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ABSTRACT

Besov and Triebel-Lizorkin Spaces Associated to
Non-negative Self-adjoint Operators

Guorong Hu

Let (X,p, ) be a metric measure space satisfying the doubling, reverse doubling, and
non-collapsing conditions. Let .Z be a non-negative self-adjoint operator on L?(X,du) whose
heat kernel satisfies the pointwise Gaussian upper bound. In this thesis, we develop the Besov
spaces B;:f’ (X) and the Triebel-Lizorkin spaces F;_”f (X) associated to . with complete range
of the exponents s, p and ¢. Characterizations and properties of these spaces such as Peetre
type maximal function characterization, continuous Littlewood-Paley characterization, atomic
decomposition, complex interpolation, lifting property and embedding theorem are given. The
homogeneous spaces B;:f (X) and F;f (X) are also discussed. In particular, the identification
of Fl?”f (X) with various definitions of Hardy spaces associated to .Z is verified. In the special
case where X is a stratified Lie group, these function spaces are applied to study the boundedness

of singular integral operators.
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Chapter 1

Introduction

Function spaces are useful tools for studying problems in harmonic analysis, partial differen-
tial equations, probability theory and many other areas of mathematics. In harmonic analysis,
various classical function spaces such as Lebesgue, Sobolev, Bessel-potential, Hardy, BMO and
Holder-Zygmund spaces can be studied from a unifying perspective via the Littlewood-Paley
theory. In particular, when one studies interpolations, embeddings, wavelet characterizations,
Fourier multipliers or boundedness of singular integrals of/on these function spaces, it is conve-
nient to regard them as special cases of Besov and Triebel-Lizorkin spaces which are defined via
Littlewood-Paley decomposition.

On the other hand, the developments of many function spaces arising in harmonic analysis were
originally tied to the properties of harmonic functions and the Laplacian A := — Z;;l 02/ 833]2-.
For instance, one well-known characterization of the real Hardy spaces HP(R™) (0 < p < o0)
states that a (bounded) distribution f € S’(R™) belongs to HP(R") if and only if Sa f € LP(R™),
where Sa f is the square function (associated to the Laplacian A) defined by the area integral

Saf(z) = (//F(z)

with T'(z) := {(y,t) : |y — 2| < t}. The harmonicity of the Possion integral e~*VAf in the upper
half-space R:‘_‘H plays a role in deriving such a characterization. Besides Hardy spaces, the study
of the Besov(-Lipschitz) spaces By ,(R") and B,  (R"), especially in the 1960s and 1970s, was
also connected with the properties of harmonic functions and the Laplacian. Indeed, these spaces
were usually done by considering the Possion integral e—tVa f or the Gauss-Weierstrass integral
e tA f of distributions f (see Bui [9], Flett [31], Johnson [57], Stein [74], Taibleson [81]; see also
Saka [69] for a generalization to nolpotent Lie groups). Analogous results in the Triebel-Lizorkin
case can be found in [10, 11, 12].

5 9 1/2
e V() tl“dydt) , (L1)

In the seminal paper of Fefferman and Stein [30], a real-variable theory for the Hardy spaces
HP(R™) with p € (0, c0) was systematically developed. The real-variable method made it possible
to extend Hardy spaces to a much more general setting, which is called “spaces of homogeneous
type” (see Coifman and Weiss [18]). We refer also to Han et al. [42, 43, 44, 45] for extensions
of Besov and Triebel-Lizorkin spaces to spaces of homogeneous type. However, there are some
important situations in which the classical real-variable function spaces are not the most suitable
choices. For instance, the classical real-variable Hardy spaces HP(R™) seem not applicable when
one studies problems related to the divergence form elliptic operator £ f = — div(AVf) with
bounded complex coefficients. In fact, the Riesz transform V.Z~1/2 associated to .% may not
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be bounded from the classical Hardy space H'(R") to L'(R™). Therefore, it seems reasonable
to introduce function spaces adapted to a linear operator .Z which generalizes the Laplacian A,
in much the same way that the classical Hardy spaces, Besov spaces and Triebel-Lizorkin spaces
are adapted to the Laplacian.

Auscher, Duong and McIntoshi [4] first introduced a class of Hardy space H}% associated to
an operator . by means of the square function in (1.1) with the Poisson semigroup e~tVa
replaced by the semigroup e~*%, under the assumption that the heat kernel of .Z satisfies a
pointwise Poisson upper bound. Then Duong and Yan [24] introduced BMO spaces associated
to such an .Z and they proved in [25] that BMO spaces associated to the adjoint operator .£*
is the dual space of H}g Recently, Auscher, McIntoshi and Russ [5] studied the Hardy space
associated to the Hodge Laplacian on a Riemannian manifold, while Hofmann and Mayboroda
[47] investigated Hardy spaces associated to a second order divergence form elliptic operator £
on R with complex coefficients. The theory of the Hardy spaces H%,(X), 1 < p < 0o, on a
metric space X associated to a non-negative self-adjoint operator .Z satisfying Davies-Gaffney
estimates was developed in [46]. Function spaces associated to operators turn out to be useful
for studying the boundedness of non-classical singular integrals (e.g., Riesz transform V.Z~1/2
associated to a divergence form elliptic operator .¥) which may not fall within the scope of the
Calderén-Zygmund theory.

In the case that . = —A 4+ V is a Schrodinger operator with a locally integrable non-negative
potential V', the HP spaces associated to £ was earlier investigated by Dziubanski et al.; see
[27, 28] and the references therein. In these works the spaces H%,(R™) were introduced by
means of the radial maximal function associated to the semigroup e ~*<
functions. Note that the operator £ = —A 4 V satisfies the Davies-Gaffney estimates, and
it was proved in [46] and [55] that for such a special operator . the Hardy spaces defined via

, instead of using square

square functions are equivalent to those defined via maximal functions. Hence, the general theory
developed in [46] applies to this Schrodinger setting. However, the spaces H%, (R™) associated
to £ = —A + V enjoy some interesting properties which may not be satisfied by Hardy spaces
associated to general operators satisfying Davies-Gaffney estimates. For instance, if the potential
V satisfies certain additional assumptions (e.g., reverse Holder inequality), the space Hi,(R™)
associated to .Z = —A+V is characterized by the (generalized) Riesz transform V(—A+V)~1/2;
see [26] for more details.

It is natural to ask whether one can establish a theory of Besov and Treibel-Lizorkin spaces
associated to operators. To do this one first needs to generalize the classical Littlewood-Paley
decomposition to operator settings. Recall that if ) and ¢ are two functions in S(R™) such that
supp ¢ is compact and bounded away from the origin, and

o0
DE)+Y @279 =1 forall € € R",
j=1
where " denotes the Fourier transform on R™, then for any tempered distribution f € S'(R™),

F=vxf+) ¢jxf inS(RY), (1.2)

Jj=1

where p;(z) := 29"¢p(27x) for j > 1. This reproducing identity is the starting point of establishing
Besov and Triebel-Lizorkin spaces. However, when one considers function spaces associated to
abstract operators, the Fourier transform is unavailable in general. Nevertheless, for (unbounded)
self-adjoint operators, the function calculus can be regarded as a good substitute of the Fourier
transform. To be precise, let (X, 1) be a measure space and consider a non-negative self-adjoint
operator . on L?(X,du). Let {E(X) : X > 0} be the spectral resolution of .. Given any
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bounded Borel measurable function ® : R>¢ — C, the operator ®(.Z) defined by

(L) = /O T o(NdEW)

is bounded on L?(X,du). If & and ® are two function in C*°(R>¢) such that supp @y and
supp ® are compact, 0 ¢ supp ®, and

Do) + 2(27¥N) =1, VA€ Rso,

then by the spectral theory we know that for any f € L?(X,du),
f=(Z f+Z<I> 2792 f (1.3)

where the convergence of the sum is in L?(X,du). This can be viewed as an analogy of the
reproducing identity (1.2), though it is far from being sufficient to establish Besov and Triebel-
Lizorkin spaces associated to .Z. It is now understood that, to get well-defined Besov and
Tribel-Lizorkin spaces via (1.3), one needs to have some size and smoothness estimates for the
integral kernels of the operators ®(272/.%) which ensure the “almost orthogonal estimates” for
the integral kernels of the operators ®(272.2)®(272¢.%).

Very recently, Kerkyacharian and Petrushev in [59] proved that if the heat kernel of the non-
negative self-adjoint operator .Z satisfies the Gaussian upper bound and the Holer continuity,
and if the function ® : R>y — C is sufficiently good, then the operator ®(.¥) is an integral
operator and its kernel satisfies appropriate size and smoothness estimates. These estimates
enabled them to develop a theory of Besov and Triebel-Lizokin spaces associated to the operator
Z. Let us describe a bit more precisely their work. Suppose (X, p, i) is a locally compact metric
measure space satisfying the doubling, reverse-doubling, and non-collapsing conditions. Suppose
further that . is a non-negative self-adjoint operator on L?(X,du) whose heat kernel satisfies
the pointwise Gaussian upper bound and the Holder continuity. Let ®g,® be two functions in
C*(R>¢) such that

) (0) = 0 for all v € Ny, (1.4)
supp @y € [0,2], [Po(N)] > ¢ > 0 for A € [0,2%/4], (1.5)
supp® C [271,2],  |®(\)] > ¢ >0 for A € [273/4,23/4). (1.6)

We point out that ®¢, ® lie in C>°(R>¢) and satisfy (1.4)-(1.6) if and only if the functions V¢, ¥
defined by
Wo(N) = Bo(VA), T(A) = D(V))

lie in C*°(R>¢) and satisty
supp Uy € [0,2%],  |To(N)] > ¢ > 0 for X € [0,2%/?], (1.7)
supp ¥ C [272,22], |W(\)| > ¢ >0 for A e [273/2,2%/2). (1.8)

Set ®;(X) := ®(272)) for j > 1. In [59], the Besov space B (X), with s € R and p € (0, oc]
and ¢ € (0,00], is defined as the collection of all distributions f € S, (X) (see Section 2.5 for
the definition of S% (X)) such that

1/q
o0

ByZ(Xx) T Z H2js(bj(\/§)f“qm(x) < 0,
=0

/]
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and the Triebel-Lizorkin space Fj%(X), with s € R, p € (0,00) and ¢ € (0,00], is defined as
the collection of all distributions f € S, (X) such that

1/q
R (x) T 2% 27°0,(V.2) ] < 0.
i=

Lr(X)

11

Kerkyacharian and Petrushev in [59] showed that these function spaces are independent of the
choice of @,  as long as Dy, D satisfy (1.4)—(1.6), by using the smooth functional calculus related
to the heat kernel and a generalized Peetre’s maximal inequality established by themselves.
Moreover, using elegant techniques on functional calculus and on the construction of frames, they
also established embedding theorems, heat-kernel characterization and frame decomposition for
these function spaces. Their theory applies in quite general situations such as uniformly elliptic
divergence form operators on R™ with real symmetric coefficients, Riemannian manifolds with
non-negative Ricci curvature and Lie groups of polynomial growth. However, the restriction
that the heat kernel satisfies Holder continuity makes some interesting operators fall outside the
scope of their setting. For example, the heat kernel of the Schrédinger operator —A 4+ V', with
0<Ve L}OC(R”), enjoys Gaussian upper bound; however, in general its heat kernel does not
satisfies the Holder continuity. Also, the Dirichlet or Neumann heat kernels of some non-smooth
domains enjoy the Gaussian upper bound but may not satisfy the Holder continuity. See Section
2.6 for a more detailed discussion.

The primary goal of the current thesis is to generalize the work of Kerkyacharian and Petrushev
[59]. To be precise, in this thesis we develop the Besov and Triebel-Lizorkin spaces on a doubling
metric measure space (X, p, i) associated to a non-negative self-adjoint operator .Z on L2(X, dpu)
whose heat kernel p;(x, y) satisfies the Gaussian upper bound but need not satisfy any condition
on the regularity in the variables x and y. As we mentioned above, there are some interesting
operators whose heat kernels satisfy Gaussian upper bound but may not satisfy the Holder
continuity. Thus, our setting is more general than that considered in [59]. Let us describe our
definition of Besov and Triebel-Lizorkin spaces associated to operators. Let s € R and ¢ € (0, o0].
Let ®¢, ® be two functions in S(R>¢) such that

|Bo(N)| >¢>0 on {0<\<2%%}, (1.9)
BN >¢>0 on {2732 <X <232} (1.10)

for some € > 0, and
the function A — A" ®()\) belongs to S(Rx) (1.11)

for some nonnegative integer M > s/2. Set ®;(\) := ®(2729)), j > 1. For p € (0,00], we define
the Besov space B;:f (X) as the collection of all distributions f € S’ (X) such that

1/q

1 ps 0y = | D 127°@5(2) 1170 ) < o0. (1.12)
j=0

For p € (0, 00), we define the Triebel-Lizorkin space sz;f) (X) as the collection of all distributions
f € 8% (X) such that

1/q
oo

17 oy = ||| 2o 12725 1" < 0. (1.13)

j=0
LP(X)
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To see that these function spaces are well-defined, we first need to show that different choices
of ®g, ® yield equivalent Besov and Triebel-Lizorkin quasi-norms, as long as ®q, ® satisfy (1.9)—
(1.11). However, since there is no assumption on the regularity of the heat kernel of £, the
generalized Petree’s inequality established in [59, Lemma 6.4] fails in our setting. To overcome
this obstacle, we follow the ideas of Bui et al. [11, 12], Rychkov [68] and Ullrich [84]. Note that
the most important contribution of these papers is the characterization of classical Besov and
Triebel-Lizorkin spaces on R" using Littlewood-Paley decomposition (1.2) involving functions
¥, € S(R™) which are not required to be band limited but only satisfy a Tauberian condition
and a moment condition. In the present thesis we extend such type characterization to the
operator setting. This approach enables us to remove the restriction that &y, ® have compact
supports. (Compare (1.9)—(1.11) to (1.7)—(1.8)).

This thesis is organized as follows: In Chapter 2 we present notations and preliminaries. After
introducing some notations in Section 2.1, we recall the notions of doubling, reverse doubling,
and non-collapsing conditions for the metric measure space (X, p, p) in Section 2.2 and recall
the notions of Gaussian upper bound and Hoélder continuity for heat kernels in Section 2.3. In
Section 2.4 we recall an important result of Kerkyacharian and Petrushev concerning smooth
functional calculus induced by the heat kernels. In Section 2.5 we recall the notions of test
functions and distributions associated to operators which were first introduced by Kerkyacharian
and Petrushev. In Section 2.6 we describe several examples.

In Chapter 3 we introduce Besov and Triebel-Lizorkin spaces associated to the operator £ using
the quasi-norms (1.12) and (1.13) in which &g and & are chosen to satisfy (1.9)—(1.11). The
main result in this chapter is the well-definedness of our function spaces. More precisely, we
show that a different choice of (®¢, ®) yields equivalent Besov and Triebel-Lizorkin quasi-norms.
We divide the proof into two steps. The first step (see Theorem 3.4) is to show that if (®g, D)
is a couple of functions in S(R>¢) satisfying (1.9)—(1.11) then

o 1/q - 1/q
2N @i Ny |~ | M2 @i iy |
:O_O 1/a J_jo 1/a

o120 (L))" ~ DD [ 2)f| :
7= Lr(X) 7= LP(X)

where [®;(Z)]} f is the Peetre maximal functions defined by (3.3), and the notation ~ means
that the quantities on both sides are comparable. The second step (see Theorem 3.5) is to show
that if (g, @) and (Do, @) are two couples of functions in S(R>p) satisfying (1.9)—(1.11) then

o 1/q - 1/q
D@ (NS lny |~ | 2@y |
j=0 J=0

1/q 1/q

> 27252 f| ~ DS 120!
Jj=0 j=0
LP(X) Lr(X)

Combining these two steps we see that our definition of B;;f (X) and sz;f (X) is independent
of the choice of ®g, @, as long as @g, P satisfy (1.9)—(1.11). In Section 3.3 we give some basic
properties of Bf,j;ff (X) and F;jZ (X), including the completeness of these spaces and the con-
tinuous embeddings ByZ (X) < 8% (X) and Fj7%(X) < 8% (X). In Section 3.4 we show the
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continuous Littlewood-Paley characterization which states that if ®g, ® satisfy (1.9)—(1.11) then

1 » dt 1/q
||fB;Zg(x)’“||¢’o($)f||m(x)+(/0 t 4|\<I><t2$>f|\ip<x>t) : (1.14)

1 1/q
(e
0

This characterization is very useful because it leads immediately to the heat kernel characteri-
zation of By (X) and F3:-%(X). Indeed, if we take

/]

Foz x) ~ 1P (L) fllLe(x) + (1.15)

Lr(X)

Po(A) = and ®(\) = A\Me A

in (1.14) and (1.15), we get

1 1/q
_ s 2 dt
||f||B;;;1‘4’(X) ~ e ngLP(X) + </0 t q||(t2$)M6 ! ff”ip(x)t) ’

L . Qi 1/q
i1 ([ rieepiese )

FZ (X) ~ He_ngLP(X) +

LP(X)

In Chapter 4 we systematically discuss properties and characterizations of B;:f (X)and F;y’f (X).
First we establish the atomic decomposition of B3 (X) and F3:¥ (X). Then, using the atomic
decomposition and following the idea of [64], we show the complex interpolation property for
B Z(X) and F3: (X). We also obtain the lifting property and embedding theorem for these
spaces. Finally, in Section 4.5 we point out that FI?:Q‘Z (X) is identified with LP(X) for p € (1, c0).

In Chapter 5 we introduce homogeneous Besov spaces B;;;ff (X) and homogeneous Triebel-
Lizorkin spaces F;f (X). To define these homogeneous spaces, we need to introduce the new
test function space Seo, #(X). The key ingredient in this chapter is a homogeneous Calderén
reproducing formula in the distribution space S/, ,(X) (see Proposition 5.5). In Section 5.3 we
list some properties and characterizations of B;jf (X) and F;f) (X). Most of the proofs of these
properties and characterizations are skipped since they are analogous to their inhomogeneous
versions given in Chapter 3. In Section 5.4 we show that Fg’f(X) (0 < p < 00) are character-
ized by the Lusin area integral. In Section 5.5 we show that Flg’f(X) (0 < p <1) can also be
identified with the atomic Hardy spaces H2#™ (X) associated to .Z.

In Chapter 6 we apply our theory to the special setting of stratified Lie groups. It is well
known that any stratified Lie group G satisfies the doubling, reverse doubling and non-collapsing
conditions, and the heat kernel of any sub-Laplacian A on G satisfies the Gaussian upper bound.
Hence, applying the general theory established in Chapter 3 and Chapter 5, we can define the
Besov spaces Bf;:qA(G) and B;:(IA(G) and the Tribel-Lizorkin spaces sz;qA(G) and F;’QA(G). In
section 6.2 we prove that for any two sub-Laplacians A and A on G, we have B;:qA(G) = B;;qZ (@),
BIS):qA(G) = B;";:qﬁ(G)7 F38(G) = F;;}(G) and F;:qA(G) = F;’(IE(G). This result tells us that the
Besov and Triebel-Lizorkin spaces on G reflect properties of the group, not of the sub-Laplacian
used for the construction of the Littlewood-Paley decomposition. In Section 6.3 we obtain the
B;,Q(G)— and F;q(G)—boundedness of singular integral operators of convolution type on G.

In Chapter 7 we consider the maximal function characterization the space Fg”QA (X) in the special
case that X is a Riemannian manifold and A is the Laplace-Beltrami operator on X. We show
that in this case FI?7’2A(X) can be identified with Hf . (X), where Hf A (X) is the Hardy
space on X defined via the non-tangential or radial maximal functions associated to A.



Chapter 2

Notations and preliminaries

2.1 Notations

Throughout this thesis we assume that X is a locally compact metric space with a distance p,
and p is a positive regular Borel measure on X. To avoid repetition, we skip this assumption in
all the subsequent statements.

We denote by B(x,r) the open ball with center z € X and radius r» > 0, and by V(x,r) its
measure pu(B(z,r)).

The symbol N will denote the set of all positive integers while Ny will denote the set of all
non-negative integers.

If o is a positive number, we denote by |o| the largest integer less than or equal to o. For
p € (1,00), the conjugate exponent p’ is defined by 1/p+ 1/p’ = 1.

For p € (0,0), the Lebesgue space LP(X,du) will be written in short LP(X).

Let R>g := [0,00) and Ry := (0,00). If ® is a smooth function on R>¢ and v € Ny, then we
use ®*) to denote the v-th order derivative of ®. In addition, we define the space S(R>¢) by

S(Rxg) := {® € C*(Rxo) : Vv € Ny, &™) decays rapidly at infinity and )\lim+ dM(N) exists}.
> —0

Throughout this thesis, the letters C, ¢ will denote positive constants, which are independent of

the main parameters and not necessarily the same at each occurrence. By writing A < B, we

mean A < CB. We also use A ~ B to denote A < B < A. Some important constants will be
denoted by C., C}, Gy, Cy, - - -, and they will remain unchanged throughout.

2.2 Doubling, reverse doubling, and non-collapsing condi-
tions

One says that the metric measure space (X, p, 1) satisfies the doubling condition, if there exists
a constant C, > 1 such that

0<V(z,2r) <CV(z,r) < o0 (2.1)
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for all x € X and r € (0,00). Notice that (2.1) implies
V(z,\r) < C. AWV (z,7) (2.2)

for all z € X, r € (0,00) and X € [1,00), where d = log, Cx > 0 is a constant playing the role of
a dimension. Since B(x,r) C B(y, p(z,y) + r), (2.2) yields that

Ve <. (14280 vy 23

for all z,y € X and r € (0,00).

One says that (X, d, i) satisfies the reverse doubling condition, if there exists a constant C; > 1
such that
V(z,2r) > C;V(x,r) (2.4)

for all z € X and r € (0, ¥22X]. Note that (2.4) implies
V(z, Ar) > C{l)\g‘/(ac,r) (2.5)

for all z € X, r € (0,00), A € [1,00) and r € (0, %}, where ¢ = log, Ct+ > 0. It was shown
in [19, Proposition 2.2] that the reverse doubling condition (2.4) is a consequence of the doubling
condition (2.1) whenever X is connected.

One says that (X,d, ) satisfies the non-collapsing condition, if there exists a constant C, > 0
such that

> .
wlg( V(z,1) > C,. (2.6)

Note that (2.6) coupled with (2.1) imply that for all r € (0, 1]

i >colopr. .
Ilg( V(z,r) > C Cyr (2.7)

2.3 Gaussian upper bound and Holder continuity of the
heat kernel

Let . be a non-negative self-adjoint operator with domain D(.#) dense in L?*(X). Let E())
be the spectral resolution of .. For any bounded Borel measurable function ® : R>¢ — C, the
operator

B(L) = /000 BO)AE(N).

is bounded on L?(X). We assume that the associated semigroup P; = e~* consists of integral

operators with (heat) kernel p;(x,y). We say that the heat kernel of . satisfies the Gaussian
upper bound, if there exist two constants Cy, cy > 0 such that

€xp { c:ty)

VvV Vi)

pe(z, )| < Cy (2.8)




Chapter 2 Notations and preliminaries 9

for all t € (0,1] and x,y € X. We say that the heat kernel of £ satisfies the Holder continuity,
if there exists a constant a > 0 such that

exp { - 2522

V(@ VOV (5. VD)

(2.9)

Ipu( ) = pil )| < €y (p%/))

for all t € (0,1] and z,y,y’ € X satisfying that p(y,y’) < V1.

2.4 Smooth functional calculus induced by the heat kernel

For t,0 > 0 and =,y € X, we set

Dio(z,y) = [V(z, )V (y, )]~ /2 (1 + Wi”) - (2.10)

In addition, for ® € S(R>o) and m € Ny, we put

@] () == - sup__ (14 2™+ ())). (2.11)
>0; sSvsm

Next we recall an important estimate obtained by Kerkyacharian and Petrushev [59].

Lemma 2.1. ([59, Theorem 3.4]) Suppose (X, p, u) satisfies the doubling condition (2.1), reverse
doubling condition (2.4) and non-collapsing condition (2.6). Suppose £ is a non-negative self-
adjoint operator on L?(X) whose heat kernel satisfies the Gaussian upper bound (2.8) and the
Holder continuity (2.9). Suppose m € Ng, m>d+1, r>m+d+1, & € C™(R>¢), and there

exists a constant C > 0 such that
2N < CA+A)"
for all A € Rsg and v € {0,1,--- ,m}. Suppose further that
oD (0) = 0

for all v € Ny with 2v +1 < m. Then for any t € (0,1], ®(tV.ZL) is an integral operator with a
kernel Kg sz (2,y); moreover, there exists a constant C > 0 (depending on m) such that

| Ko rvz) (@ )| < CCDy () (2.12)

for allt € (0,1] and z,y € X, and

= (v, y)\*
Kgivz) (@ 9) = Koz (2.9)| SCC< (t )) Dym(2,y) (2.13)

for allt € (0,1] and z,y,y € X satisfying p(y,y’) < t.

Remark 2.2. If we do not assume the Hélder continuity for the heat kernel of £, the estimate
(2.13) fails but the estimate (2.12) still holds.

Observe that if ® € S(R>p), then the function ¥ : R>g — C defined by ¥(\) := ®(\?) also lies in
S(R>p), and moreover, ¥(*¥1)(0) = 0 for all v € Ny. Also note that for any m € Ny, there exists
a constant C' > 0, which depends on m but is independent of ®, such that [ ¥||(,,) < C|[®| ().
By these facts, we can reformulate Lemma 2.1 as follows:
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Lemma 2.3. Suppose (X, p, 1) satisfies the doubling condition (2.1), reverse doubling condition
(2.4) and non-collapsing condition (2.6). Suppose £ is a non-negative self-adjoint operator on
L?(X) whose heat kernel satisfies the Gaussian upper bound (2.8) and the Hélder continuity
(2.9). Then for any ® € S(R>o) and t € (0,1], ®(t>.Z) is an integral operator with a kernel
Kg29)(x,y); moreover, for any m € No with m > d + 1, there is a constant C > 0, which
depends on m but is independent of ®, such that

|Ka(22)(,y)| < Cl|®[|(m) De,m (@, y) (2.14)

for allt € (0,1] and z,y € X, and

o ’ py, ) \"
@(tzf)(l’;y) - ch(t?f)(in’ Y )| < C||<I>||(m) P Dy (,y) (2.15)

for allt € (0,1] and z,y,y € X satisfying p(y,y’) < t.

Remark 2.4. If we do not assume the Holder continuity for the heat kernel of .Z’; the estimate
(2.15) fails but the estimate (2.14) still holds.

2.5 Test functions and distributions associated to opera-
tors

We recall from [59] the notions of test functions and distributions on X associated to .. The
test function space S¢(X) is defined as the collection of all functions ¢ € Nyen, D(L*) such
that

Prm(@) := esssup(l + p(z, o))" L p(x)| < 00

for all k,m € Ny, where zg € X is arbitrary fixed point on X. Obviously, the definition of
S (X) is independent of the choice of zy. So we fix zy once and for all. For our purpose it is
convenient to introduce the following directed family of norms: For k,m € Ny and ¢ € S (X),
we define

Prm(®) =Y Piul9).

0<j<k
0<2<m

It was shown in [59] that S¢ (X)) is a Fréchet space. The space S, (X) of distributions on X is
defined as the space of all continuous linear functionals on S¢(X). The action of f € S, (X)
on ¢ € S¢(X) will be denoted by (f,¢) := f(¢). However, sometimes we will work with the

sesquilinear version (f, ¢) = (f, ¢).
An important consequence of Lemma 2.3 and Remark 2.4 is the following

Corollary 2.5. Suppose (X, p, u) satisfies the doubling condition (2.1), reverse doubling condi-
tion (2.4) and non-collapsing condition (2.6). Suppose £ is a non-negative self-adjoint operator
on L*(X) whose heat kernel satisfies the Gaussian upper bound (2.8). Let ® € S(R>o). Then:

(i) For anyt € (0,1] and for almost every fized y € X, Kou22)(-,y) belongs to S (X).
(ii) For any t € (0,1] and for almost every fived v € X, Kg2)(x,-) belongs to S (X).

Proof. Let t € (0,1]. From (5.14) in [59] we see that for almost every fixed y € X and for any
k € Ny,

L Koy (2y)] = Kgrowrz) () =t K gpapez) (-, y)-
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Hence, if m is an integer with m > d 4+ 1, we have by Lemma 2.3,

| L¥ Ko@) (9)] (@) = t72F| K2gyrapee) (z,y)]
SN = N @A) || (1) D (2, ) (2.16)
< t_2k|\<I>||(k+m)Dt7m(x, y), forae zeX.

This implies that Kg22)(-,y) € Sz(X). Since Keu2o)(z,:) = Koo (-, ), we also have
K29y (2,-) € S¢(X) for almost every fixed . O

Thanks to Corollary 2.5, it is now natural to define, for any f € S%(X) and ® € S(R>o),
(L) f(x) := (f, Koo (2, )), for a.e. x € X.
This extends the domain of ®(.%) from L?(X) to S (X).

Lemma 2.6. (i) Suppose f € S8'»(X) and ® € S(R>o). Then there is a non-negative integer N
such that for a.e. x € X,
[B(L) f ()] < C(1+ p(a, )™ (2.17)

In particular, ®(ZL)f can be regarded as a distribution in S'y(X).

(ii) Let ®,¥ € S(R>¢) and Y := @W. Then for all f € S',(X),

(L) (VL)) =¥(L)(P(L)f) =0X(L)f inSy(X). (2.18)

Proof. (i) Since f € Sy (X) and Kg(»)(z,") € Se(X), there exist ko, mo € Ny and a constant
c¢f (depending on f) such that for a.e. z € X,

2(2) f(2)] = | f(Kacz)(@,-))]

< ¢ Py my (Ko (@,)) =¢r Y Piu(Kage)(z,-)
0<k<kq
0<m<mg
=c; Y esssup(l+ ply, 7o) | L (Ko (2.)] )] (2.19)
0<k<kq yex
0<m<mg

=c; Y esssup(L+ p(y, 20)" | K grae (@,y)|-
0<k<kg Y X
0<m<mg

Here, for the last equality we used (5.14) in [59]. Since the function A > AF®()) belongs to
S(R>0), by Lemma 2.3 and (2.3) we have that for k € {0,1,--- ,ko}

K vy (@, 9)] S I = No@O) | ngt Layz)+1) [V (2, DV (5, D] 7V2(1 + pla, ) ="+
S A = MR motLay2) -0 [V (@, DI+ p(a,y) ™™
Sl motrot a/2)+1) [V (@, DI THL + pz, 20)) ™ (1 + ply, z0)) ™
SN et kot ay2) 40 [V (o, DITHA 4 pla, 20)) ™ (L + p(y, 20)) ™
~ (1 + p(y,z0)) ™.

This together with (2.19) yield (2.17) with N = m +d.

