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[1] New algorithms for calculating the collision-coagulation growth process of
hydrometeors were developed and implemented into a bin cloud microphysics model in
order to improve its computational efficiency. Computation of collision-coagulation
growth is a bottleneck in the bin-type cloud microphysics calculation that takes a large
amount of computing time. Improvement in the efficiency of the process can significantly
reduce computing time. In this study, a new stochastic algorithm was developed and
implemented into the collision-coagulation growth process of a nonhydrostatic cloud
model. Simulations showed that the computing time was reduced by about 90%. We
verified that the error range of the simulation results from the new scheme is much smaller
than the internal variability involved the traditional bin-type model and also in the real
atmosphere. The newly developed scheme was implemented into the mesoscale
operational model of the Japan Meteorological Agency. The precipitation field was
accurately simulated in a numerical weather prediction simulation.
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1. Introduction

[2] Clouds, which cover about 70% of the Earth’s surface
[Rossow and Schiffer, 1999], play a critical role in the
atmosphere through various interaction processes such as
latent heat release, radiation and water circulation. In
particular, the recent attention of the climate research
community to cloud perturbation by anthropogenic aerosols
demands extensive simulations of detailed cloud micro-
physics. In such simulations, bin-type cloud models have
been used to study the detailed modification of the size
distribution of cloud droplets and aerosol particles [e.g.,
Khain et al., 2005; Lynn et al., 2005]. The satellite-derived
signature of aerosol-cloud interaction with a significant
reduction of the effective droplet radius has also been
successfully simulated by these bin-type models [Suzuki et
al., 2006; Iguchi et al., 2008].
[3] The bin-type model, however, takes a large amount of

computing time and is difficult to be used for simulation of
large-scale areas and/or for many runs in sensitivity studies.
So far the model has therefore been used only for idealized
and mesoscale regional case studies [e.g., Khain and
Sednev, 1996; Takahashi and Kawano, 1998; Lynn et al.,
2005; Iguchi et al., 2008]. On the other hand, Shima et al.
[2009] developed the super-droplet method, which can treat

detailed cloud microphysics and have potential to reduce
computational cost of cloud physics.
[4] Table 1 shows an example of CPU time taken by

microphysical processes in the bin model of Suzuki et al.
[2006]. The table indicates that more than 98% of the
total CPU time is used by the condensation and the
collision-coagulation processes, although different cases
depend on the algorithms adopted by each bin-type
model. In order to increase the computational efficiency,
Bott [1998, 2000] proposed a flux method to reduce the
numerical diffusion in the collision-coagulation processes
by using a mass density distribution function, instead of
the number density distribution function and using an
accurate interpolation to solve the stochastic collision
equation. Suzuki [2004] proposed a base function method
to reduce the numerical diffusion by expanding the size
distribution by a series of orthogonal functions. In spite
of these improvements, the computational cost of bin-type
models is still high.
[5] In this article, we propose a stochastic size integra-

tion method for the collision-coagulation process of a bin
type cloud model. And the purpose of this article is to
develop a numerically efficient method to approximate
the traditional bin method which is widely used by many
researchers, in order to reduce the computation cost. We
present the model description in section 2, calculation
results in sections 3, 4, and 5 and the discussion in
section 6.

2. Model Description

[6] The collision-coagulation growth of hydrometeors in
cloud is calculated by solving the stochastic collection
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equation (SCE) [e.g., Pruppacher and Klett, 1997; Khain et
al., 2000]:

@f mð Þ
@t

¼ 2

Zm=2
0

f m0ð Þf m� m0ð ÞK m0;m� m0ð Þdm0

� f mð Þ
Z1
0

f m00ð ÞK m;m00ð Þdm00; ð1Þ

where m is the mass of a hydrometeor particle, f(m) is the
number size distribution function (SDF) (number size
concentration) and K(m0, m) is the collection kernel function
determining the rate at which a particle of mass m0 is
collected by a particle of mass m. In order to solve (1), we
adopt a logarithmically equidistant mass grid system
following Bott [1998]. Following Berry [1967], a mass
density function, g(h), is introduced by

