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Abstract

The nearly Minimal Supersymmetric Standard Model (nMSSM) is one of the

promising models of the new physics, since this model can avoid hierarchy problem,

µ problem, cosmological domain wall problem, and tadpole problem simultaneously.

In this thesis, we consider the phenomenology of the nMSSM. Especially, we focus on

the phenomenology of the dark matter and the baryon asymmetry in the universe

generated by the electroweak baryogenesis mechanism. We find that with high-

scale supersymmetry breaking the singlino can obtain a sizable radiative correction

to the singlino mass, which opens a window for the singlet dark matter scenario

with resonant annihilation via the exchange of the Higgs boson. We also propose

a new electroweak baryogenesis scenario in the nMSSM with additional vector-like

multiplets. If the soft supersymmetry breaking scale is O(10) TeV, these scenarios

are compatible with each other and an observed mass of the Higgs boson, constraints

by the electric dipole moments measurements and the flavor experiments. As a result

of these two studies, we conclude that the nMSSM with a high-scale supersymmetry

breaking is valid and can be probed by the direct direction of the singlino dark

matter.
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Chapter

1
Introduction

1.1 Overview

The standard model (SM) of the particle physics has worked very well for a long time. Amazingly,

ten observations and eight predictions or theories, which are related with the SM, had received

the Novel Prize. In 2012 the Higgs boson, which is a last missing piece of the SM, was observed

by the Large Hadron Collider (LHC) experiments at CERN [1, 2], and F. Englert and P. Higgs

have won the Nobel Prize for the discovery of the Higgs mechanism. This is a triumph of the SM,

and the observation of the SM Higgs boson has given an important step towards understanding

the electroweak symmetry breaking.

However, there are many unsolved problems within the SM, for example, the observed dark

matter particles and baryon asymmetry of the universe. From theoretical viewpoint, the gauge

hierarchy problem is still in question. Hence, there have been many attempts to solve such

problems in framework beyond the SM.

The supersymmetric (SUSY) models are good candidates as the physics beyond the standard

model [3–7]. It is because that they can solve the hierarchy problem naturally and ensure the

unification of the gauge couplings. In addition, the lightest SUSY particle can be a natural

candidate of the WIMP dark matter if the R parity is conserved.

The minimal SUSY extension of the SM (MSSM) contains a supersymmetric dimensional

parameter µ, which is the mass term of the superpartner of the Higgs boson. However, this

parameter causes “µ problem”, which is also one of the hierarchy problem [8]. Although µ has

to be a size of the SUSY breaking scale to realize the electroweak symmetry breaking properly,

there is no reason for µ to be small compared to the Planck scale.

One of the simplest ways to solve the µ problem is introducing a gauge-singlet superfield [9].

There are several models of singlet extension of the MSSM depending on the imposed addi-

tional symmetry. However, the additional singlet superfield causes a cosmological domain wall

problem [10, 11] and tadpole problem [12]. The nearly Minimal (or new Minimal) Supersym-
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metric Standard Model (nMSSM) [13–15] is based on a discrete ZR
5 R-symmetry. Actually this

model can avoid naturally the cosmological domain wall problem and tadpole problem, unlike

Z3 symmetric models [11, 16]. Therefore, the nMSSM is one of the promising models of the

new physics: this model can avoid the µ problem, the domain wall problem, and the tadpole

problem simultaneously. In addition this model has natural candidate of the dark matter and

can generate the baryon asymmetry of the universe.

In this thesis, we consider the phenomenology of the nMSSM, which are the based on the

works by the author [17,18]. Especially, we focus on a phenomenology of the dark matter [17] in

Chapter 4 and the baryon asymmetry in the universe generated by the electroweak baryogenesis

mechanism [18] in Chapter 5.

In Chapter 4, we consider a singlino dark matter scenario in the nMSSM. The singlino is

a fermion component of the additional singlet superfield. We find that with high-scale SUSY

breaking the singlino can obtain a sizable radiative correction to the mass, which opens a window

for the dark matter scenario with resonant annihilation via the exchange of the Higgs boson. We

show that the current dark matter relic abundance and the Higgs boson mass can be explained

simultaneously. This scenario can be probed by the search of the Higgs invisible decay and the

direct direction of the dark matter.

In Chapter 5, we propose a new electroweak baryogenesis scenario in high-scale SUSY mod-

els, and consider the nMSSM introducing additional vector-like multiplets. We show that the

strongly first-order phase transition can occur at a high temperature comparable to the soft

SUSY breaking scale. In addition, the proper amount of the baryon asymmetry of the universe

can be generated via the lepton number violating process in the vector-like multiplet sector.

The typical scale of our scenario, the soft SUSY breaking scale, can be any value. Thus our

new electroweak baryogenesis scenario can be realized at arbitrary scales and we call this sce-

nario as a scale free electroweak baryogenesis. This soft SUSY breaking scale is determined by

other requirements. If the soft SUSY breaking scale is O(10)TeV, our scenario is compatible

with the observed mass of the Higgs boson and the constraints by the electric dipole moments

measurements and the flavor experiments. Furthermore, the singlino can be a good candidate

of the dark matter.

As a result of these two studies, we will conclude that the nMSSM with a high-scale SUSY

breaking is valid and can be probed by the direct direction of the singlino dark matter.

1.2 Organization of this thesis

This thesis is organized as following.

In Chapter 2, we review the SM, the supersymmetry and current status of the supersym-

metric minimal model. In Section 2.1 and 2.2, in order to solve the hierarchy problem of the

- 2 -



1.2 Organization of this thesis

standard model, we first introduce the supersymmetry and the MSSM. In Section 2.3, we review

the current situation of the MSSM. In fact, an observed mass of the SM Higgs boson is 125GeV,

and it gives a meaningful constraint on the parameter space of supersymmetric models. Thus, we

focus on the one-loop, two-loop and higher-loop radiative corrections to the Higgs boson mass.

These calculations for the Higgs boson mass are reused in the study of the nMSSM (Chapter 4).

Furthermore, we also discuss the constraints from the flavor violation and CP violation process

in supersymmetric model. In Section 2.4, we summarize the current status of the MSSM.

In Chapter 3, we review singlet extension models of the MSSM and the nMSSM. In Sec-

tion 3.1, we first explain the µ problem in the MSSM, and in order to solve the µ problem we

introduce the additional gauge singlet superfield. Next, we show that when one imposes extra

symmetries to forbid unwanted terms of singlet superfield, these symmetries lead to the domain

wall problem and the tadpole problem in Section 3.2. The nMSSM is the one of the models

which can solve the µ problem, the domain wall problem and the tadpole problem, and so we

review the nMSSM in Section 3.3 and 3.4. Anyhow, we need an extra symmetry to solve these

problems.

In Chapter 4, we study the phenomenology of the singlino dark matter in the nMSSM. In

Section 4.1, we briefly review a situation of the singlino dark matter in the nMSSM, and we also

explain why we have considered it. In Section 4.2, using the low energy effective Lagrangian

we calculate thermal relic abundance of the singlino dark matter which annihilate via the SM

Higgs boson. We point out that one-loop corrections to the singlino mass can raise its mass with

relatively high-scale SUSY breaking, in Section 4.5. In Section 4.4, we numerically investigate the

singlino resonant dark matter scenario with high-scale SUSY breaking, and show this scenario

is compatible with the observed SM Higgs boson mass. Section 4.5 and 4.6 are devoted to the

conclusion and discussions in this chapter.

In Chapter 5, we study the baryon asymmetry in the universe generated by the electroweak

baryogenesis mechanism in the nMSSM, and we propose a new electroweak baryogenesis scenario

in the nMSSM with high-scale SUSY breaking. In Section 5.1, 5.2 and 5.3, we introduce the

model: the nMSSM with vector-like multiplets, and also present the overview of our scenario. In

Section 5.4, we discuss about the strongly first-order phase transition and this section is divided

into three parts. In subsection 5.4.1, we show the full thermal potential at high temperatures.

In subsection 5.4.2, we provide an intuitive understanding for the behavior of the potential at

high temperatures. In subsection 5.4.3, we analyze the full potential and show that the strongly

first-order phase transition actually occurs at a temperature comparable to MSUSY. We also

show that the region with low tanβ and a light charged Higgs boson is favored in our scenario.

In Section 5.5, we demonstrate the generation of the BAU with the lepton number violating

process. In Section 5.6, we discuss the singlino dark matter scenario paying particular attention

to the lifetime. Section 5.7 and 5.8 are devoted to the conclusion and discussions in this chapter.

Chapter 6 is devoted to the conclusion of this thesis.

- 3 -





Chapter

2
An Introduction to Supersymmetry

In this chapter, in order to solve the hierarchy problem of the standard

model, we first introduce the supersymmetry and the minimal supersymmetric

standard model. In fact, an observed mass of the SM Higgs boson is 125GeV,

and it gives a meaningful constraint on the parameter space of supersymmetric

models. Therefore, we first review the one-loop, two-loop and higher-loop ra-

diative corrections to the Higgs boson mass. Furthermore, we also discuss the

constraints from the flavor violation and CP violation process in supersymmet-

ric model. These facts imply that the näıve low scale minimal supersymmetric

standard model, which is in spite of being favored in terms of the natural-

ness, is disfavored. One of the solutions of these problems is the high-scale

supersymmetry.

2.1 The Standard Model

In nature, there are four fundamental forces: the electromagnetic, weak, and strong nuclear and

gravitational interactions. These interactions can be understood by interactions of elementary

particles. The standard model (SM) can describe the electromagnetic, weak, and strong nuclear

interactions as a quantum field dynamics.

The standard model is one of the gauge theories. In the standard model, the imposed

gauge symmetry is GSM =U(1)Y × SU(2)L× SU(3)c [19–22]. Gauge bosons are introduced at

every gauge symmetry: a B boson for U(1)Y gauge, isospin triplet W bosons for SU(2)L gauge

and color gluons octet for SU(3)c gauge. However, in order to describe the electromagnetic

and weak nuclear interactions, U(1)Y × SU(2)L gauge symmetry (electroweak symmetry) should

be spontaneous broken to U(1)EM gauge symmetry (electromagnetic symmetry) by the Higgs

mechanism [23–26]. This mechanism predicts an existence of the Higgs boson h (SM Higgs

boson). The unitarity requirement for the high-energy scattering of the longitudinal W boson

leads to the upper bound on the mass of the SM Higgs boson mh ! 700GeV [27].

The standard model has been worked very well for a long time, and its last missing piece, the

Higgs boson, was finally discovered by the LHC experiment at CERN [1, 2]. This is a triumph

of the SM and a great step to understand physics at the electroweak scale.



Chapter 2. An Introduction to Supersymmetry

The Lagrangian of the standard model is given as follows,

L = Lgauge + Lfermion + LYukawa + Lscalar, (2.1)

with

Lgauge = −1

4
BµνBµν −

1

4

3∑

a=1

W a
µνW

aµν − 1

4

8∑

a=1

Ga
µνG

aµν , (2.2)

Lfermion = iQ̄iγ
µ

(
∂µ − i

g′

6
Bµ − i

g

2
σaW a

µ − i
gs
2
λaGa

µ

)
Qi

+iŪiγ
µ

(
∂µ − i

2g′

3
Bµ − i

gs
2
λaGa

µ

)
Ui + iD̄iγ

µ

(
∂µ + i

g′

3
Bµ − i

gs
2
λaGa

µ

)
Di

+iL̄iγ
µ

(
∂µ + i

g′

2
Bµ − i

g

2
σaW a

µ

)
Li + iĒiγ

µ
(
∂µ + ig′Bµ

)
Ei, (2.3)

LYukawa = Ūi(yu)ijHQj − D̄i(yd)ijH
†Qj − Ēi(ye)ijH

†Lj +H.c., (2.4)

Lscalar =

∣∣∣∣

(
∂µ − i

g′

2
Bmu − i

g

2
σaW a

µ

)
H

∣∣∣∣
2

− V (H), (2.5)

(2.6)

where the field strength F a
µν is defined as F a

µν = ∂µAa
ν − ∂νAa

µ + gAfabcAb
µA

c
ν , σ

a (a = 1, 2, 3) is

the Pauli matrix, λa (a = 1, 2, . . . , 8) is the Gell-Mann matrix, index i represents the generation

(i = 1, 2, 3), y is the Yukawa couplings, the gauge couplings for U(1)Y , SU(2)L and SU(3)c are

denoted as g′, g and gs respectively. The contraction of the two SU(2) doublet is AB = AT iσ2B.

A more detail definition is written in Appendix A. H is the Higgs doublet,

H =

(
H+

H0

)
. (2.7)

The Higgs potential can be written as follows,

V = −µ2|H†H|+ λquartic
2

|H†H|2. (2.8)

Then, the Higgs doublet obtains the vacuum expectation value vEW (VEV),

v2EW =
µ2

λquartic
. (2.9)

It breaks the electroweak symmetry to the electromagnetic symmetry, SU(2)L× U(1)Y →
U(1)EM . Using the freedom of SU(2) rotations, one can always align the VEV with the neutral

Higgs direction,

H =

(
0

vEW

)
+

(
G+

1√
2

(
h+ iG0

)
)
, (2.10)

where G is the Numbu-Goldstone bosons and h is the SM Higgs boson. Then, the mass of the

SM Higgs boson is

m2
h = 2µ2 = 2λquarticv

2
EW . (2.11)

- 6 -



2.2 Supersymmetry and Minimal Model

The Higgs VEV vEW generates the Dirac mass to the all fermion via the Yukawa interaction,

mf = yfvEW . The gauge bosons also obtain the mass,

M2
Z =

g′2 + g2

2
v2EW , M2

W =
g2

2
v2EW ,

mγ = mgluon = 0, (2.12)

where A(γ) = cos θWB + sin θWW 3, Z = − sin θWB + cos θWW 3, W± = (W 1 ∓ iW 2)/
√
2, and

θW is the Weinberg angle.

Therefore, the Higgs vev can determine the electroweak scale. In fact, vEW = 174.10363 ±
0.00004GeV, which has been given by the measurement of the Fermi constant from the muon

decay. In the other words, the parameter µ2 in the Higgs potential determines the electroweak

scale and the SM Higgs boson mass.

Hierarchy problem

However, the radiative corrections to the parameter µ2 contain the quadratic divergence.

For example, the top quark loop gives the following quadratic divergence,

∆µ2 = − 1

8π2
y2t
(
Λ2 + . . .

)
, (2.13)

where Λ is the ultraviolet momentum cutoff. All diagrams which contain the quadratic diver-

gence are shown in Figure 2.1. If one assume that the standard model is valid up to the Planck

scale, the ultraviolet cutoff is näıvely the Planck scale, Λ ∼ 1019GeV. Although these radia-

tive corrections can be renormalized by the bare parameter µ2
0, it requires incredible fine-tuning

cancellation between the bare mass µ2
0 and the quadratic radiative corrections ∆µ2. In fact,

in order for the O(100)GeV electroweak scale to be realized, the 10−34 fine-tuning is required.

This difficulty in the standard model is called the hierarchy problem.

2.2 Supersymmetry and Minimal Model

The supersymmetry (SUSY) is the one of the symmetry which can solve the hierarchy problem.

In this section, we first introduce the supersymmetry and its minimal model, and show that the

hierarchy problem is solved actually. Next, we briefly review the Lagrangian and the mass of

the Higgs boson in the supersymmetric minimal model.

2.2.1 Motivations of Supersymmetry

First, let us briefly introduce the supersymmetry, which can solve the hierarchy problem [3–7].

The supersymmetry is the extension symmetry of the Poincaré group through the introduction

of anticommuting spinor generators Qα, Q̄α̇, where α, α̇ are spinor index [28]. It is equal to the

symmetry between the boson and fermion,
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Chapter 2. An Introduction to Supersymmetry

Standard model Supersymmetric minimal model

− 1
8π2 y2Λ2

:
:
:
:

1
16π2 y2Λ2 × 2

:
:
:

1
4π2 g2(ta)2Λ2

:
:
:

− 1
16π2 g2(ta)2Λ2

:
:
:
:

− 1
4π2 g2(ta)2Λ2

:
:
:
:

1
16π2λquarticΛ2

:
:
:

Figure 2.1: The quadratic divergence to the mass of the Higgs boson in the standard model and
the supersymmetric model. Since the supersymmetry assures that the Higgs quartic coupling is
related to the gauge boson coupling like Eq. (2.20), all quadratic divergence are always canceled
out in the supersymmetric model.

Q̄|boson〉 = |fermion〉 (2.14)

Q|fermion〉 = |boson〉. (2.15)

Then, ordinary space-time xµ is extended to the superspace (xµ, θα, θ̄α̇), where θα, θ̄α̇ are the

anticommuting Grassman coordinates. The supersymmetric theories are described by chiral

superfield, vector superfield and spinor chiral superfield. The chiral superfield Φ̂ contains the

scalar and fermion field on the superspace,

Φ̂(x, θ, θ̄) = φ(y) +
√
2θψ(y) + θθF (y), (2.16)

with yµ = xµ + iθσµθ̄, and the hat (̂) represents the superfield. φ is a complex scalar field

(sfermion), ψ is two-components Weyl spinor field and F is an auxiliary field. The vector
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2.2 Supersymmetry and Minimal Model

Table 2.1: All chiral and vector superfields with their components for spin 0, 1/2 and 1, and
their representations for SU(3)c× SU(2)L× U(1)Y gauge group in the MSSM.

Chiral Supermultiplet Spin 0 Spin 1
2 SU(3)C SU(2)L U(1)Y

Quark-Squark Q̂ Q̃ = (ũL, d̃L)T Q = (uL, dL)T 3 2 1
6

ˆ̄U ˜̄uR u†R 3 1 −2
3

ˆ̄D ˜̄dR d†R 3 1 1
3

Lepton-Slepton L̂ L̃ = (ν̃e, ẽL)T L = (νe, eL)T 1 2 −1
2

ˆ̄E ˜̄eR e†R 1 1 1
Higgs-Higgsino Ĥ1 H1 = (H0

1 , H
−
1 )T H̃1 = (H̃0

1 , H̃
−
1 )T 1 2 −1

2

Ĥ2 H2 = (H+
2 , H0

2 )
T H̃2 = (H̃+

2 , H̃0
2 )

T 1 2 1
2

Vector Supermultiplet Spin 1
2 Spin 1 SU(3)C SU(2)L U(1)Y

Gluon-Gluimo VG g̃ Gµ 8 1 0
W boson-Wino VW W̃±, W̃ 0 W±

µ , W 0
µ 1 3 0

B boson-Bino VB B̃0 B0
µ 1 1 0

superfield V̂ a contains the vector boson and fermion field on the superspace,

V̂ a(x, θ, θ̄) = −θσµθ̄V a
µ (y) + iθθθ̄λ̄a(y)− iθ̄θ̄θλa(y) +

1

2
θθθ̄θ̄

(
Da(y)− i∂µV a

µ (y)
)
, (2.17)

where a is the index of the generator of the gauge group, V a
µ is the gauge boson, λa is two-

components Weyl spinor field (gaugino) and Da is an auxiliary field. The spinor chiral superfield

Ŵ a
α also contains the vector boson and fermion field on the superspace,

Ŵ a
α(x, θ, θ̄) = −iλaα(y) +

(
δβαD

a(y)− i

2
(σµσ̄ν)βαV

a
µν(y)

)
θβ + θθσµαα̇∂µλ̄

aα̇(y), (2.18)

where V a
µν = ∂µV a

ν − ∂νV a
µ .

The supersymmetric minimal model is called Minimal Supersymmetric Standard Model

(MSSM). Table 2.1 shows all chiral and vector superfields with their components for spin 0,

1/2 and 1, and their representations for SU(3)c× SU(2)L× U(1)Y gauge group in the MSSM.

Here the tilde (̃) represents the SUSY partner of the SM particle. Note that, although the

number of Higgs doublet is one in the SM, we must introduce two Higgs doublets in the SUSY

model,

Ĥ1 =

(
Ĥ0

1

Ĥ−
1

)
, Ĥ2 =

(
Ĥ+

2

Ĥ0
2

)
, (2.19)

where H̃ is called Higgsino. It is because that an existence of the Yukawa interaction with

quark/lepton and the gauge anomaly cancelation require two kinds of the Higgs doublets that

the hypercharge is opposite.
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Chapter 2. An Introduction to Supersymmetry

As we will discuss in detail later, the Higgs quartic coupling Eq. (2.8) and the gauge coupling

are related. In the MSSM, this relation is given as

λquartic = g2(ta)2. (2.20)

Figure 2.1 shows the quadratic divergence to the mass of the Higgs boson in the MSSM. Obvi-

ously, the quadratic divergence by the top quark loop Eq. (2.13) is canceled out by the stop loop

which are SUSY partners of the top quark. Furthermore, the relationship Eq. (2.20) can cancel

out the quadratic divergence by the gauge boson, Higgs boson, gaugino and Higgsino. Actually,

all quadratic divergence are always canceled out in the supersymmetric model [6,7]. Therefore,

the supersymmetry can solve the hierarchy problem.

Other motivation of the supersymmetry is dark matter. The SM does not include dark matter,

which is stable and does not interact with the electromagnetic force. In the supersymmetric

model, in order to forbid all harmful terms, which break baryon number (B) and lepton number

(L) and thus cause the proton decay, one should add a new symmetry. This symmetry is called

the R parity [29]. It is defined as

PR = (−1)3(B−L)+2s, (2.21)

where s is the spin and B = 1/3 for Q̂, B = −1/3 for ˆ̄U, ˆ̄D, B = 0 for all others, L = 1 for

L̂, L = −1 for ˆ̄E and L = 0 for all others. Thus, the SM fermions, Higgs bosons and gauge

bosons have even R parity (PR = +1), while the squarks, sleptons, Higgsinos and gauginos

have odd R parity (PR = −1). This symmetry is equal to discrete Z2 R-symmetry. If the R

parity is exact symmetry, the lightest supersymmetric particle (LSP) becomes stable. Here the

supersymmetric particles are defined as the R parity odd ones. Therefore, when the LSP does

not have the electromagnetic charge, it can be a natural candidate of the dark matter.

Another motivation of the supersymmetry is the gauge unification. In fact, the electromag-

netic and weak nuclear interactions are unified by the electroweak theory above the unification

energy O(100)GeV, it is so-called Glashow-Weinberg-Salam theory [19, 20]. In this sense, the

electroweak interaction and strong interaction may be unified by grand unification theory (GUT).

In fact, although the gauge couplings can not unify in the SM, in the SUSY model the unifica-

tion of the gauge couplings can occur [30]. Let us briefly observe this fact. The one-loop level

renormalization group equations (RGEs) for the gauge couplings in the SM are

dg′

dlnQ
=

1

(4π)2
41

6
g′3,

dg

dlnQ
= − 1

(4π)2
19

6
g3,

dgs
dlnQ

= − 1

(4π)2
7g3s , (2.22)

where Q is the renormalization scale. While, the corresponding equations in the MSSM are

dg′

dlnQ
=

1

(4π)2
11g′3,

dg

dlnQ
=

1

(4π)2
g3,

dgs
dlnQ

= − 1

(4π)2
3g3s . (2.23)
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Figure 2.2: Two-loop level running gauge couplings as a function of the renormalization scale
Q. The black lines represent

√
5/3g′, the blue lines represent g and the red lines represent gs.

Left : The dashed lines correspond the running gauge couplings in the SM, while the solid lines
correspond the running gauge couplings in the MSSM with MSUSY = 10TeV. Right : The
running gauge couplings in the MSSM with MSUSY = 1TeV (upper) and MSUSY = 100TeV
(lower).
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Figure 2.3: Two-loop level running Yukawa couplings (yt: red, yb: blue, yτ : green) and the
Higgs quartic coupling (λquartic: black) as a function of the renormalization scale Q. The dashed
lines correspond the running couplings in the SM, while the solid lines correspond the running
couplings in the MSSM with MSUSY = 10TeV. We take tanβ = 2 in the left panel, and
tanβ = 50 in the right panel.



Chapter 2. An Introduction to Supersymmetry

Two-loop level RGEs for all couplings are summarized in Appendix B.1.

Figure 2.2 and 2.3 show the two-loop level running couplings as a function of the renormal-

ization scale Q. In Figure 2.2, the black lines represent
√

5/3g′(Q)#1, the blue lines represent

g(Q) and the red lines represent gs(Q). In the left panel, the dashed lines correspond the run-

ning gauge couplings in the SM, while the solid lines correspond the running gauge couplings

in the MSSM with MSUSY = 10TeV, here MSUSY represents typical SUSY particles mass

scale. As one can see, in the MSSM three gauge couplings are actually unified at GUT sale:

MGUT ) 2.0 × 1016GeV, while in the SM it can not achieve. This fact gives one of the main

motivations for the SUSY GUT models [31, 32]. In the right panel, we show the running gauge

couplings in the MSSM with MSUSY = 1TeV (upper) and MSUSY = 100TeV (lower). We find

that when MSUSY " O(100)TeV, the gauge coupling unification is no longer achieved if one

takes universal SUSY particle mass in the MSSM. Thus, this figure implies that when mass

scales of all SUSY particles are the same order, the GUT suggests that typical SUSY particles

mass scale is MSUSY ! O(100)TeV.

In Figure 2.3, the red lines represent the running top Yukawa coupling yt(Q), the blue lines

represent the running bottom Yukawa coupling yb(Q), the green lines represent the running

tau Yukawa coupling yτ (Q) and the black lines represent the running Higgs quartic coupling

λquartic(Q). The dashed lines correspond the running couplings in the SM, while the solid lines

correspond the running couplings in the MSSM with MSUSY = 10TeV. We take tanβ = 2 in

the left panel, and tanβ = 50 in the right panel. The definition of tanβ is given in next section.

The important point in these figures is that the Higgs quartic coupling becomes negative at the

high energy scale in the SM. If one take mh ) 125GeV, then the Higgs quartic coupling becomes

negative at Q " 1010−11GeV [33]. This situation is avoided in the supersymmetric theory. It

is because that the relation between the quartic coupling and the gauge couplings Eq. (2.20)

assures the stability of the λquartic.

2.2.2 Lagrangian and the Higgs Boson Mass in the MSSM

Next, we brief review the Lagrangian and the Higgs boson mass of the MSSM [34].

Using the chiral superfield Eq. (2.16), the vector superfield Eq. (2.17) and the spinor chiral

superfield Eq. (2.18), the SUSY invariant Lagrangian of the MSSM is given as follows,

L =

∫
dθ2dθ̄2K

[
Φ̂, Φ̂†, V̂

]
+

(∫
dθ2W

[
Φ̂
]
+H.c.

)
+

(
1

4

∫
dθ2ŴαŴα +H.c.

)
, (2.24)

where K is the following Kähler potential

K
[
Φ̂, Φ̂†, V̂

]
=
∑

Φ̂

Φ̂†Exp(gtaV̂ a)Φ̂, (2.25)

#1The factor
√
5/3 is a normalization factor for the GUT.
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2.2 Supersymmetry and Minimal Model

and W is the following superpotential

W = µĤ2Ĥ1 +WYukawa, (2.26)

WYukawa = ˆ̄UyuQ̂Ĥ2 − ˆ̄DydQ̂Ĥ1 − ˆ̄EyeL̂Ĥ1, (2.27)

where µ is the supersymmetric mass of the Higgs multiplets. When the supersymmetry is

broken, µ becomes the mass of the Higgsinos. While the superpotential WYukawa gives the

supersymmetric Yukawa couplings of the standard model. In fact, the Yukawa matrices yu,yd

and ye are given approximately as follows

yu )




0 0 0
0 0 0
0 0 yt



 , yd )




0 0 0
0 0 0
0 0 yb



 , ye )




0 0 0
0 0 0
0 0 yτ



 . (2.28)

Here and the following, we use these approximations of Yukawa matrices. Then, the superpo-

tential becomes

WYukawa = ytˆ̄tRQ̂Ĥ2 − yb
ˆ̄bRQ̂Ĥ1 − yτ ˆ̄τRL̂Ĥ1

= yt(ˆ̄tRt̂LĤ
0
2 − ˆ̄tRb̂LĤ

+
2 ) + yb(

ˆ̄bRb̂LĤ
0
1 − ˆ̄bRt̂LĤ

−
1 )

+yτ (ˆ̄τRτ̂LĤ
0
1 − ˆ̄τRν̂τ Ĥ

−
1 ). (2.29)

Finally, as the spinor chiral superfields Ŵα we take the U(1)Y gauge multiplets (the B boson

and the bino), the SU(2)L gauge multiplets (the W bosons and the winos) and the SU(3)c gauge

multiplets (the gluons and the gluinos).

Because the supersymmetry is broken in nature, one has to also introduce SUSY breaking

terms in Lagrangian. The supersymmetry must be broken softly in order to ensure the cancela-

tion of the quadratic divergences. Generally, the soft SUSY breaking terms are gaugino masses,

scalar masse, and trilinear coupling terms for scalars. In the MSSM, the soft SUSY breaking

Lagrangian is given as

Lsoft = −Vsoft gaugino − Vsoft Yukawa − Vsoft Higgs, (2.30)

with

Vsoft gaugino =
1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃

)
+H.c., (2.31)

Vsoft Yukawa = m2
QQ̃

†Q̃+m2
U
˜̄U∗ ˜̄U +m2

D
˜̄D∗ ˜̄D +m2

LL̃
†L̃+m2

E
˜̄E∗ ˜̄E

+
(
˜̄UyuAuQ̃ ·H2 − ˜̄DydAdQ̃ ·H1 − ˜̄EyeAeL̃ ·H1 +H.c.

)
, (2.32)

Vsoft Higgs = m2
1|H1|2 +m2

2|H2|2 +
1

2
(BµH2H1 +H.c.), (2.33)

where Mi are the gaugino masses, m2
Q/U/D/L/E are the squark/slepton masses, m2

1/2 are soft

SUSY breaking Higgs mass, Ai are called A terms and B is called B terms. Note that m2
ĩ
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are flavor generation mixing 3× 3 matrix generally. Without additional assumptions, these off-

diagonal squark/slepton masses are not suppressed. Adding the soft SUSY breaking Lagrangian

Eq. (2.30) into the SUSY invariant Lagrangian Eq. (2.24), one can obtain the full Lagrangian

of the MSSM.

Now, let us see the Higgs sector and the mass of the neutral Higgs boron of the MSSM. The

tree-level Higgs scalar potential is given directly from Eqs. (2.30, 2.24) as

VHiggs =
g2

2

∣∣∣H†
1H2

∣∣∣
2
+

g2 + g′2

8

(
|H1|2 − |H2|2

)2
+
(
|µ|2 +m2

1

)
|H1|2 +

(
|µ|2 +m2

2

)
|H2|2

+
1

2
(BµH2H1 +H.c.). (2.34)

Using the freedom of SU(2) rotations, one can always choose 〈H+
2 〉 = 0. Then, a potential

minimization condition ∂V/∂H+
2 = 0 leads to 〈H−

1 〉 = 0. Thus, scalar potential of the neutral

Higgs boson is given as

VHiggs =
g2 + g′2

8

(
|H0

1 |2 − |H0
2 |2
)2

+
(
|µ|2 +m2

1

)
|H0

1 |2 +
(
|µ|2 +m2

2

)
|H0

2 |2

−1

2

(
BµH0

2H
0
1 +H.c.

)
. (2.35)

The potential minimization conditions ∂V/∂H0
1 = 0 and ∂V/∂H0

2 = 0 leads to

(m2
1 + |µ|2)v∗1 +

g2 + g′2

4
(|v1|2 − |v2|2)v∗1 −

1

2
Bµv2 = 0, (2.36)

(m2
2 + |µ|2)v∗2 −

g2 + g′2

4
(|v1|2 − |v2|2)v∗2 −

1

2
Bµv1 = 0, (2.37)

where v1/2 is the dev of H0
1/2. If the determinant of ∂2V/(∂H0

i ∂H
0
j ) is negative, one linear

combination of H0
1 and H0

2 has a negative square mass, then H0
1 and H0

2 obtain nonzero vevs.

This condition at the vicinity of H0
1 = H0

2 = 0 is

B2µ2 > 4(m2
1 + |µ|2)(m2

2 + |µ|2). (2.38)

In this case, using a redefinition of the phase of H0
1 and H0

2 , one can always choose that Bµ, v1

and v2 are real and positive. Let us defined the ratio of the Higgs vev as

tanβ ≡ v2
v1

, (2.39)

vEW =
√

v21 + v22 = 174.1 GeV. (2.40)

Then, the potential minimization conditions Eqs. (2.36, 2.37) become

m2
1 = −|µ|2 + 1

2
M2

A − 1

2

(
M2

A +M2
Z

)
cos 2β, (2.41)
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2.2 Supersymmetry and Minimal Model

m2
2 = −|µ|2 + 1

2
M2

A +
1

2

(
M2

A +M2
Z

)
cos 2β, (2.42)

where

M2
A = 2|µ|2 +m2

1 +m2
2. (2.43)

The vacuum fluctuations of the Higgs field are defined as

H0
1 = v1 +

1√
2
(H1R + iH1I),

H0
2 = v2 +

1√
2
(H2R + iH2I). (2.44)

Now, one can obtain the following mass matrix for the CP even Higgs bosons,

− LCP-even =
1

2

(
H1RH2R

)(M2
A sin2 β +M2

Z cos2 β −1
2(M

2
A +M2

Z) sin 2β
−1

2(M
2
A +M2

Z) sin 2β M2
A cos2 β +M2

Z sin2 β

)(
H1R

H2R

)
. (2.45)

Diagonalizing this mass matrix, the following mass eigenvalues are given#2

m2
H =

1

2

(
M2

A +M2
Z +

√
(M2

A −M2
Z)

2 + 4M2
AM

2
Z sin2 2β

)
, (2.48)

m2
h =

1

2

(
M2

A +M2
Z −

√
(M2

A −M2
Z)

2 + 4M2
AM

2
Z sin2 2β

)
, (2.49)

here we call a eigenstate, which has the heaviest/lightest mass eigenvalue, H/h. In the decou-

pling limit M2
A , M2

Z , the eigenstate h becomes the SM Higgs boson perfectly. It is because

that the couplings of h with SM particles are equal to the one of the SM Higgs boson with SM

particles in this limit. Here and the following, we call this eigenstate h SM-like Higgs boson.

Thus, one can recognize Eq. (2.49) as the tree-level mass of the SM-like Higgs boson in the

MSSM.

In fact, the tree-level mass of the SM-like Higgs boson Eq. (2.49) has an upper bound,

m2
h ≤ M2

Z cos2 2β. (2.50)

In the SUSY model, in order to cancel out the quadratic divergence in the radiative correc-

tions, the Higgs quartic couplings must be related with the gauge couplings (see Figure 2.1 and

Eq. (2.20)). In addition, the Higgs quartic couplings decide the mass of the SM-like Higgs boson

(see Eq. (2.11)). These are the reason why there are the upper bound on the Higgs boson mass

in the SUSY model. Thus, the SM-like Higgs boson mass must be lighter than the Z boson mass

at tree-level in the MSSM. However, this mass bound is too severe to explain an observed SM

Higgs boson mass, mh ) 125GeV [1,2].
#2Similarly to the CP even Higgs boson mass, the tree-level mass of the CP-odd Higgs boson A and charged

Higgs boson H± are given as

M2
A = 2|µ|2 +m2

1 +m2
2 =

Bµ
sin 2β

, (2.46)

m2
H± = M2

A +M2
W . (2.47)
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Figure 2.4: The Feynman diagrams for the dominant one-loop radiative corrections to the Higgs
boson mass. Here, the bullet • represents At term interaction.