(ii) By [67, Theorem 13.24], we know that for all ¢ € S (X),

(L) (V(L)g) = V(L) (P(L)9) = T(L)¢ in L*(X). (2.20)
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Also note that by [59, Propostion 5.3] all of the three functions in (2.18) belong to the class
S (X). Thus (2.18) holds also in S¢(X). The validness of (2.18) in the sense of distributions
then follows by duality. O

2.6 Examples

As we mentioned in the introduction, Kerkyacharian and Petrushev [59] studied Besov and
Triebel-Lizorkin spaces on (X, p, u) associated to a non-negative self-adjoint operator ¢ under
the assumption that the heat kernel of .# satisfies the Gaussian upper bound and the Hélder
continuity, while in the current thesis the heat kernel p;(x,y) of the operator £ is not assumed
to have any regularity in the variables x and y. Thus, our setting is more general than that
considered in [59]. In particular, the theory developed in the current thesis applies to all the
examples described in [59]. Next we recall some of these examples. In addition, we also give some
examples of operators whose heat kernel satisfies Gaussian upper bound but may not satisfy the
Hoélder continuity.

o Uniformly elliptic divergence form operators on R™. Let {a; ;(x)}1<i j<n be a matrix-valued
function depending on =z € R™ such that

a;;(z) = a;:(x) forall 1 <i j<nandae z€R"
a;; € L°(R") forall1<4i,j<mn,
and the following uniform ellipticity condition holds:

Z ai j ()& > 0|¢]* for ae. x € R™ and all ¢ € R™, (2.21)

4,j=1

where 6 is a positive constant. Define a sesquilinear form @ on the product space W12(R") x

WL2(R") by
- Ou Ov
Q(u,v) = /n Z am(x)a—xjaxid:c

ij=1

for u,v € WH2(R™). Let . be the self-adjoint operator associated with Q. Then the domain of
£ is given by

n

D(Z) = {u € WH2(R™) : Jv € L*(R™) such that Q(u,p) = / vp, Vo€ Wl’z(R”)} .

Formally we can write

) 0

i,j=1
In this setting, the Gaussian upper and lower bounds of the heat kernel were obtained by Aronson
and the Holder regularity of the solutions is due to Nash [63].

e Domains in R™. Let Q be a domain of R™. Let {a; ;(x)}1<i j<n be a matrix-valued function
depending on x € 2 such that

a; j(z) =aj(x) foralll<i,j<nandae xz€Q,
a;,; € L®(Q) forall 1 <i,j<n,



Chapter 2 Notations and preliminaries 13

and the following uniform ellipticity condition holds:

> aij(@)&g; > 016 for ae. € Qandall € € R",

ij=1

where 6 is a positive constant. Let V be a linear space such that C§°(Q) C V € W12(Q). Define
a sesquilinear form on the product space V x V by

- Oou 0V
Q(u,v) = /Q Z ai’j(m)gjﬁdfi dx

i,j=1

for u,v € V. Let .Z the self-adjoint operator associated with ). Then the domain of £ is given
by

D(Z) = {u €V : Jv € L*(Q) such that Q(u,p) = / vp, Yo € V} .
Q

Different choices of V correspond to different boundary conditions for the operator .£. For
example, when V is chosen to be W, ?(Q) and W'2(Q), it corresponds to the Dirichlet boundary
condition and the Neumann boundary condition, respectively. We denote by £p and £y the
divergence operator subjecting to the Dirichlet boundary condition and the Neumann boundary
condition, respectively.

Let py, #p, (z,y) and py, e, (x,y) be the heat kernels of Zp and Zn, respectively. It is well-known
that (see, e.g., [20, Example 2.1.8]) p; ¢, (z,y) always satisfies the Gaussian upper bound (2.8),
without any conditions on smoothness of the boundary of 2. However, to ensure the Gaussian
upper bound of p; ¢, (z,y) one need to impose suitable regularity condition to €. For instance,
if Q) satisfies the extension property (i.e., there exists a bounded linear map E : WH2(Q) —
WH2(R™) such that Eu is an extension of u from to R" for all u € W12(Q)), then p: o, (z,y)
satisfies the Gaussian upper bound (see [20, Theorem 3.2.9] and [3, Theorem 4.4]). It is worth
noting that every (locally) uniform domain satisfies the extension property, however, a domain
satisfying the extension property need not be (locally) uniform (see [87] and the references
therein). We also point out that the extension property implies that ) satisfies the doubling
property
|BY(z,2r)| < C|B%(z,r)|, VzeQ, Vre (0,diam(Q)),

where B (z,7) :={x € Q: |z —y| <7}. See

The Hoélder continuity of p: «, (z,y) and p¢ «, (z,y) are more difficult to establish. For the
Dirichlet boundary condition, it is shown in [22] that if  is bounded and satisfies the uniform
outer ball condition, and .Z = —A, then p; &, (z,y) satisfies the Holder continuity. For the
Neumann boundary condition, it is proved in [41] that if © is a uniform domain or a convex
domain (not necessarily bounded) then p; o, (x,y) satisfies the Holder continuity.

e Schrodinger type operators. Let V be a locally integrable non-negative function on R™, which
is not identically zero. Let V = {u € W'2(R") : [5, V]u[*dv < oo}. Let Q be the sesquilinear
form on the product space V x V, given by

6@ a$j Rn

Q(u,v) :/ Z Ou ﬁdﬂc—I— Vuvdx
” 1,7=1

,

for u,v € V. Simon proved in [73] that this sesquilinear form coincides with the minimal closure
of the form given by the same expression but defined on C§°(R™) x C§°(R™). Let .Z be the
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self-adjoint operator associated with (). Then the domain of .Z is given by
D(Z) = {u €V :3ve L*(R") such that Q(u, ) = / v, Yo € V} .
R’n.

Formally we can write . = —A + V and call .Z the Schrédinger operator with potential V.
Since V' is non-negative and locally integrable, the Feynman-Kac formula yields that heat kernel
pi(x,y) of £ satisfies

2
0 pley) < (amt) e (2220

for all t > 0 and z,y € R™. That is, p;(x,y) satisfies the Gaussian upper bound.

In general, p;(x,y) does not satisfy the Holder continuity condition. However, if one imposes
appropriate conditions on the potential V', then p;(z,y) is Holder continuous. For example, if
one assume that V belongs to the reverse Holder class RH? for some ¢ > n/2, that is, there
exists a constant C' > 0 such that

1 Ve ¢
(/ V(y)qdy> < —/ V(y)dy for ever ball B,
|B| /5 |B| /5

then for any « € (0,min{1,2 — n/q}), there exists constants C, ¢ > 0 such that for all ¢ > 0 and
z,y,y € R™ satisfying |y —y/| < vt

I\ & 2
_ N < -z (=Y —le—yl*)
) = mleaf)| < 002 (22 o (2122

See [29, Theorem 4.11].

e Riemannian manifolds with non-negative Ricci curvature. Let M be a complete, connected, n-
dimensional Riemannian manifolds with non-negative Ricci curvature. Let p be the geodesic dis-
tance, 4 the Riemannian measure, and V the Riemannian gradient on M. Denote by |-| the length
in the tangent space. Let A be the Laplace-Beltrami operator, that is the positive self-adjoint
operator on L?(M,dp) defined by the formal integration by parts (Af, f) = IV fllz2(x,apu)-
Denote by p¢(z,y) the heat kernel of M. By the Bishop-Gromov volume comparison theorem,
we know that on such an manifold M there is a constant C' > 0 such that for all x € M and

' >r >0,
/ / n
B (1)
w(B(z,r)) r
This implies that M satisfies the doubling condition. The reverse doubling condition then follows
from the doubling condition and the connectedness of M (cf. [19, Proposition 2.2]).

Li and Yau [60] proved that the heat kernel p;(x,y) of M satisfies the following Gaussian upper
and lower bounds:

exp{ _ /,28711) exp{ _

S pt(xay) S O
V(B /DBy, V) V(B DBy, VD)
for all z,y € X and t € (0,00). Note that it was shown in [71] that the estimates (2.22)

are equivalent to the so-called uniform parabolic Harnack principle, and they imply the Holder
continuity of py(z,y).

P> (zy)
ct

O/

(2.22)

e Compact Riemannian manifolds. Let M be a compact Riemannian manifold without boundary.
In this case, the Ricci curvature of M is obviously bounded from below. Hence, by the Bishop-
Gromov volume comparison theorem, M satisfies the doubling condition (2.1), and by the result
of Li and Yau [60] the heat kernel of M satisfies the estimate (2.22) for ¢ € (0, 1].
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e Lie groups of polynomial growth. Let G be a connected unimodular Lie group and let u be
a fixed Haar measure on G. Denote by g the Lie algebra of G. Let X = {Xy,---, X} be
left-invariant vector fields on G satisfying the Hérmander condition, that is, the X;’s and their
commutators of all orders generate g. Let p be the Carnot-Carathéodory (control) distance on
G associated to X. For z € G and r > 0, let B(x,r) :={y € G : p(z,y) <r}. Then for allz € G
and r > 0, we have p(B(z,7)) = u(B(e,r)), where e is the identity element of G. We denote
V(r) := u(B(e,r)). It was proved by Y. Guivarc’h [40] that either there exists an integer N such
that
Vre (1,00), o <V(r)<cr

or
Vr € (1,00), ce” <V(r) < Cer.

In the first case, we say that G is a Lie group of polynomial growth. For small r, by results of
[62] we know that there exists an integer n, which is not necessarily the topological dimension
of G, such that

vre (0,1], ™ <V(r)<Cr™.

From all of these, it follows that if G is Lie group of polynomial growth then it satisfies the
doubling, reverse doubling, and non-collapsing conditions.

We denote by Ax = —Zle X? the sub-Laplacian on G associated with X, and by Vx =
(X1, ,X%) the gradient on G associated with X. It was proved by Varopoulos [85] that G
satisfies the (scaled) Poincaré inequality, namely, there exists C' > 0 such that, for every ball
B = B(x,r) and every f with f, Vxf locally square integrable,

/ If = fBl*du < CTQ/ [V [ dpu, (2.23)
B B

where fp = ﬁ [ f(x)du(z). On the other hand, from [70] we see that the Li-Yau type
estimate (2.22) is equivalent to the conjunction of the volume doubling condition and the Poincaré
inequality (2.23). Therefore, the heat kernel of G satisfies the Gaussian upper bound and the
Holder continuity condition.

Recall that all simply connected nilpotent Lie groups are of polynomial volume growth. In
particular, all stratified Lie groups and all H-type groups are Lie groups of polynomial volume
growth.

o Heat kernel on [—1,1] generated by the Jacobi operator. Consider the interval [—1, 1] endowed
with the measure du(z) = w(z)dz, where

w(z) =1 -2)*(1+2)% ap>-1

is the classical Jacobi weight. The Jacobi operator .Z is defied by
= WD itk a(z) :=1— 22

and D(&) = C?[-1,1]. It is well known that (cf. [80]) LPy = APy, where P, (k € Np)
is the (normalized) Jacobi polynomial of degree k, and Ay = k(k + o+ 8+ 1). Let p be an
intrinsic metric on [—1, 1] defined by p(x,y) = | arccos x — arccosy|. It is shown in [19] that the
metric measure space ([—1,1], p, 1) satisfies the doubling condition (2.1), and the heat kernel of
Z satisfies the Gaussian upper bound (2.8) and the Holder continuity condition (2.9).



Chapter 3

Besov and Triebel-Lizorkin spaces
associated to operators

Throughout this chapter, we assume that the metric measure space (X, p, i) satisfies the doubling
condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and
assume that . is a non-negative self-adjoint operator on L?(X) whose heat kernel p;(x,vy)
satisfies the pointwise Gaussian upper bound (2.8). We do not assume the Holder continuity for
pi(x,y) in the variables z and y. Our purpose in this chapter is to introduce and investigate
Besov and Triebel-Lizorkin spaces associated to such an .Z.

3.1 Definition of B5:#(X) and F};7(X)

Before we introduce Besov and Triebel-Lizorkin spaces associated to ., we first define the classes
A (R>o).

Definition 3.1. Let (®¢, ®) be a couple of functions in S(R>o) and let M € Ny. We say that
(®g, ®) belongs to the class A (Rx>g), if

|Po(A)| > ¢>0o0n {0 <A< 232} and |®(N)| > ¢ > 0 on {2732 < A < 23/2%¢} (3.1)

for some ¢ > 0, and
the function A — A= ®(\) belongs to S(Rxg). (3.2)
Remark 3.2. If M > 1, the condition (3.2) is equivalent to the following one:
™ (0)=0 fork=0,1,---,M —1.

Example. Let M € Nj. Define ®y(\) = e~ and ®(\) = AMe=* for A € R>g. Then clearly
(®o,®) € Apr(Rx0).
We introduce Besov and Triebel-Lizorkin spaces associated with £ as follows:

Definition 3.3. (i) Let s € R, p € (0,00] and ¢ € (0,00]. Let (®o,®) € An(R>g) for some
nonnegative integer M > s/2. Set ®;()\) := ®(272\) for j > 1. We define the Besov space

16
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Bs:Z(X) as the collection of all distributions f € 8% (X) such that

1/q

D20 (D) f oy | <00
=0

(ii) Let s € R, p € (0,00) and ¢ € (0,00]. Let (@9, ®) € Ap(R>p) for some nonnegative integer
M > s/2. Set ®;(\) := ®(27% ) for j > 1. We define the Triebel-Lizorkin space F;;fo(X) as
the collection of all distributions f € S, (X) such that
- 1/a
. q
pe ) = ||| D [27°0,(£) ] < 0.
7=0

LP(X)

/]

3.2 Well-definedness and Peetre maximal function charac-
terization

Given a couple (®g, @) of functions in S(R>¢), a distribution f € S, (X), and a number a > 0,
we define a system of Peetre type maximal functions by

[@)(L)if () = esssup M

x € X,j €Ny, (3.3)
where ®;(-) := ®(27%.) for j > 1.

The following two theorems, which provide the Peetre type maximal function characterization
of Besov and Triebel-Lizorkin spaces associated with ., are the main results of this section.

Theorem 3.4. Let s € R, q € (0,00] and let (Pg, P) be a couple of functions in S(R>q) satisfying
(3.1). Set ®;(\) := ®(27%N) for j > 1.

(i) If p € (0,0] and a > %, then for all f € S’y (X),

1/4q - 1/q

M | ~ | 2129 N | (3.4)
p

Z 127 [@;

(ii) If p € (0,00) and a > then for all f € 8’y (X),

TR
1/q 1/q
o202 ~ D e 2) 5 - (3.5)
7=0 =0
Lr(X) LP(X)

Theorem 3.5. Let s € R, g € (0,00] and a > 0. Let (iio,é),(io,i) € Ay (R>g) for some
nonnegative integer M > s/2. Set ®;(\) := ®(27%N) and ®;(N) := ®(27%\) for j > 1.

(i) If p € (0,00], then for all f € S',(X),

1/q - 1/q

Y2t Ly |~ D@2 ey | (3.6)
j=0

Jj=0
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(ii) If p € (0,00), then for all f € S'y(X),

1/q - 1/q

> [N f ~ X el - 67
j=0 =

L?(X) - L (X)

Combining Theorem 3.4 and 3.5, we get the following corollary:

Corollary 3.6. Our definition ofB;:qf (X) and Fz‘ff (X) is independent of the choice of (®g, D) €
An(R>g), as long as the nonnegative integer M is strictly larger than s/2.

To prove Theorem 3.4 and Theorem 3.5 we need considerable preparation. First note that for
any o > d there is a positive constant C' (depending on o) such that

/X <1 + p“’;”) ity < OVt (3.9)

for all t € (0,00) and = € X; see [19, Lemma 2.3]. This together with (2.3) yields that for any
o> 3d/2,
Do (z, )1 (x,d0) < C (3.9)

uniformly for all ¢ € (0,00) and = € X, where D, ,(z,y) is defined by (2.10).

Combining (2.8) and (2.11) from [19], we see that for any o > d there exists a constant C' such
that for all s,t € (0,00) and z,y € X,

/X Dy (2, 2)Ds (2, y)dp(z) < C’max{(t_ls)d, (s_lt)d}DtvS’U(x, Y),

where ¢ V s := max{t, s}. However, for our purpose we need the following refinement:

Lemma 3.7. For any o > 2d, there exists a constant C' > 0 such that for all t,s > 0 and all
z,y € X,

/ Dt,n(x; Z)Ds,a(zv y)d/u(z) S CDt\/S,U—2d(x7 y) (310)
X

Proof. By symmetry, we only need to show (3.10) for ¢t > s. To do this, we write

/Dtg:vz)Dsgzydu / / I+ I,
D Do

where Dy = {z € X : p(z,y) < p(z,y)/2} and Dy := {z € X : p(z,y) > p(x,y)/2}. Observe
that p(x,y) < 2p(z, z) for all z € Dy. This together with (2.3) yields that
VzeDi: Dig(x,2) S[V(e, )V (e t)] V201 +t p(z, 2)) "7
SOV 0 ) 20 )
SV, OV (g )] 721+t p(,y)) 7
=Dy g_qo(z,y).

Also note that, by (2.3) and the elementary inequality 1+ ¢t~ 1p(z,y) < C(1 +t !p(x,y))(1 +
t=1p(z,2)), and taking into account that o > 2d, we have

[V (2, )V (2, )] 721+t p(a, 2) =

<
SV )V (y, )] 720+t p(z,y) P (L4t (e, 2)) 2 (3.12)
SV (2, OV (]2 + ™ pla, )2,

Vz€ Dy: Dyy(z,2)
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From (3.11) and (3.9), it follows that

Il S.; Dt,afd/2(x7y)/ DSJ(z,y)d,u(y) 5 Dt,afd/Q(xa y) (313)
D,

To estimate I, note that by (3.12) we have

L S [V, )V (y, )] 21+t pla, )2 ; Di.o(2,y)dp(y)- (3.14)

Suppose first that p(z,y) < t. In this case we have 1+t~ !p(z,y) ~ 1, and hence by (3.9)
L S [V )V (y, 0]/ / Dso (2, 9)dpu(y) S [V (@, )V (4, )] 7/ ~ Dy o (2, ).
b'e

If, instead, p(z,y) > ¢, then we decompose the set Dy into Dy = (J; o Ek, where Ej, := {z €
X 28 1p(x,y) < p(z,y) < 2Fp(x,y)}. By using (2.2) and (2.3) we can estimate as follows:

Dso(2,y)dp(z) S V(y,s) ™" / (145" p(z,9) "7 2dp(z2)

Do Do

SV(ys) L2y /E plzry) =t 2du(z)
k=0 Ex

o0

<SR () TRV () (5,200, )
k=0

[e%S) k d
< g7 Y[ gt v (22U
k=0 s
< ta’—3d/2p(a37 y)—a+3d/2

~ (L+t 7 pa,y)) o2,

Here, for the last inequality we used that t =1 p(z,y) ~ 1+t~ p(z,y), which follows from p(z,y) >
t. Inserting the above estimate into (3.14) we obtain

12 S Dt,a—Qd(‘Ta y) (315)

Combining (3.13) and (3.15), we arrive at (3.10) and the proof is thus completed. O

Lemma 3.8. Suppose that ®, ¥ € S(R>¢) and suppose further that
the function X = A\"MU(N) belongs to S(Rxo),

where M € Ng. Then for any m € No with m > max{2d,d + 1}, there exists a constant C > 0
such that for all j, ¢ € Ny with j < ¢,

| Ko2-2 2)yp2-202)(7,1)]
-M 2(j—0)M (3.16)

< CI®| gt any |A = AT E(A) | (1) 2 Do-i m—2a(,y).
Proof. Note that

| Ko @2-2.2)w@-202)(2,9)|

= QQ(jff)M|K(zf%z)M@(z—wz)(zf%z)wfqz(rﬂf) (z,y)|
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< 220 —-OM A }K(z—?jg)]%@(zf%'g) (m, Z)HK(Z*”D?,”)*M\I/@*”,?) (2, y)|du(z)
By (2.14) we have
| K (-2 pyma(2-21.2) (%, 2)| < CIA = AN || () Dai m (2, 2) < C|I®| ey 01) D25 (2, 2)

and
|K(2—2K$)—M‘1:(2—2f$)(2’y)| < ClA = /\7M‘I’(>\)H(m)D2—f,m(Z, Y)-
These two estimates along with Lemma 3.7 yield (3.16). O

Lemma 3.9. Suppose ($g, ) is a couple of functions in S(Rx¢) satisfying (3.1). Then there
exists another couple (¥o, ¥) of functions in S(R>q) such that
supp U € [0,22], [Wo(N)] > ¢ >0 for X € [0,2%/%],
supp ¥ C [272¢,2%¢], [U(N\)| > ¢> 0 for A € [27%/%¢,2%/%¢],

and

oM Wo(A) + D (27PN T(27¥N) =1 for all A € Rxy.
j=1

Proof. Choose nonnegative functions ©, T € S(R>¢) such that

supp © C [0,2%], O(N\) > ¢ > 0 for A € [0,2%/?%¢],
supp T C [27%¢,2%], T(\) > c >0 for X € [27%/%,2%/%].

Then we put

E() = OW)[Re(N [+ D TER™ZN)R27¥N)%, A€ Rxy. (3.17)

j=1
By (3.1) and by our choice of ©, T, there exists a constant ¢’ > 0 such that

[ON)||@o(A)[> > ¢/ for A € [0,29/%],
[T |[@N)[2 > ¢ for A e [273/2¢,2%/%].

Also note that for any A € [2%/2¢,00) there exists a positive integer j such that 2-%\ €
[273/2¢,23/2¢]. Hence the function E is strictly positive on Rsq with a strictly positive low-
er bound. Moreover, since for any A € R>q the number of those j for which T(2729)) # 0 is no
more than 2, i.e., the sum on the right-hand side of (3.17) is in fact a finite sum for any fixed
A, we see that Z € C™(Rs), and for any k € Ny, limy_,o+ 2 ()\) exists and Z(*) is a bounded
function on R>q.

Now define the functions ¥y, ¥ : R>¢ — C respectively by

OBV TBO)
Uo(A) := —=—~—— and Y(\):= ———.
E(A =(N)
Then it is straightforward to verify that Wy, U satisfy the desired properties. ]

Lemma 3.10. Suppose O, @ are functions in S(Rx>o) such that supp ®¢ and supp @ are compact,
0 ¢ supp ®, and

Do(A) + D _®(27¥N) =1 forall A € Rxo. (3.18)
j=1
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Then for any f € S8',(X),
f=00(2L)f+) 22Y2)f,
j=1

where the convergence of the sum is in the sense of S'y(X).

Proof. By duality, it suffices to show that for all ¢ € S¢(X),
o=0(L)p+ > 227VL)p in Sx(X).
j=1

To do this, we first show that the series Y322, ®(27%.%)¢ converges in the topology of S&(X).
Write, for each k, M € Ny and j € N|

Zr[e2 M 2)g] = 27M[(27M.2) Ma(27M.g)|.L Mg,

Since ® has compact support and 0 ¢ supp ®, the function A — A=MW()) belongs to S(R>o)
for all M € Ny. Hence it follows from (2.14) that for any m € Ny with m > d + 1, there exits a
constant C' > 0 (depending on m) such that for all M € Ny, j € N and a.e. 2,y € X,

| K (221 )~ a(2-20.2) (@, y)| < ClIX = XM B(A)|| (1) Do-s . (2, 1),
Also, by the definition of S (X), we have, for a.e. y € X,
| LM G| < Pratm (9)(L+ p(y,20)) ™™ < CPrsrt,;m(9)V (0, 1) D1 n—nya (Y, o).

From these estimates and (3.10), it follows that for any m € Ny with m > |[3d] +2 (> 2d + 1),
there exits a constant C' > 0 (depending on m) such that for all k, M € Ny, j € N and a.e.
zeX,

| Z* [@(27 L)) (w)]
< CQ_QjM/X | K (221 )~ Mo (220 2) (2, 9) | | LT (y) |dp(y)

94 _ 1
< C27 M |\ i XM B[ () P vt () /X Dy (. 9) D1 ajo(y x0)dp(y) 319

< C27HMIN = X MO(N) || () Prot-M,m (6) D1 in—5a/2(%, To)
< C27HMUN 5 X MO || (1) Pros . (0) (1 + pla, )~ 34

Replacing m by the integer m + |3d] + 2, and multiplying both sides by (1 + p(z,z0))™, we
obtain that for all k,m € Ny,

Prm (2(277.2)9) < C27M|IN = A MO(N) || (1ot 30) +2) Prt Mot (3] +2(0)- (3.20)

Hence, by choosing M > 1, we have
> Prm (2277.2L)¢) < CIX = A" MO || (et 13d) +2) Pt M 301 +2(9)-
j=1

This implies that the series 7% ®(27* )¢ converges in the topology of S¢(X). Hence (since
S¢(X) is Fréchet space), there exists 1 € S (X) such that \Il(.,%)gé—i—z;il (272 L) ¢ converges
in the topology of S¢(X) to 1. On the other hand, by (3.18) and the spectral theorem (cf. [66,
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Theorem VII.2]), we have
L)+ Z (27V.L)g = ¢,

which holds in the sense of L?(X)-norm. Therefore, 1) = ¢. This completes the proof. O

Lemma 3.11. (see [68, Lemma 2]) Let 0 < p,q < oo and § > 0. Let {g;}32, be a sequence of
nonnegative measurable function on X and put

Go(z) =Y 27 g(x), zeX, LeN,.
j=0
Then, there is a constant C' depending only on p,q,d such that
H{Gé};@ioneq(gp) < CH{QJ‘}?.;OHMLP)’
H{GZ}(Z.;OHLP(ZQ) < CH{gj};?iOHLP(Z‘?)'

Here, £9(LP) and LP(£?) are the spaces of all sequences {h;}32 of measurable functions on X
with the finite quasi-norms

100l gen = 1IR30 Yo e
H{hﬂ'};?c:OHLp(eq) = [[[{hs() ?iOHeqHLP(X)

We now give the proof of Theorem 3.4.

Proof of Theorem 3.4. We follow the idea developed by Rychkov [68] and Ullrich [84]. Since
@y, @ satisfy (3.1), by Lemma 3.9 there exist Uy, ¥ € S(R>) such that

supp g C [0,2%], supp ¥ C [272%¢, 2%¢],

and

+Z<I> 27WN)U(27YN) =1, VA€ Rso.
Setting ®;(\) := ®(27% ) and ¥;(\) := ¥(2729)) for j > 1, we can rewrite the above equality

as
Z ‘I)](A)WJ(A) =1, Ve RZO'
=0

Replacing A by 272\, we get that for all £ € Ny,
[ee]
> 2,27 NT; (27N =1, VA€ Rx.
7=0
The last inequality along with Lemma 3.10 yields that for all f € % (X),
oo
F=)_0,27*2) ;27 L)f in Sy(X).
=0
Hence, for ¢ € Ny, we have the pointwise representation

Zcpg 272272 L) f(y), ae yeX. (3.21)
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For j,¢ € Ny, let us define

Aj’[()\) =

®p(272¢)\)  if j =0and £ € Ny,
(I:’g(/\) lf] € N and ¢ € Ny.

Observe that
Dr(N)P;(27%N) = A o(N)®@j10(N), 4,0 € No.

Substituting this into (3.21), and using Lemma 2.6 (ii), we obtain the pointwise representation
(in what follows we omit the range of the integration if it is X)

(L) (y)

DALyt (L) V(272 f(y)
7=0

V(272 L) N0(L)®j40( L) f () (3.22)

\'Mg

7=0
=3 [ Kusa sz, (09054 2)fE)uz), ac. y e X.
)=0

Let N be any positive integer such that N > 3d + 1. Since the function ¥ vanishes near the
origin, the function A — A~V W¥()) belongs to S(R>p). Hence by Lemma 3.8 there exists a
constant C' > 0 (depending on N) such that

|Ky,@22)n, ,(2) (1, 2)]

|K@0(272£$)¢0(27222)(y, Z)| lf] =0and /e NO

= |K\1,(2—2_7‘g)q>0(g) (y, Z)| ifjeNand £ =0

‘Kq;(272(j+f)g)¢(2722g) (y,z)’ ifjeNand /e N

Cll@oYoll(n)Da—e n(y, 2) if j =0and £ € Ng
CH(I)()H(QN)H)\ — )\_N\If()\)H(N)2_2jND1’N,2d(y7 z) ifjeNand /=0 .
Cll®llemlIA = XN\ (527N Dyt n—24(y, 2) if jeNand £ €N

IN

This shows that for all j,¢ € Ny,
| Ky, 0-200)a, ,(2) (¥, 2)| < C27N Dy n_o4(y, 2),

where the last constant C depends on N, ®g, ¥y, P and ¥, but is independent of £ € Ny and
j € Np. Inserting this into (3.22) and using (2.3), we obtain that for a.e. y € X,

(L) f ()| < 0227%]\]/Dz—‘f,N—2d(yvZ)|q>j+€($)f(z)|d.u(z)

=0 (3.23)

) —2j |<I)j (D) f(2)]
SOJ'Z::OQ N/V(ZaQ_é)(l:- 2‘3d(y,z))N—5d/2dU(Z)-

Replacing ¢ by k+ ¢, and then multiplying on both sides with 272*~ we get that for all k, ¢ € Ny
and a.e. y € X,

272N |0y (2) f(y)]

o 2(j k)N 1P 1+0(ZL) f(2)]
SO [ i iyt Sy )

Jj=0
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—2(j+k)N 1) k+e(L) f(2)]
< CZZ ! V(z, 2GR0 (1 + 20p(y, 2))N—54/2 dp(2) (3.24)
_ 2N ©54¢(L) f(2)]
022 ! V(z,2-GH0)(1 + 2° y’z))Nfsd/2dM(z)

n(
25 cI)J Z
<CZQ N / e (ﬁIé zle(Jr ;Ef((y)’lz))Nsd/zdu(z), (3.25)

where N can be taken arbitrarily large. Now let us introduce the maximal type functions

_ Ppye(2) f (W)
M, x) := sup esssup 2~ 2kV [Pese )
o.nf(T) kerﬁ yeXP (1 + 20p(x, y))N-54/2

{eNg,N>0,zeX. (3.26)

Then it follows that for all r € (0,1], € Ng, N >3d+ 1 and all z € X,

M, f(x)
ox @51 2)1 ()
<On Y2 [ s g AT T )

i |®)+0(2) f(2)]
<Cn 22 ? N/ V(z,2- (j+0) 7Lé_;'_er(w’Z))wa/g dN(Z)

(3.27)

i (o2 (Wl '
<C 2 WNT (=N ooqg |2+
) sz; ( vex (L4 20p(e,y) ¥ 5072

|j+e(L) f(2)]"
V(z,2-GHO)(1 + 2¢p(z, 2)) (N —5d/2)7 dp(z)

> oiNe - Q;0(L r
<On 3 2N Men (@) /V(z 2—(j+|e))(i(r 22;]:((;1))<N—5d/2>rd"(z)
JZO ? )

where, for the second inequality we used the elementary inequalities

(1+2(x,2)) < C(1+2%(x,y))(1 + 2°p(y, 2)) for all z,y,z € X,
|2j4+¢(L) [ ()] < @510 (L) () (1 + 2 p(z, 2)) N —P/DE=0)

12,40(2)f ()]
8 <e?§§p (1+ 20p(x, y))N—54/2

(3.28)

1—r
) for a.e. z € X.