g hð Þ ¼ m2f mð Þ h ¼ lnmð Þ: ð2Þ

Substituting g(h) into (1), the SCE of the mass density
function is written as
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where hc = ln(mc); mc = m � m0; h1 = exp(h)/2.
[7] Collision of a particle at a grid point i (ith bin), whose

mass is mi, with a particle at a grid point j (jth bin), whose
mass is mj, yields a change in the mass density functions at
the ith and jth bins, gi and gj. It also produces a new particle
with mass m0 = mi + mj. This process is calculated as
follows:

gi i; jð Þ ¼ gi � gi
K i; jð Þ
mj

gjDhDt ¼ gi �Dgi; ð4aÞ

gj j; ið Þ ¼ gj � gj
K i; jð Þ
mi

giDhDt ¼ gi �Dgj; ð4bÞ

g0 i; jð Þ ¼ Dgi þDgj;

i; j ¼ 1; 2; . . . ;Nbinð Þ; ð4cÞ

where Dgi and Dgj are the masses lost from ith and jth bins
by collision, respectively, and gi(i, j) and gj(i, j) are values
of the mass density function after the collision at the ith and
jth bin, respectively. g0(i, j) represents the total mass
increase of the particle system identified as the new particle
m0 after the collision. Dh is the grid spacing of the
logarithmically equidistant mass grid system, Dt is the time
interval for numerical integration and Nbin is the number of
bins. Supposing that the new particle mass is in a kth bin,
i.e., mk < m0 < mk+1, g0(i, j) is decomposed into two
contributions for kth and k + 1st bins as in the scheme
proposed by Bott [2000].
[8] The traditional bin method evaluates all the collision

combinations, NbinC2, to solve (3) as follows:

glf gl¼1;2;


Nbin
¼
XNbin�1

i

XNbin

j

Dgi þDgj
� �

: ð5Þ

[9] On the other hand, in this study, we approximate (5)
using a Monte Carlo integration (MCI) algorithm. This
method does not calculate all combinations of bins, instead
only some combinations are selected by uniform random
numbers:

glf gl¼1;2;


Nbin
¼

XM
k1¼1;k2¼1

Dgk1 þDgk2ð Þ � w w ¼ Nbin
C2

M
;

ð6Þ

where M is the number of selected bin combinations and w
is a weighting factor to compensate for the lack of mass
change caused by the reduced number of combinations.
Computational efficiency is improved by introducing the
factor w compared to the traditional bin method.
[10] Equations (1), (5), and (6) assume collision and

coagulation among particles of the same type of hydrome-
teor. We can extend these expressions to those for poly
dispersions for different types of hydrometeors, such as the
seven hydrometeor types identified in the Hebrew Univer-
sity Cloud Model [Khain and Sednev, 1996] as follows:
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Table 1. Example of the CPU Times and Contributions to the

Total Time for Calculation of Cloud Microphysics Processes by a

Bin-Type Model

Process CPU Time (s)
Contribution

to Total Time (%)

Nucleation 2.98 0.3
Freezing, melting 3.45 0.3
Condensation 808.39 70.9
Collision and coagulation 325.13 28.5
All 1139.95 100
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where m, n, s, and l represent the type of hydrometeor, Nspc

is the number of hydrometeor types and L is the number of
hydrometeor types selected in the MCI. The quadruplex
integration in (7) is reduced to a double summation in (8),
so that the MCI introduces a significant benefit in the
calculation time for the collision-coagulation process for
poly dispersions including different types of hydrometeors.
In summary, the computational efficiency is improved by
random bin selection with ratio of w1(= NbinC2/M) and also
by hydrometeor type selection with ratio of w2(= Nspc

2 /L).
The total computation time is therefore reduced by the
factor Rcomp = 1/w1w2.
[11] In case of large w, the size distribution in the next

time step can become negative when gi <Dgi or gj <Dgj. In
this case, we assure positive definiteness by the following
procedure as proposed by Bott [1998]:

gi i; jð Þ ¼ max gi �Dgi; 0ð Þ

gj j; ið Þ ¼ max gj �Dgj; 0
� �

i 6¼ jð Þ
gj �Dgj i ¼ jð Þ

�
:

ð9Þ

Our method is also different from traditional bin method in
terms of calculation order regarding hydrometeor types and
sizes of hydrometeor. Traditional bin methods calculate
interaction of different hydrometeor types and different
sizes by collision with specific order (e.g., first, collision of
liquid drop and ice particle, second liquid drop and snow
particle, next, liquid drop and graupel etc.). This can be
invalid for collision process in nature if the natural collision
process occurs randomly in terms of paring of colliding
particles and types. In our MCI, however, collision process
is calculated by random order about hydrometeor type and
size of hydrometeor because the order is selected by
uniform random number. This may be more suitable to
represent the stochastic nature of collision process in real
clouds.

