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Asymptotic theory for optically thick 
layers: application to the discrete ordinates 
method 

Teruyuki Nakajima and Michael D. King 

Asymptotic expre自白ions for the refiected, transmitted, and internal scattered radiation field in optically 
thick, vertically homogeneous, plane-parallel media are derived from first principles by using the discrete 
or・dinatesmethod of radiative transfer. Compact matrix equations are derived for computing the escape 
function , diffusion pattern, diffusion exponent, and the refiection function of a semi-infinite atmosphere 
in terms of the matrices, eigenvectors, and eigenvalues that 0∞ur in the discrete ordinates method. 
These matrix equations are suitable for numerical computations and are valid throughout the full range 
of single scattering albedos. The present formulations are validated by compar・ingthem with established 
methods ofradiative transfer 
Kξyωords: Multiple scattering, radiative transfer, asymptotic theoη， discrete ordinates method. 

1. Introduction 

The study of multiple scattering in optically thick 
atmospheres has a long history of development, largely 
as a result of the simplicity of the asymptotic form of 
the radiation field deep within the medium. Within 
this region of a scattering and absorbing medium, the 
radiative ener白rdensity follows a diffusion equation.1 

Theoretical studies of radiative transfer in planeｭ
parallel atmospheres have shown that the radiative 
intensity field can be expressed in especially simple 
functional forms.2-7 For example, the refiected u(O; 
一 μ， μ。， φ) and transmitted u('Tc; + μ， μ0 ， φ) intensiｭ
ties from a nonconservative and vertically homogeｭ
neous plane-parallel layer of sufficient optical 
thickness 'Tc can be written as 

m1 e却(-2kTc) 
u(O; μ ， J.Lo ， φ) =ι(一 μ， μ0 ， φ) - '9 

1 -ZZ exp( -2kTc) 

xK(川町内)ザ (1) 
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m exp( -kTc) 
uh; + μ， μ0 ， φ'9 

1 -ZZ exp( -2k'Tcl 

x K(μ仇)宇 (2) 

In these expressions J.Lo is the cosine of the solar 
zenith angle ， μis the cosine of the emerging zenith 
angle (in which the positive sign denotes downward 
propagating radiation and the negative sign denotes 
upward propagating radiation) ， φis the azimuth 
angle measured from the solar plane, Fo is the 
incident solar 日ux，k is the diffusion exponent, K(J.L) is 
the escape function , 1 and m 訂e scal訂 constants
determined by the optical properties of the medium, 
and Uoo ( 一 μ， μ0 ， φ) is the refiected intensity from a 
semi-infinite layer having the same optical properties 
as the finite layer. In addition, the intensity field 
deep within the layer at optical depth 'T can be written 
as 

exp( -k'T) 
(T;±μ， μ0 ， φ)= 

1 -12 exp( -2kTc) 

x [P(勾) -1 exp[ -2k仇'T)市川
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where P( ::t μ) is the diffusion pattern. These equaｭ
tions show that the intensity field reflected, transmitｭ
ted, and deep within an optically thick medium can be 
expressed in terms of simple functions and constants 
that depend on angle as well as optical properties of 
the layer. 
Recently KingB.9 and Nak勾ima and King10 develｭ
oped methods for retrieving the single scattering 
albedo, optical thickness, and effective particle radius 
of clouds by applying asymptotic theorγfor planeｭ
para11el atmospheres. In these methods, Eqs. (1)ー
(3), together with their conservative atmosphere 
equivalents, were used to derive relationships beｭ
tween observed quantities (reflected or internal scatｭ
tered radiation) and the inherent optical properties of 
the medium (optical thickness, cloud droplet radius, 
and single scattering albedo). Furthermore, King et 
al.l1 showed that Eq. (3) agrees we11 with measureｭ
ments of the internal scattered radiation field within 
a horizonta11y extensive and optically thick marine 
stratocumulus cloud layer. Asymptotic theory for 
thick layers also plays an important role in simpli命­
ing solutions of the radiative transfer equation in 
vertically inhomogeneous atmospheres12 ,13 and in geo・

metrica11y complicated fractal clouds.14 
In spite of the advantages and interesting features 
of asymptotic theoηfor multiple scattering problems 
in optica11y thick atmospheres, access to asymptotic 
theory has been difficult, even for plane-parallel 
atmospheres. This is because it is first necessaηto 
compute various functions and constants that appear 
in Eqs. (1)一(3)before one can use these expressions to 
obtain the desired radiation fields. Lenoble7 sugｭ
gests an iterative method to solve a characteristic 
equation for the eigenvalue k and eigenfunction 
P( ::t μ). Sobolev5 uses a recurrence formula to solve 
this characteristic equation by expanding the diffuｭ
sion pattern in a Legendre polynomial series. Both 
Sobolev and Lenoble suggest essentially the same 
method to solve the integral equation for uoo(- μ， μ。
φ). Once k, P( ::t μ) ， and u∞(μ， μ0 ， φ) have been 
determined, K(μ) can be obtained by iteration of an 
integral equation for K( μ) 
As an alternative method of solution, van de 

Hulst6,15 suggested using an asymptotic fitting method 
whereby computational results from the doubling 
method are fit to known general forms of the asympｭ
totic equations [such as Eqs. (1)一(2)and Eq. (3) at the 
midlevel T 
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scattering albedo ωo and asymmetry factor g , they 町e
the most accurate for sma11 values of s (weak absorpｭ
tion). King8 and 阻ng and Harshvardhan18 preｭ
sented similarity relations for asymptotic constants l , 
m , k , and other constants not appearing in Eqs. 
(1)一(3) ， as a function of the similarity parameter for 
the whole range of single scattering albedo (0 :$ 
ωo 三 1). These parameterizations, however, do not 
extend to the functions 1ん(一 μ， μ0 ， φ) ， K( ，ム)， and 
P( ::t μ) that appear in Eq. (1) , thereby requiring a full 
radiative transfer code to be employed to perform the 
calculations for arbitraηoptical parameters. 
The intent of this paper is to present efficient 
numerical algorithms for deriving the asymptotic 
functions and constants that are valid for any single 
scattering albedo without resorting to numerical 
fittings. These algorithms are based on recent maｭ
trix formulations of the discrete ordinates method 
(DOM)19,20 of solving the radiative transfer equation. 
Although many studies directed toward obtaining the 
asymptotic functions exist, as reviewed above, it is 
useful to present such an algorithm in a systematic 
way at this stage, since there is a renewed interest in 
DOM computer codes that are fast and stable for any 
plane幽para11elatmosphere.21-23 Matrix formulations 
of the theory are more suitable than traditional 
functional analysis methods for numerical calculaｭ
tions because of recently improved computer capabilｭ
ity and large memory now available. In this paper 
we show that all the asymptotic functions and conｭ
stants may be expressed in terms of eigenvalues and 
eigenvectors of one basic eigenvalue problem. Knowｭ
ing the asymptotic limit of the DOM is also useful for 
improving the e伍ciency of DOM computer codes 
since asymptotic theoηpermits one to bypass some 
numerical procedures that are unnecessaηfor optiｭ
cally thick atmospheres. Although asymptotic forｭ
mulas for vertically inhomogeneous stratification exｭ
ist, it is useful to have a more general transfer code 
such as a DOM with a built-in asymptotic routine 
that automatically works when the sublayer becomes 
thick. The purpose of this paper is to address these 
points 
Since the structure of the matrices in the eigenｭ
space takes on an important role in the present study, 
the formulations ofthe DOM method from Nakajima 
and Tanaka20 ,23 are rearranged and summarized in 
Section 2. The asymptotic limit of the DOM is 
derived in Section 3, fo11 

2. Matrix Formulation of the Discrete Ordinates Method 

A. Basic Equations 

The equation describing the transfer of solar radiaｭ
tion through a plane-parallel and vertically homoge-



neous medium can be written as24 

du('T; μ， μ0，ゆ)
μ ュ = -u('T; μ ， μ0 ， φ) 

