
博 士 論 文 （要 約）
Geometric Numerical Integration Methods

for Energy-Driven Evolution Equations�
エネルギー関数を持つ発展方程式に対する

幾何学的数値計算法
�

宮武 勇登





Abstract

This thesis is about geometric numerical integration methods for energy-driven evolution equations. Ge-
ometric numerical integration methods or structure-preserving numerical methods are rather specific-
purpose methods in the sense that they exactly preserve or inherit geometric properties, such as symplec-
ticity and energy-preservation, of differential equations. The main advantage of geometric numerical
integration methods is that in many cases we can expect qualitatively better numerical solutions, es-
pecially over a long period of time, than with general-purpose methods. This thesis consists of two
parts.

In the first part, we consider ordinary differential equations, especially Hamiltonian systems with
emphasis on their energy-preservation property. It is a natural idea to consider numerical methods which
exactly inherit the property. However, the study on energy-preserving methods has a shorter history than
that on other geometric integration methods such as symplectic methods. The main reason is that no
Runge–Kutta method is energy-preserving and thus we have to develop energy-preserving methods in
another framework. The biggest contribution of the first part is to give an algebraic characterisation of
so called continuous stage Runge–Kutta methods being energy-preserving. Moreover, from a practical
point of view, we construct several efficient energy-preserving methods by using the characterisation.

In the second part, we consider partial differential equations. For partial differential equations, spe-
cial care must be taken for space discretisation as well as time discretisation. It is of interest to extend
several existing structure-preserving numerical methods, which have been developed only on uniform
meshes, to nonuniform meshes. In a finite element context, we propose a general framework for con-
structing energy-preserving or dissipative integrators, and further extend this framework to discontin-
uous Galerkin methods. We also develop theory on energy-preserving/dissipative methods on moving
meshes. Furthermore, we study the treatment of nonlocal equations, tanking the Hunter–Saxton equa-
tion as our working example.
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Chapter 1

Introduction

1.1 Overview

The aim of this thesis is to develop geometric numerical integration methods for energy-driven evolution
equations, i.e., time-dependent ordinary/partial differential equations associated with energy functions,
that arise in many research fields such as physics, chemistry, biology, engineering, economics. This first
section overviews geometric numerical integration methods for ordinary differential equations (Sec-
tion 1.1.1) and partial differential equations (Section 1.1.2).

1.1.1 Ordinary differential equations

The study on numerical methods for ordinary differential equations (ODEs) has been a major subject for
more than three centuries. For example, Newton already considered the leap frog method for solving the
equations of celestial motion, and Euler suggested what is today known as the Euler method. The 19th
century and first half of the 20th century are the dawning of linear multistep methods, Runge–Kutta
methods and other classical numerical methods for non-stiff problems. Modern theory of numerical
integration methods started in the 1950s. For example, Dahlquist introduced the concept of stability of
linear multistep methods [64], and Butcher introduced the algebraic viewpoint in the study on Runge–
Kutta methods [26]. After their pioneering work, these methods were reached to a certain maturity in
the 1980s. For details on the history of numerical methods for ODEs, we refer to the books [32, 99,
101].

Runge–Kutta methods and linear multistep methods are rather general-purpose methods, in the
sense that they can be applied to, at least formally, every first-order ODE. On the other hand, researchers
in specific areas used their own numerical methods for specific equations. For example, astronomers
used the Störmer–Verlet method to simulate planetary orbits1. The Störmer–Verlet method often pro-
duces better numerical solutions than explicit Runge–Kutta methods, in spite of its relatively low accu-
racy order. In the 1980s, the mechanism of the Störmer–Verlet method was realised (e.g., [72, 73]): a
numerical flow of the Störmer–Verlet method, as well as the exact flow, is a symplectic map (the defini-
tion of a symplectic map will be given later in this subsection). This discovery is now recognised as the
beginning of the study on geometric numerical integration methods.

Geometric numerical integration methods, which are also called structure-preserving methods, are
rather specific-purpose methods in the sense that they restrict their target ODEs to certain classes. The
basic concept of geometric numerical integration methods is to design numerical integrators so that
they inherit some structures of the original problems. By restricting attention to a specific class of ODEs
and focusing on common structures or properties, it is possible to achieve more efficient and accurate
methods then general-purpose methods. Geometric numerical integration methods have a remarkable

1The Störmer–Verlet method was proposed independently in different contexts by Störmer [176] and Verlet [194].