3. Results of Numerical Experiments With
a Box Model

[12] In this section, we show the results of numerical
simulations with the present MCI applied to a zero-
dimensional box model, which calculates the development
of SDF by only the collision-coagulation process. Simu-
lated results are compared with the analytic solution of
SCE [Golovin, 1963] and the results with Exponential
Flux Method (EFM) [Bott, 2000]. We also evaluate the
computational cost and error of the MCI.
[13] For the test simulation, we integrate the SCE over the

total time of 7200 s with a time interval of Dt = 1 s. The
SDF is discretized by Nbin = 300 size bins through uni-
formly dividing the logarithm of the hydrometeor’s mass.
Only one type of hydrometeor (water droplet) is considered.
The initial size distribution is assumed to be the form of a
gamma function:

f m; t ¼ 0ð Þ ¼ L0

m
exp �m

m

� �
; ð10Þ

where L0 is the total cloud water content and m is the mean
droplet mass. The mean radius of hydrometeor r can be

defined as m = (4/3) prr3 where r is the density of water.
We assume L0 = 1 g m�3 and r = 10 mm in our simulation.
[14] Figure 1a compares the MCI result with the analytic

solution for the Golovin kernel function K(m0, m) = (1.5 �
10�3) � (m + m0) [Berry, 1967]. It shows that the SDF
obtained by the MCI are not smooth functions of mass of
hydrometeor but this nonsmooth nature does not develop
with time. The peak mode radii are same as those of analytic
solution. And the maximum deviation from the analytic
SDF at each time step remains similar to that of traditional
method (not shown). The root mean square error in the SDF
over the total time becomes less than that of the traditional
bin method when R(= 1/w1) is larger than 0.031.
[15] Figures 1b and 1c compare the results of the MCI

with the EFM using a realistic kernel called the hydrody-
namic kernel:

K m0;mð Þ ¼ p r mð Þ þ r m0ð Þf g2 V mð Þ � V m0ð Þj j

 Ecol m;m

0ð ÞEcoal m;m
0ð Þ;

where V(m) and r(m) are the terminal velocity and radius of
a hydrometeor whose mass is m, respectively, and Ecol and
Ecoal represent the collection and coalescence efficiencies,
respectively. In this case, the MCI gives an appropriate SDF
when R(= 1/w1 = M/NbinC2) is in the range from 0.056 to 1
as shown in Figures 1b and 1c. However, growth of
hydrometeor becomes delayed (see Figure 1c) when R
becomes as small as 0.031. A detailed study of the
simulation results suggests that this delay begins when the
compensation factor w in (6) becomes inadequately large,
producing a significantly large value of Dgi,j which cannot
be adequately corrected by (9). Therefore, R should be set as
larger than 0.056 in the present MCI.
[16] Figures 2a and 2b show CPU time taken by the MCI

as a function of R and Rspc(= 1/w2 = L/Nspc
2 ). The figure

shows that the CPU time changes in proportion to R and
Rspc. When R is one, the CPU time of the present method is
larger than that of the traditional bin method due to the cost
of generating random numbers. When R is 0.056, which is
the minimum value of R required for appropriate results, the
CPU time is about 10% of traditional bin method.