Radiative corrections to the Higgs boson mass

On the contrary, in 1990, several groups found that radiative corrections can contribute to

the mass of the Higgs boson significantly [35–40] #3. The dominant radiative correction comes

from the top/stop loop diagrams, which are depicted in Figure 2.4.

The top/stop one-loop effective potential (the Coleman-Weinberg potential [42]) V t
CW is given

as,

V t
CW =

3

32π2

[
m4

t̃1

(
ln

(
m2

t̃1

Q2

)
− 3

2

)
+m4

t̃2

(
ln

(
m2

t̃2

Q2

)
− 3

2

)

− 2m4
t

(
ln

(
m2

t

Q2

)
− 3

2

)]
, (2.51)

where the top quark mass is m2
t = y2t |H0

2 |2 and Q is the renormalization scale. The stop masses

mt̃1 (lighter) and mt̃2 (heavier) are given as the eigenvalues of the following stop mass matrix,

− Lstop mass =
(
t̃∗Lt̃

∗
R

)
(
M2

t̃11
M2

t̃12
M2

t̃21
M2

t̃22

)(
t̃L
t̃R

)
, (2.52)

with

M2
t̃11

= m2
Q + y2t |H0

2 |2 +
(
2

3

M2
W

v2EW

− 1

6

M2
Z

v2EW

)(
|H0

1 |2 − |H0
2 |2
)
,

M2
t̃22

= m2
U + y2t |H0

2 |2 +
(
−2

3

M2
W

v2EW

+
2

3

M2
Z

v2EW

)(
|H0

1 |2 − |H0
2 |2
)
,

M2
t̃12

= (M2
t̃12

)∗

= yt
(
A∗

t (H
0
2 )

∗ − µH0
1

)
. (2.53)

This effective potential gives the following one-loop corrections to the CP even Higgs mass

matrix Eq. (2.45),

#3At that time, the Large Electron-Positron Collider (LEP) had not excluded the Higgs boson mass up to the
Z boson mass region [41].
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∆M2
11 =

3

8π2
y4t v

2
2µ

2R2
t (m

2
t̃1
−m2

t̃2
)2g(m2

t̃1
,m2

t̃2
)

+
3

16π2
y2tAtµ tanβf(Q2,m2

t̃1
,m2

t̃2
), (2.54)

∆M2
22 =

3

8π2
y4t v

2
2

(
ln

m2
t̃1
m2

t̃2

m4
t

+ 2AtRt ln
m2

t̃1

m2
t̃2

+A2
tR

2
t (m

2
t̃1
−m2

t̃2
)2g(m2

t̃1
,m2

t̃2
)

)

+
3

16π2
y2tAtµ cotβf(Q2,m2

t̃1
,m2

t̃2
), (2.55)

∆M2
12 = − 3

8π2
y4t v

2
2µRt

(
ln

m2
t̃1

m2
t̃2

+AtRt(m
2
t̃1
−m2

t̃2
)2g(m2

t̃1
,m2

t̃2
)

)

− 3

16π2
y2tAtµf(Q

2,m2
t̃1
,m2

t̃2
), (2.56)

with Rt = (At − µ cotβ)/(m2
t̃1
−m2

t̃2
), here we assume At and µ to be real for simplisity. The

loop functions f and g are given in Appendix B.3. These corrections give the following upper

bound on the SM-like Higgs boson mass,

m2
h ≤ M2

Z cos2 2β +
3

8π2
y4t v

2 sin2 β

(
ln

m2
t̃1
m2

t̃2

m4
t

+ 2
(At − µ cotβ)2

m2
t̃1
−m2

t̃2

ln
m2

t̃1

m2
t̃2

+
(At − µ cotβ)4

(m2
t̃1
−m2

t̃2
)2

(
2−

m2
t̃1
+m2

t̃2

m2
t̃1
−m2

t̃2

ln
m2

t̃1

m2
t̃2

))
. (2.57)

If we take the universal soft SUSY breaking stop masses,

m2
Q = m2

U = m2
q̃ , (2.58)

the stop masses are written down easily as follows,

m2
t̃1/2

∼ m2
q̃ +m2

t ∓mt(At − µ cotβ). (2.59)

Then, the upper bound Eq. (2.57) becomes

m2
h ! M2

Z cos2 2β +
3

4π2
y4t v

2 sin2 β

(
ln

m2
q̃

m2
t
+

(At − µ cotβ)2

m2
q̃

− 1

12

(At − µ cotβ)4

m4
q̃

)
. (2.60)

Therefore, the radiative corrections can give significant contributions to the mass of the SM-like

Higgs boson. Note that the logarithmic term is given by the first and second diagram from the

left in the Figure 2.4. As one can see, when the stop mass is heavy, this term generates large

correction. While, the last two terms are given by the first and second diagram from the right

in the Figure 2.4, where the bullet represents the At term interaction. A notable point is that

these contributions are maximized by

At − µ cotβ = ±
√
6mq̃. (2.61)

Then these contributions can be comparable to the logarithmic one.
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Chapter 2. An Introduction to Supersymmetry

2.3 Current status of the MSSM

In this section, we will review the current situation of the MSSM in terms of an observed 125GeV

Higgs boson and the constraints from the flavor violation and CP violation process.

2.3.1 125 GeV

On Wednesday, July 4 2012, the ATLAS and CMS collaborations at the LHC experiment de-

clared astonishing announcements that they had observed a new particle which is consistent

with the SM Higgs boson [1, 2]. A mass of the new particle had been around 126GeV. The

latest measured value of the Higgs boson mass is

mh = 125.36± 0.37 (stat.)± 0.18 (syst.)GeV (ATLAS) [43], (2.62)

mh = 125.03 +0.26
−0.27 (stat.) +0.13

−0.15 (syst.)GeV (CMS) [44], (2.63)

where correspond to integrated luminosities are 4.5 fb−1 at 7 TeV and 20.3 fb−1 at 8 TeV (AT-

LAS) and 5.1 fb−1 at 7 TeV and 19.7 fb−1 at 8 TeV (CMS). A näıve average of the ATLAS and

CMS results is 125.15± 0.25GeV [45].

As we discussed in the previous section, such a Higgs boson mass can not be realized in

the tree-level estimation of the MSSM. However, the one-loop radiative corrections can actually

raise the mass of the SM-like Higgs boson, and so it can be realized. Therefore, considering the

radiative corrections to the Higgs boson mass is important and essential in SUSY models.

Although the one-loop order radiative corrections can contribute significantly to the Higgs

boson mass, in fact two-loop order radiative corrections give a negative contribution to the one

and it is not a negligible contribution [46–51]. It is because that the QCD corrections first appear

in two-loop order diagrams, and they give opposite contributions to the SM-like Higgs boson

(cf. see the last term of second line of the two-loop RGE for λquartic Eq. (B.16)). Therefore,

in order to predict a reliable Higgs boson mass in SUSY models, one should take the two-loop

order radiative corrections to the Higgs boson mass into account.

It is known that there are three ways to achieve the 125GeV SM-like Higgs boson considering

the two-loop order radiative corrections. First way is the heavy stop scenario. When stop masses

are about 10TeV, the logarithmic corrections which are generated by the stop loop become an

appropriate magnitude. Second way is the large stop mixing scenario, namely the large At term

scenario Eq. (2.61). In this way, even when the stop masses are about 1TeV (and At ∼ 2.5TeV),

the radiative corrections become an appropriate magnitude [52]. Third way is an extended

models of the MSSM [9]. The appropriate extension models which can explain the observed

Higgs boson mass are singlet extension models, vector-like matter extended models [53, 54],

U(1) gauge extended models [55], etc. In the singlet extension models, an additional F -terms

can raise the tree-level mass of the Higgs boson#4. In the vector-like matter extended models,
#4If the additional CP-even singlet scalar is lighter than the Higgs boson, the singlet-doublet mixing can raise
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2.3 Current status of the MSSM

similarly to the stop loop, the vector-like particle loop gives the sizable radiative corrections to

the Higgs boson mass. In the U(1) gauge extended models, an additional D-terms can raise the

tree-level mass of the Higgs boson. Especially, we will focus on a singlet extension model in this

thesis.

In the following two sub sections, we will review the two-loop and higher-loop order analysis

of the Higgs boson mass in the MSSM. It is because that we have applied this two-loop order

analysis of the Higgs boson mass to a singlet extension model.

2.3.1.1 Two-loop level analysis of the Higgs boson mass

Inclusion of the two-loop level radiative corrections is important and indispensable in the calcu-

lation of the mass of the Higgs boson in supersymmetric models. In this section, we first review

the two-loop level calculation of the mass of the Higgs boson using the RGE [45, 57, 58]. Then,

we will show a behavior of the mass of the Higgs boson as a function of SUSY breaking scale

and tanβ in the MSSM.

Let us assume vEW - MSUSY and Mgaugino ∼ µ ∼
√

m2
0 = O(MSUSY) for simplicity, where

m2
0 represents dimension two soft SUSY breaking mass term of Higgs and sfermion, namely all

the sfermions, heavy Higgs doublet A, Higgsinos and gauginos are integrated out at the scale

MSUSY. This assumption of the mass spectrum represents the effective theory below SUSY

breaking scale MSUSY to be the SM. In this section, the SM-like (surviving) Higgs doublet Φh

and heavy Higgs doublet ΦH are defined as

(
Φh

ΦH

)
=

(
cosβ sinβ
− sinβ cosβ

)(
−εH∗

d
Hu

)
, (2.64)

where ε is the antisymmetric tensor ε12 = 1. In the component representation, this equation is

the same as follows,

Φh = cosβ

(
−(H−

1 )∗

(H0
1 )

∗

)
+ sinβ

(
H+

2
H0

2

)
, (2.65)

ΦH = − sinβ

(
−(H−

1 )∗

(H0
1 )

∗

)
+ cosβ

(
H+

2
H0

2

)
. (2.66)

The potential of the SM-like Higgs Φh below SUSY breaking scale can be given by

V (Φh) =
λquartic

2
(Φ†

hΦh − v2EW )2. (2.67)

This potential becomes as follows when it is expanded by vacuum fluctuation of the Higgs boson,

Φ0
h = vEW + 1√

2
(h+ iG0),

V (h) = 2v2EWλquartic

(
h√
2

)2

+ 2vEWλquartic

(
h√
2

)3

+
λquartic

2

(
h√
2

)4

. (2.68)

the mass of the Higgs boson [56].
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Namely the tree-level mass of the SM Higgs scalar h is

m2
h = 2v2EWλquartic. (2.69)

In order to derive the physical mass of the SM Higgs scalar h from SUSY breaking scale, we

connect the two scale, that is SUSY breaking and electroweak scale, using the two-loop RGE for

the Higgs quartic coupling. The full set of two-loop RGEs for the coupling constants of the SM

using MS regularization are presented in appendix B.1.1. Then, we impose mating conditions

of the couplings for the RGE at the SUSY breaking (high) and electroweak (weak) scale. Note

that we estimate the mass of the Higgs boson at two-loop level (next-to-leading order), we need

to include one-loop threshold corrections in these matching conditions.

Matching at high scale

Because supersymmetry ensures the relationship among the dimensionless coupling con-

stants, the Higgs quartic coupling must satisfy the following matching condition at SUSY break-

ing scale,

λquartic(MSUSY) = λLO(MSUSY) ≡
1

4

(
g2(MSUSY) + g′2(MSUSY)

)
cos2 2β. (2.70)

Now, in order to accurately calculate the mass of the Higgs boson, we need the matching

condition including next-to-leading order corrections. The matching condition including one-

loop level threshold corrections is given as follows [45,57]

λquartic(MSUSY) = λLO(MSUSY) +
1

(4π)2
λNLO(MSUSY), (2.71)

where

λNLO = λregNLO + λφNLO + λχ
1

NLO + λχ
2

NLO. (2.72)

The First term in the right hand λregNLO is a convention factor from MS to DR regularization

scheme, which gives a correction to the tree-level relation of Eq. (2.70) even in SUSY limit,

λregNLO = −
[
1

4
g′4 +

1

2
g′2g2 + (

3

4
− cos2 2β

6
)g4
]
. (2.73)

The other terms, λφNLO,λ
χ1

NLO,λ
χ2

NLO are computed using the DR regularization scheme.

The second term λφNLO is obtained when one integrate out the heavy Higgs multiplet and

sfermion at the matching scale. Neglecting all Yukawa coupling except the top quark yt, this

term is given as follows,

λφNLO = 3y2t

[
y2t +

1

2
(g2 − 1

3
g′2) cos 2β

]
ln

m2
Q

MSUSY
2 + 3y2t

[
y2t +

2

3
g′2 cos 2β

]
ln

m2
U

MSUSY
2

+3y4t

[
2X2

t F̃ (
mQ

mU
)− X4

t

6
G̃(

mQ

mU
)

]
+

3

4
y2tX

2
t

[
g′2H̃1(

mQ

mU
+ g2H̃2(

mQ

mU
))

]
cos 2β
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−y2t
4
X2

t cos
2 2β(g′2 + g2)H̃(

mQ

mU
)− 3

16
(g′2 + g2) sin2 4β

+
1

192

[
29g′4 + 42g′2g2 + 53g4 − 4 cos 4β(g′4 + 6g′2g2 + 7g4)

−9 cos 8β(g′2 + g2)2
]
ln

m2
A

MSUSY
2 +

cos2 2β

4

[
2g′4 ln

m2
E

MSUSY
2

+
8

3
g′4 ln

m2
U

MSUSY
2 +

2

3
g′4 ln

m2
D

MSUSY
2

+
1

3
(g′4 + 9g4) ln

m2
Q

MSUSY
2 + (g′4 + g4) ln

m2
L

MSUSY
2

]
, (2.74)

where loop functions F̃ , G̃, H̃, H̃1, H̃2 are defined in appendix B.3, and they are normalized such

that F̃ (1) = G̃(1) = H̃(1) = H̃1(1) = H̃2(1) = 1. The stop mixing parameter Xt is defined by

Xt =
At − µ cotβ
√
mQmU

. (2.75)

When the all masses of the heavy Higgs multiplet and sfermons are the same as SUSY breaking

scale, λφNLO becomes as follows

λφNLO = 6y4t

[
X2

t − X4
t

12

]
+

y2t
4
X2

t

(
g′2 + g2

)
(3− cos 2β) cos 2β

− 3

16
(g′2 + g2) sin2 4β. (2.76)

Here dominant term is the first one, and it reproduces the last two terms of the one-loop

corrections Eq. (2.60). As we discussed before, this y4t correction is maximized when Xt )
√
6

Eq. (2.61). Therefore, the largest threshold correction comes from the mixing of the stops,

λφNLO, max ) 18y4t . (2.77)

Note that the contribution to the mass of the Higgs boson from this threshold correction (2.77)

becomes smaller when SUSY breaking scale is higher. There are two reasons why the contri-

bution becomes small. First, the value of the top Yukawa coupling becomes smaller at high

scale by the RGE corrections. Second, the renormalization flow of λquartic has a focusing effect.

Namely, in order to obtain the 125 GeV Higgs boson, λquartic of the matching condition should

be small when SUSY breaking scale is high. Then the dominant contribution comes from not

threshold corrections but RGE corrections from SUSY breaking scale to weak scale.

The third one λχ
1

NLO is the modification term to the tree-level relation of Eq. (2.70) through

the Higgsino-gaugino loop,

λχ
1

NLO = −1

6
cos2 2β

[
2g4 ln

M2
2

MSUSY
2 + (g′4 + g4) ln

µ2

MSUSY
2

]
. (2.78)

The last term λχ
2

NLO is obtained as follows when one integrate out the Higgsinos and gauginos

at the matching scale,

λχ
2

NLO =
1

2
β̃λ ln

µ2

MSUSY
2 +

[
− 7

12
f̃1(r1)(g̃

4
1d + g̃41u)−

9

4
f̃2(r2)(g̃

4
2d + g̃42u)
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−3

2
f̃3(r1)g̃

2
1dg̃

2
1u − 7

2
f̃4(r2)g̃

2
2dg̃

2
2u − 8

3
f̃5(r1, r2)g̃1dg̃1ug̃2dg̃2u

−7

6
f̃6(r1, r2)(g̃

2
1dg̃

2
2d + g̃21ug̃

2
2u)−

1

6
f̃7(r1, r2)(g̃

2
1dg̃

2
2u + g̃21ug̃

2
2d)

−4

3
f̃8(r1, r2)(g̃1dg̃2u + g̃1ug̃2d)(g̃1dg̃2d + g̃1ug̃2u)

+
2

3
f̃(r1)g̃1dg̃1u

[
λLO − 2(g̃21d + g̃21u)

]
+ 2f̃(r2)g̃2dg̃2u

[
λLO − 2(g̃22d + g̃22u)

]

+
1

3
g̃(r1)λLO(g̃

2
1d + g̃21u) + g̃(r2)λLO(g̃

2
2d + g̃22u)

]
, (2.79)

with

g̃1d = g′ sinβ, g̃2d = g sinβ,

g̃1u = g′ cosβ, g̃2u = g cosβ, (2.80)

β̃λ = 2λLO(g̃
2
1d + g̃21u + 3g̃22d + 3g̃22u)− g̃41d − g̃41u − 5g̃42d − 5g̃42u

−4g̃1dg̃1ug̃2dg̃2u − 2(g̃21d + g̃22u)(g̃
2
1u + g̃22d), (2.81)

and r1 = M1/µ, r2 = M2/µ#5. The loop functions f̃i, f̃ , g̃ (i = 1, 2, . . . , 8) are defined in

appendix B.3, and they are normalized such that f̃(1) = g̃(1) = f̃1/2/3/4(1) = f̃5/6/7/8(1, 1) = 1.

When the all masses of the Higgsino and gauginos are the same as SUSY breaking scale, λχ
2

NLO

becomes as follows

λχ
2

NLO =
1

8
(1 + sin 2β)

[
−13

3
g′4 − 8g′2g2 − 17g4

+(
1

3
g′2 + g2)

(
(g′2 + g2) cos 4β + 2(−g′2 + g2) sin 2β

)]
. (2.82)

Matching at weak scale

In order to calculate the mass of the Higgs boson at the next-to-leading order, we should

include the one-loop corrections to the tree-level mass (2.69). The pole mass of the Higgs boson

and the top quark are related to λquartic(Q) and yt(Q) at the MS scale Q as

m2
h,pole = 2v2EW (λquartic(Q) + δλ(Q)), (2.83)

mt,pole =
yt(Q)vEW

1 + δt(Q)
, (2.84)

Here δλ is the full one-loop radiative corrections via SM particle loop derived by Sirlin and

Zucchini [59]#6. δt is the three-loop corrections O(α3
s) and the full one-loop radiative corrections

via the SM particle loop [61,62].

δλ(Q) = −λquarticGFM2
Z

8π2
√
2

(
ξF1(Q) + F0(Q) +

F−1(Q)

ξ

)
, (2.85)

#5In the split case, vEW ∼ Mgaugino ∼ µ " MSUSY, one must include this threshold correction λχ2

NLO in matching
condition at not the high scale but weak scale, as we discuss later.

#6Recently, the full two-loop corrections to the Higgs quartic coupling are evaluated [60].
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δt(Q) = δQCD
t (Q) + δEWt (Q), (2.86)

where GF is the Fermi constant from the muon decay, (
√
2GF )−1/2 = 246.21971± 0.00006GeV,

and ξ = m2
h/M

2
Z , MZ = 91.1876± 0.0021GeV. The loop function F0, F1 and F−1 are defined in

appendix B.3.

We have used the matching condition for the Higgs quartic coupling Eq. (2.83) at Q = mt

with

mt = (174.34± 0.37(stat)± 0.52(syst))GeV [63], (2.87)

αs(MZ) = 0.1184± 0.0007 [64]. (2.88)

The values of the SM couplings at Q = mt are computed by Ref. [58], using two-loop 5-flavor

MS RGE (as initial values they use the MS mass of the bottom quark mb(mb) = 4.18GeV and

the pole mass of the tau lepton mτ = 1.777GeV.). We use these values in matching condition

at the weak scale,

gs(Q = mt) = 1.1666 + 0.00314
αs(MZ)− 0.1184

0.0007
− 0.00046(

mt

GeV
− 173.35),

(2.89)

g(Q = mt) = 0.6483, (2.90)

g′(Q = mt) = 0.3587, (2.91)

yb(Q = mt) = 0.0156, (2.92)

yτ (Q = mt) = 0.0100. (2.93)

Then, the numerical values of the next-to-leading order threshold correction Eqs. (2.85, 2.86)

are

δλ(mt) ) 0.0075λquartic(mt), (2.94)

δQCD
t (mt) = − 4

3π
αs(mt)− 0.92α2

s(mt)− 2.64α3
3(mt), (2.95)

δt(mt) = δQCD
t (mt) + δEWt (mt) ) −0.0600 + 0.0013. (2.96)

We have numerically calculated the mass of the Higgs boson at two-loop level, using two-loop

SM RGEs (appendix B.1) from SUSY breaking scale to top quark mass scale and including one-

loop threshold corrections (Eqs. (3.62, 2.83)). In the Figure 2.5, we show the predicted mass of

the Higgs boson as a function of SUSY breaking scale and tanβ. The green regions represent the

appropriate Higgs mass 125GeV < mh < 126GeV. We take Mgaugino = µ =
√

m2
0 = MSUSY for

simplicity. The stop mixing parameter is fixed at At(MSUSY) = 0 (upper figure), At(MSUSY) =

MSUSY (middle figure) and Xt(MSUSY) =
√
6 (lower figure). Our results are consistent with the

Figure 2 in Ref [45].
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We find that at large tanβ region, an appropriate Higgs mass is achieved when SUSY

breaking scale is O(10)TeV. On the other hand, at small tanβ region, it is achieved when SUSY

breaking scale is O(105-10)GeV. We also show that the stop mixing contribution Eq. (2.77), that

is the dominant threshold correction, is effective at large tanβ region. For example, even when

the soft SUSY breaking scale is O(1)TeV, the maximal stop mixing can raise the Higgs boson

mass to be observed value (see the lower figure). However, we discussed before, this contribution

is not effective at small tanβ and high-scale SUSY breaking region.

Note that in split case, that is vEW ∼ Mgaugino ∼ µ - MSUSY ∼
√

m2
0, Higgsino and gaugino

also affect the RGEs of the quartic coupling of the Higgs boson at vEW < Q < MSUSY in addition

to the SM particles. In other words, the following terms is still active at vEW < Q < MSUSY,

L = − 1√
2
ΦT
h iσ2(−g̃2dσ

aW̃ a + g̃1dB̃)H̃d −
1√
2
Φ†
h(g̃2uσ

aW̃ a + g̃1uB̃)H̃u +H.c., (2.97)

where g̃1d/u and g̃2d/u are Yukawa-like gaugino couplings. Then, since supersymmetry is no

longer ensued at Q < MSUSY, the Yukawa-like gaugino couplings are different from the corre-

sponding gauge couplings#7. Namely, the relations Eq. (2.80) are not satisfied at Q < MSUSY.

Therefore, in the split case, we should take into account the RGE of not only the SM couplings

but also the Yukawa-like gaugino couplings at vEW < Q < MSUSY. The study of the split mass

spectrum case is written in Refs. [45, 57] in detail.

2.3.1.2 Higher-loop radiative corrections to the Higgs boson mass

Recently, the contributions of higher-loop correction to the mass of the Higgs mass have been

studied. As a result, one find that these new contributions are important when SUSY breaking

scale is not low. In this section, we briefly review the higher-loop corrections.

Figure 2.6 shows the mass of the Higgs boson as a function of SUSY breaking scale including

the higher-loop radiative corrections. We have numerically analyzed the mass of the Higgs boson

using the public code FeynHiggs2.10.0 [67–74]. We takemQ = mU = M3 = µ = MA = MSUSY,

tanβ = 50 and At = 0. In this analysis, the mass of the top quark is 174.34GeV [63], which

is the latest result. The green region is 125GeV < mh < 126GeV. The dotted line represents

the full one-loop result and the dashed line represents leading O(y2t g
2
s) plus subleading O(y4t )

two-loop result. Note that full one-loop, leading two-loop and subleading two-loop corrections

are calculated by Feynman-diagrammatic approach, and these contributions include not only the

logarithmic corrections but also finite corrections. The thick line represents the result of two-loop

plus higher-loop corrections, which is evaluated by a resummation of the leading and subleasing

#7We have also considered the corrections to the gaugino couplings from the corresponding gauge couplings
[65, 66] in the split mass spectrum case, in which sleptons are also light. We found that this corrections can be
as large as ∼ 10% in the parameter region in which the muon g− 2 anomaly can be solved, and that the gaugino
couplings can be measured from the production cross section of the right-handed selectrons at 1% accuracy at
ILC with

√
s = 500GeV.
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Figure 2.5: Two-loop level mass of the Higgs boson as a function of SUSY breaking scale and
tanβ. The result is evaluated by using two-loop SM RGEs from SUSY breaking scale to top
quark mass scale and including one-loop threshold corrections. The green regions represent the
appropriate Higgs mass 125GeV < mh < 126GeV. We take Mgaugino = µ =

√
m2

0 = MSUSY.
The stop mixing parameter is fixed at At(MSUSY) = 0 (upper figure), At(MSUSY) = MSUSY

(middle figure) and Xt(MSUSY) =
√
6 (lower figure).
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Figure 2.6: The mass of the Higgs boson as a function of SUSY breaking scale including the
higher-loop radiative corrections. We take mQ = mU = M3 = µ = MA = MSUSY, tanβ = 50, all
A = 0, and mt = 174.34GeV [63]. The dotted (dashed) line represents the full one-loop (leading
plus subleading two-loop) result. The thick line represents the result of two-loop plus higher-
loop corrections, which is evaluated by a resummation of the leading and subleasing logarithmic
corrections from the scalar top sector. The blue and red regions represent one sigma bands from
the theoretical uncertainty. The green region is 125GeV < mh < 126GeV.

logarithmic corrections from the scalar top sector. The resummation have been obtained from

an analysis of the RGE at two-loop level. The blue and red regions represent one sigma bands

from the theoretical uncertainty. The theoretical uncertainty is dominated by two contribution,

the experimental error on the mass of the top quark and unknown higher-order corrections. The

theoretical uncertainty from the experimental error on the mass of top quark is numerically

estimated [75], and it is obtained as follows,

δmmt
h ∼ δmexp

t ∼ 1GeV. (2.98)

On the other hand, the theoretical uncertainty from the unknown higher-order corrections is

estimated at δmhigher
h ∼ 3 - 5GeV in two-loop level calculations. However, as you can see

Figure 2.6, including the resummation of the leading and subleading logarithmic corrections,

this uncertainty dramatically decrease [74, 76] at

δmhigher
h ! 1GeV. (2.99)
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In this Figure, we show that the higher-order corrections by the resummation of the leading

and subleading logarithmic corrections can raise the mass of the Higgs boson. We also find that

when there is no help of At term, SUSY breaking scale is predicted MSUSY ∼ 5TeV in order to

obtain an appropriate mass of the Higgs boson (tanβ = 50 case).

2.3.2 SUSY FCNC / CP Problem

In general, the supersymmetry introduces the new flavor and CP violating sources through

the SUSY breaking sector. These new contributions seem to cause the flavor changing neutral

currents (FCNC) and electric dipole mordents (EDM) of quarks and leptons. On the other hand,

in the SM, the FCNC is suppressed by the GIM mechanism [77], and the EDM is suppressed

by the three (four) loop suppression and by the smallness of component of the CP violating

phase in the CKM matrix. Hence, the FCNC and EDM which are generated from the SUSY

breaking sector can give dominant contributions, and they can be probed by the low energy

flavor experiments and the EDM measurements. Nevertheless, the corresponding signals have

not been observed yet. The current experimental results set the constraint to the new flavor

and CP violating sources in the supersymmetric models.

In the MSSM, the new flavor violations are generated by the off-diagonal sfermion soft

SUSY breaking terms (m2
f̃
)ij (i .= j) and the off-diagonal A terms Aij (i .= j). If the A terms

are proportional to the Yukawa matrix, the main sources of the flavor violation are given by

the sfermion masses. Besides these off-diagonal components are expected the same order as the

diagonal components if there are no additional symmetries#8. Thus, the supersymmetry would

cause relatively large FCNC process.

One of the severe constraints comes from the branching ratio of µ → eγ. In the MSSM, when

we assume (m2
*̃L
)ij = (m2

*̃R
)ij = (m2

ν̃)ij and neglect the A term contributions, the branching ratio

of µ → eγ at the one-loop order is given as [65, 78],

Br(µ → eγ) ) 1

Γtot

αmµ

16

∣∣∣∣
(m2

*̃
)23(m2

*̃
)31

m4
µ̃

mτ

mµ
aµ, bino(neutralino) loop

+
(m2

*̃
)21

m2
µ̃

(
aµ, chargino loop + aµ, wino-Higgsino(neutralino) loop

+ aµ, bino-Higgsino(neutralino) loop

)∣∣∣∣
2

, (2.100)

with

aµ, chargino loop =
g2

16π2
m2

µ

M2µ
tanβfC

(
M2

2

m2
ν̃2

,
µ2

m2
ν̃2

)
, (2.101)

#8The large off-diagonal components cause the negative eigenvalue of sfermion mass square, which leads to the
charged/colored breaking vacuum. Thus, actually the off-diagonal components are expected O(0.1× (m2

f̃
)ii).
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aµ, wino-Higgsino(neutralino) loop = − g2

32π2
m2

µ

M2µ
tanβfN

(
M2

2

m2
µ̃

,
µ2

m2
µ̃

)
, (2.102)

aµ, bino-Higgsino(neutralino) loop = − g′2

32π2
m2

µ

M1µ
tanβfN

(
M2

1

m2
µ̃

,
µ2

m2
µ̃

)
, (2.103)

aµ, bino(neutralino) loop =
g′2

16π2
m2

µM1µ

m4
µ̃

tanβfN

(
m2

µ̃

M2
1

,
m2

µ̃

M2
1

)
, (2.104)

where (m2
*̃L
)22 ≡ m2

µ̃, the total decay width of muon Γtot = 2.99 × 10−19GeV, and the loop

functions fC and fN are defined in Appendix B.3. Note that the SUSY contributions are given

by the chargino-sneutrino loop and the neutralino-smuon loop. As one can see, these effects are

proportional to tan2 β. Naturally, these SUSY contributions are decoupled in the MSUSY → ∞.

The current bound on the µ → eγ had been given by MEG Collaboration, and the result

is Br(µ → eγ) < 5.7 × 10−13 (90 % CL) [79]. The Ref. [80] showed that when
√

m2
µ̃ = µ =

MSUSY, 3M1/(5g′2) = M2/g2 = MSUSY/g2s , tanβ = 50, (m2
*̃
)21/m2

µ̃ = 0.1 and (m2
*̃
)23/m2

µ̃ =

(m2
*̃
)31/m2

µ̃ = 0 are taken, the current bound implies that the soft SUSY breaking scale should

be heavier than 30TeV, MSUSY " 30TeV. Thus, this bound severely constrains the low scale

SUSY models if there are no additional symmetries or mechanisms. Note that this bound can

be relaxed if we take small tanβ.

One the other hand, in the MSSM the new CP violation sources are the off-diagonal sfermion

soft SUSY breaking masses Im((m2
f̃
)ij) (i .= j), A terms Im(Aij), the gaugino mass Im(Mgaugino)

and the Higgsino mass Im(µ). The physical CP violation source is relative phases of those.

Although the quark (lepton) EDM is generated by three (four) loop diagram in the SM, the EDM

is actually generated by one loop diagram in the SUSY models. Therefore, the supersymmetry

also would cause relatively large EDM.

One of the severe constraints to the CP violation phenomena comes from the electron EDM.

In the MSSM, when we take the same assumption as the above, the electron EDM at the one-loop

order is given as [65],

de
e

) − 1

2me

[
arg[M2µ]

(
ae, chargino loop + ae, wino-Higgsino(neutralino) loop

)

+ arg[M1µ]
(
ae, bino-Higgsino(neutralino) loop + ae, bino(neutralino) loop

) ]
, (2.105)

where we have replaced subscript µ with e in the Eqs. (2.101-2.104). Similarly to the µ → eγ

process, the SUSY contributions are given by the chargino-sneutrino loop and the neutralino-

smuon loop. These contributions are proportional to the CP violating relative phase of the

Higgsino and the gaugino masses and proportional to tanβ. When the all dimensional parameter

are the same values M1 = M2 = µ =
√
m2

ν̃1
=
√

m2
ẽ = MSUSY, and if we take the universal

CP violating phase of gaugino mass arg(M1µ) = arg(M2µ) = sinφ, the one loop order electron
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EDM is given as,

|de| ) 5g2 + g′2

2 · 48π · 4π
me

MSUSY
2 tanβ sinφ× 197× 10−16 [e cm],

= 2.9× 10−27

(
10TeV

MSUSY

)2(tanβ

50

)
sinφ [e cm]. (2.106)

The current bound on the electron EDM had been given by ACME Collaboration, and

the result is |de| < 8.7 × 10−29 [e cm] (90 % CL) [81]. The Ref. [80] showed that when√
m2

ẽ = µ = MSUSY, 3M1/(5g′2) = M2/g2 = MSUSY/g2s , tanβ = 50, (m2
*̃
)ij/m2

ẽ = 0 (i .= j)

and the maximal CP violating phase are taken, the current bound implies that the soft SUSY

breaking scale should be heavier than 100TeV, MSUSY " 100TeV. Although this bound can

be relaxed if one takes small tanβ, it also severely constrains the low scale SUSY models.

Another severe constraint comes from measurement of the CP violation in the kaon decay [82].

Under the CP transformation a neutral kaon K0 (ds̄) becomes an anti-neutral kaon K̄0 (sd̄),

and it is represented by convention,

CP|K0〉 = +|K̄0〉,

CP|K̄0〉 = +|K0〉. (2.107)

Hence, (|K0〉 + |K̄0〉)/
√
2 and (|K0〉 − |K̄0〉)/

√
2 states are the CP even and odd eigenstates.

Since the CP symmetry is slightly broken in nature, the mass eigenstates of the neutral kaons

become the following forms,

|K0
S〉 =

1√
2

[
e−iφK (1 + εK)|K0〉+ eiφK (1− εK)|K̄0〉

]
,

|K0
L〉 =

1√
2

[
e−iφK (1 + εK)|K0〉 − eiφK (1− εK)|K̄0〉

]
, (2.108)

where εK is an indirect CP violation parameter (CP violation in K0-K̄0 mixing) and φK is a

direct CP violation parameter (CP violation in the neutral kaon decay), and actually εK -
1, φK - 1. The indirect CP violation parameter εK is determined by an imaginary part of the

K0-K̄0 mixing [83,84],

εK = eiφε sinφε

(
− Im(MK0-K̄0)

∆MK
+ φK,0

)
, (2.109)

with

MK0-K̄0 = 〈K0|H4fermi
eff (d̄sd̄s)|K̄0〉,

tanφε =
2∆MK

∆ΓK
= (43.52± 0.05)◦, (2.110)

where φK,0 is the phase of the 0-isospin amplitude in kaon decay K0 → 2π, and

∆MK = ML −MS = (3.484± 0.006)× 10−12 MeV,
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∆ΓK = ΓS − ΓL = (7.2823± 0.0098)× 10−12 MeV. (2.111)

The second term of the Eq. (2.109) contributes an O(5%) correction to εK [84].

