τϕ τϕ= + + + +  (5.1) 

2 2 2 2 2sin cos sin cosRv A B C D Eϕ ϕ τϕ τϕ= + + + +  (5.2) 

Then the first to the fourth derivatives of vL are 

1 1 1 1' cos sin cos sinLv A B C Dϕ ϕ τ τϕ τ τϕ= − + −  (5.3) 

2 2
1 1 1 1'' sin cos sin cosLv A B C Dϕ ϕ τ τϕ τ τϕ= − − − −  (5.4) 

3 3
1 1 1 1''' cos sin cos sinLv A B C Dϕ ϕ τ τϕ τ τϕ= − + − +  (5.5) 

4 4
1 1 1 1'''' sin cos sin cosLv A B C Dϕ ϕ τ τϕ τ τϕ= + + +  (5.6) 

Similarly the first to the fourth derivatives of vR are  

2 2 2 2' cos sin cos sinRv A B C Dϕ ϕ τ τϕ τ τϕ= − + −  (5.7) 

2 2
2 2 2 2'' sin cos sin cosRv A B C Dϕ ϕ τ τϕ τ τϕ= − − − −  (5.8) 

3 3
2 2 2 2''' cos sin cos sinRv A B C Dϕ ϕ τ τϕ τ τϕ= − + − +  (5.9) 

4 4
2 2 2 2'''' sin cos sin cosRv A B C Dϕ ϕ τ τϕ τ τϕ= + + +  (5.10) 

In another aspect, referring to Eq.(4.28) in Chapter 4, the displacements wL and wR in tangential directions are 

1 1 1 1 1 1
cos sincos sinLw A B C D E Fτϕ τϕ

ϕ ϕ ϕ
τ τ

= − + − + + +  (5.11) 

2 2 2 2 2 2
cos sincos sinRw A B C D E Fτϕ τϕ

ϕ ϕ ϕ
τ τ

= − + − + + +  (5.12) 

Fig.5-1(b) shows the equilibrium state of forces at the position of the spring in the horizontal direction, this 

equilibrium condition will be given as a boundary condition in latter narrative. 
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From the second term and third term of Eq.(4.10) in Chapter 4,we can obtain  

( )r r
dQ dQ

N R q Rq
ds d

η η
ς ϕ

= − + = − +  (5.13) 

3

3 3( )x x xdM EI dK EI d v dvQ
ds R d dR d

ξ
η ϕ ϕϕ

= − = = +  (5.14) 

When the boundary conditions in Fig.5-1(a) are hinged ends, we can obtain 

(1) 0Lv = , '' 0Lv = , 0Lw = at 0ϕ =  

(2) 0Rv = , '' 0Rv = , 0Rw = atϕ α=  

(3) L Rv v= , L RQ Qη η= , ' 'L Rv v= , '' ''L Rv v= , 0L Rw w w= = , 0( ) ' ( ) 'L RQ Q kwη η− = − + at 0.5ϕ α=  

Then From boundary condition (1), we can obtain 

1 1 1
2

1 1

1 1 1

0
0

10

B D E
B D

A C F

τ

τ

= + +
 = − −

 = − − +

 
(5.15) 

From boundary condition (2), we can obtain 

2 2 2 2 2
2 2

2 2 2 2

2 2 2 2 2 2

0 sin cos sin cos
0 sin cos sin cos

cos sin0 cos sin

A B C D E
A B C D

A B C D E F

α α ατ ατ

α α τ ατ τ ατ
ατ ατ

α α α
τ τ

= + + + +
 = − − − −

 = − + − + + +

 
(5.16) 

From boundary condition (3), we can obtain  
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1 1 1 1 1

2 2 2 2 2
3 3

1 1 1 1
3 3

2 2 2 2

1 1

sin 0.5 cos0.5 sin 0.5 cos0.5
sin 0.5 cos0.5 sin 0.5 cos0.5

cos0.5 sin 0.5 cos0.5 sin 0.5
cos0.5 sin 0.5 cos0.5 sin 0.5

cos0.5 sin 0.5

A B C D E
A B C D E

A B C D
A B C D

A B

α α ατ ατ
α α ατ ατ

α α τ ατ τ ατ

α α τ ατ τ ατ
α

+ + + + =
+ + + +

− + − + =

− + − +
− 1 1

2 2 2 2
2 2

1 1 1 1
2 2

2 2 2 2

0 1 1 1 1

cos0.5 sin 0.5
cos0.5 sin 0.5 cos0.5 sin 0.5
sin 0.5 cos0.5 sin 0.5 cos0.5
sin 0.5 cos0.5 sin 0.5 cos0.5

cos0.5cos0.5 sin 0.5

C D
A B C D

A B C D
A B C D

w A B C D

α τ ατ τ ατ
α α τ ατ τ ατ

α α τ ατ τ ατ

α α τ ατ τ ατ
ατα α

τ

+ − =
− + −

− − − − =

− − − −

= − + − + 1 1

0 2 2 2 2 2 2

4 4
1 1 1 13

4 4
0 2 2 2 23

sin 0.5 0.5

cos0.5 sin 0.5cos0.5 sin 0.5 0.5

( sin 0.5 cos0.5 sin 0.5 cos0.5 )

( sin 0.5 cos0.5 sin 0.5 cos0.5 )

x

x

E F

w A B C D E F

EI A B C D
R

EIkw A B C D
R

ατ α
τ

ατ ατ
α α α

τ τ

α α τ ατ τ ατ

α α τ ατ τ ατ















+ +

= − + − + + +

− + + + =

− + + +














 

(5.17) 

According to the sequence of A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2, w0, a matrix S2D-AH is assumed as  

2

3 3

2 2

0 1 0 1 1 0
0 1 0 0 0

11 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

sin 0.5 cos0.5 sin 0.5 cos0.5 1 0
cos0.5 sin 0.5 cos0.5 sin 0.5 0 0
cos0.5 sin 0.5 cos0.5 sin 0.5 0 0
sin 0.5 cos0.5 sin 0.5 cos0.5 0 0

co

τ

τ

α α ατ ατ
α α τ ατ τ ατ
α α τ ατ τ ατ
α α τ ατ τ ατ

−

=
− −
− −

2D-AHS

M
M

M

M
M
M
M
M
M
M

4 4

cos0.5 sin 0.5s0.5 sin 0.5 0.5 1

0 0 0 0 0 0
sin 0.5 cos0.5 sin 0.5 cos0.5 0 0

ατ ατ
α α α

τ τ

α α τ ατ τ ατ


















 − − − −





M

M
M
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2 2

3 3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

sin cos sin cos 1 0 0
sin cos sin cos 0 0 0

cos sincos sin 1 0

sin 0.5 cos0.5 sin 0.5 cos0.5 1 0 0
cos0.5 sin0.5 cos0.5 sin0.5 0 0 0
cos0.5 sin0.5 cos0.

α α ατ ατ
α α τ ατ τ ατ

ατ ατα α α
τ τ

α α ατ ατ
α α τ ατ τ ατ
α α τ

− −

− − − − −
− −
− −

M
M
M
M
M

M

M
M
M

2 2

3
4 4

5 sin 0.5 0 0 0
sin 0.5 cos0.5 sin0.5 cos0.5 0 0 0

0 0 0 0 0 0 1
cos0.5 sin 0.5cos0.5 sin 0.5 0.5 1 1

sin 0.5 cos0.5 sin0.5 cos0.5 0 0
x

kR
EI

ατ τ ατ
α α τ ατ τ ατ

ατ ατα α α
τ τ

α α τ ατ τ ατ
















− − − −




− − − − 



− − − − 


M
M

M

M

 

(5.18)
 

Then the buckling control equation which is the same expression of Eq.(5.15)~Eq.(5.17) is  

det( ) 0=2D-AHS  (5.19) 

We spread out the equation above according to the last column of det(S2D-AH), and meanwhile a 

non-dimensional parameter rx is assumed in Eq.(5.20).  

3/x
x

kr
EI R

=
 

(5.20) 

And this kind of non-dimensional parameters about the ratios of the elastic stiffnesses of springs (or braces) and 

arches is called “spring ratio” in latter narratives.  

Then we can obtain 

12 12 121 det( ) 1 det( ) det( ) 0xr× + × + =2D-AH1 2D-AH2 2D-AH3S S S  (5.21) 

Here det(S2D-AH1
12 ), det(S2D-AH2

12 ) and det(S2D-AH3
12 ) are cofactors of det(S2D-AH), the sizes of them are all 12×12. 

As these three cofactors only contain the unknown parameter τ and constant parameter α. We know τ is a 

function of uniform compression q, so from Eq.(5.21), we can judge that the critical load qcr is determined by 

the spring ratio rx. 
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2) Fixed ended in-plane 

Now another case is considered, that is, the boundary conditions of the same circular arch in Fig.5-1(a) are fixed 

ended, this kind of boundary conditions can be expressed as  

(1) 0Lv = , ' 0Lv = , 0Lw = at 0ϕ =  

(2) 0Rv = , ' 0Rv = , 0Rw = atϕ α=  

(3) L Rv v= , L RQ Qη η= , ' 'L Rv v= , '' ''L Rv v= , 0L Rw w w= = , 0( ) ' ( ) 'L RQ Q kwη η− = − + at 0.5ϕ α=  

From boundary condition (1) and boundary condition (2), we can obtain 

1 1 1

1 1

1 1 1

0
0

10

B D E
A C

A C F

τ

τ

= + +
 = +

 = − − +

 (5.22) 

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

0 sin cos sin cos
0 cos sin cos sin

cos sin0 cos sin

A B C D E
A B C D

A B C D E F

α α ατ ατ
α α τ ατ τ ατ

ατ ατ
α α α

τ τ

= + + + +
 = − + −

 = − + − + + +  

(5.23) 

Boundary condition (3) can be written as same as the one in Eq.(5.17). Then according to the sequence of A1, B1, 

C1, D1, E1, F1, A2, B2, C2, D2, E2, F2, w0, a matrix S2D-AF is assumed as 

3 3

2 2

0 1 0 1 1 0
1 0 0 0 0

11 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

sin 0.5 cos0.5 sin 0.5 cos0.5 1 0
cos0.5 sin 0.5 cos0.5 sin 0.5 0 0
cos0.5 sin 0.5 cos0.5 sin 0.5 0 0
sin 0.5 cos0.5 sin 0.5 cos0.5 0 0

cos

τ

τ

α α ατ ατ
α α τ ατ τ ατ
α α τ ατ τ ατ
α α τ ατ τ ατ

−

=
− −
− −

2D-AFS

M
M

M

M
M
M
M
M
M
M

4 4

cos0.5 sin 0.50.5 sin 0.5 0.5 1

0 0 0 0 0 0
sin 0.5 cos0.5 sin 0.5 cos0.5 0 0

ατ ατ
α α α

τ τ

α α τ ατ τ ατ


















 − − − −





M

M
M

 



Chapter 5 Stiffening Effect of Straight Components                                    63 

 

3 3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

sin cos sin cos 1 0 0
cos sin cos sin 0 0 0

cos sincos sin 1 0

sin 0.5 cos0.5 sin 0.5 cos0.5 1 0 0
cos0.5 sin0.5 cos0.5 sin0.5 0 0 0
cos0.5 sin0.5 cos0.

α α ατ ατ
α α τ ατ τ ατ

ατ ατ
α α α

τ τ
α α ατ ατ
α α τ ατ τ ατ
α α τ

− −

− −

− − − − −
− −
− −

M
M
M
M
M

M

M
M
M

2 2

3
4 4

5 sin 0.5 0 0 0
sin 0.5 cos0.5 sin0.5 cos0.5 0 0 0

0 0 0 0 0 0 1
cos0.5 sin 0.5cos0.5 sin 0.5 0.5 1 1

sin 0.5 cos0.5 sin0.5 cos0.5 0 0
x

kR
EI

ατ τ ατ
α α τ ατ τ ατ

ατ ατ
α α α

τ τ

α α τ ατ τ ατ
















− − − −




− − − − 



− − − − 


M
M

M

M

(5.24) 

The buckling control equation is  

det( ) 0=2D-AFS  (5.25) 

Spreading out the equation above according to the last column of det(S2D-AF), we can obtain  

12 12 121 det( ) 1 det( ) det( ) 0xr× + × + =2D-AF1 2D-AF2 2D-AF3S S S  (5.26) 

Here det(S2D-AF1
12 ), det(S2D-AF2

12 ) and det(S2D-AF3
12 ) are cofactors of det(S2D-AF), the sizes of them are all 12×12. 

As the same in case of hinged ended, the critical load qcr of the arch is also determined by the spring ratio rx. 

5.2.2 Symmetric buckling mode  

1) Hinged ended in-plane 

Now the symmetric arch-spring model shown in Fig.5-2 (a) is discussed. And in Fig.5-2(a), a spring with elastic 

stiffness k is set up in vertical direction at the middle of the arch. Fig.5-2(b) shows equilibrium state of the forces 

at the position of the spring in vertical direction, and this equilibrium state of forces can be seen as one of the 

boundary conditions.  
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(a) (b) 

Fig.5-2 Symmetric arch-spring model 

When the boundary conditions of the arch are hinged end, all boundary conditions can be expressed as   

(1) 0Lv = , '' 0Lv = , 0Lw = at 0ϕ =  

(2) 0Rv = , '' 0Rv = , 0Rw = atϕ α=  

(3) 0L Rv v v= = , 0L RQ kv Qη η= + , ' 'L Rv v= , '' ''L Rv v= , L Rw w= , ( ) ' ( ) 'L RQ Qη η= at 0.5ϕ α=  

The expressions of boundary condition (1) and (2) can be found in Eq.(5.15) and Eq.(5.16), so here only the 

boundary condition (3) is need to be considered, and it can be written as follows: 
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 (5.27) 

According to the sequence of A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2, v0, a matrix S2D-SH is assumed as  
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(5.28) 

The buckling control equation is  

det( ) 0=2D-SHS  (5.29) 

Spreading out equation above according to the last column of det(S2D-SH), and we can obtain 
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12 12 12( 1) det( ) ( 1) det( ) det( ) 0xr− × + − × + =2D-SH1 2D-SH2 2D-SH3S S S  (5.30) 

Here det(S2D-SH1
12 ), det(S2D-SH2

12 ) and det(S2D-SH3
12 ) are cofactors of det(S2D-SH), the sizes of them are all 12×12. 

As same as the case in Section 5.2.1, the critical load qcr of the arch is determined by the spring ratio rx. 

 

2) Fixed ended in- plane 

When the boundary conditions of the arch in Fig.5-2(a) are fixed ended, this kind of boundary conditions can be 

expressed as 

(1) 0Lv = , ' 0Lv = , 0Lw = at 0ϕ =  

(2) 0Rv = , ' 0Rv = , 0Rw = atϕ α=  

(3) 0L Rv v v= = , 0L RQ kv Qη η= + , ' 'L Rv v= , '' ''L Rv v= , L Rw w= , ( ) ' ( ) 'L RQ Q= at 0.5ϕ α=  

The expressions of boundary condition (1)~(3) can be found in Eq.(5.22), Eq.(5.27) and Eq.(5.23) respectively. 

According to the sequence of A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2, v1, a matrix S2D-SF is assumed as 
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(5.31) 

The buckling control equation is  

det( ) 0=2D-SFS  (5.32) 

Spreading out the equation above according to the last column of det(S2D-SF), we can obtain 

12 12 12( 1) det( ) ( 1) det( ) det( ) 0xr− × + − × + =2D-SF1 2D-SF2 2D-SF3S S S  (5.33) 

Here det(S2D-SF1
12 ), det(S2D-SF2

12 )and det(S2D-SF3
12 ) are cofactors of det(S2D-SF), the sizes of them are all 12×12. As 

same as the case in Section 5.2.1, the critical load qcr of the arch is determined by the spring ratio rx. 

5.2.3 Combination analysis of two springs 

1) Hinged ended in-plane 

In Section 5.2.1 and Section 5.2.2, the buckling control equations of arches are deduced when the buckling 

modes of arches are anti-symmetric and symmetrical respectively. It is straightforward to deduce one buckling 

equation to combine the cases of anti-symmetric and symmetrical modes together. The configuration of the arch 

and constraint springs is shown in Fig.5-3(a). And Fig.5-3(b) shows the equilibrium state of forces at the 

position of springs. 
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(a) (b) 

Fig.5-3 Circular arch stiffened by two springs 

Assuming the boundary conditions of the arch are hinged ended, we can obtain 

(1) 0Lv = , '' 0Lv = , 0Lw = at 0ϕ =  

(2) 0Rv = , '' 0Rv = , 0Rw = atϕ α=  

(3) 0L Rv v v= = , 2 0L RQ Q k vη η= + , ' 'L Rv v= , '' ''L Rv v= , 0L Rw w w= = , 1 0( ) ' ( ) 'L RQ Q k wη η− = − +  

at 0.5ϕ α=   

Expressions of boundary condition (1) and (2) are in Eq.(5.15) and Eq.(5.16). And boundary condition (3) is 
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(5.34) 
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According to the sequence of A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2, v0, w0, a matrix S2D-DH is assumed as 
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(5.35) 

The buckling control equation is  
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det( ) 0=2D-DHS  (5.36) 

 

2) Fixed ended in-plane 

When the boundary conditions are fixed ended, this kind of boundary conditions can be expressed as 

(1) 0Lv = , ' 0Lv = , 0Lw = at 0ϕ =  

(2) 0Rv = , ' 0Rv = , 0Rw = atϕ α=  

(3) 0L Rv v v= = , 2 0L RQ Q k vη η= + , ' 'L Rv v= , '' ''L Rv v= , 0L Rw w w= = , 1 0( ) ' ( ) 'L RQ Q k wη η− = − +  

at 0.5ϕ α=   

The expressions of boundary condition (1)~(3) can be found in Eq.(5.22), Eq.(5.23) and Eq.(5.34) respectively. 

According to the sequence of A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2, v0, w0, a matrix S2D-DF is assumed as 
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(5.37) 

Then the buckling control equation is  

det( ) 0=2D-DFS  (5.38) 

5.2.4 Numerical examples 

 

Fig.5-4 Numerical model of the arch in 2D plane 

Firstly, the stability problems of the arch with only spring will be analyzed, which is set up in horizontal 

direction or vertical direction at the middle of the arch. Here two spring ratios r1 and r2 are assumed as  
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 (5.39) 

Here a numerical example in Fig.5-4 is used to prove theoretical equations above. The materials parameters in 

this example are as same as the one stated in Chapter 4. The circular angel of the arch is π. The entire arch is 

divided into 48 linear beam elements with the same length respectively. The external load is assumed as 

uniform compression in-plane. 

Table.5-1 shows the comparison of the results by Eq.(5.29) and Eq.(5.32), and by FE method. Symbols “1st 

order theo.”, “2nd order theo.” and “3rd order theo.” mean the first order, the second order and the third order 

critical loads of the arch without springs respectively, and these values are calculated in Section 4.3.1. Symbol 

“FE” means the results calculated by FE method. And symbol “Theo.” means the results calculated by the 

buckling control equations introduced in Section 5.2.1 or Section 5.2.2. 

Firstly let’s observe the results of examples with hinged ended boundary conditions in Table.5-1(a). For 

anti-symmetric mode, the spring set up in horizontal direction in Fig.5-1 can cause the critical load to increase 

from the first order critical load to the second critical load. And for the spring set up in vertical direction in 

Fig.5-2, it can cause the critical load to increase from the second order critical load to the third critical load (the 

first order critical load is ignored here). In cases of anti-symmetric and symmetric modes, we obtain spring 

ratios r1 and r2 for the changing of buckling modes are about 23.67 and 57.25 respectively. Especially, in the 

latter narratives, the spring ratio for the last time of changing of buckling modes is called limiting spring ratio. 

Furthermore, let’s observe the results of examples with fixed ended boundary conditions in Table.5-1(b). And 

the variation tendency of the critical loads in the examples of anti-symmetric mode and symmetric mode are 

similar to the cases which have the hinged ended boundaries. In cases of anti-symmetric and symmetric modes, 

limiting spring ratios r1 and r2 are obtained as about 37.73 and 87.15 respectively. 
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Table.5-1 Comparison of the results obtained by theory and FE 

(a) Hinged ended in-plane 

  

(1) Anti-symmetric mode (2) Symmetric mode 

 

(b) Fixed ended in-plane 

  

(3) Anti-symmetric mode (4) Symmetric mode 

In another aspect, from Table.5-1 it is straightforward to observe that in these four configurations, the theoretical 

results are almost in accordance with the ones obtained by FE method. The small differences exist because of 

the different division numbers of beam elements in FE methods. And the higher division number of elements is, 

the higher accuracy of FE results becomes. 