4. Comparison With the Traditional Bin Method
Using a Two-Dimensional Model

[17] We also performed two-dimensional simulations in
order to compare the results from the MCI and the tradi-
tional bin method. We selected two cases for simulation: a
convective cloud case and a shallow stratus case generated
by a warm bubble. We use a bin model developed by Suzuki
et al. [2006]. The simulation domain is a two-dimensional
area (x � z) of 30 km (dx = 0.5 km) in the horizontal
direction and 15 km (dz = 0.2 km) in vertical direction for
the convective cloud case, and 30 km (dx = 0.5 km) in
horizontal and 5 km (dz = 0.05 km) in vertical direction for
the stratus case. Initial conditions of wind shear, relative
humidity and temperature as shown in Figure 3 are based on
Suzuki [2004] for convective cloud and Suzuki et al. [2006]
for stratus cloud, respectively. To trigger convection and
cloud formation, a warm bubble is initially located as a
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Figure 1. (a, b) Time evolution of the mass density size distribution (SDF) and (c) the smoothed result
of Figure 1b. In Figure 1a, the solid line represents the analytic solution of the stochastic collection
equation (SCE) [Golovin, 1963] and dashed lines and dash-dotted lines represent the numerical results
obtained by the Monte Carlo integration (MCI) with R = 0.031 and 0.125, respectively. In Figures 1b and
1c, solid lines represent the numerical results obtained by the traditional bin method, and dashed lines,
dash-dotted lines, and dotted lines represent those obtained by the MCI with R = 0.031, 0.056, and 0.125,
respectively.
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potential temperature perturbation Dq following Gallus and
Rancic [1996]:

Dq ¼ Dq0
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0

xr

� �2

þ z� z0

zr

� �2
s0

@
1
A;

where x0 = 9 km, z0 = 1 km, xr = 5 km, zr = 1 km and Dq =
1 K for the convective cloud case, and x0 = 9 km, z0 =
0.5 km, xr = 5 km, zr = 0.5 km and Dq = 1 K for the stratus
case. In the stratus simulation, we consider only warm
processes because the cloud top temperature is always
above 273 K. On the other hand, the convective cloud

simulation is performed including the ice phase process
with the seven types of hydrometeors, i.e., cloud droplet, ice
crystals (plate, column, dendrite), snow, hail and graupel.
First, we set Rspc = 1 and various R values from 1 to 0.056,
and we take an ensemble average of five experimental
results where R are same but the seeded random numbers
are different. We integrate for 7200 s (2 h) with a time step
of Dt = 1 s. SDFs of hydrometeors are discretized into 60
size bins (i.e., Nbin = 60) by uniformly dividing the
logarithm of the mass of hydrometeor. The range of
hydrometeor size is defined as 3–3000 mm. We call 3–
30 mm, 30–300 mm, and 300–3000 mm cloud, drizzle and
rainwater, respectively.

Figure 2. CPU times for the collision-coagulation processes, normalized by the CPU time for the
traditional bin method, as functions of (a) R and (b) Rspc. Solid lines and dots are CPU times taken by the
MCI, and dotted lines are those for the traditional bin method.
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Figure 3. Initial conditions for atmospheric dynamics assumed for the two-dimensional numerical
experiments: (a) horizontal wind, (b) temperature, and (c) relative humidity. (top) Stratus case; (bottom)
convective cloud case.
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Figure 4. Horizontal distance-height sections of the cloud effective radius distribution formed by a
warm bubble at t = 60 min in the convective cloud case for Rspc = 1 and various values of R. The panel
labeled with ‘‘bin’’ represents the result of the traditional bin model.
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[18] Figure 4 shows a snapshot of the cloud effective
radius distribution for the convective cloud case 60 min
after the start of the calculation. As expected from the
previous tests, the present method gives results similar to
the traditional bin method even if R is as small as 0.056.
Figure 5 shows the relative error of the MCI from the result
of the traditional bin method. The mean error of each set of
simulations changes exponentially with R. Relative errors of
the effective radius of cloud,

re ¼

Zr¼30mm

r¼3mm

r3f rð Þdr

Zr¼30mm

r¼3mm

r2f rð Þdr

;

and the accumulated amount of cloud water content,
integrated from the initial time to the end of simulation,
are about 3% and that of surface rainfall is less than 1%
when R is 0.056.
[19] Next, we change Rspc for a fixed R at 0.124. Figure 6