Hence, if M, n f(x) < oo we obtain from (3.27)

. P;40(L)f(2)]"
(Mo f(2)]" < CNZQ 2N /V 5 (ﬁL) ](-‘!1-5—(*— 2@)/)((;2))(1\[_5(1/2)7'du(z), (3.29)

where C'y is a constant independent of z, f,¢. We claim that there exists N¥ € Ny such that
My nf(z) < oo for all £ € Ng and N > N/. Indeed, by the definition of S%,(X), there exist
mg, ko € Ng and ¢y > 0 such that for a.e. y € X,

©410(L) (W) = | F(Kayyu2)(:))|
< cfpljo mo (K<I>A+e(=2”)(y’ )>
=cf Z Pijmn K‘I’Hz(f)(y’ ))

0<j<kq
0<n<mg

=cy Z ess S)l(lp(l + p(2,20))"| L7 (Ko, ) (5 ) (2)]

0<j<kg *
0<n<mg
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=Cy Z €ss sup(l + p(z7xO))n|K_¥’-7<I>k+e(_Z’)(y7Z)|

0<j<ko 7
0<n<mg

<cp Y esssup(l+p(2,20)™ | Kgia,.,c2) ¥, 2)]
0<j<ky *€X

Cf Z eSSS)l(lp(l—|—p(z’xo))mo|K_.Z)jq>0($)(y7z)‘ 1f]€—|—€:0
0<j<ko =€

cr Z esssup(l + p(Z,$0)>m022(k+€)j‘K(Z—z(lﬁ»e)x)j@(Q—Z(kﬁ»f)f)(y, z)! ifk+£>0
0<j<ke *€X

crvesssup(l + p(z,20))™° D1, n(y, 2) itk+¢=0
ze€X

crnesssup(l 4 p(z, )0 22k+0k D ey n(y,2) i k4+£>0
2€X '

ey esssup(1+ p(z, 0)™ (1 + ply, 2)) N5 it k+ (=0
zeX

cpn esssup(l+ p(z, ag)) ™0 22EFORY (2, 27 FHO) 71 (1 4 26 p(y, 2))™NFE if k40> 0
ze€X

ey esssup(L+ p(z, 0))™ (1 + ply, 2)) N5 itk+0=0
ze€X

cpn esssup(l + p(z, zq)) "0 22ROk (01 okt ) =NFS i k40> 0
ze€X

IN

IN

IN

Here, for the last inequality we used the non-collapsing condition. Hence, assuming N >
max{mg + 3¢, ko + £}, we estimate as follows:

M,y f(x)
2kN |Prte(L) f(y)]

< sup esssup 2

kENy yeX (1 +2%p(z, y))N—54/2
< cf,N Sup esssup 9 2kN
keNg yeX
_N4d _N45d .
esssup(1 + p(z,20))™ (1 + p(y, 2)) "2 (1+ p(z,y)) " F2 ifk+0=0
X zeX
esssup(l + p(z, o)) ™0 22 kTR0 QU0 (1 4 okt o \VNEE (1 4 ol () NTE if k46> 0
zeX
< cpn sup 277N (1 + p(z,20))™° ifk+£=0
= ,N S
PN ene 92Ukt 0kog (k0 (1 4 e 20))™  if k4 £ > 0
< 00.

This implies that if N > max {mg + 5d/2, ko + d/2,3d + 1} := N/ then M, yf(z) < oo for all
¢ € Ny and all z € X. Therefore (3.29) together with the obvious inequality |®¢(ZL)f(z)| <
M nf(z) (ae. € X) yields that for all N > N7 and for a.e. z € X,

T N —2jNr ‘(I)] (g)f(z)lr
D@ < 03, | v ) (30)

with ¢ = Cy independent of x, f and £. Observe that the sum in the right-hand side of (3.30)
decreases as N increases. Therefore, (3.30) is valid for all N € Ny with

o Cys if0<N<Nf
C = =
M ey N> NS

depending on N and f. We want to obtain (3.30) with ¢ independent of f. For this purpose,
we start from (3.30) which is valid for all N € N but in which ¢ = Cy ¢ depends on N and
f, apply the same argument as used from (3.24) to (3.25), and switch to the maximal function
(3.26) with the aid of (3.28). Thus we get (3.29) with a constant depends on f. Untill now we
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have seen that if RHS(3.29) (= RHS(3.30))< oo then M, n f(x) < oo.

Fix arbitrary N € Ny with N > 3d + 1. To prove (3.30) we may assume RHS(3.30)< oo, since
otherwise (3.30) is trivial. Hence, by the preceding remarks we have My n f(x) < co. Therefore
from (3.27) we deduce (3.29) with the constant Cn independent of f. Finally, form (3.29) and
the obvious inequality |®,(.Z)f(z)| < My n f(z) (a.e. z € X), we obtain (3.30).

Note that (3.30) also holds for r € (1,00). Indeed, it follows from (5.10) (with N replaced by
N + |5d/2] 4 [2d] + 3) that for a.e. z € X,

[©0(2) f ()]

o =27 (N[5 P;10(L)f(2)
< 9 23(N+Lod/2j+|_2d]+3)/ |Dj+e d
<On ) V(52 D)1 + 2pl, 2))NrEaE )

Jj=0

_ o2 (N4 [5d/2) 1 |24) +3) 1;10(L) f(2)]
On )2 /[V(2’72Z)]l/r(1+220(%2))N

1
X [V(Z,Q_e)]l/T'(l + QZP(J},Z))I.QdJ-FQ d,u(Z)

X s : O, (L) f ()" Y
< 2j(N+|5d/2]|+|2d]|+3) / ‘ J+e
SO (oot s e ayrant

Jj=0

X 1 d/t( ) 1/7,
4
V(z,276)(1 + 2¢p(x, z))(12d]+2)r

r 1/r
< CNZZ 2jN (/V |¢’J+é L) f(2)] ))Nrd'u’(z)) o-2j(|5d/2]+(2d]+3)

O+ 2¢p(x,
1/r 1/7'
Ny ;10 (L)f ()" S o2 /
<C o-2iNT / |2+ d 9=24(L15d/2)+(2d]+3)r
<o |2 erEET el B P

1/r
(L))"
< 2jNr J+[
< Cw Zz /v — W) o)

1/r
2jNr ‘(I>J+e($)f(z)|T
<Oy 22 /V (z,2-G1D) 1+2£p(w,2))<N’5d/2)’“du(z) ’

where we applied Hélder’s inequality twice.
Now, choosing N > a4+ 5d/2 in (3.30), it follows that for all r € (0,00), all £ € Ny and all z € X,
{[@c(DNif(2)}

ey D@
yex” (Ut 20 (w, )™

o2 B, (D))
< 2 2JNT/ _ D5+ d
NZ esyses)lglp V(z,2=G+0) (1 + 20p(y, 2))(N=5d/2)r (1 + 2 p(x, y) )" ()

9 2iNT |24e(L)f ()"
ng 2jN /V(z,?(jjl;)[)(l+2£p(z,z))aTdM(z)

522 2]Nr2]d/v |(I)]+€1 +)2fe(z()r )) rd/l(z)
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Here, for the second inequality we used (3.28) and for last inequality we applied (2.2). Since
a > 2p (resp. a > mm(p q)), we may choose and fix r € (0,p) (resp. r € (0, min(p, ¢))) such that
ar > 2d. Then, by using (2.2) and (2.3) the last integral can be estimated as follows.

[@54e(L)f(2)]" 1 [®54e(L)f(2)]"
/V(z,ﬂﬁl+2£p(:c,z))a’”d“<z) s V(z,27°) / (1 +; p(z, 2))*r— adnlz)

_ L - |je(L) f(2)]"
- V(z,27Y) </B(x,2—ﬂ)+z/}3(x 2k—)\ B(z, 2'@—4—1)) (1 +2p(x, 2))or= adu(z)

k=1

# . k(ar—d) ) 2" 2
Ay ( L iSO +Zz e e DG >>

1 ,
ST ) B C)

—k(ar— 2d) . T
+Z2 e = N L CICTE

< Myr (|‘I’j+z (g)f(«ZW) (z),

A

where My, is the Hardy-Littlewood maximal operator defined by

1
Mufe)=swp swp o [ f@)due). wex.
r>0 yeB(x,r) V(ya ) B(y,r)

Substituting this into (3.31) gives that, for all £ € Ny and all z € X,
i . .
{2—£s [q)g(f)]:;f(x)}r < Z 2—](2Nr—sr—d)MHL [(2_(j+£)s|¢)j+£($)f|)r] (.73)

9—(—0O@Nr=sr—d) pr [(277%|®; (g)ﬂ)r] (x)

Il
e 2

<.
I
~

< S o liteNT=s=d) pry [(979510,(2) 1) ().

i

<
I
o

If we apply Lemma 3.11 in spaces £¢/7(LP/") and LP/"(¢9/), we get

12 @Y iy < OO (20500 Y iy (3.3

and
2 @Y gy < CIM 2701 Y o (333

where we denoted M,.(g) := (MHL(\QV))UT

The Fefferman-Stein vector-valued maximal inequalities on spaces of homogeneous type (cf. [39])
yields that

M, : L9(LP) — L9(LP), r<p<oo, 0<g<oo, (3.34)
M, : LP(£7) — LP(47), r<p<oo, r<gq<oo. (3.35)

Since r € (0,p) (resp. r € (0,min(p,q))), by applying (3.34) (resp. (3.35)) to the right-hand
side of (3.32) (resp. (3.33)), we get the desired (3.4) (resp. (3.5)). The proof of Theorem 3.4 is
therefore completed. O

We next turn to the proof of Theorem 3.5.
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Proof of Theorem 8.5. Since ®¢, @ satisfy (3.1), by Lemma 3.9 there exists ¥y, ¥ € S(R>() such
that

supp ¥o C [0,2%], supp ¥ C [272%¢,2%],
and

+Z\1/ 27HN)®(27YN) =1, VA€ Rsg.

Setting W;(\) := (272 ) and ®;(\) := ®(272)) for j > 1, we can rewrite the above equality
as

\IIJ(A)(I)J(A) =1, Ve RZO'

e

<
I
o

Then it follows from Lemma 3.10 that for all f € S’ (X),

F=Y (L)L) inSy(X).

=0

Consequently, for £ € Ny and a.e. y € X,

It follows that

(L) f W] <Y 12u(L) V(L) D;(L) [ ()]

<3 [ 1Ky, 091221 ) (2
(3.36)

< N1 [+ 2pl ) K (@, 2)|du(z)

where we have set
Lew)i= |14 200002 K 10,002 d(2)

To estimate I; ;(y) we consider two cases:

Case 1: j < £. In this case, by the fact that the function A — A~ ®(\) belongs to S(Rx) and
by Lemma 3.8, we have

|K$Z(g)\pj(g) (v, Z)| S 22(j_€)MD2—J‘,N—2d(y» z),

where N can be taken arbitrarily large. Hence, choosing N > a + %, it follows that

L(y) < 220-0M / (14 2 p(y, 2)) Da-s x—saly, 2)du(z)

:22(j_Z)M/Dz—j,N—a—2d(yvz)d/~L(z) (3.37)

< 22(]’7[)]\4,
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where for the last inequality we applied (3.9).

Case 2: j > (. In this case, we use the fact that A — )\’M\IJ()\) belongs to S(Rx>q) for all
nonnegative integers M (since ¥ vanishes near the origin) and by Lemma 3.8, we conclude that

|Kéf>z($)q/j($)(yaz)| < 22(£_j)MD2*’f7N72d<yaz)7
where both M and N can be taken arbitrarily large. Hence in this case we have
Li(y) S 22N /(1 +27p(y, 2))" Dot y—2a(y, 2)dp(2)

< 2D =5 /(1 +2%(y, 2))* Dot Ny_24(y, 2)dp(2)

(3.38)
= 2DED Dyl 2)du()
< 92(=N(M-%)
where, for the last inequality we applied (3.9). Let us further observe that
[@;(L)]af(y) < [@5(D)Naf(@)(1+2 p(w,y))" (3.39)
< [95(2)]5f(2) (14 2p(z, )" max{1,2079}. '
Inserting (3.37)—(3.39) into (3.36) we get
- < . , 22(i-0OM if j<¢
ls * < js ) * (e—35)s (j—0)a s %
PRALYLS ) S 32 0L (02 man(1, 2070 {22(M)(M3) o
g 22(-O(M—3 if j <4
]2202 [q)](g)]af(x) {22(€—j)(M—a+;) lf] Z f .

Choosing M > a + |s|/2 and setting § := min{]’\\/[/f a+35,M — 5} >0, we obtain
29[y (L5 f (x) S Y2200, (L)) f ()}
§=0

Applying Lemma 3.11 gives the desired estimates (3.6) and (3.7). This completes the proof of
Theorem 3.5. O

3.3 Basic properties

We have the following elementary properties for Besov and Triebel-Lizorkin spaces associated to
operators:

Proposition 3.12. Let s € R, p € (0,00] and ¢q € (0,00]. Then:

(i) S(X) C B5Z(X) C 8% (X) and the inclusion maps are continuous.
(ii) The space B;;;?(X) is a quasi-Banach space.

Proposition 3.13. Let s € R, p € (0,00) and q € (0,00]. Then:

(i) S¢(X) C F;;f(X) C 8'4(X) and the inclusion maps are continuous.
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(ii) The space Fj:% (X) is a quasi-Banach space.

We only prove Proposition 3.13. The proof of Proposition 3.12 is similar and we skip the details.
Before we start the proof of Proposition 3.13, we recall a result from [59]. For A > 0, we set

Sy ={fe8u(X):0(L)f = finSy(X) for all © € S(Rxo) with © =1 on [0,\*]}.

Lemma 3.14. (see [59, Proposition 3.11]) Suppose 0 < p < g < oo. Then there exists a constant
C > 0 such that for all g € ¥y with A > 1

lgllLacxy < C A\ /p=1/q) lgllzex)-

Proof. (Due to [59]) Let g € £, where A > 1. Set 6 := A™! < 1. Let © € C§°(Rx¢) such that
© =1 on [0,1]. Then it follows from Lemma 2.1 that for any § € (0,1] and o > 0,

(Kowvz) (@9 S Dsorar(e,y) < [V(z, )] (1 + p(:';’ ) ) . (3.40)

Suppose 1 < p < co. Since g € 3y, we have, for a.e. z € X

o(a) = OVZ)g(a) = | Koz (. 0)a0)dn(s).

Hence, by using (3.40) with o > (d + 1)/p’, Holder’s inequality, (3.8) and the non-collapsing
condition, we obtain

—op 1/p'
(0] < lglzr ( [ vear (1 252) d“@)) (341

S |‘9HLP(X)[V(1'>5)]71/IJ'

Suppose now 0 < p < 1. Then for a.e. x € X,

sl < [ o) (14 252) Pl 2auty

< g3 gl o IV (a2 8]

(3.42)

(3.41) together with (3.42) and the non-collapsing condition yield that for all 0 < p < oo
llgllzee(x) S Nl9llLe(x) EEE[V(%5)]71/I) N ||9||LP(X)57d/p~ (3.43)
So we have
oy = [l ) i) < Lol ) S Dll8 T Pl

and hence

< §—d1/p=1/q

l9llzacx) < )||g||Lp(X) = \d1/p=1/q

)HQHLP(X)-
This completes the proof. O

Now we are ready to give the
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Proof of Proposition 3.13. (i) We first show that S¢(X) C F3:(X) and the inclusion map is
continuous. Indeed, let ¢ € S (X). Let (g, P) € Ay (R>o) where M, N are positive integers
such that M > § and N > %1 + [3d] + 2. Then from (3.19) we see that for all j € Ny and a.e.
re X,

1;(L)p(x)] S 27 M Pasn (0) (1 + pla, 20))~ N 3D,

It follows that

~ 1/q
16152 0y = ||| 3 @7*12,(2)6)"
=0 Lr(X)
- 1/q 1/
$Pun(@) [ L2200 | ([ ptaa) Y auto))
=0
S Pun(9),

where for the last inequality we used (3.8) and (N — 3d)p > d + 1. This implies that S (X) C
F3#(X) and the inclusion map is continuous.

Next we show that F;”f(X) C 8’4 (X). Let ®y, @ be functions in S(R>¢) such that
|Bo(N)| > ¢> 0 for A €[0,2%2], |®(N)| > ¢ >0 for A e [273/2,23/2],

and
the function A — A\~ ®(\) belongs to S(Rxy),

where M is a sufficiently large positive integer which will be determined later. Then by Lemma
3.9 there exists Uy, ¥ € S(R>¢) such that

supp Uy C [0,2%], |[¥o(N\)| > ¢ > 0 for A € [0,2%/7],
supp ¥ € [272,2%], |[®(N)| > ¢ >0 for A e [273/2,23/2),

and

+Zq> 27HAN)U(27¥N) =1 for all A € Rso.

Hence, using Lemma 3.10, for any f € S, (X)
f= ifpj(i”)%(f)f in 8% (X),
=
where we have set ®;(-) := ®(27%.) and ¥, (-) := ¥(27%.) for j > 1. It follows that
<Z 5 ( 2)f, ¢> i@ (U;(L)f,25(L)b), ¢ € Sz(X). (3.44)
j

From (3.19) we see that for any sufficiently large positive integers M and N, there exits a constant
C > 0 (depending on N) such that for all j > 1 and a.e. z € X,

|@;(L)(x)| < C272M N = XMWl vy Par, v () (1 + pla, )~V H3. (3.45)

Now we are ready to estimate the inner product in (3.44). We consider two cases:
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Case 1: 1 < p < co. Then applying Holder’s inequality we get for j € Ny
(U5 (L), 2;(L)e)| < /2”I\I’j(-i”)f(l’)IT“I@J‘(XM(X)IdM(r)

<2729 (D) F@)| o 1277 25DV o ) (3.46)

<l gz ) 1277 @5 L -

Let us choose M > max{0,—35} and N > g + 4d. Then, using (3.45) and (3.8), we obtain for
Jj=1

27052V, ) S 2758 25 [Py @) (14 ol ) NS dp(z)

’

< 279 @M [Pr,n (@)

(3.47)

Analogously we have

’

|20(L)0l% 0 ) < [Pon (@) (3.48)

Summing up (3.46)—(3.48), and taking into account (3.44), we obtain

1(£.8)] S Parv(6) + Pos (O e x, < Phen (@]

Fpil (X)
Case 2: 0 < p < 1. We have for ¢ € S¢(X) and j > 1
(W(L)f, 2;(ZL)0)] < [V5(L)f | x) |25 (L) Ml L= (x)-
Since U,;(L)f € Eoj+1 for all j € Ny, Lemma 3.14 yields that for j € Ny
19,(2)F 01 0x) S D0 (2) ey < 29D f] o
On the other hand by (3.45) we have for j > 1 and a.e. x € X

|2;(L)o(x)| S 27MIN = AMBN) [ (v Parv (0) (1 + p(a, x0)) N34
< 272MPy N (9).

For 7 = 0, we have the analogous estimate
‘@0($)¢(x)| SPon(p), aexeX.

Let us choose M > d(1/p —1). Then summing up all these estimates and taking into account
(3.44), we obtain

(£, 8)] £ [Parav(6) + Pos (O s ) < Phon (@I f]

Fpif (X)
as desired.

(ii) Tt is easy to see that F;:f (X) is a quasi-normed space. We prove the completeness. Let
{fe}22, be a fundamental sequence in Flf(f'ﬂ (X). Then the assertion (i) shows that {f,}72, is
also a fundamental sequence in S, (X). Since 8, (X) is Fréchet space (in particular, complete),
we can find a limit element f € S%(X). Let ®, ® are functions in S(R>q) such that

|®o(A)| > ¢ >0 for A€ [0,2%2], |®(N\)]| >c>0for A€ [273/2,23/2],

and
the function A — A" ®(\) belongs to S(Rxy),
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where M is a positive integer such that M > s/2. Then ®(27%.%)f, (resp. ®(ZL)f¢) converges
to ®(274.L)f (resp. ®o(L)f) in 8’4 (X) and pointwise as £ — oo. On the other hand, since
{@(Q_ij)fg};il (resp. {‘%(iﬂ)fe};il) is a fundamental sequence in L?(X), by Lemma 3.14
it is also a fundamental sequence in L>°(X). This shows that for j € Ny the limiting element
of {®; (f)fg};il in LP(X) (which is the same as in L*°(X)) coincide with ®,;(.Z)f. Now it
follows by standard arguments that f belongs to F;;f (X) and that f, converges in F;;f (X) to
f. Hence, Fz‘f”q‘f (X) is a complete space. O

3.4 Continuous Littlewood-Paley characterization

The purpose of this section is to show the following continuous Littlewood-Paley characterization
of By (X) and Fy% (X):

Theorem 3.15. (i) Let s € R, p € (0,00] and g € (0,00]. Let further (®o, @) € Ay (R>o) for
some nonnegative integer M > s/2. Then for all f € S',(X),

1 . dt 1/q
||fB;;g(x)fvlléo(f)fllm(x)—i—(/0 t “1H<I>(t2,,$f)quLp(X)t> : (3.49)

(ii) Let s € R, p € (0,00) and g € (0,00]. Let further (®g, ®) € Ap(R>o) for some nonnegative
integer M > s/2. Then for all f € S'y(X),

1 1/q
—s dt
1m0y ~ [Ro(L) fllrx) + </ t q’@(t2$)f‘qt> (3.50)
0 L?(X)
Proof. We only give the proof of (ii) since the proof of (i) is similar. We first show that
1 1/q
20 larcean + | [ o li@@ 20" )
’ Lr(X) )
1 gt 1/q (3.51)
() o + | ( [ o020 ) ,
’ L7 (X)
where B2
[®(t2.2)]% f(x) := esssup GO z e X.

vex (L+t7"p(a,y))*

Note that for any > 0 and N € Ny, there exists a constant C'y > 0 such that for all f € S (X),
teNy, te[l,2] and ae. xz € X,

" |5+ (22) F(2)]
|, (12.2) <CNZQ 2N / S <]+/(1+2fp( ) (352

Indeed, this follows from the argument used in the proof of (3.30) with slight modification. The
estimate (3.52) implies immediately the following stronger estimate: for any @ > 0 and N € N
with N > a + 5d/2,

k%
[ @ (22 f ()| < CNZ2 2 Nr Ve éj‘; t(ljgg )(| 5 k)
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where

2
[@0(*2)]if(x) := esssup <1|f[é(ett—1;{x(y£>a’

Hence we have

, X 2= U)o (2.7 r
(Z*Zt)fsr|[@e(tQZ)}Zf(l‘ﬂ < CNZTQ]NTQ]ST/X 2/(2 2—(j)+e))(J;i(yp(ngz()z))alr

Jj=0

du(z),

r/q

If we choose r < min{p, ¢}, we can apply the norm (ff |-|‘Z/T%) on both sides use Minkowski’s

inequality for integrals, which yields that for all ¢ € N,

(/12(2 )90, (2.2)): f(a )”f)w

oo 2/60_(i _s T
<oy [ LU0 D)) "
= v V2 O 2, )

Jj=0

du(2)

—(+0¢ )72~ (j+£)t2$)f(z)|q%)r/q (3.53)

- —2jNrojsr (fl
- 022 v / V(z,2=G+0)(1 + 2¢p(z, 2))er dnlz)

=0 X

<Oy gy / (J2 @ UH01)—s|@(2 2002 2) f(z)]14) "
< ; V(2,270 (1 + 2%p(z, 2))or

=0

dp(z),

By using (2.2) and (2.3), we can estimate the last integral as follows:

(22601 -sa|p(2-20+0 12 2) () |0 )/
/X V(z,274) (1 + 2¢p(x, 2))or
C [ R e -2 ) e
< V(x,2—€)/ (L+2p(z, 2))er
. c (f2(2- U0 1)sa|B(2-20+012 2) f(z)[adt) "/
_ W/B(mQ .y (1+2¢p(x, z))ar—d
o0 (J2(270+D1)59| (2720 +02.2) f(z)|24L) "/

Y/
=1/ B(a,2vO\B(z,25--1) (14 2%p(z, 2))or—

r/q
C)/B(/ 272) (/2(2_(j+€)t)8q|q>(2—2(j+€)t2g)f(2)|qCit) dp(z)

du(2)

dp(z)

du(z)

dp(z)

IN

V(x,2-¢

(ar—2d)

2 . ‘ dt r/q
C 9= ([+0 45| p(2—20+0 2 o a2 d
v Z T s ([ 7m0 ) ants

r/q
< OMu, [( [ e 2506 ] (@)

Substituting this into (3.53) gives that for all £ € N,

(/12(2—%)—8‘1][ o272 L))" ]th)

> o 2 o a1
SCZQ j(2Nr—sr d)MHL l(/l (2 (g+2)t)sq‘@(2 2(J+Z)t2$)f(,)|qt> (aj)

Jj=0

- | , | ‘ g r/q
< Oz2f(j7£)(2Nrfsr7d)MHL [(/ (QJt)Sq|(I)(22Jt2$)f()|qt) ‘| (l')
j=t 1
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o ) r/q
< 022—\j—€|(2N7'—s7'—d)MHL [(/1 (2—jt)sq|(b(2—2jt2g)f(.)|qcit) ] (CE)

Jj=1

Applying Lemma 3.11 in the space LP/ T(Eq/ ™) and the Fefferman-Stein vector-valued maximal

inequalities on spaces of homogeneous type (cf. [39]), we obtain

1 1/q
H ([ rewen)
0 L?(X)

2 v )
N

1 dt 1/q
_ —sq 2 £
=C (/0 %2 (t*.2L) f| t)

This yields the direction “<” in (3.51). The inverse direction “Z” in (3.51) is obvious.
(3.51) is established.

1/r

Lp/r(zq/r)

Mare [( / 2<2ft>sq|<1><2Qjﬂz)f(-)w‘f)r/q] }OO

=L/ (easry
2 _ _ dt r/q) >
(/ (2ﬂt)sq|<1>(22ﬂt2$)f|qt) }
1

Jj=1 Lr/7(ga/T)

1/r

<C

1/r

Lr(X)

Combining (3.51) and Theorem 3.4 we see that, to prove (3.50) it suffices to show

1/q
o[, 2) 1"
=0

Lr(X)

S 9o(L) flle(x) +

(/01 t (@ L)) f th>1/q

Lr(X)
and
1 o dt 1/q
00 lzrc + | ( [ e-rle2)11 )
0 Lr(X)
- 1/q
SIS 2@
= Lr(X)

We only give the proof (3.54) since the proof of (3.55) is similar.

Since ®¢, ® satisfy (3.1), by Lemma 3.9 there exists %o, ¥ € S(R>¢) such that
supp Uy C [0,2%], supp ¥ C [272%¢,2%¢],

and

To(A)Po(A) + D TR ZNR(27¥N) =1, A€ Rx.
j=1

Hence

(3.54)

(3.55)
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Setting W;(\) := (272 ) and ®;(\) := ®(272)) for j > 1, we can rewrite the above equality
as

> T N®;(N) =1, A€Rx.
j=0

Hence for all ¢ € [1, 2],
pr 2AN)®;(t*A) =1, A € Rs.

Then it follows from Lemma 3.10 that for all f € S',(X),
f= Z‘I’ (tL2)0,;(2L)f in Sy(X).
Consequently, for £ € Ny and t € [1, 2], we have the pointwise representation
Z‘I’f U,;(2.2)0;(t2.2) f(y), ae yeX.
It follows that for a.e. y € X,
|®(Z |<Z|<1>e U5 (t°.2)2;(2.2) f ()

<Z/’K‘De(f)‘1’ 22y (y, 2)| | (EL) f(2)| dp(z)
(3.56)

MSZ

<3 10,223 () /<1+2jp< Y Ko ya;62.2) (9 )| di2)

0

.
I

o

<
Il
o

[©;(EL)af W) jea (),

where we have set
Leaw) = [ (14 200,27 Koy, 02,0 2)|di(2)

Similarly to the proof of Theorem 3.5, we have

22(-6)M if j <
I —
PEE= N 20D (BI-8)  ipj >0

where the constant C' is independent of j, ¢ € Ny and ¢ € [1,2]. The constant M above can be
taken arbitrarily large. Inserting this into (3.56) we get that for all £ € N,

L [22u-oM if j <t
ls ]S 2 (£—j)s ~
|2, (& § 2°(0, (P ))% f(y)2 {QQ(e—ij—g) 558

_ 22(j—0)(M *%) if j <
— § Js (42 *
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Choosing S > a/2 + |s|/2 and setting ¢ := min{M— 24+ 5 M — £}, we obtain
|2ZS(I)Z 22—2|] €|6|2]s t2$ f( )|

This estimate holds uniformly for ¢ € [1,2]. Applying Lemma 3.11 yields

S 1/q o a9 ” 1/q
(ZPES‘I’Z(D@”)HQ) < 2/1 |2js[@j(t2$)]2f|q7
- oo |V Lr(X)
1 1/q
([ reeenat) ,
0 LP(X)
which gives the desired estimate (3.54). O

As a corollary of Theorem 3.15, we have the following heat kernel characterization of B;:;;f (X)
and F3:2% (X):

Corollary 3.16. (i) Let s € R, p € (0,00], ¢ € (0,00] and M be a nonnegative integer strictly
larger that s/2. Then for all f € S'y(X),

/]

! dt
m 0 ~ e fllroo + </0 DM e >

(ii) Let s € R, p € (0,00), q € (0,00] and M be a nonnegative integer strictly larger than s/2.
Then for all f € ' (X),
1 1/q
dt
([ et
0

Proof. Let ®(, ® be functions on R>( given respectively by

1F 1| o2 ) ~ lle™ Fll o) +
Pq ( )

Lr(X)

Do(N) :=er, B\ = AMe™ A e R

Clearly (®o, ®) € Apn(R>0). Hence the conclusions follow from Theorem 3.15. O



Chapter 4

Further properties and

characterizations of Bg:f(X ) and

R
Fpy (X)

Throughout this chapter, we assume that the metric measure space (X, p, i) satisfies the doubling
condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and
assume that .Z is a non-negative self-adjoint operator on L?(X) whose heat kernel p;(x,v)
satisfies the pointwise Gaussian upper bound (2.8). We do not assume the Holder continuity for
pt(z,y) in the variables z and y.

4.1 Atomic decomposition

In this section, we generalize the atomic decomposition of classical Besov and Triebel-Lizorkin
spaces on R™ to our operator setting. To do this, we need the following analogue of the grid of
FEuclidean dyadic cubes on a metric measure space with doubling measure.

Lemma 4.1. ([15, Theorem 11]) There exists a collection {QF : k € Z,« € Iy} of open subsets
of X, where I}, is some index set (possibly finite), and constants 6 € (0,1) and Ay, Az > 0, such
that

i) (X \ Uacr, QF) =0 for each fized k and Q% N Qg =0if a+# B;
ii) for any o, B, k, € with ¢ > k, either Qg c QF or Qé Nk =0;

(
(
(iii) for each (k,a) and ¢ < k, there exists a unique 3 such that QX C QY;
(iv) diam(Qk) < A16%, where diam(QF) := sup{p(z,y) : z,y € Q% };

(

v) each QX contains some ball B(zk, A26%), where 2% € X.

The set Q can be thought of as a dyadic cube on X with diameter roughly §* and centered at
z%. We denote by Z the family of all dyadic cubes on X. For k € Z, we set 75, = {QF : a € I},
so that 2 = Upez % For any dyadic cube Q = QF, we denote by zg := 2% the “center” of Q.
In the sequel, we assume without loss of generality that § = 1/2. If this is not the case, we need
to replace 27 in the definition of B;:f (X) and Fps”f (X) by 677 and make some other necessary
changes.

38
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Definition 4.2. Let K,S € Ny, and let @ be a dyadic cube in %, with k& € Ng.

(A) In the case k € N, a function ag € L*(X) is said to be a (K, S)-atom for Q if ag satisfies
the following conditions for m € {K,—S7}.

(i) ag € D(L™);
(ii) supp(L™aq) C B(zg, (A1 +1)27F%);

(iii) eSSES)l(lp |- L™ ag (x)] < 22 [u(Q)]) Y2

(B) In the case k = 0, a function ag is said to be a (K, S)-atom for @ if it satisfies (i)—(iii) for
m € {K,0}.
Following [35] and [59], we define the sequences b; , and f;

Definition 4.3. (i) Let s € R, p € (0,00] and ¢ € (0,00]. The sequence space by , consists of
all sequences w = {wq }Qeuyey, 2, Of complex scalars such that

a/p\ V4

b= | 2250 | ST (gl (@) < oo
k=0

QEDy

[w

ii) Let s € R, p € (0,00) and ¢ € (0,00]. The sequence space f° consists of all sequences
p.q
w = {wg}geu, erg i Of complex scalars such that
1/q

=025 3 (Jwellu@)] ™ xq)* < oo,

k=0 QEDy,

]
Lr(X)

Here, x¢ is the characteristic function of Q.