Next the cases with double springs at the same time are analyzed. Firstly the example with hinged ended 

boundary conditions is analyzed. We assume the spring ratio r1 is a constant equaling 51.12 (spring stiffness 

1 10000 /k N m= ), from the configuration (1) in Table.5-1, we know when r1 is 51.12, we can ensure the first 

order buckling mode is symmetric mode, and then increase another parameter r2 from 0 to observe the variation 
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tendency of the first order critical load. The comparison of the results obtained by theoretical method in 

Eq.(5.36) and by FE method is shown in Fig.5-5. The variation of these two results is identical to each other, 

small differences between them attribute to the division number of elements in FE methods. In another aspect, 

from Fig.5-5, when r1 is 51.12, we can observe the limiting spring ratio r2 is 45.24 in FE analysis. 

 

Fig.5-5 Comparison of the results with hinged ended boundaries 

 

  
(a) r1=51.12; r2=0 (b) r1=51.12; r2=45.24 

Fig.5-6 First order buckling modes (r1=51.12) 

Fig.5-6(a) and Fig.5-6(b) show the first order buckling modes when r1 and r2 are (r1=51.12; r2=0) and 

(r1=51.12; r2=45.24) respectively. The first order buckling mode in Fig.5-6(a) is symmetric, while the one in 

Fig.5-6(b) is anti-symmetric. Comparing the bucking modes in Table.4-2 in Chapter 4, we will find the 

buckling modes do not always change from lower buckling modes to higher bucking modes, the setting of 

springs will change the variation tendency oppositely.  

Fig.5-7 shows the variation tendency of anti-symmetric modes. When r1 and r2 are both large enough, the 

corresponding first order buckling mode will coincide to the third order critical load when r1 and r2 are 0. 
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Fig.5-7 Variation of anti-symmetric modes with hinged ended boundaries 

Next we discuss the case when the boundary conditions are fixed ended. Similar to the case with hinged ended 

boundary conditions, if we keep the spring ratio r1 as 102.24 (spring stiffness 1 20000 /k N m= ), from 

configuration (3) in Table.5-1 we can ensure the first order buckling mode is symmetric mode, then we increase 

another spring ratio r2 from 0 to get the first order critical load. The comparison of the results obtained by 

theoretical method in Eq.(5.38) and by FE method is shown in Fig.5-8.  

From Fig.5-8, firstly we can observe the variation tendency of the results obtained by Eq.(5.38) and by FE 

method is almost identical to each other, the small differences also attributes to the division number of elements 

in FE methods. Secondly, we assume r1 keeps 102.24, then the limiting spring ratios r2 is about 40.18. 

 
Fig.5-8 Comparison of the results with fixed ended boundaries 

Fig.5-9(a) and Fig.5-9(b) show the first order buckling modes of arches when r1 and r2 are (r1=102.24; r2=0) 
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and (r1=102.24; r2=40.18) respectively. The variation tendency of buckling modes is similar to the case with 

hinged ended boundary conditions, here we no longer describe reiteratively. 

  

(a) r1=102.24; r2=0 (b) r1=102.24; r2=40.18 

Fig.5-9 First order buckling modes (r1=102.24) 

Fig.5-10 gives the variation of anti-symmetric buckling modes. Especially, when r1 and r2 are both large enough, 

the corresponding first order buckling mode will close to the third order critical mode in the case when r1 and r2 

are 0, but these two buckling modes are not identical to each other. Especially, if r1 and r2 are both very large 

values, for example they both equals 5.11×104, then by FE method, the first order critical load is 322.59 xEI
R

, 

while the corresponding theoretical solution is 322.13 xEI
R

, this FE result is about 2.1% larger than theoretical 

result. 

 
Fig.5-10 Variation of anti-symmetric modes with fixed ended boundaries 
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5.3 Out-of-plane 

5.3.1 Buckling control equations  

  
(a) (b) 

Fig.5-11 Arch-spring model out-of-plane 

Fig.5-11(a) shows a circular arch stiffened with one spring k out-of-plane, and this spring is perpendicular to the 

plane of the arch. Fig.5-11(b) shows the equilibrium state of forces at the position of the spring. Symbols “L” 

and “R” in subscripts are used to distribute the displacements and forces at the left side and right side of the 

spring in Fig.5-11(b), then QξL and QξR are shear forces at the left and right side of the spring respectively. 

Firstly substituting Eq.(4.58) into Eq.(4.6) in Chapter 4, and using ds = Rdφ, we can obtain 

2 2 2

2 2 2 2 2
1 1 1( ) ( )

1 1 (1 )y
d u R d R dK

R d R R d R R d
θ θ λ θ θ

θ θ
ϕ λ ϕ λ λ ϕ

= + = − + = +
+ + +

 (5.40) 

Then the first derivative of Mη in the second term of Eq.(4.8) is  

3

3( )
(1 )

y y
y

dM dK EI d dEI
d d R d d

η θ θ
ϕ ϕ λ ϕ ϕ

= = +
+  

(5.41) 

In another aspect, using Eq.(4.45) and using identical equation ds = Rdφ, we can obtain 

1 dM M
Q

R d R
η ς

ξ ϕ
= − −

 
(5.42) 

As a preparation, in chapter 4 the general solution of θ in Eq.(4.65) have been obtained. In addition, the first and 

second derivatives of θ for the central angel φ can be found in Eq.(4.68) and Eq.(4.69) in Chapter 4. The third 

derivative of θ is  
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3
3 3 3 3
1 1 1 1 2 2 2 23 cos sin cosh sinhd Ak k Bk k Ck k Dk k

d
θ

ϕ ϕ ϕ ϕ
ϕ

= − + + +
 

(5.43) 

And the expressions of θL and θR are 

1 1 1 1 1 2 1 2sin cos sinh coshL A k B k C k D kθ ϕ ϕ ϕ ϕ= + + +  (5.44) 

2 1 2 1 2 2 2 2sin cos sinh coshR A k B k C k D kθ ϕ ϕ ϕ ϕ= + + +  (5.45) 

The boundary conditions of the arch in Fig.5-11(a) are assumed as hinged ended in-plane and fixed ended 

out-of-plane, then the expressions of the boundary conditions can be considered as follows: 

(1) 0Lθ = , 0Lu = , ' 0Lu = at 0ϕ =  

(2) 0Rθ = , 0Ru = , ' 0Ru = atϕ α=
 

(3) 0L Ru u u= = , ' 'L Ru u= , 0L RQ ku Qξ ξ+ = , L Rθ θ= , ' 'L Rθ θ= , '' ''
L Rθ θ= at 0.5ϕ α=  

From boundary condition (1), we can obtain 

1 1

1 1
12 2

1 2

1 1
1 1 1 2 1

1 2

0

0

0 ( ) ( )

B D
B D F
k k

A CA k C k E
k k

λ

= +

 = − + +


 = + − − + +


 
(5.46) 

From boundary condition (2), we can obtain 

2 1 2 1 2 2 2 2

2 2 2 2
1 1 2 2 2 22 2 2 2

1 1 2 2

2 1 1 2 1 1 2 2 2 2 2 2

2 2 2
1 1 2

1 1 2

0 sin cos sinh cosh

0 sin cos sinh cosh

0 [ cos( ) sin( ) cosh( ) sinh( )]

[ cos( ) sin( ) cosh( )

A k B k C k D k
A B C Dk k k k E F
k k k k

A k k B k k C k k D k k
A B C Dk k k
k k k

α α α α

α α α α α

α α α α

λ α α α

= + + +
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= − + +

− − + + + 2
2 2

2

sinh( ) ]k E
k

α









+
  

(5.47) 

From boundary condition (3) we can obtain 
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(5.48) 

In order to simplify Eq.(5.48), here assuming symbols as  
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 (5.49) 

According to the sequence of A1, B1, C1, D1, E1, F1, A2, B2, C2, D2, E2, F2, u0, and a matrix S3D-SF is assumed as 
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(5.50) 

The buckling control equation which is the same expressions of Eq.(5.46)~Eq.(5.48) is  
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det( ) 0=3D-SFS  (5.51) 

Spreading out the left side of equation above according to the last column of det(S3D-SF), then we can obtain  

2
12 12 12(1 ) (1 ) (1 )det( ) det( ) det( ) 0

y

R k
R R EI

λ λ λ+ + +
− − + =3D-SF1 3D-SF2 3D-SF3S S S  (5.52) 

Here det(S3D-SF1
12 ), det(S3D-SF2

12 ) and det(S3D-SF3
12 ) are cofactors of det(S3D-SF), the sizes of them are all 12×12. 

Then a spring ratio ry is assumed as  

3/y
y

kr
EI R

=  (5.53) 

Then Eq.(5.52) is identical to the following equation 

12 12 12det( ) det( ) det( ) 0yr+ − =3D-SF1 3D-SF2 3D-SF3S S S  (5.54) 

These three cofactors all contain parameters k1 in Eq.(4.66) and k2 in Eq.(4.67), and these two parameters also 

refer to the critical load qcr, so the critical load qcr for out-of-plane stability is determined by spring ratio ry. 

5.3.2 Numerical examples 

The materials parameters and element division of the arch are as same as anterior numerical examples in this 

chapter. As the cross section of the arch is hollow circular section, so Ix=Iy=I is established. The central angle of 

the arch is π. The setting of the spring and external load are as same as the ones in Fig.5-11. 

Firstly, let’s talk about the example of the arch with hinged ended boundary conditions. The results calculated 

by theoretical method and by FE method is shown in Fig.5-12. Firstly we state the meanings of symbols in 

Fig.5-12. Symbol “FE” is the result obtained by FE method. Symbol “Theo.(3D)” is the first order critical load 

of the arch with stiffening spring out-of-plane, which is calculated by Eq.(5.51). Symbols “1st-Theo.(3D)” and 

“2nd-Theo.(3D)” are the first order and second order critical load of the arch without spring respectively, and 

buckling modes happen out-of-plane (Referring to Table.4-7, Table 4-8 in Chapter 4). Symbol “1st-Theo.(2D)” 

is the first order critical load of the arch without spring, and buckling mode happens in-plane (Referring to 

Table.4-3.)  

From Fig.5-12, in FE analysis, when the spring ratio ry is 0.84, the buckling mode changes from out-of-plane 
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(refereeing to Table.4-7) to the one in-plane (referring to the mode in the first column in Table.4-2). Meanwhile 

the limiting spring ratio ry is obtained as 0.84. 

 

Fig.5-12 Relationship of ry and qcr with hinged ended boundaries in-plane 

In another aspect, when the boundary conditions of the arch are both fixed ended in-plane and out-of-plane, the 

relationship of ry and qcr is shown in Fig.5-13. In numerical analysis, when ry is 5.24, the buckling mode 

changes from translation mode out-of-plane (referring to Table.4-7) to rotational buckling mode out-of-plane 

(referring to Table.4-8). And limiting spring ratio ry is 5.24 in this case. 

In addition, because the “1st-Theo.(2D)” is higher than “2nd-Theo.(3D)”, then even we increase the stiffness of 

spring, the buckling phenomenon firstly happens out-of-plane rather than in-plane. 

 

Fig.5-13 Relationship of ry and qcr with fixed ended boundaries in-plane 
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5.4 Stiffening patterns of arches 

5.4.1 Single arch 

a) Two-dimensional arch 

In Section 2.3 of Chapter 2, the stiffening patterns of arches are classified. Then in this section, the stiffening 

effects of typical stiffening patterns will be discussed. Firstly, Fig.5-14 shows three basic stiffening patterns of 

single arch in-plane. In order to simplify the expressions in latter narrative, they are noted as Pattern A, Pattern B 

and Pattern C respectively. The anterior two patterns are longitudinal direction type (internal reaction type), and 

the latter one is radial direction type (external reaction type). And by the combination of the three basic 

stiffening patterns in Fig.5-14, we can obtain other three hybrid stiffening patterns in Fig.5-15. And in Fig.5-14 

and Fig.5-15, the continuous line symbolizes the arch, and the broken line symbolizes the braces.  

 
(a) Pattern A 

 
(b) Pattern B 

 
(c) Pattern C 

Fig.5-14 Three basic stiffening patterns in-plane  

 

 
(a) Pattern AB 

 
(b) Pattern AC 
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(c) Pattern BC 

Fig.5-15 Three hybrid stiffening patterns in-plane 

1) Hinged ended in-plane 

Next we use FE method to discuss the stability of these stiffening patterns in Fig.5-14 and Fig.5-15. Firstly, we 

discuss two-dimensional arch when boundary conditions are hinged ended. The materials parameters of the 

arch are as same as the one shown in Table.4-1 in Chapter 4.The radius of the arch is 1m. The central angle of 

the arch is π. The entire arch is divided into 48 linear beam elements, and each beam element has the same 

length. And EcAc is the elastic stiffness of the brace, and EcAc can be seen as a variable in numerical analysis. 

Each brace is divided into one linear truss element. The external load is assumed as uniform compression. 

Here “I” is used to symbolize the moment of inertia, as the cross section of the arch is hollow circular, and 

Ix=Iy=I is established. The moments of inertia Ix and Iy here are around axis x and axis y respectively, the 

configurations of axis x and axis y are shown in Fig.4-2 in Chapter 4. In Section 5.2 and Section 5.3, by 

theoretical analysis in arch-spring models, it is known that when using straight constraint components to stiffen 

the arch, no matter in-plane stability or out-of-plane stability of the arch, the spring ratio rx in Eq.(5.20) or the 

spring ratio ry in Eq.(5.53) can determine the critical loads of the arch. Then the stability problems of arches 

with different stiffening patterns are studied by FE methods, it is reasonable to use spring ratio which is ratio of 

the elastic stiffnesses of the brace and the arch. So a spring ratio rp is defined as rp = (EcAc
R )/(EI

R3) in FE 

analysis. 
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(a) rp ∈[0, 153.36] 

 

(b) rp ∈[153.36, 7156.62] 

Fig.5-16 Relationship of rp and first order critical load qcr (hinged ended) 

Fig.5-16(a) and Fig.5-16(b) show the relationship of spring ratio rp and the first order critical load qcr when the 

boundary conditions of the arch are hinged ended. From Fig.5-16(a), we can see the first order critical load of 

Pattern A almost keeps constant even though rp increases. And comparing the critical loads of other patterns, 

when rp ∈[0, 51.12], the first order load of Pattern C is larger than the one in Pattern B; when rp ∈(51.12, 

153.36], the first order load of Pattern C is smaller than the one in Pattern B.  

In another aspect, comparing the images in Fig.5-16(a), we can see the first order critical loads of Pattern AC 

and Patter BC are very close to each other. The first order critical loads of these two stiffening patterns are larger 

than the one in Pattern A, Pattern B or Pattern C. And the first order critical load of AB is almost identical to 

Pattern B, so it is not shown in Fig.5-16(a). In Fig.5-16(b), we can observe only when rp is very large until the 

first order critical load of Pattern C approach maximum value. The theoretic analysis of Pattern C is discussed in 
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Appendix C. 

In order to understand the variation tendency of first order critical load in Fig.5-16, here we take Pattern BC and 

Pattern C as examples to observe the variation of their first order buckling modes with the increasing of spring 

ratio rp. Table.5-2 and Table.5-3 shows the variation of first order buckling modes of Pattern BC and Pattern C 

respectively. 

Table.5-2 Variation tendency of buckling modes of pattern BC 

 
(a) rp=0 

 
(b) rp=6.13 

 
(c) rp=57.76 

 

Table.5-3 Variation tendency of buckling modes of pattern C 

 
(a) rp=0 

 

(b) rp=8.61 

 
(c) rp=1022.37 

 
(d) rp=6134.25 
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And Table.5-4 shows the finial shapes of the first order buckling modes of all stiffening patterns. 

Table.5-4 Final first order buckling modes 

 
Pattern A 

 
Pattern B 

 
Pattern C 

 
Pattern AC 

 
Pattern BC 

 
Pattern AB 

 

2) Fixed ended in-plane 

 

Fig.5-17 Relationship of rp and first order critical load qcr (fixed ended) 

Now we consider the examples when the arches have fixed ended boundaries. Fig.5-17 shows the relationship 

of spring ratio rp and first order critical load with fixed ended boundaries. From Fig.5-17(a), when rp ∈[0, 

204.47], we can observe that the critical load from largest one to smallest one are Pattern BC, Pattern AC, 

Pattern C, Pattern B and Pattern A. In another aspect, in Fig.5-17(b), when rp ∈[204.47, 613.42], Pattern B will 

surpass Pattern C and Pattern AC when the value of rp is about 204.47. The variation tendency of the first order 

critical load in Pattern AB is almost identical to the one in Pattern B, then the first order critical load of Pattern 
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AB is omitted in Fig.5-17.  

Similar to the case with hinged ended boundaries, here we take the Pattern BC as an example, and then we 

observe the variation of first order buckling modes with the increasing of the spring ratio rp. Table.5-5 shows 

the variations of the first order buckling modes of Pattern BC. And Table.5-6 shows the finial first order 

buckling modes of all stiffening patterns when rp is very large. 

Table.5-5 Variation tendency of buckling modes of pattern BC 

 

(a) rp=0 
 

(b) rp=15.34 

 
(c) rp=30.67 

 
(d) rp=51.12 

 
(f) rp=613.42 

 

Table.5-6 Final first order buckling modes 

 

Pattern A 
 

Pattern B 
 

Pattern C 

 
Pattern AC 

 
Pattern BC 

 
Pattern AB 
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b) Three-dimensional single arch 

Fig.5-18 shows two stiffening patterns of three-dimensional single arch stiffened by braces out-of-plane. And 

Pattern D and Pattern E (external reaction types) are thought to be basic stiffening patterns of single arch 

out-of-plane.  

In Pattern D, two braces are located at the two sides of the arch, the distance of the positions of the boundaries 

of braces is 2R. The connecting line of the positions of the boundaries of braces is perpendicular to the plane of 

the arch. 

In Pattern E, two braces located at each side of the arch symmetrically. The positions of braces connecting to the 

arch are at 45° central angle. The combination of Pattern D and Pattern E is shown in Fig.5-19. The materials 

parameters and division of elements in FE analysis are identical to the ones in numerical examples above.  

 
(a) Pattern D 

 
(b) Pattern E 

Fig.5-18 Two basic stiffening patterns out-of-plane 

 

 
Pattern DE 

Fig.5-19 Hybrid stiffening pattern out-of-plane 

1) Hinged ended in-plane and fixed ended out-of-plane  

Firstly, the boundary conditions of the arch are assumed as hinged ended in-plane and fixed ended out-of-plane, 

that is, among the six DOF of node at each side of boundary, only moment around ξ axis is free, other two 
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rotational DOF and three translational DOF are all constraint.  

 

Fig.5-20 Relationship of rp and first order critical load qcr  

Fig.5-20 shows the relationship of spring ratio rp and first order critical load of qcr. In Fig.5-20, the stiffening 

effect of Pattern DE is always the best. When rp is smaller than 2.79, Pattern D is better than Pattern E. When 

rp is larger than 1.19, the first order critical load qcr of Patten D almost keeps constant.  

In order to understand the configurations in Fig.5-20, here Pattern DE is taken as an example, and we observe 

the variation of first order buckling modes. Table.5-7 shows four different first order buckling modes of Pattern 

DE with the increasing of spring ratio rp. 

Table.5-7 Variation tendency of buckling modes of Pattern DE 

 

(a) rp=0 
 

(b) rp=1.57 

 
(c) rp=21.67 

 
(d) rp=102.24 
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Table.5-8 shows the final first order buckling modes of all stiffening patterns, which are corresponding to the 

first order critical loads in Fig.5-20. When rp is very large, we can observe that the first order buckling modes of 

Pattern D and Pattern DE happen in-plane, while the one of Pattern E happens out-of-plane. 

Table.5-8 Final first order buckling modes  

 
Pattern D 

 
Pattern E 

 
Pattern DE 

 

2) Fixed ended in-plane and out-of-plane  

Secondly, the boundary conditions of the arch are assumed as fixed ended both in-plane and out-of-plane, that is, 

among six DOF of node at each side of boundary are constrained.  

 
Fig.5-21 Relationship of rp and first order critical loads qcr 

Fig.5-21 shows the relationship of the spring ratio rp and the first order critical loads with fixed ended 

boundary conditions. In Fig.5-21, the stiffening effect of Pattern DE is the best. When rp is smaller than 35.78, 

Pattern D is better than Pattern E, although for pattern D, its limiting spring ratio rp is 7.41. 

Similar to the case with hinged ended in-plane, here we also take Pattern DE as an example and we observe the 

variation of first order buckling modes. Table.5-9 shows four different first order buckling modes of Pattern DE 
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with the increasing of spring ratio rp. 

Table.5-9 Variation tendency of buckling modes of Pattern DE 

 
(a) rp=0 

 
(b) rp=8.18 

 
(c) rp=102.24 

 

(d) rp=306.71 

Table.5-10 shows the final first order buckling modes of all stiffening patterns. When rp is very large, the first 

order buckling modes of Pattern D, Pattern E and Pattern DE all happen out-of-plane. 