shows the accumulated amount of snow water content.
When Rspc is less than one, the snow amount is either over-
or underestimated, though it seems that there is no specific
preference of Rspc values to cause either. The present
method over/underestimates all ice phase hydrometeors,
including ice, graupel and hail amounts, though not shown.
Such over/underestimation is caused by a lack of mass
transfer among some hydrometeor types in the MCI. If Rspc

is smaller than one, there are some types of hydrometeors
for which collision and coagulation processes are not
calculated. As a result, some types of hydrometeors grow
more than by the traditional method, while another type

does not grow fast enough. There are no preferred types and
values of Rspc for over/underestimation as shown in Figure 6
because hydrometeors for calculation are randomly selected.
Figure 7 shows relative errors of the MCI for various values
of Rspc. The relative errors for all the hydrometeor types
change exponentially with Rspc, as in the case of variable R.
[20] Figures 8 and 9 show a snapshot of the effective

radius distribution and the relative error as a function of R,
respectively, in the stratus case at t = 60 min. As in the
simulation of the convective cloud case, the present method
obtains results similar to the traditional bin method even if R
is 0.056 (Figure 8) and the relative error changes exponen-
tially with R (Figure 9). Figure 10 shows the spatially
averaged SDF (Mass density distribution) at 60 min after
the start of simulation calculated by traditional bin and MCI.
These SDFs have complex forms with bimodal feature. It is
shown that the SDFs with R = 0.056 and 0.124 have
unsmoothed forms in second mode whereas the peak radii
are same as the others, similar to the results with box model
in section 3. This illustrates that the MCI can also reproduce
complex forms of SDF (e.g., bimodal or trimodal SDF)
similar to traditional bin methods even for two dimensional
cases.
[21] Figure 11 shows the CPU time of the collision-

coagulation process for the two-dimensional simulations.
The slope of the fitted line for the stratus case (Figure 11b),
118 s, is smaller than 2291 s for the convective case
(Figure 11a). This is because the collision and coagulation
module is called more frequently in the convective case than
in the stratus case, and also because, in convective cloud
case, collisions between liquid particles and ice particles
(e.g., ice crystals, snow, graupel and hail particles) are
calculated since cloud top temperature of convective cloud
is lower than 273 K. These results suggest that the more
frequently the collision module is called, the stronger the

Figure 5. Relative errors of the MCI averaged over the whole simulation domain for time-integrated
amounts of surface rain (crosses), cloud water content (open squares), snow water content (asterisks), and
effective radius (solid squares) at t = 60 min.
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Figure 6. Horizontal distance-height sections of the amount of the snow water content integrated
from t = 0 to the end of the calculation. Results for different values of Rspc are shown. The panel
labeled with ‘‘bin’’ represents the result of the traditional bin model.
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Figure 7. Same as Figure 5, but for results with various Rspc and R = 0.124.

Figure 8. Same as Figure 4, but for the stratus case.
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benefit of the MCI becomes in terms of the computational
cost. For example, the MCI is better for simulation of thick
stratus clouds and deep convective clouds.
[22] Furthermore, we evaluated how the simulation errors

and standard deviations depend on the number of bins. We
performed the same experiments as above but with 30 and
90 bins and compared the standard deviations and errors for
the simulated cloud fields with those obtained from 60 bins.
Figure 12 shows the error and the standard deviation of
surface rainfall. The error has a similar trend regardless of
the number of bins (Figure 12a), whereas the relative

standard deviation decreases with the number of bins
(Figure 12b).

5. Application to a Numerical Weather Prediction
Simulation (3-D Simulation)

[23] We apply the present MCI to a bin-type aerosol and
cloud microphysics scheme in a framework of mesoscale
model developed by Iguchi et al. [2008], which is a coupled
model of the mesoscale operational model of the Japan
Meteorological Agency [Saito et al., 2006] with the Hebrew
University Cloud Model (HUCM) [Khain and Sednev,

Figure 9. Same as Figure 5, but for the stratus case. Time-integrated amount of cloud water content
(plusses), drizzle water content (asterisks), and effective radius at t = 60 min (crosses).