In the SM, the leading contribution of the four-fermion Hamiltonian H4fermi
eff (d̄sd̄s) comes

from one-loop box diagrams with the weak interactions and the imaginary component of the

CKM matrix. While in the MSSM, the leading SUSY contribution comes from one-loop gluino-

squark box diagrams with the strong interaction, and these contributions are easy to affect

estimation of εK . The main CP-violating source of this diagram is the off-diagonal sfermion soft

SUSY breaking masses Im[(m2
d̃L
)12(m2

d̃R
)12]. The detailed formulae of the SUSY contributions

to εK are given in Ref. [85].

The latest experimental value is |ε(exp)K | = (2.228± 0.011)× 10−3 [86] and the SM prediction

(including next-to-next-to-leading-order) is |ε(SM)
K | = (1.81± 0.28)× 10−3 [87]. These numerical

values set a conservative upper bound of the SUSY contributions, |ε(SUSY)
K | < 0.98× 10−3 [80].

The Ref. [80] showed that when
√

m2
d̃
= M3 = MSUSY, |(m2

d̃L
)ij/m2

d̃
| = |(m2

d̃R
)ij/m2

d̃
| = 0.1 (i .=

j) and the maximal CP violating phase are taken, the current bound implies that the soft SUSY

breaking scale should be heavier than 500TeV, MSUSY " 500TeV. If one imposes the SO(10)

relation at the GUT scale; (m2
d̃R
)ij = (m2

d̃L
)∗ij , the imaginary components of the soft SUSY

breaking squark masses vanish at the GUT scale and they are generated only through the RG

effects, and thus ε(SUSY)
K is suppressed. Then, the current bound implies MSUSY " 40TeV.

Therefore, when the soft SUSY breaking scale is low scale which is favored in terms of the

naturalness, too large FCNC and too large CP-violation are induced by the SUSY particles one-

loop radiative corrections. These difficulties are called “the SUSY FCNC problem” and “the

SUSY CP problem”.

2.4 Discussions

In previous section, we have reviewed the current situation of the MSSM in terms of an observed

125 GeV Higgs boson and the constraints from the flavor violation and CP violation process.

Actually, we have shown the following two points in the MSSM,

• In order to realize the observed Higgs boson mass, the masses of the stops have to be heavier

than 5 TeV or the stop mixing has to be maximized (or their compromised parameter

region).

• In order to avoid the severe constraints from the flavor violation and CP violation mea-

surements, the masses of the sleptons should be heavy and the parameter tanβ should be

not so large if there are no additional symmetries or mechanisms.

Therefore, in this chapter we näıvely conclude that one of the suitable solutions is the high-scale

supersymmetry, which has O(10-100) TeV soft SUSY breaking terms.
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Once we give up thought on the naturalness, such a high-scale supersymmetric model is very

attractive. First, as we discussed, the observed 125 GeV Higgs boson and the explanation of

the current bound on the flavor violation and CP violation process are simultaneous realized

naturally. Second, all the SUSY particles are out of the reach of the current LHC, thus it can

explain that there are no signals of the SUSY particles at the LHC experiments. Third, it can

naturally solve the cosmological gravitino problem [88]: although an unstable gravitino spoils

the big-bang nucleosynthesis, the heavy gravitino (typically heavier than 5-8 TeV) can avoid the

disaster#9. Fourth, this heavy SUSY breaking scale remains the gauge couplings unification at

the GUT scale (see Figure 2.2).

Furthermore, the future prospects of the flavor violation and the CP violation measurements

have the potential to probe the supersymmetry beyond the reach of the LHC by orders of

magnitude [89–96]. Therefore, we hope that these precision measurements can indirectly probe

the high-scale supersymmetry.

#9Here, we implicitly assumed that the soft SUSY breaking scale and the gravitino mass are the same scale.
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Chapter

3
Singlet Extension

In this chapter, in order to solve the µ problem of the supersymmetric min-

imal model, we first introduce a gauge singlet superfield and singlet extension

supersymmetric minimal model. Then, we should impose extra symmetries to

forbid unwanted terms of singlet superfield, which spoil the solution of the µ

problem. In general, these symmetries lead to the domain wall problem and

the tadpole problem. The nearly minimal supersymmetric standard model is

the one of the models which can solve the µ problem, the domain wall problem

and the tadpole problem simultaneously. Finally, we review the Lagrangian

and the Higgs sector of the nearly minimal supersymmetric standard model,

and we show that there is a sizable tree-level contribution to the Higgs boson

mass due to an extra F-term contribution to the Higgs quartic coupling.

3.1 µ Problem

In the MSSM, the potential minimization conditions Eqs. (2.41, 2.42) lead to the following

relationship,

M2
Z =

m2
2 −m2

1

cos 2β
−M2

A =
m2

2 −m2
1

cos 2β
−m2

1 −m2
2 − 2|µ|2, (3.1)

where µ is the supersymmetric mass of the Higgs multiplets. Especially, when tanβ , 1, this

equation can be expanded by tanβ and becomes

M2
Z = −2(m2

2 + |µ|2) + 2

tan2 β
(m2

1 −m2
2) +O(

1

tan4 β
). (3.2)

These relationships imply that since actuallyMZ ∼ O(100)GeV (electroweak scale),
√

m2
1,
√

m2
2

and µ should be näıvely at the electroweak scale, or
√

m2
1,
√
m2

2 and µ should be the same scale

to able to cancel out. In other words, the magnitude of µ have to be the soft SUSY breaking

scale MSUSY or be less than the scale.

One the other hand, the µ term is stable under the all orders in perturbation theory of

the effective Lagrangian due to the non-renormalization theorem [97], and the supersymmetry

provides a valid description that the scale of the µ parameter is as large as GUT scale or Planck

scale#1. If µ is at the Planck scale, it leads to MZ ∼ MPl (see Eq. (3.1)), and the appropriate
#1Another elegant possibility is µ = 0, which is respected the some symmetries (e.g. Peccei-Quinn symmetry).

However, nature have not chosen this values. It is because that the lightest chargino search by the LEP set lower
bound on chargino mass, |µ| > 103.5GeV [98].
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Table 3.1: The singlet superfield with their components for spin 0 and 1/2, and their represen-
tations for SU(3)c× SU(2)L× U(1)Y gauge group.

Chiral Supermultiplet Spin 0 Spin 1
2 SU(3)C SU(2)L U(1)Y

Singlet scalars-Singlino Ŝ S = (SR + iSI)/
√
2 S̃ 1 1 0

electroweak symmetry breaking can not occur. Therefore, µ has to know the soft SUSY breaking

scale in order to realize the nature, namely the Z boson mass is the electroweak scale. This

problem is called “µ problem” [8]:

Why µ - MGUT, MPl ?

Why does µ know MSUSY ? (3.3)

One of the natural solutions of the µ problem is the singlet extension models of the MSSM [9].

These models have the following superpotential,

W = λŜĤ2Ĥ1 + f [Ŝ] +WYukawa, (3.4)

where Ŝ is an additional gauge singlet superfield, λ is a dimensionless coupling constant, and f [Ŝ]

is the superpotential which does not depend on superfields of the MSSM at the renormalizable

level. The singlet superfield Ŝ with their components for spin 0 and 1/2 are shown in Table 3.1.

When supersymmetry is broken, singlet superfiled also receives the soft SUSY breaking mass or

A term. At this time, singlet scalar boson can naturally obtain a vev which is the order of the

soft SUSY breaking scale, 〈S〉 ∼ O(MSUSY), and so its vev gives the effective µ term for Higgs

multiplets,

µeff = λ〈S〉. (3.5)

Therefore, the µ problem can be solved by the singlet extension models of the MSSM #2.
#2One of the other solutions of the µ problem is provided by the Giudice and Masiero [99]. Let us consider the

following Kähler potential,

K = c1
1

MPl
X̂†Ĥ2Ĥ1 + c2Ĥ2Ĥ1 +H.c., (3.6)

where c1 and c2 are O(1) couplings and X̂ is an additional gauge singlet superfield. Note that the second term is
permitted in the supergravity theory. This Kähler potential can be rewritten to the following superpotential,

W =

(
c1

F †
X

MPl
+

(
c2 + c1

〈X∗〉
MPl

)
m3/2

)
Ĥ2Ĥ1, (3.7)

where m3/2 is the gravitino mass which is equivalent to a vev of the superpotential. Therefore one can obtain the
appropriate effective µ term,

µeff = c1
F †
X

MPl
+

(
c2 + c1

〈X∗〉
MPl

)
m3/2 ∼ O(MSUSY). (3.8)
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In the case that the additional superfiled for the MSSM is only one singlet superfield, the

superpotential f [Ŝ] can be written as

f [Ŝ] = ξF Ŝ +
1

2
µ′Ŝ2 +

1

3
κŜ3. (3.9)

Then, the soft SUSY breaking terms are

Vsoft = m2
1|H1|2 +m2|H2|2 +m2

S |S|2

+

(
λAλSH2H1 + ξSS +

1

2
m′2

SS
2 +

1

3
κAκS

3 +H.c.

)
, (3.10)

here
√

m2
1,
√

m2
2,
√

m2
S , Aλ, (ξS)1/3,

√
m′2

S and Aκ are the soft SUSY breaking terms, and their

magnitudes are typically MSUSY. The minimization equations of the singlet scalar potential#3

lead to the vev of the singlet scalar boson. In other words, the vev of singlet scalar 〈S〉 is a

solution the following equation,

〈S〉 = − ξS + ξFµ′ − λv1v2(Aλ + µ′)

m2
S +m′2

S + µ′2 + 2κξF + κAκ〈S〉+ 2κ2〈S〉2 + 3κµ′〈S〉+ λ2(v21 + v22)− 2λκv1v2

∼ − MSUSY
3 + ξFµ′

2MSUSY
2 + µ′2 + 2κξF + κMSUSY〈S〉+ 2κ2〈S〉2 + 3κµ′〈S〉

, (3.11)

here we have neglected the terms which includes the Higgs vev since v1, v2 - MSUSY. Because

the solution of this equation can not be estimated intuitively, let us consider the case of κ- 1.

The equation becomes

〈S〉 ∼ − MSUSY
3 + ξFµ′

2MSUSY
2 + µ′2 . (3.12)

When ξF ! MSUSY
2 and µ′ ! MSUSY, then the singlet scalar can obtain an appropriate vev,

〈S〉 ∼ O(MSUSY). However, since ξF and µ′ are the dimensional supersymmetric tadpole and

mass term, they have no reason that ξF ! MSUSY
2 and µ′ ! MSUSY, and their magnitudes are

typically the GUT scale or the Planck scale if there are no symmetry. Then, the singlet scalar

obtains an inadequate vev for the solution of the µ problem, 〈S〉 ∼ O(MPl).

These facts imply that in order to solve the µ problem we have to impose some symmetries,

which suppress or forbid some terms in the superpotential f [Ŝ]. For example, when some

symmetries forbid the dimensional supersymmetric tadpole ξF and mass term µ′, the singlet

scalar obtains the following vev [100],

〈S〉 ∼ 1

4κ

(
−Aκ +

√
A2

κ − 8m2
S

)
. (3.13)

Thus, the singlet scalar can obtain an appropriate vev, 〈S〉 ∼ O(MSUSY). In this manner,

there are various singlet extension models which are classified by the symmetries to control the
#3Strictly speaking, we should also solve a condition for an absolute minimum of the scalar potential.
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Table 3.2: The charge assignments under the Abelian symmetries which are considered in he
text. The index i denotes the generations.

Ĥ1 Ĥ2 Ŝ Q̂i
ˆ̄Ui

ˆ̄Di L̂i
ˆ̄Ei W

U(1)Y gauge -1/2 1/2 0 1/6 - 2/3 1/3 -1/2 1 0
Z3 ⊂ U(1)PQ 1 1 -2 -1 0 0 -1 0 0

U(1)R 0 0 2 1 1 1 1 1 2
ZR
5 ⊂ U(1)R′ 1 1 4 2 3 3 2 3 6 (1 (mod 5))

superpotential f [Ŝ]. Note that, when f [Ŝ] = 0, there are extra global U(1) symmetries in the

Lagrangian. This symmetry leads to an unwanted visible Nambu-Goldstone boson or a visible

axion, when the symmetry is spontaneously broken that is associated the electroweak symmetry

breaking.

What symmetry is useful for controlling the superpotential f [Ŝ]?

The imposition of extra global symmetries is unreasonable. Because when the singlet scalar

boson obtains vev, this symmetry is spontaneously broken and gives an unwanted visible Nambu-

Goldstone boson or a visible axion. On the other hands, discrete symmetries are suitable in

order to control the singlet superfield [101–103]. It is because that even if this symmetry is

spontaneously broken, all extra scalar bosons can have a heavy mass which is phenomenologically

acceptable. Furthermore, discrete R-symmetries could be more suitable. The R-symmetry can

be imposed in the supersymmetric models, and the R-symmetry breaking is related to the

supersymmetry breaking. Therefore, we are able to easily estimate and control terms in the

superpotential which are generated via the R-symmetry breaking#4.

3.2 Domain Wall Problem / Tadpole Problem

In order to control the singlet superfield, one can impose a discrete symmetry. However, the

spontaneous broken of the discrete symmetry, which is caused by the electroweak symmetry

breaking, leads to a disastrous cosmological domain walls. Furthermore, if we introduce the

explicit breaking terms of the discrete symmetry to avoid the domain walls, there are cases

where these terms lead to a disastrous tadpole. In this section, we briefly review these two

problems with the desecrate Z3 symmetry as an example.

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) [9, 105–111] is one of the

#4Moreover, such a desecrate R-symmetry should be embedded in a gauge symmetry. In other wards, the
discrete R-symmetry should be anomaly-free. Otherwise since the R-symmetry is anomalous broken, one can
not estimate the terms which break the classical R-symmetry. Therefore, the anomaly-free discrete R-symmetry
should be employed. Actually, the discrete ZR

5 R-symmetry can be anomaly-free if one introduces the extra
charged singlet superfields to the nearly minimal supersymmetric standard model [104].
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singlet extension models, and its matter content is the MSSM matter and an additional gauge

singlet superfield. In order to control the singlet superfield, the NMSSM is imposed the desecrate

Z3 symmetry. In this symmetry the superfields are transformed as

Φ̂i → ei
2πqi
3 Φ̂i, (3.14)

where the charge assignments qi is listed in Figure 3.2. Then, the NMSSM has the following

superpotential,

W = λŜĤ2Ĥ1 +
1

3
κŜ3 +WYukawa. (3.15)

Thus, the superpotential of the NMSSM does not have the dimensional supersymmetric tadpole

and mass term. The vev of the singlet scalar is given Eq. (3.13), and the µ problem is solved.

Note that without the singlet cubic term κŜ3, this superpotential becomes invariant under an

anomalous global U(1)PQ symmetry, which includes the desecrate Z3 symmetry as a subgroup.

When the scalar bosons obtain its vev, this symmetry is spontaneously broken and gives an

unwanted visible axion [112]. Thus, one needs this singlet cubic term as discussed previous

section.

Domain wall problem

This desecrate Z3 symmetry has to be spontaneously broken in order to give the appropriate

electroweak scale. The discrete symmetry is broken in different ways in different domains, which

are separated in a larger distance than the horizon size or correlation length. Eventually, these

different domains are divided by the domain walls (domain boundaries). If the discrete symmetry

is exact symmetry, these domain wall configurations are topologically stable.

When the domain walls had not disappeared in the early universe, they would produce

destruction of the observed homogeneity and isotropy of our universe. In addition, in the

radiation dominated era, the energy density contributions to the universe by the domain walls

can become comparable to the energy density of the universe, and so the existence of the domain

walls would change the evolution of the universe significantly. Therefore, one should avoid the

disastrous cosmological domain walls. This difficulty is called “domain wall problem”.

One of the solutions of the domain wall problem is an addition of tiny explicit discrete

symmetry breaking terms. These tiny explicit breaking terms remove the vacuum degeneracy

of the different domains. It can be interpreted in the decay of the domain walls, and eventually

the universe is covered by a unique vacuum.

Let us consider the NMSSM case, that is desecrate Z3 symmetry and its explicit breaking

terms. The additional dimension-5 operators, which are the Planck suppressed explicit Z3

symmetry breaking terms, are given as,

λ′
Ŝ4

MPl
, λ′

Ŝ2Ĥ1Ĥ2

MPl
, λ′

(Ĥ1Ĥ2)2

MPl
, (3.16)
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in the superpotential Eq. (3.15). Note that the additional dimension-5 operators in the Kähler

potential, (Ŝ+ Ŝ†)(ĤiĤ
†
i )/MPl and (Ŝ†Ĥ1Ĥ2+H.c.)/MPl, can be absorb into the last two terms

of the superpotential Eq. (3.16) by the redefinitions of the superfields. These explicit breaking

terms give the pressure to the domain walls. The strongest constrains come from the big-bang

nucleosynthesis. It is because that the decay of the domain walls produce the entropy, and it

destroys the great success of the nucleosynthesis. Thus, we require that the domain walls have

to decay before the onset of the nucleosynthesis, and it sets the following lower bound on the

parameter λ′ [11],

λ′ " 10−7. (3.17)

Tadpole problem

However, such a model, which is no longer protected by the exact discrete symmetry, permits

the renormalizable explicit discrete symmetry breaking terms in the superpotential at the loop

level. Especially, there is the quadratic divergence in the tadpole, which is generated via the loop

diagram including the explicit symmetry breaking non-renormalizable terms. The cancelation

of the quadratic divergences of the two-point functions remains even when the supersymmetry

is softly broken. However, in fact, when the supersymmetry is softly broken, the quadratic

divergences of the tadpole are not canceled out [113]. It is because that the coefficients of the

quadratic divergence have dimension one, and so they depend on the soft SUSY breaking masses

and A terms. Thus, the supersymmetry can not keep the cancelation of the quadratic tadpole

divergences due to the soft SUSY breaking terms. It means reintroduction of the hierarchy

problem. These facts lead too large tadpole of the singlet superfield at the loop level, and it

gives too large vev of the singlet scalar terms Eq. (3.11). Therefore, the singlet scalar no longer

solve the µ problem. This difficulty is called “tadpole problem”.

Let us consider the NMSSM which includes the explicit symmetry breaking terms Eq. (3.16).

The leading quadratic tadpole divergences appear from the two-loop diagrams. These diagrams

are shown in the Figure 4 in Ref. [11]. These contributions to the Lagrangian are

Ltad ) 1

(16π2)2
λ′

MPl

κ

3
(S + S∗)Λ2m2

S +
1

(16π2)2
λ′

MPl
λ(S + S∗)Λ2m2

S

+
1

(16π2)2
λ′

MPl

κ

3
(FS + F ∗

S)Λ
2Aκ +

1

(16π2)2
λ′

MPl
λ(FS + F ∗

S)Λ
2Aλ,

∼ λ′

(16π2)2

(κ
3
+ λ

)
MPlMSUSY

2S +
λ′

(16π2)2

(κ
3
+ λ

)
MPlMSUSYFS

+H.c., (3.18)

where we have taken the UV cut off Λ to be the Planck scale. The first term is regarded as

the tadpole in the soft SUSY breaking scalar potential, and the second term is regarded as the

tadpole in the (effective) superpotential. Thus the tadpole is generated by the loop diagram

which has the soft SUSY breaking effect.
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Including these tadpoles in the scalar potential, the vev of the singlet scalar becomes too

large (see Eq. (3.11)). The demand that the scale of the effective µ term should be the soft

SUSY breaking scale in terms of the solution of the µ problem sets the following upper bound

on the parameter λ′ [11],

λ′ ! 10−11. (3.19)

In this estimation, λ and κ are assumed O(1).

As one can see, two demands for the solution of the domain wall problem Eq. (3.17) and

for the solution of the tadpole problem Eq. (3.19) are inconsistent obviously. Therefore, the

NMSSM with Z3 symmetry, which is explicitly broken by the Planck suppressed operators, can

not solve the domain wall problem and tadpole problem simultaneously [11, 114–116]#5.

3.3 Solution of µ Problem, Domain Wall Problem and Tadpole
Problem

Refs. [13–16] have shown that the desecrate Z5 R-symmetry, which can control the superpotential

f [Ŝ] and the singlet scalar vev, can avoid the the domain wall problem and tadpole problem

simultaneously. So, we review this symmetry in the following.

When the superpotential f [Ŝ] = 0, apart from ordinary Lepton and Baryon number symme-

tries, the Lagrangian has two additional global continuous symmetries. That is the anomalous

Peccei-Quinn symmetry U(1)PQ and a non-anomalous R-symmetry U(1)R. The charge assign-

ments for these symmetries is given in Table. 3.2. Therefore, the Lagrangian is also invariant

under global U(1)R′ transformation, where charges of U(1)R′ symmetry are defined as

R′ = 3R+ PQ. (3.20)

In order to avoid an unwanted visible Nambu-Goldstone boson related with the spontaneous

global U(1)R′ symmetry breaking, let us introduce the discrete symmetry. Actually, the maximal

discrete sub-symmetries of U(1)R′ is discrete ZR
5 R-symmetry. In this symmetry the superfields

are transformed as

Φ̂i → ei
2πqi
5 Φ̂i,

W → ei
2π
5 W, (3.21)

where the charge assignments qi is listed in Figure 3.2.

When one imposes this discrete R-symmetry on both the Kähler potential and the superpo-

tential, the Lagrangian becomes the desired form up to a possible singlet tadpole term, which
#5Hamaguchi, Nakayama and Yokozaki have pointed out that the NMSSM in gauge mediation SUSY breaking

with vector-like exotic matters, which are charged under the hidden QCD, can solve the domain wall and tadpole
problem [117,118]. In this model, Z3 symmetry is anomalous, so that the domain wall problem can solve [119].
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is generated from the non-renormalizable sector. The discrete symmetry is imposed up to the

higher dimensional Kähler potential and superpotential completely. This is the different point

to the previous section. Then, the desecrate ZR
5 R-symmetry is spontaneously broken by R-

symmetry breaking sector W &R, whose ZR
5 charge is one. This R-symmetry breaking sector

generates the vev of the superpotential W0, which is required for small cosmological constant.

In addition, W0 is related with the gravitino mass as follows,

〈W &R〉 = W0 = m3/2M
2
Pl. (3.22)

The tadpole is generated by the following higher dimensional interaction with the R-symmetry

breaking sector,

K =
c1
M2

Pl

W &RŜ +H.c.,

W =
c2
M4

Pl

W 2
&RŜ, (3.23)

where c1 and c2 are dimensionless O(1) coupling constants. Because of an imposition of the

discrete R-symmetry, a harmful quadratic tadpole divergences does not appear from loop dia-

grams. Once the discrete R-symmetry is broken by W0, the tadpoles of the singlet fields are

induced,

Ltad ∼ MSUSY
3S + MSUSY

2FS +H.c., (3.24)

where we assume m3/2 ∼ MSUSY. As we will show next section explicitly, the singlet scalar

obtains the following appropriate vev (see Eq. (3.11)),

〈S〉 ∼ − tS
m2

S

∼ O(MSUSY), (3.25)

with

tS ∼ MSUSY
3. (3.26)

Therefore, the generated tadpole and effective µ term do not destabilize the hierarchy, and this

symmetry can naturally solve the µ problem and tadpole problem.

Furthermore, the existence of the tadpole term, which is effectively generated by the R-

symmetry breaking, breaks the discrete symmetry explicitly. Thus, this symmetry can naturally

avoid the domain wall problem [14].

Hence, the singlet extension model imposed the desecrate ZR
5 R-symmetry can naturally

solve three problems simultaneously: the µ problem, the domain wall problem and the tadpole

problem. This singlet extension model is called “nearly minimal supersymmetric standard model

(nMSSM) [13–15].

In addition, the desecrate ZR
5 R-symmetry prohibits the dangerous D ≤ 5 Baryon or Lepton

violating operators like Q̂Q̂Q̂L̂ and ˆ̄U ˆ̄U ˆ̄D ˆ̄E in the nMSSM matter contents [14]. Thus, the

constraint of the proton decay is satisfied.

Next section, we review the Lagrangian and the Higgs sector of the nMSSM.
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3.4 Nearly MSSM

In this section, we review the Lagrangian, the Higgs sector and the Landau pole constraint of

the nearly minimal supersymmetric standard model [13–15].

3.4.1 Lagrangian

In the nMSSM, the superpotential is given as

W = λŜĤ2Ĥ1 +
m2

12
λ Ŝ +WYukawa , (3.27)

where WYukawa is defined as Eq. (2.29). The soft SUSY breaking terms are given as

Vsoft = m2
1|H1|2 +m2

2|H2|2 +m2
S |S|2 + (λAλH2H1S + tSS +H.c.)

+Vsoft gaugino + Vsoft Yukawa , (3.28)

where Vsoft gaugino and Vsoft Yukawa are defined as Eqs. (2.31, 2.32). As discussed previous section,

although the terms m2
12 and tS are forbidden by the discrete ZR

5 R-symmetry, when the R-

symmetry is broken they are generated. Let us parameterize these tadpole terms as follows,

m2
12 = λcF MSUSY

2 , (3.29)

tS = cS MSUSY
3 , (3.30)

where MSUSY denotes the SUSY breaking scale. Here, cF and cS are O(1) complex constants

and then m2
12 and tS become O(MSUSY

2) and O(MSUSY
3) respectively#6. With these values, S

has a vacuum expectation value 〈S〉 ∼ −tS/m2
S ∼ O(MSUSY) as we will discuss next subsection.

Thus the generated effective µ term is O(MSUSY) and the µ problem can be solved.

Note that this model is imposed the desecrate ZR
5 R-symmetry, which is broken by the R-

symmetry breaking terms in the hidden sector. Then, as a low-scale (TeV scale) effective theory,

the nMSSM Lagrangian Eqs. (3.27, 3.28) are generated. It is known that, however, there are

other models which generates nMSSM Lagrangian Eqs. (3.27, 3.28) as a low-scale (TeV scale)

effective theory. An example is Peccei-Quinn invariant NMSSM [120, 121]. The Lagrangian of

this model is given as,

L =

∫
d2θλŜĤ2Ĥ1 +

∫
d4θ

κ

MPl
(X̂†2Ŝ +H.c.), (3.31)

where X̂ is an axion superfield. This Lagrangian is controlled by U(1) Peccei-Quinn symmetry

for (Ĥ1, Ĥ2, Ŝ, X̂) carrying the charges as (1, 1, -2, -1). The vev of the scalar component of

X̂ becomes the axion decay constant fa ∼ 1010-1012 GeV, and the vev of the auxiliary field FX

is zero. Then, similarly to the Giudice Masiero mechanism, by the supergravity interaction the
#6Although the trilinear κS3 term is also generated, it is highly suppressed by Planck scale.
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Chapter 3. Singlet Extension

holomorphic term in the Kähler potential can be rewritten to the superpotential. As a result,

the (TeV scale) effective superpotential is given as

Weff = λŜĤ2Ĥ1 + κm3/2
f2
a

MPl
Ŝ. (3.32)

As one can see, the tadpole is generated and its dimensional coupling is actuary O(MSUSY
2).

Therefore, this model can solve not only µ problem, the tadpole problem but also the strong

CP problem, and effective Lagrangian can be regarded as the nMSSM.

Other example is secluded U(1)′-extended minimal supersymmetric standard model (sMSSM)

[122]. The sMSSM contains a U(1)′ gauge symmetry, Z ′ gauge boson, and four additional sin-

glets. The superpotential is

W = λŜĤ2Ĥ1 + λsŜ1Ŝ2Ŝ3 + µ1ŜŜ1 + µ2ŜŜ2, (3.33)

and this additional gauge symmetry is motivated by the GUT. The U(1)′ charges satisfy qH1 +

qH2 + qS = 0 and −qS = qS1 = qS2 = −1/2qS3 . If the dimensional couplings µi is controlled by

some mechanisms, and three singlet Ŝi masses are heavier than soft SUSY breaking scale, the

effective Lagrangian can be regarded as the nMSSM,

Weff = λŜĤ2Ĥ1 + (µ1〈S1〉+ µ2〈S2〉)Ŝ. (3.34)

Other example is Fat Higgs model [123]. In the Fat Higgs model, the Higgs doublet fields are

composite bound states of fundamental fields, which couple to a extra supersymmetric strong

SU(2) gauge. This gauge theory is UV complete and calculable. Below a scale ΛH , although

the strong SU(2) gauge theory becomes non-perturbative, the theory can be described by the

composite fields and their perturbative couplings. As a low energy effective Lagrangian, the

following superpotential is dynamically generated,

Weff = λN̂(Ĥ1Ĥ2 − v20), (3.35)

where N̂ is a SU(2)L singlet composite field and Ĥ1, Ĥ2 are SU(2)L doublet composite fields.

The coupling λ is generated at λ(ΛH) ∼ 4π, and it decreases towards the low energy scale due

to the RGEs. v20 is given by v20 ∼ mΛH/(4π)2, where m is a fundamental parameter in the UV

theory. The tadpole of N̂ is generated and N obtains a its suitable vev. Therefore, Fat Higgs

model also can solve µ problem, and the effective Lagrangian can be regarded as the nMSSM.

One of the features of this model is that the coupling λ is typically O(1).

The important thing is that the phenomenology of the nMSSM is almost independent of the

symmetry of a UV theory (i.e. the desecrate ZR
5 symmetry, the U(1) Peccei-Quinn symmetry, the

secluded U(1)′ gauge symmetry, the strong SU(2) gauge symmetry, etc.). Therefore, we consider

only the nMSSM Lagrangian Eqs. (3.27, 3.28) as a low-scale (TeV scale) effective theory in the

next two chapters. We will discuss the phenomenology of the nMSSM, especially the dark matter

and the baryon asymmetry of the universe.
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3.4.2 Higgs Sector

In the nMSSM, a Higgs potential is given as,

V0 = m2
1|H1|2 +m2

2|H2|2 +m2
S |S|2 + λ2|H2H1|2 + λ2|S|2(|H1|2 + |H2|2)

+
ḡ2

8
(|H2|2 − |H1|2)2 +

g2

2
|H†

1H2|2

+(λAλSH2H1 + tSS +m2
12H2H1 +H.c.), (3.36)

where ḡ2 is defined as ḡ2 = g′2 + g2 where g′ (g) is the U(1)Y (SU(2)) gauge coupling constant.

In this potential, there are seven independent parameters,

λ, m2
1, m2

2, m2
S , Aλ, m2

12, tS . (3.37)

Thanks to SU(2) rotation, we can take 〈H−
1 〉 = 0 at elsewhere. Thus, when one takes H−

1 = 0,

the Higgs potential can be expanded as follows

V0 = m2
1|H0

1 |2 +m2
2(|H0

2 |2 + |H+
2 |2) +m2

S |S|2 + λ2|H0
1 |2|H0

2 |2 + λ2|S|2(|H0
1 |2 + |H0

2 |2 + |H+
2 |2)

+
ḡ2

8
(|H0

1 |4 + |H0
2 |4 + |H+

2 |4 − 2|H0
1 |2|H0

2 |2 − 2|H0
1 |2|H+

2 |2 + 2|H0
2 |2|H+

2 |2)

+
g2

2
|H0

1 |2|H+
2 |2 + (−λAλSH

0
1H

0
2 + tSS −m2

12H
0
1H

0
2 +H.c.). (3.38)

Next, the vacuum fluctuations of the scalar field are defined as

H0
1 = v1 +

1√
2
(H1R + iH1I),

H0
2 = v2 +

1√
2
(H2R + iH2I),

S = s+
1√
2
(SR + iSI), (3.39)

here we can choose 〈H0
2 〉 = v2 to be real and positive by phase redefinition of H2. The mini-

mization conditions for electroweak symmetry breaking give the following conditions,

m2
1 = (m2

12 + λAλs)
∗ v2
v1

− ḡ2

4
(|v1|2 − v22)− |λ|2(v22 + |s|2), (3.40)

m2
2 = (m2

12 + λAλs)
∗ v

∗
1

v2
+

ḡ2

4
(|v1|2 − v22)− |λ|2(|v1|2 + |s|2), (3.41)

m2
S = λ∗A∗

λ
v∗1v2
s

− t∗S
s

− |λ|2(|v1|2 + v22). (3.42)

By the phase redefinition of H2H1, one can choose (m2
12+λAλs) to be real and positive, and so

it leads v1 is real form Eq. (3.41). Similarly to the MSSM, let us define the parameter tanβ,

tanβ =
v2
v1

, vEW =
√

v21 + v22 = 174.1GeV. (3.43)
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In addition, the Eq. (3.42) leads to the vev of the singlet scalar,

s = −
t∗S − λ∗A∗

λv1v2
m2

S + |λ|2v2EW

. (3.44)

Here, we can choose s and (t∗S − λ∗A∗
λv1v2) to be real by phase redefinition of S. At the this

time, the Higgs potential Eq. (3.36) can obtain an e effective µ term and a effective Bµ term

(see Eq. (2.35)),

µeff = λs, (3.45)

(Bµ)eff = 2(m2
12 + λAλs). (3.46)

Since m2
12 ) O(MSUSY

2) and tS ) O(MSUSY
3), Eq. (3.44) leads to s ) O(MSUSY). Therefore,

µeff ) O(MSUSY) and (Bµ)eff ) O(MSUSY
2) are realized.

Note that since this model has four complex parameter Eq. (3.37) and one can carry out

three phase redefinition, one physical CP-violating phase remains in the Higgs sector. If one

take Aλ to be zero, there is no CP-violating phase in the Higgs sector. But relative phase

with gaugino masses and other A terms, arg(m2
12t

∗
SMgaugino) and arg(m2

12t
∗
SAi), keep being the

physical CP-violating phase [124].

Mass of Scalar bosons

We assume that λ, tS , m2
12 and Aλ are real in the following for simplicity. Then, a classifica-

tion according to the CP-even or CP-odd for the scalar boson is justified. The singlet superfiled

consists of singlet CP-even and CP-odd scalar components and singlet Majorana spinor compo-

nent. Therefore, the nMSSM has 3 × 3 CP-even mass matrix, 3 × 3 CP-odd mass matrix and

5× 5 neutralino mass matrix, which are points of difference in the MSSM.