The atomic decomposition of B;:;f‘o (X) and F;:f (X) is stated in the following two theorems:

Theorem 4.4. Let s € R, p € (0,00) and q € (0,00). Let K, S € Ny such that K > § and
S > % — 5. Then there is a constant C' > 0 such that for every sequence {aQ}QGUkeNO% of
(K, S)-atoms and every sequence w = {wq}Qeuyen, 2 0f complex scalars,

oo

Z Z wQag < Cllw

FE0QET By (X)

(4.1)

s
bP»‘I

Conwersely, there is a constant C' > 0 such that given any distribution [ € B;:;?(X) and
any K,S € Ny, there exist a sequence {aQ}QeukeNo% of (K,S)-atoms and a sequence w =
{wqtQeuren, 2, of complex scalars such that

oo
f=> > weaaq
k=0 Qe 2y,

where the sum converges in S'y(X), and moreover,

!/
[wlls, , < CIIf

By (X) (4.2)
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Theorem 4.5. Let s € R, p € (0,00) and q € (0,00). Let K,S € Ng such that K > § and

S > W 5. Then there is a constant C' > 0 such that for every sequence {aQ}QEUkeNO%

of (K, S)-atoms and every sequence w = {wq}Qeuyey, 2, 0f complex scalars,

>3 woug

k=0Q€eZy

(4.3)

5,2
Fpaq (X)

Conversely, there is a constant C' > 0 such that given any distribution [ € F;’(‘;%)(X) and
any K,S € No, there exist a sequence {aqQ}Qeuyen, 2 0f (K, S)-atoms and a sequence w =
{wqteuyen, 2, of complex scalars such that

F=% > wqug,

k=0 Qe

where the sum converges in S',(X), and moreover,

[|wl f5q < C/HfHF;;f’(X)- (4.4)

We shall only give the proof of Theorem 4.5. The proof of Theorem 4.4 is similar and we omit
the details. We need some lemmas.

Lemma 4.6. Suppose K,S € Ny, Q is a dyadic cube in Dy, with k € Ng, and aq is a (K, S)-
atom for Q. Suppose further that ®o,® € S(R>o) such that A\~ max{K.5}p()) € S(R>p). Then
for arbitrarily large positive integer N, the following estimate holds:

)

CN2U DS [u(Q) 2 Dys y(1,29)  if0 <)<k
o, (¥ |
125(2)aql2)] < {CN22<’“j>K[u(Q)P/2D2k,N(WQ) fizk

where C is a constant depending on N, and ®;(-) := ®(27%") for j > 1.

Proof. f k € N, then the conditions (i)—(iii) in Definition 5.13 and the fact that u(Q) ~
V(zg,27%) together with (2.3) yield that for arbitrarily large positive integer N

|-Z™aq(z)|
S22 (@) T2 (1 + 28 p(a, 2g)) N

(x
[

~ 2RV (2, 27V (2,270 V (2,270 TR (L4 28(, 20)) Y (4.5)
[V(zq
[

S 2RV (2 27 AV (@, 27V (s 271+ 2 (e, 2q)) TR
~ 2%k QR )]1/ D2*k,N—(d/2)(xazQ)a

which holds for m € {K, —S}. If k = 0 then (4.5) holds for m € {K,0}. To estimate ®;(.%)aq
we consider the following two cases:

Case 1: k = 0. In this case we consider the following two subcases:

Subcase 1.1: k =0 and j = 0. By Lemma 2.3, (4.5) with m = 0, and Lemma 3.7, we have

|0,(L)ao()] < / | Koo (@ 9)| [ ()| du(y)

Q) / Din (@ 9) Dawv— a2 (vs 20)du(y)

S @] Dy n—3ay2) (. 20).

N
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Subcase 1.2: k=0 and j € N. We use the fact that A — A\"5®()) belongs to S(R>¢) and
apply Lemma 2.3, (4.5) with m = K, and Lemma 3.7, to get

0;(L)ag(x)] =277K|277 L) " 0;(L) (L ag) (v)]
< Q_QjK/‘K(2—2J‘3)—Kq>j(2)($’y)"fKCLQ(Z/)‘dM(y)

S 2_2jK[H(Q)]1/2/D2ﬁ,N($ay)DLN*(d/2)(y’ZQ)dM(y)

S 2_2jK[N(Q)]1/2D1,N7(5d/2) (z,2q).

Case 2: k € N. In this case we consider the following three subcases:
Subcase 2.1: k € N and j = 0. By Lemma 2.3, (4.5) with m = —S, and Lemma 3.7, we have
|®0(L)ag(@)] = [L5P (L) (L aq)(x)|
< [ 1K 25,0 @ )12 a0(0) duty)
S 272]63[”(@)]1/2/Dl,N(xvy)D2—k,N—(d/2)(y7ZQ)d.u(y)
S 27 u(Q))2 Dy v (say2) (7, 2).-

Subcase 2.2: k€N, j € Nand j < k. By Lemma 2.3, (4.5) with m = —5, and Lemma 3.7, we
have

|@;(L)ag(x)] = 275|275 L) 0,;(L)NL Pag)(x)]
<25 [ Ky 0,000,012 Sa0(u)| ity
< 220 RS Q)12 / Dy N (2,9) Do v — (a2 (U, 2Q)dpa(y)
< 2207 RS Q)2 Do N (3ay2) (2, 20).

Subcase 2.3: k€ N, j € Nand j > k. We use the fact A — A=K ®(\) belongs to S(R>g) and
apply Lemma 2.3, (4.5) with m = K, and Lemma 3.7, to get

|0;(L)ag(x)] = 2745|275 2)Kd,(£)(£ 5 a0) (@)
< 9K / K om0, ) (.9) || L ag (v) | du(y)

< 22(k_j)K[N(Q)]1/2/DQ*J‘,N@%y)DQ*k,Nf(d/2)(yaZQ)dN(y)

N 22(k_j)K[N(Q)]1/2D27k,zv—(5d/2)(33» 2Q)-

Combining all the above cases yields the desired estimate. O

Lemma 4.7. Let M € N (resp. M =0). There exists ¥ € S(R>o) (resp. U9 € S(R>0)) such
that the following conditions hold:

(i) The function X — \=MWU(X) belongs to S(R>q)
(resp. the function X — Wo(X)) belongs to S(R>p)).

(ii) [T(N)| > ¢ >0 on {2732 < X < 23/2¢} for some e > 0
(resp. [Wo(N)| > ¢ >0 on {0 <\ <232} for some e > 0).
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(iii) For all integers m > —M (resp. m > 0) and for all j € Z,

supp K(272j_g)7n‘p(2—2j$) C{(I,y) eEX XX :p(x,y) < 27]'}
(resp. supp K(a-2i gymw,2-2.2) C {(#,y) € X x X : p(z,y) <277}),

where K(g-2j gymy2-2.2) (1esp.  K-—2j gymw,(2-2i2)) 5 the integral kernel of the operator
(272 L) W(272 L) (resp. (27H.L)"Wy(272.%)).

(iv) For every integer m > —M (resp. m > 0), there exists a constant C = C(m) (depending on
m) such that for all j € Z and for a.e. (z,y) € X x X,

|K (2-21 gymw(2-21 ) (@, y)| <C[Va—s (z)] 7"
(7'6517- |K(2—2j$)mwo(2—2j$) (x7y)| < C[V2—J’ (35)]_1)’

Proof. Let M € N (resp. M = 0). Let © € S(Rx¢) be a even function such that [*_©(X)dA # 0
and supp © C (—7,7) where 7 > 0 is sufficiently small. Set T'(€) := ©(¢) for £ € R, and then put
Y (&) :=T(VE) for £ € R>g. Finally, let us set U(A) :== AMYT(N) (resp. Ug(A) := T(N)), A € Rxy.
Since I is an even Schwartz function on R, we have T € S(Rxo), i.e., \™MW¥(\) € S(R>q) (resp.
Ty € S(Rsp)). Also, since T(0) = I'(0) = 6(0) = = [72_O(N)dA # 0, we see that if € > 0
is sufficiently small then |[¥(\)| > ¢ > 0 on {273/2¢ < X < 23/2¢} (resp. |Wo(A\)| > ¢ > 0 on
{0 < X\ < 23/2¢}). Thus we have verified (i) and (ii). The conditions (iii) and (iv) follow from
[17, Lemma 3.1] (see also [36, Lemma 2.3] and [79, Lemma 2]). O

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. Let K,S € Ny such that K > 5 and S > m . Let ($g,P) €
Ap(R>o) with M > max{K,S}. Then by Lemma 4.6 and (2.3), we have, for ae r€X,

275 |P j Z Z woag | (x)

k=0 QEDy,

SQjSZ Z |wQ||<I> 2]$ aQ )|

k=0 Q€D

J
<27 [ 3N 226D |y [u(Q)] 2Dy (2, 20)

k=0 QEDy

+205 | 3 S 220 IS g | [u(Q)]Y2 Do (2, 20)

k=j+1 Qe (4.6)

J
= 22K R N 9k g | [w(Q)] 2 Dy n (2, 2q)
k=0

QEDy

+ Z 92 =RIS9=R)s ™ 9k |[u(Q)]Y/2 Da-s n (2, 2q)

k=j+1 QEDy
J
< 32K S g (@) (1 + 2, 2)) N
k=0 QEDy

00
+ Z 22(j*k)52(j*k)s Z 2kS|UJQ|[,Uz(Q)]71/2(1+2j,0($,ZQ))7N+%,
k=j+1 QEDy,
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where N can be taken arbitrarily large.

Now let us set

So ={Q C Tk : plzq,x) < A2 U},
S ={Q € Dy : A2m 127N < (20 1) < A12m2_(j/\k)}, m € N,
By i={z€ X : p(z,2) < 4271270 L e N,

where the notation j A k denotes min{j, k}, and A; is a constant as in Lemma 4.1. Observe
that @ € S, = Q C B,,. Choose and fix 0 < r < min{p, ¢} such that 25 + s — g > 0. This is

possible since S > m — 5. Then take N > % + %. We note that

d

> 2 wol(@)] AL+ 2" plar, 2g)) TV

QEDy
SDDE WA (E91[ (%))
1/r
< D2 Y 2 gl (@)
m=0 QESm
1/r

=S S g @) Q) xa )

m=0 QES,

r 1/r

=D ]S 2 gl lu(Q) (@) vl | du)

m=0 X 1 Qesm

Y r 1/r

> _ _d 1 ; - M(Bm) "
< 9-m(N-4 / 9ks |y, 1(Q 1/2( ) Yolz duu(z

mE::o #(Bm) s, ng welln@) Q) )| )

r 1/r

- . 1
DI [ 2 wolu@]xo:) | dutz)

m=0 :u‘(Bm) By, QESm

r 7 1/r
o0
S 2 I | [ 3 2luolln(@) Ve | [ @ Y2 i
QEDy i m=0
r - 1/r
< 2R L My Z 27 lwe |[1(Q)] 71/ %x (z) )
QEDy, |
where we used that
((Bm) _ p(B(zg, Ay2mH22-01k))

\v Q € Sm < < 2(m+k—j/\k~)d’

p(B(zq, A227%))

and Ap, Ay are constants as in Lemma 4.1. Inserting this into (4.6) gives that for a.e. z € X

275 | P j Z Z wgag | (z)

k=0 QEDy
r 1/r

J
5 ZQ(kfj)(QKfs) My Z 2ks|wQ| ] 1/2 (IL’)
k=0 QEDy
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r 1/r
i Z 2(j7k)(25+s—7 {MHL [( Z 2k5|wQ| Q) 1/2 ) ](z)}

k=j+1 QEDy,

1/r

Z i Mup | (2wl (@) x) | (@) y

QEDy

where the map v : Z — R is defined by

2l2K—s) if¢<o0,
’Y(g) = _ _d .
2 l25+s=5)  if ¢ > 1.

From this estimate it follows that

> 3 woag

Qe Fiif (X)

{i [éw ) k>{MHL<Q§k (2 luln(@] ™ xa)") }/] }/

If ¢ < 1, the expression inside the LP norm in the right-hand side of (4.7) can be estimated as
follows:

LP(X)

g gw - kz){MHL(Q%k (5 ol (@ xa)" )}m o\ 1/
< {Z;J,;ﬂ J—= {MHL(QZ@ (2’“8|wQ|[u(Q)]1/2XQ)T> }Q/r}l/q
- {,i <§_o:7 (- ){MHL<Q%k (2kslel[u(Q)]—1/2XQ)r) }q/r}l/q
S ,;) {MHL ( Q;,k (2k5|wQ|[M(Q)]_1/2XQ)r> }q/r 1/a

If ¢ > 1, the expression inside the LP norm in the right-hand side of (4.7) can be estimated as
follows:

{i Li:om {3 M wall@xe)) }/} }/

1/r
5 (QkSIwQI[u(Q)]”ZXQ)T)}

j=0 | k=0 QEDy

I
——
(]2
1
(]
2
(-
[
=
=
Q\
2
(o
N
=
Q
—N
T
h
7 N\
[
<
———
=
Q




Chapter 4 Further properties and characterizations of By (X) and F3:% (X) 45
[e’g) o) a/r 1/q
<13 X0t (@ luglu@] o)) |
=0 | k=0 QEDy
1/q
oo 00 q/r
=3 (S0 {atan( @ wolia@] ™ xe) )}
k=0 *j=0 QEDy
- ofr 1/q
S {MHL< > (kalel[u(Q)]l/QXQ)r>}
k=0 QEDy,
Combining these, we conclude that
1/q
e 0o q/r
> woaq S Z{MHL( D (@2 |wel (@) xq) )}
k=0 Qe F;’,}Z)(X) k=0 QEDy, Lp(X)
T/q 1/7“
= ks —-1/2 r ar
= Z{MHL( > (2" wel (@) xq) )}
k=0 Qe Lo/ ()
- q/r T/q 1/7‘
s8] @ al@l o)
k=0 > Q€D Lo/r(X)
1/q
oo
=1RD° D (@5 wel (@) *xq)* = [lwllfs
k=0 Qe
Lr(X)

where we used the Fefferman-Stein vector valued maximal inequality on spaces of homogeneous

type (see [39]). This verifies (4.3).

We now turn to the converse of the statement. Let K,S € Ny. We choose ¥ € S(R>q) (resp.
Uy € S(R>g)) such that ¥ (resp. ¥y) satisfies (i)—(iv) in Lemma 4.7 with M > S (resp. M = 0).

In particular, the couple (g, ¥) satisfies

[To(A)| > e>00n{0<A<2%%} and |[U(N)|>c¢>0on {2732 <\ <232}

for some € > 0. Hence, by Lemma 3.9 it is possible to find &g, ® € S(R>¢) such that

supp ®¢ C [0,23/26],
supp® C [2_3/257 23/26],

and

> Wi (AN)®;(A) =1 forall A € Rxy,
7=0

|Po(N)| > ¢ >0o0n {0< A< 22},
|B(N)] > ¢ >0o0n {2732 < X <22,

(4.8)

where we have set ¥;(-) := U(27%") and ®;(-) := ®(27%-) for j > 1. Clearly (o, ?) € A (R>0)
for all M € Ny. Hence (®g, ®) can be used to define F;,’f(X). From (4.8) and Lemma 3.10, it

follows that for all f € S, (X),

F=Y (22 D)f in Sy(X).

Jj=0

(4.9)
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If Q € 2y, we set

g = [uQ)? (csssup 202 10)]) (| ma, esssup / [Kmagar )| du) )

yeQ me{K,0} zex

Gg = — / Koy (@ 9)%0(L) f()duly),
wQ Q

while if @ € &; with j > 1, we set

T = (@2 <esssup|¢j($)f(y)|>< max s sup /Q |K(2-2jg>wg><m7y>|dy)

e me{K,-S} zex
" 1
ag = = | Ku,(2)(2,9)2;(L)f(y)du(y).
wQ JqQ

Then it follows from (4.9) that
I= Z/XK%(ﬁf’)(%y)@j(f)f(y)du(y)
§=0

=Y 3 [ Ko a2 ntr)

=0 Qe2;

o0
=Y D g,

j=0Qe2;
where the sum converges in S, (X).

Since ag can be expressed as ag = %\Ilj (Z) [(2;(L)f)xq], and since ¥ (resp. W) satisfies
the condition (i) in Lemma 4.7 with M > S (resp. M = 0), we have ag € D(Z%)n D(Z~%)
(resp. ag € D(ZLK)) whenever Q € 2; with j > 1 (resp. j = 0). Moreover, if Q € Z; with
j > 1 (resp. j =0), then

L = P, (2) [(2;(2)f)xq]

wq
22jm

- = /Q K321 0ymu, (2 (2,9)®; (L) f (y)duly)

holds for m € {K,—S} (resp. m € {K,0}). Hence, by using the conditions (i)—(iv) in Lemma
4.7 it is straightforward to verify that for any @ € Ujen, %;, ag is a (K, S)-atom multiplied by
a constant independent of Q.

Now, for any Q € Ujen, Z;, we set wg := Cwg and ag := C~ag, where C' > 0 is a sufficiently
large constant independent of Q. Then ag is a (K, S)-atom, and moreover,

o0
F=>_ 2 weuq,
=0 QE_@J‘
where the sum converges in S, (X).

It remains to verify (4.4). Indeed, by our choice of ¥ and ¥ and by the conditions (iii) and (iv)
in Lemma 4.7, we have

supp K (225 zymy, () C {(z,y) € X x X : p(z,y) <277}
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and
| K (225 ymu, (2)(@,9)| < OV (2,279)] 7%, ae. (z,y) € X x X,

both of which are valid for m € {K,—S} (resp. m € {K,0}) if j > 1 (resp. j = 0). In the last
inequality C' is a positive constant independent of j € Ny. Hence, for every j € Ny and Q € Z;,
we have

wal < [W(@)]'? (esssup }‘Pj(-i”)f(y)I) ess sup /Q[V(wﬂj)]ldu(y)

yeQ p(,2Q)<(A1+1)2—7

< [u(@)? (eSysesgp |<1>j(«f)f(y)|) :

where we applied (2.2) and (2.3), and A; is the constant as in Lemma 4.1.

2

2d__ and note that
min(p,q)

We now choose a >

5 (2 uel@I ™ ro@)' £ 3 (esssup2 (0,21 ()xa (o))
QE@J' QE@j yed

5,027 < essomy 2RO g
SyEBe(?;Egﬁ)b 2;(2)fW)I]" < {es;esxp (1+2jp(m,y))a} = 250, (L)]3 f(x),

which along with Theorem 3.4 and the fact ($g, ®) € Ap(R>o) for all M € Ny yields that

[|w 54 S FoZ(Xx)
The proof of Theorem 4.5 is thus completed. O

Corollary 4.8. Suppose s € R, p € (0,00) and q € (0,00). Then S (X) is dense in Fg:Z (X)
and is dense in Flf;f(X).

Proof. We only deal with the case of Triebel-Lizorkin spaces since the case of Besov spaces is the
same. From Proposition 3.12 and Proposition 3.13, we see that S (X) is a subset of Bng (X)
and of F;”f(X) for s € R, p € (0,00) and ¢ € (0,00). Let f € Fps”f(X). Let ¢ > 0. Since
sequences w = {wq }Qeuyen, 2, With finite support (i.e., only finitely many scalars wq is not zero)
is dense in f, , (see for example [8]), by the atomic decomposition there exists g € F;j’f (X) such
that || f — g| P2 (x) < & and for any k € No,

supp .Z¥g is a bounded set, and esssup |.L"g(x)| < C(k), (4.10)
zeX

where C(k) is a constant depending on k.

Next, let @, ® be functions in S(R>) such that

supp B € [0,22], |Bo(N)| > ¢ > 0 for A € [0,2%/7],
supp ® C [272,22], |®(N)| > ¢ > 0 for A € [273/2,2%/2],

and -

ZCI)J(A) =1 forall A e Rzo,

§=0
where we have set ®;(-) := ®(27%") for j > 1. Set gy = Z;V:o ®;(ZL)g, N € N. We claim that
gn € S (X) for all N € N. To see this, we fix j, and let k, m be arbitrary nonnegative integers.
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By (4.10) we have
19| S (1+ p(y, z0)) ™ "3 ~ [V (20, 1)] (L + ply, m0)) "D < D1 mysas2(y; o).
Also, using Lemma 2.3 we have
|Kgra,(2) (@Y S Dimasase(®,y)

It then follows from Lemma 3.7 that for a.e. x € X,
240, L)gla)] < [ 1Kava,i)(@.9)llawlduy)
§/ D1 mt5d4/2(2,y) D1 mesa/2 (Y, zo)du(y)
X
S D2z, w0) S (14 p(w,20)) "™

This shows that Py, (®;(£)g) < oo, and hence gy € S (X) for all N € N.

On the other hand, the argument in Step 5 of the proof of [83, Theorem 2.3.3] shows that gx
approximates f in sz)’q‘g (X), as N — oo. Hence there is a sufficiently large integer Ny such that

Hg - gN(JHF}f:f)(X) <e.

Summing up all of these we see that gy, € S¢(X) and

||f - gNoHp}f;f(x) < ”f - ng;:f’(x) + Hg - gN0| FoZ (X) < 2.

This shows that S¢(X) is dense in Fs:% (X). O

4.2 Complex interpolation

Let A ={z € C|0 < Rez < 1} be a strip in the complex plane. Its closure {z € C|0 < Rez < 1}
is denoted by A. We say that f is an S, (X)-analytic function in A if the following properties
are satisfied:

(i) For every fixed z € A we have f(z) € S'y(X).

(ii) For every ® € S(R>¢) with compact support in R>o and for almost every fixed € X, the
function z — ®(£)(f(2))(x) is a uniformly continuous and bounded in A,

(iii) For every ® € S(R>¢) with compact support in R>¢ and for almost every fixed z € X, the
function z — ®(Z)(f(2))(x) is analytic in A.

Following [83], we introduce the following two definitions:
Definition 4.9. Let —00 < sp < 00, —00 < 81 < 00, 0 < g < o0 and 0 < g1 < 0.

(i) f0 < pp < o0 and 0 < p; < o0, we define F(B;g;af(X),B;iqu{(X)) to be the space of all
S’y (X)-analytic functions f in A such that

170 e 3.2 00,330 00y += e Sup IF(E+ i)l g ) < o0
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(ii) If 0 < po < o0 and 0 < p; < oo, we define F(F30:(X), F51-4(X)) to be the space of all
S’y (X)-analytic functions f in A such that

Hf”F(Fig,’i(X),Fif,’f(X)) = égé%gﬁ} igﬁg [f(€+ Zt)”F:f:;f(X) < 0.

Definition 4.10. Let —0co < s9g < 00, —00 < 51 <00, 0< gg<00,0< g1 <ocand 0 <6 <1.

(i) If 0 < pg < 00 and 0 < p; < 00, we define

(Byoian (X), Byt (X)),

D070 P1,q1 (4.11)
= {g € Sy(X)|3f € F(BZ(X), B3 (X)) with g = f(0)}.
and
9l mz0-2 (x),m31:2 (x3y0 = E N N pmio2 (x) B33 ()
where the infimum is taken over all admissible functions f in the sense of (4.11).
(if) If 0 < pp < 00 and 0 < py < 00, we define
L 1,2
(F;é),qo (X)’ Flfl,lh (X))O (4 12)
= {g € S'Yp(X)|3f € F(F 2 (X), FiZ (X)) with g = £(0) }.

and
gl im0 (x).m1:2 = IENFprso2 () 12 ()

where the infimum is taken over all admissible functions f in the sense of (4.12).

Lemma 4.11. ([83, Lemma 2.4.6/2]) Let A = {2|0 < Rez < 1}, A = {20 < Rez < 1} and
0 < r < oo. Then there exists two functions po(0,t) and pi(0,t) in (0,1) x R such that

0

oo < (15 [lstormena) (4 [0 ormons) @

where = Re z for any analytic function g(z) in A which is uniformly continuous and bounded
in A. Furthermore, if 0 < 6 < 1 then

1
B N T / Jn (0, )dt = 1. (4.14)
1-0 /)y 6/

The main result of this section is the following theorem:

Theorem 4.12. Let —0o < 59 < 00, —00 < 81 < 00, 0 < pg < 00, 0 < p; <00, 0 < gy < 00,
0<q <o0and0<6<1. If s,p,q are given by s = (1 —0)so+0s1, 1/p=(1—6)/po + 0/p1
and 1/q=(1-0)/q + 0/q1, then

(B (X), Byt (X)), = Byl (X)), (4.15)
(Epoad(X), Byl (X)), = Fl (X)), (4.16)

and the corresponding quasi-norms are equivalent.

Proof. We only prove (4.16) since the proof of (4.15) is similar.

Step 1. We follow the method of [83] to prove that

(Fpo2(X), F3 (X)), C Fo (X). (4.17)

Po,90 ’ 7 P1,q91 p.q
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Let f € F(F5o%(X), F51:%(X)). Let ®o, ® be functions in S(Rx¢) satisfying that

Po.q0 p1,91
supp ®g C [0,22], [To(N)| > ¢ > 0 for A € [0,2%/2],
supp® C [272,2%], |®(N\)|>c>0for A€ [2_3/2,23/2].

For k > 1, we set ®x(-) := ®(272%.). Also, for k € Ny, we put gi(r,2) = (L) (f(2))(z). Let
0<r< min{p07QO7P17(11}~ Then

s q
1O g = | [ (Z 259w, )| ) dr
k=0
3 , . (4.18)
- (S awon?) a
7% \k=0
Let po(0,t) and p1(0,t) be as in Lemma 4.11. Then we set
1 SN T
an(w) = —— / e, i) 10 (6, £)dt (4.19)
1-0 Jr
and )
ber) = 5 / \ge(a, 1+ it)|" 0 (6, )dt. (4.20)
R

Applying (4.13) in Lemma 4.11 with 2¥g; (z, 2) instead of g(z) (where z € X is fixed), Holder’s
inequality and [83, Lemma 1, p. 68|, we have

T

[z <zk%w<m>bz<x>ﬂ] q

k=0

oo @ %(1*0) oo o ﬁ@
(Z 2’”0(1"%T (x)) (Z oksim by (x))
k=0 k=0
= {250 @) o gl 1425 b0 1o -

From (4.19) and Minkowski’s inequality it follows that

IN

[Z o GW]
k=0
(4.21)

IN

. o0 1 g . Ty 00
H{2ksmak(x)}k:onqo/r S 1-9 /R 1{]2"* gx(x, it)] }k:OHeqo/*‘“O(e’t)dt

a0

:1—19 <22k80q0|9k($,it)|q0> 110(6, t)dt.
7R \k=0

Also,

1
o0

1 fsion A"
Q/R<Z2 ql9k<x,1+zt)|Q> p1 (0, t)dt.

k=0

IA

{200 (@) 1. s e

Inserting these two estimates and (4.21) into (4.18) gives

1, (170)%

1 > \®
F ) = /X 1—9/R (Z 2ké°q°|9k(mt)lq°> po (0, t)dt

k=0

17 (0)]
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8IS
3=

P
1, 0%
q1

1 oo
X 9/<22k81Q1|gk(x,1+it)|‘11> 11 (6, t)dt da
R \k=0

Hence, applying Holder’s inequality we have

17(0)]

FSZ (X)
179

<\[ ] ( S 2k gy, zt>|q0> po6, )t
X\ TR k= (4.22)

8
s

.
1 P1

1 c ks1q1 ; 1 "
X /X 0/R<Z2 a |gk(:c,1+zt)|q> w1 (0,t)dt dx

k=0

Since || - || pro/r(x) and || - || p1/r(x) are norms, by the Minkowski’s inequality we can estimate
(4.22) from above by

1—-6

L

. PO >

1 (o) ] q0
O P / /X (Za’“wwgk(x,zw%) do | po(8,tydt
k=0

(=]

sl

1 (o) q1
« |1 / / S okt fg, (1 4+ )| dz| (0, t)dt
9 R X k=0

In view of Lemma 4.11, this yields

17(0)]

FrZx) S [SUPH{2ksogk it)} o”LPo(eqo)] [ig£|‘{2k819k('71—it)}zo_onim(mq

<|f(= )HF(F*OJ(X) oL (X))

pl q1
Hence (4.17) is established.

Step 2. We prove that
Eyil (X) € (Fpoald (X), Fyiif (X)) - (4.23)

Po,q0 P1,q1

In this step we follow the idea of Noi and Sawano [64]. Let g € F;’f (X). Then by Theorem 4.5

g admits a decomposition
oo
g = Z Z Ak,ozaf,"c,ou (424)
k=0 a€l}

where each ay , is an atom for the dyadic cube QZ, each Aj o is a scalar, the sum converges in
S'y(X), and

1/q
(Z > (2" Prallw(@)]” 1/2XQg)q> < llgl

Fpif (X)
k=0 acl Lp(X)
For z € X and z € A, we define
S S
p(z) = q—(l —z)+ =, s0(1—2) — 812,

qo q1
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52
q q
z)=—(1—-2)+—=z,
p2(2) qo( ) o
1 1
pe) = (- o) a-a+ (-2
qPo 4o ap1 @1
In addition, for £ € Ny and o € Ij;, we define the holomorphic function Ay by
p3(2) K
1 () () (2) k "
516 p2(2) _p2(2)
Male) = { e [ D F @) (XS Rt )| dntw)
:U/(Q(x) Qk j=0 BeI, “
k
where K is a large integer, and Ry o := 2"°| A\ o|[0(QF)]7'/2. Abbreviate Z Z Rjpxgi (v)
=0 pel, ’
to Sk(y). Then we have, for £ = 0,1,
1259 Ao o (€ + it)|
. K
e ) po (+it) p3(£+it)
_ 2?[8z780+€(50751)+z(50781)t]Rk o K Sy & du(y
7 e ’ W W
< 2%[sz—so-‘rl(so—s1)+i(so—s1)t]Rk aL(H”) Sy falphn) du(y
{u@z) I8 ’ W W

K
= {M(;k)/m RquwSk(y)pg’Kmdu(y)}

K
- {M@) /Q Ry ™ S(y) " o (y)du(y)} .

Hence, if z € QF, we have

q 3(¢ K
|2k54Ak7a(g +it)| < [MHL (Rk,amsk £38) XQ'&) (1}):|

K
< | Myt Z Rk,,@%q‘fsk R Xq¥ (x)
Bely
Consequently, we obtain for all z € X
K
Z 1259 Ak (€ + it) X () S | Muw Z Rk.ﬂ%‘usk i xqy | (@)
acly,

BEIL

This estimate along with the Fefferman-Stein vector-valued inequality on spaces of homogeneous
type (see [39]) yields that for £ = 0,1,

o qey 1/ae
{Z (21@5@ > |Ak,a(5+it)|XQ’;> }

k=0 acl LPe
Kqp ) Ve
o0
< = p3(£)
N E Mpyr, E Ry gRue S K XQk
k=0 BeEIL,

LPe
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Kqp ) Ve
> A p3(8)
S92 | 2 Brs ™Sk F Xy
k=0 | Belx
L o
_ 23 Kaqoy /e
0o K
S| e (L X R Yo | ey
k=0 | Bl J=0~€l;
L ot
o & p3(£)qe 1/
— q q ,
=922 2 Bra” | 20 2 Rixey Ya3
k=0 BeI;, J=0~€l;
Lre
, 1/qe
o k (#m_qiz)qz
_ q v
=22 2 R (2 2 Bioxey Yo
k=0 BEI}, J=0 vEI
LPe
By [83, p. 68, Lemma 1] (see also [64, Lemma 2.17]),
oo k (ﬁ—i)qz 00 %
o q _ q
DD Rist (22 RBioxg Xay S| 21 2 Bigxay
k=0 eI}, J=0~€1; k=0 Bel},
Hence
00 qey L/ae
{Z (2;@81 3 |Ak7a(€+it)|XQ§> }
k=0 acly Lpe
_b_
%) apyg
a
S22 D Bisxes (4.25)
k=0 BEI;,
Lve
HEn
ks q
[ @ sl @)1 2xn) SIS
k=0 BE Iy,
Lp
Now we define
=33 Aol
k=0 a€l}
Then by (4.24), (4.25) and a homogeneity argument we have
f0) =y
and
< P
. sup IF A+ i) ez oy S N9l g2 ()
This exactly says that
< X
Il rsg.iz o0y iz oo S 19l -
Hence (4.23) is verified and the proof of the theorem is completed. O
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4.3 Lifting property

The purpose of this section is to prove the following result:
Theorem 4.13. Let s € R, p € (0,00) and g € (0,00). Then:
(i) For any o0 € R, (I +.2£)7 is an isomorphism of B;:f(X) to B;;f‘“g(X),

(ii) For any o € R, (I + £)? is an isomorphism of Flf;(;CZ (X) to F;};Qaviﬂ(X).