十字 I I φ(μ， φ;μ" <I> ')u( 'T; μ" J.10 ， φ)dφ'dμF 
生廿 J-1JO

+12φ(μ， φ;μ0， φo)Fo 叫(内。)， (4) 
生1T

where φ(μ，ゆ;μF ， φ') is the single scattering phase 
function normalized such that 

41fぃ;μ ， <I>')d<l>'dJ.1 

Ifφ(μ， φ;μ' ， φ') is a function only of the cosine of the 
scattering angle, then the product ofthe single scatterｭ
ing albedo and the phase function φ(cos 0) can be 
expressed as a finite expansion in Legendre polynomト
als of the form 

L 

ω。φ(cos ⑪)=玄 ωIPZ(COS ⑪)， (6) 

where ( is the scattering angle and Pz( cos 0) is a 
Legendre polynomial of order l. By making use of 
the addition theorem for spherical harmonics, we can 
express the phase function as 

ω。φ(μ， φ; J.1', <1>') 
L 

= hO(μ，〆) + 2 2: hm( μ，〆 )cos m(φ- <1>'), (7) 

where the azimuth-dependent redistribution func幽
tions hm(ιμ') are given by6 

L 

hm( μ， μ') =ヱ ωly1m( μ)Yr(下)， (8) 

with the renormalized associated Legendre polynomiｭ
als Y戸(μ) expressible in terms of the associated 
Legendre polynomials P1m( μ) by25 

川) = [同1/2P(μ)

By further expressing the intensity as a finite Fourier 
series of the form 

u('T; μ， μ0 ， φ) 

L 

= UO('T; μ ，J.10) + 2 玄 um('T; μ ， J.10)cosm(φ-φ。)， (10) 

and making use of the orthogonality property of the 
cosine function , we can rewrite Eq. (4) as L indepen-

dent equations (one for each Fourier component) as 
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hm( μ， μ。)
+ -4干::.::'..éFo exp( -'T /μ0) ・ (11)

B. Matr� Formulat�n 

When multiple scattering calculations with either the 
adding-doubling26 or di配rete ordinates21-23 methods 
are performed, it is advantageous tοsubdivide the 
angular interval [0 , 1] into N Gaussian quadrature 
points 0 <μ1 < . .. <μN < 1 with mirror symmetric 
points on the interval 卜 1 ， 0] for aωtal of 2N 
streams. Then, if the Gaussian weights 田・e W1 ， ・・
ωN ， Eq. (11) can be rewritten as 

+H dum( 'T; :.t μi ， J.10j) 
...., d'T 

hm( :.t μ"μ句)
=-um(T;±μn 陶)+4τ Fo exp( -'T/μ匂)

N 

+ 1/2 2: [hm( :.t μi ， J.1n)um('T; μn' μ匂)
n=1 

+ hm( 土 μi ， μn)um('T; 一 μn' μOj)]Wn (12) 

for each of M solar incident directions μ匂 j = 
1, • . • , M. This expression can be compactly written 
in matrix form for each Fourier component as 

du"('T) 
士M17=u±(T)+h±Wu+(T)

+ h+Wu-('T) + S"Eo( 'T), (13) 

where 

u主('T) = [um('T; :.t μ"μ句)]， 1,... , N , 

j = 1,... , M; 

h" = [1/2hm( 士的，的)]，

IFn 
=1石川±μ口的) 1 , 1,... , N , 

j = 1,... , M; 

i ,j = 1い・田 ， N;

(9) 
Sま

M =[μん]， i,j 1,..., N; 

W =[ωん]， l ,j 1,... , N; 

EoH = [exp( -'T /陶)Oi)]' i,j = 1, . . . , M. 

In these expressions u"('T) represents the N x M 
downwelling (+) and upwelling (-) diffuse intensity 
matrices for the mth Fourier frequency at optical 
depth 'T; hヱ represents the redistribution (phase) 
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matrices for transmission (+) and re自ection (一); 8:t 
represents the redistribution matrices arising from 
single scattering out of the direct solar beam, and M , 
W, and Eo('T) are diagonal matrices. Illustrations of 
the h -and 8 -matrices for a Henyey-Greenstein 
phase function and a phase function representative of 
clouds at visible wavelengths can be found in Ref. 26 
for m = 0 and 1, for which both phase functions have 
theasymmetηfactor g = 0.841. 

C. Basic Solution 

In order to proceed further it is convenient to define a 
scaled intensity matrix �:t('T) such that 

G matrix as follows: 

G = QVQ- l, (20a) 

L = [入ん]， i ,j = 1, . . . , N , (20b) 

where Q is the matrix containing the N eigenvectors 
and 入iare the nonnegative square-root eigenvalues of 
G. The decomposition of Eq. (20a) can be obtained 
by one of several methods, namely, direct decomposiｭ
tion of the asymmetric matrix G,19,22 square-root 
decomposition,20 or Cholesky decomposition.27 
The solution ofEq. (18) can be obtained as a linear 
combination of the following basis functions:20 

�:t('T) = W+u:t('T), (14) C(T) = (刈exp[-ﾌ¥bc -'T)] + exp(一 λi'T))Oij) ，

where 

W+ = v幅扇 W一 =y扇面コ.

In this notation the square root of a diagonal matrix 
represents that matrix whose diagonal elements are 
the square roots of the diagonal elements of the 
original matrix. By using these definitions , Eq. (13) 
can be rewritten in the form 

d�:t('T) 
:t ~ = -M-1�:t('T) + h:t�+('T) 

+h平合一('T) + 8土Eo(T)， (15) 

with 

h:t = W-h :tW- , 8:t = W-8:t. 

With this scaling V(e obtain the following equation for 
the combinations 1J!:t('T) = �+('T) :t �-('T): 

dlJ!平('T)
~=-Xγ('T) +合:tEo('T)， (16) 

where X:t is the symmetric N x N matrix defined by 

X:t = M-1 -W-(h+ :t h-)W- , 

�:t =W一(8+ :t 8-). 

(17a) 

(17b) 

By eliminati時中(T) from Eq. (16) we o"l;>tain the 
following ordinaηdifferential equation for ゆ+('T): 

where 

d2ゆ +('T)
-' ?一 =Gゆ+('T) + gEo( 'T), (18) 
U'T-

G=X-Xヘ

g = -X-�+ -�-Mo -1 , 

(19a) 

(19b) 

Mo=[内九]， i ,j = 1, . . . ,M. (19c) 

Equation (18) can readily be solved by eigenvalue 
decomposition of G if we diagonalize the asymmetric 
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i ,j = 1, . . . , N , (21a) 

8('T) = (弘{exp[ ーへ('Tc -'T)]-exp(一 λi'T))Oij) ，

i,j = 1, . . . , N , (21b) 

I (Q-1g)ij I 
γ=1 1:一一一|

|ーで λ?I 
Lμ匂“ J

i = 1, . . . , N;j = 1, . . . , M. 

(21c) 

The offset 'Tc is necessaηT in order to stabilize the 
system of linear equations numerically for large 
values of 'T,28 and results in all exponentials having 
negative arguments as required to avoid fatal overｭ
自ows for large values of 'Tc ・ Finally， the solution of 
Eq. (15) can be expressed as 

�:t('T) = A:t('T)α+ B:t('T)戸+ V:tEo( 'T), (22) 

where A:t('T) and B:t('T) are N x N matrices defined by 

A:t('T) = QC('T)平 QL8('T)， (23a) 

B:t('T) = QL -18('T)平 QC('T) , (23b) 

V:t are N x M matrices defined by 

V:t = ちも[Qγ :t QγMo -1 :t (X-)ー l合 ], (23c) 

and Q (QT)-l , where QT is the transpose of 
Q. The matrices αand ﾟ are N x M matrices 
consisting of integral constants to be determined 
from the boundary conditions. Instead of the tradiｭ
tional way of specifying downward and upward propaｭ
gating intensities, we have separated the solution 
into two sets of functions , A:t('T) and B :t('T), which 
consist of symmetric and antisymmetric fields with 
respect to the optical center ofthe layer. 