Figure 10. Spatially averaged mass density distribution (SDF) spectra (averaged over the spectra of the
grid in which complex forms of spectra are calculated) in the stratus condition calculated by traditional
bin (plusses) and our new method with R = 0.056 (crosses), 0.124 (asterisks), and 0.5 (squares).
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Figure 11. CPU time taken by the cloud microphysical module for the two-dimensional model
simulation: CPU time in the (a) stratus case and (b) convective cloud case. CPU times for the MCI
(crosses) and for the traditional bin method (solid line).
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Figure 12. Errors and standard deviation of surface rain obtained by MCI for a various number of bins:
(a) error and (b) standard deviation. Thirty bin (plusses), 60 bin (crosses), and 90 bin (asterisks).
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1996; Khain et al., 2000]. This model includes nonhydro-
static dynamics, radiation and cloud microphysics. We show
a very preliminary result of the cloud generated around the
cold front. The simulation domain is a region around the
East China Sea (125�E�134�E, 27�N�33�N) as shown in
Figure 13. The horizontal resolution is 7 km and the SDFs
of hydrometeors are discretized into 33 size bins on a
uniform log-mass axis. Rspc at 1 and R at 0.056 have been
set.
[24] The date of 8 April 2003 was selected for simulation,

which is the same date simulated in Iguchi et al. [2008]. On

this day, a migrating low was located in the Japan Sea near
the Korean Peninsula. This low activated a row of thick
convective clouds from the center of the Japan Sea to the
Naha and Taiwan region (see Iguchi et al. [2008] for general
weather conditions of the day).
[25] Figure 14 shows the cloud optical thickness at

0300 UTC on 8 April 2003 simulated by the models with
the stochastic (Figure 14b) and traditional bin methods
(Figure 14a). The MCI generally produced the similar
results to that by the traditional bin method. However, the
difference between the two methods is larger in the areas
where the clouds optical thickness is larger than in other
area because the collision and coagulation processes are
more active in the area. The error and CPU time for the
numerical weather prediction simulation has a similar trend
as in the preceding two-dimensional simulation as shown in
Figure 15. For example, when R is 0.056, the relative error
of the cloud optical thickness is about 7% and the CPU time
of collision coagulation process is about 6% of traditional
bin method.

6. Discussion

[26] In the preceding sections, we studied the behavior of
errors produced by the present MCI in comparison with
traditional bin method. In this section, we theoretically
interpret the results shown above and further explore several
aspects of the present method that would be beneficial for
its potential applications in broader contexts.

6.1. Theoretical Survey of Collision Number

[27] Results obtained by the MCI contain random errors
generated by seeded random numbers, and the variability of
the results needs to be evaluated. Also, the collision-
coagulation growth process in the real atmosphere is itself
a random process and it is of some interest to compare the

Figure 13. Calculation region for the numerical simula-
tion by the NHM + HUCM model. Contours shows height
(in meters) above sea level.

Figure 14. Horizontal distributions of cloud optical thickness at 0300 UTC, 8 April 2003, simulated by
(a) the traditional bin method and (b) the MCI.
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Figure 15. (a) Relative errors and (b) CPU times for the 3-D experiment with the MCI method
implemented in the NHM + HUCM model. Figure 15a shows relative errors of surface rainfall (plusses),
liquid water path (crosses), and optical thickness of water cloud (asterisks). Figure 15b shows CPU time
of MCI taken by the collision and coagulation module for the 3-D experiment: MCI (crosses) and
traditional bin method (solid line).
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computational variability introduced by the MCI with the
real variability.
[28] Reducing R is equivalent to decreasing the number

of collisions in the model. Therefore, we can theoretically
reduce R to the value corresponding to the number of
collisions in real clouds. For example, if the number of
collision in one grid is only ten, we can set the number
of collision in the model to ten. For roughly evaluating this
point, we use a very simple model shown in Figure 16. A
large particle of hydrometeor with radius r0 collects Mcollision

small particles of hydrometeors with radius r as

Mcollision ¼ p r þ r0ð Þ2 V r0ð Þ � V rð Þj jE r0; rð ÞNsmallDt;

E r0; rð Þ ¼ b2

r0 þ rð Þ2
;

where Nsmall is the number concentration of small particle of
hydrometeors. Supposing that the number of large particle
of hydrometeors is Nlarge, the number of collision M0

collision

between particles of radius r0 and those of radius r is then
given as

M 0
collision ¼ p r þ r0ð Þ2 V r0ð Þ � V rð Þj jE r0; rð ÞNsmallNlargeDt;