To prove this theorem we need some lemmas.

Lemma 4.14. Let s € R, p € (0,00) and g € (0,00). Then:

(i) For any o € R, Dom ((I + £)7) N By:Z (X) is dense in By (X).

(ii) For any o € R, Dom ((I +.2)°) N F;f(X) is dense in F;f(X)

Proof. From Corollary 4.8 we see that S¢(X) is dense in F;:f (X). Hence it suffices to show
that S (X) C Dom ((I +.2)°) for any o € R. Note that the latter is trivial for the case o <0,
since in this case we have Dom ((I + %)) = L*(X). Assume now o > 0. Let m = |o] + 1,

and set ®(\) = (1 +A)7(1L +A")"1, XA € R>g. Then (1 + A\)7 = ®(A\)(1 + A™). Hence by [67,
Theorem 13.24 (b)] ®(L)(1 4+ .£™) C (1 +.%)°. In particular,

Dom (®(Z)(1 4+ £™)) C Dom ((1+ £)7). (4.26)
On the other hand, since ® € L>(Rx(), we have Dom (®(.¢)) = L*(X) and hence

Dom (®(Z)(I +£™)) ={f € L*(X)|f € Dom (I + £™),(I + £™)f € Dom (®(£)) }
= Dom(I +.2™).

Combining this with (4.26) we get Dom (I +.2™) C Dom ((I +.£)?). It follows that S (X) C
Dom ((I 4+ £)7). This completes the proof. O

Lemma 4.15. Let ®, ® be functions in S(R>g) such that

supp g € [0,22], |®o(N)| > ¢ > 0 for A e [0,2%/2],
supp® C [272,22], |®B(N)| > ¢ > 0 for A e [27%/2,23/2),

and

> @A) =1 for all X € Ry, (4.27)
k=0

where we have set ®(-) := ®(272%.) for k > 1. Let U = {¥r}2, be a system of functions in
S(R>0) having compact supports such that

0¢supp¥y forallk > 1.

Let s € R, p € (0,00), g € (0,00), and let L be a positive number such that L > % + min?’{‘;q} +

% + 2. Then there exists a positive number C such that for all f € S',(X),

1/q

oo 1/‘1 [e'e]
(St <o (S emcnry, )
—o k=0
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and
[e'e) 1/(] 00 1/(]
<Z 2’“‘1|x11k($>f|"> (Z 2’“SQ\<I>k($)f|"> :
k=0 Lo (X) k=0 Lo (X)
where .
- v\ VW, (257,
C(¥):= sup (1+N)F d VO ()\)‘ + sup (AF4A7E) d[k(y)]()\)‘ :
A€[0,00) d)\ )\E(0,00) d)\
osv<L 0<v<L
k=12,

Proof. Let ©g, © be functions in S(R>¢) such that

supp ©g C [0,2%], ©Og()\) =1 for A € supp P
supp© C [27%,2Y], ©O(\) =1 for A € supp .

Set Ok (A) :=O(272*)) for k > 1. By (4.27) and Lemma 3.10, for any S’ (X)
F=S0(2)f i Sy(X),
=0

Hence for all k € Ny and a.e. y € X

Z VL (L)OUL)BUL) ().
It follows that
W (2)f ()] < Z / | Ky (210002 (2 9) |06(2) £ ()] 2)
< RULNG) [+ 2002 [Kuiryonian o) |dn(2)

(@o(L)]af (W) Ik,e(y)
<[ f(2)(L+2°p(2,y)) Tre(y),

where we have set
Tialw) = [[(14 2000 2))° Ky zp0000 (200) (2

Hence for all k € Ny and all z € X,

; : S ok b)agts , (1+2%(z, )"
LIS () 5 3 22 o ANt @) sup (o S T () -
- .28

8

IN

257092y (2)]; f () max{1, 27} sup I (y),
=0 yeX

where we used the inequality

14 2°p(z,y)

— 770 < max 124 k
1+ 2kp(z,y) { -
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We now estimate sup, ¢y Ix¢(y). Let a be a positive number such that a > mif{‘; a3 and let V

be a positive integer such that N > 37‘1 +a and 2L — 2N — |s| —a > 0. This is possible since

L> % + min?j{ij g T |2i‘ + 2. To estimate Iy, ¢(y) we consider the following cases:

Case 1: k€ {1,2,---} and £ € {1,2,---}. Let T(A) := O(A\)¥(2°N), A € R>q. Then by Lemma
2.3, for all sufficiently large positive integer N we have
|Ko@-t2y0,2) ¥, 2)| = | Kv@-r2)(, 2)| S I ll(n)Da-e 5y, 2).

It follows that
Lusly) = / (14 29y, 2))°| Koy ) (22 9) da(2)

<l / Dyt -y, 2)du(2)

S Il ey

= sup sup (1+)\)N+d+1‘T(”)()\)‘
0<v<N A€R>g

d"' e (
dav

d" e ’

42 (Wi(22)]
ety

dv2 (U, (22F.)] (22(21@/\)‘

< sup sup (14 NN+l Z cn
0<v<N AE€Rs(

v1+rve=v

= sup sup (14 \)NVHdF! Z 22(t=k)va

0<v<N AERsq A dAv2

v1+rve=v
d"r e

SC(0) sup  sup (14 N)NFHL N g2k -

0<v<N AeRx(

—1
(/\)‘ (|22(E7k)/\|L + ‘22(lfk)>\|fL)

v1+rvo=v
5 C(\I_))mefkt‘]v?f?léfle
_ C(\f,)272\£7k\(L7N).

Case 2: k=0and ¢ € {1,2,---}. Similarly to Case 1 we have

d"1 O dvz (W, (224)]
I < su sup (1+ NVttt (ot ‘ A
0.(¥) ogugN,\eRgo( ) Vlg/;:y d)x”l( dA2 ()
d"1 e d“2 ¥,
= su sup (14 NVttt Qw2 | 2~ ‘ 226\ ‘
DBy () mg:u o V|| @Y
< C(‘f’) sup  sup (1 +)\)N+d+1 Z 926vs d"l@()\)’ (1 +226)\)—L
~ 0<v<N A€Rx A\

v1+rve=v

< (@)2221\727251/

C
0(6)2—2€(L—N).

Case 3: k€ {1,2,---} and £ = 0. By Lemma 2.3 we can estimate as follows:

Inoly) = /(1 + (Y, 2))? | Key()w, () (2,9) | du(2)

< 1190%u ) / Dy n—a(y, 2)|du(z)

S €%kl ()
d¥(©g¥
= sup sup (14 \)NHdFL (Ok)()\)‘
0<V<N A€Rxg d\#
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d"1 0 d2 Wy,
< su sup (14 AVttt cr ‘ A\ ‘
ogugN,\e]REo( ) Ulgzy d)\1 ( d\v2 (M)
d"1 0 dyQ\I/k(22k') _ _
= su sup (14 \)VHd+t ch ‘ 272k \)| 2 2kv2
ogugzvxekzo( ) Z Vol dan () d\v2 ( )

v1+rve=v
d"* 0
dAn

d"10q
dan

<C(W) sup  sup (14 1)Vt Z cr
0<v<N A€Rso

()\)‘ (|272k)\|L + |272k>\|7L)71 272]{?1/2

vi+rve=v

< CO(W) sup  sup (14 \)VHdH! Z cr
0<v<N A€R>0

(}\) ‘ 272](3[/)\[/272]“/2
vi+rve=v

< CO(W)272kE,

Case 4: k = ¢ = 0. Again by Lemma 2.3 we have

Ioo(y) = /(1 + (Y, 2))? | Koy ()00 (2) (Y, 2) | dp(2)

< 190%ol() / Dy n—aly, 2)dp(2)

< [1©0%oll ()

= sup sup (14K (O0T0)(N)|
0<v<N A€Rs(

< (D).

Summing up all these cases, we obtain that

esssup Iy o(y) < C ()2 216FIE=N),
yex

This along with (4.28) yields that for all kK € Ny and all z € X,
25 Wy (L)]5 f(2) S 207225 [y(L)]; f () maxf1, 2072721 HIE=N)
£=0
SJ 2—|E—k|(2L—2N—|s\—a)225 [‘I’e(f)];;f(l‘)
From this, Lemma 3.11, and Theorem 3.5, it follows that

1/q

oo 1/q oS}
(St ) = (S sl
k=0 £=0

o 1/q S
< <Z2“q||[<1>e($)]2§f ‘;p(x)) < (zafsqy|@<z>f||;(x))
=0 =0

1/q

and
oo 1/q o 1/q
(zzksq\wmmq) < <zzksqy[wk<z>1;ny)
k=0 Lr(X) k=0 Lo(X)
0o 1/q o 1/q
S <Z2ksq|[@k($)]2f!q> S (ZZ’“C’I%(X)J‘V)
h=0 o) 0 Ly (X)

This completes the proof of Lemma 4.15. O
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Proof of Theorem 4.13. First we prove that (I + %) is a bounded mapping from F;;f(X) to
F3.29%(X). Let @, ® be functions in S(R>¢) such that

supp g € [0,22], [Do(N\)| > ¢ > 0 for A € [0,2%/?],
supp ® C [272,22], |®(N\)| > ¢ > 0 for A € [273/2,2%/2],

Set ®r(\) := ®(272F\) for k > 1. Define a system ¥ = {¥}2% of functions in S(Rx0) by
Ty (\) =272, (\)(1+\)?, keN.

It is easy to see that C(¥) < co. Then by Lemma 4.15 we have that for all f € Dom((I+.%)%)N
F5Z(X)
P,

[e%e} 1/q
I +2)7 F gy ) = (Z 22|y () (1 + i”)"ﬂq)

k=0 )
) 1/q

_ ksq q

= <22 Tk (L) ]| > (4.29)
k=0 LX)
00 1/q

S’ <Z 2ksq|¢k($)f’q> = ||f| F;,’f(x)'
=0 Lo (x)

Since Dom (I + f)g) N sz”,‘f’o(X) is dense in F;;f) (X), (I + Z)7) extends to a bounded linear
operator from Fl‘f,’f (X) to F;’QQU"% (X). We denote this extension by T,. By the same argument,
(I + %)~ 7 extends to a bounded linear operator T_, from F;EQ""’%(X) to Flf;jf (X).

Next we show that for any ¢ € R, the mapping T, : F;:f)(X) — sz’f”*g(X) is injective.
Indeed, assume f € Flf”f(X) such that T, f is the zero element of F;’f"?z(X). By Lemma
4.14 we can find a sequence f; in Dom ((I +.2)7) N F;:f’ (X) which converges in F;;f(X) to f.
Then by the boundedness of (I +.2)7, (I+.£)° fe converges in F;;Q""’?(X) to the zero element.
Since (I +.2)7 f¢ € Dom ((I +.£)77) N F;27%(X) and f; = (I + £)7°((I + £)° f1), the
boundedness of (I +.2)~7 yields that f, converges in F;ﬁ’f (X) to the zero element. Therefore,
[ is the zero element in F5:¢(X). This proves that T, : F5: (X) — Fj527%(X) is injective.

Now we show that T, : F;jf (X) — sz’f"’g (X) is surjective. Indeed, given f € F;;Q"*f (X),
we let fy be a sequence in Dom ((I +.2)77) N F;7g2”’$(X) which converges in F;7g2”’g(X) to
f. Then the boundedness of (I +.£)~° yields that (I +-%)~° f; converges in F;”f(X). Denote
this limit by g. We claim that T,g = f. Indeed, since f, = (I + Z)7((I + Z£)~ 7 f¢), it follows
from the boundedness of (I + .£)? that f, converges to T,g in F;;&%(X). Hence T,g = f in
F3.27%(X). This proves that T, is surjective.

The above arguments also show that both T_, o T, and T, o T_, are identity operators on
Flf;f (X). Furthermore, by an easy density argument we see that (4.29) holds for all f €
$,L : o f . . 8, s—20,%
F3:2 (X), provided that (/+.2)7 in (4.29) is replaced by T,,. Thus, T,, : F;:;2 (X) — Fj (X)
is an isomorphism, and ||, f]

Fis20 % (x) 1S an equivalent quasi-norm of F;;g (X). O

4.4 Embedding theorem

The purpose of this section is to prove the following result:
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Theorem 4.16. (i) Let 0 < py < p; < 00, 0 < ¢ < 00 and —oco < 81 < 59 < 00. Then we have
the continuous embedding

Bl (X) C BsvZ (X)) if so—d/po = s1 —d/p

Po,q P1,9

(ii) Let 0 < pgp < p1 <00,0< g< 00,0 <r <00 and —o00 < 81 < §9 < 00. Then we have the
continuous embedding

Fio2(X) C FsZ(X) if so—d/po=s1—d/p:

Po.q p1,7

Proof. We only prove the assertion (ii) since the proof of (i) is similar. We follow Jawerth [54].
By the lifting property (Theorem 4.13), we may assume sy = 0. Moreover, we may assume
g=o0and 0 <r <1 Let fe€ F;?é%o(X) with ”f”F,?é{o(X) = 1. Let ®(,® be functions in
S(Rsg) such that ’

supp g € [0,22], [Do(N)| > ¢ > 0 for A € [0,23/2],
supp ® C [272,2%], |®(N\)| > ¢ > 0 for A € [273/2,2%/2],

Set @;(\) := ®(27% ) for j > 1. Since ®;(L)f € Xgs+1 for all j € Ny, by Lemma 3.14 we have
that for p € (0,00) and j € No,

185(2) ey S 292125 (L)ox) < 297 fll e ) = 29907,

It follows that, for any fixed integer NV € Ny and for a.e. z € X,
N 1/r N 1/r
> 2@ (L) f(x)| <C | ) 2 < C24N/p1, (4.30)
§=0

Jj=0

where C' is a constant independent of N. On the other hand, since s; < 0, we have that for a.e.
zeX,

1/r
S 2 ( L) @) | < €2 sup [8;(2) f(x)]. (4.31)
j:N jENO
We write
1/r
19 =m [ e (e as@r | s eplan @3
P17 0 j=0

Let us split the range of the integration in (4.32) into (0, (2C)'/") and ((2C)*/", 00), where C' is
the same constant as in (4.30). By (4.31) with N = 0, we have

1/r

o)t/ >
/ ot L (S () f@r | sty de
0 e

@)t
< c/ tPo—1
0

< /! — /!
< A llpgz 0 = <

(4.33)

{x sup |@;(2) f(x)] > t}‘dt

J€Ng
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If t > (2C)'/", we choose N in (4.30) to be the largest non-negative integer such that C2V4/P1 <
t/2. Now (4.30) coupled with (4.31) yield that

1/r 1/r

z: [ D 27105(L) f(w)] >t w0 YR (L) f ()" >
=0 J=N

IN
N | o+

IA

Hx: sup |®,(2)f(x)] > ct2_N51} .

j€Np

Since t27Vs1 ~ gl=sipi/d  yp1/Po it follows from the above estimate that

1/r
00 0o
/ T s [ D270 (L) f(2)] >to|dt
(20)1/7‘ j:0
<[ et e e@rw) >tm/p°}\dt (43
c(20)1/7 jENg

{x: sup |®,(2)f(x)| > tH dt

J€No

o0
< C’/ tpo*l
0

/7" o
< A llrgzo =

Combining (4.32), (4.33) and (4.34) we get

11

p1 p1
ron o S Wlenz (4.35)

which holds for all f € F%Z (X) with Il Il po.z (x) = 1. By a homogeneity argument, we further
PQ,00

Po,00

see that (4.35) holds for all f € F%Z (X). The proof of the theorem is completed. O

Po,00

4.5 The identification F)-%(X) = LF(X) for 1 <p < o0

Our aim in this section is to show the following theorem:

Theorem 4.17. Let p € (1,00). Then Fl?f(X) = LP(X) with equivalent norms.

The identification F;’f (X) = LP(X) is proved in [59, Thorem 7.8] under the additional as-
sumption that the heat kernel of .Z satisfies the Holder continuity estimate. To see that
FI?Eg (X) = LP(X) remains valid for those operators .Z whose heat kernel only satisfy pointwise
Gaussian upper bound, we need the following lemma:

Lemma 4.18. (see [23, Theorem 3.1]) Suppose F € C*(R>q) for some k > |d/2| + 1, and

sup [WFW(N)| < oo for any v e {0,1,--- k}.
AER>

Then the operator F(Z) is bounded on LP(X) for 1 < p < oo.
Proof of Theorem 4.17. The proof if the same as the proof of [59, Theorem 7.8] except that one

needs to replace [59, Theorem 7.9] used in the proof of [59, Theorem 7.8] by Lemma 4.17 stated
above. O



Chapter 5

Homogeneous function spaces
associated to operators

Throughout this chapter, we assume that the metric measure space (X, p, i) satisfies the doubling
condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and
assume that . is a non-negative self-adjoint operator on L?(X) whose heat kernel p;(x,vy)
satisfies the pointwise Gaussian upper bound (2.8) for ¢ € (0,00). We assume in addition that
w(X) = oco. We do not assume the Holder continuity for p;(x,y) in the variables = and y.

5.1 Spaces of test functions and distributions

To treat homogeneous Besov and Triebel-Lizorkin spaces associated to operators, we need to
use appropriate spaces of test functions and distributions which are different from those used to
treat inhomogeneous function spaces.

Definition 5.1. The test function space Se, #(X) is defined as the collection of all functions
¢ € NkezD(ZL*) such that

Phn(6) = esssup(L+ pla,20)) |2 6(a)] < o
xTE

for all k € Z and all m € Ny, where zog € X is arbitrary fixed point on X.

Obviously, the definition of Se (X)) is independent of the choice of xy. So we fix zo once and
for all. For our purpose it is convenient to introduce the following directed family of norms: For
k,m € Ng and ¢ € Sso, 2 (X), we define

Pl:,m(qs) = Z Pj,€(¢)'

—k<j<k
0<t<m

The space S, (X) is defined as the collection of all continuous linear functionals on S, (X).
The action of f € S, »(X) on ¢ € Soo, #(X) will be denoted by (f,¢) := f(¢). However,

sometimes we will work with the sesquilinear version (f, ¢) = (f, ¢).

Proposition 5.2. So ¢(X) is a Fréchet space.

61
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Proof. To prove that Se _#(X) is a Fréchet space we only have to establish the completeness of
Soo,2(X). Let {¢;}52, be a Cauchy sequence in Soo #(X), i.e. Prm(p; —¢e) — 0 as j,£ — oo
all k € Z and m € Ny. Choose m € Ny so that m > (d 4+ 1)/2. Then clearly for any k € Z,
%65~ 24 0ul1206) < Prom(5 = 00) [ (1 plaz0)) (o)
b'e
S Vi(@o, ) Prm(d; — é0),

where we used (3.8). Therefore, |.Z%¢; — Z*¢y||12(x) — 0 as j, £ — oo and by the completeness
of L?(X) there exists ¢, € L*(X) such that |.£%¢; — i r2(x) — 0 as j — co. Write ¢ := ).
From |[¢; — ¢llr2(x) = 0, |-£%¢; — ¥rllr2(x) — 0, and the fact that £* being a self-adjoint
operator is closed [66] it follows that ¢ € D(£*) and

L% ¢; — L\ p2x) — 0 as j — oo for all k € Z. (5.1)

On the other hand, || £*¢; — k|| (x) = 0 as j,£ — oo, and from the completeness of L*°(X)
the sequence {-£%¢;}52, converges in L°°(X). This and (5.1) yield

|.L%¢; — L5|| o (x) = 0 as j — oo for all k € Z.

In turn, this along with Py (¢; — ¢¢) — 0 as j, £ — oo implies Py (¢, — @) — 0 as j — oo
which confirms the completeness of Soo, 2 (X). O

Proposition 5.3. Suppose ® is a function in S(R>o) such that for all M € N, the functions
A= A"MB(N) belong to S(R>g). Then:

(i) For almost every fized y € X, Ko()(-,y) belongs to Seo 2 (X).

(ii) For almost every fived x € X, Kg(g)(x,-) belongs to Seo, 2 (X).

Proof. From (5.14) in [59] we see that for almost every fixed y € X and for any k € Z,

L Koz)(,y)] = Kgraw) (5 y)-

Hence, if m is an integer with m > d + 1, we have by Lemma 2.3

| L¥ [ Ko) (0)] ()| = [ Kgraiz) (@, 9)] S 1A = XB) || () D1,m (2, y)
S A = AR ||y [V (9, D] 71+ d(2,y)) ™5, for ace. z € X.

This shows that Kg()(,y) € Seo.2(X). Since Kgoy(z,-) = Kgg)(-,x), we also have
Ko(2)(2,") € Seo,2(X) for almost every fixed z € X. O

If f eS8, »(X)andif ®is a function in S(R>o) such that for all M € N the functions
A= A" MP(N) belong to S(R>q), then (thanks to Proposition 5.3) it is natural to define

(L) f(x) = (f, Ko(z)(x,")), forae zeX.

This extends the domain of (%) from L?(X) to S, ,(X).

Lemma 5.4. Let {E(\) : A > 0} be spectral resolution of £. Then the spectral measure of {0}
is zero, i.e., the point A = 0 may be neglected in the spectral resolution.
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Proof. Assume by contradiction that E({0}) # 0, then there exists g € L?(X) such that f :=
E({0})g is not the zero element in L?(X). Since E({0}) is a an orthogonal projection,

E({0})f = E{0})E({0})g = E({0})g = f.

It follows that
= [Tetapoyg = [T e taBOEqONS = [ BN = BODS = .
0 0 {0}
which implies

£z x) = le™ fllzoe(x) < Sup/ pe(z, )1 f (W) dp(y)
zeX JX

IA

1/2
sup |l ([ It )
zeX X

1 d(z,y)\ "
S sup 11l 22 (x dp) </X V(e VI (1 + NG ) dﬂ(?/))
I £l 22 (x,dp) Il 22 x)

su
SR V@ VO infaex[Vie, V12
gt_ﬁ/4||f”L2(X)—>0 as t — oo,

where we used the reverse-doubling and the non-collapsing conditions. Hence f = 0 in L?(X),
which leads to a contradiction. Therefore we must have E({0}) = 0. O

The following Calderén reproducing formula is a homogeneous counterpart of Lemma 3.10. It
plays an important role in establishing homogeneous Besov and Tribel-Lizorkin spaces associated

to Z.

Proposition 5.5. Suppose ® € S(R>(), ® vanishes near the origin, and

Y ®2¥N) =1 for all X € Rsy. (5.2)
j=—0o0
Then for any f € S (X),
f=Y 2@ ¥L)f in S o(X)
Jj=—00

Proof. By duality, it suffices to show that for all ¢ € So 2 (X),

(oo}

o= > B2 VL) inSw2(X).

j=—o00

(oo}
To do this, we first show that the sum Z (272 )¢ converges in the topology of S o (X).
j=—o00
For this purpose we write

i Prom (2277 2)0)

j=—o00
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0 %)
= > Pem (PR7VL)) + D Prm (2(277.2)0)

0
= Z esssup(1l + p(z, Io))m|$kq’(272j$)¢@)|

= o0 reX

+ 3 esssup(1 + pla, 20))™ [ LEB(27Y 2)p(x)]

j=1 rzeX
0 . . .
= Z 223(m+1) ggq sup(l + p(=, zo))mf(2727.,2’)7”“(1)(27%92”)(D?k*m*lgb)(:c)|
. zeX
j=—o0

+ Z 27 esssup(1 + p(z,20))™|(277 L)' (27H L) (L ¢) (2)].

= zeX
Note that if 7 < 0 then by Lemma 2.3 and Lemma 3.7
@) e L) (L ) (o)
S/X\K(zﬂjf)m“@(szz)(fc’y)!(of’“‘m‘%)(y)du(y)
S/XD2*j,m+5d/2(m7y)Dl,m+5d/2(y7xO)d:u(y)

< Da-s a2, 0) S [V(20,279)] 711 + 27 p(, ) ™™
<279 (1 4 p(x,20))™™, for ae. x € X,

while if j > 1 then
|27 2) o2 M L) (LM ) ()]
S/X|K<2*2f$>*1q><272iz>(%y)|\i”’““¢(y)|du(y)
§/XDzi,m+5d/2($»y)Dl,m+5d/2(y,xo)du(y)
S Dimyaye(,20) S (14 p(z,x0))"™, forae. zeX.

Hence

oo 0 oo
Y. Pem (2272)8) S 3 4 Y2 <o,
j=1

j=—o0 j=—c0

which yields that sum Z ®(27% L) p converges in the topology of So,_«(X). By the com-

j=—00

pleteness of Soo 2 (X), there exists ¢ € S, 2 (X) such that

oo

Y 2 HL)p=1¢ inSw.z(X).

j=—00

On the other hand, by (5.2) and the spectral theorem (cf. [66, Theorem VII.2]) and Lemma 5.4,

we have
o0

Y o2 ¥L)p=¢ inL*X).

j=—00

Therefore, 1) = ¢ in Soo, »(X). This completes the proof.
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5.2 Definition of B;:f(X) and szg(X)

We now introduce homogeneous Besov and Triebel-Lizorkin spaces associated with .Z:
Definition 5.6. Let ® € S(R>¢) such that

supp® C [272,2%] and |®(N\)| > ¢ > 0 for A € [273/2,2%/], (5.3)
Set ®;(\) := ®(27% ) for j € Z.

(i) If s e R, p € (0,00] and ¢ € (0, 0], we define the homogeneous Besov space B;;qf(X) as the
collection of all distributions f € S, o (X) such that
1/q

sz = | 2o 120 L | < oo

j=—o0

/]

(11 If s € R, p € (0,00) and ¢ € (0,00], we define the homogeneous Triebel-Lizorkin space
F32(X) as the collection of all distributions f € Sl 2(X) such that
- 1/q
1l 22 (x) = Z 27°®;(2) f|* < o0.
7w Lr(x)

Given a function & € S(Rxo) satisfying (5.3), a distribution f € S ,(X), and a positive
number a, we define a system of Peetre type maximal functions by

(LY () = _12;(2) 1)l :
[(I)J (g)]af(x) T esyses;(lp (1 + QjP(x,y))a’ T e X?J € Z7
where ®;(-) := ®(272%7.) for j € Z.

The following two theorems are homogeneous counterparts of Theorem 3.4 and Theorem 3.5
respectively. Their proofs are analogous to those of Theorem 3.4 and Theorem 3.5 respectively
and are thus skipped.

Theorem 5.7. Let ® be a function in S(R>o) satisfying (5.3). Set ®;(\) := ®(272\) for j € Z.
(i) If seR, pe (0,0], ¢ € (0,00] and a > %d, then for all f € S ,(X),

1/q 1/q

Dot |~ | 2o 1250 Fl

Jj=—00 j=—o00

(ii) If se R, p € (0,00), g € (0,00] and a > mif{‘; a7 then for all f € Sl 2(X),

1/q 1/q
oo oo

S 2| ~I DS 2 e8|
T Lr(x) T Lr(x)

Theorem 5.8. Let ®,& be functions in S(R>0) both of which satisfy (5.3). Set ®;(\) =
D(272N) and ©;(N) :== ®(272I\) for j € Z.
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(i) If s€ R, p € (0,00], g € (0,00] and a > 0, then for all f € S, ,(X),

1/q 1/q

YR Nt ey |~ | D 2@ N

j=—o00 Jj=—00

(ii)If s € R, p € (0,00), g € (0,00] and a > 0, then for all f € S, o (X),

1/q 1/q

PINEACIES ~ X e
J=70 Lr(X) T Lr(x)

Combining Theorem 5.7 and 5.8, we get the following corollary:

Corollary 5.9. The definition of B;;;}p (X) and F;j’p(X) are independent of the choice of @, as
long as ® € S(R>¢) and ® satisfies (5.3).

5.3 Properties and characterizations

In this section we list some properties and characterizations of B3Z(X) and F57Z (X). All the
statements can be proved similarly as their inhomogeneous versions given in Chapter 3. Thus
we will skip all the proofs.

Proposition 5.10. Let s € R, p € (0,00] and g € (0, o0].

(1) Soo,2(X) C B;:acf(X) C Sl o(X) and the inclusion maps are continuous.
(ii) The space B;:;?(X) is a quasi-Banach space.

Proposition 5.11. Let s € R, p € (0,00) and q € (0, 00].

(1) Soo,2(X) C sz”f(X) C S, #(X) and the inclusion maps are continuous.
.. - 573 . .

(ii) The space Fy:;7 (X) is a quasi-Banach space.

Theorem 5.12. Let @ be a function in S(R>¢) satisfying (5.3).

(i) If s e R, p € (0,00] and g € (0,00], then

11

S o dt\Ve
weoo~ ([ TIEMN0T)

(ii) If se R, p € (0,00) and g € (0,00], then

oo 1/q
(oo
0

Definition 5.13. Let K,S € Ny, and let @ be a dyadic cube in Z, with k € Z. A function
ag € L?(X) is said to be a (homogeneous) (K, S)-atom for Q if ag satisfies the following
conditions for m € {K, —S}.

/]

~

P (X)

LP(X)

(i) ag € D(Z™);
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(i) supp(L™aq) C Blzq, (A1 + 1)27F);

(iii) esssup |.L™ag(x)] < 22™ [u(Q)]) V2.
rzeX

Following [35], we define the sequences l');q and f;7q:

Definition 5.14. (i) Let s € R, p € (0,00] and ¢ € (0, 00]. The sequence space l');q consists of
all sequences w = {wq}Qeu,c,2, of complex scalars such that

a/p\ /4

= | 22 2| D (wellw@y/r=2)” <00

k=—00 QEDy,

[[w

(ii) Let s € R, p € (0,00) and g € (0,00]. The sequence space f;’q consists of all sequences
w = {wQ }Qeu,e, 2, Of complex scalars such that
1/q

jo, =L 22 2 D (lwellu(@)] ™ #xe)” < 0.

k=—o00 QEDy,

[[w]
Lr(X)

Here, x¢ is the characteristic function of Q.