Table.5-10 Final first order buckling modes  

 
Pattern D 

 
Pattern E 

 
Pattern DE 

5.4.2 Cross arch 

 
(a) Pattern F 

 
(b) Pattern G 
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(c) Pattern H 

Fig.5-22 Three basic stiffening patterns of cross arch  

Now the stiffening effects of the braces in cross arch are discussed. In Fig.5-22, three basic stiffening patterns of 

cross arch are defined: Pattern F, Pattern G and Pattern H. In another aspect, according to the category rule 

introduced in Chapter 2, Pattern F and Pattern H are peripheral direction type, and Pattern G is longitudinal 

direction type. All of these three patterns are internal reaction type. 

In addition, by combination of Pattern F and Pattern H, and Pattern G and Pattern H, we also propose two 

hybrid stiffening patterns as shown in Fig.5-23.  

 

(a) Pattern FH 

 

(b) Pattern GH 

Fig.5-23 Two hybrid stiffening patterns of cross arch  

Firstly, let’s talk about the case with hinged ended boundary conditions, that is, among the six DOF of node at 

each side, three translational DOF are constrained, and the other three rotational DOF are free. The materials 

parameters, uniform compression, and the shape of the arch are as same as the ones in above numerical 

analysis. 

When there is no braces used to stiffen the cross arch, by FE method we can obtain the first to third order critical 

loads qcr are 31.16 EI
R

, 33.03 EI
R

and 34.67 EI
R

respectively(The theoretical solution for the first order critical load 

can refer to B.3 in Appendix B). The corresponding first order to third order buckling modes are shown in 

Fig.5-24 to Fig.5-26. 
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(a) Perspective drawing (b) Plane graph 

Fig.5-24 First order buckling mode of cross arch  

 

  

(a) Perspective drawing (b) Plane graph 

Fig.5-25 Second order buckling mode of cross arch 

 

 
 

(a) Perspective drawing (b) Plane graph 

Fig.5-26 Third order buckling mode of cross arch  
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Fig.5-27 Relationship of rp and first order critical load qcr ( hinged ended boundaries) 

Fig.5-27 shows the relationship of spring ratio rp and first order critical load qcr when the boundary conditions 

of cross arch are hinged ended. From Fig.5-27, we can obtain that the first order critical load of Pattern F keeps 

constant even though spring ratio rp increases. And Pattern G has the same critical load as Pattern F, here we 

omit Pattern G in Fig.5-27. 

By comparing the first order critical loads of Pattern H, Pattern FH and Pattern GH, we can obtain when rp is 

below 30.57, these three stiffening patterns have almost same first order critical load. When rp is large than 

30.57, the first order critical load of Pattern FH is largest, the value of Pattern GH is in the middle level, and 

value of Pattern H is the smallest. The maximum first order critical loads of these three patterns are almost 

identical. 

In order to understand the configurations in Fig.5-27, here Pattern H is taken as an example, and the variation of 

first order buckling modes is aimed to be observed. Table.5-11 shows four different first order buckling modes 

of Pattern DE with the increasing of spring ratio rp. 
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Table.5-11 Variation tendency of buckling modes of Pattern H 

 
(a) rp=0 

 
(b) rp=35.78 

 
(c) rp=76.68 

 
(d) rp=250.48 

Table.5-12 shows the final first order buckling modes of call stiffening patterns. And Pattern F and Pattern G 

have the same buckling modes. The buckling modes of Pattern H, Pattern FH and Pattern GH are almost 

identical. 

Table.5-12 Final first order buckling modes  

 
(a) Pattern F 

 
(b) Pattern G 

 

(c) Pattern H 

 

(d) Pattern FH 
 

(e) Pattern GH 

Next let’s talk about the cases when the arch has hinged ended boundary conditions, that is, among the six DOF 

of node at each boundary, the three translational DOF and three rotational DOF are all constrained. The 

materials parameters, uniform compression, and the shape of the arch are as same as the ones in above 

numerical analysis. When there is no braces, by FE method we can obtain the first to third order critical loads qcr 

are 35.83 EI
R

, 38.86 EI
R

and 313.15 EI
R

respectively. The corresponding buckling modes are shown in Fig.5-28 to 

Fig.5-30. 
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(a) Perspective drawing (b) Plane graph 

Fig.5-28 First order buckling mode of cross arch 

 

  
(a) Perspective drawing (b) Plane graph 

Fig.5-29 Second order buckling mode of cross arch 

 

  
(a) Perspective drawing (b) Plane graph 

Fig.5-30 Third order buckling mode of cross arch 
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Fig.5-31 Relationship of rp and the first order critical load qcr ( fixed ended boundaries) 

Fig.5-31 shows the relationship of spring ratio rp and first order critical load qcr when the boundaries 

conditions of cross arch are fixed ended. The first order critical load of Pattern F keeps constant even though 

spring ratio rp increases. And the first critical load of Pattern G is identical to the one of Pattern F, here its 

configuration is omitted.  

And the first order critical loads of Pattern FH, Pattern GH are as same as the value of Pattern H, here their 

configurations are also omitted in Fig.5-31. And Pattern F and Pattern G have the same buckling modes. The 

buckling modes of Pattern H, Pattern FH and Pattern GH are identical. 

Similar to the case with hinged ended boundaries, here we take the Pattern H as an example, and then we 

observe the variation of first order buckling modes with the increasing of spring ratio rp. Table.5-13 shows 

three different first order buckling modes of Pattern H. And Table.5-14 shows the finial first order buckling 

modes of all stiffening patterns when rp is very large. 

Table.5-13 Variation tendency of buckling modes of pattern H 

 
(a) rp=0 

 
(b) rp=76.68 

 
(c) rp=408.95 
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Table.5-14 Final first order buckling modes 

 
(a) Pattern F 

 
(b) Pattern G 

 

(c) Pattern H 
 

(d) Pattern FH 
 

(e) Pattern GH 

5.4.3 Hoop-ring 

 

Fig.5-32 Hoop-ring stiffened with spokes 

As an application, here the buckling behavior of hoop-ring stiffened by spokes is analyzed. Fig.5-32 shows one 

example of this kind of hoop-ring, 8 spokes are set up at each side of hoop-ring respectively, the central angel 

between adjacent spokes along circumferential direction is 45°. Uniform compression q is applied in the plane 

of hoop-ring. 
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Fig.5-33 Buckling problem of ring in-plane 

Firstly, let’s deduce the critical load of ring in-plane. The configuration of ring is shown in Fig.5-33. The 

boundary conditions of symmetric buckling mode can be expressed as  

(1)  0w = , ' 0v = , 0Qη = at 0ϕ =  

(2)  0w = , ' 0v = , 0Qη = atϕ π=  

From the Eq.(4.27), Eq.(4.28) and Eq.(4.32) in Chapter 4, we can find the expressions of displacements v , w, 

and shear force Qη. From the boundary conditions, we can obtain  

3

3 3

0

0

0
cos sin0

0 cos sin

0 cos sin

CA F

A C

A C

A C D E F

A C D

A C D

τ
τ

τ
πτ πτ π

τ τ
τ πτ τ πτ

τ πτ τ πτ

 = − − +


= +
 = − −

 = − + + +

 = − + −
 = − +

 (5.55) 

In Eq.(5.55), from the second term and third term, we can obtain A=C=0. Then from the first term we know 

F=0. Then the remaining parameters are D and E. If D is 0, then from the forth term, we can obtain E=0. As we 

know when buckling happens, A~F cannot be 0 at the same time, then we know D cannot be 0. As a result, 

from the fifth or sixth term, we can obtain  

sin 0πτ =  (5.56) 

As τ is larger than 1, the minimum positive integer for τ is 2, then we know the critical load qcr is  
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3
3 x

cr
EIq
R

=  (5.57) 

Eq.(5.57) is identical to the one obtained by Timoshenko [42]. 

And if there is no spokes in hoop-ring, for the stability of hoop-ring out-of-plane, we can find the first order 

critical load in the first term of Eq.(4.76) in Chapter 4  

3
9

4 / ( )
y

cr
y z

EI
q

R EI GJ
=

+
i  (5.58) 

Next a numerical example is used to calculate the first order critical loads and first order buckling modes for 

in-plane stability and out-of-plane stability. The radius of hoop-ring is 1m. The materials parameters of the 

hoop-ring are as same as the ones in numerical examples above. The entire hoop-ring is divided into 96 linear 

beam elements, and each element has the same length.  

  

(a) (b) 

Fig. 5-34 First order buckling modes in-plane and out-of-plane 

Fig.5-34(a) shows the first order buckling mode in-plane, and the corresponding critical load is 3.0017 
EIx
R3 , 

which is almost identical to the one in Eq.(5.57). Fig.5-34(b) shows the first order buckling mode out-of-plane, 

the corresponding critical load qcr is 1.6984 
EIy

R3 . In another aspect, from Eq.(5.58), we can obtain the theoretical 

critical load qcr is 1.6981 
EIy

R3 . 

Next the buckling of hoop-ring with 8 spokes in Fig.5-32 is discussed. From Eq.(C-6) in Appendix C, an 

equivalent elastic stiffness of spokes which mainly contributes the stiffening effect out-of-plane is given, and the 

value of this elastic stiffness in Fig.5-32 can be calculated as  
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2

2

2 2 2

2(0.5 )
(0.25 ) 0.25

C C
E

E Ahk
h R h R

=
+ +  (5.59) 

Here EC is the Young’s modulus of the spoke, AC is the area of cross section. And a parameter b is assumed as 

b=h/R, then kE transforms into 

2

2 3/2
0.5

(0.25 1)
C C

E
E Abk

b R
=

+  (5.60) 

Assuming b=1, then we take ECAC as a variable to observe variation of the first order critical loads. In theoretical 

analysis, when of hoop-ring wave is 8, from the third term of Eq.(4.76), the first order critical load is 

3 3
225 13.0058

16

y y
cr

y

z

EI EI
q EIR R

GJ

= =
+  (5.61) 

A spring ratio ry is assumed as 

3/
E

y
y

kr
EI R

=
 

(5.62) 

Fig.5-35 shows relationship of parameter ry and the critical load qcr. And Fig.5-36 shows the variation of 

buckling modes. 

 

Fig.5-35 Relationship of parameter ry and the first order critical load qcr 
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(a) ry=0 (b) ry=25.60 (c) ry=67.12 

Fig.5-36 Variation tendency of the first order buckling modes 

5.5 Summaries 

In this chapter, straight braces are used to stiffen the circular arch structures. And the stability problems of arches 

stiffened by braces are discussed. In addition, stability problems of various stiffening patterns of the single arch 

and cross arch, as well as hoop-rings stiffened by spokes are analyzed. The main achievements are stated as 

follows: 

1) Arch-spring models for in-plane stability and out-of-plane stability of arches are proposed. By using general 

solutions of displacements obtained in Chapter 4, buckling control equations are able to be obtained. FE 

methods are used to verify these buckling control equations. 

2) Spring ratio rx of arch-spring model in-plane and spring ratio ry  of arch-spring model out-of-plane are 

available through the analysis of respective buckling control equations, and study work also shows that when 

the spring ratios are larger than limiting spring ratios, the critical loads of the arches cannot increase any more. 

3) The variations of critical loads and buckling modes of various stiffening patterns of single arch and cross arch 

are analyzed, and study work shows by restraining their buckling modes efficiently can greatly increase the 

critical loads, and limiting spring ratios are also proved to be existing. The stiffening effect of spokes in 

hoop-ring structure is very similar to the stiffening effect of braces. 
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Chapter 6 Stiffening Effect of Flexible Components 

6.1. Introduction 

In Chapter 5, the stiffening effects of straight components are discussed. It is known that the elastic stiffness of 

the straight components play an important role in stiffening effect [15], [17], [26], [154], [165]. In this Chapter, stiffening 

effect of flexible components such as curved cables will be discussed. The obvious difference between straight 

components and flexible components is that the elastic stiffness of the latter one cannot attribute to the stiffening 

effect because they are in mechanistic state when buckling of main structures happens. 

  

(a) Component stiffening method (b) External force stiffening method 

Fig.6-1 Two kinds of stiffening methods  

In order to distinguish the traditional stiffening methods by using straight component and the new method stated 

in this chapter, here we nominate these two methods respectively. The former one is called component 

stiffening method (Fig.6-1(a)), and the latter one called external force stiffening method (Fig.6-1(b)).  

Table.6-1 Comparison of two stiffening methods 

Stiffening methods Transfer order of loads Shape of components 

Components stiffening method Main Loads Arch brace Straight line 

External force stiffening method Part of Loads brace Arch Curved line 

Next the characteristics of these two stiffening method shown in Table.6-1 will be discussed. In the case of 

component stiffening method, external forces are only applied to the arch, and the elastic stiffnesses of braces 

are directly used to stiffen the arch. And the shapes of braces are straight all the time. In another aspect, in the 

case of external force stiffening method, parts of external forces are directly applied to the cables, and the shapes 

of cables become curved; and other external forces are applied to the arch. In this chapter, the stiffening 

principle of flexible components will be discussed. 
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6.2 Stiffening effects of elastic stiffness and internal force 

Before we discuss the flexible components’ stiffening effect, we use a simple example to explain the effect of 

elastic stiffness and internal force in stiffening a column structure, as shown in Fig.6-2. To study the column 

structures can help us understand the case of arch structures. 

  
(a) (b) 

Fig.6-2 Column stiffened by straight cables  

Symbols used in Fig.6-2(a) are as follows: for cables, Ec is the Young’s modulus, Ac is the area of cross 

section, T is the internal force just prior to buckling, lc is the member length. For column, Eb is the Young’s 

modulus, Ab is the area of cross section, Ib is moment of inertia, lb is the member length. A concentrated 

load F is applied at the top of column. We assume EbAb ≫ EcAc , so that the component of elastic stiffnesses 

of cables in x direction can be ignored. 

The model in Fig.6-2(a) is equivalent to a simple one in Fig.6-2(b), and ky in Fig.6-2(b) is the entire stiffness 

aroused from cables, the calculation procedure is introduced in Appendix C. The value of ky is  

2 2

2 22 2c c
y

c cc c

d E A Tk
l ll l

h
= +  (6.1) 

ky in the equation above can be divided into two parts: one is caused by the elastic stiffness EcAc, noting kE; 

and another one is caused by internal force T, noting kT. Then kE and kT are given as follows: 
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The sign of kT relates to internal force T, and there is  
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In another aspect, the proportion of first term and second term in Eq. (6.2) is  
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(6.4) 

Usually, EcAc >>T is pre-established, so that the stiffness kT originating from T can be ignored, the column 

is mainly stiffened by elastic stiffness kE of cables. 

 
Fig.6-3 Column stiffened by curved cables  

In contrast to the situation above, another situation is considered, that is, the stiffness kT originating from 

internal force of cables contributes to stiffening the column, and stiffness kE originating from the elastic 

stiffnesses of cables can be ignored. Fig.6-3 shows such an alternative stiffening method: a column is stiffened 

by curved cables, and concentrated loads N are directly applied to curved cables and another concentrated load 

F is applied at the top of the column. When buckling of the column happens, curved cables will experience 

mechanistic movements, and elastic stiffnesses of cables cannot provide stiffening effect to the column. 
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6.3 Derivation of stiffness of pseudo-spring  

In this section, the stiffening effect of cables shown in Fig.6-3 is discussed. As mechanistic movements of 

curved cables happen after buckling of the column, it is necessary to consider the equilibrium shapes of cables 

and the column. Stability problems of the column in-plane and out-of-plane will be analyzed respectively. 

6.3.1 In-plane 

 
Fig.6-4 Mechanistic movements of cables in-plane 

Firstly, the mechanistic movements of curved cables in-plane in 2D space are discussed. Axes x , y  and z̅ in 

the local Cartesian coordinate system x y z̅ in Fig.6-4 are parallel to axes x, y and z in global Cartesian 

coordinate system xyz in Fig.6-3 respectively. And symbols Ⅰ and Ⅱ in Fig.6-4 represent the equilibrium 

states before and after movements. 

In Fig.6-4, point C is assumed to experience a movement with a displacement v along axis y  in x y  plane to a 

new position C'. Then point B also moves to a new position B'. Here the initial coordinates of A is (0, 0, 0), C is 

(0, y C, 0), and B' is (x B', y B', 0). Then it is straightforward to determine the coordinate of C' is (0, y C+v, 0).  

The concentrated load N is assumed to be constant, the internal forces in cables during the shift from state Ⅰ 

to state Ⅱ will change to arrive at a new equilibrium state. As v is very small, if the lengths of cables are 

supposed to be almost identical in state Ⅰ and Ⅱ, then we can obtain 

22 2
' ' 1

2 22
' ' 2( )

B B

B B C

x y R
x y y v R

 + =


+ − − =
 (6.5) 

So that the coordinate of B' can be calculated as  
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2 2
' 1 '

2 2 2
1 2

'

( )

( )
2( )

B B

C
B

C

x R y

R R y vy
y v

 = − −

 − + +

= +  

(6.6) 

In the equilibrium state Ⅱ , from the relationship of reaction forces at point C' and equilibrium of moment at 

point A, we can obtain  

''

' '

' ' ( )

BC x

C y C B

B C x C

F x
F y v y
N y F y v

− = + −
 = +  

(6.7) 

The solutions of Eq.(6.7) is  

'
'

'

'

'
'

( )
C x

C y
B

C B

B
C x

C

FF x
y v y

N yF
y v

 = −
 + −


=
+  

(6.8) 

Substituting Eq.(6.6) into Eq.(6.8), we can obtain 

4 2 2 2
1 2

' 2 2 2 2 2 2 2
1 1 2

2 2
1 2

' 2

(( ) ( ) )
2( ) 4( ) ( ( ) )

( 1)
2 ( )

C
C y

C C C

C x
C

N y v R RF
y v y v R R R y v

N R RF
y v

 + − −
=

+ + − − + +


− = + +  

(6.9) 

Based on the symmetry of curved cables shown in Fig.6-3, the resultant force Fy at point C' in y direction 

would be calculated as  

4 2 2 2
1 2

' ' 2 2 2 2 2 2 2
1 1 2

(( ) ( ) )( ) ( )
2( ) ( 4 ( ) ( ( ) ) )

C
y C y C y

C C C

N y v R RF F v F v
y v R y v R R y v

+ − −
= − − =

+ + − − + +
 

4 2 2 2
1 2

2 2 2 2 2 2 2
1 1 2

(( ) ( ) )
2( ) ( 4 ( ) ( ( ) ) )

C

C C C

N y v R R
y v R y v R R y v

− − −
−

− − − − + −
 (6.10) 

When the value of v approaches to 0, the limiting ratio of Fy and v is  

2

2 2 2 2 2 2 20 2 2

2 2
1 2

3 2 2
1 1 2 1 2

2
1

2 2( )lim (
4 ( ) 4 ( )

y

v
C C C C C

Cy
y y y y

F R R
v R yR R R R R→

−
= +

− − + − − +
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2 2 24 2
1 2

2 2 2 2 (3/2

2 2
1

)2 2
1 1

2

2

(( ) )(2 2 2 ))
(4 ( ) )

)C C

C C C

R R R R
R R R

y y N
y y y

− − + −
+

− − +
 (6.11) 

Here assuming a stiffness kxy as  

2

2 2 2 2 2 2 22 2 3 2 2
1 1 2 1

2 2
1 2

1 2
2

2 2( )(
4 ( ) 4 ( )

C
xy

C C C C C

R Rk
R R R R R R

y
y y y y y

−
= +

− − + − − +  
2 2 24 2

1 2
2 2 2 2 (3/2)2 2
1 1

2 2
1 2

2

)(( ) )(2 2 2 )
(4 ( ) )

C C

C C C

y y N
y y
R R R R

R R yR
− − + −

+
− − +

 
(6.12) 

From Eq.(6.12), it is known that kxy contains an independent variable N without the elastic stiffness EcAc  of 

curved cables . For very small value of v, there is an approximate equation as follows: 

y xyF k v≈  (6.13) 

Then kxy can be seen as a relationship between force and displacement, which is similar to the elastic stiffness 

of a spring, so here kxy is called “stiffness of pseudo-spring”. In other aspect, when the value of v is very small, 

the resultant force Fx in x direction is  

2 2
1 2

' ' 2
( ) ( ) (1 )x C x C x

C

R RF F v F v N
y
−

= + − ≈ +
 

(6.14) 

Especially, when R1 = R2 = lc, we can obtain 

2

2 (3/2)2

4
(4 )

c
xy

c Cy
Nk l

l
=

−
 

(6.15)
 

xF N≈
 

(6.16)
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6.3.2 Out-of-plane 

 
Fig.6-5 Mechanistic movements of curved cables out-of-plane 

Fig.6-5 shows mechanistic movements of cables out-of-plane in 3D space. And symbols Ⅰ and Ⅲ represent 

the equilibrium states before and after movements. The coordinates of point A and point C are as same as the 

ones in Section 6.3.1. In local Cartesian coordinate system x y z̅, the point C moves with a displacement v along 

axis z̅ in x z̅ plane to a new position C', and the coordinate of C' is (0, y C, v). Similar to the discussion in 