D. Boundary Conditions 

The boundary value problem for a homogeneous layer 
of total optical thickness 'Tc can be obtained by inver-



sion of Eq. (22) and can be shown to reduce to the 
form20 

(;)=;lJC:jullょにふJ 凶
where 

A主= A:t(Tc) = A手 (0) ， (25a) 

B:t = B:t(Tc) = -B手 (0). (25b) 

When the N x N scaled reflection and transmission 
matrices 町edefined as 

R=  ちも[A+(A-)一 1 + B+(B-)-l], (26) 

T= 切[A+(A-)-l -B+(B-)-l], (27) 

it fo11ows from Eqs. (22) and (24) that the N x M 
scaled reflected and transmitted intensities can be 
reduced to the form 
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which is an expression of the interaction principle in 
the discrete ordinates method. Note further that 
the scaled reflection and transmission matrices 訂e
symmetric, since A+(A一 )-1 and B+(B-)-l 訂e both 
symmetric matrices. 

3. Asymptotic Limits of the Matrix Formulations 

A. Reflection and Transmission Matrices 

When Tc is sufficiently large, the reflection and transｭ
mission matrices tend to analytically simple expresｭ
sions known as asymptotic theorγfor thick layers. 
This can be shown by decomposing A+(A-)-l as 
fo11ows: 

A+(A-)-l = 2QC(Tc)(A-)-1 -1, 

= 2[1 + QS(Tc)LC(Tc)-lQT]-l -1, 

= (A -Qa+QT)一 1 - 1, 

= A-1(1 -Qa+QTA-1)ー 1 -1, 

= A-1 -1 + A-1Q(1 • a+q)-la+QTA- l, 

(29) 

and, in a similar manner, 

B+(B-)-l = A-1 -1 + A-1Q(1 -a-q)一 1a-QTA-1 ，

(30) 

where 1 is the identity matrix and 

A= 弘(1 + QLQT), 

q = QTA-1Q 

(31a) 

(31b) 

a+ ちも[L -S(TclLC(Tcl-1], (31c) 

a ちも[L -C(Tc)LS(Tcl-1]. (31d) 

In deriving these expressions we have made use of the 
we11-known matrix identities 

(AB)一 1 = B-1A-1, (1 -B)-l = 1 + B + B2 +・・ , 

ωgether with Eqs. (23) and (25). The advantage of 
decomposing A+ (A-)-l and B+ (B-)-l 儲 in Eqs. (29) 
and (30) arises from the fact that these matrices are 
now separated into Tc-independent (A-1 -1) and Tc-
dependent terms, where the diagonal matrices a:t 
contain all the dependence on optical thickness. 
If we denote the minimum eigenvalue 入N 防 k and 
take the limit as Tc approaches infinity, the matrices 
a:t tend to the fo11owing limit: 

f:tk exp( -kTc) 
1. ifi =j = N 

aij :t →j1:t回p(-kTcl 
10, otherwise 

(32) 

The minimum eigenvalue k that appe訂s in this 
expression is the s創ne diffusion exponent that apｭ
pears in Eqs. (1)ー(3). Expression (32) further shows 
that a11 the elements of a:t except for the Nth diagonal 
one become vanishingly sma11 as the optical thickness 
mcreases. 
These results show that the diffusion exponent 
plays an important role in multiple scattering probｭ
lems involving optically thick atmospheres. This 
finding is not surprising in light of Eqs. (21a) and 
(21b), which clearly show that only the sma11est 
eigenvalue contributes to the diffuse radiation field 
deep within an optica11y thick medium. This paramｭ
eter can readily be determined as the minimum 
positive square-root eigenvalue of G , defined by Eq. 
(19a). As such it is seen to depend solely on the 
single scattering phase function. In Table 1 we 
summarize values of the diffusion exponent obtained 
by solving Eq. (20a) for selected Fourier frequencies 
and for a Henyey-Greenstein phase function having 
an asymmetry factor g = 0.85, in which the various 
columns of this table apply to specified values of the 
single scattering albedo ω0 ・ These results show, for 
example, that the Tc-dependent terms ofthe reflection 
and transmission matrices become increasingly indeｭ
pendent of azimuth angle as Tc increases. This is a 
result of the fact that k monotonically increases as 
Fourier frequency increases, which leads in turn to 

Table 1. Minimum Eigenvalues for Several Fourier Frequencies and for 
Various Values of the Single Scattering Albedo fi崎α

Fourier 
Frequency ω。= 1.0 ω。=0.999 ω0=0.9 ω。=0.6 

。 0.0000 0.0212 0,2371 0.5695 
1 0.3658 0.3670 0.4731 0.7256 
2 0.5794 0.5802 0.6558 0.8402 

aHenyey-Greenstein phase function withg = 0.85. 
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greater damping of terms such as those appearing in 
expression (32). Table 1 further shows that the 
minimum eigenvalues for all the Fourier frequencies 
increase significantly asωo decreases. This implies 
that the radiation field becomes increasingly azimuth 
independent as absorption of the medium increases. 
We have compared the eigenvalues obtained by 
using our method with corresponding values obtained 
by Garcia and Siewert29 for various Fourier frequenｭ
cies and single scattering albedos. In all cases for 
which the eigenvalues were less than unity, our 
values agreed with theirs to at least five significant 
figures by using FORTRAN-77 single-precision calculaｭ
tions. Since our method subdivides the angular 
interval [0, 1] into N streams with mirror symmetric 
points on the interval 卜 1 ， 0]for a total of 2N streams, 
it necessarily follows that the DOM method leads to N 
discrete nonnegative eigenvalues of the symmetric 
matrix given by Eq. (20b). The principal difference 
between our method and that of Garcia and Siewert is 
that they obtain discrete eigenvalues only when the 
eigenvalues are less than unity. Since we have 
compared our radiation calculations with correspondｭ
ing ones obtained with the adding-doubling method, 
which makes use of a totally different algorithm for 
calculating the intensity field , we are convinced that 
our algorithm is su伍cientlyaccurate to permit multiｭ
ple scattering calculations to be performed for most 
applications of interest in atmospheric physics. 
Returning to Eqs. (29) and (30) and noting the 
asymptotic limit of a :t, we can show that 

[(1 -a:tqJ-1a:tL 
~k exp( -kTc) -----n ifi =N  

• II ::'::: (1 -kq)exp( -kTc) (33) 

10, otherwise 

where 

q = qNN' (34) 

When we substitute expression (33) into Eqs. (26) , 
(27) , (29) , and (30) , it readily follows that the asympｭ
totic form of the reflection and transmission matrices 
in the limit of large optical thickness is given by 

where 

hl exp( -2kTc ...... ....，巾
R=R∞ __  ~_-=-:'C'_， K * KT , (35) 

1 -[2 exp( -2kTc) 

h exp( -kTcl T = .. ---n , K * KT , (36) 
1- [2ほp(-2kTcl 

氏 =A-1-1， (37) 

l = 1 -kq , 

K = A-1QN, 

(38a) 

(38b) 
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and QN is the Nth column of the Q matrix. The 
matrix operation ( * ) denotes the dyadic, defined by 

K*KT=iktRTi, 

and K is a column vector of length N. N ote that Eqs. 
(35) and (36) have removable singular points for the 
Oth Fourier frequency when ω。= 1 (k = 0) such that 
ener田ris conserved according to 

R ニ R∞- T, (39) 