The atomic decomposition of B;:f) (X) and F{ff (X) is stated in the following two theorems:

Theorem 5.15. Let s € R, p € (0,00) and q € (0,00). Let K, S € Ny such that K > 5 and
S > 2% — 5. Then there is a constant C > 0 such that for every sequence {aqQ}qQeuc, 2. Of
(K, S)-atoms and every sequence w = {wq}Qeuyes2, 0f complex scalars,

> > weaq < Cllw

FEme e By (X)

Pe.
bpy(l

Conversely, there is a constant C' such that given any distribution f € B;;f)(X) and any K, S €
No, there ezist a sequence {aq}qeu,c,2, of (K, S)-atoms and a sequence w = {wq}qgeu, 2, Of

complex scalars such that
oo

f=>. ) wquq

k=—00 QED),

where the sum converges in 8., o (X), and moreover,

[[w

by, < C'llSI
P,q

s, L .
BPJI (X)

Theorem 5.16. Let s € R, p € (0,00) and q € (0,00). Let K, S € Ny such that K > 5 and
S > m — 5. Then there is a constant C' > 0 such that for every sequence {aQ}Qeuy,c, 2
of (K, S)-atoms and every sequence w = {wq}Qeu,c,2, of complex scalars,

o0

> D waag < Cllw

k=—00 QED, Fs,fé’(X)
p,q

foa

Conversely, there is a constant C’' such that given any distribution f € F;”f (X) and any K, S €
No, there ezist a sequence {ag}qeu, .2, of (KK, S)-atoms and a sequence w = {wq}qQeu,cr2, Of
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complex scalars such that
o0

=7 Y wauq

k=—0c0 QEDy,

where the sum converges in S, (X)), and moreover,

holl ;< €l ey

Using atomic decomposition, one can prove the following result:

Proposition 5.17. Let s € R, p € (0,00) and q € (0,00). Then S, 2 (X) is dense in B;:f(X)
and is dense in F;;f;(X).

The complex interpolation property of B;:f (X) and F;f (X) is stated as follows:

Theorem 5.18. Let —00 < 59 < 00, —00 < 81 < 00, 0 < pg < 00, 0 < p; <00, 0 < gg < 00,
0<qr <o0and0< 60 <1. If s,p,q are given by s = (1 —0)sg +0s1, 1/p= (1 —0)/po + 0/p1
and 1/q=(1-06)/q0 + 0/q1, then

(ByoZ(X),ByrZ (X)), = By (X),

Po,90 P1,q1 pP,q
(Eporad (X), Byl (X)) = Eyil (X)),

and the corresponding quasi-norms are equivalent.

We have the following lifting property:
Theorem 5.19. Let s € R, p € (0,00) and g € (0,00). Then:
(i) For any o0 € R, £ is an isomorphism of B;:f(X) to B;EQ‘TFZ(X).

(ii) For any o € R, Z7 is an isomorphism of F;;f(X) to F;;Q"’z(X).

We also have the following embedding theorem:

Theorem 5.20. (i) Let 0 < py < p1 < 00, 0 < ¢ < 00 and —o0o < s1 < 8¢9 < 00. Then we have
the continuous embedding

Bioil (X) € Bl (X)) if so = dfpo = 51— d/p.

Po.q P1,9

(ii) Let 0 < pp < p1 <00,0< g <00, 0 <7 <00 and —o0 < 81 < 59 < 0. Then we have the
continuous embedding

FooZ(X) C F52(X) if so—d/po = s1 — d/p1.

Po,q p1,7

Moreover, we have the following useful result:

Theorem 5.21. Let s € R and g € (0,00], and let M be a nonnegative integer such that
M > s/2. Let ¥ be a function in S(R>¢) such that

[TA)| > >0 on {2732 <\ <232} (5.4)
for some e > 0, and

the function X — \"MW(X\) belongs to S(Rxg). (5.5)
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Set W;(X) :=U(272I\) for j € Z. Then the following statements are valid:
(i) If p € (0,0] and a > 2—;, then for all f € L?(X),

1/q 1/q

1l 00~ | 22 1270l | ~ | 22 127

J=—0o j:—OO

00 v . g dt 1/q oo . . dt 1/q
~([rme g y) ~ ([ rrveanhg )

(ii) If p € (0,00) and a > —24 then for all f € L*(X),

min{p,q}’

1/q 1/q

oo~ || 2o [P ~ Y )

j=—o0 j=—o0

Lr(X) Lr(X)
oo 1/q

([ rlweenn )
0

> dt\ "
(/ tsq;xp(ﬂg)fyq)
0 t
The above theorem along with the fact that L?(X) OB;:;]E (X) (resp. L?(X) OF;’f (X)) is dense
in B;:qg(X) (resp. szf(X)) (cf. Proposition 5.17) yields the following

/]

~ ~

Lr(X) Lr(X)

Corollary 5.22. Let s € R and q € (0,00], and let ¥ be the same as in Theorem 5.21.

(i) If p € (0, 0], then B;:f(X) is isometric to the completion of the space

1/q
fel? Xy | X 20 L, | <oe
J=—00
in the quasi-norm
- 1/q
1l 0 = | 22 2PN
J=—00

(ii) If p € (0,00), then Fpsf(X) is isometric to the completion of the space

1/q
fer*X): || > [2¢v;2)f| < o0
T Lr(X)
in the quasi-norm
- 1/q
HfH*F,;,f(X) = Z ‘stq/j($>f|q
j=—o0

Lr(X)

5.4 Area integral characterization of Fz?j’ﬂ(X) for 0 <p < oo

Recently, Hardy spaces H%,(X) on a metric measure space X associated to a non-negative self-
adjoint operator £ satisfying Davies-Gaffney estimates were studied by Hofmann et al. [46] and



Chapter 5 Homogeneous function spaces associated to operators 70

by Jiang and Yang [56]. Since the pointwise Gaussian upper bound estimate (2.8) implies the
Davies-Gaffney estimate (see e.g. [59, Proposition 2.7]), the theory developed in [46] and [56]
can be applied to the setting of the present paper. Let us recall from [46] and [56] the definition
of HY,(X). Set

H*(X):=R(Z)={ZLuec *2(X):uc D(ZL)}

Then L?(X) = H*(X) ® N(&), where N () stands for the null space of . For 0 < p < oo,
the Hardy space HY,(X) is defined as the completion of

{f e H*(X): S2(f) € LP(X)}

in the quasi-norm
111z, ) == 152 (FllLex),

where S f is the Lusin area integral defined by

1/2
_ 2 p, —t2Z 2dﬂ()ﬁ
m)—(//mt.z f<>|(”)t> 7

with T'(z) := {(y,t) € X x (0,00) : p(y,x) < t}. Since the heat kernel of .# obeys the Gaussian
upper bound, by a result in [4] we know that H',(X) = LP(X) for all p € (1, 00).

It is worth pointing out that, under the assumption that p(X) = oo, one has H?(X) = L*(X).
Indeed, from Lemma 5.4 we see that 0 is not an eigenvalue of .Z, i.e., N(.Z) = {0}. This along
with L2(X) = H*(X) ® N () yields that H?(X) = L?(X).

The aim of this section is to show the following theorem:

Theorem 5.23. Let p € (0,00). Then Fz?f(X) = H',(X) with equivalent quasi-norms.

For the proof of this theorem we need some preparation. For f € L*(X), a > 0, t > 0 and

x € X, we define
. 2Le L f(y)]? duly) dt
wzlf (/ / (L+t=2p( )>2aV<xt>t>

) ._ 2Ze "L f(y)|
s L)) = e Ty

Lemma 5.24. Let 0 < p < oo and let a > d/ min{p,2}. Then there is a constant C' > 0 such
that for all f € L*(X),

and

1Ga. 2 (F)llrxy < ClS2(f)llLex)-

Proof. For the proof, we refer the reader to [13, Theorem 3.5]. See also [36, Lemma 3.1]. O

Lemma 5.25. Let 0 < p < 0o and a > 0. Then there exists a constant C' > 0 such that for all
fe LX),
0o 1/2
. 2dt
([ przatncolT)
0

Proof. Note that for all a > 0, ¢t > 0, and € X, we have

1S2(Nllrx)y <C

L (X)

1 2 2 2
o /B 2 ) Panty)
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2 t2$ —t2¥ 2
< esssup |t2.Ze " f(y)|? < 22 esssup | 6_1 f(y)La
yEB(z,t) yEB(z,t) (1+t~1p(x,y))

£2.Le " f(y)|? 2
< 2a | — 2a * .
<2 esyses)t(lp ATz, y))2 2% [M; o(f)(x,1)]

Applying the norm fooo | - |% on both sides, we get

sen@) <2 [ M0

This yields the desired estimate. O

Lemma 5.26. For anyr >0, a >0 and N € Ny with N > a+ 5d/2, there is a constant C > 0
such that for all f € L*(X), L € Z, t € [1,2] and a.e. z € X,

. N -2 [T (272UHIEL) f(2)]
(M o (f)(,27 )] <C Y 273N XV(z,2*f)(1+2€p(x,z))ardﬂ(z)7 (5.6)

j=—oc0

where U is a function in S(R>o) defined by ¥(N\) := Ae™*, X € Rxo.

Proof. We follow the ideas of [68] and [84]. Clearly, |¥(A)] > 0 on {1/4 < A < 4}. Let us fix
an arbitrary I' € S(R>o) with the property that [T'(A)] > 0 on {0 < A < 4}. Then there exist
®,0 € S(R>) such that supp ® € [0, 4], supp© C [1/4,4], and

DNT(N) + i@(r?jx)xp@—%) =1, VAE€Rs.

By replacing A with 27242\, we get for all £ € Z, t € [1,2], and X € Rxo,

(oo}
2NN + > 02 M2 2N T (272 ) = 1.

j=1

It then follows from the spectral theorem that for any f € L?(X,dpu),

f=0@ P L@ MPL)f+) 0@ U w2 it g f
j=1
holds in L?(X)-norm. Hence, for a.e. y € X, we have
T2~ H2.2) f(y) = @272 L) (272 2) U (2722 .2) f ()

+ Y URTHL)QR U2 w2202 2) f(y)

j=1

Coro (5.7)
:/ Kgo-202 2yr(2-202.) (Y, 2) V(27 7°L) f(2)dp(2)
X

+Z/ Kya-2tppye@-20toee) (Y, 2) W27 2UTO2.2) f(2)du(z).
j=1"%

Let m be an integer such that m > {d + 1,5d/2 4+ a}. Since © vanishes near the origin, the
function A — A"V O()) belongs to S(R>p). Hence by Lemma 3.8 there exists a constant C' > 0
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(depending on N and m) such that for all £ € Z, j € {1,2,---}, and ¢ € [1,2],

| Ky (2-2002 )0 (2-26+012.22) (U, 2) |
< CNE(E) [ mamy A = (XN NOEN) [ ()2 N Dt p—24(y, 2).

Obviously, for fixed N and m, there is a constant C depending on W, ©,m and N such that

e [T () |ty [A = (EX)"NOEN) ||y < C.

Hence
‘Kq,(Q—zétzg)@(zf2(j+€)t2‘>(£) (y, Z)| < 02_2]ND272’m,2d(y, Z), (5.8)

where the constant C' depends on ¥,©,m and N, but is independent of ¢ € Z, j € {1,2,---}
and t € [1,2]. Analogously we have

}K¢(2—2£t22)F(2—2"~t23) (y,2) | < CDy—t y24(y; 2)- (5.9)

Inserting (5.8) and (5.9) into (5.7) and using (2.3), we get

WL )] < O [ Dyl AW ELL) )

7=0
95 L2202 2) f(2)]
SCZQ N/XV(z,2 T Tty sy i) (5.10)

Let r € (0,1]. If we divide both sides of (5.10) by (1 + 2% ~!p(z,y))?, in the left-hand side take
the essential supremum over y € X, in the right-hand use the following inequalities:

(1+ 24 p(, ) ~(1 + 2p(2, ),
(1+2%(2,y))(1+20(y.2)) > (1 +2°p(x, 2)),
W@ L) f(2)] < (W VEL) )] Mo (P, 278)] ' (L4 277 pl, )70,
(14 29t p(a, 2))°0 200
R e | T ) I

we obtain, for all f € L?(X,du), all £ € Z, all t € [1,2], and a.e. x € X, the estimate
w2 (@27

<O T M 2]

Hence, replacing N with N + |a/2]| + |d/2r] + 2, and using [68, Lemma 3], we get

[M:;f(f)(x, 27215)]7« < Ci 2*2(j*f)(N+[d/2rJ+1)r/ |@(272jt2$)f(z)|r du(z)

= x V20 + 2ple, )

22092 2) f(2)]"
_ 2~ 25 N+|_d/2r]+l)r/ ( ' d
CJZO V Z 9— (j+l))(1+2]+5p(z,z))ar M(Z)

} o [ 2R 2 )
< 2—2](N+|_d/27“]+1)7‘2]d/ | d
} Cg V(2 0+ 2ol 2 )
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Loy [ _[RQ@TPIHORL) f(2)]"
= CZQ / (o 201+ 20, 2))r )

This finishes the proof of (5.6) in the case 0 < r < 1.

The proof of (5.6) for » > 1 is much easier. Indeed, from (5.10) (with N + 1 instead of N, and
with @ 4+ (2d + 1)/’ instead of a, where 1/r 4+ 1/r' = 1) it follows that

—2(3+0)¢2 o
~2042 op Z 2j(N+1) |‘I’ L) f(2)]
T2 ) < C 27 / V(z )(1 4 2¢p(y, 2))at+@d+1)/r7 dp(z)

. .
SHOED (U220 f(2)]" )1
) Cf;f J ( V(o D1 1 2opy, 2y M)

1 1/r
. ( VR 2@p<y,z>><2d+1>d“(z))

1/r 1/r'

. (2-U+D2.2) f (= g
<C 22 2N /V 1+2f)(( ))|) du(z) ;2 2 :

where we used (3.8) and also applied Holder’s inequality for the integrals and the sums. Dividing
both sides by (1 + 2%~ !p(x,y))?, and using that

(142 p(a, )" (1 + 2°p(y, 2)*" Z (1 + 2°p(a, 2))*"

we get the desired estimate. O

Lemma 5.27. Let 0 < p < o0 and a > 2d/ min{p,2}. Then for all f € L*(X),

o 1/2
(o) e
0 P,

LP(X)

Proof. Let ¥()\) := Ae™*, A € R>g. Then ¥ satisfies (5.4) and (5.5) with M = 1, and for all
feL?X),t>0and x € X, we have [U(2.2)f]: f(z) = M o(f)(z,t). Hence the desired
conclusion follows from Theorem 5.21. O

Lemma 5.28. For any a > 0, there is a constant C > 0 such that for all f € L*(X) and
€[1,2],

< Ol|Gy, 2 (H)llerx)
Lr(X)

H () ! 5+d/z,g<f><~7t>]2it)1/2

Proof. Let ¥ be the same as in Lemma 5.26. From Lemma 5.26 with r = 2, we see that for any
a > 0and any N € Ng with N > a+5d/2, there is a constant C' > 0 such that for all f € L?(X),
teZ,and t €[1,2],

(M a0, (F)(a,270)]
j+f)t2$) (Z)|2

< 2—4JN/ d
CZ V(z, 2 Zt (14 2tt—1p(z, 2))20+d niz)

—4(j—)N | (27212.2) f(2)]?
< 022 J /X V(Z,ijt)(l+22t*1p(z72))2a+ddu(z)
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<C i 2—4|j—e\(N—a/2—d/4)/ |‘I’(2*.2jt2$)f(z)|2 dp(z)
>~ X (1+2]t_1p(zyz))2a V($,2_Jt)7

j=—00
where for the last inequality we used (2.3) and the following inequality:
(1 + 2jt71p(m7 Z))2a+d < 2(j7£)(2a+d)(1 + 2€t71p(x, Z))2a+d’ vj > /.
Taking the norm ff |- |4 on both sides, we get

2
J LA

< Z o—4lj—tl(M—a/2—d/4) / / |¥(2 2”23) fEP_du(z) dt
29t p(x, 2))% V(z, 2-91) 1

j=—o00

Choose M such that M > a/2 4 d/4. Then applying Lemma 3.11 in LP/2(£') we obtain

1/2
o 1/2 ¢ 2dt >
S DS e (D20 |
=mellLera e
- 1/2
S|V S s v e - Iz
(1+27t=1p(-,2))2* V(-,279t) t [ a2 Le
J==ool|Le/2(g1y
This completes the proof. O

We are now ready to give the

Proof of Theorem 5.23. Let 0 < p < co. Fix a > d/ min{p, 2} and a’ > 2d/ min{p, 2}. Then, by
Theorem 5.21, Lemma 5.28, Lemmas 5.24, Lemma 5.25, and Lemma 5.27, we have that for all

fe*(X),
o0 o odt\?
i~ |( | 1e2eesPT)
P,2 0 t
LP(X)

< </0°° [M§+d/2,$(f)(.7t)]zit>1/z

Lr(X)

1622 (Dlerr S 18 2(Pllrcxy
0o . o dt 1/2
([ bz aneorT)

Hence ||fHFo,5<£(X) ~ [|Sz(f)llLe(x) for all f € L*(X). Since L*(X) ﬂFﬁ’f(X) is dense in
EX57(X), and L*(X) N HY,(X) is dense in HY,(X), we have F5” (X) = HY(X). O

~ Hf”pgf(x)
LP(X)

5.5 Identification of Fﬁgg(X ) with atomic Hardy spaces
Hy (X)

Hofmann et al. [46] and Jiang and Yang [56] established the (p, 2, M)-atomic decomposition for

the Hardy spaces F;)j’ﬂ(X), 0 < p <1, by following the tent space approach of Coifman et al.
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[16]. The purpose of this section is to present a (p,q, M)-atomic decomposition of 1*.“1?)’2“20()()7
0 < p < 1. Our approach is different from that of [46] and [56]. To achieve our goal, we shall
apply the Peetre maximal function characterization of Fﬁ’f (X). The main idea of this section
comes from [14], [34] and [21].

Let us start by the following definition:

Definition 5.29. For any distribution f € S (X) and any k € Ny, we define Z*f to be a
distribution in S8’ (X) given by

<$kfa¢>:<f7$k¢>v VQSGSD?(X)a

and we call Z*f a distribution derivative of f in the sense of 8% (X). Also, we say that a
distribution f € S (X)) coincides with a measurable function h : X — C, if for every ¢ € S»(X)
the function h¢ lies in L'(X) and

(f.6) = /X () ) du(z).

If a distribution f € S, (X) coincides with some measurable function h, we shall consider the
pointwise value of f, given naturally by

f(x):=h(z), zelX.

If a distribution f € S, (X) coincides with some function h € L9(X), we will write f € LI(X),
and also set

[fllzacxy = 1Rl La(x)-
Now we introduce the notion of (p, g, M)-atoms associated to Z.

Definition 5.30. Let p € (0,1], ¢ € (1,00] and M € N. A distribution a € §',(X) is called a
(p,q, M)-atom if there exist a distribution b € S%,(X) and a ball B = B(zpg,rp) such that:

(i) a = £LMb, where £Mb is the distribution derivative of b in the sense of 8%, (X);
(ii) for every m € {0,1,--- , M}, Z™b coincides with a measurable function on X;
(iii) for every m € {0,1,--- , M}, supp-£™b C B;

(iv) for every m € {0,1,--- , M}, [[L™b||La(x) < ré(Mfm) [V(zg, TB)]I/’I_l/”.

We say that f = 272 vja; is a (p,q, M)-atomic decomposition (of f € S (X)) if {7;}52, is
a sequence of complex scalars with Z;io |7;|P < o0, each a; is a (p,q, M)-atoms, and the sum
converges in S’y (X). Set

HM(X) = {f €8%(X): f admits a (p,q, M)-atomic decomposition }

with the quasi-norm given by

1/p

o0 o0
\|f||H2(1,M(X) = inf Z |vi|P cf= nyjaj is a (p, ¢, M )-atomic decomposition
j=1 j=1

The goal of this section is to prove following theorem:
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Theorem 5.31. Suppose p € (0,1], ¢ € (1,00), M € N and M > L% — 5] + 1, where g is the
same constant as in (2.5). Then

Eyyf (%) = H"M (X)

with equivalent quasi-norms.

Remark 5.32. If ¢1 < g2, then every (p, g2, M)-atom is also a (p,q1, M)-atom. Consequently,
Hf;,q"”M(X ) C Hf;fh’M(X ), and the inclusion map is continuous.

Lemma 5.33. Suppose ® is a function in S(R>o) satisfying (5.3), and ¢ € (1,00). Then there
exists a constant C > 0 such that

||f||F§;jf(X) < Clfllpacx,ap- (5.11)

Proof. This follows immediately from the fact that Fg’f (X) = LYX) for all ¢ € (1,00), which
is proved in [4]. Here we give a different proof. First note that (5.11) is valid for ¢ = 2. To see

this, we set
o0

O = > B2 FND(27N), NeERs.
j=—00
Since ® satisfies (5.3), we have |[®(\)| < AN for A € (0,1), and [®(\)| < A7 for A € (1,00),
where N can be taken to be arbitrarily large. Using these, it is easy to show that © € L= (Rx¢).
Hence it follows from the spectral theory that for any f € L?(X),

Moo~ [ 3 |<I>(22j$)f(x)|2du(:r)=< > <I>(22j$)‘1>(22j$)f,f>

J=—0 j:—OO

IN

Y e V)02 L) f £l z2x)
Jj=—00 L2(X)
10(L) fll 2o I fllz2x) < 100 poe ooy 1132 x) S IF132(x)-

In order to show that (5.11) is valid for all ¢ € (1, 00), by vector-valued singular integral operator
theory it suffices to verify that

1

H{Kq;.@—zjg)(l‘,y)}i7m||£2 5 m for all distinct X,y € X,

and that for some 6 > 0

/ 6
Koo .0(2,9) — Ko@)V | < p(y’y)> 1
{Ka@2-21.2)(2,y) — Ko@-22)(x Z/)}J:,OOHE S (p(%y) V(z, p(z,y))

whenever p(y,y’) < $p(x,y). But these can be verified in a standard manner by using (2.14)
and (2.15). We omit the details here. O

Now we are ready to give the

Proof of Theorem 5.31. We first show that Hg;q’M(X) C ng’f(X) and the inclusion map is
continuous. To do this, it suffices to show that there is a constant C' such that for all (p, g, M)-
atoms a,

lall 0.2 x) < C.
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Let a be a (p, ¢, M)-atom related to the ball B = B(zp,rg), and ¥ be a function in Ay (R>¢)
satisfying (i)—(iv) in Lemma 4.7. We write

p/2

lallzge o~ /. o S L) | duty)

_]7—00

p/2

+/ Z V(272 ZL)aly)l? du(y) =: I + L.
X\B(zp,2rB)

j=—00
Applying Holder’s inequality, Lemma 5.33 and (2.1), we get

L < [l
q,

: (X)[V($372TB)]1_p/q S lallfo )V (@p, )] 71 S 1.

To estimate I, note that if y € X\B(zp,2rg), z € B(zp,75), and p(y,2) < 277, then (by the
triangle inequality) rp < p(y, 2) < 277. Thus,

p(y,x8) < ply,2) + p(z,2) <277 +rp <2771

Hence, for y € X\B(xpg,2rg), by the support property and size property of
K a2 ymw (225 2)(2,y), Holder’s inequality, and (2.5), we have

Z (@27 .L)a(y)?

j=—o00

= >

—logy[p(y,25)]+1

2
/ a(2) K2 (y, 2)du(2)
B(IB ’I”B)

2
= > 24jM/ b(2) K (-2 zymw(a-21.2) (Y, 2)dp(2)
j<—logylp(y,wm)]+1 B(ep,z)
2
< > 29M v (y, 27772 (/ Ib(Z)Idu(z)>
—logylp(y.ep)]+1 B(s.,rs)
S > 29MV (4, 277)] 2B 0 ) [V (25, 75)]
—logy[p(y,zB)]+1
< > UMV (y,279)| "2 M [V (w g, )|/ 1 2/P [V (2, 7)) /T
—log,[p(y,xB)]+1
S Y MWV re) R Ve, re) P
—log,[p(y,xB)]+1
R T LD SR
—logs[p(y,rB)]+1
SRRV (@, )] P oy, ap)) T WM.
It follows that
L < MO (2 ) ! / oy, )] PN 24 (y)
X\B(z,2r5)
=g MR (g )] T Y / [p(y, )] PN 2dp(y)
B(zp,2*t2rg)\B(zp,2Ft1rp)



Chapter 5 Homogeneous function spaces associated to operators 78

< T%(4M+2c)/2[v($3’ TB)]_l Z Virg, 2k+2TB)(2k+17,B)—p(4M+2g)/2
k=0

5 [V(xBarB)]il Z V(ﬁCB’T‘B)deQ*kP(Z‘LM‘Fz()/Z
k=0
<1

Here, for the last inequality we used that M > 2% -3

Next we turn to the proof of Fl?éf(X) c HZM(X). Since L2(X) N FI?Q“?(X) is dense in
Fg”f(X) (cf. Proposition 5.17), it suffices to show that any f € L*(X) N FZ?Q‘Z(X) admits a
(p, ¢, M)-atomic decomposition.

Choose a function ¥ € Apr41(R>0) satisfying the conditions (i)—(iv) in Lemma 4.7 in which M
is replaced by M + 1. Then there exists a function ® € S(Rx¢) such that supp ® C [272¢,22%¢],
|®(\)| > 0 for A € [273/2¢,23/2¢] for some € > 0, and

o0

D WERTFNRER TN =1, VAR

j=—o00

Hence it follows by the spectral theorem (cf. [66, Theorem VII.2]) and Lemma 5.4 that for all
e (X)nips(x),

o

f= > v VL2 YL)f, (5.12)

j=—00
where the sum converges in L?(X) and hence, in the topology of S, (X). Now define

1/2

n(z) = Z! 2 i) |

j=—00
where a > 2d/p. For every k € Z, set
Q= {z € X :n(z) > 2~}

and

ﬁkz{xeX:M(Xm)() zﬁjAd}

where A, Ao are positive numbers same as in Lemma 4.1. Note that by the Hardy-Littlewood
maximal theorem
(%) < Cu(S2).

For every k € Z, we also set
Re=1{Q € 2 : u(QN%) > u(@)/2, 1(QNt1) < u(Q)/2},

and denote
Ry = {Q € Ry, : there is no Q" € Ry, such that Q" D Q}.

For each Q € 2, we set

Fo(x) = U(27%°.2) [xq®(2"%.2) ] (x) = /Q Ky (o210 (@, 9) 82792 L) f(y)dp(y).
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Then by (5.12) we have

=Y Y R-Y 513
j=—00 QE@J' Qe
the sum converging in 8%, (X). Since

s~Um=U U Ue

k=—o0 k=—c0 QPAXERP*  QERy,
QCQpax

we can rewrite (5.13) as

F=20 2 > Fa= 3. D apeagpe

k=— QmaxeRmax QER,, k=— QmaxeRmax
0 k QCQE‘%" o0 Wy k
where
q/2 1/q
~ X 1/ _1/ —29
Yope = C[p(BP>)] 7 / S xe@@@ ¥ L) (@) | dulx) |
X QER
QcQ;;IaX
— > F
anax = Q7
* TRE™ GeR,
QComax

and the ball B;"** is defined by
B = B(a:B;Cnax, TBz'fax) = B(erkx;ax, (A + 1)273‘%1“).

Here, zgmex denote the “center” of the dyadic cube Qi"**. We claim that, if the constant C is
suitably chosen, then aQuex is a (p, q, M)-atom. To see this, set

1 : ; / :
Y 27Mia(mte ) My (270 2) [xo@(27V9.Z) £ (x)
VQpax QERy,
QCQE‘aX

1 B . o
- S 00 [ Ko gy wagaesia ) 0) 8@ 02 F)dn(s)
TR Gery, Q
QcQax

by (z) =

Note that bgmex is well-defined since ¥ € Ap+1(R>p). Observe that aguex = M bgmax in
S'»(X). For every integer m € {0,1,---, M}, the distribution derivative £™bgmex coincides
with the function

m 1 — —m)j —23
L (z) = —— S 272M=mia / K iy 210 5ymsta(a-210 2@ 9)(2729.2) f(y)dp(y).
TQE™ ger, Q
cQpex

From Lemma 4.1 and the support property of the kernel K(2_2jQ2’)m—M\II(2_2jQ;'£)(" -) it follows
that
supp £ bgmax C B™,  ¥Ym € {0,1,--- ,M}.



Chapter 5 Homogeneous function spaces associated to operators 80

To see the size condition of £ bgmax, note that by Hélder’s inequality, for any h € L (X)
satisfying [|All e (x) < 1 we have

[ 2y @)

1 . . . . .
= / > 27EMemie(97%e 2y My (2730 2) [xo B (272 L) f(x) ¢ h(x)du(x)
WQ?mc X Sery
Qcepax
1

- 3 g-2M-mig / [(27%0 2)m =My (2720 Z)[xo®(2 % 2) f] (x)} W(@)du(x)
’Yszax QER
ST

1 . - -
= 3 -a-mia / [\Q@®(2759.2) ] (2) [xq(2 22 L) MU (2 2% Z)h] (x)u(x)
o | o,
QCQax
1/2
1 _ — 1) fomax _9
< e [ ST o@le(e ) )
TQpex X | qer,
Qcipax
1/2
iy — iy 2
| S xeW|@ ¥y M@ te Hh@) | dul)
QER
Qcax
qa/2 /a
1 — —m)jmax —924
< i ST e e 2) @) | du)
TQpex X QERy,
Qeipax
q'/2 Ld

S ve@le ez truetezm@) | du)

QERy,
QCQmax
q/g 1/q
]- —2(M —m)jomax _ 9, 2
< — oM / Y xe@|e@ L) @) | dule)
TQpax X | qer,
QCpax

1/q'

q'/2
/ (Z| 272 )My (2 2J‘$>h<x>|2) dpu(z)

J=—00

=~ m m max 1/q=1
< O(AL+ 1) 200 (B Y go (1)

S 7"2B(1§<£x_m) [M(B;Cnaxﬂ 1/q 1/10’
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where we have set O()\) := X" MU ()\) and C := (4; + 1)2(M_m)|\g@,g|\qu,(x) with

—L7(X)’
ge,z the Littlewood-Paley function defined by
1/2

go.zf(x)=| > W@ Y.L)f(x)]

j=—o0

Here, the Lq'(X )-boundedness of the operator gg ¢ follows from Lemma 5.33 and the fact that
O € A1 (R>o). Therefore, each agmax is a (p, ¢, M)-atom related to the ball B'**.

Now we claim that
q/2

/ 3 Xe@®E@HL) @) | dulr) S 2% (). (5.14)
X QER

Assume this for a moment. Then Hélder’s inequality applied to the sum yields

i Z |’YQ‘,;‘“"|p ~ i Z [M(Bglax)]l—p/q

— max max — max max
k=—00 QP**ER} k=—00 QP ER}

x /X Y xe@e@2e2) f@)2 | du()

QERY
QComax
o0 1-p/q
S > > @)
k=—co \Qp*reRy™
q/2 p/q
| Y Y xew@peto)i@p| )
Quaxermax /X | qery
QComax
o0 1-p/q
= 2| > wer)
k=—co \ Q@ eRy™
a/2 p/q
| [ X xelieeez)s@r ) e

QER

1-p/q
oo

S > >, @) (2% u($2)] "
k=—o00 \ QP**eRpx

5 Z [N(Qk)]lip/q[quﬂ(ﬂk)}p/q
k=—oc0

< ) 2Mu(ay)
k=—o00

< H77||ip(x)

p

Here, for the last line we used the Peetre maximal function characterization of FSQ‘Z (X).
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It thus remains to show (5.14). Note that

U @c. (5.15)

QER
Indeed, for any @ € Ry, and for any = € @), by Lemma 4.1 and (2.2) we have

1 /
; (y)d

1(B(2,2412772)) Jpoan 2oy (y)du(y)

1 /
= j Xy, (¥)duly

1(B(zq,3412792)) Jp(20,4,2790) 2 (9)dp(y)
w(Q N Q) o Ad

T (3414 ) u(Q) T 2-34A¢

Mur(xe,)(z) >

Hence Q C Q. We also note that for all Q € Ry and all z € @ the following inequality holds:
Myt (XQﬁﬁk\Qk“)(x) 21> xg(z). (5.16)
Indeed, by the fact that Q C ﬁk we have

Mgz (Xongan.,) (@) 2 u(lQ)/Qmeﬁk\QkH(y)du(y) > " 1> xq(z).