Now, one can obtain the following mass matrix for the CP-even and CP-odd Higgs bosons

from the Higgs potential Eq. (3.38),

− LCP−even/odd =
1

2

(
H1RH2RSR

)



M2

R11 M2
R12 M2

R13
M2

R12 M2
R22 M2

R13
M2

R13 M2
R23 M2

R33








H1R

H2R

SR





+
1

2

(
H1IH2ISI

)



M2

I11 M2
I12 M2

I13
M2

I12 M2
I22 M2

I13
M2

I13 M2
I23 M2

I33








H1I

H2I

SI



 , (3.47)

with

M2
R11 = M2

A sin2 β +M2
Z cos2 β, (3.48)

M2
R22 = M2

A cos2 β +M2
Z sin2 β, (3.49)

M2
R33 = −1

s
(tS − λAλv

2
EW sinβ cosβ) = m2

S + λ2v2EW , (3.50)
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M2
R12 = −1

2
(M2

A +M2
Z − 2λ2v2EW ) sin 2β, (3.51)

M2
R13 = vEW (2λ2s cosβ − λAλ sinβ), (3.52)

M2
R23 = vEW (2λ2s sinβ − λAλ cosβ), (3.53)

M2
I11 = M2

A sin2 β, (3.54)

M2
I22 = M2

A cos2 β, (3.55)

M2
I33 = −1

s
(tS − λAλv

2
EW sinβ cosβ) = m2

S + λ2v2EW , (3.56)

M2
I12 =

1

2
M2

A sin 2β, (3.57)

M2
I13 = λAλvEW sinβ, (3.58)

M2
I23 = λAλvEW cosβ, (3.59)

where we have defined the following MA,

M2
A = m2

1 +m2
2 + 2µ2

eff + λ2v2EW =
(Bµ)eff
sin 2β

. (3.60)

The determinant of the CP-odd mass matrix is zero, and so the Nambu-Goldstone boson apperas.

At the large MSUSY case, these mass matrices give

m2
H ∼ M2

A, m2
HS ∼ m2

S ,

m2
h ∼ M2

Z cos2 2β + λ2v2EW

(
1−

A2
λ

m2
S

)
sin2 2β,

m2
A ∼ M2

A, m2
AS ∼ m2

S , (3.61)

where HS (AS) is the heavy CP-even (-odd) scalar boson, whose component is mainly S, and

h is the SM-like Higgs boson. Note that the mass of the SM-like Higgs boson can become large

at a low tanβ region in comparison with the MSSM. It is given by an additional F-terms as we

have discussed in Section 2.3.1.

However, the radiative contributions to the Higgs boson mass are still important. In order

to estimate the mass of the SM-like Higgs boson including two-loop radiative corrections, we

have extended the two-loop level calculation using the RGE of the MSSM, which is given in

Section 2.3.1.1. In the nMSSM, since the SM-like Higgs boson receives an extra F-term con-

tribution to the Higgs quartic coupling λquartic, there is a sizable tree-level contribution to the

Higgs boson mass. When integrating out heavy SUSY particles, the matching condition at high

scale from the SUSY to the SM is shifted by [57]

λquartic(MSUSY) = λLO(MSUSY) + δλquartic(MSUSY) +
1

(4π)2
λNLO(MSUSY), (3.62)

with

δλquartic )
λ2

2

m2
S −A2

λ

m2
S

sin2 2β , (3.63)
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where λLO is given by Eq. (2.70), and λNLO is given by Eq. (2.72). Therefore, at large λ and

small tanβ can give an additional sizable contribution to the Higgs boson mass. Note that this

extra contribution can be controlled by Aλ. We have not considered extra loop corrections in

λNLO term, which depend on the coupling λ. When λ is larger than 1, these extra radiative

corrections become significantly contributions to the SM-like Higgs boson mass [125]. In this

thesis, we have taken λ ! 0.8 due to consideration to a Landau pole constraint below the GUT

scale#7, and thus these extra radiative corrections do not give the significantly contributions.

Next, one can obtain the following mass matrix for the charged Higgs boson from the Higgs

potential Eq. (3.38),

− Lcharged =

(
(Bµ)eff

2
+ (M2

W − λ2v2EW )
sin 2β

2

)(
H−

1 H+∗
2

)(tanβ 1
1 cotβ

)(
H−∗

1
H+

2

)
,

=

(
(Bµ)eff
sin 2β

+M2
W − λ2v2EW

)(
H+∗NG+∗)

(
1 0
0 0

)(
H+

NG+

)
, (3.64)

where

H+ = − sinβH−∗
1 − cosβH+

2 ,

NG+ = − cosβH−∗
1 + sinβH+

2 . (3.65)

Thus, the mass of the charged Higgs boson is given as,

m2
H± = M2

A +M2
W − λ2v2EW . (3.66)

Note that the mass of the charged Higgs boson is lighter than the one of the MSSM by λ2v2EW

term (see Eq. (2.47)). Thus, the theoretical condition M2
A +M2

W > λ2v2EW is needed to avoid a

vev of the charged Higgs scalar field in the nMSSM.

3.4.3 Landau Pole Constraint

A large λ coupling can raise the mass of the Higgs boson at the tree level. However, when

the λ coupling is too large at low energy, it causes a Landau pole (or Landau singularity)

at a higher energy scale. The Landau pole means that some dimensionless running coupling

constants become non-perturbative couplings at the finite energy scale, and so a perturbative

approximation is broken down by the strong (non-perturbative) couplings. In the nMSSM, a

one-loop RGE for λ is given as

dλ

dlnQ
=

1

(4π)2
λ
(
4λ2 + 3y2t + 3y2b + y2τ − g′2 − 3g2

)
. (3.67)

This RGE implies that an absolute value of λ monotonically increases with energy scale Q, and

so λ may eventually become non-perturbative. Let us demand that the theory is perturbative (λ
#7The detail of the Landau pole is written in the next subsection.
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Figure 3.1: The upper bound on the coupling λ (λmax) under the condition of the no Landau
pole up to the GUT scale using two-loop RGEs. The horizontal axis is tanβ. λmax is the values
at Q = MSUSY. We take MSUSY = 1TeV (dotted line), 10TeV (dashed line) and 100TeV (solid
line).

and other dimensionless couplings do not blow up) below the GUT scale, MGUT ) 2×1016GeV.

Then, one can obtain the upper bound on λ at the soft SUSY breaking scale.

Figure 3.1 shows the upper bound on the coupling λ (λmax) under the condition of the no Lan-

dau pole up to the GUT scale as a function of tanβ. Here, we have demanded g2i (MGUT)/4π < 1,

where gi denotes all dimensionless couplings. Here we have used two-loop RGEs for calculations

of the running couplings. The two-loop level RGEs for all couplings are summarized in Appendix

B.1.2. λmax is the values at Q = MSUSY, where we have used the SM RGEs below the soft SUSY

breaking scale MSUSY and the matching condition at electroweak scale (see Section 2.3.1.1). We

take MSUSY = 1TeV (dotted line), 10TeV (dashed line) and 100TeV (solid line).

We find that the λ coupling should be smaller than 0.75-0.85, which depends on the soft

SUSY breaking scale. Note that this bound can be alleviated by introducing an additional

gauge symmetry or extra particles [126]. It is because that the contributions of additional gauge

coupling to the RGE for λ is negative or the ordinary gauge couplings g′, g become large at the

high energy scale due to the extra matters, and so its contributions to the RGE for λ is negative

(see Eq. (3.67)).

At low tanβ region, tanβ ! 1.5, the upper bound on λ decreases drastically. It is because

that the top Yukawa coupling becomes large values at the low energy scale, yt = mt/(vEW sinβ),

- 47 -



Chapter 3. Singlet Extension

then it causes the Landau pole of top Yukawa coupling at the high energy scale. While, at large

tanβ region, tanβ " 65, the upper bound on λ also decreases drastically. It is caused by

the bottom/tau Yukawa couplings, which become large values at the low energy scale, yb/τ =

mb/τ/(vEW cosβ).
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Chapter

4
Resonant Singlino Dark Matter

This chapter is based on the work by the author [17]. We consider a singlino

dark matter scenario in the nearly minimal supersymmetric standard model.

We find that with high-scale supersymmetry breaking the singlino can obtain

a sizable radiative correction to the mass, which opens a window for the dark

matter scenario with resonant annihilation via the exchange of the Higgs boson.

We show that the current dark matter relic abundance and the Higgs boson

mass can be explained simultaneously. This scenario can be probed by the

search of the Higgs invisible decay and the direct direction of the dark matter.

We have shown that the nMSSM can solve the µ problem, the domain wall problem and the

tadpole problem simultaneously in the previous chapter. Next two chapter, we will consider the

phenomenology of the nMSSM, which are the based on the works by the author [17, 18]. As

a results, both the two studies conclude that the nMSSM with a high-scale SUSY breaking is

valid.

4.1 Dark matter in the nMSSM

In this chapter, we focus on the dark matter phenomenology in the nMSSM. This chapter is

based on the work by the author [17]. First, we briefly review a situation of the dark matter in

the nMSSM, and we also explain why we have considered it.

Recent various cosmological observations have established the ΛCDM cosmological model

and the relic abundance of the cold dark matter is measured accurately byWMAP and Planck [127,

128]. In the nMSSM, as discuss later, the singlino, which is the fermionic component of the extra

gauge singlet superfield, can be a candidate of the dark matter [15,129–133]. In fact, the singlino

mass and its couplings with SM particles are suppressed by the soft SUSY breaking scale in the

nMSSM, and such a dark matter leads to the overabundance in the universe. Therefore, the

singlino dark matter scenario seems to be incompatible with relatively high-scale (TeV scale)

supersymmetry breaking, which is inferred from the measured SM Higgs boson mass [134, 135]

and the null signals of the sparticle searches at the LHC [136,137].

However, if one-loop corrections to the singlino mass are taken into account, this situation

will change. As will be shown later, similar to the mass of the SM Higgs boson in the SUSY
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models, the singlino can obtain a sizable mass, which opens a window for a resonant dark matter

scenario via the s-channel annihilation with the exchange of the SM Higgs boson.

Let us consider the helicity of the annihilation process of the neutralino dark matter to

fermions χχ→ f̄f . Since neutralinos are Majorana fermions, the helicity of the two neutralinos

are opposite to each other in the center-of-momentum frame when the case that neutralino pair

annihilates via the CP-even scalar boson s-channel exchange. While the helicity of the final state

two fermions are facing in the same direction. Therefore this process needs either the p-wave

(L = 1) suppression or chirality suppression. Since the annihilation rate of the singlino via the

SM Higgs boson s-channel exchange is also p-wave suppressed, one needs a relatively large value

of SM Higgs boson-singlino coupling compared with the scalar dark matter in the Higgs portal

model [138]. This fact implies that the singlino dark matter could be probed more easily than

the scalar one.

Now, let us focus on the phenomenology of the singlino in the nMSSM. The singlino partic-

ipates in a member of usual neutralino as a new gauge eigenstate. At the tree level, the 5 × 5

neutralino mass matrix in the basis XT = (B̃, W̃ 0, H̃0
1 , H̃

0
2 , S̃) is given by

L = −1

2
XTMχ0

treeX +H.c., (4.1)

Mχ0

tree =





M1 0 −g′v1√
2

g′v2√
2

0

0 M2
gv1√
2

−gv2√
2

0

−g′v1√
2

gv1√
2

0 −µeff −λv2
g′v2√

2
−gv2√

2
−µeff 0 −λv1

0 0 −λv2 −λv1 0




, (4.2)

where S̃ is the fermionic component of Ŝ. Since a determinant of this mass matrix is nonzero, all

(five) neutralinos obtain a nonzero mass. If one impose additional matter parity PM , the lightest

neutralino becomes stable and can be a candidate for the dark matter in the universe#1. The

one of the origin of the matter parity PM is a remnant discrete subgroup of the local U(1)B−L

symmetry. This U(1)B−L symmetry is broken above the electroweak scale. The neutralino mass

matrix can be diagonalized by a unitary matrix N ,

N∗Mχ0

treeM
χ0,†
treeN

T = diag(m2
χ0
1
,m2

χ0
2
,m2

χ0
3
,m2

χ0
4
,m2

χ0
5
), (4.3)

here we call χ0
1 the lightest neutralino.

#1The desecrate ZR
5 R-symmetry does not contain the R parity Eq. (2.21). In fact, although the R parity is

conserved accidentally in the renormalizable teams, it is broken in the non-renormalizable terms: ŜŜL̂Ĥ2, ŜL̂L̂ ˆ̄E

and ŜL̂Q̂ ˆ̄D, which can not lead to an observable proton decay. Considering the effects of such as R parity breaking
non-renormalizable (Planck suppressed) operators, the life time of the lightest neutralino is longer than the age
of the universe [14]. However, there are experimental bound on the lifetime of the dark matter from the cosmic
ray searches, which is longer enough than the age of the universe. It implies that the life time of the dark matter
which is comparable to the age of universe have been excluded. Therefore, we should impose the additional matter
parity or some symmetries which do not forbid the tadpole.
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From the tree-level calculations, in a very well approximation the mass of the lightest neu-

tralino is given as [139],

|mtree
χ0
1
| = Min

[
1

2

∣∣∣B −
√

B2 − 4C
∣∣∣ ,

1

2

∣∣∣B +
√
B2 − 4C

∣∣∣
]
, (4.4)

where

B =
M1M2

M1 +M2
+

(
ν2

µ2
eff + ν2

− M2
Z

µ2
eff + ν2

M̃

M1 +M2

)
µeff sin 2β − M2

Zν
2

(M1 +M2)(µ2
eff + ν2)

, (4.5)

C =
ν2

µ2
eff + ν2

(
M1M2

M1 +M2
µeff sin 2β − M̃

M1 +M2
M2

Z

)
, (4.6)

with ν2 = λ2v2EW and M̃ = M1 cos2 θW + M2 sin2 θW . When the case MZ - µeff and

MZ - Mgaugino, a mass-eigenstate neutralino whose component is mainly S̃ becomes the lightest

neutralino. We denote s̃ as the mass-eigenstate neutralino whose component is mainly S̃. Note

that, here and in the following, we call s̃ as a “singlino” in order to make understanding easy.

Then, the mass of the singlino ms̃ is evaluated by expansions of MZ/µeff and MZ/Mgaugino,

|mtree
χ0
1
| = mtree

s̃ ) µeffν2

µ2
eff + ν2

sin 2β (4.7)

∼ λ2
v2EW

MSUSY
sin 2β , (4.8)

where we denotes the typical soft SUSY breaking scale by MSUSY and we use the fact that a value

of µeff become O(MSUSY) Eq. (3.45). As you can see, the mass of the singlino has suppressions

by soft SUSY breaking scale and by sin 2β. Therefore, when the soft SUSY breaking scale is

relatively high (MSUSY " 1TeV) as suggested by the LHC experiments [134–137], the singlino

becomes the LSP and it can be a candidate of the dark matter. Furthermore, by the tree-level

analysis one can see ms̃ ! 50GeV.

Since the singlet superfield Ŝ interacts only the Higgs multiplets, the singlino can be coupled

with the SM particles only through the mixing with Higgsinos. Thus, the singlino-SM particle

coupling are suppressed by the soft SUSY breaking (Higgsino mass) scale in the nMSSM. More-

over, since the singlino is the LSP it can not decay. Generally, an annihilation cross section of

such a stable particle is small and it would freeze-out at relatively early time in the universe.

In other words, the relic density of such a stable particle would be overabundant. Therefore,

the singlino dark matter typically leads to the overabundance in the universe, and one needs to

dilute the relic density of the singlino by some mechanisms.

In the literature, it is known that there are two solutions for avoiding overabundance of the

singlino dark matter. First, when the lightest CP-odd Higgs boson A1 is dominantly singlet-

like and its mass is mA1 ∼ 2ms̃, the singlino annihilation cross section can be resonant via
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the s-channel A1 exchange [132, 140–143]. This resonant annihilation cross section gives much

dilution of singlino dark matter, then the relic density is suppressed. After discovering the SM

Higgs boson h, however, this scenario is severely constrainted from branching ratio of h → s̃s̃

(invisible) and h → A1A1 → All [142]. Strictly speaking, if µeff is light, the mass spectrum

becomes ms̃ < mh/2 < mA1 ∼ 2ms̃, then the SM Higgs boson decay to the two singlino is

kinematically allowed. While, if µeff is heavy, the singlino mass becomes suppressed and the

mass spectrum becomes ms̃ < mA1 ∼ 2ms̃ < mh/2, then the SM Higgs boson decay to the two

A1 is also kinematically allowed. Such an additional decay channel of the SM Higgs boson is

currently constrained from the measurements of the Higgs coupling.

Next, when mZ ∼ 2ms̃, the singlino annihilation cross section can be resonant via the s-

channel Z boson exchange [131, 144]. This scenario is constrained from Z → s̃s̃ and h → s̃s̃.

Furthermore, this scenario leads to light µeff in order to obtain the sizable singlino mass ms̃ ∼
45GeV Eq. (4.8). Although such a light soft SUSY breaking scale is favored with naturalness,

it is disfavored from the point of view of the SUSY flavor/CP problem.

However, these arguments are incomplete. It is because they are given by the tree-level

analyses, and in fact, we find at first time that the one loop radiative corrections give significantly

contributions to the mass of the singlino. We will show the numerical analysis of the full one-loop

level singlino mass in Section 4.5. Interestingly, we find that this radiative correction is roughly

proportional to the soft SUSY breaking scale, m1−loop
s̃ ∝ MSUSY/(4π)2. Thus, this contrition

can dominate the singlino mass in relatively large MSUSY. Furthermore, thanks to the radiative

corrections the singlino mass can reach 62GeV, which is half of the mass of the SM Higgs boson.

Therefore, the singlino annihilation cross section can be resonant via the s-channel SM Higgs

boson exchange. This is a new scenario in the nMSSM.

In next section, using effective Lagrangian, we will calculate the thermal relic abundance

of the singlino dark matter and experimental constraints from Higgs invisible decay searches

and from direct dark matter searches. In order to compare with literature, we will consider the

resonant case with the Higgs boson exchange and with the Z boson exchange. In Section 4.5,

we will evaluate the full one-loop singlino mass.

4.2 Resonant singlino dark matter via SM Higgs boson

In this section, using the low energy effective Lagrangian we calculate thermal relic abundance

of the dark matter which annihilate via the SM Higgs boson or the Z boson.

Let us consider the case where only the singlino s̃ is light and other SUSY particles are

relatively heavy, vEW - MSUSY. Note that the masses of the singlet scalars are also heavy

in the nMSSM with vEW - MSUSY, see Eq. (3.61). In this case, the low energy effective

Lagrangian includes singlino s̃, the SM Higgs boson h, Z boson, other fermions and other gauge
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4.2 Resonant singlino dark matter via SM Higgs boson

Figure 4.1: One of the Feynman diagrams for the resonant annihilation of the singlino dark
matter via the SM Higgs boson exchange.

bosons, and it can be written as

−Leff ⊃ ms̃

2
¯̃ss̃+

λeff
2

h¯̃ss̃+
gZs̃s̃

2
Zµ ¯̃sγµγ5s̃ , (4.9)

where singlino s̃ is written by Dirac 4-component spinor, λeff is the SM Higgs-singlino effective

coupling and gZs̃s̃ is the Z boson-singlino axial effective coupling#2. In this Lagrangian, the

singlino dark matter can annihilate to SM particles, via the s-channel exchange of the SM Higgs

boson or the Z boson. In the following, we estimate the thermal relic abundance of singlino dark

matter with this effective model regarding λeff , gZχ0
iχ

0
i
and ms̃ as free parameters by solving

Bolzmann equation [145].

The resonant case with the Higgs boson exchange

First, we consider a dark matter annihilation via the SM Higgs boson exchange, ¯̃ss̃ → h∗ →
All. Figure 4.1 represents a relevant diagram for the resonant annihilation of the singlino dark

matter. In order to obtain an annihilation cross section of the singlino, we use the optical

theorem,

σ(¯̃ss̃ → h∗ → All) =
ImM(¯̃ss̃ → h∗ → ¯̃ss̃)

2ECMpCM
, (4.13)

#2Let us derive this neutralino-neutralino-Z boson axial vector coupling. Generally speaking, the neutralino-
neutralino-Z boson coupling is given as

L =
1
2
χ̄0
iO

L
ijγµPLχ

0
jZ

µ − 1
2
χ̄0
iO

L,∗
ij γµPRχ

0
jZ

µ

= χ̄0
i

OL
ij −OL,∗

ij

4
γµχ

0
jZ

µ − χ̄0
i

OL
ij +OL,∗

ij

4
γµγ5χ

0
jZ

µ, (4.10)

with

OL
ij =

g
2 cos θW

(−Ni3N
∗
j3 +Ni4N

∗
j4). (4.11)

When the neutralino mass matrix includes no CP-violating phase, one gets OL
ij = OL∗

ij . Therefore, we obtain

L = −χ̄0
i

gZχ0
iχ

0
i

2
γµγ5χ

0
jZ

µ, (4.12)

with gZχ0
iχ

0
i
= OL

ij .
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with ECM =
√
s, pCM =

√
s(1− 4m2

s̃/s)/2. We assume the following full propagator of Higgs

boson,

Gh(s) =
i

s−m2
h + i

√
sΓh(s)

, (4.14)

where mh = 125.5GeV and

Γh(s) = Γh,0

√
s

mh
, (4.15)

with Γh,0 = 4.07 × 10−3GeV [146]#3. Then the pair annihilation cross section of the singlino

can be obtained as follows,

σ(¯̃ss̃ → h∗ → All) =
λ2eff
2

√
1−

4m2
s̃

s

√
sΓh

(s−m2
h)

2 + sΓ2
h

. (4.17)

Thus, one can see σ(¯̃ss̃ → h∗ → All) ∝ vs̃. Since the freeze-out of the WIMP dark matter occurs

when they are non relativistic (roughly estimation, v ∼ 0.3), this dependence of the velocity of

the singlino gives suppression to the annihilation cross section. In other words, this annihilation

rate is p-wave suppressed. To distinguish whether the dark matter annihilation cross section is

s-wave process (not suppresed) from the interaction structure of the dark matter is possible, and

it is summarized in Ref [147]. For example, χ̄χf̄f is p-wave annihilation, χ̄γ5χf̄γ5f (CP-odd

Higgs exchange) and φφf̄f are s-wave annihilation, and so on.

The thermal average of the annihilation cross section times the relative velocity of the anni-

hilating particles vrel#4 can be obtained as follows,

〈σvrel〉(T ) =
∫
d3p1d

3p2e
−E1/T e−E2/Tσ(s)vrel∫

d3p1d3p2e−E1/T e−E2/T
. (4.19)

One can reduce this formula to the single-integration [145],

〈σvrel〉(T ) =
1

8m4T (K2[m/T ])2

∫ ∞

4m2
ds
√
s(s− 4m2)K1

[√
s

T

]
σ(s), (4.20)

where Ki[x] are the modified Bessel functions of order i [148].

#3Although Eq. (4.15) is our assumption, this is satisfied in leading order. The dominant decay channel of the
SM Higgs is b̄b (Br(h → b̄b) ∼ 0.5). This transition rate is

Γ(s) =
3

16π
y2
b

√
s

(
1− 4m2

b

s

) 3
2

. (4.16)

Therefore, the decay width is roughly proportional to ECM around mh = 125.5GeV.
#4Strictly speaking, the relative velocity in the thermal average 〈. . . 〉 is not the nonrelativistic relative velocity

vr = |v1 − v2| but the so-called Møller velocity,

v̄ =
√

(v1 − v2)2 − (v1 × v2)2. (4.18)
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Using thermal average of the annihilation cross section, the relic density of the singlino in

the expanding universe can be evaluated by solving the following Bolzmann equation,

dns̃

dt
+ 3Hns̃ = −〈σvrel〉(T )(n2

s̃ − n2
s̃,eq), (4.21)

where H is the Hubble parameter, and ns̃ is the number density of the singlino. The details of

the calculation for the relic density of the dark matter are written in Ref. [149]. The Hubble

parameter is related to the total energy density during the radiation-dominated era,

H ≡ 1

a

da

dt
=

√
8πGρ

3
, (4.22)

where a is the cosmological scale factor, G is the gravitational constant G = 1/M2
Pl = 6.708 ×

10−39GeV−2, and the total energy density ρ = (π2/30)g∗(T )T 4. g∗(T ) denotes the relativistic

degrees of freedom (m < T ). We have used the fitting formula of g∗(T ) of Ref. [150], where g∗,R

in the reference corresponds to g∗#5.

In Figure 4.2, the black lines show the ratio of the thermal relic abundance Ωs̃h2 to the current

dark matter density Ωch2 = 0.1199 [128] where we take the Higgs boson mass as mh = 125.5

GeV. The horizontal axis is the mass of the singlino ms̃ and the vertical axis is the singlino-

singlino-Higgs coupling λeff . Note that we have handled ms̃ and λeff as free parameters. The

thick black line represents the appropriate parameter region in which the dark matter relic

abundance is consistent with the current dark matter abundance. While, the singlino relic

density overclose the universe at the dark-shaded region. As discussed previous section, since

the couplings of the singlino with SM particles are too small and the annihilation cross section

is also too small, the singlino dark matter could not be sufficiently diluted in the universe. On

the other hand, around ms̃ ∼ mh/2, thanks to the s-channel exchange of the SM Higgs boson

the annihilation cross section becomes large, and the singlino dark matter can be appropriately

diluted (white region).

This effective potential Eq. (4.9) receives two kinds of experimental constraints: constraint

from the branching ratio of the Higgs to singlino pair (Higgs invisible decay searches) and the

direct detection of the dark matter. The decay width of the Higgs to singlino pair is given by

Γ(h → ¯̃ss̃) =
λ2eff
16π

mh

(
1− 4m2

s̃

m2
h

) 3
2

. (4.23)

Thus the branching ratio of the Higgs to singlino pair is

Br(h → ¯̃ss̃) =
Γ(h → ¯̃ss̃)

Γh,0 + Γ(h → ¯̃ss̃)
. (4.24)

#5Although the value of g∗,R is one of the SM, one can use it in the nMSSM. In our scenario the mass of the
singlino dark matter is about 60 GeV, and so its freeze out temperature is O(1)GeV. Therefore, there are no
sparticle contributions to g∗.

- 55 -



Chapter 4. Resonant Singlino Dark Matter

40 45 50 55 60 65
0.002

0.005

0.01

0.02

0.05

0.1

m
   
[GeV]s

~

λ
ef
f

XENON1T

XENON100 (2012)

LUX - 300 live days

LUX (2013) - 85 live days 

ILC 250
 GeV

HL - LHC

Ω
  /Ω

  =
 1

0.1

0.5c

s̃

global fit
CMS

Figure 4.2: The singlino thermal relic abundance and experimental constraints/future prospects
in the case of the singlino resonant annihilation via the SM Higgs boson s-channel exchange.
The black contour denotes the ratio of the thermal relic abundance Ωs̃h2 to the current dark
matter density Ωch2 = 0.1199 [128]. The singlino thermal relic density overclose the universe
at the dark-shaded region. The regions above the red solid lines are excluded by the Higgs
invisible decay (h → s̃s̃) searches of CMS (Brinv.h ≤ 58 %) [151] for upper line (yellow-shaded
region) and by the global fit of the Higgs couplings (19 %) [152] for lower line. The dashed
red lines correspond to the future sensitivity of high luminosity LHC (6.2 %) [153] and ILC
with L = 1150fb−1 at

√
s = 250GeV (0.4 %) [154]. The blue-shaded regions are excluded by

XENON100 [155] and LUX [156]. The regions above the blue and the green dashed lines can
be probed by the future direct dark matter searches of LUX [157] and XENON1T [158]. As the
future sensitivities of XENON1T, we have used 0.14 (top), 0.326 (middle) and 0.66 (bottom) to
the parameter fN .

In collider, this search can be particularly performed on the Higgs boson produced via association

with Z boson,

pp(e+e−) → Z∗ → Zh → 33+ invisible. (4.25)

In the Figure 4.2, the regions above the red solid lines are excluded by the Higgs invisible

decaysearches of CMS, Br(h → ¯̃ss̃) < 0.58 at 95 % C.L. (upper line) [151], and by the global

fit of the Higgs couplings, Br(h → ¯̃ss̃) < 0.19 at 95 % C.L. (lower line) [152]. The regions

above the red dashed lines can be probed by the future Higgs invisible decay searches of high

luminosity LHC, Br(h → ¯̃ss̃) < 0.062 at 95 % (upper line) [153] and ILC at
√
s = 250GeV,

1 at−1, Br(h → ¯̃ss̃) < 0.004 at 95 % (lower line) [154].
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The direct dark matter searches can set limits on the spin-independent cross section of dark

matter-nucleon elastic scattering, s̃N → s̃N . If one integrate out the SM Higgs boson, effective

Lagrangian becomes

Leff ⊃ λeff
2
√
2m2

h

¯̃ss̃

(
∑

i

(yif̄ifi)−
αs

4πvEW
GµνG

µν

)
, (4.26)

where fi are the SM fermions, and Gµν is a field strength of SU(3) gauge. Note that, here

we have not considered the Z boson exchange in the spin-independent cross section of dark

matter-nucleon elastic scattering. It is because the Z boson-singlino coupling gZs̃s̃ always has

more suppression by MSUSY than the Higgs-singlino coupling λeff (see Eqs. (4.40), (5.72)).

We have also not considered the squark exchange since we have assumed sparticles are heavy

enough. Using this effective Lagrangian, we can obtain the cross section of dark matter-nucleon

spin-independent elastic scattering as follows [138,159],

σ(s̃N → s̃N) =
λ2eff

2πv2EW

f2
N

m4
Nm2

s̃

m4
h(ms̃ +mN )2

, (4.27)

with mN = 0.939GeV and

fNmN ≡ 〈N |
∑

q

mq q̄q −
αs

4π
GµνG

µν |N〉. (4.28)

We use fN = 0.326, which is the lattice result [160]. Then,

σ(s̃N → s̃N) = 8.051× 10−43 × λ2eff
m2

s̃

(ms̃ + 1GeV)2
[cm2] (4.29)

) 0.8× 10−46

(
λeff
0.01

)2

[cm2]. (4.30)

Note that, there are various estimation of the parameter fN in the literature. It is because a

treatment of the heavy quarks, especially the contribution of the strange quark to the nucleon,

is difficult. These results in the literature give a range to the value of fN as follows [161],

0.14 < fN < 0.66. (4.31)

Including this uncertainty, the cross section of dark matter-nucleon spin-independent elastic

scattering is gives as,

σ(s̃N → s̃N) ) (0.15 - 3.3)× 10−46

(
λeff
0.01

)2

[cm2]. (4.32)

In the Figure 4.2, the blue-shaded regions are excluded by the current direct dark matter

searches of XENON100 [155] and LUX [156]. The region above the blue dashed line can be

probed by the future direct dark matter search of LUX [157]. For applying these constraints and

future prospects, we assume Ωs̃h2 = Ωch2. Here we have used fN = 0.326. The regions above the
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green dashed lines can be probed by the future direct dark matter searches of XENON1T [158].

As the future sensitivities of XENON1T, we have used 0.14 (top), 0.326 (middle) and 0.66

(bottom) to the parameter fN . One can see that the region where s̃ is consistent with the

current dark matter relic abundance lies around λeff ∼ O(0.01) and ms̃ ∼ 60 GeV. In this region,

resonant pair-annihilation of s̃ occurs via the Higgs boson with ms̃ ∼ mh/2. This allowed region

can be covered by the future Higgs invisible decay searches and direct dark matter searches,

especially by XENON1T.

The resonant case with the Z boson exchange

Next, let us consider a dark matter annihilation via the Z boson exchange, ¯̃ss̃ → Z∗ → f̄f .

Then the pair annihilation cross section can be obtained as follows [162],

σ(¯̃ss̃ → Z∗ → f̄f) =
2√

s(s− 4m2
s̃)
ωZ(s). (4.33)

The Lorentz-invariant function ωZ(s) is defined as

ωZ(s) =
1

32π

∑

f

(
Ncf θ(s− 4m2

f )βf (s,mf )ω̃
Z
f (s)

)
, (4.34)

where Ncf is the color factor (Ncf = 3 for quarks and Ncf = 1 for leptons), and a kinematic

factor βf is given as

βf (s,mf ) =

√

1−
4m2

f

s
, (4.35)

with

ω̃Z
f (s) =

4

3

∣∣∣∣
gZs̃s̃

s−M2
Z + iΓZMZ

∣∣∣∣
2 [

12|CffZ
A |2

m2
s̃m

2
f

M4
Z

(s−M2
Z)

2

+
(
|CffZ

V |2(s+ 2m2
f ) + |CffZ

A |2(s− 4m2
f )
)
(s− 4m2

s̃)

]
. (4.36)

Here total with of Z boson is 2.4952± 0.0023GeV, and Z boson-fermion couplings are

CffZ
V = − g

2 cos θW
(T3,f − 2 sin2 θWQf ), (4.37)

CffZ
A = − g

2 cos θW
T3,f . (4.38)

Substituting the pair annihilation cross section via the Z boson exchange Eq. (4.33) into the

thermal average of the annihilation cross section Eq. (4.20), and solving the Bolzmann equation

Eq. (4.21), we have estimated the thermal relic abundance of the singlino dark matter.
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Figure 4.3: The singlino dark matter thermal relic abundance in the case of the singlino
resonant annihilation via the Z boson s-channel exchange. The black contour denotes the ratio
of the thermal relic abundance Ωs̃h2 to the current dark matter density Ωch2 = 0.1199 [128].
The singlino thermal relic density overclose the universe at the dark-shaded region.

In Figure 4.3, we show the singlino dark matter thermal relic abundance in the case of the

singlino resonant annihilation via the Z boson s-channel exchange#6. The black contour denotes

the ratio of the thermal relic abundance Ωs̃h2 to the current dark matter density Ωch2 =

0.1199 [128]. Thus, the singlino thermal relic density overclose the universe at the dark-shaded

region. Similar to the case of the resonance annihilation via the Higgs boson s-channel exchange,

the greater part of the parameter region exceptms̃ ∼ MZ/2 are suffering from the overabundance

of the universe. We find that gZs̃s̃ can become small to O(10−3-10−2) at the case when one

assume the singlino annihilation cross section is resonant by the Z boson exchange. While, one

can estimate gZs̃s̃ at

gZs̃s̃ =
g

2 cos θW
(−N53N

∗
53 +N54N

∗
54) (4.39)

∼ λ2g

2 cos θW

v2EW

MSUSY
2 cos 2β. (4.40)

This estimation implies MSUSY ! 1-2TeV at the resonant case with the Z boson exchange.

However, as discuss next section, the Higgs-singlino coupling can also be estimated relating

to MSUSY. It implies that when MSUSY ! 1-2TeV, λeff " 0.1 (see Eq. (4.42)). Such a large

#6Similar to the resonant case with the Higgs boson, although there is the upper bound on the invisible Z width,
Γ(Z → χ0

1χ
0
1) < 1.76× 10−3 GeV [163] as a constraint from the experiment, we have not calculated this bound.
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λeff and light singlino mass (ms̃ ∼ 45GeV) may be excluded by current experimental bounds#7

(see Figure 4.2). Therefore, in terms of the overabundance of the singlino dark matter in the

universe, the resonant scenario with the SM Higgs boson is the last resort for the nMSSM.

4.3 Radiative Singlino mass

Now, we calculate the singlino mass ms̃ and the Higgs-singlino coupling λeff in the nMSSM.