1 
T= 一一一心配 (40)
2(Tc + q) 

It is thus clear from Eq. (40) why the scalar q is 
referred to by van de Hulst6 as the extrapolation 
length, for it denotes an extrapolation of the optical 
thickness to a larger value appropriate for multiple 
scattering in optically thick layers. 
Comparing Eqs. (1) and (2) with Eqs. (35)一(37) we 
note that the escape function and asymptotic conｭ
stants may be obtained in terms of matrices associｭ
ated with the eigenvalue problem of Eq. (20a). The 
column vector K is henceforth referred to as the 
scaled escape function. Frôm Eqs. (35) and (36) and 
Table 1 we conclude that R∞ contains most of the 
azimuthal dependence of the reflection and transmisｭ
sion matrices for large values ofthe optical thickness, 
since the optical thickness-dependent terms in these 
expressions are rapidly damped for large values of Tc 
when the Fourier frequency increases. The formulaｭ
tion presented in Section 2 is nevertheless valid for all 
Fourier frequencies. Since the transmission matrix 
results from a small difference between two matrices 
having nearly the same values [namely, A +(A一)一 1 and 
B+(B一)一 1] ， the computer code ofNakajima and Tanaｭ
ka20 will fail to calculate the transmission matrix for 
extremely large values of Tc (と 106) by using the basis 
functions defined by Eqs. (21a) and (21b). The value 
of the critical optical thickness depends on the optical 
properties of the layer as well as the accuracy of a 
computer's floating point calculations. However, this 
condition does not often occur for realistic atmo・
spheric conditions, since it arises oply when T beｭ
comes negligibly small compared to R∞・When such 
small values of the transmission matrix elements are 
required, T can best be calculated by using the 
asymptotic expression given by Eq. (36). 
This numerical ill-conditioning, characteristic of 
many discrete ordinates implementations for large 
values of the optical thickness, can readily be avoided 
by using the scaling transformations introduced by 
Stamnes and Conklin3o and incorporated in the comｭ
puter code of Stamnes et al.22 In this investigation, 
however, we have demonstrated analytically that, 
when the discrete ordinates formulation ofNakajima 
and Tanaka20 is used, it is possible to derive the 
well-known asymptotic formulas for the reflection 
and transmission functions of optically thick layers 
that were previously derived by using rather different 
approaches ,s .6 This ne 



methods of computing the asymptotic functions and 
constants that arise in these formulas. This proceｭ
dure is especially useful in remote sensing applicaｭ
tions in which the use of asymptotic formulas permits 
the analytic inversion of remotely sensed data withｭ
out the need for 1訂getable lookups that are characterｭ
istic of conventional methods. 

B. Internal Scattered Radiation Field 

Another result of considerable importance in asympｭ
totic theory is the angular and vertical distributions 
of the intensity field deep within an optically thick, 
multiple scattering medium. The angular distribuｭ
tion ofthe intensity field can be obtained by using the 
present matrix formulations by making further use of 
the interaction principle and the principles of invariｭ
ance.31 Each azimuthal component of the internal 
intensity field at optical depth 'T within an optically 
thick layer oftotal optical thickness 'Tc can be obtained 
from the expressions 

ﾛ+('T) = (1 -R，αRb)-lTαÛ+(O) ， (41) 

ﾛ-('T) = RbÛ+( 'T), (42) 

where Rαand Tαcorrespond to the scaled reflection 
and transmissiop matrices of a layer of optical thick聞
ness 'Tα= 'T and Rb corresponds to the scaled reflection 
matrix of a layer of optical thickness 'Tb = 'Tc - 'T, for 
which these matrices can be obtained from Eqs. 
(35)ー(37)by letting 'Tc = 'T and 'Tc - 'T, respectively. 
Substituting Eq. (36) into Eq. (41) leads to the 
following expression for the downward propagating 
intensity field at optical depth 'T within an optically 
thick medium oftotal optical thickness 'Tc: 

h ほp(-kT) 
(�+('T) = 
1 -Z2 exp( -2kT) 

x (1 -RaRb)一 lK* KTﾛ+(O). (43) 

When we use Eq. (35) for both R，αand Rb, it can be 
shown that 

V('T) = (1 -RaRbt1K, 

= [(1 -Cl + C3) 一 C2良"，](1 -íì，，2)一 1良 (44)

where v('T) is a column vector of length N and the 
scalars Cl , C2, and C3 are defined by 
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with 

hl 回p(-2k'T)

γα=1-12 ほp(-2k'T) , (46a) 

hZ exp[ -2k('Tc - 'T)] 
(46b) γb-1-12 低p[-2k('Tc - 'T)] 

In order to proceed further, it is useful ifwe define 
the scaled diffusion pattern vectors 

p+ = k(1 -R ,,2t 1K, (47a) 

p-= R.∞P+ ， (47b) 

which are both vectors of length N , independent of 
optical thickness. These vectors represent the angu・
lar distribution of scattered radiation in the downｭ
ward (+) and upward (-) propag叫ing directions 
within the diffusion domain of a semi-infinite atmo酬
sphere. By making further use of Eqs. (31a), (37), 
and (38b), it is straightforward to obtain the following 
expressions for the scaled diffusion pattern vectors: 

p+ = kA(2A -It1QN, 

=;[(Q同T)一 1 +町

=弘(QN+ kQN川)，

p-= k(1 -1 + R∞)(1 -Roo2)一 lK，

= p+ -k(1 + Root1K, 

(48a) 

= p+ -kQN. (48b) 

The scaled diffusion pattern vectors must themselves 
satis命 thefollowing normalization conditions: 

KTP+ = kQNT(2A -1) 一 lQN，

= kQNT(QU't)一 lQN'

= 1, (49a) 

KTp一 = KT(p+ -kQN) , 

= 1 -kq , 

(49b) 

Substituting Eq. (44) into Eqs. (45) and making 
further use ofEqs. (47) and (49) permits the system of 
linear equations to be solved for the three scalars Cb 
C2, and C3, as outlined in Appendix A. The solution 
thus obtained can be written as 

,_^_ 1-Z2 exp( -2kT) 
(1 -RaRb)一1kzh

x {p+ -Z exp[ -2k('Tc - 'Tl1P-l. 
(50) 

Finally, substituting Eq. (50) back into Eqs. (43) and 
(42) leads to 出efollowing asymptotic solution for the 
downward and upward propagating intensities deep 
within an optically thick medium (see Appendix A for 
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further 由tails):

回p(-kT)
ﾛ:!:('T) '9 

1- [2ほp(-2kTc )

X (P:!:-l ほp[-2k('Tc - 'T)]P+l * KTﾛ+(O). 

(51) 

Equation (51) is the matrix equivalent of Eq. (3) and 
has been derived from first principles of the radiative 
transfer equation. We see fro}ll Eq. (51) th此 the
scaled diffusion pattern vectors P:!: defined by Eq. (47) 
represent the angular distribution of scattered radiaｭ
tion for downward (+) and upward (一) propagating 
radiation deep within an optically thick atmosphere 
in the limit 'Tc →∞ The functions and constants 
thatappe訂 inasymptotic theoηcan now be obtained 
from the matrices, eigenvectors, and eigenvalues that 
occur in the DOM. 

C. Asymptotic Functions and Constants 

For an atmosphere in which radiation is incident only 
from the top and for which there are no embedded 
sources, we can write the interaction principle for 
refiected radiation as6 

州一μ， hA)=:flIR(Tc; 川;μ ， φ)
x u(O; μμ0， φ ， )μ'dμ'dφ(52) 

where R('Tc ; μ， φ;μ" </>') is the refiection function for 
radiation incident from direction (J.L'， φ') and scatｭ
tered into direction (μ ， φ). By further expressing the 
refiection function as a Fourier series analogous to 
Eq. (10) and making use of the orthogonality properｭ
ties of the cosine function , it can be shown that 

um(O; 一 μ， μ。) = 2 I Rm('Tc ; μ ， μ ')um(O; μF ， μ。)μ'dμ
"0 

(53) 

which, in terms of matrix notation，回nbe written as 

U一 (0) = 2RWMu+(0). (54) 

By multiplying both sides of this expression by W+ 
and comparing the resulting expression with Eq. (26), 
we find 

R = 2W+RW+ , (55a) 

R=  ちも(W+)一 1R(W+)一 (55b)

A similar expression results for T if we neglect the 
role of direct (unscattered) radiation in comparison 
with the role of diffuse radiation. 