1



2 Chapter 1. Introduction

characteristic: they often produce stable and qualitatively nice numerical solutions over an extremely
long period of time.

These advantages of geometric numerical integration methods, especially symplectic methods, are
well illustrated by numerical experiments for the Kepler problem. The Kepler problem

d
dt

q1 = p1,
d
dt

q2 = p2,
d
dt

p1 = − q1

(q2
1 + q2

2)3/2
,

d
dt

p2 = − q2

(q2
1 + q2

2)3/2

describes the motion of two bodies. Here one of the bodies is set at the centre of our coordinate system,
and (q1, q2) and (p1, p2) are the position and momentum, respectively, of another body with a suitable
normalisation. We set initial values to

q1(t0) = 1− e, q2(t0) = 0, p1(t0) = 0, p2(t0) =
Æ
(1+ e)/(1− e)

so that the exact solution is a 2π-periodic elliptic orbit in the (q1, q2)-plane with the eccentricity e
(0 ≤ e < 1). Figure 1.1 plots the numerical solutions obtained by the Störmer–Verlet method and
Runge’s method:

• the Störmer–Verlet method

pn+1/2 = pn +
h
2

f (qn),

qn+1 = qn + hpn+1/2,

pn+1 = pn+1/2 +
h
2

f (qn+1),

for d
dt q = p, d

dt p = f (q), where qn and pn denote the numerical solutions at t = t0 + nh with a
stepsize h;

• Runge’s method

yn+1 = yn +
h
2

�
f (yn) + f

�
yn +

h
2

f (yn)
��

,

for d
dt y = f (y).

Both methods are explicit and second order. Runge’s method produces a slightly better numerical solu-
tion than the Störmer–Verlet method for the first period (see the left two figures of Figure 1.1). However,
it is observed from the right figures that the Störmer–Verlet method remains stable after a few periods,
while Runge’s method becomes unstable as time passes. This difference is remarkable especially when
we use a large stepsize (see the right top figure). Let us evaluate the stability of the methods from a
perspective of energy. For the Kepler problem, the following quantity

H(q, p) =
p2

1 + p2
2

2
− 1q

q2
1 + q2

2

is constant along the solution. This quantity is called Hamiltonian or energy. From Figure 1.2, we
observe that the errors of the energy obtained by the Euler method and Runge’s method, which are
both non-symplectic, grow linearly. On the other hand, the error by the Störmer–Verlet method is
bounded and no drift is observed.

As another branch of geometric numerical integration methods, energy-preserving methods have
also been studied recently. Why is it of importance to consider numerical methods which preserve the
Hamiltonian exactly, despite the fact that symplectic methods nearly preserve the Hamiltonian without
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Figure 1.1: Numerical solutions on the (q1, q2) plane for the Kepler problem with the eccentricity e = 0.6
obtained by the Störmer–Verlet method and Runge’s method. The exact solution is displayed by the
dashed line. They are the same experiments as those in [96].
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Figure 1.2: Evolutions of Hamiltonian for the Kepler problem with the eccentricity e = 0.8. The exact
value of the Hamiltonian is 0.5 (independently of e). For the Störmer–Verlet method, several spikes are
observed. In this figure, it seems that they appear randomly, but this is because the energy values are
plotted every 100 steps. The spikes actually appear almost periodically when the position (q1, q2) gets
close to the perihelion point.



4 Chapter 1. Introduction

drift as illustrated above?2 There are several advantages of adopting energy-preserving methods, and
below we show three of them.

• In a more general context, we sometimes need to combine the basic integration method with
already-established stepsize control techniques for guaranteeing the accuracy of the numerical
solutions [99, Section II.4]. It seems a natural idea to apply a standard stepsize control technique
to symplectic methods. However, since a good energy-preservation of symplectic methods relies
on the assumption that we use a constant stepsize, the simple combination often deteriorates
the correct qualitative behaviour (see Figure 1.3). Therefore, we have to consider special strate-
gies for changing the stepsize in order to guarantee the precise qualitative behaviour (see [97,
Chapter VIII] and [123, Chapter 9]). On the other hand, energy-preserving methods preserve the
Hamiltonian exactly even if the stepsize control is incorporated.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
−0.53

−0.52

−0.51

−0.5

−0.49

−0.48

variable stepsizes

constant stepsize (h= 0.01)

time

H
am

ilt
on

ia
n

Figure 1.3: Evolutions of Hamiltonian for the Kepler problem with the eccentricity e = 0.8. The
Störmer–Verlet method with constant stepsize (h = 0.01) is compared with the same method with
variable stepsizes. In the latter case, the maximum of the stepsizes is smaller than 0.01 and the total
number of steps is 210,872.

