
論文の内容の要旨

論文題目　Relative-entropy conservation law in
quantum measurement and its applications to continuous

measurements
（量子測定における相対エントロピーの保存則と

その連続測定への応用）

氏名　倉持　結

In aquantummeasurementprocess,thereis aback-actionon thesystemandtheinformationabout
the measuredobservable is in generaldisturbedby the measurementback-action. Still in some
quantummeasurementssuchasaquantumnon-demolitionmeasurementor aphoton-countingmea-
surement,theinformationaboutthemeasuredobservableis conserved. Bandiscussedthesetypes
of measurementsquantitatively basedontheShannonentropy andthemutualinformation[1, 2, 3].
In his formulation,the obtainedinformationis quantifiedin termsof the mutual informationbe-
tweenthe measuredobservableX andthe measurementoutcomeY . He establisheda condition
for theShannonentropy conservationwhich statesthat theamountof theobtainedinformationis
equalto thedecreasein thesystem’sShannonentropy of X dueto themeasurement.However, the
Shannonentropy for a continuousvariablecannotbeinterpretedastheproperinformationcontent
in generalsinceits valuechangesby a one-to-onetransformation,which is just a relabellingand
shouldnot increaseor decreasethe information. Furthermore,thephysicalmeaningof theestab-
lishedcondition for the Shannonentropy conservation is not clear. The aim of this thesisis to
studytheseinformation-conservingmeasurementprocessesbasedon the relative entropy [4] and
establishtheconservationrelationfor this kind of informationcontent.

This thesisconsistsof eightchaptersandtwo appendices.Chapter1 is theintroduction.Chap-
ters2, 3 and4 arereview parts.Chapters5, 6 and7 containthenew resultsobtainedby thepresent
author. Chapter8 summarizesthis thesis.

Chapter2 reviews thequantummeasurementtheoryandin this chapterwe introducethepos-
itive operator-valuedmeasure(POVM) andthecompletelypositive (CP) instrument.ThePOVM
is a generalizationof the projection-valuedmeasure(PVM) associatedwith a measurementon a
self-conjugateoperatorandit determinesthestatisticsof themeasurementoutcomefor anon-ideal
quantummeasurement.TheCPinstrumentdescribesboththemeasurementoutcomeandthecon-
ditional statechangedueto the measurementback-action.In the introductionof theseconcepts,
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we consider the measurement outcome based on the general theory of measure and measurable sets
which can handle discrete and continuous sample spaces of the measurement outcome in a coherent
manner.

Chapter 3 reviews classical information theory. We first introduce three entropic information
contents, namely the Shannon entropy, the mutual information and the relative entropy. We point
out that the Shannon entropy for a continuous variable changes its value by a one-to-one transfor-
mation while the other two contents do not. We also introduce the concept of a sufficient statistic
for the statistical model introduced by Halmos and Savage [5] and review the result by Kullback
and Leibler [4] that the sufficiency of a statistic can be characterized by the conservation of the
relative entropy.

Chapter 4 reviews the Shannon entropy conservation for quantum measurements derived by
Ban [2, 3]. We consider a measurement processY described by a CP instrument and a system’s
observableX described by a POVM. We prove the Shannon entropy conservation under some
conditions forX andY . We also consider a case in whichX is a PVM. As an example of the
Shannon-entropy-conserving measurement, we discuss a quantum non-demolition measurement
which does not alter the probability distribution of the measured observable by the measurement
back-action.

Chapter 5 establishes the relative entropy conservation. As in the previous chapter we consider
an observableX described by a POVM̂EX

x and a measurement processY corresponding to a CP
instrumentEY

y . We quantify the obtained information as the relative entropyD(pYρ̂ ||pYσ̂ ), whereρ̂
andσ̂ are candidate states of the system andpYρ̂ (y) is the probability distribution for the measure-
ment outcome ofY. Under some conditions forX andY , we prove the following relative-entropy
conservation law:

D(pYρ̂ ||pYσ̂ ) = D(pXρ̂ ||pXσ̂ )− Eρ̂[D(pXρ̂y ||p
X
σ̂y
)], (1)

wherepXρ̂ is the probability distribution ofX for a quantum statêρ, ρ̂y is the post-measurement state
for a given measurement outcomey, andEρ̂[·] denotes the ensemble average over the measurement
outcomey for a given pre-measurement stateρ̂. The left-hand side of Eq. (1) is the amount of the
obtained information from the measurement outcome as to which stateρ̂ or σ̂ is actually prepared.
The right-hand side of the relative-entropy conservation law is the average decrease in the system’s
relative entropy ofX. To understand the meaning of the relative-entropy conservation law, we
consider a joint successive measurement process ofX afterY . Then we show that the relative-
entropy conservation law (1) is equivalent to another relative entropy conservation law

D(p̃XY
ρ̂ ||p̃XY

σ̂ ) = D(pXρ̂ ||pXσ̂ ), (2)

wherep̃XY
ρ̂ (x, y) is the probability distribution for the joint successive measurement. The left-hand

side of Eq. (2) is the obtained information for the joint measurement process. The established
condition for the relative entropy conservation is interpreted as the existence of a sufficient statistic
x̃(x; y) for the joint successive measurement whose probability distribution coincides with that of
X. For the caseX is a discrete PVM andY is discrete, the established condition is shown to be
equivalent to the relative-entropy conservation law (1) or (2) for arbitrary quantum statesρ̂ andσ̂.
We also show that the condition for the relative-entropy conservation law is less restrictive than that
for the Shannon entropy conservation by Ban, i.e. our condition applies to a wider class of quantum
measurements. For a case in whichX is a discrete non-degenerate PVM andY is discrete, Ban’s
condition for the Shannon entropy conservation is shown to be equivalent to a condition that the
post-measurement state is an eigenstate ofX if the pre-measurement state is also an eigenstate of
X. As an example of a measurement process which does not satisfy Ban’s condition but do satisfy
our condition for the relative-entropy conservation law, we discuss a destructive measurementY of

2



X in which measurement outcome ofY is equivalent to the projective measurement ofX while the
state changes to a completely mixed state due to the measurement back-action.

In Chapter 6, we apply the general theorem for the relative-entropy conservation law estab-
lished in Chapter 5 to continuous destructive measurements on a single-mode photon field, namely,
photon-counting, quantum counting, homodyne, and heterodyne measurements. We prove that all
of these measurement satisfy the established condition for the relative-entropy conservation law,
whereas the Shannon entropy conservation does not hold except for the photon-counting measure-
ment. The common reason in these examples for the non-conservation of the Shannon entropy is
that the Jacobian of the transformationx → x̃(x; y) is not unit, which is due to the strong depen-
dence of the Shannon entropy for a continuous variable on a reference measure of the variable.

In Chapter 7 we consider a problem of whether or not there exists a relative-entropy-conserving
observableX for a given measurement processY described by a CP instrument. We show that the
answer is affirmative when the sample space ofY is a standard Borel space. The typical standard
Borel spaces include finite space, countable discrete space and all the Borel subsets of the Euclidean
spaceRd. Thus the assumption of a standard Borel sample space is as general as to include usual
examples of the measurement processes encountered in the physical problems. The constructed
observableX corresponds to the measurement outcome of the infinite successive measurements of
the same measurement processY . Since the sample space ofX becomes continuous even when
Y ’s sample space is finite, the measure theoretic consideration takes part in the construction, which
includes the Kolmogorov extension theorem for POVM [6].
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