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In agquantummeasuremerrocessthereis a back-actioron the systemandtheinformationabout
the measuredbsenableis in generaldisturbedby the measuremenback-action. Still in some
guantummeasurementuchasaquanturmon-demolitiormeasuremerdr aphoton-countingnea-
surementthe informationaboutthe measureabsenableis consered. Bandiscussedhesetypes
of measuremeniguantitatvely basedn the Shannorentrofy andthe mutualinformation([1, 2, 3].
In his formulation,the obtainedinformationis quantifiedin termsof the mutualinformationbe-
tweenthe measuredbsenable X andthe measurementutcomeY. He established condition
for the Shannorentrofy conseration which stateshat the amountof the obtainedinformationis
equalto thedecreasén the systems Shannorentropy of X dueto themeasurementiowever, the
Shannorentropy for a continuousvariablecannotbeinterpretedasthe properinformationcontent
in generalsinceits valuechangedy a one-to-ondransformationwhich is just a relabellingand
shouldnotincreaseor decrease¢he information. Furthermorethe physical meaningof the estab-
lished conditionfor the Shannorentrofy conserationis not clear The aim of this thesisis to
studytheseinformation-conservingneasuremenprocessevasedon the relative entrogy [4] and
establisithe conserationrelationfor this kind of informationcontent.

This thesisconsistsf eightchaptersaandtwo appendicesChapterl is theintroduction.Chap-
ters2, 3 and4 arereview parts.Chapters, 6 and7 containthe new resultsobtainedoy the present
author Chapter8 summarizeshisthesis.

Chapter2 reviews the quantummeasuremertheoryandin this chapterwe introducethe pos-
itive operatofvaluedmeasurgdPOVM) andthe completelypositive (CP) instrument. The POVM
is a generalizatiorof the projection-aluedmeasurgPVM) associatedvith a measurementn a
self-conjugteoperatorandit determineshe statisticsof the measuremerdgutcomefor anon-ideal
guantummeasuremen rhe CPinstrumentdescribedoththe measuremertutcomeandthe con-
ditional statechangedueto the measuremenack-action.In the introductionof theseconcepts,
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we consider the measurement outcome based on the general theory of measure and measurable sets
which can handle discrete and continuous sample spaces of the measurement outcome in a coherent
manner.

Chapter 3 reviews classical information theory. We first introduce three entropic information
contents, namely the Shannon entropy, the mutual information and the relative entropy. We point
out that the Shannon entropy for a continuous variable changes its value by a one-to-one transfor-
mation while the other two contents do not. We also introduce the concept of a sufficient statistic
for the statistical model introduced by Halmos and Savage [5] and review the result by Kullback
and Leibler [4] that the sufficiency of a statistic can be characterized by the conservation of the
relative entropy.

Chapter 4 reviews the Shannon entropy conservation for quantum measurements derived by
Ban [2, 3]. We consider a measurement prodéssescribed by a CP instrument and a system’s
observableX described by a POVM. We prove the Shannon entropy conservation under some
conditions forX andY. We also consider a case in whic¢his a PVM. As an example of the
Shannon-entropy-conserving measurement, we discuss a quantum non-demolition measurement
which does not alter the probability distribution of the measured observable by the measurement
back-action.

Chapter 5 establishes the relative entropy conservation. As in the previous chapter we consider
an observable& described by a POVI\EX and a measurement procassorresponding to a CP
instrument€,)”. We quantify the obtained information as the relative entrbiy’ |[p} ), wherep
andg are candldate states of the system ﬁ}ﬁ@; ) is the probability dlstrlbutlon for the measure-
ment outcome of. Under some conditions foX andY’, we prove the following relative-entropy
conservation law:

D(py |lpy) = D(p)11pY) — E;[D(p;, | Ip3, )], (1)

Wherepff is the probability distribution ok for a quantum statg, /, is the post-measurement state

for a given measurement outcomeand£;[-| denotes the ensemble average over the measurement
outcomey for a given pre-measurement statelhe left-hand side of Eq. (1) is the amount of the
obtained information from the measurement outcome as to which/staté is actually prepared.

The right-hand side of the relative-entropy conservation law is the average decrease in the system’s
relative entropy ofX. To understand the meaning of the relative-entropy conservation law, we
consider a joint successive measurement process afterY. Then we show that the relative-
entropy conservation law (1) is equivalent to another relative entropy conservation law

D(p; " 1p5 ) = D(p; llp3 ). )

whereﬁffy(x, y) is the probability distribution for the joint successive measurement. The left-hand
side of Eq. (2) is the obtained information for the joint measurement process. The established
condition for the relative entropy conservation is interpreted as the existence of a sufficient statistic
Z(z;y) for the joint successive measurement whose probability distribution coincides with that of
X. For the caseX is a discrete PVM and’ is discrete, the established condition is shown to be
equivalent to the relative-entropy conservation law (1) or (2) for arbitrary quantum gtatets.

We also show that the condition for the relative-entropy conservation law is less restrictive than that
for the Shannon entropy conservation by Ban, i.e. our condition applies to a wider class of quantum
measurements. For a case in whi€hs a discrete non-degenerate PVM ands discrete, Ban's
condition for the Shannon entropy conservation is shown to be equivalent to a condition that the
post-measurement state is an eigenstat® dfthe pre-measurement state is also an eigenstate of
X. As an example of a measurement process which does not satisfy Ban’s condition but do satisfy
our condition for the relative-entropy conservation law, we discuss a destructive measureafent



X in which measurement outcome¥fis equivalent to the projective measuremenkoivhile the
state changes to a completely mixed state due to the measurement back-action.

In Chapter 6, we apply the general theorem for the relative-entropy conservation law estab-
lished in Chapter 5 to continuous destructive measurements on a single-mode photon field, namely,
photon-counting, quantum counting, homodyne, and heterodyne measurements. We prove that all
of these measurement satisfy the established condition for the relative-entropy conservation law,
whereas the Shannon entropy conservation does not hold except for the photon-counting measure-
ment. The common reason in these examples for the non-conservation of the Shannon entropy is
that the Jacobian of the transformation— Z(z;y) is not unit, which is due to the strong depen-
dence of the Shannon entropy for a continuous variable on a reference measure of the variable.

In Chapter 7 we consider a problem of whether or not there exists a relative-entropy-conserving
observableX for a given measurement procaésslescribed by a CP instrument. We show that the
answer is affirmative when the sample spac& a$ a standard Borel space. The typical standard
Borel spaces include finite space, countable discrete space and all the Borel subsets of the Euclidean
spaceR’. Thus the assumption of a standard Borel sample space is as general as to include usual
examples of the measurement processes encountered in the physical problems. The constructed
observableX corresponds to the measurement outcome of the infinite successive measurements of
the same measurement proc&ssSince the sample space &f becomes continuous even when
Y’s sample space is finite, the measure theoretic consideration takes part in the construction, which
includes the Kolmogorov extension theorem for POVM [6].
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