From the tree-level calculations, these values are evaluated as

λtreeeff =
√
2λ
(
ZH
11N

∗
14N

∗
15 + ZH

12N
∗
13N

∗
15 + ZH

13N
∗
13N

∗
14

)

+g′
(
ZH
11N

∗
11N

∗
13 − ZH

12N
∗
11N

∗
14

)
− g

(
ZH
11N

∗
12N

∗
13 + ZH

12N
∗
12N

∗
14

)
(4.41)

∼
√
2λ

vEW

MSUSY
sin 2β , (4.42)

where ZH
ij is a unitary matrix which can diagonalize the CP-even mass matrix as follows

ZH




M2

R11 M2
R12 M2

R13
M2

R12 M2
R22 M2

R13
M2

R13 M2
R23 M2

R33



ZH,† =
(
(mH

1 )2, (mH
2 )2, (mH

3 )2
)
diag

, (4.43)

where mH
1 is the lightest CP-even Higgs mass, that is the SM-like Higgs boson. On the other

hand, the tree-level singlino mass is evaluated as Eq. (4.8). Obviously λeff ∼ O(0.01) and

ms̃ ∼ 60 GeV can not be satisfied at the same time.

However, one-loop corrections to the neutralino mass can raise the singlino mass with rel-

atively large MSUSY. The typical diagram, Higgs-Higgsino loop diagram, which contributes to

the singlino mass is given in Figure 4.4. Note that a sum of the contributions of the neutral

Higgs-Higgsino vanishes at the leading order. The vertex of the CP-even Higgs-Higgsino-singlino

is different from the one of the CP-odd Higgs-Higgsino-singlino in only “i”. Thus, since the loop

contribution is proportional to the square of the vertex, the CP-even Higgs loop contribution

cancel out the CP-odd Higgs one up to their mass dependence. So, one can easily estimate the

radiative corrections to the singlino mass by calculating the charged Higgs-Higgsino loop. This

loop gives the following contribution to the singlino mass,

m1-loop
s̃ =

λ2

(4π)2
µeff sin 2β · F

(
2(m2

12 +Aλµeff)

µ2
eff sin 2β

)

∼ λ2

(4π)2
MSUSY sin 2β , (4.44)

where the loop function F (x) is defined as

F (x) ≡ x log x

x− 1
, (4.45)

#7Strictly speaking, they are not excluded at the case when tanβ is large and there is a extra contribution to
the singlino mass which is beyond the nMSSM. It is because the Higgs-singlino coupling λeff is suppressed at large
tanβ (see Eq. (4.42)), but the Z boson-singlino coupling gZs̃s̃ is not suppressed.
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Figure 4.4: Typical one-loop diagram which contributes to the mass of the singlino.

and it satisfies F (1) = 1. We find that radiative corrections is proportional to the soft SUSY

breaking scale. It is because this loop diagram should have a chirality flip on the Higgsino

propagator, and this flip gives MSUSY to a numerator of the loop contribution.

Next, we numerically calculate the neutralino 5 × 5 mass matrix including full one-loop

corrections [164, 165]#8. We assume that the all complex parameters to be real in neutralino

mass matrix Eq. (4.2), then the neutralino mass term becomes

L = −1

2
ψ̄χMχ0

treeψχ, (4.46)

where ψχ is the Dirac 4-component spinor ψT
χ = ((B̃

B̃∗), (W̃
0

W̃ 0∗), (
H̃0

1

H̃0∗
1
), (

H̃0
2

H̃0∗
2
), (S̃

S̃∗)). At one-loop

level, the radiative corrections to the neutralino sector are given by [164,166]

M =
1

2

[
ψ̄χ

(
p/−Mχ0

tree

)
ψχ +

1

(4π)2
(
ψ̄χp/Σ

LPLψχ + ψ̄χp/Σ
RPRψχ + ψ̄χΣ

SPLψχ +H.c.
) ]

,(4.47)

where the correction ΣS(p2) comes from a self-energy for neutralinos, and the corrections

ΣL/R(p2) come from the wave function constants for the neutralinos. The momentum of the

external line is represented by p. A pole mass of the neutralino at one-loop level is obtain by

the following equation,

Mχ0

1 loop(p
2) = Mχ0

tree −
1

2

1

(4π)2

[
ΣS(p2) +

(
ΣS(p2)

)T
+
((

ΣL(p2)
)T

+ ΣR(p2)
)
Mχ0

tree

+ Mχ0

tree

(
ΣL(p2) +

(
ΣR(p2)

)T)]
. (4.48)

The explicit formulae of the one-loop corrections to the neutralino ΣS(p2) and ΣL/R(p2) are given

in appendix B.2. Here, we have performed DR renormalization in which we have subtracted the
#8In the limit of κ = 0, one-loop corrections in the NMSSM reduce to the one in the nMSSM.
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Figure 4.5: The singlino mass, which is the lightest mass eigenvalues of the neutralino mass
matrix, at the tree level (dashed) and the full one-loop level (solid) as a function of MSUSY. We
take λ = 0.75, all dimensional parameters equal to MSUSY and tanβ = 2 (red), 5 (blue) and 10
(green).

1/ε̄ poles (see Eqs. (B.91, B.92)). Note that 55 component of the neutralino mass matrix does

not diverge, which is consistent with the fact that the quadratic term of the singlet superfield

is not included in the superpotential. The cancelation of the divergence of the neutral Higgs-

Higgsino loop is trivial, since the vertices are different in only “i” as discussed before. While,

the cancelation of the divergence of the charged Higgs-Higgsino loop is rather non-trivial. The

charged Higgs-Higgsino-singlino coupling is proportional to sinβ cosβ, on the other hand the

charged NG boson-Higgsino-singlino coupling is proportional to − sinβ cosβ (see Eq. (3.65)).

Since the divergence is independent of the mass of the virtual particle, thus, all divergences

are canceled out. This cancellation can be understood in terms of the supergraph. One-loop

correction to the singlet superfiled is roughly given as

Γ )
∫

dθ4
λ4

(4π)2
1

MSUSY
2 (Ŝ

†Ŝ)2, (4.49)

and thus the 55 component of the neutralino mass matrix is finite.

Figure 4.5 shows the dependence of the singlino mass to MSUSY, which is the lightest mass

eigenvalues of the neutralino mass matrix, at the tree level (dashed) and the full one-loop level

(solid). In this figure, we take λ = 0.75, all dimensional parameters equal to MSUSY and

tanβ = 2 (red), 5 (blue) and 10 (green). We find that the singlino obtains sizable one-loop
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corrections to the mass when MSUSY " 1TeV. Since this feature is due to the suppression of

the singlino mass at the tree level, the two-loop level corrections to the singlino mass is estimated

to be smaller than the one-loop one. We also find that both the tree level and the one-loop level

mass have a tanβ suppression.

We have checked the validity of the our full one-loop calculation code by three ways. First,

we have compared the full one-loop result with the estimation by Eq. (4.44), then we find that

these results agree with very well. Second, we have checked that 55 component of the full one-

loop correction matrix vanishs in the SUSY limit, MSUSY → 0. Third, we have chosen the Aλ

to vanish the combination m2
12 + λAλ varying the soft SUSY breaking scale. Then we find that

even if MSUSY is much higher scale, 55 component of the full one-loop correction matrix vanishs.

Note that with MSUSY ∼ O(10) TeV, tanβ ∼ O(1) and λ ∼ O(1), one can simply obtain

λeff ∼ O(0.01) and ms̃ ∼ 60 GeV#9. Moreover, the Higgs boson mass becomes around 125 GeV

in such parameter sets with the help of the additional quartic coupling λ. We will show these

validity by using the numerical calculations in the next section.

4.4 Numerical Results

In this section, we numerically investigate the singlino resonant dark matter scenario and the

Higgs boson mass in the nMSSM. We calculate the mass of the Higgs boson using the two-loop

renormalization group equation including the matching condition Eq. (3.63) [57]. The detail of

the calculation for the Higgs boson mass is given in Section 2.3.1.1.

In Figure 4.6, we show the singlino mass ms̃ (red lines), the effective Higgs-singlino dark

matter coupling λeff (blue lines) and the Higgs boson mass mh (black dashed lines) in MSUSY-

tanβ plane. Here, the singlino mass ms̃ is obtained as the lightest mass eigenvalue of the

one-loop full neutralino mass matrix Eq. (4.48), and λeff is given by the tree-level calculation

Eq. (4.41). For simplicity, all parameters are chosen to be real. The trilinear coupling λ is

taken to be λmax which is a maximal value avoiding Landau singularities up to the GUT scale,

2 × 1016GeV (see Section 3.4.3). All soft SUSY breaking parameters except Aλ are set to

MSUSY (λcF = cS = 1). In order to obtain a sizable contribution to the Higgs boson mass, we

choose A2
λ = 2

5 MSUSY
2. As one can see from Figure 4.2, the viable regions for the singlino dark

matter are 55.5GeV < ms̃ < 62.7GeV and 0.005 < λeff < 0.034. In Figure 4.6, these regions

correspond to the red-shaded band and the region between the two blue lines respectively. One

can see that the singlino resonant dark matter scenario is successful with tanβ ∼ O(1) and

MSUSY ∼ O(10)TeV. On the other hand, the green band represents 125GeV < mh < 126GeV.

We also find that the current dark matter relic abundance and the Higgs boson mass can be

explained simultaneously with tanβ ∼ O(1) and MSUSY ∼ O(10)TeV. The blue (dark blue)-

#9The one-loop λeff can be roughly estimated as λ1-loop
eff ∼ λ4

(4π)2
vEW

MSUSY
sin 2β, which is negligible in comparison

with λtree
eff .
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Figure 4.6: Contours of ms̃ (red lines), λeff (blue lines) and mh (black dashed lines) in MSUSY-
tanβ plane assuming λ = λmax at each point. On the red-shaded region ( 55.5GeV < ms̃ <
62.7GeV ), the resonant annihilation via the Higgs boson can occur. The green-shaded region
satisfies 125GeV < mh < 126GeV. The blue (dark blue)-shaded region is excluded by the
current limits from LUX [156] (XENON [155]). The yellow-shaded region is excluded by the
Higgs invisible decay search at the CMS [151] and the magenta dashed line is the current bound
by the global fit of the Higgs coulings [152].

shaded region is excluded by the current limits from LUX [156] (XENON [155]). The yellow-

shaded region is excluded by the Higgs invisible decay search at the CMS [151] and the magenta

dashed line is the current bound by the global fit of the Higgs couplings [152]. Note that, in

the calculation of these experimental bounds, we have assumed mh = 125.5GeV at each point

in the plane. It means that these experimental abounds exclude the low-scale and tanβ ∼ O(1)

nMSSM.

If we choose the lower value of A2
λ, the green line moves to left because the Higgs boson

mass obtains more contribution from the quartic coupling (see Eq. (3.63)). On the other hand,

with smaller value of m2
12+λAλ〈S〉 the singlino mass becomes lighter and the red-shaded region

moves to right (see Eq. (4.44)). The blue lines are not sensitive to the choice of m2
12 and Aλ,

because λeff is determined by the soft SUSY breaking scale and tanβ. The important point is

that in any case with MSUSY ∼ O(10) TeV and low tanβ the current dark matter abundance

and the measured Higgs boson mass can be realized simultaneously. This opens a window for

the singlino dark matter in high-scale supersymmetry.
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Figure 4.7: Contours of ms̃ (red lines), λeff (blue lines) in MSUSY-tanβ plane under mh =
125.5GeV by changing λ, 0 ≤ λ ≤ λmax. On the purple line, the singlino relic abundance Ωs̃h2

is consistent with the current value, Ωch2 = 0.1199 [128]. In the light blue region, Ωs̃h2 ≤ Ωch2.
The left side of the blue (green) dashed line can be probed by the future dark matter search
LUX [157] (XENON1T [158]). As the future sensitivities of XENON1T, we have used 0.14 (left),
0.326 (middle) and 0.66 (right) to the parameter fN . ILC [154] can cover the left side of the
magenta dashed line. Other lines are the same in Figure 4.6.

Finally, in Figure 4.7 we show these regions in detail. The input parameters are the same as

Figure 4.6 except λ. All soft SUSY breaking parameters except Aλ are set to MSUSY (λcF =

cS = 1), and we take A2
λ = 2

5 MSUSY
2. The λ is varied at each point to fix the Higgs mass

boson to be 125.5 GeV. The range of varying λ is 0 ≤ λ ≤ λmax. Therefore, in this figure

the Higgs boson mass is fixed to be 125.5 GeV except the dark-shaded regions, where one can

not explain mh = 125.5GeV. The singlino relic abundance Ωs̃h2 is consistent with the current

value on the purple line, Ωch2 = 0.1199 [128]. In the light blue region, Ωs̃h2 ≤ Ωch2. The

left side of the dashed lines can be covered by LUX (blue) [157], XENON1T (green) [158] and

ILC (magenta) [154]. As the future sensitivities of XENON1T, we have used 0.14 (left), 0.326

(middle) and 0.66 (right) to the parameter fN .

Again, we show that the current dark matter relic abundance (purple line and light blue

region) and the observed Higgs boson mass (not dark-shaded regions) can be explained simul-

taneously with tanβ ∼ O(1) and MSUSY ∼ O(10)TeV. In addition, we find that the future

experiments, especially the direct dark matter search by the XENON1T, can probe a sign of the
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singlino dark matter.

There are other proposals of the direct dark matter search whose future sensitivities are

comparable to or stronger than prospect of XENON1T. One of them is XMASS experiment,

which is located at Kamioka Observatory. The XMASS experiment also use an ultra-pure liquid

xenon and its scattering with dark matter. An expected sensitivity of the XMASS1.5 (XMASSII)

project is that spin independent nucleon-dark matter cross section is 10−46 (10−47) [cm2] at

mDM ∼ 60GeV [167,168] (cf. 10−45 [cm2] (XENON100), 10−47 [cm2] (XENON1T), 10−45 [cm2]

(LUX85days) and 10−46 [cm2] (LUX300days)). Other ones are DarkSide-G2 experiment and

LUX-ZEPLIN (LZ) experiment. Their expected sensitivities of the spin independent nucleon-

dark matter cross section are 10−47 [cm2] (DarkSide-G2 [169]) and 10−48 [cm2] (LZ [170]) at

mDM ∼ 60GeV.

4.5 Discussions

The NMSSM is another model of the singlet extension of MSSM [100]. As we have discussed

previous chapter, this model is imposed the discrete Z3 symmetry and the superpotential is

given as

WNMSSM = λŜĤ2Ĥ1 +
κ

3
Ŝ3 +WYukawa. (4.50)

In the NMSSM, the singlino can obtain a radiative correction to the mass in addition to the

tree-level mass mtree
s̃ ∼ 2κ〈S〉. The singlino resonant dark matter scenario may be successful

with small tanβ and small κ in high-scale SUSY scenario. In the small κ limit, a singlet-like CP-

odd scalar boson A1 becomes a pseudo Nambu-Goldstone boson because of the existence of the

global U(1) Peccei-Quinn symmetry. Therefore, one may be able to make a distinction between

the singlino resonant scenario in the nMSSM and NMSSM by the search for h → A1A1 [143].

Since there are some new sources of CP violating phases in the nMSSM, the EDM are gen-

erally generated through relative phase between µeff and Mgaugino at the one-loop level. We

have estimate the one-loop electron EDM, which is generated from chargino-sneutrino loop and

neutralino-selectron loop. The expected electron EDM is (see Eq. (2.106))

∣∣∣∣
de
e

∣∣∣∣ =
5g2 + g′2

384π2
me

MSUSY
2 sinφ tanβ [ GeV−1]

∼ 6× 10−29

(
10TeV

MSUSY

)2

sinφ tanβ [cm], (4.51)

where φ = arg (µeffMgaugino). One can obtain |de| ∼ O(10−29) e cm with tanβ ∼ O(1), MSUSY ∼
O(10)TeV and sinφ ∼ O(1). Interestingly, the electron EDM of this size does not conflict with

the current bound [81] and can be probed by some future experiments [94–96].
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4.6 Conclusion of the Resonant Singlino Dark Matter

In this chapter, we have studied the phenomenology of the singlino resonant dark matter scenario.

We find that including one-loop corrections to the neutralino masses, the singlino can explain

the current dark matter relic abundance through the resonant annihilation via the Higgs boson,

if the soft SUSY breaking scale is high scale. We have shown that with high-scale SUSY breaking

∼ 10 TeV and low tanβ, the dark matter relic abundance and the SM Higgs boson mass can be

explained simultaneously in this scenario.

Even for the high-scale SUSY, we have also shown that the parameter region where the

singlino dark matter is consistent with the current dark matter relic abundance can be probed

by the future experiments (see Figure 4.2, 4.7). Therefore, the singlino dark matter signal can

be “a first sign” of the high-scale supersymmetry.
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Chapter

5
Towards a Scale Free Electroweak Baryogenesis

This chapter is based on the work by the author [18]. We propose a new

electroweak baryogenesis scenario in high-scale SUSY models. We consider a

singlet extension of the minimal SUSY standard model introducing additional

vector-like multiplets. We show that the strongly first-order phase transition

can occur at a high temperature comparable to the soft SUSY breaking scale.

In addition, the proper amount of the baryon asymmetry of the universe can be

generated via the lepton number violating process in the vector-like multiplet

sector. The typical scale of our scenario, the soft SUSY breaking scale, can

be any value. Thus our new electroweak baryogenesis scenario can be realized

at arbitrary scales and we call this scenario as a scale free electroweak baryo-

genesis. This soft SUSY breaking scale is determined by other requirements.

If the soft SUSY breaking scale is O(10)TeV, our scenario is compatible with

the observed mass of the Higgs boson and the constraints by the electric dipole

moments measurements and the flavor experiments. Furthermore, the singlino

can be a good candidate of the dark matter.

5.1 Electroweak Baryogenesis in the nMSSM

In this chapter, we focus on the baryon asymmetry in the universe and the electroweak baryoge-

nesis mechanism in the nMSSM. This chapter is based on the work by the author [18]. We will

propose a new electroweak baryogenesis scenario in the nMSSM with high-scale SUSY breaking.

First, we briefly summarize the our electroweak baryogenesis scenario in the nMSSM.

The Electroweak baryogenesis (EWBG) [171–173] is one of the most promising mechanisms

to generate the baryon asymmetry of the universe (BAU) η ≡ nB/s = (0.86 ± 0.01) × 10−10 ∼
10−10 [128]. In this mechanism, the first-order phase transition of the Higgs field occurs and

the bubbles are nucleated initially. Then the CP asymmetric distributions of the particles are

generated around the bubble walls if there is a source of CP asymmetry. Finally, these CP

asymmetric distributions turn into the BAU due to the decoupling of the sphaleron process.

This phase transition which associates with this sphaleron decoupling effect is called as the

strongly first-order phase transition.

Within the standard model, this EWBG mechanism can not be realized by two reasons.

First, the strongly first-order phase transition can not occur while maintaining the Higgs boson

mass 125 GeV [174,175]. Second, there is no CP-violating source enough to generate the proper
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amount of the baryon asymmetry [176–178]. Thus, this mechanism requires new physics which

can cause the strongly first-order phase transition with new CP-violating sources. The typical

scale of this new physics seems to be comparable to the electroweak scale since this mechanism is

supposed to occur around the electroweak scale. Now, the new physics models with such a rela-

tively low scale suffer from severe constraints from the collider searches, the EDM measurements

and the flavor experiments.

In this chapter, we propose a new EWBG scenario in which EWBG occurs at arbitrary

scales. As a new physics model, we consider SUSY models which have a new physical scale,

the soft SUSY breaking scale, MSUSY. In this new scenario, the particles with the masses of

O(MSUSY) play important roles. When the temperature of the universe drops across O(MSUSY),

the appearance of the universe changes drastically. First, the dominant terms of the potential

for the scalar fields change from the thermal terms to the soft SUSY breaking terms. Second, the

particles with masses O(MSUSY) disappear due to the Boltzmann suppression. These changes

deform the shape of the potential for the Higgs fields and they may cause the strongly first-order

phase transition at the temperature O(MSUSY). In this mechanism, the value of MSUSY is not

constrained. Thus, EWBG can be realized at arbitrary scale MSUSY if there is a proper amount

of the CP-violating sources.

We consider the nMSSM [13–15] specially. The potential of the nMSSM is suitable for

the first-order phase transition. The ordinary EWBG scenarios in the nMSSM have been well

studied in the literature [129, 179]. In our new scenario, we add extra vector-like multiplets

to the nMSSM which are coupled to the singlet superfield. In addition, we introduce a lepton

number violating term in the vector-like multiplet sector.

Here, let us see the outline of our scenario. In this scenario, the singlet scalar field obtains

sizable thermal potential from the vector-like multiplets only at high temperatures. Then, the

absolute field value of the singlet scalar field becomes smaller at high temperatures than at the

zero temperature. As a result, the potential for the Higgs field gets deformed. Furthermore,

the global minimum of the potential for the Higgs field is generated far from the origin when

the temperature is around MSUSY. At this time, the strongly first-order phase transition occurs

from the origin (symmetric vacuum) to this minimum (breaking vacuum). Subsequently, the

baryon(B)+lepton(L) number is generated #1. After the strongly first-order phase transition,

the Higgs field is trapped at the breaking vacuum. As the temperature decreases below MSUSY,

the breaking vacuum is lifted up and disappears. Then, the Higgs field returns to the symmetric

vacuum. In this interval, non zero B − L number is generated from the B + L number by

the lepton number violating term. As a result, the BAU is not washed out by the sphaleron

process at the symmetric vacuum. The lepton number violating process is active only when

T " MSUSY since the number densities of the vector-like multiplets get Boltzmann-suppressed

#1The concrete estimation of the B + L number generated by the first-order phase transition is beyond the
scope of this chapter and it is devoted to future work.

- 70 -



5.2 The nMSSM with Vector-like Matters

when T ! MSUSY. Thus, the BAU is generated and fixed at the temperatures smaller than

MSUSY. Finally, the Higgs field goes to the electroweak symmetry breaking vacuum when the

temperature becomes the electroweak scale.

In this scenario, the whole processes occur at T ∼ MSUSY. Surprisingly, the scale MSUSY

becomes a free parameter up to the small electroweak scale corrections which are needed to

realize the electroweak symmetry breaking vacuum. Thus we call this scenario as a scale free

electroweak baryogenesis. On the other hand, the favored value of the scale MSUSY can be

determined by other experiments. Considering the Higgs mass 125 GeV [134, 135] and SUSY

flavor/CP problem, MSUSY ∼ O(10) TeV seems to be favored. Moreover, the singlino, the

fermionic component of the singlet superfield, can be a good candidate of the dark matter.

With MSUSY ∼ O(10) TeV, the proper amount of the singlino dark matter can be obtained

by resonant annihilation via the exchange of the standard model Higgs boson [17]. We show

that the lifetime of the singlino dark matter is long enough even though there is the lepton

number violating term which induces its decay. Therefore, this scenario can realize the proper

Higgs boson mass, the right amount of the dark matter and the BAU without SUSY flavor/CP

problem if MSUSY ∼ O(10) TeV.

5.2 The nMSSM with Vector-like Matters

In this section, we briefly introduce our model, the nMSSM [13–15] with vector-like multiplets.

We show the matter contents, the symmetries and the interactions in our model.

The superpotential and the soft SUSY breaking terms of the nMSSM are given in Sec-

tion 3.4.1. In addition, we add extra vector-like multiplets to the nMSSM. These vector-like

multiplets play important roles. First, they give the sizable thermal corrections for S to cause

the first-order phase transition. Second, they give the lepton number violation at high tempera-

tures. As the vector-like multiplets, we add 16 (Q̂′, ˆ̄U ′, ˆ̄D′, L̂′, ˆ̄E′, N̂ ′)+16 ( ˆ̄Q′, Û ′, D̂′, ˆ̄L′, Ê′, ˆ̄N ′)

multiplets (with SO(10) notation). We express the MSSM multiplets as Q̂i,
ˆ̄Ui,

ˆ̄Di, L̂i,
ˆ̄Ei with

i = 1, 2, 3 denoting the generation. In order to forbid unwanted terms of the vector-like multi-

plets, we impose additional Z3 and Z2 discrete symmetries (see Table 5.1). Z3 symmetry forbids

the terms like Ŝ2L̂Ĥ2 which cause a rapid decay of the singlino, the dark matter candidate in

our model (see Sec. 5.6 for details). Z2 symmetry is the vector-like multiplet parity where all

vector-like multiplets are assigned as odd while the other multiples are assigned as even. We

consider the situation where this vector-like multiplet parity Z2 is slightly broken and the small

mixings between the vector-like multiplets and the MSSM multiplets exist.

The allowed superpotential by the symmetries ZR
5 , Z3 and Z2 in the vector-multiplet sector

is

Wsym = λ1Ŝ
(
ˆ̄Q′Q̂′ + ˆ̄U ′Û ′ + ˆ̄D′D̂′ + ˆ̄L′L̂′ + ˆ̄E′Ê′ + ˆ̄N ′N̂ ′

)

+ k1L̂
′Ĥ1

ˆ̄E′ + k2
ˆ̄L′Ĥ1N̂

′ + k3Q̂
′Ĥ1

ˆ̄D′ + k4Q̂
′Ĥ2

ˆ̄U ′ , (5.1)
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Table 5.1: The charge assignment.

Z2-even Ĥ1 Ĥ2 Ŝ Q̂i
ˆ̄Ui

ˆ̄Di L̂i
ˆ̄Ei

Z2-odd Q̂′ ˆ̄U ′ ˆ̄D′ L̂′ ˆ̄E′ ˆ̄Q′ Û ′ D̂′ ˆ̄L′ Ê′ N̂ ′ ˆ̄N ′

ZR
5 1 1 4 2 3 3 2 3 0 4 4 0 4 0 2

Z3 0 0 0 2 1 1 2 1 1 2 2 1 2 2 1

where we take a universal coupling λ1 for ŜX̂ ′ ˆ̄X ′ type terms for simplicity. There are corre-

sponding soft SUSY breaking terms like A-terms Aλ1SX
′X̄ ′, Ak1L

′H1Ē and soft mass terms

m2
X′ |X ′|2,m2

X̄′ |X̄ ′|2 . As mentioned above, we assume that the vector-like multiplet parity Z2

is slightly broken #2. The terms which appear after the broken of Z2 are

W &Z2 = εiSŜ
(
ˆ̄Q′Q̂i +

ˆ̄UiÛ
′ + ˆ̄DiD̂

′ + ˆ̄L′L̂i +
ˆ̄EiÊ

′
)

+ εi
(
Q̂iĤ1

ˆ̄D′ + Q̂′Ĥ1
ˆ̄Di + Q̂iĤ2

ˆ̄U ′ + Q̂′Ĥ2
ˆ̄Ui + L̂iĤ1

ˆ̄E′ + L̂′Ĥ1
ˆ̄Ei

)

+ εN
ˆ̄N ′3 . (5.2)

We set partially universal couplings εiS , ε
i and εN for simplicity. In this chapter, we consider

the superpotential

W = WYukawa +WnMSSM +Wsym +W &Z2 , (5.3)

where WYukawa is the ordinary Yukawa terms in the MSSM superpotential. There are also the

soft SUSY breaking terms for the MSSM multiplets like the soft masses for the stops m2
t̃
.

The lepton number (L) and the baryon number (B) of the vector-like multiplets are set as

follows. Q̂′, ˆ̄U ′, ˆ̄D′, L̂′, and ˆ̄E′ have the same quantum numbers as the corresponding MSSM

multiplets. ˆ̄X ′ has the opposite charge of X̂ ′. The lepton number of the N̂ ′ is decided by the

term k2
ˆ̄L′Ĥ1N̂ ′ to conserve the lepton number: ˆ̄N ′ has the same quantum number with ˆ̄E. Note

that the term only εN
ˆ̄N ′3 violates the lepton number explicitly.

In this model, a singlino which is the fermionic component of the singlet superfield can be

a good candidate of the dark matter [17]. However, the singlino has a finite lifetime in this

model since the R-parity is slightly broken due to the εN
ˆ̄N ′3 term. In Sec. 5.6, we show that

our electroweak baryogenesis scenario is compatible with the singlino dark matter scenario.

5.3 Overview of our scenario

In this section, we present the overview of our scenario. Since there are several steps in this

scenario, we briefly outline the series of the thermal history below. The details of each step are
#2The R-symmetry ZR

5 is also broken softly. Though, we assume that the terms introduced by the broken of
ZR
5 are negligible except the tadpole terms of Ŝ. In addition, we assume that the size of these tadpole terms are

still O(MSUSY) with our setup.
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Figure 5.1: The outline of the thermal history of our scenario. The details are given in the text.

given in the subsequent sections.

Figure 5.1 shows the rough sketch of the thermal history in our scenario. Each graph shows

the potential for the Higgs field and the graphs are aligned from left (i) to right (v) as time

goes. The shaded circle indicates the field value of the Higgs field. T denotes the temperature

of the universe and B (L) denotes the baryon (lepton) number in the universe. H is the Hubble

parameter at each time point. The Hubble parameter during the radiation dominated era is

given as Eq. (4.22). Γsph is the effective sphaleron rate where the sphaleron process changes the

B + L number with conserving the B − L number only if Γsph > H. The situation Γsph > H is

realized when the field value of the Higgs field is smaller than the temperature (see Eq. (5.56)).

Γ&L is the effective lepton number decreasing rate coming from εN
ˆ̄N ′3 term. The lepton number

violating process which changes the L number is active only if Γ &L > H. This condition Γ&L > H

corresponds to T " MSUSY. If T < MSUSY, the number densities of the vector-like multiplets

are suppressed exponentially since their masses are O(MSUSY). As a result, this lepton number

violating process would be decoupled since this process is caused by the scattering (or decay)

processes of the vector-like multiplets (see Eq. (5.60)).

Here, we briefly outline the thermal history (see Figure 5.1).

(i) At enough high temperatures compared to O(MSUSY), the potential for the Higgs field is

lifted and the Higgs field exists at the origin of the potential (symmetric vacuum). Both

Γsph and Γ&L are larger than H. At this time, B = L = 0 holds since there is no conserved

number in the thermal equilibrium.

(ii) As the temperature decreases, the global minimum(breaking vacuum) of the potential for

the Higgs field appears far away from the origin. The first-order phase transition of the

Higgs field occurs at T = T1st. Note that both the temperature T1st and the field value

of the Higgs field at the breaking vacuum are O(MSUSY). At this time, EWGB occurs

and the B + L number is generated in the interval of τEWBG [171–173]. In the interval

of τEWBG, Γ&L does not work (1/τEWBG , Γ &L) and the B − L number is not generated.

On the other hand, the field value of the Higgs field at the breaking vacuum is larger than

- 73 -



Chapter 5. Towards a Scale Free Electroweak Baryogenesis

the temperature in this scenario. It makes the sphaleron rate smaller Γsph < H at the

breaking vacuum. Thus the sphaleron process is decoupled and generated B + L number

is not changed at the breaking vacuum.

(iii) After EWBG, the Higgs field is trapped at the breaking vacuum. During this time, the

sphaleron process is decoupled (Γsph < H). On the other hand, the lepton number violating

process is active (Γ &L " H) and the L number decreases gradually. Thus, the B number is

conserved and the generated B + L number is converted to the B − L number.

(iv) At T = Troll ! MSUSY, the breaking vacuum (the local minimum of the potential for

the Higgs field) disappears. Then the Higgs field returns to the symmetric vacuum again

through the second-order phase transition. The sphaleron process becomes active again

(Γsph > H) since the Higgs field exists at the symmetric vacuum. On the other hand, the

lepton number violating process becomes decoupled due to the Boltzmann suppression of

the vector-like multiplets at this time (Γ &L ! H). As a result, the generated B−L number

is conserved. Thus the B number and L number are fixed in the thermal equilibrium.

(v) After the temperature becomes lower than the electroweak scale O(vEW ), the Higgs field

settles down at the electroweak symmetry breaking vacuum. At this time, both the

sphaleron process and the lepton number violating process are decoupled. Thus, the

generated B − L number is conserved and the BAU exists until today.

In this scenario, there are two nontrivial points.

• The strongly first-order phase transition of the Higgs field occurs at T1st ∼ O(MSUSY).

• The lepton number violating process is active only when T " O(MSUSY)

The first point is discussed in Sec. 5.4. The second point is discussed in Sec. 5.5. In these

sections, we show that these conditions are satisfied actually. The essential point is that the

typical scales of the system such as the potential and the masses of the relevant particles are all

O(MSUSY). On the other hand, the scale MSUSY is not constrained by this scenario. Thus, we

call this scenario as a scale free electroweak baryogenesis #3.

In addition, the singlino dark matter scenario [17] can be compatible with this scenario. This

fact is nontrivial since the R-parity is explicitly broken due to the lepton number violating term

in our model. Fortunately, the lifetime of the singlino is long enough and the singlino can be a

good candidate of the dark matter, as we show in Sec. 5.6.

#3We do not consider the CP-violation sources explicitly. The estimation including them is devoted to future
work.
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5.4 Strongly First-Order Phase Transition

In this section, we show that the strongly first-order phase transition of the Higgs field occurs

at T ∼ O(MSUSY). In Sec. 5.4.1, we introduce the relevant potentials. Sec. 5.4.2 is devoted to

the intuitive understanding of its behavior. In Sec. 5.4.3, we analyze the full potential defined

in Sec. 5.4.1.

5.4.1 Full Scalar Potential

In this chapter, we consider the following potential

V (φi, T ) = V0(φi) + VCW(φi) + VT (φi, T ) , (5.4)

where φi (i = 1, 2, s) are the field values of H0
1 , H

0
2 , S. V0, VCW and VT are the tree-level, the

Coleman-Weinberg and the thermal potential respectively.

Here we assume some conditions to make the potential simpler since the complete one-

loop potential is highly complicated. First, only O(1) couplings are taken into account. Thus,

we neglect the MSSM Yukawa couplings except the top Yukawa coupling yt. We also do not

consider ε couplings which are introduced by the broken of the vector-like multiplet parity Z2

(see Eq. (5.2)). The couplings of the Higgs field with the vector-like multiplets are assumed as

k ≡ k1 = k2 = O(1) and k3, k4 - 1 to make the potential simple (see Eq. (5.1)). Then, the

superpotential becomes

Wpot = ytQ̂3Ĥ2
ˆ̄U3 + λŜĤ2Ĥ1 +

m2
12

λ
Ŝ

+ λ1Ŝ
(
ˆ̄Q′Q̂′ + ˆ̄U ′Û ′ + ˆ̄D′D̂′ + ˆ̄L′L̂′ + ˆ̄E′Ê′ + ˆ̄N ′N̂ ′

)

+ kL̂′Ĥ1
ˆ̄E′ + k ˆ̄L′Ĥ1N̂

′ . (5.5)

Second, we partially neglect the H2 and S dependences of the one-loop potential. As we will

see later, the strongly first-order phase transition occurs in tanβ ∼ 0 direction and these de-

pendences are irrelevant. Third, we set all A-terms to be zero #4 and some soft SUSY breaking

masses to be the same values for simplicity. Fourth, we assume that the scalar components of

the vector-like multiplets are heavy enough and their effects to the thermal self energy can be

neglected.

Here we show the each potential V0, VCW and VT .

V0: We can write the tree-level potential from the superpotential Eq. (5.5) and the soft terms

Eq. (3.28) as

V0(φi) = −M2φ2 +m2
s,0φ

2
s + 2tSφs + λ2φ2φ2s + λ̄2φ4 , (5.6)

#4The CP-violating sources can enter in A-terms. However, we do not consider them since we show the possibility
of the strongly first-order phase transition at high temperatures in this chapter. The study with explicit CP-
violating sources can be found elsewhere.
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where

M2 ≡ −m2
1 cos

2 β −m2
2 sin

2 β +m2
12 sin 2β , (5.7)

λ̄2 ≡ λ2

4
sin2 2β +

ḡ2

8
cos2 2β , (5.8)

and φ2 = φ21 + φ22, tanβ = φ2/φ1.