• Symplectic methods do not inherit the exact energy-preservation, which sometimes causes insta-
bility. We here show an example. The following experiment is taken from [167]. Let us consider
the Hénon–Heiles system

d
dt

q1 = p1,
d
dt

q2 = p2,
d
dt

p1 = −q1 − 2q1q2,
d
dt

p2 = −q2 − q2
1 + q2

2,

whose solution preserves the energy of the form

H(q, p) =
p2

1 + p2
2

2
+ U(q), U(q) =

q2
1 + q2

2

2
+ q2

1q2 − 1
3

q3
2.

The Hénon–Heiles system describes a nonlinear stellar motion, and we are considering a simplified
version. We set initial values to q1 = 0.1, q2 = −0.5, p1 = p2 = 0 so that H = 1/6. Figure 1.4
plots the numerical solutions obtained by the symplectic Euler method and average vector field
(energy-preserving) method:

2 It is impossible in general to construct a numerical integrator which exactly preserves both symplecticity and Hamilto-
nian [49, 217].
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– the symplectic Euler method

pn+1 = pn + hf (qn),

qn+1 = qn + hpn+1,

for d
dt q = p, d

dt p = f (q);
– the average vector field method

yn+1 = yn + h

∫ 1

0

f (ξyn + (1− ξ)yn+1)dξ,

for d
dt y = f (y).

Since (p2
1 + p2

2)/2 ≥ 0, it follows that U(q) ≤ 1/6, which implies that the solution in the phase
space is always within the thick triangle in Figure 1.4. However, since U(q) sometimes exceeds
1/6 for symplectic methods, the numerical solution might protrude from the triangle (see the
left of Figure 1.4). Note that since the vertices are saddle points of U , the numerical solution
immediately diverges after the jump. Such an unstable phenomenon is not observed for energy-
preserving methods (see the right of Figure 1.4).

−1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

Symplectic Euler method

−1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

Average vector field method

Figure 1.4: Numerical solutions in the (q1, q2) plane for the Hénon–Heiles system. The average vector
field method exactly preserves the Hamiltonian. Initial values were set to q1 = 0.1, q2 = −0.5, p1 =
p2 = 0 so that H = U = 1/6. The stepsize was h = 0.16 and both methods were integrated 445 times
(tmax ≈ 71.2). They are the same experiments as those in [167].

• There are some ODEs whose energy is decreased along the solution. We call such a system of equa-
tions a dissipative system. For dissipative systems, we can formally apply symplectic methods, but
symplectic methods cannot inherit the energy-dissipation property. On the other hand, the mech-
anism of energy-dissipation of dissipative systems is similar to that of the energy-preservation of
energy-conservative systems. Indeed, we can construct energy-dissipative integrators for dissi-
pative systems by using a similar idea as in energy-preserving methods for energy-conservative
systems. In this sense, the study on energy-preserving methods is also useful for numerical inte-
gration of dissipative systems.

The Kepler problem and Hénon–Heiles problem are formulated as Hamiltonian systems. A Hamil-
tonian system is a system of ODEs of the form

ẏ = J−1∇H(y), J =

�
O −I
I 0

�
,
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where y = (q1, . . . , qd , p1, . . . , pd)⊤ ∈ R2d , the identity matrix I ∈ Rd×d and zeros matrix O ∈ Rd×d . As
briefly seen above, symplecticity and energy-preservation are two main geometric properties of Hamil-
tonian systems:

• symplecticity

ω := dq ∧ dq =
d∑

i=1

dqd ∧ dpd = const.,

• energy-preservation

H(q, p) = const.

The main target of this thesis is the Hamiltonian system. We note that many physical problems, including
all equations arising in classical Newtonian mechanics, are formulated as Hamiltonian systems. Thus,
numerical methods considered/developed in this thesis can be applied to a wide range of problems.