Finally, by noting that the Fourier decomposition 
of the incident solar beam can be written in matrix 
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it is relatively straightforward to transform Eqs. (35), 
(36), and (51) to a form th叫 can be compared with 
Eqs. (1)一(3). Making further use of Eq. (55b) we 
obtain the following expressions for the functions 
that occur in asymptotic theoη: 

R∞=弘(W+t 1R∞(W+t l， (57a) 

K=~川底 (57b) 

P:!:=~附
In these expressions m is a scalar constant that 
depends on the single scattering phase function. Its 
value can readily be determined by normalizing the 
diffusion pattern as follows: 

;flP(μ胤 =;vzvw附(合+ -Þ-), 

=j dw 
= 1, (58) 

where 1 is a unit column vector of length N. In 
deriving this expression we have made use of Eqs. 
(48) and (57c). From this normalization condition, 
together with Eqs. (48) and (49), it can readily be 
shown that the asymptotic functions and constants 
must satisfy the well-known normalization condiｭ
tions: 

(59b) 

(59c) 

Finally, the asymptotic constant n , which occurs in 
calculations of the refiected and transmitted fiux, can 
be obtained from the following definition: 

(60) 



4. Further Considerations for a Practical Method 

Although the formulations presented in Section 3 are 
sufficient for obtaining the asymptotic functions and 
constants for optically thick and vertically homogeｭ
neous plane-parallel atmospheres, they are ine田cient
because they require the computation ofthe eigenvalｭ
ues and eigenvectors of a large (N x N) matrix if one 
needs to obtain a solution using a finite angular 
resolution with a large number of discrete quadrature 
streamsN. Alternatively, the escape function can be 
obtained from an expression for the transmitted 
intensities for M arbitrary solar incident directions 
μ匂 ， j 1, . . . , M without the need to increase the 
value of N. If we consider the situation in which 
there is no incident radiation from the layer boundｭ
aries, namely, ﾛ+(O) = ﾛ-(Tc) = 0, it readily follows 
from Eq. (28) that the scaled intensity matrices can be 
expressed as 

ﾛ+(TC) = -TV+ -RV-Eo(Tcl + V+EO(Tc), (61a) 

ﾛ-(O) = -RV+ -TV-Eo(Tc) + V-. (61b) 

When Tc is su伍ciently large，合+(Tc ) reduces to -TV+. 
Makinguse ofEqs. (36) and (57b) and comparingthe 
resulting expression with Eq. (2) leads to 

N x N values of the symmetric reflection matrix R∞ at 
quadrature points μi ， i 1, • . . , N to obtain values 
lμ/) and (μ。). Such an interpolation is especially 
important when N s 10. An alternative approach is 
to make use of the Stamnes and Dale interpolation32 
method based on the formal solution of the radiative 
transfer equation in the limit Tc →∞: 

丸川

where the source matrix J-(T) follows from the 
right-hand side ofEq. (13) and is given by 

J-(T) = h-Wu+(T) + h+WU-(T) + S-EO(T). (67) 

All the matrices appearing in these expressions have 
been defined previously, except that they apply to 
emergent directions μ/ ， 1, . . . , N' rather than 
the more numerous quadrature pointsμi ， ~ 
1, • • • ,N. Making further use of Eqs. (22) and (23) 
we can rewrite the N' x M source matrix as 

J-(T) = [HC(T) + HLS(T)]α 

+ [HL -lS(T) + HC(T)]゚ + Jo -EO(T), (68) 

where H and H are N' x N' matrices and Jo-is an 

凡 =-ZVZMowk (62) N' x M matrix defined by 

where Ko is a column vector of length M. 
Once the diffusion exponent has been obtained 
from Eqs. (20), the simplest way to obtain the diffuｭ
sion pattern (for azimuth-independent radiation) is 
to expand it as a finite series in Legendre polynomials 
ofthe form (van de Hulst,6 p. 97) 

L+l 

P(μ) = 2: (2l + l)g/P/( f.l), (63) 

where the coefficients g/ are thetnselves polynomials 
in k -l-the so-called Ku記er polynomials. These 
coefficients can be obtained by downward recurrence 
ofthe following relation (van de Hulst,6 p. 94): 

(l + l)g/+l 一 (2l + 1 一 ω/)k-1g/ + 19/-l = 0, (64) 

wherego = 1,gl = (1 一 ω。)/k ，and ω1 are the Legendre 
coefficients of the phase function defined by Eqs. (6) 
and (7). The asymptotic constants l , m , and n can 
readily be determined from the normalization condiｭ
tions given in Eqs. (59) and (60). 
In order to compute the reflected intensity field in a 
semi-infinite atmosphere, denoted u∞(一 μ， μ0 ， φ) in 
Eq. (1) , we can make use of Eqs. (37) and (57a) , 
together with the definition ofthe semi-infinite reftecｭ
tion function: 

τu∞(一 μ， μ0 ， φ)
R∞(μ ， μ0 ， φ)=μoFo (65) 

In this case, however, it is necessary to interpolate the 

H = (h+ + h-)W-Q, (69a) 

H = (h+ -h一)W-Q ， (69b) 

J。一= h-W-V+ + h+W-V-+ S-. (69c) 

Substituti珂 Eq. (68) back into Eq. (66) and taking 
the limit Tc →∞ leads to an expression for the 
Fourier-dependent intensity field reflected from a 
semi-infinite atmosphere for arbitrary direction coｭ
sinesμi ， 1, . • . , N' and 同， j 1, • • ., M as 
follows: 

u世 (0) =弘(-H+HL) ・ (M， L)QTA-IV+ 

+ Jo ・ (M， Mo)Mo, (70) 

where the operator (・ is defined such that the 
matrices 

r H" I 
H ・ (M， L) =防相 i ， j 1,... ， N' ， 口a)

I Jf\口|
Jo- ・ (M， Mo) = I ー」L-| ， z=I，...， NF;

Lf.l;' +μOjJ 
j = 1, . . • , M. (71b) 

5. Numerical Validation of the Formulations 

In order to test the validity of the matrix formulaｭ
tions presented in Sections 2-4, we have computed 
the asymptotic functions and constants for a Henyeyｭ
Greenstein phase function having an asymmetη 
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Table 2. Diffusion Exponent k Derived by Several Different Methodsα 

ω。= 0.999 ω。= 0.9 ω。= 0.6 N Method 

0.02124 0.23713 0.56979 59 Asymptotic fitting 
0.02124 0.23713 0.56950 10 Recurrence 
0.02124 0.23713 0.56950 10 DOM 
0.02124 0.23713 0.56951 5 DOM 
0.02124 0.23718 0.57588 3 DOM 
0.02122 0.24100 0.61243 2 DOM 
0.02703 0.32477 0.90255 1 DOM 

。Azimuth-independent 1百diationfor a Henyey-Greenstein phase 
function withg = 0.85. 

factor g = 0.85 and single scattering albedosω。= 1.0, 
0.999, 0.9, and 0.6. In Table 2 we summarize values 
of the diffusion exponent k obtained by using several 
different methods for the Oth Fourier frequency. 
In the present method, referred to as the DOM, the 
minimum eigenvalue k λN has been obtained by 
solving Eq. (20a) for a Gaussian quadrature on the μ 
interval [0, 1] of order N 1, 2, 3, 5, and 10 
Furthermore, we have made use of the delta-M 
truncation method33 in which the redistribution maｭ
trices hヘ and hence X:t and G , have been altered by 
modifying the Legendre coefficients of the phase 
function according to 

ωl 一 ω。 f(2l + 1) 
l = 0, • • • , L , (72) ω1 - 1-f 

where L 2N -1 and the truncation factor f is 
defined by 

fω2N 
ω。(4N+ 1) 

(73) 

When a truncation method is used, such as the 
delta-M method, we must transform the resultant 
diffusion exponent as follows: 

k = (1 一 ω。f)ktrun四t吋 (74)

Asymptotic constant l is not affected by truncation, 
and thus the extrapolation length q must be scaled 
according to 

q = qtrun開制/(1 -ω。f). (75) 

In addition to the eigenvector / eigenvalue method 
outlined above, the diffusion exponent as well as 
other asymptotic functions and constants appearing 
in Eqs. (1)一(3) can be obtained by applying the 
asymptotic fitting method of van de Hulst. 15,6 In 
this method, numerical computations from the dou幽
bling method are fit to known asymptotic expressions 
for the plane albedo, diffuse transmission, and interｭ
nal intensity field as a function of optical depth for 
optically thick layers. In Table 2 we summarize 
values of the diffusion exponent obtained by the 
asymptotic fitting method by using a doubling code 
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having N = 59 Gaussian quadrature points on the 
interval [0 ， 1叫1and wi比thou叫tt廿ru山unc阻at問1.鉛

Finally, we have computed the di妊usionexponent k 
by usingthe recurrence method described by Sobolev.5 
In this method a characteristic equation is solved that 
leads to the following continued fraction: 

where 

1-ω。=
k2 

4k2 
α 

9k2 
α2 一一一一一一一一一

α3 ー・・

α/ = (2l + 1 一 ω/).