VCW: For the Coleman-Weinberg potential, we consider the terms from the top/stops V t
CW and

from the vector-like multiplets V vec
CW

VCM = V t
CM + V vec

CW . (5.9)

Each term has the form as

NC

32π2

[
∑

i=scalars

M4
i

(
ln

(
M2

i

Q2

)
− 3

2

)
−

∑

i=fermions

M4
i

(
ln

(
M2

i

Q2

)
− 3

2

)]
, (5.10)

where NC is the color factor. Mi’s are the masses of the corresponding particles.

V t
CW can be written as

V t
CW =

3

32π2

[
∑

±
M4

t̃,±

(
ln

(
M2

t̃,±
Q2

)
− 3

2

)
− 2M4

t

(
ln

(
M2

t

Q2

)
− 3

2

)]
, (5.11)

Mt = ytφ2 , (5.12)

M2
t̃,± = m2

t̃ + (ytφ2)
2 ± ytλ|φs|φ1 , (5.13)

where Mt is the mass of the top quark and Mt̃,± are the diagonalized masses of the stops

with given φ,φs. Here, we assume the universal soft mass m2
t̃
for the left- and the right-

handed stops. Note that in this potential we have neglected the stop At term and D

terms, and we have taken account of the filed dependence on the singlet scalar. These are

different points from Eq. (2.51) in Section 2.2.2.

For the vector-like multiplets, we can diagonalize the mass matrix analytically with the

assumption written in Sec. 5.4.1. Thus V vec
CW can be written as

V vec
CW =

1

32π2



2
∑

±,i=1,2

M4
si±

(
ln

(
M2

si±
Q2

)
− 3

2

)
− 4

∑

±
M4

f±

(
ln

(
M2

f±
Q2

)
− 3

2

)

 .

(5.14)

where Ms1±,Ms2± and Mf± are the diagonalized masses of the vector-like particles. The

mass matrices of the vector-like matters are given in Appendix D.1.1. The diagonalized

massed of the vector-like particles are,

M2
s1± =

1

2

(
m2

L′ +m2
N ′ + 2λ21φ

2
s + k2φ21 ±

√
(m2

L′ −m2
N ′ + k2φ21)

2 + 4λ21k
2φ2sφ

2
1

)
,

(5.15)
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M2
s2± =

1

2

(
m2

L′ +m2
N ′ + 2λ21φ

2
s + k2φ21 ±

√
(m2

L′ −m2
N ′ − k2φ21)

2 + 4λ21k
2φ2sφ

2
1

)
,

(5.16)

M2
f± =

1

2

(
2λ21φ

2
s + k2φ21 ±

√
k4φ41 + 4λ21k

2φ2sφ
2
1

)
. (5.17)

Here, we assume m2
L′ = m2

L̄′ , m
2
N ′ = m2

N̄ ′ = m2
E′ = m2

Ē′ .

VT : For the thermal potential, we consider the improved one-loop thermal potential. It means

that the thermal self energy for all scalars and the longitudinal components of the gauge

bosons are taken into account. Thus we consider the following set of the thermal potential

VT (φi, T ) = V H
T (φ, T ) + V A

T (φ,φs, T ) + V S
T (φs, T ) + V mix

T (φ,φs, T ) . (5.18)

Each term have the form as
∑

i=particlesCiV
B/F
th (Mi/T, T ) where Ci’s are the numerical

constants and V B/F
th is defined as [180]

V B/F
th (x, T ) = ±T 4

π2

∫ +∞

0
dz z2 ln

(
1∓ e−

√
z2+x2

)
, (5.19)

V B/F
th (x, T )

T 4
∼
{
−π2

45 + x2

12 , (x - 1) for boson(B) ,

−7π2

360 + x2

24 , (x - 1) for fermion(F ) .
(5.20)

V H
T is the improved one-loop thermal potential for the Higgs field coming from the Z-boson,

the W-boson and the top-quark.

V H
T (φ, T ) = 6V F

th (Mt/T, T ) +
2

3

[
3V B

th (MW /T, T ) +
3

2
V B
th (MZ/T, T )

]

+
1

3

[
3V B

th

(
M̃W /T, T

)
+

3

2
V B
th

(
M̃Z/T, T

)]
, (5.21)

(5.22)

where M2
W = g2φ2/2, M2

Z = ḡ2φ2/2, M̃2
W = M2

W +19g2T 2/6 and M̃2
Z = M2

Z +19g2T 2/6+

59g′2T 2/18. V B/F
th is defined as [180]. Note that if φ ! T holds, the Higgs field φ obtains

thermal mass terms:

V H
T (φ, T ) )

(
y2t
4

sin2 βT 2 +
3

4

(
2ḡ2 + g2

)
T 2

)
φ2 . (5.23)

V A
T comes from the thermal loops of the charged Higgs boson and the CP-odd Higgs

boson. We have to take this effect into account since a relatively light charged/CP-odd

Higgs boson is favored to induce the first-order phase transition. This term can be written

as

V A
T (φ,φs, T ) = V B

th

(
M̃charged/T, T

)
+

1

2
V B
th

(
M̃odd/T, T

)
, (5.24)

M̃2
charged = m2

1 +m2
2 + 2λ2φ2s +

g2

2
φ2 +ΠA , (5.25)
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M̃2
odd = m2

1 +m2
2 + 2λ2φ2s + λ2φ2 +ΠA , (5.26)

ΠA =
ḡ2

4
T 2 +

g2

2
T 2 +

y2t
4
T 2 +

λ2

3
T 2 +

k2

6
T 2 . (5.27)

where M̃charged is the mass of the charged Higgs boson and M̃odd is the mass of the CP-odd

Higgs boson.

V S
T is the one-loop thermal potential for φs coming from the colored vector-like fermions

and the Higgsinos as

V S
T (φs, T ) = 24V F

th (λ1φs/T, T ) + 4V F
th (λφs/T, T ) . (5.28)

The second term comes from the Higgsinos and we neglect their small mixing to the singlino

and the gauginos. Note that if φs ! T holds, φs obtains the thermal mass terms:

V S
T (φs, T ) )

(
λ21T

2 +
λ2

6
T 2

)
φ2s . (5.29)

V mix
T is the one-loop thermal potential coming from the vector-like multiplets L̄′, L′, Ē′,

E′, N̄ ′, N ′. This potential can be written as

V mix
T = 2

∑

i±,i=1,2

V B
th (M̃si±/T, T ) + 4

∑

±
V F
th (Mf±/T, T ) . (5.30)

M̃si± can be obtained by the replacement of m2
L′ → m2

L′ + 3g2T 2/8 + k2T 2/6 and m2
N ′ →

m2
N ′ + k2T 2/3 in M2

si± (see Eq. (5.15, 5.16)). Here, we neglect the corrections of order

O(g′2T 2) in the thermal self energy.

5.4.2 Tree-Level Analysis including Thermal Mass Terms

In this section, we give the intuitive understanding of the potential. We consider the simplified

potential which has only the tree-level terms and the thermal mass terms. As the thermal mass

terms, we include the terms T 2φ2i . Analysis including the full terms is written in the next

subsection. Here, we show that the potential is deformed due to the thermal mass terms for

the singlet field φs. We also show that the global minimum of the potential for the Higgs field

appears far away from the origin only at high temperatures.

The potential with only the tree-level terms and the thermal mass terms Vtr+th can be written

as

Vtr+th(φ,β,φs, T ) = (y2φT
2 −M2)φ2 + (y2ST

2 +m2
s,0)φ

2
s + 2tSφs + λ2φ2φ2s + λ̄2φ4 , (5.31)

where y2φ = y2t
4 sin2 β+ 3

4(2ḡ
2+ g2) and y2S = λ21+

λ2

6 (see Eq. (5.23,5.29)). The field value of the

singlet scalar field can be driven from the minimization condition ∂Vtr+th(φi, T )/∂φs = 0. It is

derived as

φs = − tS
m2

s,0 + λ2φ2 + y2ST
2
∼ O(MSUSY) . (5.32)
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Since tS ∼ O(M3
SUSY) [13–15], the absolute field value of the singlet scalar field becomes

O(MSUSY). Note that it decreases when the field value of the Higgs field φ or the tempera-

ture T increases. This is one of the key features of our model. After substituting the field value

of the singlet scalar field, the potential becomes

Vtr+th(φ,β, T ) = −M2φ2 + y2φT
2φ2 + λ̄2φ4 − t2S

m2
s,0 + λ2φ2 + y2ST

2
. (5.33)

For convenience, we rewrite the potential as the following form

v(X,β, T ) ≡ Vtr+th(φ,β, T )
f(T )m2

s,0

t2S

= a(β, T )2X2 +
(
−b(β, T )2 + c(β, T )2

)
X − 1

1 +X
, (5.34)

where

f(T ) ≡ 1 + y2S
T 2

m2
s,0

, X ≡ 1

f(T )

λ2φ2

m2
s,0

, (5.35)

a(β, T )2 ≡ [f(T )]3
λ̄2m6

s,0

λ4t2S
, b(β, T )2 ≡ [f(T )]2

M2m4
s,0

λ2t2S
, c(β, T )2 ≡ [f(T )]2

y2φT
2m4

s,0

λ2t2S
. (5.36)

Note that f(T ) ≥ 1 holds. In addition, a(β, T ), b(β, T ) and c(β, T ) are increasing functions with

respect to T .

From here, we consider the following conditions:

(i) Only the electroweak symmetry breaking vacuum is realized at the zero temperature.

(ii) The global minimum of the potential for the Higgs field appears far away from the origin

at high temperatures.

For simplicity, we mainly consider two directions. One is the direction with βvac being the angle

of the vacuum at the zero temperature. The other is the direction with βtr being the typical

angle of the first-order phase transition. As we will see later, βtr ∼ 0 is favored to realize the

first-order phase transition.

Zero temperature conditions

First, let us consider the conditions to have only the electroweak symmetry breaking vacuum at

the zero temperature.

For the βvac direction, in order to realize the electroweak symmetry breaking vacuum prop-

erly, we need

∂Vtr+th(φ,βvac, T = 0)

∂φ

∣∣
φ∼0

< 0 , (5.37)
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∂Vtr+th(φ,βvac, T = 0)

∂φ

∣∣
φ=vEW

= 0 , (5.38)

where vEW ) 174.1 GeV is the vacuum expectation value of the Higgs field at the zero temper-

ature. φ ∼ 0 indicates that φ is at the vicinity of the origin. These conditions can be rewritten

as

b(βvac, 0) > 1 , (5.39)

b(βvac, 0)
2 =

1

(1 +XEW )2
+ 2a(βvac, 0)

2XEW

) 1 + 2XEW (a(βvac, 0)
2 − 1) , (5.40)

where XEW ≡ λ2v2EW /m2
S . Note that XEW - 1 holds since we assume the soft SUSY breaking

scale is much larger than the electroweak scale. In order to satisfy these conditions, we need

a(βvac, 0) > 1 , (5.41)

b(βvac, 0) = 1 +O
(
v2EW

m2
S

)
. (5.42)

In addition, we impose the condition not to generate the minimum at β )/ βvac

∂Vtr+th(φ,β, T = 0)

∂φ

∣∣
φ∼0

> 0 for β )/ βvac . (5.43)

This condition can be rewritten as

b(β, 0) < 1 for β )/ βvac . (5.44)

For the βtr direction, there should be no global minimum at the zero temperature. Thus,

the condition Vtr+th(∀φ,βtr, 0)− Vtr+th(0,βtr, 0) > 0 is imposed and can be rewritten as

(a(βtr, 0)− 1)2 + b(βtr, 0)
2 < 1 . (5.45)

High temperatures conditions

Next, let us consider the conditions to have the global minimum far away from the origin at

high temperatures.

Suppose that at the critical temperature TC , two minima of the potential appear at the

origin and at X = XC ,β = βtr. The condition becomes

v(XC ,βtr, TC) = v(0,βtr, TC) , (5.46)

v′(XC ,βtr, TC) = 0 , (5.47)

where the prime means the partial derivative by X. To have the positive solutions of XC and

TC , the necessary and sufficient conditions are

a(βtr, TC) < 1 , (5.48)

(a(βtr, TC)− 1)2 + b(βtr, TC)
2 > 1 . (5.49)
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Solutions

Let us see that the conditions Eqs. (5.41), (5.42), (5.44), (5.45), (5.48), (5.49) can be satisfied

simultaneously. We divide these conditions to the pairs of Eqs. (5.42, 5.44), Eqs. (5.41, 5.48)

and Eqs. (5.45, 5.49).

First, we see the conditions Eqs. (5.42, 5.44). To satisfy these conditions simultaneously, let

us parameterize b(β, 0) as the following form

b(β, 0) = b1 + b2 cos(2β − 2b3) . (5.50)

Note that b1, b2 and b3 are the function of m2
1, m

2
2, m

2
12, λ

2, tS and m2
s,0 (see Eqs. (5.7, 5.36)).

If we take these values to satisfy b1 + b2 ) 1, b2 > 0 and b3 ) βvac, these conditions can be

satisfied easily.

Second, we consider the conditions Eqs. (5.41, 5.48). Note that the conditions Eqs. (5.41, 5.48)

are the opposite conditions. In addition, a(β, T ) is an increasing function of T . Thus, the two

conditions Eqs. (5.41, 5.48) can not be satisfied with only one direction. However, these con-

ditions can be satisfied with the two directions βvac and βtr are needed. Next, let us see that

βtr ∼ 0 is favored. Note that if the ratio a(βvac, 0)/a(βtr, 0) is larger, it is easier to satisfy the

two conditions Eqs. (5.41, 5.48) at the same time. On the other hand, if λ2 > ḡ2/2 holds, a(β, 0)

can be parameterized as

a(β, 0) = a1 − a2 cos(4β) , (5.51)

with a1, a2 > 0. Thus, if βvac is near π/4, βtr ∼ 0 is favored to give the ratio a(βvac, 0)/a(βtr, 0)

larger and satisfy these two conditions.

Finally, let us consider the conditions Eqs. (5.45, 5.49). The discrepancy between the con-

ditions Eqs. (5.45, 5.49) can be reconciled by f(TC). In other words, the thermal mass of

φs can work to generate the global minimum of the potential for the Higgs field only at high

temperatures. Actually, if we find the values of a(βtr, 0), b(βtr, 0) and f(TC) which satisfy

(a(βtr, 0)− 1)2 + b(βtr, 0)
2 < 1 , (5.52)

(
f(TC)

3/2a(βtr, 0)− 1
)2

+ f(TC)
2b(βtr, 0)

2 > 1 , (5.53)

the conditions Eq. (5.45, 5.49) can be satisfied.

The above solutions can be achieved simultaneously with appropriate parameters. Thus the

global minimum far away from the origin can be generated only at high temperatures due to

the thermal mass for the singlet field φs. Note that small value of a(βtr, 0) and large value of

b(βtr, 0) are favored in order to satisfy the above conditions. Small a(βtr, 0) is satisfied easily

with tanβvac ∼ 1. On the other hand, large value of b(βtr, 0) corresponds to small m2
12 compared

to |m2
1 + m2

2|. This situation makes the charged Higgs boson light. As we will see in the full

potential analysis of the next subsection, the strongly first-order phase transition can actually
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Table 5.2: The parameters at the benchmark point.

tanβvac λ2 λ21 k ts/m3
s,0 m2

1/m
2
s,0 m2

2/m
2
s,0 m2

12/m
2
s,0 Q/ms,0

2.0 0.50 0.50 1.0 0.58 -0.1657 -0.1675 0.001226 1

occur at the high temperature. In addition, the region with tanβvac ∼ O(1) and the light

charged Higgs boson is favored.

5.4.3 Numerical Analysis with Full Potential

In this section, we analyze the full potential introduced in Sec. 5.4.1. We show that the strongly

first-order phase transition can actually occur at the temperature comparable to MSUSY . At

first, we show the thermal history at a benchmark point. Next, the conditions for the strongly

first-order phase transition are discussed. Then, we present a scatter plot and show that the

region with low tanβvac and the light charged Higgs boson is favored in our scenario.

Thermal history

Now, let us see the typical thermal history of our scenario. Table 5.2 shows the benchmark

parameters. We take tanβvac = 2.0, λ2 = λ21 = 0.50 and κ = 1.0. The standard model coupling

constants have scale dependence. We take the values at the scale 10 TeV: y2t = 0.753, ḡ2 = 0.528

and g2 = 0.394. For simplicity, we assume that all of the soft SUSY breaking masses are same

m2
t̃
= m2

X′ = m2
X̄′ = m2

s,0. In order to realize the electroweak symmetry breaking vacuum at

the zero temperature, O(v2EW/m2
s,0) corrections are needed. However, such small corrections are

negligible for the high temperature dynamics. Thus we do not consider the corrections #5. Note

that we have checked that at the benchmark point there is no Landau pole of couplings k up to

the GUT scale using one-loop RGEs [181].

Figure 5.2 shows the potential for the Higgs field Vmin(φ, T ) as a function of φ with varying

temperatures T . φs and tanβ are calculated to minimize the potential for each given φ and T .

Typically, φs/ms,0 ∼ −0.5 and tanβ ∼ 0.01 − 0.1 hold. At the high temperature (the red line

T/ms,0 = 0.4), the origin is the only minimum of the potential. As the temperature decreases,

a global minimum appears at φ/ms,0 ∼ 0.4 (see the orange line T/ms,0 = 0.37). Then, after

T/ms,0 = 0.31 (the cyan line), the potential is lifted up and the local minimum disappears at

T/ms,0 = 0.17 (the black line).

Note that ms,0 can be any value in this analysis. If ms,0 is varied, the size of the corrections

O(v2EW/m2
s,0) changes. In addition, the values of the standard model couplings change since

#5We impose the zero temperature conditions as a(βvac, 0) > 1 and b(βvac) = 1 (see Eq. (5.41, 5.42)). In order
to impose these conditions easily, we absorb the tadpole and quadratic terms of the Coleman-Weinberg potential
into the tree parameter. The explicit formulae of the tadpole and quadratic terms are given in Appendix D.1
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their values depend on the scale to calculate. However, up to these small corrections, the results

do not depend on the value of ms,0. Thus we call this scenario as a scale free electroweak

baryogenesis.

Strongly first-order phase transition

Here, we show the conditions for the strongly first-order phase transition.

First, let us see the condition for the first-order phase transition to occur. If the global

minimum of the potential exists except the origin, the vacuum tunneling from the origin to the

minimum can occur. We call this global minimum as the breaking vacuum and the origin as the

symmetric vacuum. The finite temperature vacuum tunneling rate Γtran. per unit space-time

volume V is given as the following form:

Γtran.

V
∼ T 4e−S(T ) , (5.54)

where S(T ) ≡ S3/T and S3 is the three-dimensional Euclidean action which is evaluated on the

bounce solution [182, 183]. The condition for the first-order phase transition to occur is given

by

∫
dt

1

H3
T 4e−S(T ) = 1 . (5.55)

For T ∼ O(TeV), the first-order phase transition occurs at S(T ) ! 130 [184]. Here, we adopt

the condition S(T ) = 130 for the first-order phase transition to occur. Since this condition has

only a logarithmic dependence on the temperature, we ignore this dependence. We show this

condition of the first-order phase transition explicitly in Appendix C.1.2.

Second, we show the condition for the strongly first-order phase transition. After the vacuum

tunneling occurs, the Higgs field is trapped at the breaking vacuum. To cause EWBG, the

sphaleron process have to be decoupled at the breaking vacuum since the B+L number should

not be washed out. The sphaleron rate is evaluated as [185]

Γsph ∝ Te−2 4
√
2π
g

∆φ
T , (5.56)

with ∆φ ≡
√
φ21 + φ22 at the breaking vacuum. In order to decouple the sphaleron process,

Γsph - H is required. This condition is equivalent to ∆φ/T " 0.9 [129], which is derived at

T ∼ O(100)GeV. Since this condition has only a logarithmic dependence on the temperature,

we adopt the condition ∆φ/T > 0.9 as the strongly first-order phase transition #6.

Figure 5.3 shows S(T ) and ∆φ/T as a function of T . The three-dimensional (φ1,φ2,φs)

bounce solution S(T ) is analyzed numerically by CosmoTransitions software package [187].

The thick lines correspond to the benchmark point. The condition for the strongly first-order

#6With higher temperature, the condition value 0.9 becomes smaller [186]. Thus, the condition ∆φ/T > 0.9 is
conservative.
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Figure 5.3: The classical action S(T ) for the three-dimensional (φ1,φ2,φs) bounce solution
(Blue) and ∆φ/T (Red) as a function of T. We take λ21 = 0.49 (dashed), 0.50 (thick) and 0.55
(dotted). The gray line represents S(T ) = 130 and ∆φ/T = 0.9.

phase transition is ∆φ/T > 0.9 when S(T ) decreases to 130 at the first time. Note that the

temperature T decreases as the time goes. From the Figure 5.3, we can see that the action

S(T ) becomes smaller than 130 at the first time with ∆φ/T ∼ 1.1 when T/ms,0 ∼ 0.34 at the

benchmark point. Therefore, the strongly first-order phase transition occurs at this time. Then

the B + L number is generated by the EWBG process and the BAU is generated thanks to

the lepton number violating process (see Sec. 5.5). The other lines are drawn with the same

parameters at the benchmark point except λ1. Note that the action value S(T ) is sensitive

to the parameter λ1. With larger λ1, the thermal effects on the φs become stronger. Then,

the potential gets more deformed. As a result, the action value S(T ) and ∆φ/T |S=130 become

smaller. With λ21 = 0.55, ∆φ/T is not larger than 0.9 when S(T ) becomes 130 at the first time.

Thus, the phase transition is not strong. On the other hand, with smaller λ1, S(T ) does not

decrease to 130. The strongly first-order phase transition occurs with 0.50 ! λ21 ! 0.55 for

the benchmark point. Figure 5.4 indicates the profile of the bounce solution at the benchmark

point. From this figure, we find that the typical wall width is LwT ∼ 30, and ∆β ∼ 0.1.

Scatter plot

In order to show the favored region in our scenario, we present a scatter plot in the plane of

tanβvac and the charged Higgs boson mass Mcharged (Figure 5.5). We have scanned the following

parameter ranges,

200GeV < Mcharged < 2TeV ,

1.5 < tanβvac < 10 ,
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Figure 5.4: The bounce solution profile for the first-order phase transition at the benchmark
point. The horizontal axis is the space coordinate r normalized by ms,0. r = 0 corresponds to
the center of the bubble. The blue lines indicate the field values of φ1, φ2 and −φs. The red
line corresponds to tanβ.

0.3 < λ21 < 1.0 ,

0.5 < tS/m3
s,0 < 0.7 , (5.57)

with fixed values k = 1.0, λ2 = 0.5, m2
t̃
= m2

L′ = m2
N ′ = m2

s,0. We have estimated the bounce

action by a simplified way in which we use the one-dimensional scalar potential Vmin(φ, T ). The

fitting formula of the Euclidean action is given in Appendix C.2. We have checked the error

of the fitting formula of the Euclidean action is at most ∼ 20% compared with the results of

by the three-dimensional scalar potential. Here we do not consider the mass of the standard

model Higgs boson. It depends on Aλ (for low tanβ region) and m2
t̃
(for large tanβ region)

which do not change our result so much. Thus when MSUSY = O(10) TeV, we can obtain the

standard model Higgs boson mass 125 GeV easily with varying Aλ or m2
t̃
[57]. Therefore, we

set ms,0 = 10 TeV here and do not consider their effects. At all points in Figure 5.5 the first-

order phase transition (∃S(T ) < 130) occurs. At the green points the strongly first-order phase

transition (∆φ/T > 0.9) occurs. We find that the region with low tanβ and the light charged

Higgs boson is favored in our scenario. This is consistent with the intuitive understanding in

the previous subsection.

5.5 Baryon Asymmetry of the Universe

So far, we have seen that the strongly first-order phase transition can occur at a high temperature

in our scenario. In this section, we show that the proper amount of the BAU can be generated.
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Figure 5.5: The scatter plot in tanβvac − Mcharged plane. The red shaded region shows the
exclusion region by B̄ → Xsγ search. At all points the first-order phase transition (∃S(T ) < 130)
occurs. At the green points the strongly first-order phase transition (∆φ/T > 0.9) occurs. The
star corresponds to the benchmark point.

Here, we consider the lepton number violating process caused by εN
ˆ̄N ′3. This process is needed

for the BAU to exist until today since the generated B+L number by EWBG should be converted

to the B − L number.

The lepton number (L) and the baryon number (B) of all multiplets are defined in Sec. 5.2.

It is important that only the term εN
ˆ̄N ′3 violates the lepton number. To make the discussion

clear, we define N ′ number by the approximate U(1) symmetry N̂ ′ : 1, ˆ̄N ′ : −1. This N ′ number

is contained in the L number via the mixing ε (see Eq. (5.2)). Note that the masses of the

fermion and the scalar components of N̂ ′, ˆ̄N ′ are O(MSUSY).

Here, we see the L number decreasing process and the thermal history of our model to show

the generation of the BAU.

Lepton number decreasing process

Let us see the details of the L number decreasing process initially. There are two steps in this

process. At first, the L number in the standard model sector is converted to the N ′ number via

the mixing terms ε. Then, the N ′ number decreases due to the term εN
ˆ̄N ′3. For simplicity, we

consider the situation that the rate of the former process is larger than that of the latter one

with assuming ε > εN . Thus, the bottleneck process of the L number violation is the process

caused by εN
ˆ̄N ′3. Therefore, we consider this process only and denote the rate of this process

as Γ &N ′ .
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At first, let us see Γ &N ′ to estimate the effective L number decreasing rate Γ &L. We assume

that the scalar component of ˆ̄N ′ does not decay to two fermion components of ˆ̄N ′ kinematically

for simplicity #7. Then, the N ′ number is violated only by the scattering processes. For

T ! O(MSUSY), Γ &N ′ can be estimated as

Γ &N ′(T ) ∼ ε2N
16π

(MSUSYT )
3/2

M2
SUSY

exp

(
−MSUSY

T

)
, (5.58)

and the equilibrium N ′ number density nN ′ obeys

dnN ′

dt
= −3HnN ′ − Γ &N ′nN ′ + (lepton number conserving processes) . (5.59)

Then the effective L number decreasing rate Γ &L can be written as

Γ &L(T ) =
nN ′

nL
Γ&N ′(T ) ∼ ε2N

16π

MSUSY

N*
exp

(
−2MSUSY

T

)
. (5.60)

The nL is the equilibrium L number density and N* ∼ 10 is the number of the light components

of the leptons#8. Here we use nN ′ = (1/6)(MSUSYT )3/2exp(−MSUSY/T )(µL/T ) and nL =

(N*/6)T 3(µL/T ) [188].

Thermal history

Now, let us consider the thermal history of our scenario (for the overview see Sec. 5.3). At

first, the strongly first-order phase transition of the Higgs field occurs at T1st. The Higgs field

is trapped at the breaking vacuum of the potential until T = Troll. Then the Higgs field returns

to the origin again. At the benchmark point, T1st ) 0.34 ms,0 and Troll ) 0.15 ms,0 hold. If

Γ&L " H holds during T > Troll and Γ &L ! H holds during Troll > T , the BAU exists as explained

below.

At the time T = T1st, the strongly first-order phase transition occurs. In our model, we

assume that the B + L number is generated at this time. This EWBG process is supposed

to occur in the time span τEWBG and typically τEWBG - 1/H holds. Since we consider the

situation Γ &L(T1st) is the same scale of H(T1st), the effects of Γ &L can be negligible. Then the

B + L number is generated with the B − L number unchanged

YB(T1st) + YL(T1st) > 0 , (5.61)

YB(T1st)− YL(T1st) = 0 , (5.62)

#7At the benchmark point, the scalar component of ˆ̄N ′ can decay to two fermion components of ˆ̄N ′. This is

avoided by choosing the coupling λ1Ŝ ˆ̄N ′N̂ ′ larger and the SUSY breaking mass term for the scalar component of
ˆ̄N ′ smaller. This choice does not change the result of the previous section.
#8Strictly speaking, a linear combination of the B number and the L number decreases by the N ′ number

violating process. However, the amount of the BAU is changed only by a factor of a few with this effect. Thus,
we do not consider this effect for simplicity.
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where YB/L is defined as the baryon/lepton number density divided by the entropy density.

After EWBG, the Higgs field is trapped at the breaking vacuum during T1st > T > Troll.

The sphaleron process decouples because the field value of the Higgs field is larger than the

temperature. As a result, the B number conserves. On the other hand, the L number gradually

decreases due to the L number violating proccess. The L number decreasing factor Ndec can be

estimated as

Ndec ≡
∫ t(Troll)

t(T1st)
Γ &Ldt =

∫ T1st

Troll

Γ &L(T )

HT
dT . (5.63)

Thus, just before T = Troll, the L number and the B number become

YL(Troll) ) e−NdecYL(T1st) , (5.64)

YB(Troll) = YB(T1st) . (5.65)

After the Higgs field returns to the origin at Troll > T , the sphaleron process becomes active

again. Note that the sphaleron process makes the B +L number wash-out towards the thermal

equilibrium with conserving the B−L number. On the other hand, the B−L number decreases

by the L number violation process εN . The decreasing factor Nw can be estimated as

Nw ≡
∫ t(T=0)

t(Troll)
Γ &Ldt =

∫ Troll

0

Γ &L(T )

HT
dT . (5.66)

Then the B number and the L number follow

YB(Tf) + YL(Tf) ∝ YB(Tf)− YL(Tf) , (5.67)

YB(Tf)− YL(Tf) ) e−Nw/c (YB(Troll)− YL(Troll)) , (5.68)

where Tf is the temperature at the sufficiently late time MSUSY , Tf and c ≡ (nL − nB)/nL is

an O(1) factor.

At the end, T = Tf , the B number and the L number are estimated as

YB(Tf) ) d−1 · e−Nw/c
(
1− e−Ndec

)
YB(T1st) , (5.69)

YL(Tf) ) −c−1 · e−Nw/c
(
1− e−Ndec

)
YB(T1st) , (5.70)

with d ≡ (nB − nL)/nB. If all particles except the standard model particles are heavy enough,

c = 79/51 and d = 79/28 hold [188]. In order to obtain the sizable BAU, Ndec , 1 and Nw - 1

are favored (see Eqs. (5.69, 5.70)). This corresponds to Γ &L " H during T > Troll and Γ &L ! H

during Troll > T . Note that both Ndec and Nw are proportional to ε2N and the quantity Ndec/Nw

is a function of T1st, Troll and MSUSY. Thus, if Ndec/Nw , 1 holds, the sizable BAU can

exist until today since we can find the suitable value of ε2N which makes large Ndec (Ndec , 1)
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and small Nw (Nw - 1). At the benchmark point, we obtain Ndec/Nw ∼ 30 #9. To ensure

Ndec " 1, we can choose εN ∼ 10−5. With this choice of εN , the generated baryon asymmetry

at the EWGB exists until today. In general, Ndec/Nw , 1 can hold since there is a hierarchy

MSUSY > T1st > Troll. Thus, the BAU can exist by this mechanism in our scenario.

5.6 Singlino Dark Matter

In this section, we show that the singlino dark matter scenario is compatible with our new

baryogenesis scenario. At first, we briefly review the properties of the singlino dark matter

as we have shown thoroughly in the previous chapter. Then, we estimate the lifetime of the

singlino dark matter with the lepton number violating term. We show that it does not suffer

from experimental constraints.

Let us review the singlino dark matter scenario (the detail is written in the previous chapter).

In our model, after integrating out the particles with masses above the electroweak scale, the

low energy effective Lagrangian becomes

Leff = LSM − ms̃

2
¯̃ss̃− λeff

2
h¯̃ss̃ , (5.71)

where h is the standard model Higgs boson and LSM is the standard model Lagrangian. Here,

s̃ is the singlino, the lightest neutralino mainly composed by the fermionic component of the

singlet superfield Ŝ. We denote the singlino as the Majorana spinor. The effective coupling λeff

can be estimated as

λeff ∼ λ
vEW

MSUSY
sin 2β . (5.72)

The singlino mass ms̃ is dominated by the one-loop corrections when MSUSY is large. In our

model, the singlino can get sizable corrections from vector-like multiplets sector. The singlino

mass can be evaluated as #10

ms̃ ∼
λ21

(4π)2
MSUSY . (5.73)

In this model, the singlino can be a good candidate of the dark matter. If ms̃ ) 60 GeV

and λeff ∼ O(0.01), the singlino dark matter scenario is successful with resonant annihilation

via the exchange of the standard model Higgs boson. Such a situation can be realized when

MSUSY ∼ O(10) TeV, tanβ ∼ O(1) and λ,λ1 ∼ O(1). Note that the low tanβ and O(1)
#9This value depends on the value of the exponential factor in Eq. (5.60). Here, we set this exponential factor

as the typical masses of the vector-like fermions MSUSY = tS/m
2
s,0 ) |φs| . However this exponential factor

also depends on the masses of the vector-like scalar bosons since at least one boson particle participates in the
scattering process. Typically these masses are heavier than |φs| and this exponential factor becomes larger. Thus,
we have chosen the conservative value here since the ratio Ndec/Nw becomes larger with larger exponential factor.
#10Strictly speaking, the singlino mass is promotional to the A-terms (Aλ1SX̄

′X ′) which are dropped off in the
previous discussions. However, the effects of such A-terms ∼ MSUSY to the thermal dynamics are supposed to
be small and do not change the previous results.
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couplings are realized with our baryogenesis scenario. The soft SUSY breaking scale MSUSY is

determined by the requirement of the singlino dark matter scenario, especially by the effective

coupling λeff Eq. (5.72).

In our model, there are the lepton number violating term (εN ) and the SM-extraparticles

mixing terms (ε). Thus, this model does not conserve the R-parity and the singlino can decay

to the standard model particles. So, let us estimate the decay rate of the singlino. Note that the

term εN
ˆ̄N ′3 breaks the lepton number by three ∆L = 3. In addition, the decay process breaks

the vector-like multiplet parity Z2 at least three times.

Let us consider the dominant decay channel s̃ → ννν. The other channels are more sup-

pressed since the number of final state particles increases if the decay products include charged

leptons. To see the coupling of the s̃ννν, we consider the following fermion four point operator

which arises from integrating out the particles whose masses are O(MSUSY)

Os̃ννν = fs̃νννεN ε
3ψs̃ψνψνψν

M2
SUSY

. (5.74)

Here, fs̃ννν is a numerical factor and ε denotes εi or εiS defined in Eq. (5.2). We denote ψ’s as

the Weyl spinors. The decay rate of the singlino due to this operator can be evaluated as

Γ(s̃ → ννν) ∼ ε2N ε
6f2

s̃ννν

3072π3
m5

s̃

M4
SUSY

. (5.75)

The mass of the singlino is favored to be ms̃ ) 60 GeV in order to realize resonant annihilation

via the exchange of the standard model Higgs boson. On the other hand, the typical value of

the Z2 breaking couplings ε is O(10−5) (see Sec. 5.5). Thus the lifetime of the singlino τs̃ can

be estimated as

τs̃ ) 0.8× 1036
(
10−5

εN

)2(
10−5

ε

)6(
10−4

fs̃ννν

)2(
MSUSY

10 TeV

)4(60 GeV

ms̃

)5

[sec] . (5.76)

Now, we estimate the upper bound on the factor fs̃ννν by a diagrammatic way. Let us

consider the diagrams for the operator Os̃ννν . To draw the diagram, we need the vertex εN
ˆ̄N ′3.