E r0; rð Þ ¼ b2

r0 þ rð Þ2
:

[29] Table 2 lists the typical values of parameters for
cloud, drizzle and rain that appear in this model [Rogers and
Yau, 1989]. Assuming that E(r0, r) is 1, the values listed in
Table 2 provide estimates for number of collisions, for
example, between cloud droplets and raindrops as
104 m�3 s�1. Likewise, the number of collisions between
cloud droplets and raindrops is approximately estimated as
107 m�3 s�1. The number of collisions between cloud
droplets and drizzle drops is approximately given as
107 m�3 s�1 and the collision rate between drizzle particles
and rain particles is approximately estimated as 104 m�3 s�1.
Since one grid of our simulation is 104 m3 (e.g., in

section 4), the number of collisions in the model is over
108 in one time step (1 s) in one grid. Therefore, we should
theoretically set the number of collision M to NbinC2 (i.e., R
set to one) for Nbin of 30, 60 and 90. This suggests that the
present method can create errors if R is set to less than one.

6.2. Comparison of Monte Carlo Integration With
Aircraft Data

[30] Next, we compared the computational errors with
variability in aircraft observations that measure the SDF of
clouds for investigating how comparable the numerical
errors are to natural variabilities. This observed SDF is
generally not a smooth function of a particle mass even if
the cloud is relatively uniform. The nonsmooth nature of the
SDF reflects the fact that the cloud parameters observed in
real atmosphere fluctuate spatially and temporally due to the
turbulent structure of the cloud. In order to compare
variability of cloud parameters between simulation and
observation, a stratus simulation was performed using the
present MCI where variability of SDF in the results is
caused by the random collision-coagulation process. The
calculation domain is 30 km in horizontal (dx = 0.2 km) and
5 km in vertical (dz = 0.05 km). The integration time is 1 h
with a time step of one second and R is set to 0.056. Initial
conditions for temperature, horizontal wind and relative
humidity are shown in Figure 17. Table 3 shows the
spatially averaged mean and standard deviation of the
effective radius by MCI in comparison with the values for
corresponding parameters obtained by aircraft data and by
the traditional bin model. Aircraft data were obtained by
B200 aircraft for the JACCS aircraft project, which
equipped the Gerber’s microphysics probe PVM-100A
[Gerber et al., 1994]. On 2 February 1998, B200 flew in
a region of 29 ± 1N, 128 ± 1E with an average speed of
about 80 m s�1. Figure 18 shows effective radius of the
aircraft observation data. The standard deviation of the
effective radius from the MCI is the same order as that of
aircraft observation data. Also, the mean values and stan-
dard deviations of the effective radius obtained by the
traditional bin method are almost same as those by the
MCI through cloud, drizzle and rain formation. These
results demonstrate that both traditional bin and MCI can
represent dispersion of cloud parameters obtained by ob-
servation and that the random error generated by MCI is
much smaller than the variability included in the traditional
bin model.
[31] This finding suggests that the model dispersion is the

result of internal instability caused by the dynamics of the
cloud system itself that takes place in the real atmosphere,
which is much larger than the random error generated by the
MCI. It can therefore be concluded that the dispersion

Figure 16. Schematic for the number of collisions in the
atmosphere.

Table 2. Typical Values (Radius, Number Density, and Fall

Velocity) of Cloud Droplet Drizzle Particles and Raindrops in the

Atmospherea

Radius (mm) Number Density (cc�1) Terminal Velocity (m/s)

Cloud �10 �103 �10�2

Drizzle �100 �1 �1
Rain �1000 �10�3 �10

aFrom Rogers and Yau [1989].
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caused by the present MCI for the collision and coagulation
process can be considered negligible compared to the
natural variability in real atmosphere. This result supports
the validity of the present MCI. It would also be interesting
to compare the SDFs calculated by the MCI with those
obtained from aircraft observations in terms of their ran-
domness although such comparisons are difficult because
observations always suffer errors in instrumentation as well
as their random feature in nature.
[32] This article aims at development of a method to

approximate the traditional bin scheme with focus on
improvement of computational efficiency, and indeed dem-
onstrated that the MCI is as accurate as the traditional bin
models that have been compared with SDF observations by
many investigators [e.g., Khairoutdinov and Kogan, 1999].
Although the comparisons of the model with direct obser-
vations of SDF by aircraft is out of the scope of this article,
it is nevertheless worth noting that the natural cloud
phenomenon with complicated size distribution functions
cannot be fully reproduced even by traditional bin models
as well as present MCI. This is a common issue open for
cloud modeling community, for which we should keep
making efforts.