From (5.15), (5.16), the Fefferman-Stein vector-valued inequality (cf. [39]), and the fact that
() < Cu(Qy), it follows that

q/2
[ S xewiee mesi@r| )
X \Qery
q/2
S /X Q%:Qk leé% |®(2_2j@$)f(w) ‘2 [MHL (XQﬁﬁk\QkJrl )(l‘)] ’ du(z)
qa/2
5 /X QEZRk 51161}22 |¢(272j@$)f(w)‘QXQmﬁk\Qk-H (SL’) d/u’(x)
q/2
-/ S sup [8(2%0.2) f(w)Pxol@) | du(a)
Qp\ Q41 QeRs weq
qa/2

< /Q . S Y sup (0250 2) fw)xale) | dula)

j=—o0 QE; weER
q/2

_2] 2 T
s/\ S e 2] @ | dut)

j=—00

< 2% ().

This verifies (5.14) and completes the proof of Theorem 5.31. O



Chapter 6

Applications to stratified Lie
groups

6.1 Preliminaries on stratified Lie groups

In this section we briefly review the basic notions concerning stratified Lie groups and their
associated sub-Laplacians. For more details we refer the reader to the monograph by Folland
and Stein [34]. A Lie group G is called a stratified Lie group if it is connected and simply
connected, and its Lie algebra g may be decomposed as a direct sum g =V} & --- @& V,,, with
Vi,Vi] = Vggq for 1 <k <m —1 and [V},V,;] = 0. Such a group G is clearly nilpotent, and
thus it may be identified with g (as a manifold) via the exponential map exp : g — G. Examples
of stratified Lie groups include Euclidean spaces R™ and the Heisenberg group H".

The algebra g is equipped with a family of dilations {d; : t > 0} which are the algebra automor-
phisms defined by

m m

5t(Z:Xj> = thxj (X; € V)).

Under our identification of G with g, §; may also be viewed as a map G — G. We generally
write tx instead of 0.(z), for € G. We shall denote by

k= jldim(V;)]

=1
the homogeneous dimension of G.

A homogeneous norm on G is a continuous function z — |z| from G to R smooth away from 0
(the group identity), vanishing only at 0, and satisfying |z~!| = |z| and |tz| = t|z| for all z € G
and t > 0. Homogeneous norms on G always exist and any two of them are equivalent. We
assume G is provided with a fixed homogeneous norm. It satisfies a triangle inequality: there
exists a constant v > 1 such that |zy| < y(|z| + |y|) for all z,y € G. If x € G and r > 0 we
define the ball of radius r about x by B(z,r) = {y € G : |y 'z| < r}. The Lebesgue measure
on g induces a bi-invariant Haar measure dxr on G. We fix the normalization of Haar measure
by requiring that the measure of B(0,1) be 1. We shall denote the measure of any measurable
E C G by |E|. Clearly we have |0;(F)| = t"|E|. Obviously, (G,]|-|,dz) satisfies the doubling,
reverse doubling, and non-collapsing conditions. All integrals on G are with respect to (the

83
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normalization of) Haar measure. Convolution is defined by

frgla /f gy~ tw)dy = /f(xy_l)g(y)dy-

We consider g as the Lie algebra of all left-invariant vector fields on G, and let X1,--- , X, be a
basis of g, obtained as a union of bases of the V}’s. In particular, Xq,--- , X,, with v = dim(V4),
is a basis of V1. We denote by Y7, - Y, the corresponding basis for right-invariant vector fields,
ie.

Y ) = 5 Fexp(tX;)2) o

If I = (i, ,in) € N" is a multi-index we set X! = X{*... X/ and Y! = YJ* ...V},

Moreover, we set
|I| Zlk and d dezk,

where the integers d; < --- < d,, are given according to that Xj € V. Then X' (resp. Y7)
is a left-invariant (resp. right-invariant) differential operator, homogeneous of degree d(I), with
respect to the dilations d;, t > 0.

A complex-valued function P on G is called a polynomial on G if P o exp is a polynomial on
g. Let &,---,&, be the basis for the linear forms on g dual to the basis X1, -, X, for g, and
set 7; = & oexp~!. From our definition of polynomials on G, ny,--- ,n, are generators of the
algebra of polynomials on G. Thus, every polynomial on G can be written uniquely as

P = Za1n17 ar € C, (6.1)
I

where all but finitely many of the coiefficients vanish, and n’ = n* ... 5. A polynomial of the
type (6.1) is called of homogeneous degree L, where L € Ny, if d(I) < L holds for all multi-indices
I with ay # 0. We let P denote the space of all polynomials on G, and let Py, denote the space
of polynomials on G of homogeneous degree L. Obviously, the definition of P, is independent
of the choice of the basis X1,---, X, as long as this basis is obtained as a union of bases of the
V;’s. Also note that Py, is invariant under left and right translations (see [34, Proposition 1.25]).
A function f: G — C is said to have vanishing moments of order L, if

VP € Pr_;: / f(z)P(z)dz =0,
G

with the absolute convergence of the integral.
The Schwartz class on G is defined by

oMl
S(G) = C*G): P—— € L*(G), VI e Ny, VP ;
@) {¢>e (6): Pyt € L¥(G), V1 € N, ep},
that is, ¢ € S(G) if and only if ¢ o exp is a Schwartz function on g = R™. In view of [34,
8676771” by X! or Y7 in this
definition without changing anything. S(G) is a Fréchet space whose topology is defined by any
of a number of families of norms. In the present thesis, for our purpose it will be convenient to

use the following family of norms: if N € Ny, we define

Proposition 1.25] and the remarks following it, we can replace

Iollgny = sup_ (14 faly LK o)
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The dual space §'(G) of S(G) is the space of tempered distributions on G. If f € §'(G) and
¢ € S(G) we shall denote the evaluation of f on ¢ by (f, ¢).

We use the notation S, (G) to denote the space of all Schwartz functions on G with vanishing
moments of all orders. So(G) is a subspace of S(G), with the relative topology. Since Soo(G)
is the intersection of null spaces of a family of tempered distributions, it is a closed subspace. It
is shown in [32] that the dual space S, (G) can be canonically identified with the factor space
S'(G)/P.

For a basis X = {Xi,---,X,} of g chosen as above, we define the sub-Laplacian Ax :=
— 25:1 X ]2, where v = dim(V;). When restricted to smooth functions with compact support, Ax
is non-negative and essentially self-adjoint. Its closure has domain {u € L?(G) : Axu € L?(G)},
where Axu is taken in the sense of distributions. We denote this extension still by the symbol
Ax. By the spectral theorem, Ax admits a spectral resolution

Ay = / ME(N),
0

where dE()\) is the projection measure. If ® is a bounded Borel measurable function on R,
the operator

B(Ay) = /0 T o(aEW)

is bounded on L?(G), and commutes with left translations. Thus, by the Schwartz kernel theo-
rem, there exists a tempered distribution Kg(a,) on G such that

Q(Ax)f = f* Koxy, YfeSG).

An important fact proved by Hulanicki [53] is as in the following lemma.

Lemma 6.1. If & € S(Rxq) then the distribution kernel Kg(a,) of ®(Ax) coincides with a
function in S(G).

For any function h on G and t > 0, we define the L'-normalized dilation of h by
Dih(x) = t"h(tx).

Note that 2-homogeneity of Ax implies that the convolution kernel of the operator ®(t*>Ax)
coincides with D;—1¢, for all ¢ > 0.

—~—

For any function f on G, we define f(z) = f(z~!). Then we have f % g =g * f.

6.2 Besov and Triebel-Lizorkin spaces on stratified groups

Let X = {X;,---,X,} be a basis of g, chosen as above, i.e., X7, -+, X, is a union of bases of
the V;’s. Let Ax be the sub-Laplacian associated to X. It is well-known that the semigroup
semigroup P; = e~ 2% consists of convolution operators with (heat) kernel p;(z) satisfying the
following Gaussian upper bound: for all x € G and t > 0,

pe(z)| < Ct=r/2e= 1212/ (),

where C' and c¢ are positive constants. See for instance [86, Theorem IV.4.2]. Let BIS);QAX(G)7
Bg:qAX(G), sz:qAX(G) and F§7’(IAX(G) be (inhomogeneous and homogeneous) Besov and Triebel-
Lizorkin spaces on G associated to Ax, defined according to the general theory established in
Chapter 3 and Chapter 5. More precisely, these spaces are defined as follows:
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Definition 6.2. (i) Let s € R, p € (0,00] and g € (0,00]. Let (®g,P) € Ap(R>p) for some
nonnegative integer M > s/2. Set ®;()\) := ®(27%\) for j > 1. We define the Besov space
B::2%(G) as the collection of all distributions f € Sy (G) such that

1/q

1l 5o 25 gy 1= ZO 127°@;(A0) f|| oy | < o
e

(ii) Let s € R, p € (0,00) and g € (0,00]. Let (®g, ) € Ap(R>p) for some nonnegative integer
M > 5/2. Set ®;(\) := ®(272)) for j > 1. We define the Triebel-Lizorkin space Fs:2*(G) as
the collection of all distributions f € Sy, (G) such that

. 1/q
1Al ey = > [20®,(Ax) £ < 0.
j=0
L?(G)
Definition 6.3. Let ® € S(R>() such that
supp® C [272,2%] and |®(N\)| > ¢ >0 for A € [273/2,2%/2], (6.2)

Set @;(\) := ®(272 ) for j € Z.

(i) If s e R, pe (0,00] and g € (0, 00], we define the homogeneous Besov space B;:(IAX(G) as the
collection of all distributions f € S/, A, (X) such that
1/q

oo
Byst(@) T Z ||2Js@j(AX)f||ip(G) < o0

j=—o0

/]

(ii) If s € R, p € (0,00) and ¢ € (0,00], we define the homogeneous Triebel-Lizorkin space
F;V’QAX(G) as the collection of all distributions f € S/, A, (G) such that
1/q

Epan(@) T > 20 (A0) f]" < 0.

j=—00

11

L?(G)

Lemma 6.4. Suppose M € N and ® is a function in S(R>o) such that the function A —
A"MP(N) belongs to S(R>q). Then the convolution kernel of ®(Ax) is a function in S(G)
having vanishing moments of order 2M. In particular, if ® € S(R>o) vanishes near the origin,
then the convolution kernel of ®(Ax) has all vanishing moments.

Proof. Let P € Papr—1. Then the function h(z) := AYM P(x) satisfies h(tz) = (A¥ P)(tz) =
t2MAY(P(t) () = t2MAY (PM=1P) (z) = t71(AY P)(x) = t~'h(x), which along with the
fact that P € C*°(G) implies that h = 0. Denoting by ¢ the convolution kernel of ®(Ax) and
by 1 be the convolution kernel of A}EM@(AX), then ¢ = A¥ 1), and hence

/ o) P(x)d = / (AY ) () P)da = / (@)(AY P)(2)dz = 0.
G G G

This shows that ¢ has vanishing moments of order 2M. O
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Lemma 6.5. Suppose L is a positive integer and ¢, are functions on G satisfying that

1

\¢(x)| < CW for all x € G,
/¢ x)dx =0, forallP€Pr_q1, and
1
YIy(z)] < C for allz € G and 0 < d(I) < L.

(1 + [a|)r+E+dD)
Then for any € € (0,1), there is a constant C' > 0 such that for all j,j € Z with j > j',

YD 97’k
|5 % e ()] S 27U )(1 + 2" |z|)s L
where ¢;(x) := (Dg; ¢) () = 205¢(2x) and () := (Do) (x) = 20 %9h(27 x).

Proof. Let y — ngL;l/ (y) be the right Taylor polynomial of ¢;; at the point . By the vanishing
e
moments of ¢ we have

| * i ()] :‘/Gqu(y) [ (1) — PL 1( Y]y
i . -1 _ pL-1/,-1
</|1;|<2"/+'“”'gi)](ymw]/(y x) = Py, (y )|dy
= 2~b
; L) d
+/|y>212"£z |25 W)l[s (™ )ldy
. PLfl —1 d
+/|y>21;;tz|%(y)” ey (U 1dy
::Il + 12 + 13,
By the stratified mean value theorem (cf. [34, p. 33]),

nsf DO s 07106

ly'[<blyl,d(I)=L

/ WIlE sup 2D (T (2 (') | dy
223’ N A ly'|<blyl,d(I)=L
S ol R
y sup y
yl<2itlel /| <blyldn=r (1 + 27" [y/z])s+ L+
—JL|,|L 93’
§/ |y| sup o dy
<2l (277 4 YD) iy (277 + [y'al)

277k |y 2
d
/ e @7+ IyE @+ fely e Y

/ 2-iL ylt
<2ﬂ + \xw“ i< z2slel (277 + )L 27 + ]
277k |yl

< . | d
T+ \xl 277"+ [a])s+E /|y|<2 el (270 4 [yl)stt 279 + Jaf Y

jL 1—¢
S R o R
~<-J+\x| P Jysrsge @7 4TS\ 27+ el

< / 27t ~ + 1yl
27"+ \»’Bl (279 + [2])FE gt (279 £ Jyl)<Ft \ 277 + Ja]
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2 / 9-iL 1 .
= To_i | I..NrtL o — 7 —= Y
(277 A |zl g c2mgiptel (279 [yl)re (2777 + o))t

92— (1~¢) 9—iL
(279 + [z ) Sy c2iiie (277 + Jy])
2_j/2j/(1—5)2—j(L—g)/ g—je

[

Q77+ [a])=tE yczmiiael (277 + [y|)ete

dy

9-3'93' (1—e)9—j(L—e) 1
< -3’ Kk+L / N+sdy
(277" + [a]) ¢ (1+yl)
—j'eo—j(L—¢ i’k
27727007 G 2
T ) T+ 27 o)+ 7

where we used the fact that if |y| < 2*;742\03\ and |y/| < bly|, then 277" + |y/z| > 277" + |z].

For the estimation of I, we have

29l 2L
IQ 5 . n 7 ~ 1 Ldy
lyl>222tel (277 4 [y[)HE (2777 4 [y~ ta])et

2—iL 2-I'k
S/ -3’ —Jj’ Kk+L —J’ -1 H+Ldy
jyl>22tlel (2797 4 [ )= B (2777 + fy =)

9—iL 27L J
ST ~+L/G 27 +|y T

2—JL
RCEEE) K+L/G e
I S SOV LR
ST ) A+ 2 e

To estimate I3, we note that by [6, Proposition 20.3.14] PxL;l/ is of the form
(]

L-1

L
PI,T/JJ' (y) = wj(x) + Z Z W Yi, - lkwj( )7

{=1 k:l <ip,,ip<n
+ +dik=@

where the integers d;, are given by d;, = {f: X;, € Vg}. Hence

I </ 277t >y 21" (k) |y |
3 ~Y il 7-— !
jyl> 23 lel (277  [y|)etE (1 + [27"z[)nrL+t

0<(<L—1

< Z 2— jL2j/(m+Z) / Ldy
o<i<io1 (14 27 )etEFE fyy s 2ma et (277 + [y])etr

9—iL9j' (k+0) 1
(1+[27"2) lyl>2=2kel (277 4+ [yl)

dy

0<¢<L—1
Z 2—jL2j/(n+Z)2j’(L—Z—s)/ 9—i'(L—t—¢) ;
= -/ P ) - P — y
o<i<io1 (14 |20 x| )L+t jy]> 222tz (277 + |y|)rt+L—¢

9-iL o (w095 (L—t—<) (L—t2)
< Z 5/ K+L+L / _j ijl P dy
0<i<L—1 (14 [27"z) ly|> 25zl (277 + [yl)
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9—iL9j' (k+£)9j' (L—L—¢) 1
< D ; =
(L4 2 ])s B s 2maial (277 4 [y]) e

0<(<L—1
Z 9-iL9j (k+6) 95" (L—t—e)9je / 9—je
= 7 N vl ()
0<(<L-1 (1 [27 ) Ete ly|> 24 el (277 + Jy[)rte
Z 9—iL9j' (k+£)9j' (L—L—e)9je / 95k p
< 7 , Y
TR o (L i)
- 9—iL9j' (k+£)9j' (L—L—e)9je 9—(j—3")(L—e)
7 < 7
S P N N
<o-G-iNL-e)___ 2"
~ (1 427" [a])=tE
This finishes the proof. O

Proposition 6.6. Let s € R, p € (0,00) and q € (0,00). Then:
. . .,A . V7A
(i) S(G) is a dense subspace of By 2*(G) and is a dense subspace of F5:2*(G).

(il) Sso(G) is a dense subspace of B;:,IAX(G) and is a dense subspace of F;’,IAX(G).

Proof. We only prove that S (G) is a dense subspace of F}quAX (@), since other statements can
be proved similarly.

We first show that Soo(G) C F;;qAX(G). Let g € Seo(G) and let @ be a function in S(R>)
satisfying (6.2). Let ¢ € S(G) be the convolution kernel of ®(Ax). Choose an integer L such
that

L>max{(k+1)/p—k,(k+1)/p—kK—s5,—s5,0}.

Then there exists sufficiently small £ > 0 such that

L—e>max{(k+1)/p—r—s,—s,0}.
Since both g and ¢ are Schwartz functions with all moments vanishing, it follows from Lemma
6.5 that

. . o 27k
Vi<0: 27°|® 2_2]A = . < 2]82J(L—e)_—
7= ‘ ( X)g(qj)l |g*¢j(m)| ~ (1+2J|x‘)n+L
215

(1 + 27 |x|)(s+1)/p

1
(L ) P07

< 2j52j(L—s) < 2j[L—6+K,—(K,+1)/p+s]

and

V> 00 20002 % Ag)g(a)] = 2°lg * 65(a)] = 29°16, + gla )]

1 < 9-i(L—ets) 1

<9 J(L—ets) - - -
~ (1 + [+t = (1 + [a]) =t/

Hence, if we set

§:=min{L—e+r—(k+1)/p+s,L—ec+s}>0,
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then
- 1/q
lgll ooy = ||| Do @7 1@@Ax) /)"
Pt
L?(G)
N ljlo . 1 e
AR (L) <o

This shows that every function in Se(G) belongs to F;”qAX(G).

Next we show that if s € R, p € (0,00) and ¢ € (0,00) then Sy (G) is dense in F;;qAX(G).
From the proof of Corollary 4.8 we see that it suffices to show that if ® is a function in S(Rx>)
vanishing near the origin and if ¢ is a bounded (not necessarily continuous) function on G with
compact support, then ®(Ax)g € Soo(G). For any I € Njj,

X1(®(Ax)g) (z) = X (g ¢)(2) = g * (X ¢)(x),

where ¢ € S(G) is the convolution kernel of ®(Ax). Since g is bounded function with compact
support, for arbitrarily large positive integer N we have |g(z)| < (1 + |z|)~". Hence

1 1 p
y
(L4 D™ (L +Jy=te )Y

:/ +/ = Il +12
lyl<lz|/(27) lyl>12|/(27)

Note that if |y| < |2|/(27) then |[y~tz| > |z|/v — |y| > |z|/(2v). Hence

I T 71I
X1 (®(Ax)g) ()] < /G 6 llg(y ) |dy < /G

1 1 1
L 5 7/ dy < .
I+ 12DN Jiy<pal/ @y A+ YN (1+ [z))N
For I, we have

1 / 1 dy < 1
71 I\ N — y ~Y M
X+ [2DN Sy s 1a1/2y) L+ y~tz)N (1 +[z))N

I S

Therefore, | X' (®(Ax)g)(z)| < (1 + |z])~", which shows that ®(Ax)g € Seo(G). It remains
to show that ®(Ax)g have vanishing moments of arbitrary order. Let L be any non-negative
integer, and let P € Pr. We have

/ O(Ax)g(z)P(z)dr = / A7 o(Ax)g(x) AL P (z)da = 0.
G G

This completes the proof. O

The following theorem shows that Besov and Triebel-Lizorkin spaces on G are independent of
the choice of the sub-Laplacian.

Theorem 6.7. Suppose X = {X;,---, X, } and X = {)?1, e JZ’n} are two bases of g, both of
which are obtained as unions of the bases of the V;’s.

(i) If se R, p € (0,00] and q € (0,00], then

s,Ax s, A% 58, Ax S
By (G) =By *(G) and B3*(G) = By (G).
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(ii) If se R, p € (0,00) and q € (0,00), then
F325(G) = Fyg H(G) and  E324(G) = Fyiy 7(G)
p,q p,q P,q — 4 pq .
Proof. We only show that F;)’qAX (G) = F; ’qA *(G) since the proofs of other statements are similar.

By Proposition 6.6, L2(G) N Flf;qAX(G) is dense in Flf;qAX(G) and L%(G) N F;,’QA%(G) is dense in
Flf;qAX(G). Hence it suffices to show that for all f € L?(G),

£l gy ~ 11 o (6.3)

§ (@)

Now let f € L?(G). Let ® be a function in S(Rx) satisfying (6.2). Then there exists ¥ € S(R>0)
such that supp ¥ € [272,22] and

pr 272 0)®(27 %)) =1 for all A € Ryg.

j=—o0

From this, the spectral theorem (cf. [66, Theorem VII.2]) and Lemma 5.4 it follows that

f=Y v HA)PQ VAR,
Jj=—00
where the sum converges in L?(G). Hence we have the pointwise representation

o0

22 HAY W) = D SRHAYUR FANRQ TAN (W), weG.

j=—00

Let ¢ (resp. ¢) be the convolution kernel of ®(Ax) (resp. ®(Ag)). Let ¢;(x) := 297¢(2/x) (resp.
;(x) = 27%(2z)) for j € Z. Then for all € Z and y € G,
fduly) = i Fxoy by du(y).
.
It follows that
IRIOED> 17565 s < etz
=
<§m 2 BN ) [ (@ 2Ly e (6.)
= i (@272 Ax)]af () L0,
=

where we have set

L= /G(l +27|2) b * de(2)|dz.

Since both () and ¢() are Schwartz functions with vanishing moments of all orders, it follows
from Lemma 3.1 that

1

i S /(1+23\z| yag == E)2(JA€)'€( +2j/\e|z|)_("+L)dz
G

</ o li—t(E—e=@) 9N (1 4 9iN|[)~(x+L=a)
G
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< 9-li—ti(L—c=a)

where the positive integer L is taken sufficiently large. Let us further observe that

[®(272 Ax)]af (9) < (027 A)]s f(w) (1 + 27|y~ a])®
S [q)(Q_QjAX)]Zf(JC)(l + 2é|y_1x\)a max{1, Q(j—i)a}_

Putting these estimates into (6.4), multiplying both sides by 2¢, dividing both sides by (1 +
2¢)y~12])® and then taking the supremum over y € G, we obtain

B NA () S S 220 lsgis (22 Ay ]2 (x).

j=—c0

Take a > m, L > 2a+ |s| and take € sufficiently small such that L —e —2a — |s| > 0. Then

it follows from Lemma 3.11 that

00 1/q 0o 1/q
(Z \2]’5[@(2-2%)1;]*\‘1) S| 2 pree A . (65)

j=—o00

== Lr(G) LP(G)

By symmetry, the inverse inequality of (6.5) is also valid. This along with Theorem 5.7 yields
(6.3). O

Remark 6.8. From Theorem 6.7 we see that the spaces B;quX(G), B;:(IAX(G), F;V’(IAX(G) and
F;’(IAX(G) are independent of the choice of the sub-Laplacian Ax. Hence in what follows we will
not specify the choice of Ax and write B, ,(G), B;”q(G), F; (G) and sz,q(G) in short.

6.3 B, (G)- and F; (G)-boundedness of convolution opera-
tors

In this section we study boundedness of convolution operators on homogeneous Besov and
Triebel-Lizorkin spaces on stratified Lie groups. Following [75, §5.3 in Chapter XIII], we in-
troduce a class of singular convolution kernels as follows.

Definition 6.9. Let r be a positive integer. A kernel of order r is a distribution K € §'(G)
with the following properties:

(i) K coincides with a C" function K (z) away from the group identity 0 and enjoys the regularity
condition:
\XTK (z)| < Crle| ™D for |I| <r and z # 0. (6.6)

(ii) K satisfies the cancellation condition: For all normalized bump function ¢ and all R > 0, we
have
(K, ¢™)| <C, (6.7)

where ¢®(z) = ¢(Rx), and C is a constant independent of ¢ and R. Here, by a normalized
bump function we mean a function ¢ supported in {|z| < 1} and satisfying

| X'p(x)| <1, V[I[|<N,VzeQG,

for some fixed positive integer N.

A convolution operator T with kernel of order r is called a singular integral operator of order r.
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Remark 6.10. Using [34, Proposition 1.29], it is easy to verify that (6.6) is equivalent to the
following condition:

YK (z)| < Crle|™*=2D | for [I| < r and z # 0.

Examples of such kernels include the class of distributions which are homogeneous of degree —k
(see Folland [34, p. 11] for definition) and agree with C*® functions away from 0. Indeed, assume
K € §'(G) is such a distribution, then it is easy to verify that K satisfies the regularity condition
(i) in Definition 4.1; moreover, from [34, Proposition 6.13] we see that K is a principle value
distribution such that f6<‘z|<L K(x)dz =0 for all 0 < e < L < co. Hence, for every normalized
bump function ¢, by the homogeneity of K we have

(K, ™) = [(K, )| = |lim K (x)[p(z) — ¢(0)]dx

e—0 e<|z|<2

Using stratified mean value theorem (cf. [34, Theorem 1.41]) and (6.6)—(6.7), it is easy to verify
that the last integral converges absolutely and is bounded by a constant independent of ¢ and
R. Hence K satisfies the condition (ii) in Definition 6.9.

Now we state the main result of this section.

Theorem 6.11. Let se R, 0 < p < oo and 0 < g < 0o, and let r be a positive integer such that
r > m + |s|. Suppose T is a singular integral operator of order r. Then T extends to a

bounded operator on B;’q(G) and on F]f,q(G).

If K € §'(G) and t > 0, we define D; K as the tempered distribution given by

(DK, 6) = (K, ¢(t7")), ¢ € S(G).

For the proof of Theorem 6.11, we will need the following lemma, in which b is the same positive
constant as in [34, Corollary 1.44].

Lemma 6.12. Let r be a positive integer. Suppose K is a kernel of order r, and ¢ is a smooth
function supported in B(0,1/(100vb"™)) with vanishing moments of order r. Then, there exists a
constant C' > 0 such that for all j € Z and x € G, we have

[(D2s K) s p()| < C(1+ [a]) ™" (6.8)

and
6% (D K) (@)] < C(1 + Ja]) ™"~ (6.9)

Moreover, both ¢ x (Da; K) and (Dq; K) * ¢ have vanishing moments of the same order as ¢.

Proof. Recall that the convolution of ¢ € S(G) with K € S'(G) is defined by ¢ * K(z) =
(K, (*$)™), where “¢ is the function given by *¢(z) = ¢(xz), and as before f(z) := f(z~1) for
any function f: G — C. From [34, p. 38] we see that ¢ x (Dg; K) are C* functions, j € Z. We
claim that for every x with |z| < %7 the function z — (*¢)~(z) is a normalized bump function
multiplied with a constant independent of . Indeed, using the quasi-triangle inequality satisfied
by the homogeneous norm it is easy to verify that the function z — (*¢)~(z) is supported in
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B(0,1); moreover, since |x| < % and since (by [34, Proposition 1.29])

I_ J
Y' = E Pr X7,
[J]<I1|
() >d(I)

where Py j are polynomials of homogeneous degree d(J) — d(I), we have

XE) I =Y OIS Yo 1o HIX (o))

lJ1<|1|
a(N)>d(I)
= Y P HIX gz < Cr
[J1<|1|
a(J)>d(I)

Here C; is a constant depending on I but not on x. Hence the claim is true. Thus, by the
condition (ii) in Definition 6.9, there exits a constant C' > 0 such that for all j € Z and all x
with |z| < %7

6% (Do K)(2)| = |¢* (Das K)(2)| = | (Do K, ("9))] = [(K, (F¢)~(277)|<C.  (6.10)
Let now |z| > % Let y € supp ¢. Denote by P;E)ly_ x the right Taylor polynomial of Dy K at

x of homogeneous degree r — 1 (see [34, pp. 26-27]). Then by the right-invariant version of [34,
Corollary 1.44], we have

(D2 Ky ™"0) = Prp, (6™ < Clyl™ sup ¥ (DaiK)(a)l. (6.11)
z|<b" |y
d(I)=r

Observe that for y € supp ¢ and |z| < b"|y| we have zz € G\{0}. Thus, for all I with d(I) =r
and all z with |z| < b"|y|, by using (6.6) (with K replaced by Dy; K) we have

V(D K ) (22)| = 277 [(YTK)(2/ (22))| S 2700127 (20)| 777 S o ™
Inserting this into (6.11) we obtain

(Do K)(y~ ') = Pl ey )| < C\ylr| sup ‘szl’””f (6.12)
z|<b" |y

Notice that for |z| > %, y € supp ¢ and |z| < b""l|y|, we have |zx| ~ |z|. Thus, by using the
vanishing moments of ¢ and (6.12), we have

6+ (DuK))| = | [ 60)(Da 01|
< [ 16D ) ) = L5, ity ]y

S sup [ faal Ty lotw)ldy (6.13)
|z <67yl

S el [ ol lo(w)ldy
S fe 7
Combining (6.10) and (6.13), we get (6.8).

The estimate (6.9) follows from (6.8), the fact (Dy; K) x¢(z) = ¢ % (Dgy K)(z 1), and Y K (z) =
(—D)I(XTK)(z=1) (cf. [34, p. 44]).
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It is straightforward to verify that both ¢ * (Dy; K) and (Dy; K) * ¢ have vanishing moments of
the same order as ¢. The proof of Lemma 6.12 is therefore completed. O

Lemma 6.13. Suppose & € S(R>¢), ® vanishes near the origin, and

(o9}

Y @@ N =1 forall A € Rsy. (6.14)

j=—c0

Then for any ¥ € Soo(G),

o0

b= ) B2 YAy,

j=—o00

where the sum converges in Seo(G).

Proof. We first show that S(G) * Seo(G) C Seo(G). For any P € P and f € Soo(G), by the
unimodularity of G we have (P, f) = (P, f) = 0. Hence for any g € S(G) and f € S (G), we
have for all polynomials P on G that

(g f,P)= (g, Pxf)=1(g,0) =0.

This shows that g * f € Soo(G).

We next show that the sum Z ®(27% Ax)¢ converges in the topology of So.(G). To do this,

j=—00

let ¢ be the convolution kernel of ®(Ax) and let ¢; = Dq, ¢, j € Z. For any given nonnegative
integer N, we let N’ be another integer such that N > N + 2mN. Since both 1 and ¢ are
Schwartz functions with all moments vanishing, it follows by Lemma 6.5 that

2272 Ax)Y|| () = 1% * &5l vy
= sup (1+ [z)*™V T | X[« (Dos9)] (z)|

[T|[<N
= sup (Lt [al) V02D 1 [y (X)) o)
_ k+N+d(I)ojd(I) I NG 2(iN0)K
< lIS|1iI;V(1+ |z]) YNl vy I X ll (w27 SO
) k+N+mNg|jlmN —ljIN 2(3N0)k
=tk ’ Hw'|(N/)||¢||(N/+N)2 (1+ 2(jA0)|$|)H+N+mN

1
(1 + [])stN+mN

< (1 [N NI N | g [ vy 279N 2BV

= [|9]l vy |l v gy 271N =N =2m ),

This implies that Z ®(27% Ax)¢ converges the topology of S (G). Hence (since Soo(G) is

j=—c0

complete) there exists n € Soo(G) such that Z (2727 Ax)¢ converges in the topology of
j=—00

Soo(G) to n. On the other hand, by (6.14), the spectral theorem (cf. [66, Theorem VII.2]) and

Lemma 5.4, we have

=Y B2 VA,

j=—o0

where the sum converges in L? norm. Therefore, = 1), which completes the proof. O
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The proof of Theorem 6.11 also relies on the existence of smooth functions with compact support
and having vanishing moments of arbitrarily high order.