Thus, each diagram includes the vertex εN and three propagators of ˆ̄N ′. Since the final state

contains three neutrinos, these three propagators of ˆ̄N ′ should be converted to them. Therefore,

there are three lines which start from ˆ̄N ′ to the neutrino. We call these lines as lepton lines.

For each lepton line, at least one propagator of a Higgs multiplet or one vacuum expectation

value of the Higgs field vEW should be attached #11. If vEW ’s are attached to all three lepton

lines, the diagram may have no loops and fs̃ννν is suppressed by (vEW /MSUSY)3. If vEW ’s are

attached to two lepton lines of three, the diagram has at least one loop and fs̃ννν is suppressed

by (1/16π2)(vEW /MSUSY)2. If vEW is attached to one lepton line of three, the diagram has at

#11There are also the diagrams in which some lepton lines have no propagator of a Higgs multiplet and no
vacuum expectation value of the Higgs field. However, such a diagram is highly suppressed since a lot of vertices
are needed. Therefore, we ignore such diagrams here.
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least one loop and fs̃ννν is suppressed by (1/16π2)(vEW /MSUSY). If vEW ’s are not attached to

any lepton lines, the diagram has at least two loops and fs̃ννν is suppressed by (1/16π2)2. In

any cases, the following inequality holds

fs̃ννν ! 10−4 , (5.77)

if MSUSY = O(10) TeV. Note that this estimate of the upper bound on fs̃ννν is conservative.

From Eq. (5.76) and Eq. (5.77), the lifetime of the singlino becomes long τs̃ " 1036 sec. . On

the other hand, there are experimental bounds on the lifetime of the dark matter. First, the

lifetime of the dark matter should be much longer than the lifetime of the universe ∼ 1017 sec. .

Second, there are constraints from the cosmic ray searches, τDM " 1029 sec. [189]. Obviously,

the lifetime of the singlino is much longer than the experimental bounds #12. Thus there is no

problem in the decay of the singlino and the singlino can be a good candidate of the dark matter

in our scenario.

5.7 Discussions

We comment on the experimental constraints for the light charged Higgs boson and the SM-

extraparticles mixings. First, let us consider the constraints for the light charged Higgs boson.

The relatively light charged Higgs boson and heavy SUSY particles are favored in our scenario.

It means that this model can be regarded as the two-Higgs doublet model at low energy regions.

Even if SUSY particles are heavy, the existence of the light extra scalars is constrained by the

flavor and the CP violation physics. In the viable parameter region of our scenario, the process

B̄ → Xsγ is the only relevant constraint from the flavor physics. The red shaded region in

Figure 5.5 is excluded at 95 % C.L. by a current bound [190]. On the other hand, the electron

EDM is one of the severe constraints on a new CP-violating phase [81]. In our scenario, a new

CP-violating phase may enter into the potential for the Higgs field through only Aλ term. The

electron EDM is induced by the mixing between the CP-even and the CP-odd Higgs bosons

which is estimated as ∼ λ2(tS/m3
s,0)(λAλ/ms,0).If Aλ/ms,0 ! 0.1, our scenario is compatible

with the current bound of the electron EDM experiments [191].

Second, the flavor changing neutral current appears through the SM-extraparticles mixings.

One of the severe constraints comes from the branching ratio of µ → eγ, Br(µ → eγ) < 5.7 ×
10−13 (90 % CL) [79]. We have estimated this value at our benchmark point,

Br(µ → eγ) ∼ ε4 × 10−8. (5.78)

Thus if we take ε ! 10−2, the bound from Br(µ → eγ) can be escaped easily.
#12The experimental bounds by the cosmic ray searches come from the various decay channels of the dark matter.
Especially, the decays to the charged leptons are important. However, in our model, the decays of the singlino to
the charged leptons are more suppressed than the decay to three neutrinos since the number of the final states
increases. Therefore, the bounds can be evaded more easily.
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Finally, we comment on the neutrino masses. Although this model includes the matters

which couple to the neutrinos, neutrino masses are protected to be zero. In order to generate

the nonzero neutrino masses, we have to extend our model or change the imposed symmetry.

For example, let us introduce three right-handed neutrino superfields ˆ̄N ′′ which have ZR
5 R-

symmetry charge 3, Z3 symmetry charge 1 and Z2 parity even. We also introduce an extra

local U(1) symmetry, and ˆ̄N ′′ has charge 2 and other particles do not have charge under this

symmetry. If there is an additional Planck suppressed term W = ( φ̂
MPl

)2Ĥ2L̂
ˆ̄N ′′ where φ̂ is the

singlet under ZR
5 and Z3, an even parity under Z2, and has charge −1 under the extra symmetry,

the appropriate Dirac neutrino masses are generated when the extra symmetry breaking scale

is 〈φ〉 ∼ 1013 GeV.

As this chapter is a first study of a scale free electroweak baryogenesis scenario, much work

is left to be done. First, we have to check whether the proper amount of the baryon number

can be generated within our scenario including the explicit CP-violating phases. Second, the

vacuum stability against the charged Higgs field direction has to be checked in detail.

We have to comment on the stability for the charged Higgs field direction of the potential. At

the zero temperature, there is a charge breaking global minimum in the charged Higgs direction if

we consider the tree-level potential at the benchmark point (see Appendix D.2). This is because

the charged Higgs boson mass can become negative in the relatively large φ region since the field

value |φs| becomes small (see Eq. (3.44)). To see that there is no problem with this minimum,

we have checked two conditions. First, we have checked that the charged Higgs boson mass

including the thermal self energy is positive for all time of the universe#13. Second, we have

calculated a tunneling rate from the electroweak breaking vacuum to the charge breaking global

minimum at the zero temperature with tree-level potential. Then it turned out that the lifetime

of the electroweak breaking vacuum is much longer than the one of the universe (S ∼ O(1000)).

Thus, we consider that this minimum gives no problem. The full analysis of the stability against

the charged Higgs field direction is complicated and will be done in the future.

5.8 Conclusion of Scale Free Electroweak Baryogenesis

In this chapter, we proposed a new electroweak baryogenesis scenario with the high-scale nMSSM

including vector-like multiplets. We have shown that the strongly first-order phase transition

can occur in a high temperature comparable to MSUSY. The proper amount of the BAU can

be generated via the lepton number violating process. Furthermore, the singlino dark matter

scenario [17] is also compatible with our scenario. The key points are as follows: (i) the thermal

mass term for the singlet scalar field generates the global minimum of the potential for the Higgs

field far from the origin, (ii) the lepton number violating process converts the B +L number to

#13For simplicity, we do not include the mass corrections from the Coleman-Weinberg potential. We have numer-
ically checked that the Coleman-Weinberg potential for charged Higgs boson gives typically positive contributions
to the mass of the charged Higgs boson.).
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the B−L number. Even though there is the lepton number violating process, the lifetime of the

singlino is long enough. In this baryogenesis process, MSUSY can be an arbitrary value and it is

almost a free parameter. Thus, we call this scenario as a scale free electroweak baryogenesis. The

scale MSUSY will be determined by other requirements. If MSUSY ∼ O(10) TeV, this scenario is

compatible with the proper Higgs boson mass and the right amount of the singlino dark matter

without SUSY flavor/CP problem [17]. In addition, this singlino dark matter scenario can be

testable by future experiments of the search of the Higgs invisible decay and the direct direction

of the dark matter (see previous section).

Consequently, we have shown the possibility of the high scale baryogenesis scenario. We

hope that this study becomes a first step of scale free electroweak baryogenesis scenarios.
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6
Conclusion

The standard model of the particle physics has worked very well for a long time. Nevertheless,

there are many unsolved problems within the SM, for example, the observed dark matter particles

and baryon asymmetry of the universe. From theoretical viewpoint, the gauge hierarchy problem

is still in question. The supersymmetric models are good candidates of the physics beyond the

standard model since they can solve the hierarchy problem naturally.

The minimal SUSY model contains a supersymmetric dimensionful parameter µ, and this

parameter causes µ problem, which is also one of the hierarchy problem. In order to realize

nature, namely the Z boson mass is to be at the electroweak scale, the µ parameter has to know

the soft SUSY breaking scale.

The nearly Minimal Supersymmetric Standard Model (nMSSM) is one of the promising

models of the new physics: this model can avoid the µ problem, the domain wall problem, and

the tadpole problem simultaneously. In addition, this model has natural candidate of the dark

matter, namely singlino, and can generate the baryon asymmetry of the universe.

In this thesis, we consider the phenomenology of the nMSSM. Especially, we focus on the

phenomenology of the dark matter and the baryon asymmetry in the universe by the electroweak

baryogenesis mechanism.

First, we have studied the phenomenology of the singlino resonant dark matter scenario. We

find that with high-scale supersymmetry breaking the singlino can obtain a sizable radiative

correction to the singlino mass, which opens a window for the singlet dark matter scenario with

resonant annihilation via the exchange of the Higgs boson. We have also shown that with high-

scale SUSY breaking ∼ 10 TeV and low tanβ, the dark matter relic abundance and the SM

Higgs boson mass can be explained simultaneously in this scenario.

Next, we have also proposed a new electroweak baryogenesis scenario with the high-scale

nMSSM including vector-like multiplets. We have shown that the strongly first-order phase

transition can occur in a high temperature comparable to the soft SUSY breaking scale. The

proper amount of the baryon asymmetry in the universe can be generated via the lepton number

violating process. Furthermore, we have calculated explicitly the lifetime of the singlino and we



Chapter 6. Conclusion

find that the singlino dark matter scenario is also compatible with our scenario. The key points

are as follows: (i) the thermal mass term for the singlet scalar field generates the global minimum

of the potential for the Higgs field far from the origin, (ii) the lepton number violating process

converts the B + L number to the B − L number. Even though there is the lepton number

violating process, the lifetime of the singlino is long enough. In this baryogenesis process, the

soft SUSY breaking scale can be an arbitrary value and it is almost a free parameter. Thus, we

call this scenario as a scale free electroweak baryogenesis. The soft SUSY breaking scale will

be determined by other requirements. If it is O(10) TeV, this scenario is compatible with the

proper Higgs boson mass without SUSY flavor/CP problem.

Therefore, we find that when the soft SUSY breaking scale is O(10)TeV, this electroweak

baryogenesis scenario is compatible with the singlino resonant scenario. In addition, these

scenarios are also compatible with the observed mass of the Higgs boson and the constraints by

the electric dipole moments measurements and the flavor experiments.

Even for the high-scale SUSY, we have also shown that the parameter region where the

singlino dark matter is consistent with the current dark matter relic abundance can be probed

by the future experiments. Hence, the singlino dark matter signal can be a first sign of the

high-scale supersymmetry.

As a result of these two studies, we conclude that the nMSSM with a high-scale SUSY

breaking is valid and can be probed by the direct direction of the singlino dark matter.
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Chapter

A
Notations and Conventions

A.1 Notations

We use the following metric tensor

gµν = gµν =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



 , (A.1)

with the Greek indices are µ = 0, 1, 2, 3, 4, and the totally antisymmetric tensor is

ε0123 = −ε0123 = 1. (A.2)

The Pauli matrix σa is defined as,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.3)

and σµ and σ̄µ are defined as follows,

σµ = (1, −→σ ), σ̄µ = (1,−−→σ ). (A.4)

The antisymmetric tensor for two components is

ε12 = −ε21 = 1. (A.5)

The gamma matrices satisfy the following anti commutation relations,

{γµ, γν} = 2gµν . (A.6)

We use the chiral basis gamma matrices,

γµ =

(
0 σµ

σ̄µ 0

)
, (A.7)

γ5 = − i

4!
εµνρσγ

µγνγργσ = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
. (A.8)
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The Gell-Mann matrix λa is defined as,

λ1 =




0 1 0
1 0 0
0 0 0



 , λ2 =




0 −i 0
i 0 0
0 0 0



 , λ3 =




1 0 0
0 −1 0
0 0 0



 , λ4 =




0 0 1
0 0 0
1 0 0



 ,

λ5 =




0 0 −i
0 0 0
i 0 0



 , λ6 =




0 0 0
0 0 1
0 1 0



 , λ7 =




0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3




1 0 0
0 1 0
0 0 −2



 .(A.9)

A.2 Group theoretical constants

The generators of a simple Lie group SU(N) are represented by N × N Hermitian matrix ta,

which satisfies Tr[ta] = 0, and ta = σa/2 (a = 1, 2, 3) for SU(2), ta = λa/2 (a = 1, 2, . . . , 8) for

SU(3). While, in the following the t for U(1)Y means the hyper charge Yi of operated field Φi.

The generators are normalized by

Tr
[
tatb
]
= T (i)δab, T (i) =

{
Y 2
i for U(1)Y ,

1
2 for SU(2), SU(3).

(A.10)

The structure constants for a Lie group fabc is defined by

[
ta, tb

]
= ifabctc. (A.11)

The quadratic Casimir operator for the fundamental representation is defined as,

(
∑

a

tata
)i

j

= C(i)δij , (A.12)

wehre

C1(i) = Y 2
i for U(1) and Φi, (A.13)

C2(i) =

{
3
4 for SU(2) andΦi = Q,L,H1, H2,
0 for SU(2) andΦi = Ū , D̄, Ē, S,

(A.14)

C3(i) =

{
4
3 for SU(3) andΦi = Q, Ū , D̄,
0 for SU(3) andΦi = L, Ē,H1, H2, S.

(A.15)

The quadratic Casimir operator for the adjoint representation is

∑

a

fa
bdef

a
cde = C(G)δbc, (A.16)

with

C(G) =






0 for U(1),
2 for SU(2),
3 for SU(3).

(A.17)
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B
Quantum Corrections

In this appendix, we collect the functions of the quantum correction, which

are needed in this thesis. We first present the full set of two-loop RGEs for the

coupling constants of the SM and the singlet extension SUSY model. Second

the one-loop corrections to the mass of the neutralino are exhibited. Finally,

we present the loop functions which we use in the text.

B.1 Renormalization Group Equations

In this appendix, we assume the high-scale SUSY mass spectrum, vEW - MSUSY andMgaugino ∼
µ ∼

√
m2

0 = O(MSUSY), where m2
0 represents dimension two soft SUSY breaking mass term of

Higgs and sfermion. Note that in the split case, Mgaugino ∼ µ - MSUSY, we should consider

the RGEs of the Yukawa-like gaugino couplings Eq. (2.97) because the Higgs-Higgsino-gaugino

coupling is still active at vEW < Q < MSUSY. Therefore, we should take into account the RGE

of not only the SM couplings but also the Yukawa-like gaugino couplings at vEW < Q < MSUSY.

The RGEs of the split mass spectrum case is written in Refs. [45, 57].

We write the RGEs in the following notation,

dgi
d lnQ

=
β1,i
(4π)2

+
β2,i
(4π)4

, (B.1)

where Q is the renormalization scale.

B.1.1 RGEs below SUSY breaking scale

First, we present the RGEs up to two-loop order for the SM couplings, g′, g, gs, yt, yb, yτ and

λquartic in the MS scheme [45, 192–194]. In the SM, one-loop level β function for the gauge

couplings is given as

β1,gi = −gi
3

(
11

3
Ca(G)− 2

3
nfTa(f)−

1

3
nbTa(b)

)
, (B.2)

where nf (nb) is a number of the gauge multiplet of the Weyl spinor (complex scalar).

The one-loop β functions for the SM couplings are
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β1,g′ =
41

6
g′3, (B.3)

β1,g = −19

6
g3, (B.4)

β1,gs = −7g3s , (B.5)

β1,yt = yt

(
−17

12
g′2 − 9

4
g2 − 8g3s +

9

2
y2t +

3

2
y2b + y2τ

)
, (B.6)

β1,yb = yb

(
− 5

12
g′2 − 9

4
g2 − 8g2s +

3

2
y2t +

9

2
y2b + y2τ

)
, (B.7)

β1,yτ = yτ

(
−15

4
g′2 − 9

4
g2 + 3y2t + 3y2b +

5

2
y2τ

)
. (B.8)

β1,λq = 2λquartic

(
6λquartic + 6y2t + 6y2b + 2y2τ −

3

2
g′2 − 9

2
g2
)

−4(3y4t + 3y4b + y4τ ) +
3

4
g′4 +

9

4
g4 +

3

2
g′2g2. (B.9)

The two-loop β function for SM couplings are

β2,g′ = g′3
(
199

18
g′2 +

9

2
g2 +

44

3
g2s −

17

6
y2t −

5

6
y2b −

5

2
y2τ

)
, (B.10)

β2,g = g3
(
3

2
g′2 +

35

6
g2 + 12g2s −

3

2
y2t −

3

2
y2b −

1

2
y2τ

)
, (B.11)

β2,gs = g3s

(
11

6
g′2 +

9

2
g2 − 26g2s − 2y2t − 2y2b

)
, (B.12)

β2,yt = yt

[
y2t

(
131

16
g′2 +

255

16
g2 + 36g2s − 12y2t −

11

4
y2b −

9

4
y2τ − 6λquartic

)

+y2b

(
7

48
g′2 +

99

16
g2 + 4g2s −

1

4
y2b +

5

4
y2τ

)
+ y2τ

(
25

8
g′2 +

15

8
g2 − 9

4
g2τ

)

+
3

2
λ2quartic +

1187

216
g′4 − 23

4
g4 − 108g4s −

3

4
g′2g2 +

19

9
g′2g2s + 9g2g2s

]
, (B.13)

β2,yb = yb

[
y2t

(
91

48
g′2 +

99

16
g2 + 4g2s −

1

4
y2t −

11

4
y2b +

5

4
y2τ

)

+y2b

(
79

16
g′2 +

225

16
g2 + 36g2s − 12y2b −

9

4
y2τ − 6λquartic

)
+ y2τ

(
25

8
g′2 +

15

8
g2 − 9

4
g2τ

)

+
3

2
λ2quartic −

127

216
g′4 − 23

4
g4 − 108g4s −

9

4
g′2g2 +

31

9
g′2g2s + 9g2g2s

]
, (B.14)

β2,yτ = yτ

[
y2t

(
85

24
g′2 +

45

8
g2 + 20g2s −

27

4
y2t +

3

2
y2b −

27

4
y2τ

)

+y2b

(
25

24
g′2 +

45

8
g2 + 20g2s −

27

4
y2b −

27

4
y2τ

)
+ y2τ

(
179

16
g′2 +

165

16
g2 − 3g2τ − 6λquartic

)

+
3

2
λ2quartic +

457

24
g′4 − 23

4
g4 +

9

4
g′2g2

]
, (B.15)
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β2,λq = λ2quartic
(
−78λquartic − 72y2t − 72y2b − 24y2τ + 18g′2 + 54g2

)

+λquarticy
2
t

(
−3y2t − 42y2b +

85

6
g′2 +

45

2
g2 + 80g2s

)

+λquarticy
2
b

(
−3y2b +

25

6
g′2 +

45

2
g2 + 80g2s

)
+ λquarticy

2
τ

(
−y2τ +

25

2
g′2 +

15

2
g2
)

+λquartic

(
629

24
g′4 − 73

8
g4 +

39

4
g′2g2

)
+ 4y4t

(
15y2t − 3y2b −

4

3
g′2 − 16g2s

)

+y2t

(
−19

2
g′4 − 9

2
g4 + 21g′2g2

)
+ 4y4b

(
−3y2t + 15y2b +

2

3
g′2 − 16g2s

)

+y2b

(
5

2
g′4 − 9

2
g4 + 9g′2g2

)
+ 4y4τ

(
5y2τ − 2g′2

)
+ y2τ

(
−25

2
g′4 − 3

2
g4 + 11g′2g2

)

−379

24
g′6 +

305

8
g6 − 559

24
g′4g2 − 289

24
g′2g4. (B.16)

B.1.2 RGEs above SUSY breaking scale

Next, we have calculated the RGEs up to two-loop order for couplings of the singlet extension

of MSSM (NMSSM), g′, g, gs, yt, yb, yτ ,λ and κ in the DR scheme. The following results are

consistent with Ref. [100]. Note that in the limit of κ = 0, the following RGEs reproduce the

one in the nMSSM. It is because the tadpole term does not affect the RGEs of the dimensionless

coupling constants. Furthermore, in the limit of κ = 0 and λ = 0, the following RGEs reproduce

the one in the MSSM.

Before we go forward the derivation of the SUSY RGEs, we comment on the matching condi-

tion on the Yukawa couplings. At SUSY breaking scale, the following relationships are imposed,

yu,SM (MSUSY) = yu,SUSY (MSUSY) sinβ,

yd,SM (MSUSY) = yd,SUSY (MSUSY) cosβ, (B.17)

where yi,SUSY is the Yukawa coupling in the superpotential, and yi,SM is the one in the SM.

The higher-order corrections to this matching condition (conversion factor from MS to DR

regularization scheme and threshold corrections of the heavy sparticles) are given in Ref. [45].

For simplicity, we have omitted its subscript (SUSY/SM) in the text. For example, in previous

section we use the SM Yukawa couplings yi,SM , while in this section we use the SUSY Yukawa

couplings yi,SUSY .

Let us deviate the SUSY RGE of the Yukawa couplings. First we define the superpotential

as follows,
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W =
1

6
yijkΦ

i
0Φ

j
0Φ

k
0 +

1

2
MijΦ

i
0Φ

j
0 + LiΦ

i
0, (B.18)

where Φi
0 are the bare Chiral superfields. Thanks to the non-renormalization theorem, a loga-

rithmic dependence of the coupling constant can be related to a logarithmic dependence of the

wave function renormalization constant [97, 195].

βn,yijk
(4π)2n

= yljkγ
l(n)
i + yilkγ

l(n)
j + yijlγ

l(n)
k , (B.19)

βn,Mij

(4π)2n
= Mljγ

l(n)
i +Milγ

l(n)
j , (B.20)

βn,Li

(4π)2n
= Llγ

l(n)
i , (B.21)

where subscript n represents the loop order, and γij is an anomalous dimension matrix,

γij ≡ 1

2

d

d lnQ
lnZi

j , (B.22)

Zi
jΦ

†
i,RΦ

j
R = Φ†

i,0Φ
j
0, (B.23)

where Φi
R are the renormalized Chiral superfields.

As using the superpotential Eq. (B.18), the anomalous dimension matrix γij is given as

follows [196–198],

γi(1)j =
1

(4π)2

(
1

2
yimly∗jml − 2g2aCa(i)δ

i
j

)
, (B.24)

γi(2)j =
1

(4π)2

[
2β(1)ga gaCa(i)δ

i
j − γk(1)l

(
yimly∗kmj + 2g2a

∑

b

(T b
a)

i
k(T

b
a)

l
j

)]
. (B.25)

where we assume the Chiral superfield Φi is belong to the fundamental representation of the

gauge group Ga. Here, we use the well-known one-loop level β function for the gauge couplings

in the SUSY model,

β1,ga
(4π)2

=
1

(4π)2
g3a

(
∑

i

Ta(i)− 3Ca(G)

)
. (B.26)

The two-loop level β function for the gauge couplings is also related to these functions [196–198],

β2,ga
(4π)4

=
1

(4π)2

(
2β1,gag

2
aCa(G)− 2

∑

i

γi(1)i g3a
Ca(i)

r

)
, (B.27)

where r is the number of the generator of the gauge group Ga.
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In the NMSSM, neglecting all Yukawa coupling except the third generation, the explicit

formulae of the one-loop anomalous dimension (i = j) Eq. (B.24) are

(4π)2γ(1)Q = y2t + y2b −
1

18
g′2 − 3

2
g2 − 8

3
g2s , (B.28)

(4π)2γ(1)U = 2y2t −
8

9
g′2 − 8

3
g2s , (B.29)

(4π)2γ(1)D = 2y2b −
2

9
g′2 − 8

3
g2s , (B.30)

(4π)2γ(1)L = y2τ −
1

2
g′2 − 3

2
g2, (B.31)

(4π)2γ(1)E = 2y2τ − 2g′2, (B.32)

(4π)2γ(1)H1
= 3y2b + y2τ −

1

2
g′2 − 3

2
g2 + λ2, (B.33)

(4π)2γ(1)H2
= 3y2t −

1

2
g′2 − 3

2
g2 + λ2, (B.34)

(4π)2γ(1)S = 2λ2 + 2κ2, (B.35)

and off-diagonal one-loop anomalous dimensions (i .= j) are zero. Using the one-loop anomalous

dimensions Eqs. (B.28-B.35), one can derive the two-loop level RGEs of the NMSSM in the DR

scheme.

The one-loop β functions for the NMSSM couplings are

β1,g′ = 11g′3, (B.36)

β1,g = g3, (B.37)

β1,gs = −3g3s , (B.38)

β1,yt = yt

(
−13

9
g′2 − 3g2 − 16

3
g2s + λ2 + 6y2t + y2b

)
, (B.39)

β1,yb = yb

(
−7

9
g′2 − 3g2 − 16

3
g2s + λ2 + y2t + 6y2b + y2τ

)
, (B.40)

β1,yτ = yτ
(
−3g′2 − 3g2 + λ2 + 3y2b + 4y2τ

)
, (B.41)

β1,λ = λ
(
−g′2 − 3g2 + 4λ2 + 2κ2 + 3y2t + 3y2b + y2τ

)
, (B.42)

β1,κ = κ
(
6λ2 + 6κ2

)
. (B.43)

The two-loop β functions for the NMSSM couplings are

β2,g′ = g′3
(
199

9
g′2 + 9g2 +

88

3
g2s −

26

3
y2t −

14

3
y2b − 6y2τ − 2λ2

)
, (B.44)

β2,g = g3
(
3g′2 + 25g2 + 24g2s − 6y2t − 6y2b − 2y2τ − 2λ2

)
, (B.45)

β2,gs = g3s

(
11

3
g′2 + 9g2 + 14g2s − 4y2t − 4y2b

)
, (B.46)

β2,yt = yt

(
−22y4t − 5y4b − 3λ4 − 5y2t y

2
b − 3y2t λ

2 − y2by
2
τ − 4y2bλ

2 − y2τλ
2 − 2λ2κ2
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+2g′2y2t +
2

3
g′2y2b + 6g2y2t + 16g2sy

2
t +

2743

162
g′4 +

15

2
g4 − 16

9
g4s

+
5

3
g′2g2 +

136

27
g′2g2s + 8g2g2s

)
, (B.47)

β2,yb = yb

(
−22y4b − 5y4t − 3y4τ − 3λ4 − 5y2by

2
t − 3y2by

2
τ − 3y2by

2
λ − 4y2t λ

2 − 2λ2κ2

+
2

3
g′2y2b +

4

3
g′2y2t + 2g′2y2τ + 6g2yb + 16g2sy

2
b +

1435

162
g′4 +

15

2
g4 − 16

9
g4s

+
5

3
g′2g2 +

40

27
g′2g2s + 8g2g2s

)
, (B.48)

β2,yτ = yτ

(
−10y4τ − 9y4b − 3λ4 − 9y2τy

2
b − 3y2τλ

2 − 3y2t y
2
b − 3y2t λ

2 − 2λ2κ2 + 2g′2y2τ

−2

3
g′2y2b + 6g2y2τ + 16g2sy

2
b +

75

2
g′4 +

15

2
g4 + 3g′2g2

)
, (B.49)

β2,λ = λ

(
−10λ4 − 9y4t − 9y4b − 3y4τ − 8κ4 − 9λ2y2t − 9λ2y2b − 3λ2y2τ − 12λ2κ2

−6y2t y
2
b + 2g′2λ2 +

4

3
g′2y2t −

2

3
g′2y2b + 2g′2y2τ + 6g2λ2 + 16g2sy

2
t + 16g2sy

2
b

+
23

2
g′4 +

15

2
g4 + 3g′2g2

)
, (B.50)

β2,κ = κ

(
−24κ4 − 12λ4 − 24κ2λ2 − 18y2t λ

2 − 18y2bλ
2 − 6y2τλ

2 + 6g′2λ2

+18g2λ2
)
. (B.51)

These formulae are consistent with the RGEs of Ref. [100].

B.2 One-loop Corrections to the Mass of the Neutralino

In this section, we collect the one-loop radiative corrections to the mass of the neutralino [164].

Note that, we have found that Ref. [164] includes some typos in the equations of the one-loop

corrections, and were provided with fixed one-loop corrections by the author [165].

The self-energy matrix for neutralinos is given as follows,

ΣS
i,j(p) = 2

2∑

a=1

B0(p,mχ−
a
,mH−)mχ−

a
ΓL∗
χ̄0
j ,H

+,χ−
a
ΓR
χ̄0
i ,H

+,χ−
a

+2
2∑

a=1

B0(p,mχ−
a
,MW )mχ−

a
ΓL∗
χ̄0
j ,G

+,χ−
a
ΓR
χ̄0
i ,G

+,χ−
a

+
5∑

a=1

3∑

b=1

B0(p,mχ0
a
,mhb)mχ0

a
ΓL∗
χ̄0
j ,hb,χ0

a
ΓR
χ̄0
i ,hb,χ0

a

+
5∑

a=1

3∑

b=2

B0(p,mχ0
a
,mAb)mχ0

a
ΓL∗
χ̄0
j ,Ab,χ0

a
ΓR
χ̄0
i ,Ab,χ0

a
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+
5∑

a=1

B0(p,mχ0
a
,MZ)mχ0

a
ΓL∗
χ̄0
j ,G

0,χ0
a
ΓR
χ̄0
i ,G

0,χ0
a

+6
2∑

a=1

B0(p,mt,mt̃a)mtΓ
L∗
χ̄0
j ,t̃

∗
a,t
ΓR
χ̄0
i ,t̃

∗
a,t

−8
2∑

a=1

B0(p,mχ−
a
,MW )mχ−

a
ΓR∗
χ̄0
j ,W,χ−

a
ΓL
χ̄0
i ,W,χ−

a

−4
5∑

a=1

B0(p,mχ0
a
,MZ)mχ0

a
ΓR∗
χ̄0
j ,Z,χ

0
a
ΓL
χ̄0
i ,Z,χ

0
a
, (B.52)

where we have neglected the terms which are proportional to the SM fermion mass except top

quark. χ̄0
i represents the neutralino of not a mass eigenstate but a gauge eigenstate. p is the

momentum of the external line.

The one-loop corrections from the redefinition of the neutralino field via the wave function

renormalization are given as follows,

ΣR
i,j(p) = −

2∑

a=1

B1(p,mχ−
a
,mH−)ΓR∗

χ̄0
j ,H

+,χ−
a
ΓR
χ̄0
i ,H

+,χ−
a
−

2∑

a=1

B1(p,mχ−
a
,MW )ΓR∗

χ̄0
j ,G

+,χ−
a
ΓR
χ̄0
i ,G

+,χ−
a

−
3∑

a=1

3∑

b=1

B1(p,mνb ,mν̃a)Γ
R∗
χ̄0
j ,ν̃

∗
a ,νb

ΓR
χ̄0
i ,ν̃

∗
a ,νb

− 1

2

5∑

a=1

3∑

b=1

B1(p,mχ0
a
,mhb)Γ

R∗
χ̄0
j ,hb,χ0

a
ΓR
χ̄0
i ,hb,χ0

a

−1

2

5∑

a=1

3∑

b=2

B1(p,mχ0
a
,mAb)Γ

R∗
χ̄0
j ,Ab,χ0

a
ΓR
χ̄0
i ,Ab,χ0

a
− 1

2

5∑

a=1

B1(p,mχ0
a
,MZ)Γ

R∗
χ̄0
j ,G

0,χ0
a
ΓR
χ̄0
i ,G

0,χ0
a

−3
6∑

a=1

3∑

b=1

B1(p,mdb ,md̃a
)ΓR∗

χ̄0
j ,d̃

∗
a,db

ΓR
χ̄0
i ,d̃

∗
a,db

−
6∑

a=1

3∑

b=1

B1(p,meb ,mẽa)Γ
R∗
χ̄0
j ,ẽ

∗
a,eb

ΓR
χ̄0
i ,ẽ

∗
a,eb

−3
6∑

a=1

3∑

b=1

B1(p,mub ,mũa)Γ
R∗
χ̄0
j ,ũ

∗
a,ub

ΓR
χ̄0
i ,ũ

∗
a,ub

− 2
2∑

a=1

B1(p,mχ−
a
,MW )ΓL∗

χ̄0
j ,W,χ−

a
ΓL
χ̄0
i ,W,χ−

a

−
5∑

a=1

B1(p,mχ0
a
,MZ)Γ

L∗
χ̄0
j ,Z,χ

0
a
ΓL
χ̄0
i ,Z,χ

0
a
, (B.53)

ΣL
i,j(p) = −

2∑

a=1

B1(p,mχ−
a
,mH−)ΓL∗

χ̄0
j ,H

+,χ−
a
ΓL
χ̄0
i ,H

+,χ−
a
−

2∑

a=1

B1(p,mχ−
a
,MW )ΓL∗

χ̄0
j ,G

+,χ−
a
ΓL
χ̄0
i ,G

+,χ−
a

−
3∑

a=1

3∑

b=1

B1(p,mνb ,mν̃a)Γ
L∗
χ̄0
j ,ν̃

∗
a ,νb

ΓL
χ̄0
i ,ν̃

∗
a ,νb

− 1

2

5∑

a=1

3∑

b=1

B1(p,mχ0
a
,mhb

)ΓL∗
χ̄0
j ,hb,χ0

a
ΓL
χ̄0
i ,hb,χ0

a

−1

2

5∑

a=1

3∑

b=2

B1(p,mχ0
a
,mAb)Γ

L∗
χ̄0
j ,Ab,χ0

a
ΓL
χ̄0
i ,Ab,χ0

a
− 1

2

5∑

a=1

B1(p,mχ0
a
,MZ)Γ

L∗
χ̄0
j ,G

0,χ0
a
ΓL
χ̄0
i ,G

0,χ0
a

−3
6∑

a=1

3∑

b=1

B1(p,mdb ,md̃a
)ΓL∗

χ̄0
j ,d̃

∗
a,db

ΓL
χ̄0
i ,d̃

∗
a,db

−
6∑

a=1

3∑

b=1

B1(p,meb ,mẽa)Γ
L∗
χ̄0
j ,ẽ

∗
a,eb

ΓL
χ̄0
i ,ẽ

∗
a,eb
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−3
6∑

a=1

3∑

b=1

B1(p,mub ,mũa)Γ
L∗
χ̄0
j ,ũ

∗
a,ub

ΓL
χ̄0
i ,ũ

∗
a,ub

− 2
2∑

a=1

B1(p,mχ−
a
,MW )ΓR∗

χ̄0
j ,W,χ−

a
ΓR
χ̄0
i ,W,χ−

a

−
5∑

a=1

B1(p,mχ0
a
,MZ)Γ

R∗
χ̄0
j ,Z,χ

0
a
ΓR
χ̄0
i ,Z,χ

0
a
. (B.54)

The vertices with the gauge eigenstate neutralino χ̄0
i , X and Y (ΓL/R

χ̄0
i ,X,Y

) are defined in the

Ref. [164].