Section 6.3.1, the lengths of cables are supposed to be constant after movements. Assuming the coordinate of B' 

is (x B', y B', z̅B'). From the geometric relationship after movement, we can obtain 

22 2 2
' '' 1

2 2 22
'' ' 2

'

'

( ) ( )

B BB

BB B C

B

B C

x y z R

x y y z v R
z v
y y

 + + =

 + − + − =


=


 (6.17) 

So that the coordinate of B' can be obtained as  

2 2 2
' '1 '

2 2 22
2 1

' 2

' '

( ) ( )

2 2

B BB

C
B

C
C

B B
C

x R y z

R R y vy
vy
y

vz y
y

 = − − −

 − − + =
 − −


 =
  

(6.18) 

From the relationship of reaction force at point C' and equilibrium of moment at point A , we can obtain 
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''

' '
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22 2 2
'' ' ( )

BC z

BC x

C y C B

BC x

BB C x C

F v z
F x
F y y
F x

N y z F y v

− = −
 − =

−


+ = +

 (6.19) 

Substituting Eq.(6.18) into Eq.(6.19), we can obtain the reaction forces at point C' 

2 2 2 2 22
'' 2 1

' 2222

( ) ( )
2( )( )

BB C
C x

CC

y z R R y vF N N
y vy v

+ − − +
= =

− ++
 (6.20) 

2 2 2 2 22
' 2 1

' ' 2 2 2 2 2 2 2 2 22 2 2 2'
1 2 1

(( ) ( ) )
2( ) 4 ( ) (( ) ( )) ( )

C B C C
C y C x

B
C C C C

y y N y R R y vF F
x y v R y v R R y v y v
− − − +

= =
− − + + − − − + +

 (6.21) 

2 2 2 2 22
' 2 1

' ' 2 2 2 2 2 2 2 2 22 2 2 2'
1 2 1

(( ) ( ) )
2( ) 4 ( ) (( ) ( )) ( )

B C
C z C x

B
C C C C

vN R R y vv zF F
x y v R y v R R y v y v

− − +−
= =

− − + + − − − + +
 (6.22) 

Considering the symmetry in Fig.6-3, then resultant force Fz at point C' in z direction is  

'2 ( )z C zF F v=
 

(6.23) 

2 2 2 4
2 1

2 2 2 23 2
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1 1

lim (( ) )
4 ( )

C

C
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v

C C

N R R y
y

F
R y R R yv→

− − −

−
=

− −  
(6.24) 

Similar to the notation of stiffness of pseudo-spring kxy in-plane in 2D space, here we assume a stiffness of 

pseudo-spring kxz out-of-plane in 3D space as  

2 2 2 4
2 1

2 2 2 23 2 2
1 2 1

(( ) )
4 ( )

C
xz

C C C

N R R yk
y R y R R y

− − −
=

− − −
 (6.25) 

From the expression of kxz in Eq.(6.25), we know kxz only contains an independent variable N without the 

elastic stiffness EcAc of cables. For very small value of v, we can again use an approximate expression  

z xzF k v≈  (6.26) 

In another aspect, for very small value of v, the resultant force Fx at point C' in direction x is  

2
1

C 2

2

'
C

22 ( ) (1 )x xF Rv N
y

RF −
= ≈ +

 
(6.27) 
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And resultant force Fy at point C' in direction y is 

C' C'( ) ( ) 0y y yF F v F v= − =  (6.28)
 

Especially, when R1=R2=lc, Eq.(6.25) and Eq.(6.27) become 

2 (1/2)2
C(4 )c

xz
Nk
yl

=
−

 (6.29) 

xF N≈
 

(6.30) 

6.4 Judging the buckling plane  

Now comparing the two stiffnesses of pseudo-springs kxy in-plane and kxz out-of-plane: 

(1) If N = 0, then it is self-evident that kxy = kxz = 0. 

(2) If N ≠ 0, then the difference between kxy and kxz is  

xy xzk k− =
2 2 2 2 2 2 2 2 2 2 24 2 2
1 2 1 2 1 2 2 1 2

2 2 2 2 (3/2)3 2 2
1 1

3 4

2

2( ( ) 8 ( ) ( ) 16 ( )(
(4 ( )

3 ) 12
)

)C C C

C C C

N
y

y R R y R R R R y R R R
y R R R y

− + − − + −
− − +

− −  (6.31) 

It is necessary to judge the plus or minus sign of the right side of Eq.(6.31). Firstly, let’s consider formula (4R1
2y C

2 −  R1
2 − R2

2 + y C
2  2) in the denominator of Eq.(6.31). 

 
Fig.6-6 Initial geometric shape of curved cables 

Fig.6-6 shows the initial geometric shape of curved cables in stateⅠin Fig.6-4(or Fig.6-5). Based on this 

geometric shape, we can obtain 

2 2 2 2
1 2R a R b− = −  (6.32) 

Substituting equation b = y C − a into equation above, we can obtain 
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2 2 2
1 2 2C CR R y a y− + =  (6.33) 

Then substituting Eq.(6.33) into (4R1
2y C

2 −  R1
2 − R2

2 + y C
2   ), then we can obtain 

2 2 2 2 22 2 2
1 1 2

2
14 ( ) 4 ( ) 0C C CR R R y aRy y− − −=+ >  (6.34) 

Secondly, the numerator in Eq.(6.31) is taken into consideration, assuming the numerator as a function m. 

2 2 2 2 2 2 2 2 2 2 24 2 2
1 2 1 2 1 2

2
2 2

4
1

3( ( ) 8 ( ) ( ) 13 12 )) 6 (C C Cm y R R y R R R R y R R R− + − − + −= − −  (6.35) 

In order to judge the plus-minus sign of m, here two parameters s and g are noted as follows. 

2 2
1 2
2
C

s R R
g y

 = −


=   
(6.36) 

As R1
2 − R2

2 + y C
2 > 0 and R1

2 − R2
2 − y C

2 < 0, so that |s| < g. 

Then substituting Eq.(6.36) into Eq.(6.35) and simplifying the function m, we can obtain 

2 2 2
2

2 23( 4 (2 163 ) 3 )g s s g s s Rm g− +− +=  (6.37) 

In the equation above, the parameter s can be seen as a constant number, and the parameter g can be seen as 

an independent variable, meanwhile the function m can be seen as a dependent variable. The first and second 

derivatives of the function m are 

3 2 3
28 (16 12 ) 4dm s R g s g

dg
= + − +  (6.38) 

2
2

2 22
2 12 1 12 ) 02 (d m g s g s

dg
− = −= >  (6.39) 

As d2m
dg2 >0, 

dm
dg

 is a monotone increasing function, when g = s, 
dm
dg

 arrives minimum. 

3 2 3
2 28 (16 12 ) 4 16 0g s

dm s R s s s R
dg = = + − =+ >  (6.40) 

Because 
dm
dg

>0, so that the function m is monotone increasing too. When g = s, the function m arrives its 

minimum.  
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2
2

316 0g sm s R= = >  (6.41) 

It is clear that m > 0, since the numerator and the denominator in Eq.(6.31) are demonstrated to be positive, 

kxy > kxz is therefore affirmed. If the cross section of the column is symmetric closed cross section, and 

moments of inertia around axis z and axis y have a relationship that Iz=Iy. Then buckling phenomenon of 

the 3D-column in Fig.6-3 may happen out-of-plane rather than in-plane as if the column has no preexisting 

imperfection. 

6.5 One pseudo-spring system 

  
(a) (b) 

Fig.6-7 One pseudo-spring system 

Firstly, in-plane stability of the column in Fig.6-3 in 2D space is considered. Fig.6-7(a) is a simplification of the 

model in Fig.6-3. In Fig.6-7(b), the effects of shearing deformation and shortening of beam axis are ignored, 

according to Eq.(C-19) in Appendix C, the equilibrium differential equation can be written as  

( )( )'' x x
y

z z z

F F F F vl xy y F
EI EI EI
+ +−

+ = − +  (6.42) 

Assuming a parameter λ as 

2 x

z

F F
EI

λ
+

=
 

(6.43) 

Then substituting Eq.(6.13) and Eq.(6.43) into Eq.(6.42), we can obtain 
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2 2'' ( )xy

z

k v
y y l x v

EI
λ λ+ = − − +

 
(6.44) 

The general solution of Eq.(6.44) is  

2cos sin ( )xy

z

k v
y A x B x l x v

EI
λ λ

λ
= + − − +

 
(6.45) 

The boundary conditions in Fig.6-7(b) are 

(1) y = 0, y' = 0 at x = 0 

(2) y = v at x = l 

Utilizing the above boundary conditions, we can obtain 

2 3[( 1)cos sin ] 0xy xy

z z

k l k
l l v

EI EI
λ λ

λ λ
− − =

 
(6.46) 

As the value of v is an arbitrary small displacement, then the solution of Eq.(6.46) is  

2 3( 1)cos sin 0xy xy

z z

k l k
l l

EI EI
λ λ

λ λ
− − =

 
(6.47) 

Eq.(6.47) is the buckling control equation of in-plane stability of the column in 2D space. The relationship of 

the critical load Fcr and the concentrated load N is need to be examined. 

(1) If N = 0, then it is self-evident that  kxy = 0. The buckling control equation in Eq.(6.47) becomes 

cos 0lλ =  (6.48) 

The minimum positive value of    satisfying Eq.(6.48) is 0.5π, the corresponding critical load Fcr is  

2

2(2 )
z

cr
EIF
l

π
=

 
(6.49) 

(2) If N ≠ 0, then  kxy ≠ 0. We assume two notations u =  λl , and  r = kxy

EIz/l3
. Here u and r are 

non-dimensional parameters. Then the buckling control equation in Eq.(6.47) thus becomes  

3

tan uu u
r

= −
 

(6.50) 
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As Eq.(6.50) is a transcendental equation, numerical method can be used for the value of u. 

Assuming a pseudo-critical load Pcr = u2 EIz
l2

, so that from Eq.(6.43) the critical load Fcr can be calculated as  

2 2
2 1 2

2 2

( )(1 )cr x
z

cr
C

EI R RF u N
l

P
y

F −
= ≈ − +−

 
(6.51) 

In 3D-column analysis, for axial compression column with biaxial symmetric cross section, buckling modes of 

the column may be flexural buckling or torsional buckling. For example, flexural buckling typically occurs 

when the column has H-type cross section; torsional buckling is more common when the column has a 

crisscross cross section or X-type cross section. If only the flexural buckling of the column is considered, then 

kxz is substituted for kxy, and EIy is substituted for EIz, the critical load Fcr for out-of-plane stability can be 

obtained. 

6.6 Numerical example  

Here a numerical example in Fig.6-8 is used to show the variation tendency of the critical load Fcr and 

pseudo-critical load Pcr with the increasing of the concentrated load N. 

 
Fig.6-8 Column featuring with curved cables 

Table.6-2 Materials parameters of numerical example 

 Young's modulus [GPa] Poisson’ ratio Internal diameter [mm] External diameter [mm] 

Cable 205   0.7 

Column 2.82 0.38 4 6 

− −
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The cross sections of the column and cables are hollow cross section and solid circular cross section 

respectively. The materials parameters of the column and cables are shown in Table.6-2. In the static analysis by 

using nonlinear FE method, the entire column is divided into 30 geometric nonlinear beam elements introduced 

in Section 3.4.1, and each beam element has the same length. And one cable is divided into one geometric 

nonlinear truss element only, which is introduced in Section.3.4.2. The column is supposed to have no 

preexisting imperfection in FE analysis. 

 

a) In-plane stability 

1) Theoretical solution 

In Section 6.3, the solutions of stiffnesses of pseudo-springs kxy in Eq. (6.12) and kxz in Eq.(6.25) are given. And 

then in Section 6.5, a procedure to get the theoretical solution of the critical load Fcr in Eq.(6.51) is also 

discussed. As a preparation, parameters in Fig.6-8 (definitions of y C, lc and l refer to Section 6.3) are obtained 

as 

02cos45 2

2 (m)
10

0.337(m)

C c c

c

y l l

l

l






= =

=

=




 (6.52) 

Firstly, let’s consider the model in Fig6-8 in 2D space. Because the lengths of AB and BC are identical, then 

from Eq.(6.15), the theoretical stiffness of pseudo-spring kxy is  

2

2 (3/2)2

4 2 10
(4 )

c
xy

c C c

Nl Nk N
l y l

= = =
−

 (6.53) 

The non-dimensional parameter r can be obtained as  

3 3
2

/
/

/
cxy

z z

k
r

EI l E
N

I
l

l
= =  (6.54) 

In theoretical analysis, by substituting Eq.(6.54) into Eq.(6.50), u in Eq.(6.50) corresponding to different 

concentrated loads N can be obtained. Then substituting u into Eq.(6.51), the critical load     can be obtained. 
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2) FE approach 

For static analysis based on nonlinear FE method, when the critical load     at the top of the column is aimed 

to be obtained, which corresponds to defined concentrated load N on the cables, two steps are used to get the 

critical load     during the FE analysis process: Step 1: Keeping F as 0N, then we increase N from 0 to a 

predetermined value and the system of column and cables arrives an equilibrium state; Step 2: Keeping N to the 

new determined value, then we increase F from 0N to a new value where minimum positive eigenvalue of 

tangential stiffness matrix reaches 0. This freshly defined value of F is the critical load Fcr. 

Here a specific example is given to show how to calculate the critical load     by using nonlinear FE method. 

In this example, the concentrated load N is assumed as 5N. It is usually quite difficult to attain a minimum 

positive eigenvalue equaling 0. So as minimum positive eigenvalue of tangential stiffness matrix approaches 0, 

we will expect buckling of the column to have happened. Fig.6-9(a) and Fig.6-9(b) show the relationships of 

minimum positive eigenvalue of tangential stiffness matrix and the concentrated load N, and the concentrated 

load F respectively. By observing Fig.6-9(a) and Fig.6-9(b), the minimum positive eigenvalue firstly increases, 

and then decreases to 0. When the concentrated load N equals 5N, at the same time the concentrated load F 

equals 10.2N, the minimum eigenvalue in Fig.6-9(b) becomes 2.5×10-4, so buckling of the column is thought 

to have occurred.   

Fig.6-10 shows the relationship of displacement of point B in x direction with concentrated loads N and F. The 

displacement in x direction is monotone decreasing in step 1 and step 2. 

Fig.6-11 shows the relationship of tension of cable ⓐ with concentrated loads N and F. In step 1 in Fig.6-11(a), 

when the concentrated load F remains 0N, tension is increasing in almost linear fashion with each increment 

added to the concentrated load N. However, in step 2 in Fig.6-11(b), when the concentrated load N remains 5N, 

even as the concentrated load F increases, tension of cable almost remains nearly unchanged. 
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(a) (b) 

Fig.6-9 Relationship of minimum positive eigenvalue with N and F 

 

  

(a) (b) 

Fig.6-10 Relationship of displacement with N and F 

 

  

(a) (b) 

Fig.6-11 Relationship of tension of cable with N and F 

Fig.6-12 shows relationship of the non-dimensional parameter 
N/lc

EIz/l3
, the critical load Fcr  and the 

pseudo-critical load Pcr. Symbols for “num.” and “theo.” represent the respective results by FE method and by 
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theoretical analysis. P1 is the critical load of axial compression column with only one side fixed and the other 

side free, and P1 = π2EIz/(2l)2. And P2 is the critical load of axial compression column with one side fixed 

and the other side restrained by hinged ended, and P2 = π EIz/(0.7l)2. 

From Fig.6-12, it can be observed that the FE results of Pcr and Fcr are almost as same as the results 

obtained by theoretical method; and this affirms the validity of theoretical method proposed in this section and 

the stiffness of pseudo-spring in-plane proposed in Section 6.3.1. Therefore it can be concluded that it is tension 

rather than the intrinsic elastic stiffness of cables that contributes to the stiffening effect of the column. 

 

Fig.6-12 Relationship of 
N/lc

EIz/l3
, Fcr and Pcr in-plane 

In another aspect, from variation tendency of pseudo-critical load Pcr(num.) in Fig.6-12, it can be observed that 

with the increment of 
N/lc

EIz/l
3, Pcr changes from P1 to P2; this means the side of the column connecting to 

the cables is restrained from a free situation to a state that is analogous to a hinged ended. And by inspecting the 

variation tendency of the critical load Fcr, when 
N/lc

EIz/l
3 ∈[0,16.73), Fcr is monotone increasing; on contrast, 

when 
N/lc

EIz/l3
∈[16.73, 46.24], Fcr is monotone decreasing. This suggests, although in limiting scope, that the 

concentrated load N can contribute to stiffening the column, but any overlarge value of the concentrated N will 

lead to a decrease in Fcr. The maximum value of the critical load Fcr is 0.94π2EIz/l2, which is about 3.76P1 

or 0.46P2. This means comparing to a column with one side fixed and the other side free, the maximum critical 

load Fcr of the column has increased about 2.76 times. 
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(a) N is small: 
N/lc

EIz/l3
=0.02 (b) Fcr is max.: 

N/lc
EIz/l3

 =16.73 (c) Fcr = 0: 
N/lc

EIz/l
3=46.24 

Fig.6-13 First order buckling modes in-plane by FE method 

Fig.6-13 shows the first order buckling modes by FE method. The broken line is the original shape and 

continuous line is the buckling mode. With the increment of the concentrated load N, the first order bucking 

modes have experienced transference in-plane. 

 

Fig.6-14 Off-loading schematic plot 

In another aspect, although Fig.6-12 shows the critical loads Fcr corresponding to different concentrated loads N, 

it is also necessary to find out the safety zone of the whole structure. Here a off-loading schematic plot in 

Fig.6-14 to explain how to use the configuration in Fig.6-12. In this example, the load pattern in Fig.6-14 is 

identical to the position ① (28.20, 0.68) in Fig.6-12. In other word, when 
N/lc

EIz/l3
 =28.2, F=0.68

π2EIz
l2

 can be 

obtained. 

During the discussion, F=0.68
π2EIz

l2
 is assumed as constant, the concentrated loads N applied to the curved 
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cables are decreased at the same time. The coordinate position ② in Fig.6-12 is (6.58, 0.68). When 
N/lc

EIz/l3
  is 

in the field (6.58 28.2), from Fig.6-12 it is known that if the column start to buckling, the values of F are all 

larger than 0.68
π2EIz

l2
, this means the column is safe in all the load patterns when F=0.68

π2EIz
l2

, and 
N/lc

EIz/l3
∈(6.58, 28.2); and the column will collapse in the load patterns when F=0.68

π2EIz
l2

, and 
N/lc

EIz/l
3 ∈ (0, 6.58). 

Therefore, Fig.6-12 is very useful to design the load patterns for keeping the column safe. 

 

b) Out-of-plane stability 

Next the buckling analysis in Fig.6-8 for out-of-plane stability of the column in 3D space is addressed. Similar 

to the case of in-plane stability of the column in 2D space, the two critical loads of the column are assumed to 

be P1 = π2EIy/(2l)2, P2 = π2EIy/(0.7l)2. In static analysis based on nonlinear FE method, the column is 

presumed to have no preexisting imperfection. 

 

Fig.6-15 Relationship of 
N/lc

EIy/l3
, Fcr and Pcr out-of-plane 

Fig.6-15 shows the relationship of non-dimensional parameter 
N/lc

EIy/l3
, the critical load Fcr  and the 

pseudo-critical load Pcr. In Fig.6-15, the nonlinear numerical results of Fcr and Pcr are almost the same as 

the results obtained by theoretical methods introduced in this section noted above, so that correctness of the 

stiffness of pseudo-spring out-of-plane proposed in Section 6.3.2 is also proved. 

The variation tendency of pseudo-critical load Pcr(num.) also changes from P1 to P2, but the maximum of 
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Pcr(num.) is 1.77π2EIy/l2, while in 2D situation, the maximum of Pcr(num.) is 1.96π2EIz/l2.  

In another aspect, the critical load Fcr(num.) in Fig.6-15 also firstly increases and after reaching a maximum 

value 0.42π2EIy/l2, which is about 1.68 times of P1 and 0.21 times of P2, and then it begins to decrease. 

Compared to the critical load P1 of column with one side fixed and the other side free, the maximum of Fcr 

has increased about 0.68 times. 

The maximum of Fcr(num.) is 0.94π2EIz/l2 in 2D space, but when Iz=Iy is considered, Fcr(num.) in the 

out-of-plane case, it can be observed that the critical load is about 0.45 times the maximum of the critical load 

Fcr(num.) in-plane. 