(76) 

(77) 

The sequence of positive minimum solutions of Eq. 
(76) , ko, kb k2,.. • , kN obtained by truncating to 
order N , is in general a decreasing sequence indicatｭ
ing that the transmitted fiux through optically thick 
atmospheres will always be underestimated when a 
low-order radiative transfer algorithm is used. Usｭ
ing this feature we can calculate the minimum di旺u・
sion pattern with Newton's method. The range of 
the search can readily be estimated from k o, kb and k2 
since this is a rapidly converging series. 
In Table 2 we show that the DOM with N = 5 is 

su伍cientlyaccurate for most applications ofradiative 
transfer in optically thick atmospheres. Furtherｭ
more, we find that this method provides the same 
solution for k as in the recurrence method. We have 
also checked that our solution has converged by 
comparing these computations with the DOM result 
obtained for N = 40. Even for a strongly absorbing 
medium, such as the ocean, the DOM solution with 
N 5 leads to a more accurate estimate of the 
diffusion exponent than the asymptotic fitting method 
with N = 59. This is because the asymptotic fitting 
method is based on ratios of the global transmission 
obtained from numerical computations at three dou幽
bled optical thicknesses (namely, Tc = 8, 16, and 32). 
As ω。 decreases ， this method becomes increasingly 
less accurate because of the small values of the 
transmission in a highly absorbing medium. Al・
though not presented in Table 2, we have also found 
that the delta-M method enhances the convergence of 
k as well as other asymptotic functions and constants 
when compared with corresponding results obtained 
in the absence oftruncation. As pointed out by King 
and Har叶lvardhan ， 18 the DOM with N 1 correｭ
sponds to the delta-Eddington approximation, which 
is known to have large errors in the diffusion expoｭ
nent when the single scattering albedo is small. 
In Table 3 we summarize values of asymptotic 
constants l , m , and n derived by using three different 
methods for a Henyey-Greenstein phase function 
(g = 0.85) and for single scattering albedosω。=
0.999, 0.9, and 0.6, for which all the computations 
apply to azimuth-independent radiation. In addi-



Table 3. Asymptotic Constants " m and n Derived by Several Different 
Methods什

Wo m 見 N Method 

0.999 0.81708 0.37769 0.90635 59 Asymptotic fitting 
0.81708 0.37769 0.90635 10 DOM 
0.81708 0.37769 0.90635 5 DOM 
0.81708 0.37769 0.90635 10 Hybrid 
0.81708 0.37769 0.90636 5 Hybrid 
0.81710 0.37766 0.90637 3 Hybrid 
0.81742 0.37724 0.90654 2 Hybrid 

0.9 0.12494 4.32592 0.44738 59 Asymptotic fitting 
0.12494 4.33017 0.44716 10 DOM 
0.12493 4.33036 0.44714 5 DOM 
0.12494 4.33017 0.44716 10 Hybrid 
0.12494 4.33010 0.44716 5 Hybrid 
0.12495 4.33212 0.44737 3 Hybrid 
0.11852 4.45945 0.44365 2 Hybrid 

0.6 0.01150 12.0149 0.23125 59 Asymptotic fitting 
0.01134 13.0016 0.22125 10 DOM 
0.01132 12.9873 0.22149 5 DOM 
0.01134 13.0016 0.22125 10 Hybrid 
0.01134 13.0035 0.22132 5 Hybrid 
0.00587 13.9176 0.21766 3 Hybrid 
0.02659 15.3458 0.20242 2 Hybrid 

αAzimuth-independent radiation for a Henyey-Greenstein phase 
function with g = 0.85 

tion to the asymptotic fitting method, these constants 
have been determined by using the discrete ordinates 
method for which l can be obtained from Eqs. (38a) 
and (34) and m and n from the normalization condiｭ
tions of Eqs. (58) and (60). In addition to the DOM 
results for various values of N , in Table 3 we present 
computational results obtained by using the hybrid 
method based on Eq. (62) for the escape function and 
Eq. (63) for the diffusion pattern, with the so-called 
Ku記er polynomials obtained from the recurrence 
relation given in Eq. (64). In the hybrid method a 
large number (内， j = 1,..., M = 40) of Gaussian 
quadrature points on the half-range [0, 1] was used 
for angular integration of the normalization condiｭ
tions , keeping the order of the Gaussian quadrature 
N for solving the eigenvalue problem of Eq. (20a) 
much reduced. In this way we were able to obtain a 
good estimate of l , m , and n by using a quadr前unza­
tion as small as N = 3 without a noticeable increase in 
the computational time required. As was found in 
Table 2, N = 5 is sufficiently accurate for both the 
DOM and hybrid methods. 
Values of the escape function , diffusion pattern, 
and plane albedo of a semi-infinite layer are summaｭ
rized in Tables 4-6, in which the plane albedo of a 
semi-infinite layer is defined by 

r九M川山∞」川川(j..L川μ内叶0

=2iイ十fトR州内川)叫 (78) 

Table 4. Escape Function K(μ) Derived by Several Different Methodsロ

α)0 ぃ= 1.0 μ= 0.5 μ= 0.1 N Method 

1.0 1.27141 0.86871 0.46733 59 Asymptotic fitting 
1.27141 0.86870 0.46733 40 DOM 
1.27141 0.86871 0.46743 20 DOM 
1.27143 0.86866 0.46861 10 DOM 
1.27155 0.86888 0.46251 5 DOM 
1.27141 0.86870 0.46733 20 Hybrid 
1.27140 0.86872 0.46706 10 Hybrid 
1.27144 0.86887 0.46847 5 Hybrid 
1.27036 0.86857 0.47501 3 Hybrid 
1.26375 0.86900 0.48605 2 Hybrid 

。目 999 1.15505 0.78586 0.42189 59 Asymptotic fitting 
1.15580 0.78568 0.42182 40 DOM 
1.15580 0.78568 0.42191 20 DOM 
1.15581 0.78563 0.42297 10 DOM 
1.15583 0.78584 0.41749 5 DOM 
1.15580 0.78568 0.42182 20 Hybrid 
1.15579 0.78569 0.42158 10 Hybrid 
1.15583 0.78583 0.42285 5 Hybrid 
1.15477 0.78556 0.42872 3 Hybrid 
1.14868 0.78629 0.43892 2 Hybrid 

0.9 0.72565 0.31740 0.14140 59 Asymptoticfitting 
0.72877 0.31663 0.14113 40 DOM 
0.72872 0.31663 0.14116 20 DOM 
0.72809 0.31662 0.14146 10 DOM 
0.72125 0.31674 0.14020 5 DOM 
0.72877 0.31663 0.14113 20 Hybrid 
0.72877 0.31663 0.14106 10 Hybrid 
0.72828 0.31675 0.14130 5 Hybrid 
0.72059 0.31738 0.14191 3 Hybrid 
0.70157 0.32253 0.15028 2 Hybrid 

0.6 0.54111 0.09442 0.02543 59 Asymptotic fitting 
0.63289 0.07999 0.02259 40 DOM 
0.63252 0.07999 0.02259 20 DOM 
0.62764 0.08001 0.02262 10 DOM 
0.58402 0.08023 0.02226 5 DOM 
0.63289 0.07999 0.02259 20 Hybrid 
0.63287 0.07999 0.02258 10 Hybrid 
0.62613 0.08017 0.02241 5 Hybrid 
0.58912 0.08302 0.02150 3 Hybrid 
0.70172 0.07366 0.02261 2 Hybrid 

"Azimuth.匂independentradiation for a Henyey-Greenstein phase 
function withg = 0.85. 