B.3 Loop Functions

In the calculation of the radiative corrections to the Higgs boson mass from the Coleman-

Weinberg potential, we have used the following loop functions,

f(Q2, x, y) =
1

x− y

(
x ln

x

Q2
− y ln

y

Q2

)
− 1

=
1

2

1

x− y
(f1(Q

2, x)− f1(Q
2, y)), (B.55)

g(x, y) =
1

(x− y)3

(
(x+ y) ln

y

x

)
+

2

(x− y)2

=
1

4(x− y)2
(
f2(Q

2, x) + f2(Q
2, y)

)

− 1

(x− y)3
(
f1(Q

2, x)− f1(Q
2, y)

)
, (B.56)

with

f1(Q
2, x) = 2x

(
ln

x

Q2
− 1

)
, (B.57)

f2(Q
2, x) = 4 ln

x

Q2
. (B.58)

In the one-loop threshold corrections of the Higgs quartic coupling at high scale, we have used

the following loop functions,

F̃ (x) =
2x lnx

x2 − 1
, (B.59)

G̃(x) =
12x2(1− x2 + (1 + x2) lnx)

(x2 − 1)3
, (B.60)

H̃(x) =
3x(1− x4 + 2x2 lnx2)

(1− x2)3
, (B.61)

H̃1(x) =
2x(5(1− x2) + 2(1 + 4x2) lnx)

3(x2 − 1)2
, (B.62)

H̃2(x) =
2x(x2 − 1− 2 lnx)

(x2 − 1)2
, (B.63)
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f̃(x) =
3x(x2 + 1)

(x2 − 1)2
− 12x3 lnx

(x2 − 1)3
, (B.64)

g̃(x) = −3(x4 − 6x2 + 1)

2(x2 − 1)2
+

6x4(x2 − 3) lnx

(x2 − 1)3
, (B.65)

f̃1(x) =
6(x2 + 3)x2

7(x2 − 1)2
+

12(x2 − 5)x4 lnx

7(x2 − 1)3
, (B.66)

f̃2(x) =
2(x2 + 11)x2

9(x2 − 1)2
+

4(5x2 − 17)x4 lnx

9(x2 − 1)3
, (B.67)

f̃3(x) =
2(x4 + 9x2 + 2)

3(x2 − 1)2
+

4(x4 − 7x2 − 6)x2 lnx

3(x2 − 1)3
, (B.68)

f̃4(x) =
2(5x4 + 25x2 + 6)

7(x2 − 1)2
+

4(x4 − 19x2 − 18)x2 lnx

7(x2 − 1)3
, (B.69)

4

3
f̃5(x, y) =

1 + (x+ y)2 − x2y2

(x2 − 1)(y2 − 1)
+

2x3(x2 + 1) lnx

(x2 − 1)2(x− y)
− 2y3(y2 + 1) ln y

(x− y)(y2 − 1)2
, (B.70)

7

6
f̃6(x, y) =

x2 + y2 + xy − x2y2

(x2 − 1)(y2 − 1)
+

2x5 lnx

(x2 − 1)2(x− y)
− 2y5 ln y

(x− y)(y2 − 1)2
, (B.71)

1

6
f̃7(x, y) =

1 + xy

(x2 − 1)(y2 − 1)
+

2x3 lnx

(x2 − 1)2(x− y)
− 2y3 ln y

(x− y)(y2 − 1)2
, (B.72)

2

3
f̃8(x, y) =

x+ y

(x2 − 1)(y2 − 1)
+

2x4 lnx

(x2 − 1)2(x− y)
− 2y4 ln y

(x− y)(y2 − 1)2
, (B.73)

and these functions are normalized such that F̃ (1) = G̃(1) = H̃(1) = H̃1(1) = H̃2(1) = f̃(1) =

g̃(1) = f̃1/2/3/4(1) = f̃5/6/7/8(1, 1) = 1.

On the other hand, in the one-loop threshold corrections of the Higgs quartic coupling at weak

scale, we have used the following loop functions,

F1(Q) = 6 ln
Q2

m2
h

+
3

3
ln ξ − 1

2
Z

[
1

ξ

]
− Z

[
c2W
ξ

]
− ln c2W +

9

2

(
25

9
− π√

3

)
, (B.74)

F0(Q) = −6 ln
Q2

M2
Z

(
1 + 2c2W − 2

m2
t

M2
Z

)
+

3c2W ξ

ξ − c2W
ln

ξ

c2W
+ 2Z

[
1

ξ

]
+ 4c2WZ

[
c2W
ξ

]

+
3c2W
s2W

ln c2W + 12c2W ln c2W − 15

2
(1 + 2c2W )

−4
m2

t

M2
Z

(
2Z

[
m2

t

M2
Zξ

]
+ 4 ln

m2
t

M2
Z

− 5

)
, (B.75)

F−1(Q) = 6 ln
Q2

M2
Z

(
1 + 2c4W − 4

m4
t

M4
Z

)
− 6Z

[
1

ξ

]
− 12c4WZ

[
c2W
ξ

]

−12c4W ln c2W + 8(1 + 2c4W ) + 24
m4

t

M4
Z

(
ln

m2
t

M2
Z

− 2 + Z

[
m2

t

M2
Zξ

])
, (B.76)

where ξ = m2
h/M

2
Z , cW = cos θW , sW = sin θW and

Z[x] =

{
2ζ arctan(1/ζ) for x > 1/4
ζ ln[(1 + ζ)/(1− ζ)] for x < 1/4,

(B.77)
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ζ(x) =
√
|1− 4x|. (B.78)

In the calculation of the branching ratio of the µ → eγ, we have used the following loop

functions,

fC(x, y) = xy

[
5− 3(x+ y) + xy

(x− 1)2(y − 1)2
− 2 log x

(x− y)(x− 1)3
+

2 log y

(x− y)(y − 1)3

]
, (B.79)

fN (x, y) = xy

[
−3 + x+ y + xy

(x− 1)2(y − 1)2
+

2x log x

(x− y)(x− 1)3
− 2y log y

(x− y)(y − 1)3

]
, (B.80)

and these functions are normalized such that fC(1, 1) = 1/2 and fN (1, 1) = 1/6.

In the calculation of the one-loop self energy, we have used the following functions#1, which

are called Passarino-Veltman function [199–201],

A0(m) = (4π)2Q4−n
∫

dnq

i(2π)n
1

q2 −m2 + iε
, (B.81)

B0(p,m1,m2) = (4π)2Q4−n
∫

dnq

i(2π)n
1[

q2 −m2
1 + iε

] [
(q − p)2 −m2

2 + iε
] , (B.82)

pµB1(p,m1,m2) = (4π)2Q4−n
∫

dnq

i(2π)n
qµ[

q2 −m2
1 + iε

] [
(q − p)2 −m2

2 + iε
] , (B.83)

pµpνB21(p,m1,m2) + gµνB22(p,m1,m2)

= (4π)2Q4−n
∫

dnq

i(2π)n
qµqν[

q2 −m2
1 + iε

] [
(q − p)2 −m2

2 + iε
] , (B.84)

where we use the dimensional regulation, n = 4− 2ε, and p is a momentum of the external line.

After the integration of the loop momentum, A0 function becomes

A0(m) = m2

(
1

ε̄
+ 1− ln

m2

Q2

)
. (B.85)

Here 1/ε̄ ≡ 1/ε− γE + ln 4π and γE is Euler’s constant (0.57721. . . ).

B0 function becomes

B0(p,m1,m2) =
1

ε̄
− ln

(
p2

Q2

)
− fB(x+)− fB(x−), (B.86)

where

x± =
s(p,m1,m2)±

√
s(p,m1,m2)2 − 4p2(m2

1 − iε)

2p2
, (B.87)

s(p,m1,m2) = p2 −m2
2 +m2

1, (B.88)

fB(x) = ln(1− x)− x ln

(
1− 1

x

)
− 1. (B.89)

#1Our notation of A and B functions are the same as Ref. [199].
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The function B1 can be expressed by A0 and B0 as follows,

B1(p,m1,m2) =
1

2p2
[A0(m2)−A0(m1) + s(p,m1,m2)B0(p,m1,m2)] . (B.90)

The zero momentum of the external line limit, B0 and B1 functions can be expressed as

follows,

B0(0,m1,m2) =
1

ε̄
− ln

(
M2

Q2

)
+ 1 +

m2

m2 −M2
ln

(
M2

m2

)
, (B.91)

B1(0,m1,m2) =
1

2

[
1

ε̄
− ln

(
M2

Q2

)
+

1

2
+

1

1− x
+

lnx

(1− x)2
− θ(1− x) lnx

]
, (B.92)

where M = max(m1,m2), m = min(m1,m2) and x = m2
2/m

2
1.
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Chapter

C
Vacuum Transition

In this appendix, we briefly review the vacuum decay and the vacuum tran-

sition rate per unit space-time volume at zero/finite temperature case. Then,

we give the fitting formula for Euclidean action in four and three dimensions.

C.1 Vacuum Decay

When the scalar expectation values on the vacuum are at a global minimum of the scalar

potential, this vacuum is stable. On the other hand, when its scalar expectation values are at a

local minimum of one, this vacuum becomes unstable. Eventually, the unstable vacuum (false

vacuum) decay into the global minimum (true vacuum) by a quantum fluctuation (quantum

tunneling) and by a thermal fluctuation (thermal tunneling) for a scalar field located at the

local minimum. When the vacuum transition rate per unit space-time volume from the false

vacuum to the true vacuum is larger than the Hubble parameter, a bubble nucleate and all false

vacuum decay quickly. Namely the universe is filled with the true vacuum. On the other hand,

if the vacuum transition rate per unit space-time volume is smaller than the Hubble parameter,

the lifetime of the false vacuum is longer than the age of the universe and it becomes meta-stable

vacuum.

The scalar potential of the SUSY models often has a global minimum which is not an ordi-

nary electroweak symmetry breaking vacuum, and the electroweak symmetry breaking vacuum

becomes unstable [202–205]. One of the reasons is that the large µ term and large tanβ lead to

the large scalar trilinear couplings like y*µ tanβH2L̃
˜̄E, which can generate the charged breaking

global minimum. Then, the condition that the electroweak breaking vacuum is not unstable

gives the upper bound on µ and tanβ. These vacuum meta-stability conditions give an allowed

region of the deviation from the standard model prediction in SUSY models (e.g. [65,206–209]).

C.1.1 Quantum Tunneling at Zero Temperature

A possibility of the quantum tunneling of the false vacuum had been first suggested by Kobzarev,

Okun, and Voloshin [210]. Then, Callan and Coleman had established a calculation method [211–

213]. The vacuum transition rate from the false vacuum to the true vacuum can be evaluated

by semiclassical technique. At this time, the imaginary part of the energy of the false vacuum



Chapter C. Vacuum Transition

corresponds to the vacuum transition rate to the true vacuum at zero temperature. In the

semiclassical technique, one can evaluate the energy of the false vacuum state using the path

integral method in Euclidean space-time. The vacuum transition rate per unit volume at zero

temperature is evaluated as,

Γtrans.

V
= Ae−S4 . (C.1)

A precise value of the prefactor A is difficult to evaluate. However, it does not depend dramat-

ically on the parameters of the theory, and one can roughly estimate it at the fourth power of

the typical electroweak scale in the potential,

A ) (100 GeV)4. (C.2)

In contrast, the power index S4 is a sensitive parameter of the vacuum transition rate. It can

be evaluated by an O(4) symmetric solution as follows,

S4 = SE4[φ̄(ρ)]− SE4[φ
f ], (C.3)

where ρ is a radial coordinate in four-dimensional space-time,

ρ =
√

(t− t0)2 + (x− x0)2, (C.4)

here the bubble nucleate on (t0, x0). The Euclidean action in four dimensions SE4[φ] is as

follows,

SE4[φ(ρ)] = 2π2
∫ ∞

0
ρ3dρ

[
∑

i

1

2

(
dφi
dρ

)2

+ V (φi)

]
, (C.5)

where φi are the real scalar field which construct the scalar potential. Note that if φi is complex

scalar field, the factor 1/2 is removed. φf represents the value of the fields at false vacuum. The

bounce configuration φ̄ is a stationary point of the action, namely φ̄ satisfies the field equations,

dV (φ̄)

dφ̄
=

d2φ̄

dρ2
+

3

ρ

dφ̄

dρ
. (C.6)

In addition, the bounce configuration also satisfies the following boundary condition,

lim
ρ→∞

φ̄(ρ) = φf , (C.7)

dφ̄(ρ)

dρ

∣∣∣∣
ρ=0

= 0. (C.8)

On the other hand, the present Hubble parameter is observed as H0 ) 1.5 × 10−42 GeV.

When the vacuum transition rate per unit volume Γtrans./V is larger than the fourth power of

the current Hubble parameter,

Ae−S4 > H4
0 , (C.9)
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the lifetime of false vacuum is shorter than the age of the universe and the false vacuum decay

quickly. This inequality leads to

S4 < 4 ln

(
A1/4

H0

)
∼ 400. (C.10)

Therefore, when the S4 ! 400 the false vacuum must decay into the true vacuum. This is the

vacuum meta-stability condition at the zero tempreture.

C.1.2 Thermal Tunneling at Finite Temperature

Linde had pointed out that the argument of Coleman is valid only at zero temperature [182].

It is because that when the temperature is as large as the typically particle scale, the potential

changes drastically due to the high-temperature effects.

At the finite temperature, vacuum decay (thermal tunneling) rate can be evaluated by [183,

184],

Γtrans.

V
= AT e

−S(T )

≡ AT e
−S3/T , (C.11)

where the prefactor AT depends on the temperature. However, similarly to the zero temperature

case, one can estimate

AT ∼ T 4. (C.12)

The power index S3 is the Euclidean action in three dimensions which is evaluated by an O(3)

symmetric solution,

S3 = SE3[φ̄(ρ)]− SE3[φ
f ], (C.13)

with

SE3[φ(ρ)] = 4π

∫ ∞

0
r2dr

[
∑

i

1

2

(
dφi
dr

)2

+ V (φi)

]
, (C.14)

At the finite temperature, the bounce configuration φ̄ satisfies the field equations,

dV (φ̄)

dφ̄
=

d2φ̄

dr2
+

2

r

dφ̄

dr
, (C.15)

and

lim
r→∞

φ̄(r) = φf , (C.16)

dφ̄(r)

dr

∣∣∣∣
r=0

= 0. (C.17)
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The thermal tunneling condition is given as follows,

∫ ttoday

0
dt

1

H(t)3
Γtrans.

V
> 1. (C.18)

The Hubble parameter during the radiation-dominated era is (the same as Eq. (4.22)),

H2 ≡
(
ȧ

a

)2

=
4π3

45M2
Pl

g∗T
4

≡ T 4

4M2
Plξ

2
. (C.19)

The equation of motion Eq. (C.19) and the adiabatic expansion condition,

d(aT )

dt
= ȧT + aṪ = 0, (C.20)

lead to

dt

dT
= (Ṫ )−1 =

(
− ȧ

a
T

)−1

= −2MPlξ

T 3
. (C.21)

Substituting Eqs. (C.19), (C.21) into Eq. (C.18), the thermal tunneling condition becomes

−
∫ Ttoday

∞
dT

16ξ4M4
Pl

T 5
e−S3/T > 1, (C.22)

namely

∫ Tc

0
dT

(2ξMPl)4

T 5
e−S3/T > 1, (C.23)

where Tc is the critical temperature that the false vacuum and the true vacuum degenerate.

If we take ξ ∼ 3 × 10−2 that is the typical value at T " 1GeV [150], the thermal tunneling

condition leads to

S3

T
!
{
140 for Tc = 1 TeV,

130 for Tc = 10 TeV.
(C.24)

Therefore, we have used S3/T ! 130 as the thermal tunneling condition in the text.

C.2 Fitting Formula for Euclidean Action

According to Ref. [214], we give the fitting formula for Euclidean action in four and three

dimensions. Note that in Ref. [214], ϕ denotes real scalar field. On the other hand, we use φ as

a complex scalar field. Thus, a factor
√
2 or 2 is different from the literature.
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Let us consider the following potential for complex scalar φ,

V (φ) = λφ2(φ− φ0,1)(φ− φ0,2), (C.25)

where λ > 0 and the dimensional coefficients φ0,1,φ0,2 > 0. Obviously, this scalar potential has

two minimum: the origin φ = 0 and another point φ = φm (∼ (φ0,1 + φ0,2)/2). Namely, the

origin is a local minimum (false vacuum), and φ = φm is a global minimum (true vacuum). If

the scalar field expectation value is at a the false vacuum, then this vacuum will be metastable

and will decay into the stable true vacuum.

For such the one-dimensional scalar potential, the Euclidean action in four dimensions from

the false vacuum to the true vacuum can be obtained by the following fitting formula [214],

S4 =
4π2

3λ

1

(2− δ)3
[
13.832δ − 10.819δ2 + 2.0765δ3

]
, (C.26)

with

δ ≡ 8φ0,1φ0,2
(φ0,1 + φ0,2)2

. (C.27)

Similarly, the Euclidean action in three dimensions from the false vacuum to the true vacuum

can be obtained by the following fitting formula [214],

S3 =
32π

81
√
λ
(φ0,1 + φ0,2)

√
δ/2

(2− δ)2
[
8.2938δ − 5.5330δ2 + 0.8180δ3

]
. (C.28)

In our numerical analysis Figure 5.5, we have reduced the three-dimensional to the one-

dimensional scalar potential in the direction of the phase transition. Then we use the following

polynomial fitting,

V (φ) = (aφ2 + bφ+ c)φ2, (C.29)

with

a =
(−3A2 + 2A)Vm +A4VM

[φ2m(1−A))]2
, (C.30)

b = −2
(1− 2A2)Vm +A4VM

φ3m(1−A)2
, (C.31)

c =
(−4A+ 3)Vm +A4VM

[φm(1−A))]2
, (C.32)

A =
φm
φM

. (C.33)

This scalar potential also has two minimum. The the origin (φ = 0, V (φ) = 0) is a local

minimum (false vacuum) and (φm, Vm) is a global minimum (true vacuum). Note that we have

used this fitting function only when Vm < 0, since we need the fitting formula of the scalar

potential that the vacuum on the origin can decay into the vacuum on the global minimum.

This polynomial satisfy the following conditions,
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• The origin is a multiple root.

• The polynomial passes through (φM , VM ) and (φm, Vm).

• The derivative of V with respect φ at φ = φm vanishes: V ′(φm) = 0.

Here we have taken VM as a local maximum value of the one-dimensional scalar potential.

Finally, λ, φ0,1 and φ0,2 can be written by the parameter a, b, c as follows,

λ = a, (C.34)

φ0,1, φ0,2 =
−b±

√
b2 − 4ac

2a

= φM
1− 2A2 +A4B ± (A− 1)

√
(2A− 1)2 −A4B

A3B − 3A+ 2
, (C.35)

where

B =
VM

Vm
. (C.36)
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Chapter

D
Detail Calculations for Chapter 5

In this appendix, we present detail calculations for Chapter 5: the masses

of the vector-like matters, the Coleman-Weinberg potential for the vector-like

matters and for the top/stop multiplets, and the conditions of existence of a

charge breaking minimum in the charged Higgs direction.

D.1 Coleman-Weinberg Potential

In this section, we collect the Coleman-Weinberg potentials which are used in Section 5. Here,

we show explicitly tadpole and quadratic terms of the Coleman-Weinberg potential. It is because

that these terms can be absorbed by the redefinition of the tree parameters (see Section 5.4.3).

D.1.1 Masses of Vector-like Matters

First, the vector-like multiplet superpotential is (see Eq. (5.5)),

Wvec. = λ1Ŝ(
ˆ̄L′L̂′ + ˆ̄E′Ê′ + ˆ̄N ′N̂ ′) + kĤ1(L̂

′ ˆ̄E′ + ˆ̄L′N̂ ′), (D.1)

where we assume that λ1 and k are real for simplicity. Note that the strongly first-order phase

transition occurs in tanβ ∼ 0 direction in our model. So, we neglect the colored vector-like

mattes since we assume that they do not have the H0
1 dependence. In the following, the doublet

matters L̂′ and ˆ̄L′ are denoted by

L̂′ =

(
L̂′
1

L̂′
2

)
, (D.2)

ˆ̄L′ =

(
ˆ̄L′
1

ˆ̄L′
2

)
. (D.3)

The vector-like fermion mass terms are given as,

− Lvec.ferm. = (L
′∗
1 , L̄

′
2, N

′∗, N̄ ′)





0 −λ1S∗ 0 0
−λ1S 0 kH0

1 0
0 k(H0

1 )
∗ 0 λ1S∗

0 0 λ1S 0









L′
1

L̄
′∗
2

N ′

N̄ ′∗





+(L
′∗
2 , L̄

′
1, E

′∗, Ē′)





0 λ1S∗ 0 k(H0
1 )

∗

λ1S 0 0 0
0 0 0 λ1S∗

kH0
1 0 λ1S 0









L′
2

L̄
′∗
1

E′

Ē′∗



 . (D.4)
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The eight mass eigenvalues are obtained by diagonalizing the vector-like fermion mass matrix.

The lighter four mass eigenvalues are

M2
f− =

1

2

(
2λ21|S|2 + k2|H0

1 |2 −
√

k4|H0
1 |4 + 4λ21k

2|S|2|H0
1 |2
)
, (D.5)

and the heavier four mass eigenvalues are

M2
f+ =

1

2

(
2λ21|S|2 + k2|H0

1 |2 +
√

k4|H0
1 |4 + 4λ21k

2|S|2|H0
1 |2
)
. (D.6)

The vector-like scalar mass terms are given as,

− Lvec.scal. = (L̃
′∗
1
˜̄L′
2, Ñ

′∗, ˜̄N ′)M2
vec.scal.neutral





L̃′
1

˜̄L
′∗
2

Ñ ′

˜̄N
′∗





+(L̃
′∗
2 ,

˜̄E′, ˜̄L′
1, Ẽ

′∗)M2
vec.scal.charged





L̃′
2

˜̄L
′∗
1

Ẽ′

˜̄E
′∗




, (D.7)

with

M2
vec.scal.neutral = (D.8)


m2

L′ + λ2
1|S|2 0 −λ1kH

0
1S

∗ 0
0 m2

L̄′ + k2|H0
1 |2 + λ2

1|S|2 0 λ1kH
0
1S

∗

−λ1k(H
0
1 )

∗S 0 m2
N′ + k2|H0

1 |2 + λ2
1|S|2 0

0 λ1k(H
0
1 )

∗S 0 m2
N̄′ + λ2

1|S|2



,

M2
vec.scal.charged = (D.9)




m2

L′ + k2|H0
1 |2 + λ2

1|S|2 0 λ1k(H
0
1 )

∗S 0
0 m2

L̄′ + λ2
1|S|2 0 λ1kS(H

0
1 )

∗

λ1kH
0
1S

∗ 0 m2
E′ + λ2

1|S|2 0
0 λ1kS

∗H0
1 0 m2

Ē′ + k2|H0
1 |2 + λ2

1|S|2



,

where we neglect the D term contributions and the H0
2 dependence because the strongly first-

order phase transition occurs in tanβ ∼ 0 direction in our model.

The eight mass eigenvalues are obtained by diagonalizing the vector-like scalar mass matrix.

When we take the m2
L′ = m2

L̄′ , m
2
N ′ = m2

N̄ ′ and m2
E′ = m2

Ē′ , the eight mass eigenvalues are given

as follows,

M2
s, neu1∓ =

1

2

(
m2

L′ +m2
N ′ + 2λ21|S|2 + k2|H0

1 |2 ∓
√

(m2
L′ −m2

N ′ + k2|H0
1 |2)2 + 4λ21k

2|S|2|H0
1 |2
)
,

M2
s, neu2∓ =

1

2

(
m2

L′ +m2
N ′ + 2λ21|S|2 + k2|H0

1 |2 ∓
√

(m2
L′ −m2

N ′ − k2|H0
1 |2)2 + 4λ21k

2|S|2|H0
1 |2
)
,
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M2
s, cha1∓ =

1

2

(
m2

L′ +m2
E′ + 2λ21|S|2 + k2|H0

1 |2 ∓
√

(m2
L′ −m2

E′ + k2|H0
1 |2)2 + 4λ21k

2|S|2|H0
1 |2
)
,

M2
s, cha2∓ =

1

2

(
m2

L′ +m2
E′ + 2λ21|S|2 + k2|H0

1 |2 ∓
√

(m2
L′ −m2

E′ − k2|H0
1 |2)2 + 4λ21k

2|S|2|H0
1 |2
)
.

(D.10)

D.1.2 For Vector-like Matters

When one takes m2
L′ = m2

L̄′ = m2
N ′ = m2

N̄ ′ = m2
E′ = m2

Ē′ , the Coleman-Weinberg potential for

the vector-like matters is given as

V vec
CW(H0

1 , S) =
1

32π2

[
4M4

s−

(
ln

(
M2

s−
Q2

)
− 3

2

)
+ 4M4

s+

(
ln

(
M2

s+

Q2

)
− 3

2

)]

− 1

32π2

[
4M4

f−

(
ln

(
M2

f−
Q2

)
− 3

2

)
+ 4M4

f+

(
ln

(
M2

f+

Q2

)
− 3

2

)]
,(D.11)

with

M2
s∓ =

1

2

(
2m2

L′ + 2λ21|S|2 + k2|H0
1 |2 ∓

√
k4|H0

1 |4 + 4λ21k
2|S|2|H0

1 |2
)
, (D.12)

where Q is the renormalization scale.

If this Coleman-Weinberg potential is expanded around the zero temperature vacuum:

H0
1 = 0, S = s0 = − tS

m2
s,0

, (D.13)

this potential becomes as follows,

V vec
CW(H0

1 , S) = V vec
CW, 0 + V vec

CW, s1 + (V vec
CW, s1)

∗ + V vec
CW, s2 + V vec

CW, h2

+V vec
CW, h4 + . . . (D.14)

with

V vec
CW, 0 =

8

32π2

[(
m2

L′ + λ21s
2
0

)2
(
ln

(
m2

L′ + λ21s
2
0

Q2

)
− 3

2

)
− λ41s

4
0

(
ln

(
λ21s

2
0

Q2

)
− 3

2

)]
,

(D.15)

V vec
CW, s1 =

λ21s0
2π2

[
−m2

L′ − λ21s
2
0 ln

(
λ21s

2
0

Q2

)
+
(
m2

L′ + λ21s
2
0

)
ln

(
m2

L′ + λ21s
2
0

Q2

)]
(S − s0),

(D.16)

V vec
CW, s2 =

λ21
2π2

[
−m2

L′ − 3λ21s
2
0 ln

(
λ21s

2
0

Q2

)
+
(
m2

L′ + 3λ21s
2
0

)
ln

(
m2

L′ + λ21s
2
0

Q2

)]
|S − s0|2 ,

(D.17)

V vec
CW, h2 =

k2

4π2

[
−m2

L′ +m2
L′ ln

(
m2

L′ + λ21s
2
0

Q2

)
+ 2λ21s

2
0 ln

(
m2

L′ + λ21s
2
0

λ21s
2
0

)]
|H0

1 |2,
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(D.18)

V vec
CW, h4 =

k4

32π2

[
2

3(m2
L′ + λ21s

2
0)

2

(
6λ21m

2
L′s20 + 5λ41s

4
0 + 6m4

L′ ln

(
m2

L′ + λ21s
2
0

Q2

)

+12λ21m
2
L′s20 ln

(
m2

L′ + λ21s
2
0

Q2

)
+ 6λ41s

4
0 ln

(
m2

L′ + λ21s
2
0

Q2

))

−4 ln

(
λ21s

2
0

Q2

)
− 10

3

]
|H0

1 |4. (D.19)

The generated tadpole term V vec
CW, s1 and the generated quadratic mass terms V vec

CW, s2 and V vec
CW, h2

can be absorbed by the redefinition of the tree parameters, tS , m2
s,0, m2

1.

D.1.3 For Top/stop

The Coleman-Weinberg potential for the top/stop multiplet is given as

V t
CW(H0

1 , H
0
2 , S) =

3

32π2

[
∑

±
M4

t,±

(
ln

M2
t,±

Q2
− 3

2

)
− 2M4

t

(
ln

M2
t

Q2
− 3

2

)]
, (D.20)

with

M2
t,± = m2

t̃ + y2t |H0
2 |2 ± ytλ|S||H0

1 |, (D.21)

M2
t = y2t |H0

2 |2, (D.22)

where we take m2
Q = m2

U = m2
t̃
, and neglect the A term and D term contributions. If this

Coleman-Weinberg potential is expanded around the zero temperature vacuum, this potential

becomes as follows,

V t
CW(H0

1 , H
0
2 , S) = V t

CW, 0 + V t
CW, 2 + . . . (D.23)

with

V t
CW, 0 =

3

16π2
m4

t̃

[
ln

(
m2

t̃

Q2

)
− 3

2

]
, (D.24)

V t
CW, 2 =

3

16π2

[
y2t λ

2s20 ln

(
m2

t̃

Q2

)
|H0

1 |2 + 2y2tm
2
t̃

(
2 ln

(
m2

t̃

Q2

)
− 1

)
|H0

2 |2
]
. (D.25)

The generated quadratic mass terms V t
CW, 2 can be absorbed by the redefinition of the tree

parameters, m2
1 and m2

2.

D.2 Charge Breaking Minimum

In the nMSSM, there is often a charge breaking minimum in the charged Higgs direction. Es-

pecially, the benchmark point in the text has a charged breaking global minimum. Thus the

electroweak symmetry breaking vacuum becomes metastable vacuum. It is because that when
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the φ is relatively large, |φs| becomes small (see Eq. (5.32)). At this time, small |φs| leads to

the light charged Higgs boson mass,

M2
charged = m2

1 +m2
2 + 2λ2φ2s +

g2

2
φ2 . (D.26)

Therefore, the nMSSM tends to have the charge breaking minimum in the charged Higgs direc-

tion. Note that, when the coupling λ is O(1), the charged Higgs boson is always lighter than

the typical mass of the Heavy Higgs boson (see Eq. (3.66)),

M2
charged = M2

A −
(
λ2 − g2

2

)
φ2 < M2

A . (D.27)

In the following, we consider the condition that the charge breaking minimum occurs. We can

take 〈H−
1 〉 = 0 at elsewhere using the SU(2) rotation, Thus, the Higgs potential of the nMSSM

can be expanded as follows (the same equation as Eq. (3.38)),

V0 = m2
1|H0

1 |2 +m2
2(|H0

2 |2 + |H+
2 |2) +m2

S |S|2 + λ2|H0
1 |2|H0

2 |2 + λ2|S|2(|H0
1 |2 + |H0

2 |2 + |H+
2 |2)

+
ḡ2

8
(|H0

1 |4 + |H0
2 |4 + |H+

2 |4 − 2|H0
1 |2|H0

2 |2 − 2|H0
1 |2|H+

2 |2 + 2|H0
2 |2|H+

2 |2)

+
g2

2
|H0

1 |2|H+
2 |2 + (−λAλSH

0
1H

0
2 + tSS −m2

12H
0
1H

0
2 +H.c.). (D.28)

Now, let us consider the minimization condition for H0
1 , H

0
2 , S and “H+

2 ”. These conditions are

given as follows,

∂V0

∂H0
1

∣∣∣∣
vev

= v1

(
m2

1 + λ2(v22 + s2) +
ḡ2

4
(v21 − v22 − |v+2 |

2) +
g2

2
|v+2 |

2 − λAλs
v2
v1

−m2
12
v2
v1

)

= 0, (D.29)

∂V0

∂H0
2

∣∣∣∣
vev

= v2

(
m2

2 + λ2(v21 + s2) +
ḡ2

4
(v22 − v21 + |v+2 |

2)− λAλs
v1
v2

−m2
12
v1
v2

)

= 0, (D.30)

∂V0

∂S

∣∣∣∣
vev

= s

(
m2

S + λ2(v21 + v22 + |v+2 |
2) + (tS − λAλv1v2)

1

s

)

= 0, (D.31)

∂V0

∂H+
2

∣∣∣∣
vev

= (v+2 )
∗
(
m2

2 + λ2s2 − ḡ2

4
(v21 − v22 − |v+2 |

2) +
g2

2
v21

)

= 0, (D.32)

namely,

m2
1 = (m2

12 + λAλs)
v2
v1

− ḡ2

4
(v21 − v22 − |v+2 |

2)− g2

2
|v+2 |

2 − λ2(v22 + s2), (D.33)

m2
2 = (m2

12 + λAλs)
v1
v2

− λ2(v21 + s2) +
ḡ2

4
(v21 − v22 − |v+2 |

2), (D.34)
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s =
−tS + λAλv1v2

m2
S + λ2(v21 + v22 + |v+2 |2)

, (D.35)

and when we assume v+2 .= 0, then

m2
2 = −λ2s2 + ḡ2

4
(v21 − v22 − |v+2 |

2)− g2

2
v21, (D.36)

where v+2 represents the vev of the H+
2 scalar field.

Using Eq. (D.34) and Eq. (D.36), one find the following relationship,

(m2
12 + λAλs)

v1
v2

− λ2v21 = −g2

2
v21, (D.37)

then, we can get a sin 2β as a function of φ,

sin 2β =
2(m2

12 + λAλs)

(λ2 − g2

2 )φ
2

, (D.38)

where we use

v1 = φ cosβ, (D.39)

v2 = φ sinβ. (D.40)

Next, using Eq. (D.33) and Eq. (D.36), we can get

|v+2 |
2 =

(
ḡ2

2
− g2

2

)−1(
m2

1 −m2
2 +

ḡ2

2
(v21 − v22)−

g2

2
v21 + λ2v22 − (m2

12 + λAλs)
v2
v1

)
. (D.41)

It is non-trivial to show a existence of the solution of these conditions Eqs. (D.35), (D.36), (D.42)

and (D.41). However, when Aλ ∼ 0, these conditions become a bit simple. Then, Eq. (D.42)

becomes

sin 2β =
2m2

12

(λ2 − g2

2 )φ
2
. (D.42)

As one can see, the angle β can be expressed as a function of φ for given input parameters,

λ, m2
1, m2

2, m2
S , tS and m2

12. In addition, v1, v2 and v+2 can also be expressed as a function of

φ, using the fact that β can be expressed as a function of φ. Finally, s can also be expressed as

a function of φ (see Eq. (D.35)).

Thus, we can obtain the vevs (v1, v2, s, v+2 ) that may be the charged breaking vacuum

solution as a function of φ for given input parameters. At this time, if these vevs can satisfy

the following three necessary conditions, the solution surely exists, and the charged breaking

minimum exists for given input parameters.

Since sin 2β ≤ 1,

2m2
12

λ2 − g2

2

≤ φ2. (D.43)
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Since an absolute value of v+2 is real,

|v+2 |
2(φ) > 0. (D.44)

Since we do not use Eq. (D.36) itself, we should impose it,

m2
2 + λ2s2(φ)− ḡ2

4

(
v21(φ)− v22(φ)− |v+2 |

2(φ)
)
+

g2

2
v21(φ) = 0. (D.45)

In fact, the sample point in the text satisfies the above conditions, and there is a charge

breaking global minimum in the charged Higgs direction at the zero temperature. However, we

show that the electroweak symmetry breaking vacuum is actually meta-stable vacuum, and its

lifetime is much longer than the one of the universe (see Section 5.7).
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