   
(a) N is small: N/lc

EIy/l3
=0.02 (b) Fcr is max.: 

N/lc
EIy/l3

=19.92 (c) Fcr is 0: 
N/lc

EIy/l3
=41.73 

Fig.6-16 First order buckling modes out-of-plane by n FE method 

Fig.6-16 shows the transference of first order buckling modes. The broken line is the original shape and 

continuous line is buckling mode.  

6.7 Applications of external force stiffening method 

In this pursuit the stability problems of a guyed mast and an arch structure featuring with curved cables are 

analyzed. When external forces are applied directly to curved cables, curved cables under direct loads could 

provide a stiffening effect to the main structures. And the stiffening principle of the curved cables is similar to 

the example of the column in Section 6.5. 



Chapter 6 Stiffening Effect of Flexible Components                                    124 

 

6.7.1 Guyed mast 

  

Fig.6-17 Guyed mast  Fig.6-18 Shape of curved cables 

Fig.6-17 shows a guyed mast with one side fixed and other side connecting to four curved cables symmetrically. 

Among the four cables, two of them are located in xz plane and other two cables are located in xy plane. In 

nonlinear FE analysis, each curved cable is divided into 4 geometric nonlinear truss elements, and each element 

has the same length. The entire column is divided into 30 geometric nonlinear beam elements, and each element 

has the same length. As for one curved cable, it is divided into 4 geometric nonlinear truss elements. Because 

each curved cable is flexible, the generalized inverse matrix is utilized to avoid the singularity of tangential 

stiffness matrix, and no elongation displacement method is adapted during calculation, which is introduced in 

Appendix A. 

Concentrated loads N are applied to curved cables symmetrically, and the direction of the concentrated load N is 

perpendicular to a line connecting the endpoints of cables, e.g., direction of the concentrated load N in xz plane 

in -x position is [1/√2, 0, − 1/√2]. During numerical analysis, the direction of the concentrated load N is 

presumed to be constant and follower force effect of concentrated load N is not considered here. In addition, the 

guyed mast has self-weight with the distributed load q in unit length. 

Table.6-3 Materials parameters of the guyed mast  

 Young's modulus [GPa] Poisson’ ratio Internal diameter [mm] External diameter [mm] 

Cable 205   2 

Column 205 0.3 20 40 

The guyed mast exhibits buckling with the concentrated load N and self-weight distributed load q. The 

elevation of the guyed mast is 10m. Fig.6-18 shows the shape of curved cables, which is a part of circle. And 

Table.6-3 shows the materials parameters of the guyed mast in FE analysis. And nonlinear FE method is used 

− −
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to analyze buckling phenomenon of the guyed mast. 

 

Fig.6-19 Relationship of 
N

EI/l2 and critical distributed load qcr 

In Fig.6-19, I  is moment of inertia, which has the same value as Iy  and Iz . With increasing of 

non-dimensional parameter 
N

EI/l2
, the variation tendency of the critical distributed load qcr is very similar to 

the variation tendency of Fcr(num.) in the numerical examples of the column in-plane in Section 6.6. When 
N

EI/l2 is about 0, qcr = 0.82π2EI/l4; and when 
N

EI/l2
 is 0.1077, qcr arrives the maximum value equaling 

4.41π2EI/l4, which has increased 4.38 times comparing to the one in the situation when the concentrated load N 

is 0; and when 
N

EI/l2
 is 0.8198, qcr equaling 0 is obtained. 

   

(a) N is small: 
N

EI/l2
= 0.0004 (b) qcr is max.: 

N
EI/l2 = 0.1077 (c) qcr is 0: 

N
EI/l2

= 0.8198 

Fig.6-20 First order buckling modes by FE method 

Fig.6-20 shows the transference of the first order buckling modes of the guyed mast. The broken line is the 

original shape and continuous line is the buckling mode. 
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6.7.2 Arch structure 

 
Fig.6-21 Arch featuring with curved cables  

Fig.6-21 shows an arch structure featuring with one pair of curved cables. In fact, Fig.6-21 is a simplified 

special example of the arch with cable-nets shown in Fig.1-4 in Chapter 1. To analyze the buckling behavior of 

the arch in simple stiffening pattern shown in Fig.6-21 helps to understand the stiffening effect of cable-nets in 

Fig.1-4 in Chapter 1. 

In Fig.6-21, two curved cables are located at the two sides of the arch in yz plane symmetrically. The shape of 

curved cables and direction of the concentrated loads N are as same as the ones in Fig.6-18. The radius R of the 

arch is 1 m. The central angel of the arch is π. In FE analysis, the entire arch is divided into 48 geometric 

nonlinear beam elements with 3.75° along circumferential direction of the arch, and each beam element has the 

same length. Each curved cable is divided into 4 geometric nonlinear truss elements, and each truss element has 

the same length. Excluding the concentrated loads N applied to curved cables, there is another concentrated load 

P applied to the top of the arch. The boundary conditions of the arch are assumed as fixed ended, and the 

boundary conditions of cables are assumed as hinged ended overall. Table.6-4 shows the materials parameters 

of the arch and cables in numerical example. 

Table.6-4 Materials parameters of the arch and cables 

 Young's modulus [GPa] Poisson’ ratio Internal diameter [mm] External diameter [mm] 

Cable 205   1 

Arch 205 0.3 6 7 

Before the stability of the arch featuring with curved cables in Fig.6-21 is analyzed, the stability of single 

− −
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circular arch without stiffening cables in 3D space shown in Fig.6-22 should be discussed firstly. 

 
Fig.6-22 Circular arch model  

At the top of the arch, a hinged ended is used to support the arch in y direction. A concentrated load P is applied 

at the top of the arch. The first order critical loads for the arch without and with hinged ended at the top are 

noted as P1 and P2 respectively. The other conditions, such as geometric shape, boundary conditions, materials 

parameters of the arch are as same as the ones in Fig.6-21.  

Fig.6-23 shows the relationship of displacement and concentrated load in –z direction in three dimensional 

space. From Fig.6-23, P1=46.8N, P2=104.3N can be obtained.  

 
Fig.6-23 The relationship of displacement and load in –z direction 

Then the stability of the model in Fig.6-21 is analyzed. Fig.6-24 shows the relationship of the concentrated load 

on cables and the critical load. The symbols in Fig.6-24 are noted as follows: Fcr is the first order critical load, 

which is applied at the top of the arch when buckling happens. Fz is the resultant force which is transmitted from 

cables to the top of the arch in -z direction. And Pcr is the pseudo-critical load, and Pcr=Fcr+Fz..  

From Fig.6-24, it can be observed that with the increment of the concentrated load N, the critical load Fcr firstly 
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increases, after it arrives maximum, it decreases to 0. When the concentrated load N is 4.7N, the critical load Fcr 

arrives maximum, and Fcr=75.0N. When the concentrated load N is 25.4N, the critical load Fcr equals 0N. In 

another aspect, the variation tendency of pseudo-critical load Pcr is from P1 to P2, that is, the increasing of 

concentrated load N on cables will provide a stiffening effect which is analogous to the case with hinged ended 

supports. 

 

Fig.6-24 Relationship of the concentrated load on cables and the critical load 

 

  

Fig.6-25 Equilibrium shapes of the arch before buckling  

Fig.6-25 shows the Equilibrium shapes of the arch before buckling. Black broken line symbolizes the initial 

shape, and continuous lines (“blue line ”, “red line” and “violet line”) symbolize the equilibrium shapes before 

buckling happens. “State (a)” is the state when N=10-3(N); Fcr=46.8(N); “State (b)” is the state when N=4.7(N); 

Fcr=75.0(N); and “State (c)” is when N=25.4(N); Fcr=0.0(N).  
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(a) N=10-3(N); Fcr=46.8(N); Pcr=46.8(N) 

 

  

(b) N=4.7(N); Fcr=75.0(N); Pcr=96.2(N) 

 

  
(c) N=25.4(N); Fcr=0.0(N); Pcr=104.3(N) 

Fig.6-26 First order buckling modes of the arch with curved cables 

Buckling modes (continuous line) corresponding to three equilibrium states in Fig.6-25 are shown in Fig.6-26. 

These buckling modes are plotted by directly adding the buckling modes on the equilibrium states before 

buckling. The broken line symbolizes the initial shape, and the continuous line symbolizes the buckling modes. 

From Fig.6-26(a) and Fig.6-26(b), for the two cases when N is small and Fcr arrives maximum, the buckling 

modes are translating to out-of-plane of the arch. Meanwhile, from Fig.6-26(c), for the case when Fcr is 0, the 
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buckling mode is rotational shape (Fig.6-26(c)).  

6.8 Summaries 

In this chapter, a new concept of stiffening methods called external force stiffening method is proposed. The 

characteristic of this method is by applying external loads directly to flexible components to stiffen the 

structures. The major achievements are summarized as follows: 

1) In external force stiffening method, the elastic stiffnesses of curved cables can no longer provide stiffening 

effect to structures, and the external force in components can produce a stiffness called stiffness of 

pseudo-spring to stiffen structures. 

2) By using a column model featuring with curved cables, the stiffnesses of pseudo-springs both in-plane and 

out-of-plane are deduced. Meanwhile, the buckling control equations of this structure system are also derived. 

And by comparing the results obtained by nonlinear FE method and by theoretical approach, the validities of 

theoretical approach and formulations of stiffnesses of pseudo-springs are proved. 

3) External force stiffening method can be applied to a guy mast structure and an arch structure featuring with 

curved cables. The stiffening effects of curved cables and variation of the critical load are very similar to the 

ones in anterior column’s example. And transferences of buckling modes in these two application examples are 

also studied. 

4) External force stiffening methods have a similar characteristic: if there are external loads applied to flexible 

components, and the other loads applied in main structure. Then in limiting scope, the external loads on flexible 

components can enhance the stability of structures, but these oversize external loads will also lower the stability 

of structures. In other word, there are optimal values of loads on flexible components to obtain the best 

stiffening effects. 
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Chapter 7 Model Experiments 

7.1 Introduction 

As in positively pressured pneumatic structure system, heavy and strong maintenance structure in boundary is 

needed to resist the inflation force of membrane. For this reason, it cannot uttermost exert the convenience of 

pneumatic structure. Then we begin to consider the possibility of the negatively pressured one for the 

application in the first-aid shelter, because in first-aid shelter the facility of construction work is mostly 

emphasized. In this chapter, we discuss three experimental shelters with negatively pressured pneumatic type. 

The main skeletons of these structures are made of arches. These three shelters are called hemispheric shelter, 

rectangle shelter and a round shelter respectively.  

In the type of negatively pressured pneumatic structure, membranes or cables may deform into curved shape 

when they are under negative draught head. These kinds of flexible components under directly loading may 

provide stiffening effect to the main structure, as are discussed in the Chapter 6. Then a load test experiment is 

processed in a column structure featuring with curved cables to verify this view.  

7.2 Shelters with negatively pressured pneumatic structures 

7.2.1 Hemispheric shelter 

The object of this experiment is to observe the buckling phenomenon of skeleton. In addition, ropes are used as 

a kind of constraint components to stiffen the skeleton and the stiffening effect of the ropes are investigated.  

1) Model of the skeleton 

  
Fig.7-1 Miniature model of hemispheric shelter Fig.7-2 Special joint at the top 

The shape of hemispheric shelter is a dome, the skeleton of which is made of 6 semi-circular arches. Fig.7-1 
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shows a miniature model. In experiments of the full-scale model, we made a special joint for all the semi-circle 

arches, as shown in Fig.7-2. And Fig.7-3 shows the PVC pipes, which are the materials of skeleton. The PVC 

pipes are hollow circular cross section, and the external diameter of pipes is 32cm, their thickness is 3.5cm. And 

Fig.7-4 shows the joints of PVC pipes. Fig.7-1 ~Fig.7-4, and the construction materials refer to Reference [36]. 

 
Fig.7-3 PVC pipes  

 

  
(a) (b) 

Fig.7-4 Joint of PVC pipes  

In the full-scale experiment is carried out at the terrace of EW building of the Institute of Industrial Science in 

the University of Tokyo in January 12th, 2012. The diameter of semi-circular arches in design is 6m. The shape 

of boundary is dodecagon, the radius of internal tangential circle is 3m.  

 
Fig.7-5 Setting of stiffening rope 

Totally 36 cotton ropes are used to stiffen the skeleton of semi-circular arches. Fig.7-5 shows the arrangement 

of ropes between two adjacent arches. Two cross ropes are set up between adjacent arches. And one additional 
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rope is put in horizontal direction.  

The procedure of experiment is carried out as follows[30]:  

Step 1): The positively pressured pneumatic structure is constructed. And PVC pipes are used to make 6 circular 

cross arches inside (Fig.7-6). The membrane contacts skeleton naturally without any connecting joints. 

Step 2): The air to make the negatively pressured one is deflated. Gradually the skeleton began to resist the 

draught head and suddenly buckling phenomenon of skeleton happens (Fig.7-7). At this time, the draught head 

is measured as approximately -50Pa.  

Step 3): The air is deflated again. The skeleton is modified to the shape in Fig.7-6, and then 36 ropes are utilized 

to stiffening the skeleton (Fig.7-5). After finishing the stiffening work, the air is deflated again. Fig.7-8 shows a 

stabilization state of skeleton with ropes. Buckling phenomenon occurs at approximately -70 Pa (Fig.7-9). 

  

(a) Outside view (b) Inside view 

Fig.7-6 Construction of skeleton (+110Pa) 

 

  
(a) Outside view (b) Inside view 

Fig.7-7 Buckling phenomenon in step 2 ( ≈-50Pa) 
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(a) Outside view (b) Inside view 

Fig.7-8 Stabilization state in step 3 (-30Pa~-40Pa) 

 

  
(a) Outside view (b) Inside view 

Fig.7-9 Buckling phenomenon in step 3 ( ≈-70Pa) 

 

2) Numerical analysis  

  
(a) Perspective drawing (b) Plane graph 

Fig.7-10 Numerical model 

Numerical analysis is carried out for comparison, its model is shown in Fig.7-10. The radius of semi-circular 

arches is 3m. In FE analysis, the entire arch is divided into 12 linear beam elements with same length. And each 

cable is divided into one linear truss element. And external loads are calculated by the draught head and 
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approximate projection areas between two circular arches (the edges of triangle or quadrangle parallel to 

horizontal plane keep constant, the heights of them in projection plane are all assumed as one-sixth of the 

radius), and the external loads are applied in the radial direction[30]. The boundary conditions are assumed as 

hinged ended. The materials parameters are shown in Table.7-1. Young’s modulus and Poisson’s ratio of PVC 

pipes refer to standard of Japan PVC Pipe and Fittings Association. 

Table.7-1 Materials parameters of numerical example 

 Young's modulus [GPa] Poisson’s ratio Internal diameter [mm] External diameter [mm] 

Rope 10.8[23]   10.5 

Arch 3.33 0.38 25 32 

 

  

(a) Perspective drawing  (b) Plane graph 

Fig.7-11 First order buckling mode without ropes (First order critical load=-8.6Pa) 

 

  

(a) Perspective drawing  (b) Plane graph 

Fig.7-12 First order buckling mode with ropes (First order critical load=-44.0Pa) 

Fig.7-11 and Fig.7-12 shows the first order buckling modes of dome without and with stiffening ropes. Both 

− −
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shapes of these two modes are rotating along the longitudinal direction of dome. When there are stiffening ropes, 

during the static calculation, for -1Pa draught head, the internal force of inclined ropes and horizontal rope are 

positive value and negative value respectively. Then all the horizontal ropes are omitted in Fig.7-12 and the 

numerical model is modified (omitting the horizontal rope in Fig.7-5). The result of modified model is shown in 

Fig.7-13. In static analysis, the internal force of inclined cables becomes positive value for -1 Pa draught head. 

  

(a) Perspective drawing  (b) Plane graph 

Fig.7-13 First order buckling mode with ropes  (First order critical load=-25.2Pa) 

 

3) Summary of results of experiments and numerical analysis 

a) The experiment results in Fig.7-7 and numerical result in Fig.7-11 are compared. The critical load in 

experiment is approximately -50Pa, while the numerical result is -8.6Pa, about 17% of experimental one. And 

the buckling phenomenon in experiment and the first order buckling mode in Fig.7-11 are both rotational 

modes along the longitudinal direction of dome. 

b) When the buckling phenomenon in Fig.7-9 is investigated, we can observe most of the horizontal ropes are 

slack. So it is better to use the numerical results in Fig.7-13 for comparison. The critical load in experiment is 

approximately -70Pa, while in numerical analysis, the result is -25.2Pa, about 36% of experimental one. It can 

be observed the inclined ropes increase the strength of dome. While comparing the buckling modes in Fig.7-9 

and in Fig.7-13, in Fig.7-9 the buckling phenomenon of dome is local buckling, e.g. pipes are indenting in 

specific arches, and in Fig.7-13 the buckling mode of dome is global buckling behavior translating along the 

axis of symmetry.  

c) As the experimental model is only a testing model, and there are a lot of initial imperfection existing in the 

skeleton, and the internal force in every arches may have great difference and then focus on some specific 
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components. In fact, the shapes of arches may not be semi-circular and the force transmitting to arch from 

membrane are unknown in experiments. The boundary conditions are also complex, which is not identical to 

hinged ended used in numerical analysis.  

7.2.2 Rectangle shelter  

In order to welcome the 2012 Open Campus of Institute of Industrial Science in June 1st and June 2nd in 2002, 

we constitute a new rectangle shelter for exhibition at the same place of former shelter. The dwelling space for 

dwelling is considered to be able to afford 5 people, which is assumed as be basic unit of family. Fig.7-14 shows 

the design sketch of rectangle shelter[35]. And Fig.7-15 shows a miniature model of skeleton[36]. In this section, 

Fig.7-14~Fig.7-15, Fig.7-17~Fig.7-21 are provided by two co-operators in the same experiment Afra [35] and 

Hong [36].  

  
Fig.7-14 Design sketch of rectangle shelter Fig.7-15 A miniature model of skeleton 

The skeleton of shelter is mainly made by six semi-circular arches, two arches are on the ground, two arches is 

45-degree inclining to the ground, two arches are perpendicular to the ground, and the other two are located at 

ground. In order to maintenance the shape of membranes and skeleton, we use net and ropes as constraint 

components between the skeletons. The skeleton are also made of PVC pipes as same as the ones used in 

former shelter. All the construction materials are stated in Reference [36]. The design size is shown in Fig.7-16. 

 

(a) Plane graph 

 

(b) Vertical view 
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(c) Sectional view 

Fig.7-16 Design size of rectangle shelter 

The experiments are carried out two times. The first time is a pre-experiment, it is at 25th April, 2012. The 

constriction procedure are written explicitly by co-operators in this experiment Afra [35] and Hong [36]. The size 

of PVC membrane is a square with lateral length 14m. Fig.7-17 shows configuration of rectangle shelter in 25th 

April.  

  
(a) (b) 

Fig.7-17 Rectangle shelter  

During experiment, we extend the surplus membrane to the ground as long as possible, and then we deflate the 

air to turn the structure into a negatively pressured one (Fig.7-17(b)). During the increment of draught head, we 

could observe that PVC membrane in the ground is beginning to cling to the ground. Finally we succeed in 

making the negatively pressured pneumatic structure without additional maintenance structure in the boundary. 

And when the draught head is about -30 Pa, the buckling phenomenon happens obviously in the arches and 

then we stop deflating. Fig.7-18 shows the buckling phenomenon of skeleton. In another aspect, during the 

experimental experience in Fig.7-17 and Fig.7-18, we also find out that if the average length of surplus PVC 

membrane in the boundary is approximate 1.5m, the negatively pressured pneumatic structure is easily to 

realize. 
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Fig.7-18 Buckling of skeletons of rectangle shelter in April (≈-30Pa) 

In addition, in order to estimate the effect of surplus PVC membrane in the boundary, we put the surplus PVC 

membrane inside of skeleton, as shown in Fig.7-19. But at this time, even though we try to deflate the air, but 

the draught head cannot be reduced. For investigation of the reason, we can consider that when surplus 

membranes are put inside of the skeleton, air leakage is very remarkable during deflating, so the negatively 

pressured pneumatic structure cannot be made successfully.  

 
Fig.7-19 New folding method of membranes in the boundary 

In the second time of experiment during 23th-25th May, 2012. This time we constitute negatively pressured one 

according to the original design sketch in Fig.7-15. And Fig.7-20 shows the accomplished skeleton and the 

whole structure with membranes. The construction works totally takes about 4hours with the help of 7 people. 

  
(a) (b) 

Fig.7-20 Rectangle shelter in May 

The deflating experiment is totally carried out three times. The explicit experimental process is introduced in 
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Reference [36]. Here only the experimental results are listed. Fig.7-21 shows three configurations during all the 

experiments in May, 2012. In Fig.7-21(a), when the draught head is -33Pa, no obvious buckling phenomenon is 

observed. When the draught head becomes about -42Pa, two horizontal bars between the semi-circular arches at 

the waist area indent suddenly. And the draught head is reduced to about -71Pa, the horizontal bar between the 

semi-circular arches at the peak area is indenting too. Meanwhile, we can observe buckling of the erected two 

semi-circular arches also happens. 