Since the DOM method of Section 3 provides solu司
tions for these functions at Gaussian quadrature 
points (j..L i, i = 1, • • • , N J, we have made use of cubic 
spline interpolation to interpolate the calculated vaIｭ
ues to the direction cosines presented in the tables. 
It is likewise possible to use an analytic interpolation, 
such as the iteration of the source function technique 
employed by Stamnes and Swanson,19 although we 
utilized a simple spline interpolation here simply to 
intercompare results obtained by several different 
methods. In the hybrid method we recalculated the 
values atμ。= 0.1 , 0.5 , and 1.0 after we obtained l , m , 
and n as in Table 3. Note that the results obtained 
for the diffusion pattern by using the hybrid method 
with M = 10 are near1y the same as the corresponding 
results obtained with the DOM by using N = 40. 
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Table 5. Diffusion Pattern P(μ) Derived by Several Different Methodsα 

ω。 μ= l.0 μ= 0.5 μ= 0.0 μ= -0.5 μ= -l.0 N Method 

0.999 1.14862 l.06962 0.99639 0.92858 0.86576 59 Asymptotic fitting 
1.14867 l.06961 0.99640 0.92859 0.86574 40 DOM 
1.14866 l.06961 0.99640 0.92859 0.86573 10 DOM 
1.14858 l.06961 0.99640 0.92859 0.86566 5 DOM 
1.14867 l.06961 0.99640 0.92859 0.86574 10 Hybrid 
1.14867 l.06961 0.99640 0.92859 0.86574 5 Hybrid 
1.14866 l.06960 0.99640 0.92859 0.86575 3 Hybrid 
1.14848 l.06953 0.99641 0.92868 0.86588 2 Hybrid 

0.9 3.18110 l.44537 0.70379 0.36524 0.20067 59 Asymptotic fitting 
3.18906 l.44447 。句 70363 0.36525 0.20071 40 DOM 
3.18612 l.44449 0.70363 0.36525 0.20061 10 DOM 
3.15646 l.44487 0.70349 0.36502 0.19909 5 DOM 
3.18908 l.44448 0.70363 0.36525 0.20071 10 Hybrid 
3.18904 l.44447 0.70363 0.36526 0.20071 5 Hybrid 
3.18621 l.44358 0.70423 0.36438 0.19871 3 Hybrid 
3.16600 l.47242 0.67105 0.36311 0.14979 2 Hybrid 

0.6 6.96337 1.12056 0.25374 0.08563 0.03745 59 Asymptotic fitting 
8.22991 l.04426 0.24591 0.08452 0.03729 40 DOM 
8.16156 l.04457 0.24592 0.08451 0.03723 10 DOM 
7.58614 l.04623 0.24446 0.08330 0.03496 5 DOM 
8.23026 l.04426 0.24591 0.08452 0.03729 10 Hybrid 
8.21849 l.04546 0.24693 0.08510 0.03454 5 Hybrid 
8.13160 0.93351 0.25586 0.02012 -0.07255 3 Hybrid 
7.31692 l.30951 -0.21699 0.08200 0.44897 2 Hybrid 

"Azimuth-independent radiation for a Henyey-Greenstein phase function with g = 0.85 

This suggests that it is important to increase M to 
obtain greater accuracy while at the same time keepｭ
ing N to a value as small as 10. Tables 4-6 show that 
it is necessarγto use a quadraturization with N と 5
to calculate these asymptotic functions for ωo ~ 0.9 
(N と 10 for ω。= 0.6) in order to guarantee accurate 
solutions. 

Table 6. Plane Albedo of a Semi-Infinite Atmosphere Derived by 
Several Different Methodsa 

伃O μ0= l.0μ0=0.5μ0=0.1 N Method 

0.999 0.78729 0.84940 0.91683 59 Asymptotic fitting 
0.78729 0.84940 0.91683 20 Hybrid 
0.78730 0.84940 0.91688 10 Hybrid 
0.78728 0.84937 0.91662 5 Hybrid 
0.78738 0.84939 0.91541 3 Hybrid 
0.78796 0.84932 0.91344 2 Hybrid 

0.9 0.10387 0.20846 0.44872 59 Asymptotic fitting 
0.10387 0.20846 0.44871 20 Hybrid 
0.10388 0.20845 0.44903 10 Hybrid 
0.10374 0.20830 0.44772 5 Hybrid 
0.10341 0.20814 0.43987 3 Hybrid 
0.10534 0.21258 0.42810 2 Hybrid 

0.6 0.01607 0.04523 0.17886 59 Asymptotic fitting 
0.01607 0.04523 0.17886 20 Hybrid 
0.01608 0.04521 0.17924 10 Hybrid 
0.01591 0.04511 0.17867 5 Hybrid 
0.01552 0.04484 0.17199 3 Hybrid 
0.01834 0.04853 0.16050 2 Hybrid 

αHenyey-Greenstein phase function withg = 0.85 
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Finally in Table 7 we present values of the reflecｭ
tion function of a semi-infinite layer for overhead Sun 
(μ。= 1) and for the same Henyey-Greenstein phase 
function used previously. For comparison purposes 
we have used three different methods: (1) the asymp幽
totic fitting method based on radiative transfer comｭ
putations by using the doubling method with N = 59; 
(2) Eq. (70) with the redistribution matrices h"' , and 
hence all other matrices appearing in this expression, 
modified following the delta且M truncation method33; 
and (3) Eq. (70) with the truncated multiple-plusｭ
single-scatteri時 (TMS) method,23 which is an imｭ
provement ofthe delta-M method that is particularly 
significant for improving the accuracy of intensity 
calculations and uses a small number of Gaussian 
quadrature points. For most applications, we have 
found that the TMS method with N = 10 is suffiｭ
ciently accurate, whereas the familiar delta-M method 
requires a larger quadraturization N. This observaｭ
tion implies that the TMS method improves the 
accuracy of intensity calculations even for optically 
thick layers, a feature not demonstrated in the origiｭ
nal paper. 23 
Accurate computations of the reflection and transｭ
mission functions of optically thick layers are generｭ
ally more difficult to obtain than they appear at first 
glance, since the effects of many different error 
sources tend to be amplified while the calculations are 
performed. For example, a small round-off error in 
the doubling method increases rapidly as the optical 
thickness of the layer increases .34,20 Since we were 



Table 7. Reflection Function of a Semi-Infinite Atmosphere with Normal 
Incidence (μ。=1) Derived by Several Different Methods" 

ω。 μ= 1.0 μ= 0.5 μ= 0.1 N Method 

1.0 1.12835 0.94462 0.58135 59 Asymptotic fitting 
1.12838 0.94462 0.58136 20 TMS 
1.12957 0.94453 0.58073 10 TMS 
1.13520 0.94450 0.58540 5 TMS 
1.14132 0.94768 0.60031 3 TMS 
1.14444 0.92479 0.58336 2 TMS 
1.11212 0.94534 0.58278 10 Delta悶M

0.999 0.86185 0.75785 0.47984 59 Asymptotic fitting 
0.86188 0.75785 0.47985 20 TMS 
0.86307 0.75777 0.47928 10 TMS 
0.86866 0.75769 0.48362 5 TMS 
0.87502 0.76099 0.49707 3 TMS 
0.87983 0.73874 0.47829 2 TMS 
0.85469 0.75858 0.48132 10 Delta-M 

0.9 0.08513 0.11573 0.10576 59 Asymptotic fitting 
0.08515 0.11573 0.10576 20 TMS 
0.08612 0.11566 0.10548 10 TMS 
0.09036 0.11543 0.10767 5 TMS 
0.09424 0.11751 0.11266 3 TMS 
0.09433 0.10527 0.09876 2 TMS 
0.07860 0.11638 0.10732 10 Delta-M 

0.6 0.01020 0.01910 0.02877 59 Asymptotic fitting 
0.01021 0.01910 0.02877 20 TMS 
0.01063 0.01907 0.02868 10 TMS 
0.01225 0.01896 0.02925 5 TMS 
0.01320 0.01952 0.03027 3 TMS 
0.01249 0.01697 0.02718 2 TMS 
0.00567 0.01955 0.02989 10 Delta-M 

αHenyey-Greenstein phase function withg = 0.85. 

aw訂e of this problem, we checked the results of the 
Nakajima and Tanaka20 algorithm and have found 
that it yields the same answer as the results shown in 
Table 7 up to Tc "" 106 for double precision calculaｭ
tions on an IBM 3081 computer. Therefore, another 
possibility for computing the asymptotic functions is 
simply to use the ordinary TMS method with the 
DOM algorithm ofN akajima and Tanaka23 or Stamnes 
et α1. 22 and let Tc = 106. 