Lemma 6.14. Given any nonnegative integer M and any positive number &, there exists a
function ® € S(R>¢) satisfying the following conditions:

(1) [T(N)| > ¢ >0 on {2732 < X < 23/2¢} for some & > 0.
(ii) The function X\ — A=MW(X) belongs to S(Rxo).

(iii) The convolution kernel of ®(Ax), denoted by ¢, is supported in the ball {|x| < 6}.

Proof. From the appendix of [38] we see that there exists © € S(R>g) such that ©(0) = 1
and © has compact support. Now let us define ®(\) = (t720\)MO(t72)), A € Rxq, where t
is a positive number. Clearly ® satisfies (ii). Since ©(0) = 1, (i) is also satisfied. Let ¢ and
6 be the convolution kernels of ®(Ax) and O(Ax), respectively. Then ¢(z) = Di(AM0)(z) =
t*(ALQ)(tx). Hence, if we take t sufficiently large, then (iii) is true. O

We are now ready to give the

Proof of Theorem 6.11. Choose a function ® € S(Rs>o) which satisfies conditions (i)—(iii) in
Lemma 6.14 with L = r and 6 = 1/(1007b"). The condition (i) guarantees the existence of a
function ¥ € S(R>g) such that

supp U C [272¢,2%],  [U(N)] > ¢ > 0 on [27%/2,2%/2%¢],

and
o0

> WERTFNR@2TFN) =1, VA€ R (6.15)

j=—o0

Since (by Lemma 6.6) Soo(G) is a dense subspace of Bg,q(G) and of F;7q(G), we only need to
show that for all f € Soo(G),

1+ Kllps (@) <Cllfllss @ and [If* K|

i @) S Cllf g (o (6.16)

Let f € So(G) C L*(G). By (6.15), the spectral theorem (cf. [66, Theorem VIL.2]) and Lemma
6.13, we have

o0

f= > 2 YAx)¥(2 ¥ Ax)f,

j=—c0

where the sum converges in the topology of So.(G). If we denote by ¢ and ¢ the convolution
kernels of ®(Ax) and ¥(Ax) respectively, then

f=Y" fruixd;
j=—00
where the sum converges in the topology of S(G). This yields that

fxK= Z [ * K,

j=—o0
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where the sum converges in the topology of §'(G). Hence for any ¢ € Z we have the pointwise
representation

frKxgux)= > fxipjx¢j«Kxdyz), z€G. (6.17)
j=—00

To estimate |¢; * K * ¢4|, we write

i« K x1py = (Dgi@) * K % (Daed)

_ {Dzj (% (Do s K)] * (Doedp) if j > £,
(Dgi @) * Dae[(Dy-e K) * @] if j < L.

For j > ¢, we can use the size conditions and moment conditions on ¥(!) (D, K) (obtained
in Lemma 6.12) and the smooth conditions on ¢, while for j > ¢ we can use the size conditions
and moment conditions on (Dy-¢K) * ¢ and the smooth conditions on ¢. Thus by Lemma 6.5
we conclude that

9—(i—0)(r—e)__2 if >0
|65 % K x ¢e(y)| S { —i)r—e) (e b e

2(j/\€)m

ol 27
T+ 2y

where € > 0 can be taken arbitrarily small. This and (6.17) yields that
|f * K * ¢p(z)|
< Y0 [15uial0s ¢ K+ oula o)l

j=—o0

> , 2(iNOK ,
<Y z—b—a(r—e)/( f ()]

1 4 2078 z—1g|)mtr

j=—o0

> . . . 2(]’/\@)5
< Y 2709 max{al-0e 1} [Sup |f * 9 (2)] }/( iz

seq (14 29|z 1z))e 1 +4 2078 z—1g|)str—a

j=—oc0

where for the last inequality we used that
(142727 z)® < max{20799 1}(1 4 27|z La])e.
It follows that

2£S|f*K*¢g($)|

50 ‘ A A ‘ ) 2(j/\€)n
S > 2B (2070 11200 A ) [ d
N B a JNL| 5—1 K+r—a
= (14 207t z=1g|)
- —|j—C|(r—e—a—]|s|)ojs —23 * 2(.7/\4)“
<3 ol PP M) [ g
Jj=—o00

By the hypothesis we can choose @ and ¢ such that a > x/min{p, ¢} and r —e —a — |s| > 0.
Then it follows from Lemma 3.11 that

oo 1/q 0o e
(Z 2£Squ*K*¢eH’2p(x)> S ( > 2w Al L(X)) :

l=—00 l=—00
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1/q

o 1/q 00
(Z 2M|f*K*¢f|q> S| 2 2le Ak

l=—00 j=—00

Lr(G) LP(G)
This together with Theorem 5.21 yields (6.16) and completes the proof of Theorem 6.11. O

Corollary 6.15. Let s € R, p € (0,00) and g € (0,00), and let k be a nonnegative integer. Then
for all f € S.(G) =8'(G)/P, we have

s, @~ Do IX Fllgse (6.18)
d(I)=k

1l ) ~ D IX f gk oy (6.19)
d(I)=k

Proof. We only show (6.19) since the proof of (6.18) is analogous. Note that by the Poincaré-
Birkhoff-Witt theorem (cf. [7, 1.2.7]), the operators X! form a basis of the algebra of the
left-invariant differential operators on G. By this fact and the stratification of G, it suffices to
show that

v
1z ) ~ Z; X5 F Nl 22y - (6.20)
j=

To this end, we first note that when restricted to Schwartz functions, each X;Ay 2 s a con-
volution operator whose distribution kernel is homogeneous of degree —x and coincides with a
smooth function in G\{0}. This follows from the fact that the operator Ay /2 is a convolution
operator whose distribution kernel is homogeneous of degree —x+ 1 and coincides with a smooth
function in G\{0} (see [33, Proposition 3.17]). Hence, by Theorem 6.11, each XjA§1/2 extends
to a bounded operator on B; 4,(G) and on F; 4(G). From this and the lifting property (Theorem
5.19), we deduce that

X5 £

—1/2 1/2 1/2
e = |(XGAL DAY Fll o1 o) S 18Y S

»d

i () i ||fHF;7q(G)-

q

Hence 27_, |IX, /]
which asserts that there exist tempered distributions Ki,---, K, which are homogeneous of
degree —k + 1 and coincide with smooth functions in G\{0} such that f = Z;’:l(Xjf) * K for
all f € S(G). By this result and Theorem 5.19, we have, at least for f of the form f = ®(Ax)g
where ® € S(R>() vanishes near the origin and g is bounded on G with compact support (the
space of such functions f is dense in Fz‘f,q(G)),

i) S ||f||F;q(G). To see the converse, we need to use [33, Lemma 4.12],

/1

i@ = 1Ax(8520)

(e [Ax(f * Ry

o))
- v (6.21)
= ||Ax [ D (X)) * K Ry = I3 (X,f) * Ax(K; * Ry) ,
= rrat(e B i Jaite)

where R; is the convolution kernel of the operator Aglm. As is shown in [33, p. 190], each

Ax(Kj* Ry) is a distribution homogeneous of degree —x and coinciding with a smooth function
away from 0. Hence it follows by Theorem 6.11 that

H(Xjf) * Ax(Kj = Ry)|

Jasi(e)) 5 ||Xjf|

Fp 5 (G)

Inserting this into (6.21), we obtain [|f[|z. () S ZJV‘:1 ”Xjf”F;;l(G)' Thus (6.20) is established
and the proof is completed. ’ O




Chapter 7

Maximal characterization of
70,0

0o (X) on Riemannian manifolds

7.1 The maximal Hardy spaces H}  ,(X)

Throughout this section, we assume that the metric measure space (X, p, ;1) satisfies the doubling
condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and
assume that . is a non-negative self-adjoint operator on L?*(X) whose heat kernel p;(z,y)
satisfies the Gaussian upper bound (2.8) and the Hélder continuity (2.9) for ¢ € (0, 00).

The purpose of this section is to establish the maximal Hardy spaces associated to .Z. We first
introduce the radial, non-tangential and grand maximal functions associated to .Z:

Definition 7.1. For f € §',(X), ® € S(R>¢), N € Ny, and = € X, define

Mg o f(z) :=sup |®(t*.2) f(x)|, Mo 2 f(z):=sup sup |®(t>L)f(y)l,
t>0 t>0 p(y,z)<t

and

My of(x):= sup Mg of(x),
1®]](~)<1

where [|®[|(x) is defined by (2.10).

We now introduce Hardy spaces associated to .Z by means of grand maximal functions:

Definition 7.2. For p € (0,1], we define the Hardy space H%,(X) associated to .Z as
Hyoe(X) i={f € S (X) : My, 2 f € LP(X)}
with the quasi-norm given by

11

H2 () = 1My, 2 flleex),

max
where

Ny := 2d/p| + [3d/2] + 4. (7.1)

The following theorem, which says that H” . (X) are equivalently characterized by radial and
non-tangential maximal functions, is the main result of the present section.

99
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Theorem 7.3. Suppose ® € S(R>g), ®(0) # 0, and 0 < p < 1. Then for any f € S'y(X) the
following conditions are equivalent:

(1) f € Hypa (X))

(ii) Mo of € LP(X).

(iii) nggf € LP(X).

Moreover, the following quasi-norm equivalence is valid:

IMn, 2 fllLex) ~ 1Moz fllLex) ~ [|M§ o fll e (x)-

For the proof of Theorem 7.3 we need a sequence of lemmas.

Lemma 7.4. Suppose ® € S(R>q) and ®(0) = 1. Then for any ¥ € S(R>g) and N € Ny, there
exist a family {© ) }o<s<1 of functions in S(Rx>o) and a constant C' > 0 such that:

(i) (\) = /O1 O(s)(N)@(s*N)ds for all X € Rx.

N
. x,
(ii) / (1 + p(ty)> |K@(S>(t2$)(x,y)|du(y) < CsN||\I/||(2NH3d/2J+3) forallt >0 andz € X.
X
Proof. We follow [34, Theorem 4.9]. Fix N € Ny. Let {Q()}o<s<1 be the unique family of
functions in S(R>¢) such that
ONTH@(SPA)N 2] = @(sPN) Q5 (N), Vs € [0,1], VA € Rx. (7.2)

Notice that {2 has the expression

Qo (N) = > Cj o 3O [R(sPN)] - O [@(s° V)] (7.3)

J1t o HIiNg1=N+1

where each Cj, ... j, is a non-negative integer. Choose = € C*°([0,1]) such that

(1]

(s) = sV/N! for all s € 0,1/2],

0<Z(s) <sN/N! forall s € [1/2,1],
dE(1)=0 forallje{0,1,---,N+1}.
Then we set
Oy (A) = ()N TE(s) Q) (N T(N) — [ONTIE(s)| (s> )V TIT(N), A e Ry (7.4)

Clearly, ©(,) € S(Rxo) for every s € [0,1]. We claim that (i) and (ii) hold for this choice of © ).

First we verify (i). Consider the integral
1
I\ = (71)N+1/ E(s) {oX T @(sPNN T2} W (N)ds, A€ Ry. (7.5)
0

Integrating by parts N + 1 times and noting that the boundary terms in the first NV integration
by parts vanish, we obtain

I3 = — [0V E(s)] (20N 2w ()| + /O [0 H1E(5)] B(2A) N 2T (A ds
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=TU(\) + /01 [ONT1=(s)]| @ (2NN T2 W (N)ds,

where we used that ®(0) = 1. Hence by (7.5), (7.2) and (7.4) we have

1

1
T\ =1I(\) — / [ONH1E(s)] @(s*A)NT2T(N)ds = / O(s)(N)@(s*N)ds.
0 0
Next we verify (ii). Since Z(s) equals a constant for s € [0,1/2], we have |0 T1Z(s)| < Cs for
all s € [0,1]. From this fact, (7.3) and (7.4), it is not difficult to see that for every m € Ny,
19 limy < O™l gnrv+1), (7.6)

where the constant C depends on ® and m, but is independent of s € [0,1] and ¥. Take
m =N+ |3d/2| +2 (> d+1). Then it follows from (2.14), (7.6) and (3.9) that

/X (1 + 2 ' y)>N Koy, 22)(@,y)|du(y)

< ClOs)ll(m) / <1+ o, y)> Dt (2, y)du(y)

= C1Ollon) [ i (9)du)
b's
<Ol mans1) = O™ 25+ [3d/2) +3)-
This verifies (ii) and completes the proof. O

Lemma 7.5. Suppose ® € S(R>) and ®(0) = 1. Then for any N € Ny there exists a constant
C > 0 such that for all f € S'y(X) and x € X,

Mot 3a2)+3,2f () < CTg o f(x), (7.7)
where N
TYofw0 = sw @Ef] (14250 (7.
yeX,t>0

Proof. For any given ¥ € S(R>¢), write ¥(- fo O(s)(-)®(s*)ds as in Lemma 7.4. Then for
all f eS8y (X),te (0,00),and y € X, we have

(2,2 /@S)ﬂg) (2t2$)f()
/ / L) f f(2)Ke,(22)(y, 2)du(z)ds.

It follows that
1
I‘I’(t2$)f(y)|§/ / @(s*t2.2) f(2)|| Ko, (12.2) (y, 2)|du(2)ds
0 X
1 X
<ot [ ] (1+p‘s;z)) (Ko (2 dia(2)ds

1 N
<Tsto) [ s (1 BRI g ) (o)



Chapter 7 Maximal characterization of Fr? (X)) on Riemannian manifolds 102

Note that if y € B(x,t) then 1+ w <2(1+ p(yt’z)). Hence by Lemma 7.4 (ii), we have

1 B 2 N
M ef(@) < 2T @) [ (10 252 i o 021
0o Jx
< CH\I]||(2N+[3d/2j+3)T£{$f(x)7
which yields the desired inequality (7.7). O

Lemma 7.6. For any ® € S(R>g), p € (0,1], and N € Ny with N > d/p, there exists a constant
C > 1 such that for all f € S'y(X),

C Mo 2 fllLexy SN Th o fllex) < CllMa 2 fllLe(x),

where ngf is defined by (7.8).

Proof. Obviously, Mg « f(z) < 2NT£f$f(x) for every x € X, so the first inequality holds as
long as C' > 2. To see the second inequality, set ¢ = d/N, so that ¢ < p. Observe that

|®(t2.2) f(y)| < Mo o f(2) whenever z € B(y,t).

From this and (2.2) it follows that

D(12.2) f(y)]? < VD /B - (Mo 2 f(2)] du(z)

V(x,t—}—p(x,y)) 1 . . .
: Viy,1) V(z,t+d(z,y)) /B(z,t+p(z,y)) [Mcb”?f( )] dp(z)

<1 N f’(”f’”)nMHL([M@,gf(-)m ().

A

t

where My, is the Hardy-Littlewood maximal operator. Since N = d/q this says that for all
re X
[ngf(x)]q S Mur([Ms,2f(1)]")(2).

Then, since p/q > 1, the Hardy-Littlewood maximal theorem yields

/[Tév,zf(fﬂ)]pdﬂ(x)ﬁ/ {MHL([M<1>,zf(~)]q)(x)}p/qdu(w)S/ (Mg o f(x)]"du(z).
X X X
This completes the proof. O

For our purpose we introduce two auxiliary maximal type functions: for f € S'y(X), ® € S(R>o),
K € Ny, N € Ny and ¢ € (0, 1], we set

t

K
m) (L+eply, o))",

M, f(x) = sup  sup |¢>(t2.$>f<y>(
0<t<1l/e yeB(z,t)

—N K

) t _

TN f(x) = sup suplé(tzf)f(y)<1+p(m ”) ( ) (1 + eply,20)) K
0<t<1/e yeX t t+e

Lemma 7.7. For any ® € S(R>¢), p € (0,1], and N € Ny with N > d/p, there exists C > 0
such that for all f € 8"y (X), € € (0,1] and K € Ny,

1T fllLe(x) < CIME", fllLox)-

Proof. The proof is the same as that of Lemma 7.6 and is thus skipped. O
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Lemma 7.8. For any ® € S¢(X), p € (0,1], and f € S8y (X), there exists K € Ng such that
MgE, f € LP(X) N L>®(X) for 0 <e < 1.

Proof. By the definition of 8%, (X) there exist ko, mg € Ng such that
|(I)(t2$) | = |(f7 K@(tzf Y- )’ < Cpkg mo (K<I>(t2$) (y7 )) (79)
Let M € Ny such that M > max{mg + d/2,d + 1}. Then by (2.16) and (2.3), we have

Prom s (Kowa (y,))
Z sup (1 + p(z, o) m’.i”k [K':D(t?ff)(yv')} (Z)|

o<k<hy *E€X
0<m<mg

<C Y sup(L+ p(z,20)"t D] ks a0 Deva (y, 2)
0<k<ko *€X (7.10)

—2k mo —M+d/2

sup
0<k<ko zeX V(Zat)

t=28 (14 p(z,20))™ p(y,2)\ "
<Cc Y (1+ p > .

sup

0<k<ko zeX V(Zat)

Note that if ¢ € (0, 1], then by (2.7) and the triangle inequality for the distance p we have

24 (1 + p(z,20))™ (1 L P, Z)>_m°

sup

OSkSkOZEX V(Z7t) t
mo —mo
< C sup ~@kota) (1 4 P2 %0) 1o PW:2)
=TI i T (7.11)

< Ot~ (2ko+d) (1 + P(%%))mo
- t
< Ot~ @hotdtmo) (1 4 p(y, zq)) ™

If t € (1,1/¢], then from (2.5) and the triangle inequality for the distance d it follows that

t72k 1 mo —myg
o 2L ple20) <1 - 2)
0<k<ko zeX ( ) t

fe)”
) 1 )
o)

<Ct (1 + p(z,20))

< Ctmog( p(z,x
< Ctm0—<( y’x
< oo g(1+p(y,oco

Also note that if ¢ € (0,1] and K > 2kg + d + mg then

¢ K 1 2ko+d+mo
t—(2kg+d+m0) < < E—(Qk‘o-‘rd-‘rmo) (713)
t+e “\t+e - ’
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while if ¢t € (1,1/¢) then for any K € Ny

¢ K
(t +€) tmo—s S t|7n0—g’\ S E—|7no—§ , (714)

We now choose K € Ny such that K > max{2ko + d + mg, mo + d/p}. Then from (7.9)—(7.14)
it follows that for any fixed € € (0, 1] and for all ¢ € (0,1/¢]

t
t+e

K ¢ K
) eptan) ™ < L)) () 0+ plyean))

< C(1+ ply,x0)) K+mo,

B(2.2) () (

where the constant C' depends on £. Hence

M5, f(x) <C sup  sup (1+ p(y,zo)) Fme
0<t<l/e yeB(z,t)

<C sup sup (L+p(z,20)) K™ (1+ p(a,y))K—mo
0<t<l/e yeB(z,t)

< O+ plx,x0)) "m0,

where the constant C' depends on e. Since p(K — mg) > d, it follows by (3.8) that Mf%{(@f €
LP(X) N L™ (X). O

We also need the following auxiliary function: if f € S, (X), ® € S(R>¢), K € Ng, N € Ny,
and 0 < e <1, we set

Mé@ ()= sup  sup

sup
0<t<1/e y€B(z,t) t+e

z€B(y,t) p(z,y)a

« 2 — 2 "
( t (2L f(z) — B(t .i”)f(yﬂ)( ¢ ) (1+ep(y, x0)) 7K,

where a > 0 is the same constant as in (2.9).

Lemma 7.9. Suppose & € S(R>o) with ®(0) = 1. Then for any N € Ny and K € Ny there
exists C' > 0 such that for all f € S'y(X), e € (0,1], and z € X,

Ml f(2) < OTEN f (@),
Proof. Fix K, N € Ny. By Lemma 7.4 and its proof, we can write

1
B() = / Oy ()8 (s2) fds, (7.15)

where {O,) }o<s<1 is a family of functions in S(Rx¢) with the following property: for any m € Ny
there exists a constant C' (depending on ®,m, N and K) such that

10(s)lmy < CsNTHE for all s € [0,1]. (7.16)
From (7.15) it follows that for all f € S’ (X) and ¢ € (0, 00)
1
B2L) [ = / O) (2. 2)B(s*2.2) fds, (7.17)
0

which holds pointwisely and also in the sense of distributions in 8%, (X). We fix m € Ny such that
m > 3d/2+ N + K + 1, and fix arbitrary z € X. Let ¢t € (0,1/¢), y € B(z,t), and z € B(y,1).
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By (7.16) and (2.15), we have

[0
Pz Y
Ko )21 0) = Kooy )] < G50 (2E2) D). a9

By this kernel estimate, (7.17), and (3.9), we can estimate as follows:

t0(2.2) f(2) — (L) f ()|

p(z,y)"
= t / O(s*°L) f(w) Ko, (12.2) (2 w)du(w) — /Xq’(Sth«iﬂ)f(w)Ke(s)(tzz)(%w)du(w)
/ / to |(I) 2t2$ |‘K@(g) t22) zZ, W) — K@(S)(ﬁg)(y,’w)‘du(w)ds
p(z,y)*

S/ / |@(s*2.2) f (w)| ™ Dy (y, w)dpa(w) ds

crs [ [ o (1+ PN () 0 cptan ) Do et

< TENE f(a ( ) ( (xz; w) ) ; (1+ ep(w, 0))™ Dy, (y, w)dp(w)
S TN f(x) (tJtr5> K 1+€p(y7xo))K(1+Ep(y,w)>KDt,m—N(?Jaw)dﬂ(“’)
s (7)o 2o [ Du (o)

T (7)) (et

where for the last inequality we used (3.9) and that m — N — K > 3d/2. From this the desired
inequality follows immediately. O

Now we are ready to give the proof the the main theorem.

Proof of Theorem 7.3. Clearly, (i) = (i) = (iil) and

IMG o fllrx) < 1Mo,z fllrx) < 19l v, | M, fll e (x)

forall f € 8% (X). In addition, Lemma 7.5 and Lemma 7.6 yield that (ii) = (i) and | My, 2 f| r(x) S
|[Ma 2 fllLe(x)- Hence, it remains to show that (iii) = (ii) and | M o f| 1r(x) < [|M3 o fllrx)-

Suppose now f € S, (X) such that Mg’_gf € L?(X). By Lemma 7.8, we can choose K so large
that Mg@f € LP(X)N L>®(X) for 0 < ¢ < 1. Then by Lemma 7.7 and Lemma 7.9, we have

]T/[/gfgf € LP(X) and HMgfngLp (x) < C1lIMgEy, fll e (x), where Oy is independent of & € (0,1].
For given ¢ € (0,1] we set

={z € X : MgK, f(z) < CoM§X, f(a)},

where Cy = 21/PC;. Note that

| M @] dnte) <2 [ M f@)] dite) (7.19)

QE
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Indeed, this follows from

J

and (01/02)17 = 1/2

(M3 1) duts) < 657 [

[ (W55 5@ o) < (CofCar [ M1 @) duto)

X

c
€

We claim that for 0 < r < p there exists C5 > 0, independent of ¢, such that

1/r

Mgf; (z) < C3 {Mpyr ([Mg’gf(-)]r) (z)} for all x € Q.. (7.20)

Once this claim is established, the required inequality |[Mas o fllr(x) S (Mg o fllr(x) will
follow from the Hardy-Littlewood maximal theorem and the monotone convergence theorem
(see, for instance, [75, Chapter 3] and [34, Chapter 4] for details).

Let us now prove the claim. Fix any x € Q.. By the definition of Mgﬁf f(x), there exist y € X
and t > 0 such that p(y,z) <t < 1/¢ and

t

K
) el 2 M), (r.2)

B(2.2)1(y)] <

We fix such y and ¢. Then by the definitions of Mg@f and €., we have

L) (2) — (L) ()]
up
zeB(y,t) p(z7y)a

K
() O o) Dt o)

(7.22)
¢ —-K
<) O eplna) M f(0)
< Cs|@(22) f(y)l,
where C3 = 2C,. Let Cy > max(1,(2C3)"/®). Then we note that
L) ()] > L(PL) [ ()] Tor all = € By, 1/C). (7.23)

Indeed, since d(z,y) < t/Cy < t, it follows from (7.22) that

®(t2.2) f(2) — D(2L) f(y)| < Cgp('?iay)a@(t@)f(y)l

—a 1
< CCLREL) f)| < S 2)f(w)l,
which yields (7.23). Now (7.23) together with (7.21) gives that
1
|®(t2 L) f(2)| > ZM[;,{(gf(a:) for all z € B(y,t/Cy).

Also, since Cy > 1 and p(y, z) < t, we have B(y,t/C4) C B(z,2t). Therefore,

T 1 T
Man (M0 fO)) @) 55 | oy I )

1 2 r
> o5 /B o [REL )

V(y,t/04) 1 ) N
2 Ve B VD Jaucy 2L
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2 Mz f(o)]".

This establishes the claim and finishes the proof of Theorem 7.3. O

7.2 The identification Fg’ 2 (X) = H? . (X) on Riemannian

manifolds ,

In this section, we consider the particular case that X is a Riemannian manifold. To be more
precise, let X be a complete Riemannian manifold with C'°°-smooth Riemannian metric g;.
Let d be the geodesic distance, ;1 the Riemannian measure, and V the Riemannian gradient on
X. Denote by | - | the length in the tangent space. Let A be the Laplace-Beltrami operator,
that is the positive self-adjoint operator on L?(X,du) defined by the formal integration by parts
(A, ) = IV flllz2(x,du)- Denote by ps(z,y) the heat kernel of X.

We assume that the Riemannian manifold X satisfies the doubling condition (2.1), the reverse
doubling condition (2.4), and the non-collapsing condition (2.6). Furthermore, we assume that
pi(x,y) satisfies the Gaussian upper bound (2.8) and the Holder continuity (2.9). In addition, as-
sume that p(X) = co. It is well-known complete, non-compact, connected Riemannian manifolds
with non-negative Ricci curvature satisfy all of these assumptions.

The purpose of this subsection is to prove the following result:

Theorem 7.10. Let p € (0,1]. Then FI?)’QA(X) = H?

max, A (X) with equivalent quasi-norms.

To prove Theorem 7.10 we need some preparation. Let D(X) and D’(X), respectively, denote the
space of complex-valued smooth functions with compact support and the space of distributions,
with the usual local convex topologies (cf. Schwartz [72]).

Lemma 7.11. (i) D(X) C Sa(X) and the inclusion map is continuous.

(ii) S\ (X) C D'(X) and the inclusion map is continuous.

(ili) The domain D(A) of A consists of all functions f in L*(X,du) such that the distribution
derivative Af in the sense of D'(X) can be identified with a function in L*(X,dpu).

Proof. (i) is obvious, and (ii) follows from (i) by duality. For the proof of (iii), we refer the
reader to [77, Lemma 2.1]. O

Lemma 7.12. Let f € S\(X). Set
u(a,t) == e "2 f(2) = (f, K, pa(a,)), z€X, tE/(0,00).

Then F(-,t) € C*°(X) with t fized.

Proof. We fix t > 0. For any integer £ > 2, let Afu(-,t) denote the distribution derivative of
u(+,t) in the sense of Si (X) (and hence also in the sense of D'(X), by Lemma 7.11 (ii)). Then
Afu(-,t) coincides with the function

90(2) = (f K nep2a (2, ) =t 2{f, Ka2n) (z,7)), 7€ X, (7.24)

where @ is a function in S(Rx¢) defined by ®(\) = Me~*. By using (2.15) it is not hard to show

2
loc

that gy is continuous on X. In particular, g, € Li (X, du). Hence it follows from the interior



Chapter 7 Maximal characterization of Fr? 2(X) on Riemannian manifolds 108

regular theorem (cf. [61]) that g,—1 belongs to the local Sobolev space HZ_(X). Applying the
same theorem repeatedly, we obtain that F(-,t) € H2’ (X). Since £ can be taken arbitrarily
large, we have F(-,t) € HX (X) C C>*(X). O

loc

Now we are ready to give the

Proof of Theorem 7.10. First we show that FE:QA (X) C HY sy a(X). Todo this, let &o(\) = e*,
A € Ryg. Clearly, @ € S(R>) and ®¢(0) # 0. Hence by Theorem 7.3 we know that H} A (X)
is the space of all f € S} (X) such that ||[Mae,, » f||Lr(x,au) < 00. Let M be a sufficiently large
positive integer. By Theorem 5.31, any f € Fl?f(X) can be decomposed as f = Z;O:o vja;j,

where each a; is a (p, 2, M)-atom, [|{v;}3%ller < ||f||F0,2’(X), and the sum converges in S’ (X).
p,2

Therefore, in order to show that FZ?”ZA(X) C H},. A(X), it suffices to prove that there exists a

constant C' > 0 such that for all (p,2, M)-atoms a, |Ms, 2 f|lLr(x,qu) < C. For the proof of the

latter, we refer the reader to [46, Theorem 7.4 (i)] (for the case p = 1) and to [55, p. 266] (for

the case p € (0,1]).

Next we show that H?

max,A

defined respectively by

(X) C ng’f (X). To do this, let ® and ¥ be two functions in S(Rx>¢)

d(N\):=er, TN :=Ae™d, AERs.
For f € SA(X) and z € X, we define

fr (@) = Maf(x) + Myf(x)= sup (le "2f(y)| +]2Ae 2 f(y))),
(y,t)el(x)

where I'(z) := {(y,t) € X x (0,00) : p(y,x) < t}. By Theorem 7.3, we have
My, 2 flleex,an) S 1Moz fllrx,any < 1 orx,dn

< (1@, + 1%l v ) 1M N, 2 fll Lo (X ) -

Hence

1£] HE A (X) Y £ L (x gy - (7.25)

For 8> 0, f € SA(X), and = € X, we define

- // w@Ea) 2 "
Ts(z) V((E,t)t
([ eaces Pt T "
Ia(x) Vz,t) t ’

where I'g(x) := {(y,t) € X x (0,00) : p(y,x) < Bt}. As in the classical setting, for any fixed
B > 0 we have

158 (e xaw) ~ 151 () llLr x.ap)- (7.26)
See [16, Proposition 4]. For any 8 > 0 and f € S’ (X), we set

0= (ff morstst)

where u(y, t) := e 2 f(y). The argument of [47, Lemma 5.4] (sce also (6.2) in [47]) yields that

185 ()l 2o . S NS5 2w (xap)- (7.27)
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Combing (7.25), (7.26), (7.27) and the area integral characterization of Fgﬁ’f (X) (Theorem 5.23),
we see that, in order to prove Hf;ax’A(X) - Fg”qA (X), it suffices to show that for some 5 > 0

1S8(F) Lo x.am S INF Lo (x.ap- (7.28)

To this end, for 8 >0,0<e < R < o0, f € S\(X), and x € X, we set

55"(/) <// 1V u(y, )2 (dy)dt> ,

where
F%’R(x) ={(y,t) e M x (¢,R) :y € B(z,0t)} = {(y,t) € Ts(x) : e <t < R}.

The argument of [5, Lemma 7.6] with slight modification yields the following “good \” inequality:
there exists a constant C' > 0 such that forall0 <y <1, A > 0,0 <e < R < 00, and f € S)(X),

u<{x € X : S75of@) > 2\, f*(x) < ’y/\}> < C’y%({x €X: 875 f(x) > )\})

This key inequality, along with the fact that ||Si/§( e x,dp S ||Sf/§0( M eexa (cf. [16,

Proposition 4]), yields that H51/20( Merx,awy S NN or(x,dn- Letting e — 0 and R — oo, by
the Fatou lemma we get (7.28) with 8 = 1/20. The proof is thus completed. O
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