(a) Stable state 
(Draught head≈-33Pa) 

(b) Two horizontal bars buckling 
(Draught head≈-42Pa) 

(c) Global buckling  
(Draught head≈-71Pa) 

Fig.7-21 Deflating experiment in May 

7.2.3 Round shelter  

1) Constructions of round shelter in practice 

 
(a) (b) 

Fig.7-22 Design sketches of round shelter [35] 

In the anterior two experiments in negatively pressured pneumatic structure, the skeletons are mainly 

constituted by PVC pipes, the buckling phenomenon of skeletons is observed. So this time we use mental 

materials with higher strength to constitute the skeleton. In this section, Fig.7-22~Fig.7-23, Fig.7-26~Fig.7-31 

are provided by the co-operator in this experiment Afra [35]. Aluminum pipes are elected because of the 

light-weight merit. The external diameter of pipes is 32mm, and the thickness is 3mm. The design sketch of 

round shelter is shown in Fig.7-22.  



Chapter 7 Model Experiments                                                     141 

 

Fig.7-23 shows the design size of round shelter [35]. The main skeleton of this shelter is made of five 

semi-circular arches. Four of them is used to constitute two circles. And other one is used to make the ceiling at 

the top. Ten ropes are used to connect the top arch to the circle at the middle.  

  
(a) (b) 

Fig.7-23 Design size of round shelter 

We also design the specific columns and joints in the design, as shown in Fig.7-24. We divided the column into 

two types: type I and typeⅡ.And the number of type I column is 4, and of typeⅡcolumn is two. And Fig.7-25 

shows two types of joints, the number of crisscross type joints and T-type joints are two respectively. 

  
(a) Column type I (b) Column typeⅡ 

Fig.7-24 Two types of columns 
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(a) Crisscross type joint (b) T-type joint 

Fig.7-25 Two types of joints 

 

 
(a) 

  

  
(b) 

Fig.7-26 Components of round shelter 

Fig.7-26(a) shows the constituted components of skeleton. And Fig.7-26(b) shows the actual objects used in 
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construction. Polycarbonate sheets are used to make the wall of round shelter.  

The experiment is carried out during 7th-11th in the buckling of white rhino at CHIBA Experimental Station in 

the University of Tokyo. During the construction process, as the dome has a height of about 3.5m, so it is hard 

to lift up whole heavy PVC membrane after the accomplishment of entire skeleton. Then we think out a method 

in the construction. The construction procedure is carried out in four steps as follows: 

  
(a) Step one 

  
(b) Step two 

  
(c) Step three 
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(d) Step four 

Fig.7-27 Construction procedure 

 

  
(a) Outside view (b) Inside view 

Fig.7-28 Accomplished configuration at daytime 

Fig.7-28 shows the accomplished structure. And we also extend the surplus PVC membrane in the boundary as 

long as possible (Fig.7-28(a)). The red type in Fig.7-28(a) is the location of door. We totally take four times 

deflating experiments. The minimum of draught head is about -60 Pa. We don’t reduce the ultimate draught 

head make the skeleton buckling. Fig.7-29 shows one of the experimental configurations. 

 
Fig.7-29 The experimental configuration 

And Fig.7-30 shows dwelling experience in the round shelter during the night in January 10th, 2014.  
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Fig.7-30 Dwelling experience in the night  

 

 
Fig.7-31 Construction of shelter outdoors 

In order to simulating the real construction outdoor, we built this round shelter on the grass in CHIBA campus 

of the University of Tokyo, shown in Fig.7-31. As there are too much gaps on the grass, even though we use the 

400w blower to deflate, the draught head almost not changed. The purpose to realize the negatively pressured 

pneumatic structure fails outdoors. 

 

2) Simulation of negatively pressured pneumatic structures 

  
Fig.7-32 Model of the arch Fig.7-33 Mechanistic movements of the membrane 

Now let’s take discussion on the stiffening effect of membranes under negative draught head in round shelter. 
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We take the semi-circular arch at the top in Fig.7-23 as the research object. And other four semi-circular arches 

are taken into consideration this time. 

We also make some assumptions. When membrane is under negatively draught head, we assume the angles 

between the membranes and horizontal plane are all 30°, and membranes are in curved shape under the 

concentrated loads N, as shown in Fig.7-32. The total loads of negative draught head are simplified as several 

same concentrated loads applied in membranes, and membranes are assumed be curved lines. 

The configuration in Fig.7-33 is parts of the membranes in Fig.7-32. In Fig.7-33, membranes (seen as curved 

lines) experience mechanistic movements of membrane in x direction. The coordinates of A, B' and C' after 

movements are (0, 0), (a, b), and (r+v, r) respectively. The top circular arch in round shelter is 1.7m. Appendix 

D gives the stiffnesses of pseudo-springs by using the model in Fig.7-33. 

Now the buckling problem of the arch considering the stiffening effect of membrane is analyzed. In numerical 

analysis, the entire arch is divided into 46 linear beam elements, and these elements have the same length. We 

use stiffness of pseudo-springs to substitute the curved membranes, and then model in Fig.7-32 will be equal to 

the one in Fig.7-34 (a).  

In theoretical analysis in Chapter 4, the load pattern of the arch is assumed as uniform compression, but in 

practice external force may not always be this kind of load pattern, in Fig.7-34 (a), P1~ P47 are the resultant 

forces transmits from membrane to the arch, and these loads are all in vertical direction. In order to comparing 

the results in Fig.7-34 (a), load pattern with uniform compression in radial direction is also assumed in 

Fig.7-34(b). And the loads and corresponding pseudo-springs in Fig.7-34(b) are as same as the ones in 

Fig.7-34(a).  

 
(a) Vertical load pattern (b) Radial load pattern 

Fig.7-34 Arch models with pseudo-springs  

In order to obtain these resultant forces in Fig.7-34(a) and Fig.7-34(b), all the external forces in membranes are 
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assumed to be equally distributed in to 49 concentrated loads N in Fig.7-32 at each side. The total external force 

is calculated by multiply of draught head and superficial area of one quarter sphere. By this assumption, when 

draught head is -1Pa and the radius R of the arch is 1.7m, the concentrated load N at all the nodes are 0.1853N. 

The relationships of the concentrated load N and P1~ P47 are given in Appendix D. Here a line load q (unit: 

N/m) is assumed. And if the draught head is negative and equals -1Pa, the value of q can be calculated as 

0.1853×3.3461×49/1.7/pi=5.6887N/m. 

Table.7-2 Materials parameters of numerical example 

 Young's modulus [GPa] Poisson’s ratio Internal diameter [mm] External diameter [mm] 

Pipe 68.6 0.34 26 32 

The materials parameters of pipes are given in Table.7-2. In numerical analysis, the boundary conditions of 

pipes are assumed to be fixed ended both in-plane and out-of-plane. The moments of inertias Ix and Iy in local 

coordinate referring to toFig.4-2 in Chapter 4 are the same, and Ix=Iy =I is established. Table.7-3 shows the 

comparison of the first order critical loads and buckling models in vertical load pattern and radial load pattern. 

Table.7-3 Comparison of the first order critical loads and buckling modes 

 (a) Vertical load pattern (b) Radial load pattern 

Models without 

pseudo-springs 
 

32.23cr
EIq
R

=  

 

32.51cr
EIq
R

=  

Models with 

pseudo-springs   

38.67cr
EIq
R

=  

 

38.15cr
EIq
R

=  
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7.3 Loading test experiment  

In Chapter 6, a concept called external force stiffening method is proposed. And in Section 7.2.3, simulation of 

curved membranes under negative draught head is discussed. In this chapter in-plane stability of a column 

featuring with curved cables is studied through loading test experiment.   

  

(a) Experimental model (b) Numerical model 

Fig.7-37 Experimental model and numerical model 

We carry out a loading test experiment of column with curved cables in 15th November, 2012 in the Laboratory. 

Fig.7-37(a) shows the experimental model. The column is made of a PVC pipe, the external diameter of PVC 

pipe is 6mm, its internal diameter is 4mm. We insert one side of the column into a screw to fix it. Two curved 

cables connect to the top of column symmetrically. At the same time, two parallel pipes are set up at the top of 

the column to prevent the out-of-plane movement of column. The material of cables is cotton, its diameter is 

1mm. During the experiment, same weights are applied at loading point 1 and loading point 2 in Fig.7-37(a). 

Then another weight is applied at loading point 3 gradually until buckling of the column happens. 

According the Japan PVC Pipe and Fittings Association, the Young’s modulus of PVC Pipe is 3.33GPa, and the 

Poisson’s ratio is 0.37~0.38. Pre-experiment is carried out to determine the Young’s modulus of the PVC pipe. 

The length of PVC pipe excluding the support boundary is about 83.2cm, and the model of simply supported 

beam is used. A 30g weight is applied at the center of the PVC pipe. The measurements of vertical 

displacements at the center are 2.6cm, 2.5cm and 2.5cm, the average value of displacements is assumed as 

2.5cm. For a simply supported beam with a length L, the vertical displacement with the concentrated load F at 

the middle position can be obtained through formulation ∆u = FL3/48EI. By using this formulation the 

approximate Young’s modulus of PVC pipe is obtained as 2.82GPa. And the Poisson’s ratio is assumed as 0.38. 
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Fig.7-37(b) shows the numerical model. The length of column is 0.337m excluding the length of screw in the 

boundary. The angel of the curved cable and the horizontal line is about 45°. In numerical analysis, the column 

is divided into 30 geometric nonlinear beam elements, and each of elements has the same length. And one cable 

is divided into one geometric nonlinear truss element. Referring to Reference [23], the Young’s modulus of the 

cotton cable is assumed as 10.8GPa.  

When there is no preexisting imperfection of column, by nonlinear FE analysis we can obtain at N=15.0N, 

F=8.4N, buckling of the column happens. In another aspect, by using the theoretical procedures in Section 6.5, 

we can obtain at N=15.0N, F=8.47N, buckling of the column happens. 

 
(a) 

 
(b) 

Fig.7-38 Relationship of displacement and total load  

In another aspect, the preexisting imperfection of the column is considered, in FE analysis a disturbing load 

with value 0.01N is applied in y direction at the position C in Fig.7-37(b). Fig.7-38(a) and Fig.7-38(b) show the 

relationship of displacements in -x direction/ y direction and total load respectively. Here the total load means 

the absolute value of resultant force at the position C in –x direction, which comes from N and F. 

From Fig.7-38(a) we can observe the displacement in –x direction is monotone increasing during the loading 

process. And when N=15N, if F is larger than 8.2N, the displacement in x direction increase very quickly, we 

can suppose the column starts to collapse at the conditions when N=15.0N, and F=8.2N. Comparing to the case 

without preexisting imperfection, as the results of critical loads in these two cases are closed to each other, in the 

latter analysis only the numerical results in the case without preexisting imperfection are given. 

From Fig.7-38(b), because of the preexisting imperfection, when N and F are both 0N, the displacement in y 

direction is 0.886 mm. Then in numerical analysis, firstly we keep F=0.0N, then N is increased from 0N to 

15.0N, we can observe the preexisting displacement in y direction is decreasing, this phenomenon can be seen 

as that the curved cables begin to provide the stiffening effect. And when N arrives 15.0N, we keep N constant 

then we increase the F from 0N to 8.4N, then the displacement in y direction increases again. 

(N=15.0N, 
F=8.4N) 

(N=15.0N, 
F=8.2N) 

(N=15.0N, 
F=8.4N) 

(N=15.0N, 
F=8.2N) 

(N=15.0N, F=0.0N) 

(N ∈(0, 15.0N); 
F=0.0N) 

(N=15N; 
F∈(0, 8.4N) (N=15N; 

F∈(0, 8.4N) 

(N=15.0N, F=0.0N) 

(N ∈(0, 15.0N); 
F=0.0N) 
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Table.7-4 Comparison of results in experiment and numerical results 

No. Experimental results Numerical results (no-preexisting imperfection) 

1 
 

N=0kg; Fcr=0.3kg 

 

N＝10(-2)N; Fcr=3.1N 

2-1 
 

N=0.2kg; F=0.5kg  

2-2 
 

N=0.2kg; Fcr=0.65kg 

 

N=2N; Fcr=6.4N 

3 
 

N=0.5kg; Fcr=1.0kg 

 

N=5N; Fcr=10.2N 
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4-1  

N=1.5kg; F=0.5kg  

4-2 
 

N=1.5kg; Fcr=0.7kg 

 

N=15N; Fcr=8.4N 

5 

N=2kg; Fcr=0.5kg 
 

N=20N; Fcr=4.2N 

Table.7-4 shows the comparison of results of the critical loads and buckling modes in experiment and FE 

analysis. From Table.7-4, the buckling modes in experiment and numerical examples can be observed to be 

very similar to each other.  

7.4 Summaries 

In this chapter, experiments of three negatively pressured pneumatic structures used as first-aid shelters are 

introduced, and their skeletons are mainly made of semi-circular arches. In addition, a column experiment is 

used to show the stiffening effect of curved cables under direct loads. The major achievements are summarized 

as follows: 

1) In the experiment of hemispheric shelter, when there is no stiffening cables, although the critical load in 
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numerical analysis is about 17% of experimental one, their buckling modes are both rotational modes. In 

another aspect, when ropes are used to stiffen the skeleton, the critical load in numerical analysis is about 36% 

of experimental one. In experiment, the buckling phenomenon of skeleton is local buckling, while in numerical 

analysis the buckling mode of skeleton is global buckling behavior translating along one symmetrical axis.  

2) In the experiment of rectangle shelter, light-weight infrastructures are proved to be available in the negatively 

pressured pneumatic structures. And in the experiment of round shelter, arch models with pseudo-springs for the 

simulation of negatively pressured pneumatic structure are proposed. 

3) A loading test experiment is processed in a column structure featuring with curved cables. And study work 

shows loading on curved cables can change the buckling behavior of columns, and the critical loads and 

buckling modes in experiment and in FE analysis are very similar to each other. In addition, the existences of 

stiffnesses of pseudo-springs in flexible components are also verified. 
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Chapter 8 Conclusions 

8.1 Main conclusions 

The main conclusions are as follows: 

1) Theoretical formulations based on arch-spring models show that spring ratios of elastic stiffnesses of the 

braces and the arches can determine the buckling behaviors of arches, and when the spring ratios are large than 

limiting spring ratios, these ratios almost cannot increase the critical loads of arches anymore. 

2) The stiffening effects of various types of single arch and cross arch, which are stiffened by straight braces, are 

compared and summarized. The stability of hoop-ring structure stiffened with spokes is also analyzed. Study 

work shows restraining the buckling modes of these structures by straight constraint components can increase 

critical loads efficiently, and limiting spring ratios are also proved to be existing. 

3) Flexible components such as curved cables have a similar characteristic, that is, their elastic stiffenesses 

cannot provide stiffening effect to the main structure as what the straight components do, only internal forces in 

these flexible components can provide a stiffness of pseudo-spring to stiffen the main structures. And the 

assumption of stiffness of pseudo-spring is proved by formulations based on a column model featuring with 

curved cables.  

4) There are optimal internal forces of curved cables generating by external forces applied on them to provide 

best stiffening effects. Oversize external loads on curved cables will lower the stability of stiffened structure. 

And the phenomenons of optimal internal forces are also observed in the applications of a guyed mast structure 

and an arch structure featuring with curved cables.  

5) The experiment of hemispheric shelter of negatively pressured pneumatic structures shows that curved 

membranes under negative draught head may provide stiffening effect, and by restraining the buckling modes 

of skeleton through straight components has greatly increased the critical loads about 40%. And the light-weight 

infrastructures in this type of pneumatic structures are available during the practice construction of rectangle 

shelter. And based on the model of round shelter, arch model with pseudo-springs is proposed to simulate the 

stiffening effect of membranes under negatively draught head. 

6) A loading test experiment is processed in a column structure featuring with curved cables. And study work 

shows loading on curved cables can change the buckling shapes of the column, and the critical loads and 
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buckling modes in experiments and in FE analysis are similar to each other. In addition, the existences of 

stiffnesses of pseudo-springs in flexible components are also verified. 

8.2 Future work 

Arch structure is a kind of structure with brief shape and high-strength quality. Constraint components can 

effectively enhance the stability of arches, and the researches in this field are innovative and important. 

Researches can be continuously done in several aspects as follows: 

1) Arches with symmetrical closed cross section are mainly taken as the research objects in this thesis. While for 

practical usage in the projects of arch structures, researches on other types of cross sections such as “I” type 

cross section and “T” type cross section are needed. 

2) In linear FE buckling analysis, the in-plane buckling modes and out-of-plane buckling modes of arches are 

observed to happen independently. Then in theoretical procedures in this thesis the buckling control equations 

for in-plane stability and out-of-plane stability are divided separately. In future work, the coupling effect of these 

two kinds of buckling modes should be studied. 

3) Although some works are carried out in studying the stiffening effects of flexible components, for efficiently 

utilizing of negatively draught head in negatively pressured pneumatic structures, new reliable pseudo-spring 

models according to the accurate experimental monitoring dates should be built. In addition, the optimal 

prestresses of cables in arch structures stiffened with cable-nets in practice in engineering fields should be 

studied. 
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Appendix A 

Calladine [46] has discussed a first order infinitesimal state, in which small mechanism movements will bring the 

system from mechanism to a structure. For example, plane membrane or straight cable without prestress. 

If a concentrated load which is perpendicular to the plane membrane or straight cable is applied to them, when 

we use FE method, we know that tangential elastic stiffness of plane membrane or straight cable is singularity, 

so it is difficult to get the solution of elastic displacement. The following passage introduces two methods in A.1 

and A.2 to obtain the displacement.  

A.1 Hypothesis damping term method [16] 

The discretization of equilibrium equation can be written as follows: 

( ) =Q u F  (A-1) 

Here Q is the internal force vector, F is external vector, and u is the displacement vector. By using 

Newton-Raphson method to solve Eq.(A-1), the reiterative calculation at m-th step can be expressed as  

1( ) ( ) ( )m m m m+ − = −K u u u F Q ui  (A-2) 

In Eq.(A-2), K(mu) is a tangential stiffness matrix at m-th step.  

Here a plane membrane without prestress is taken for example. In the initial state the presstress is 0, when 

external load which is perpendicular to the membrane is applied to the plane membrane, the components of 

tangential stiffness matrix in the same direction of the external load is 0. As the tangential stiffness matrix is a 

singular matrix, the process of iteration in Eq.(A-2) cannot go on. At this time, the method in quasi dynamic 

problem is utilized. A damping term matrix D is added to Eq.(A-1), and Eq.(A-1) becomes 

( )+ =D u Q u F&i  (A-3) 

The damping term matrix D can be calculated as follows.  

mµ=D I  (A-4) 

In Eq.(A-4), μm  is a damping coefficient at m-th step, and I is a unit matrix. The increment of u is  
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1m m

t

+ −
=

∆
u uu&

 
(A-5) 

Substituting Eq.(A-5) into Eq.(A-3), and utilizing Eq.(A-2), then we can obtain  

11[ ( ) ] ( ) ( )m m m m

t
++ − = −

∆
K u D u u F Q ui

 
(A-6) 

If the numerical solution becomes convergence, there is  

1 ( ) 0m m t+ − = ∆ →u u u&  (A-7) 

Then Eq.(A-6) returns to Eq.(A-1).  

In the numerical calculation, the damping coefficient μ1  at the first step of iteration can be 1. And damping 

coefficient μm  at m-th step can be 0.5 time of damping coefficient μm-1  at (m-1)-th step as follows: 

10.5m mµ µ−= i  (A-8) 

A.2 No elongation displacement method [1], [2], [28] 

Researchers Hangai[2] and Kawaguchi[1], [2], [28] have used the Moore-Penrose generalized inverse matrix in the 

morphological analysis. If a matrix A can satisfy the following four conditions at the same time, then A+ is 

called Moore-Penrose generalized inverse matrix. 

Condition 1: + =AA A A  

Condition 2: + + +=A AA A  

Condition 3: ( )T+ +=AA AA  

Condition 4: ( )T+ +=A A A A  

Then the usage of Moore-Penrose generalized inverse matrix in the FE program is introduced. When there is no 

prestress in the initial state, components of internal force vector Q(1u) are all 0. Here assuming the following 

two equations   

= −f F Q  (A-9) 
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1 1m m m
m
+ +∆ = −u u u  (A-10) 

Then substituting Eq.(A-9) and Eq.(A-10) into Eq.(A-2), we can obtain  

1( )m m
m

+∆ =K u u fi  (A-11) 

Using the Moore-Penrose generalized inverse matrix, we can obtain the general solution of Eq.(A-11)  

1 ( ) [ ( ) ( )]m m m m
m α+ + +∆ = + −u K u f I K u K ui  (A-12) 

At the right side of Eq.(A-12), the first term is called particular solution, and the second term is called 

complementary solution. Here α is an arbitrary small scalar.  