6. Concluding Remarks 

We have derived the asymptotic limit ofthe radiative 
transfer equation in optically thick and vertically 
homogeneous plane-parallel layers from first princiｭ
ples by using the discrete ordinates method (DOM). 
Our derivation differs substantially from the heurisｭ
tic thought experiment derivation of van de Hulst3,6 
and the mathematical derivation based on the formal 
solution of the radiative transfer equation presented 
by Sobolev.4,5 Furthermore, we have shown how to 
calculate the various functions and constants arising 
in asymptotic theory by using the matrices and 
eigenvalues routinely computed in discrete ordinates 
algorithms. The asymptotic expressions for the 
scaled reflection and transmission matrices, for examｭ
ple, are given in Eqs. (35) and (36) , for which the 
scaled escape function vector is given in Eq. (38b) , the 

scaled diffusion pattern vectors by Eqs. (47), and the 
scaled reflection matrix of a semi-infinite layer by Eq. 
(37). Equations (57) further show how to convert 
these scaled matrices and vectors into physical funcｭ
tions ofμand μo as in Eqs. (1)一(3).
By using these and other formulas presented in the 
previous sections, we have found several different 
methods for computing the escape function , di町uSlon
pattern, and reflection function of a semi-infinite 
layer. These methods include (a) the asymptotic 
limit ofthe DOM, namely the direct use ofEqs. (38b) , 
(47) , and (37) , (b) a hybrid method based on Eqs. (62) , 
(63) , and (70) , (c) the direct method, namely the use of 
the ordinary algorithm of the TMS method23 with 
su伍ciently large Tc ("" 106), and (d) the asymptotic 
fitting method15,6 in which doubling computations at 
three optical thicknesses (Tc = 8, 16, and 32) are 
matched to the asymptotic formulas to obtain the 
required functions and constants. 
The aforementioned methods have several advanｭ
tages and disadvantages. Method (a) is simple in its 
formulation but relatively ine伍cient in performing 
numerical comput此ions. Method (b) is the most 
computationally efficient, but requires a more compliｭ
cated formulation. In this method, a discrete quadraｭ
ture of order N = 10 is su田ciently accurate for most 
applications. Method (c) is not limited to cases of 
large Tc but requires a large Tc to obtain the asympｭ
totic fields. This necessarily adds the possibility of 
numerical instability to the solution. The asympｭ
totic fitting method is highly stable but requires the 
use of the doubling method to compute the reflection 
and transmission functions to an optical thickness of 
at least Tc 32. This method has been utilized 
extensively in our earlier work.8-11 ,18.26 
Comparison of the reflection function of a semiｭ
infinite layer obtained by several different methods 
(see Table 7) has shown that the TMS method of 
N akajima and Tanaka23 improves the e伍ciencyand
accuracy of intensity calculations even for optically 
thick atmospheres. 

Finally, we have demonstrated the accuracy of a 
number of numerically e伍cientmethods for calculatｭ
ing the radiative intensity field in any plane-parallel 
optically thick atmosphere. Since DOM computer 
codes subdivide a vertically inhomogeneous layer into 
several homogeneous sublayers, it is possible to impleｭ
ment the asymptotic formulations given here into 
DOM codes for rapid treatment of any sub 

AppendixA 

To derive the expression for the internal scattered 
radiation field deep within an optically thick multiple 
scattering media, we begin by substituting Eqs. (47) 
into Eq. (44) , leadingto 

1 
V(T) =長 [(1 -Cj + C3)P+ ー C2P-] ， (Al) 
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Substituting Eq. (A1) back into Eqs. (45) leads to 

C1=H1[(1 一町 + C3)合+ φ]ヲ (A2a) 

C2=7km-C1+ 匂)合+ -C2P-], (A2b) 

γαγb 

C3 = ョ-'-"-KTK* K可(1 ー Cl + C3)P+ ー C2P1. (A2c) 

By making further use of Eqs. (47) and (49) it follows 
that 

KTR∞p+ = KTp-

KTR∞P- = KTRoo2p¥ 

= KT[p+ ー (1 -Roo2)p+ 

= 1 -kKTK. 

(A3a) 

(A3b) 

Substituting Eqs. (A3) back into Eqs. (A2) results in 
the following system oflinear equations: 

Cl ニ 7[(1 一 Cl + c3)l 一叫一成TK)] ， (A4a) 

cz=?(1-C1+C3-d) (A4b) 

C3 =γαC2KTK， (A4c) 

which can be solved simultaneously for each of the 
constants Cl , C2 , and C3' The solution of this system 
oflinear equations can be obtained in the form 

C2 = (1 -Cl + c3)l exp[ -2k(Tc - T) ], 

I [2 exp( -2kT) 
1 -C, + CQ = 
iδ1 -l2 exp( -2kTc) 

(A5a) 

(A5b) 

Substituting Eqs. (A5) back into Eq. (A1) yields the 
following solution for column vector V(T): 

1 [2 exp( -2kT) 
(T) ニヮ
k -kf2 exp( -2kTc) 

x (p+ -l exp[ -2k(Tc - T)[P-j 

This isjust the solution given by Eq. (50) 

(A6) 

When Eq. (A6) is substituted back into Eq. (43) , it 
readily follows that 

exp( -kT) 
a十 (T) = 
1 -[2 exp( -2kTc) 

x (p+ -l exp[ -2k(Tc - T)]P-j * KTﾛ+(O) 

(A7) 
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The derivation of the corresponding formula for ﾛ -(T) 
is considerably more difficult , requiring the evaluaｭ
tion of 

Rb(P+ -l exp[-2k(Tc -T)]P-j 

= (R∞一 γbK* KT) 

x (p+ -l exp[ -2k(Tc - T)]P- j, 

= P--l exp[ -2k(Tc - T)](P+ -kK) 

γbK * KT(p+ -[exp[ -2k(Tc - T)]P- j, (A8) 

in which we have made use of Eqs. (35), (46b) , and 
(47). The last term in this expression can be further 
reduced as follows: 

γbK ホ KT(p+ -l exp[ --2k(Tc - T)]P-j 

= kl exp[ -2k(Tc - T)]K, (A9) 

in which we have made use of the normalization 
conditions in Eq. (49). Finally, combining Eqs. (A8) 
and (A9) and substituting the resulting expression 
back into Eq. (A 7) yields 

ﾛ-(T) = Rbû+(T) , 

exp( -kT) 

1 -[2 exp( -2kTc) 

x (P--l exp[ -2k(Tc 一 T)]P+)* KTﾛ+(O) 

(A10) 

Equations (A7) and (A10) represent , respectively, the 
asymptotic solutions for the downward and upward 
propagating intensities deep within an optically thick 
medium. When combined these equations can be 
written as Eq. (51). 

The authors are grateful to N. J. McCormick, K. 
Stamnes, S. C. Tsay, and P. Gabriel for valuable 
comments on an earlier draft ofthis manuscript. 
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