6.3. Comparison With Bulk Method

[33] A main motivation of developing the MCI is to
reduce computational cost and to speed up the bin model.
In this regard, it is important to note that bulk models,
widely used in cloud-resolving models, are much faster than
bin models, and many works contributed to comparison of
the bin model results with those of bulk models in terms of
accuracy and computational efficiency [e.g., Seifert et al.,
2006]. It is therefore useful for new parameterization of
collision and coagulation process to compare the present
MCI with results derived from the stochastic approach with
those bulk parameterizations such as Liu and Darm [2004]
and Liu et al. [2007] for the autoconversion process.
According to a recent study of Iguchi et al. [2008], there
is not a large difference between bulk method and a bin
method, to which our MCI was applied. This suggests that
the MCI can reproduce similar results to bulk methods

although it is important to directly compare the present MCI
with bulk methods in future studies.

6.4. Monte Carlo Integration as an Alternative
Approach to Other Methods

[34] Traditional bin methods, when properly formulated,
have important numerical characteristics that the numerical
errors go to zero as the grid spacing and/or the time interval
becomes zero. The present stochastic approach based on
random sampling principle may be incompatible with these
characteristics of bin methods. The particle-based method,
which abandons the continuity of the size spectra, consti-
tutes an alternative approach of modeling the microphysical
processes. Although this method possesses several merits
such as minimum advection errors and easy treatment of
condensation processes, it still needs high computational
cost and calculation resources especially when applied to
multidimensional large domain simulations with fine reso-
lutions. Our new approach proposed here provides another
alternative approach to the traditional bin method and the
particle-based method. And it provides an efficient approx-
imation to bin methods that have been proven to simulate
several important aspects of satellite-retrieved cloud micro-
physical properties.

7. Conclusions

[35] We proposed an application of the Monte Carlo
integration procedure for the integration of the collision

Figure 17. Initial conditions for atmospheric dynamics assumed for the two-dimensional numerical
experiments: (a) horizontal wind, (b) temperature, and (c) relative humidity.

Table 3. Values of Effective Radius and Its Standard Deviation

Calculated by Each Model and Obtained by Aircraft Dataa

Model/Measurement Effective Radius (mm) Standard Deviation

Stochastic (t = 25 min) 11.776 0.30504
Traditional bin (t = 25 min) 11.778 0.30505
Stochastic (t = 30 min) 11.719 0.43937
Traditional bin (t = 30 min) 11.724 0.43915
Stochastic (t = 40 min) 9.2868 0.66117
Traditional bin (t = 40 min) 9.3037 0.66107
Aircraft 10.753 0.20896

aIn the simulation, t = 25 min, 30 min, and 45 min correspond to the time
for cloud, drizzle, and rain formation, respectively.
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and coagulation equation of hydrometeor growth. This
method reduces the computational cost of the collision
and coagulation process to about 10% of that of the
traditional method, thereby providing an efficient approxi-
mation of traditional bin method. This method employs
uniformed random numbers, and it is shown that the results
are dependent upon assumed random numbers. The random
number principle causes some error, yet the error range of
simulation results is found to be much less than internal
variability that takes place in the real atmosphere.
[36] Although the present study focused only on colli-

sion-coagulation processes, it is also important to reduce the
computational costs for condensational growth process that
is another bottleneck in cloud microphysical modeling as
shown in Table 1. Several previous studies were devoted to
this issue [e.g., Bott, 1989a, 1989b; Lowe et al., 2003;
Suzuki, 2004] (T. Sugimura et al., personal communication,
2008). We will also investigate how our stochastic approach
can be applied to the condensational growth processes in
future studies.
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