Firstly, the component of external force corresponding to the elastic elongation is noted as f1, and the 

component of external force to the no elongation displacement method is noted as f2, these two parameters are 

given as follows: 

1 ( ) ( )m m +=f K u K u fi i  (A-13) 

2 [ ( ) ( )]m m+= −f I K u K u fi i  (A-14) 

The no elongation displacement 1m
m
+∆ u  can be obtained by using the following equation. 

1
2

m
m α+∆ =u f  (A-15) 

In the initial state, prestress in the membrane is 0, so when external force perpendicular to the membrane is 

applied, f1=0. Then we can use Eq.(A-15) to get the no elongation displacement 1m
m
+∆ u . After updating the 

shape of membrane with this no elongation displacement, the tangential stiffness matrix is no longer singularity, 

then Eq.(A-2) can be used to get the elongation displacement.  

Comparing to the hypothesis damping term method in A.1 and no elongation displacement method in A.2, it is 

more convenient to utilize the latter one. Because there is no additional damping term matrix needed to be 

added to tangential stiffness matrix, only thing we do is to use Eq. (A-15) in the calculation.  
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A.3 Numerical example 

Fig.A-1 shows a quadrangular plane membrane under a concentrated load in perpendicular direction. The plane 

of membrane is parallel to plane uv. The size of plane membrane is 6.096m×6.096m. The thickness is 

0.1058mm. And the Young’s modulus of the membrane is 206Gpa, Poison’s ratio is 0.3. A concentrated load 

with magnitude 44458N is applied in –w direction. The initial prestress of the membrane is 551.6MPa. And in 

FE analysis, the membrane is divided into 32 isoparametric triangular elements [5], [16].  

 

Fig.A-1 Quadrangular plane membrane [122], [161], [169] 

Table.A-1 shows the comparison of results with past researches. We can observe the numerical results of 

displacements by this appendix is very approaching to the ones in the past researches. 

Table.A-1 Comparison of results with past researches (with prestress)  

Node  Displacement [mm] 
Prestress [551.6Pa] 

Levy [122] Gil [161] Valdés [169] This appendix 

17 
u 0.38 0.36 0.36 0.37 
v 0.38 0.36 0.36 0.37 
w -36.35 -36.14 -36.30 -36.36 

18 
u 0.43 0.43 0.43 0.43 
v 0 0 0 0 
w -66.17 -66.04 -66.17 -66.18 

13 
u 0 0 0 0 
v 0 0 0 0 
w -168.71 -168.30 -168.30 -168.78 

In another aspect, when there is no prestress in the membrane in the initial state, then the methods introduced in 

A.1 and A.2 can be used to get the displacement. In the latter calculation of Eq.(A-15), the parameter α is 

assumed to be 10-4. In the same numerical example, Valdés[169] utilizes generalized-α integral method to obtain 

the displacement when there is no prestress in the initial state. The comparison of the results obtained by using 
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the methods in appendix and past research is shown in Table.A-2.  

Fig.A-2 shows the relationship of displacement and concentrated load with and without prestress. In the case of 

no prestress, the results obtained by the hypothesis damping term method and the no elongation method are 

almost identical to each other. 

Table.A-2 Comparison of results with past research (without prestress) 

Node 
Displacement 

[mm] 

Prestress [0 Pa] 

Valdés [169] This appendix 

Generalized-α integral 

method 

Hypothesis damping 

term method 

No elongation 

displacement method 

13 w 234.75 235.92 235.91 

 

 

Fig.A-2 Relationship of displacement and concentrated load   
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Appendix B 

B.1 Simple methods for in-plane stability of the arch 

In Section.4.4.1 of Chapter 4, we have obtained the general solution of displacements v and w, and then 

calculated the critical loads of circular arch with hinged ended and fixed ended. Here by taking the example of 

arch with hinged ended boundary conditions, we introduce other two methods in the past researches. Firstly, we 

talk about a method by using approximate functions of buckling modes [103], [108], [165]. The boundary conditions 

are assumed as hinged ended: v=0, v''=0 at φ=0 and φ=α. Then a function of buckling mode satisfying the 

boundary conditions can be assumed as [103], [108], [165]. 

2sinv A π
ϕ

α
=  (B-1) 

Then Substituting Eq.(B-1) into buckling controlling equation Eq.(4.20) in Chapter 4, we can obtain  

3
2 22 2 2[( ) 1 )][( ) 1] cos 0

x

qR A
EI

π π π
ϕ

α α α
− − − =

 
(B-2) 

As A is an arbitrary number, then the solution of Eq.(B-2) is  

2
3

2[( ) 1] x
cr

EIq
R

π
α

= −
 

(B-3) 

Especially, when α = π, the first order critical load qcr is 

3
3 x

cr
EIq
R

=
 

(B-4) 

Another method to obtain critical load of the circular arch with hinged ended is introduced by Timoshenko [42], 

given in Eq.(B-5)~ Eq.(B-12). 
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Fig.B-1 Circular arch with hinged ended boundaries 

Fig.B-1 shows a circular arch with hinged ended. From the first term of Eq.(4.5) and Eq.(4.8) in Chapter 4, the 

expression of moment Mξ can be obtained as 

2

2
1( )x x x

d v dwM EI K EI
ds R dsξ = − = − +

 
(B-5) 

Substituting the pre-establish condition dw v
ds R

= in Eq.(4.17)  into Eq.(B-5), we can obtain  

2

2 2
x

Md v v
ds R EI

ξ+ = −
 

(B-6) 

As the shape of the arch is assumed as circular, then ds = Rdφ is a pre-established condition, then the same 

expression of Eq.(B-6) is  

2 2

2
x

d v Rv M
d EI ξϕ

+ = −
 

(B-7) 

From Eq.(B-1) we can obtain the moment MC in arbitrary cross section C is  

CM qRv=
 

(B-8) 

Substituting Eq.(B-8) into Eq.(B-7), we can obtain 

2 3

2 (1 ) 0
x

d v qR v
d EIϕ

+ + =
 

(B-9) 

The general solution of Eq.(B-9) is  

cos sinv A Bτα τα= +
 

(B-10) 
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The expression of τ can be found in Eq.(4.22) in Chapter 4. Then from the boundary conditions, we can obtain 

2 2

0
0
0 cos( ) sin( )
0 cos( ) sin( )

A
A

A B
A B

πτ πτ

τ πτ τ πτ

=
 = −
 = +
 = − −

 
(B-11) 

Then we can obtain A=0, at this time B cannot be 0, the buckling control equation is  

sin( ) 0πτ =
 

(B-12) 

Because τ is larger than 1, then the minimum positive value of τ which satisfies Eq.(B-12) is 2. The 

corresponding critical load is same as the one in Eq.(B-4). 

B.2 Approach to solve the fifth order linear differential equation 

Another method to obtain the general solution of the five order linear differential equation in Eq.(4.20) in 

Chapter 4 is introduced. We assume the general solution of displacement v as  

rv e ϕ=
 

(B-13) 

Then substituting Eq.(B-13) into Eq.(4.20), and utilizing the expression of τ in Eq.(4.22), we can obtain 

4 2 2 2[ ( 1) ] 0rr r re ϕτ τ+ + + =
 

(B-14) 

The characteristic equation can be obtained as  

4 2 2 2[ ( 1) ] 0r r rτ τ+ + + =
 

(B-15) 

Then we know the solution of r in Eq.(B-15) is r=0 or 4 2 2 2( 1) 0r rτ τ+ + + = . From the latter equation, we 

know  

2 2 2 2 2 2
2

2

1(1 ) (1 ) 4 (1 ) ( 1)
2 2

r
τ τ τ τ τ

τ

−− + ± + − − + ± − = = = 
−  

(B-16) 

The four solutions of r in Eq.(B-16) are 1r i= , 2r i= − , 3r iτ= , 4r iτ= − . Then including r=0 in above 

narrative, the general solution of Eq.(4.20) can be expressed as  
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sin cos sin cosv A B C D Eϕ ϕ τϕ τϕ= + + + +
 

(B-17) 

Eq.(B-17) is identical to Eq.(4.27) in Chapte4. 

B.3 Buckling of the arch out-of-plane 

Now another kind of boundary conditions in Fig.4-10 in Chapter 4 is considered. The boundary conditions are 

assumed as hinged ended in-plane and out-of-plane, that is, among the six DOF of the node at each side of the 

arch, three translation DOF are constrained, and the other three rotational DOF are free. This kind of boundary 

conditions can be expressed as  

(1) 0Mη = at 0ϕ = andϕ α=  

(2) 0Mζ = at 0ϕ = andϕ α=  

(3) 0u = at 0ϕ = andϕ α=  

Firstly, the boundary condition (1) is identical to 0yK = . From Eq.(4.6) and identical relationds Rdϕ= , we 

can obtain
2 2

2 2
10 0y

d u d uK
ds R R d

θ
θ

ϕ
= + = → + = at 0ϕ = andϕ α= . In addition, Eq.(4.58) is substituted into 

previous equation, then
2

2 0d
d

θ θ
ϕ

+ = is obtained. Then boundary condition (1) can be expressed as   

2 2
1 2

1 1 2 2
2 2 2 2
1 1 1 1 2 2 2 2

0
0 sin( ) cos( ) sinh( ) cosh( )

sin( ) cos( ) sinh( ) cosh( )

B D Bk Dk
A k B k C k D k

Ak k Bk k Ck k Dk k
α α α α

α α α α

 = + − +
 = + + +
 − − + +

 (B-18) 

Similarly, the boundary condition (2) is identical to curvature 0zK = . From Eq.(4.7) and ds Rdϕ= , we can 

obtain 1 10 0z
d du d duK
ds R ds d R d
θ θ

ϕ ϕ
= − = → − = at 0ϕ = and ϕ α= . Substituting Eq.(4.59) into previous 

equation, then 0d d
d

θ θ ϕ
ϕ

+ =∫ is obtained. Then boundary condition (2) can be expressed as   
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1 2
1 2

1 1 1 1 2 2 2 2

1 1 2 2
1 1 2 2

0

0 cos( ) sin( ) cosh( ) sinh( )

cos( ) sin( ) cosh( ) sinh( )

A CAk Ck E
k k

Ak k Bk k Ck k Dk k
A B C Dk k k k E
k k k k

α α α α

α α α α

 = + − + +
 = − + +

 − + + + +


 (B-19) 

Finally, from boundary condition (3), we can obtain  

2 2
1 2

1 1 2 2

1 1 2 22 2 2 2
1 1 2 2

0 ( )

0 sin( ) cos( ) sinh( ) cosh( )

( sin( ) cos( ) sinh( ) cosh( ) )

B DB D F
k k

A k B k C k D k
A B C Dk k k k E F
k k k k

λ

α α α α

λ α α α α α

 = + − − + +
 = + + +

 − − − + + + +


 (B-20) 

According to the sequence of A, B, C, D, E and F, a matrix S3D-P2 is assumed as  

2 2
1 2

2 2 2 2
1 1 1 1 2 2 2 2

1 2
1 2

1 1 1 1 2 2 2 2
1 1 2 2

2 2
1 2

2
1

0 1 0 1 0 0
(1 )sin( ) (1 )cos( ) (1 )sinh( ) (1 )cosh( ) 0 0

1 10 0 1 0

1 1 1 1( ) cos( ) ( )sin( ) ( ) cosh( ) ( )sinh( ) 1 0

0 1 0 1 0

(1 )sin(

k k
k k k k k k k k

k k
k k

k k k k k k k k
k k k k

k k

k

α α α α

α α α α

λ λ
λ

λ
α

=

− +
− − + +

− +

− − + + +

+ − −

+

3D-P2S

1 1 2 22 2 2
1 2 2

) (1 )cos( ) (1 )sinh( ) (1 )cosh( )k k k k
k k k
λ λ λ

α α α λα λ

 
 
 
 
 
 
 
 
 
 
 
 
 

+ − − − − 
 

 

(B-21) 

Then the buckling control equation can be expressed as  

det( ) 0=3D-P2S  (B-22) 

Here a numerical model with same parameters in Section 4.3.1 in Chapter 4 is used. By using Eq.(B-22), the 

first order critical load is 31.13 y
cr

EI
q

R
= . 

 

 

 



Appendix B                                                                    181 

 

B.4 The critical load of stiffening pattern C in Section 5.4.1 

 

Fig.B-2 Pattern C 

As complement in Section 5.4 in Chapter 5, here the critical load of stiffening pattern C in Fig.B-2 when the 

buckling mode is symmetric in-plane in 2D space is deduced. The boundary conditions of the arch are hinged 

ended. A spring ratio r is defined as  

3( ) /
0.5

xEIEAr
R R

=  (B-23) 

In Section 5.4.1, a spring ratio rp has been noted, and by its definition we should be aware that rp=0.5r. 

Fig.B-3(a) shows the configuration of the arch when symmetric buckling mode happens. And Fig.B-3(b) shows 

the equilibrium state of forces at the position of the spring. Here ϕ in Fig.B-3(a) is assumed as 0.25α. 

  

(a) (b) 

Fig.B-3 Circular arch with hinged ended boundary conditions  
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When the boundary conditions of the arch are hinged ended, the boundary conditions can be expressed as  

(1) 0Lv = , '' 0Lv = , 0Lw = at 0ϕ =  

(2) 0RQη = , ' 0Rv = , 0Rw = 0.5ϕ α=  

(3) 0L Rv v v= = , 0L RQ kv Qη η= + , ' 'L Rv v= , '' ''L Rv v= , L Rw w= , ( ) ' ( ) 'L RQ Q= at 0.25ϕ α=  

From the boundary condition (2), we can obtain 

3 3
2 2 2 20 cos0.5 sin 0.5 cos0.5 sin 0.5A B C Dα α τ ατ τ ατ= − + − +  (B-24) 

2 2 2 20 cos0.5 sin0.5 cos0.5 sin0.5A B C Dα α τ ατ τ ατ= − + −
 

(B-25) 

2 2 2 2 2 2
cos0.5 sin 0.50 cos0.5 sin 0.5 0.5A B C D E Fατ ατ

α α α
τ τ

= − + − + + +  (B-26) 

The expression of boundary condition (1) and (2) are omitted here. A matrix S2D-SHC is assumed as 

2

3 3

2

0 1 0 1 1 0
0 1 0 0 0

11 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

sin 0.25 cos0.25 sin 0.25 cos0.25 1 0
0 0 0 0 0 0

cos0.25 sin 0.25 cos0.25 sin 0.25 0 0
cos0.25 sin 0.25 cos0.25 sin 0.25 0 0
sin 0.25 cos0.25 s

τ

τ

α α ατ ατ

α α τ ατ τ ατ
α α τ ατ τ ατ
α α τ

−

=

− −
− −

2D-SHCS

M
M

M

M
M
M
M
M
M
M

2

4 4

in 0.25 cos0.25 0 0
cos0.25 sin 0.25cos0.25 sin 0.25 0.25 1

sin 0.25 cos0.25 sin 0.25 cos0.25 0 0

ατ τ ατ
ατ ατ

α α α
τ τ

α α τ ατ τ ατ





















− − − −



M

M

M
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3 3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

cos0.5 sin0.5 cos0.5 sin 0.5 0 0 0
cos0.5 sin0.5 cos0.5 sin0.5 0 0 0

cos0.5 sin0.5cos0.5 sin0.5 0.5 1 0

0 0 0 0 0 0 1
sin0.25 cos0.25 sin 0.25 cos0.25 1 0 1

cos0.25

α α τ ατ τ ατ
α α τ ατ τ ατ

ατ ατ
α α α

τ τ

α α ατ ατ

− −
− −

− −

−
−

−

M
M
M
M
M

M

M
M

M
3

3 3

2 2

4

sin 0.25 cos0.25 sin0.25 0 0

cos0.25 sin 0.25 cos0.25 sin 0.25 0 0 0
sin0.25 cos0.25 sin0.25 cos0.25 0 0 0

cos0.25 sin 0.25cos0.25 sin 0.25 0.25 1 0

sin0.25 cos0.25 sin0

x

kR
EI

α α τ ατ τ ατ

α α τ ατ τ ατ
α α τ ατ τ ατ

ατ ατ
α α α

τ τ
α α τ

−

− −
− − − −

− −

− − −

M
M

M

M 4.25 cos0.25 0 0 0ατ τ ατ























− 

 

(B-27) 

The buckling control equation is 

det( ) 0=2D-SHCS  (B-28) 

Here the same example in Section. 5.4.1 is used, the central angel of the arch is α=π. The results obtained by 

using Eq.(B-18) and by FE method are shown in Fig.B-4. From Fig.B-4, we can observe that the maximum 

difference of the two results is about 2.2%. 

 

Fig.B-4 Comparison of the results by theoretical method and FE method 
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B.5 Coupling effect of in-plane stability and out-of-plane stability 

  
(a) In-plane (b) Out-of-plane 

Fig.B-5 Isolated infinitesimal body of the arch (in Chapter 4) [108] 

In Chapter 4, the in-plane stability and out-of-plane stability of the arch are discussed respectively. In analyzing 

the out-of-plane stability, the assumptions in past researches are used, which are 0M ξ = and N qRς = . If we 

do not consider these assumptions but consider all the equilibrium forces, we can obtain  

0

0

0

0

0

0

F

F

M

F

M

M

ς

η

ξ

ξ

η

ς

 =


=


=


=
 =
 =

∑
∑
∑
∑
∑
∑

 (B-29) 

From (B-29), we can obtain  

cos sin sin 0

cos sin 0

cos sin 0

sin cos 0

cos sin 0

cos

t

r

F N dN N d Q d q ds Q

F Q dQ Q d N d q ds

M M dM M Q ds m ds M

F Q dQ q ds N Q

M M dM M d M d m ds Q ds

M M dM M d

ς ς ς ς η ξ

η η η η ς

ξ ξ ξ ξ η ξ ζ

ξ ξ ξ ξ ς ξ

η η η η ζ η ξ

ς ς ς ς

ϕ ϕ γ

ϕ ϕ

γ γ

γ γ

ϕ ϕ

= + − − − + ∆ =

= + − + − =

= + − ∆ + + + ∆ =

= + + − ∆ − ∆ =

= + − + + + =

= + −

∑
∑
∑
∑
∑
∑ sin sin 0M d M m dsη ξ ςϕ ϕ γ










 − − ∆ + =

 (B-30) 

The underline terms in Eq.(B-30) are the ones considering the coupling effect of all moments and forces in 
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equilibrium, and these terms are not taken into consideration in Chapter 4.  

In Eq.(B-30), we neglect the effect of mξ, mη, mς and qt, and as dφ, Δγ is very small, here we suppose 

cosdφ≈1, sindφ≈dφ, cosΔγ≈1, sinΔγ≈Δγ, then Eq.(B-30) transforms into 

0

0

0

0

0

0

y

r

y

y

y

dN Q
Q K

ds R
dQ N

q
ds R

dM
Q M K

ds
dQ

q N K
ds

dM M
Q

ds R
dM M

M K
ds R

ς η
ξ

η ς

ξ
η ζ

ξ
ξ ς

η ζ
ξ

ς η
ξ


− + =


 + − =

 + + =

 + − =

 + + =


 − − =


 (B-31) 

Now let’s talk about the solution of Eq.(B-31). Firstly, from the third term and fifth term in Eq.(B-31), we can 

obtain Qη  and Qξ  as 

y

dM
Q M K

ds
dM M

Q
ds R

ξ
η ζ

η ζ
ξ


= − −


 = − −

 (B-32) 

Secondly, from the combination of first term and second term in Eq.(B-30), at the same time utilizing the 

expression of Qξ  in Eq.(B-32) we can obtain  

2
2 2

2 0r
y

d Q dqR R Q RQ K
ds ds

η
η ξ− + − + =  (B-33) 

Substituting Eq.(B-32) in to Eq.(B-33), we can obtain 

3
2 2 2

3

( )
( ) 0

y r
y y

d M Kd M dM dM MdqR R R M K R K
ds ds ds ds ds R

ζξ ξ η ζ
ζ+ + + + + − − =  (B-34) 

In another aspect, the combination of the fourth term and fifth term in Eq.(B-31), we can obtain  
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2

2
1 0y

d M dM
q N K

ds R ds
η ζ

ξ ς− − + − =  (B-35) 

Then the independent equations of Eq.(B-31) are as follows:  

3
2 2 2
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2
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( ) 0

1 0

0
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y y

y

y
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d M dM
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ds R ds
dM M
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ζξ ξ η ζ
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η ζ
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ς η
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
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

− − + − =


 − − =


 (B-36) 

When consider the unlined terms in Eq.(B-36), multiply term of moment and curvature makes it different to get 

closed form solutions of the critical loads. 
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Appendix C 

C.1 Comparison of two stiffening effects 

 
Fig.C-1 Column stiffened by straight cables [174] 

 

 
Fig.C-2 Movement of straight cable 

Fig.C-1 shows a column stiffened by two straight cables. Symbols in Fig.(C-1) refer to Section 6.2 in Chapter 6. 

Fig.C-2 shows the movements of cable in y  direction. Here symbol “R” is used to substitute for symbol “lc” in 

Fig.C-1. In Fig.C-2, position C moves in y  direction to a new position C' with a small displacement v. T is 

assumed as the internal force of the cable before buckling. Then from the geometrical relationship after 

movement, the increment of the length in cable is  

2 2 2 2( ) 2R h d v R R dv v R∆ = + + − = + + −  (C-1) 

And the increment of internal force of the cable after movement is  
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C CE AT R
R

∆ = ∆  (C-2) 

 

1) Case 1: T=0 

The reaction force at position C' after movement is 

2 2
' 2 2 2 2

2 2
' 2 2 2 2

( 2 )
2 2

( 2 )
2 2

C C
C y

C C
C x

E Ad v d vF T R dv v R
RR dv v R dv v

E Ah hF T R dv v R
RR dv v R dv v

+ + = ∆ = + + − + + + +

 = ∆ = + + −
 + + + +

 (C-3) 

Then considering the symmetry of cables in Fig.C-1, the resultant force Fy in y direction can be obtained as 

' '( ) ( )y C y C yF F v F v= − −  

2 2 2 2
2 2 2 2

( 2 ) ( 2 )
2 2

C C C CE A E Ad v d vR dv v R R dv v R
R RR dv v R dv v

+ −
= + + − − − + −

+ + − +
 (C-4) 

When the value of v approaches to 0, the limiting ratio of Fy and v is  

20

22lim y c c
v

F E A
v R R

d
→

=  (C-5) 

Here a parameter kE is assumed as  

2

22 C C
E

E Ak
R
d

R
=  (C-6) 

In another aspect, the resultant force in global Cartesian coordinate in x direction is  

' '( ) ( )x C x C xF F v F v= + −  (C-7) 

When the value of v is small value, the limiting value of Fx is  

2 2 2 2

2 2 2 20 0

2 2 )lim lim (2 0
2 2

C C
xv v

R v dE A hF R
R

v R v dv
R v dv R v dv→ →

+ + + +
=

+
=

+

−
−

−+  
(C-8) 

 

2) Case 2: 0T ≠  

Here the stiffening effect of elastic stiffnesses of cables is temporarily ignored, let's only talk about the stiffening 
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effect of internal force T. Assuming T keeps constant after movement. Then from the geometrical relationship 

of the cable, we can obtain the reaction forces at position C' are 

' 2 2

' 2 2

2

2

C y

C x

d vF T
R dv v

hF T
R dv v

+ = + +

 =
 + +

 (C-9) 

Similarly, the resultant force Fy in global Cartesian coordinate in y direction can be obtained as  

' ' 2 2 2 2
( ) ( )

2 2
y C y C y

d v d vF F v F v T T
R dv v R dv v

+ −
= − − = −

+ + − +
 (C-10) 

Then the limiting ratio of Fy and v when v approaches to 0 is  

2 2 2 2

20

2

0

2 2lim lim( ) 2y

v v

d v d v
F TR dv v R dv vT
v v R

h
R→ →

+ −
−

+ + − += =
 

(C-11) 

When the value of v is very small, assuming a parameter kT as  

2

2
2

T
Tk

R
h

R
=

 
(C-12) 

The sign of kT is  

0, .
0, .
0, 0.

T

T

T

k if T is tension
k if T is compression
k if T is

>
 <
 =

 (C-13) 

The resultant force Fx in global Cartesian coordinate in x direction is  

' ' 2 2 2 2
( ) ( )

2 2
x C x C x

h hF F v F v T T
R dv v R dv v

= + − = +
+ + − +  

(C-14) 

When the value of v is small, the limiting value of resultant force Fx is  

2 2 2 20 0

1 1lim lim ( )
2 2

2
xv v

F Th
R dv v R d v

Th
Rv→ →

=
+ +

=+
+ −  

(C-15) 

In another aspect, comparing kE in Eq.(C-6) and kT in Eq.(C-12), we can obtain 



Appendix C                                                                    190 

 

2 2

2

2

22

2

( )T

C CE C C

T
k h TR R

E Ak d E A
R R

h

d
= =  (C-16) 

In usual, ECAC ≫ T, then the stiffening effect of T can be ignored. And Table.C-1 is a summary of three 

stiffening patterns. 

Table.C-1 Comparison of three kind stiffening patterns 

 
(a) Stiffening patternⅠ 

 
(b) Stiffening patternⅡ 

 
(c) Stiffening patternⅢ 

Stiffening effect is aroused by 
EA. 

Stiffening effect is aroused by EA 
and T, but stiffening effect of T can 
be ignored. 

Stiffening effelct is only aroused by 
T, and EA does not provide stiffening 
effect. 

C.2 Stability of a column stiffened by one spring 

 
   

(a) (b) (c) 

Fig.C-3 Column stiffened by one spring at top 

Fig.C-3(a) shows a column stiffned by one spring at top. Fig.C-3(b) shows the shape of the column after 

buckling happens. And Fig.C-3(c) shows the isolated infinitesimal body of the column. The relationship 
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between curvature and moment can be expressed as  

''EIy M= −  (C-17) 

And from Fig.C-3(c), moment at abritary cross section is  

( ) ( )M kv l x F v y= − − −  (C-18) 

Substituting Eq.(C-18) into Eq.(C-17), we can obtain  

( )'' F kv l x Fvy y
EI EI

− − +
+ =  (C-19) 

Here a parameter λ is assumed as  

2 F
EI

λ =  (C-20) 

Then Eq.(C-19) transforms into 

2 2'' ( )kvy y l x v
EI

λ λ+ = − − +  (C-21) 

The general solution of Eq.(C-21) is  

2cos sin ( )kvy A x B x v l x
EI

λ λ
λ

= + + − −
 

(C-22) 

The boundary conditions are : y=0, y'=0 at x=0; y=v at x=l. By using these boundary conditions, we can obtain  

2

2

0

0

cos sin

kvlA v
EI

kvB
EI

A l B l v v

λ

λ
λ
λ λ

 + − =

 + =
 + + =  

(C-23) 

Substituting A in the first term and B in the second term into the third term in Eq.(C-23), we can obtain  

2 3((1 )cos sin ) 0kl kl l v
EI EI

λ λ
λ λ

− + =
 

(C-24) 

Eq.(C-24) is the buckling control equation.  
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1) If elastic stiffness of the spring k = 0, Eq.(C-24) transforms into 

(cos ) 0l vλ =
 

(C-25) 

As value of v is an arbitrary number, there is 

cos 0lλ =  (C-26) 

As the minimum positive value (λl) satisfying Eq.(C-26) is 0.5π, then we can obtain 

2l
π

λ =
 

(C-27) 

Substituting Eq.(C-27) into Eq.(C-20), the critical load Fcr is 

2

2(2 )cr
EIF
l

π
=

 
(C-28) 

 

2) If elastic stiffness of the spring k ≠ 0, the solution of Eq.(C-24) is  

2 3(1 )cos sin 0kl kl l
EI EI

λ λ
λ λ

− + =
 

(C-29) 

Here noting two non-dimensional parameters u and r as  

3/

u l
kr

EI l

λ=



=  
(C-30) 

Substituting u and r into Eq.(C-29), we can obtain 

3

tan uu u
r

= −
 

(C-31) 

Numerical method can be used to get the solution of u in Eq.(C-31). Especially, when k is infinity, u=4.493 can 

be obtained. The corresponding critical load Fcr is 

2
2cr

EIF u
l

=
 

(C-32) 
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Table C-2 Materials parameters of the column 

 Young’s modulus Poisson’s ratio Internal diameter  External diameter Length  

Column 205[GPa] 0.3 10[cm] 30[cm] 10[m] 

 

Table.C-3 First order buckling modes of column by FE method 

   
r=0 

2

20.25cr
EIF

l
π

=  

r=62.11 
2

21.96cr
EIF

l
π

=  

r=1.24×105 
2

22.05cr
EIF

l
π

=  

Table.C-2 shows the materials parameters of the column in numerical analysis. And Table.C-3 gives the results 

obtained by FE methods. In another aspect, the critical loads calculated by Eq.(C-31) are almost identical to the 

ones obtained by FE methods, so their values are omitted here. 
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Appendix D 

D.1 Approximate approach for the stiffness of pseudo-spring 

From Eq.(6.9) in Section 6.3.1 of Chapter 6, reaction forces 'C yF and 'C xF are given as follows:  

4 2 2 2
1 2

' 2 2 2 2 2 2 2
1 1 2

2 2
1 2

' 2

(( ) ( ) )
2( ) 4( ) ( ( ) )

( 1)
2 ( )

C
C y

C C C

C x
C

N y v R RF
y v y v R R R y v

N R RF
y v

 + − −
=

+ + − − + +


− = + +
 

(D-1) 

Especially, when R1=R2, Eq.(D-1) transforms into 

' 2 2
1

' 2

( )
2 4 ( )

1( 1)
2 ( )

C
C y

C

C x
C

N y vF
R y v

NF
y v

+ = − +

 = + +

 
(D-2) 

Here the same example in Section 6.6 of Chapter 6 is used. Assuming N=1, 1
2

10
R = , 1

12
5Cy R= = . 

According to Eq.(6.15), the accurate value of stiffness of pseudo spring is  

2
1

2 (3/2)2
1

4 10
(4 )accurate

C

NRk
yR

= =
−  

(D-3) 

On contrast, here an approximate of stiffness of pseudo-spring is defined as follows: 

. ' '[ ( ) ( )] /appro C y C yk F v F v v= + − −
 

(D-4) 

Table. D-1 Approximate value of kappro. 

v 10-4 10-3 10-2 

'C yF (+v) 0.50050038 0.50503788 0.55416880 

'C yF (-v) 0.49950037 0.49503712 0.45341026 

kappro. 10.0001 10.0008 10.0759 
 

If the value of v is known, then by static method the reaction forces ' ( )C yF v+ and ' (- )C yF v can be obtained. 

Table.D-1 shows the results of three different values of v. From table.D-1, we can obtain when v is 10-4 or 10-3, 
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the approximation of kappro. is close to the accurate value in Eq.(D-3), therefore this approximate approach can 

be used to obtain the stiffness of pseudo-spring. 

D.2 Extension of approximate approach 

Next the approximate approach to get the stiffness of pseudo-spring in numerical example in Section 7.2.3 of 

Chapter 7 will be introduced. 

 
Fig.D-1 Mechanistic movement of the membrane 

Fig.D-1 shows the mechanistic movement of the membrane (seen as a curved line) in x direction. The 

coordinates of A, B' and C' after movements are (0, 0), (a, b), and (r+v, r) respectively. The distances of line AB 

and line BC are assumed to keep constant after movement. Then from the geometric relationship we can obtain 

2 2 2

2 2 2( ) ( )
a b R
a r v b r R

 + =


− − + − =
 (D-5) 

The solution of (a, b) in Eq.(D-5) is  

2 2

2 22 ( ) ( )
2

a R b
a r v r v rb

r

 = −

 − + + + +

=
  

(D-6) 

In another aspect, the relationship between Fx and Fy is  

y

x

F r b
F r v a

−
=

+ −  
(D-7) 

Meanwhile, from the equilibrium condition of the moment at the position A, we can obtain  
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( ) ( )
2 x y

N a b F r F r v+ + = +i i i
 

(D-8) 

Substituting the expression of Fy in Eq.(D-7) into Eq.(D-8), the expression of Fx can be obtained as  

( )
2

( )
x

N a b
F r b r v r

r v a

+
=

− + −
+ −

i

i  
(D-9) 

In Fig.D-1, assuming r=1.7, then the value of R in Fig.D-1 is R=1.24448637. For these conditions the 

approximate stiffness of pseudo-spring is noted k1. And N is assumed as 1(N). By using Eq.(D-9) and Eq.(D-4), 

Fx (+v), Fx (-v) and k corresponding to different values of v are shown in Table.D-2. 

Table.D-2 Approximate values of k 

v 10-4 10-3 10-2 

Fx (+v) 0.96654714 0.97217320 1.03208550 

Fx (-v) 0.96530527 0.95975404 0.90736341 

k 12.4187 12.4192 12.4722 

 

 
Fig.D-2 Heights of nodes in the circular arch 

In FE analysis, the entire arch is divided into 48 linear beam elements along circumferential direction, and each 

element has the same length. Fig.D-2 shows the heights of nodes in the circular arch. 

In Table.D-2, the approximate stiffnesses of pseudo-spring when r is 1.7m have been obtained. By using the 

same method in equations above and assuming v as 10-4 and N=1, we can get other stiffnesses of 

pseudo-springs at different nodes. The results are given in Table.D-2. In Table.D-3, symbol ru is means the 

height of the u-th node. 
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Table.D-3 Approximate stiffnesses of pseudo-springs  

 r47=1.7m r12=1.2021m r1=0.1112m ru 

kn 12.4187N/m 17.5624N/m 189.8542 N/m k1×r47/ ru 

In another aspect, if v=0, from Eq.(D-7) and Eq.(D-9), we can obtain 

( ) ( )( )2
( )2y

N a b r b N a b r bF r b r a a b rr r
r a

+
− + −

= =
− − −−
−

i
i

i  
(D-10) 

Considering the symmetric of mechanistic membrane, the resultant force Pn in y direction is 2Fy, and their 

values are given in Table D-4 (assuming N=1.). 

Table.D-4 Resultant forces in y direction 

 r47 r12 r1 ru 

Pn 3.3461 3.3461 3.3461 3.3461 
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Appendix E 

E.1 Arch-spring models 

a) In-plane  

  

(a) Anti-symmetric arch-spring model (b) Symmetric arch-spring model 

Fig.E-1 Arch-spring models in-plane 

The arch has a hollow circular constant cross section with external diameter equaling 12mm and internal 

diameter equaling 6mm. The Young's modulus is 205Gpa and the Poisson’s ratio is 0.3. The entire arch is 

divided into 48 linear beam elements, and each beam element has the same length. One brace is divided into 

one linear truss element. The radius of the arch is 1m. The central angular of the arch is π. The external force is 

assumed as uniform compression. Spring ratios rx and ry are assumed as rx = k/(EIx
R3 ), ry = k/(EIy

R3 ) 

respectively. 

Table.E-1 Critical loads qcr (unit: EIx/R3-hinged ended boundaries) 

rx (a) Anti-symmetric  (b) Symmetric  
0 3.06 8.15 

5.11 4.16 8.88 
10.22 5.26 9.59 
15.34 6.36 10.29 
20.45 7.46 10.98 
25.56 8.15 11.65 
30.67 8.15 12.29 
40.90 8.15 13.53 
51.12 8.15 14.67 
61.34 8.15 15.30 
66.45 8.15 15.30 
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Table.E-2 Critical loads qcr (unit: EIx/R3-fixed ended boundaries) 

rx (a) Anti-symmetric  (b) Symmetric  
0 8.15 13.15 

5.11 8.88 13.89 
10.22 9.59 14.61 
20.45 10.98 16.05 
30.67 12.29 17.45 
40.90 13.15 18.82 
51.12 13.15 20.16 
61.34 13.15 21.45 
71.57 13.15 22.69 
81.79 13.15 23.89 
92.01 13.15 24.50 
97.13 13.15 24.50 

b) Out-of-plane  

 
Fig.E-2 Arch-spring model out-of-plane 

Table.E-3 Critical loads qcr (unit: EIy/R3) 

ry 
(a) Hinged ended in-plane  

and fixed ended out-of-plane 
(b) Fixed ended in-plane  

and out-of-plane 
0 2.52 2.52 

0.51 2.85 2.85 
1.53 3.06 3.50 
2.56 3.06 4.15 
3.58 3.06 4.79 
4.60 3.06 5.43 
7.67 3.06 5.83 
15.34 3.06 5.83 
25.56 3.06 5.83 
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E.2 Single arch stiffened by braces 

a) In-plane  

 
(a) Pattern A 

 
(b) Pattern B 

 
(c) Pattern C 

 
(d) Pattern AB 

 
(e) Pattern AC 

 
(f) Pattern BC 

Fig.E-3 Stiffening patterns of single arch in-plane 

Parameters: R-radius of the arch; EC-Young’s modulus of the brace; AC-area of cross section of the brace; 

E-Young’s modulus of the arch; I-inertia of moment, and I=Ix=Iy. Spring ratio of the brace and the arch is 

assumed as rp = (ECAC
R )/(EI

R3).  

Table.E-4 Critical loads qcr (unit: EI/R3-hinged ended boundaries) 

rp Pattern A Pattern B Pattern C Pattern AB Pattern AC Pattern BC 
0 3.06 3.06 3.06 3.06 3.06 3.06 

5.11 3.06 3.84  7.41  3.84 7.41  8.20 
20.45 3.06 6.17 9.46 6.17 11.28  11.36 
51.12 3.06 10.83  10.87  10.83  14.49  14.79 
76.68 3.06 14.68  11.69  14.68  15.31  15.32 
102.24 3.06 15.30  12.28  15.30  15.31  15.33 
153.35 3.06 15.30  13.07  15.30  15.31  15.34 
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Table.E-5 Critical loads qcr (unit: EI/R3-fixed ended boundaries) 

rp Pattern A Pattern B Pattern C Pattern AB Pattern AC Pattern BC 
0 8.15 8.15 8.15 8.15 8.15 8.15 

5.11 8.15 8.67  11.20  8.67  11.20  11.66 
20.45 8.15 10.18  15.88  10.18  16.58  17.42 
51.12 8.15 12.97  19.01  12.97  19.01  19.71 
76.68 8.15 15.00  19.51  15.00  19.51  20.22 
102.24 8.15 16.70  19.74  16.70  19.74  20.51 
153.35 8.15 19.03  19.97 19.03  19.97  20.87 
204.47 8.15 20.27  20.07 20.27  20.07  21.13 

b) Out-of-plane  

 
(a) Pattern D 

 
(b) Pattern E 

 
(c) Pattern DE 

Fig.E-4 Stiffening patterns of single arch out-of-plane 

1) Hinged ended in-plane and fixed ended out-of-plane 

Table.E-6 Critical loads qcr (unit: EI/R3) 
rp Pattern D Pattern E Pattern DE 
0 2.52 2.52 2.52 

0.51 2.75 2.62 2.85 
1.53 3.06 2.82 3.52 
5.11 3.06 3.45 4.61 
25.56 3.06 5.44 10.09 
51.12 3.06 6.29 13.04 
76.68 3.06 6.65 14.75 
102.24 3.06 6.85 15.32 
153.36 3.06 7.05 15.32 
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2) Fixed ended both in-plane and out-of-plane 

Table.E-7 Critical loads qcr (unit: EI/R3) 

rp Pattern D Pattern E Pattern DE 
0 2.52 2.52 2.52 

0.51 2.75 2.62 2.86 
1.53 3.21 2.82 3.52 
5.11 4.82 3.45 5.68 
25.56 5.83 5.44 10.09 
51.12 5.83 6.29 13.04 
76.68 5.83 6.65 14.75 
102.24 5.83 6.85 15.70 
153.36 5.83 7.05 16.63 

E.3 Cross arch stiffened by braces 

 
(a) Pattern F 

 
(b) Pattern G 

 
(c) Pattern H 

 
(d) Pattern FH 

 
(e) Pattern GH 

Fig.E-5 Stiffening patterns of cross arch 
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Table.E-8 Critical load qcr (unit: EI/R3-hinged ended boundaries) 
rp Pattern F Pattern G Pattern H Pattern FH Pattern GH 
0 1.16 1.16 1.16 1.16 1.16 

5.11 1.16 1.16 2.30 2.30 2.30 
20.45 1.16 1.16 5.61 5.61 5.61 
51.12 1.16 1.16 9.23 10.99 9.91 
76.68 1.16 1.16 9.81 11.80 11.36 
102.24 1.16 1.16 10.25 11.89 11.90 
153.35 1.16 1.16 10.98 11.94 11.96 
204.47 1.16 1.16 11.56 11.96 11.99 

 

Table.E-9 Critical loads qcr (unit: EI/R3-fixed ended boundaries) 
rp Pattern F Pattern G Pattern H Pattern FH Pattern GH 
0 5.83 5.83 5.83 5.83 5.83 

5.11 5.83 5.83 6.77 6.77 6.77 
20.45 5.83 5.83 9.33 9.33 9.34 
51.12 5.83 5.83 13.03 13.03 13.04 
76.68 5.83 5.83 14.74 14.74 14.75 
102.24 5.83 5.83 15.69 15.69 15.70 
153.35 5.83 5.83 16.61 16.61 16.63 
204.47 5.83 5.83 17.03 17.03 17.07 

 