1.1.2 Partial differential equations
Geometric properties of partial differential equations (PDEs) and the history of several structure-preserving
numerical methods are briefly summarised here.

Many physical problems which possess a continuous spatial structure can be described as PDEs.
Since many PDEs are derived by some sort of physical principles, they often have geometric structures
such as Hamiltonian structure, and possess corresponding properties such as energy-preservation/dissipation,
multi-symplecticity.

As an example, let us consider the Korteweg–de Vries (KdV) equation

Çu
Çt
=

Ç

Çx

�
1
2

u2 +
Ç2u
Çx2

�
, u(t0, ·) = u0, x ∈ T,

which is a model of shallow water waves. The torus T means that we consider the periodic boundary
condition. The KdV equation is energy-preserving in the sense that

d
dt

∫
T

�
1
6

u3 − 1
2

�
Çu
Çx

�2
�

dx = 0.

The KdV equation can also be written as
0 −1

2 0 0
1
2 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

M

zt +

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


︸ ︷︷ ︸

K

zx =∇zS(z),

where z = (ϕ, u, v, w)⊤ and S(z) = uw+ u3/6+ v2/2 (by eliminating the variables ϕ, v, w, we recover
the KdV equation). Then the KdV equation is multi-symplectic in the sense that

Çω

Çt
+

Çκ

Çx
= 0,

where ω = dz ∧ Mdz and κ = dz ∧ Kdz. The multi-symplecticity means that the flow of a PDE is
symplectic in both time and space variables.
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Similar to the ODE context, several numerical methods and schemes for PDEs proposed before
1980s are now can be regarded as structure-preserving methods. Here are some examples. The finite-
difference time-domain method for the Maxwell equation proposed by Yee in 1966 [213] is now known
to be symplectic. Strauss–Vazquez [177] presented an explicit energy-preserving finite difference scheme
for the nonlinear Klein–Gordon equation in 1978. Delfour–Fortin–Payre [67] proposed an energy-
preserving finite difference scheme for the nonlinear Schrödinger equation in 1981. Sanz-serna gen-
eralised their schemes and gave a convergence analysis in 1984 [172]. A finite element version was
proposed by Akrivis–Dougalis–Karakashian in 1991 with a convergence proof [2]. Du–Nicolaides pro-
posed an energy-dissipative finite element scheme for the Cahn–Hilliard equation in 1991 [69].

During 1990s, more general approaches for a wide class of PDEs have been introduced. Furihata [80,
81] proposed a systematic approach for constructing energy-preserving/dissipative schemes for PDEs
with variational structures around 1996, which is now called the discrete variational derivative method.
In 1997, Bridges introduces the concept of multi-symplecticity [18], followed by multi-symplectic dis-
cretisation methods [19].

1.2 Motivation and outline of this thesis

In this thesis, we develop geometric numerical integration methods for both ODEs and PDEs. Corre-
spondingly, the subsequent chapters are divided into two parts. The outline of this thesis is illustrated
in Figure 1.5.

Chapter 2

Chapter 3

Section 3.2

Chapter 4

Chapter 5

Chapter 6 Chapter 8

Section 6.1

Chapter 7

Part I Part II

Figure 1.5: Outline of this thesis.

1.2.1 Part I: Ordinary differential equations

The main motivation of Part I is that energy-preserving methods are less developed than symplectic
methods. Since energy-preserving methods have their own advantages as mentioned above, it is strongly
hoped that the study on energy-preserving methods reaches to the same maturity as symplectic methods.
Part I is motivated by this observation.

Chapter 2 Chapter 2 reviews basics of geometric numerical integration methods for ODEs.

Chapter 3 As we will see in Chapter 2, there is a characterisation of Runge–Kutta methods being
symplectic, which has been known since 1988. However, similar characterisation for energy-
preservation has not been known yet. This open problem will be solved in Chapter 3. Then
by using the new characterisation we shall derive efficient integrators for ODEs whose solution
exhibits periodic or oscillatory behaviour.



8 Chapter 1. Introduction

Chapter 4 From a different viewpoint from Chapter 3, we shall construct efficient energy-preserving
methods for general Hamiltonian systems. To this end, we again use the energy-preserving charac-
terisation proved in Chapter 3. The computational cost of the new method can further be reduced
if parallelism is available.

Motivation of Chapters 3 and 4 will be explained in more detail at the end of Chapter 2.

1.2.2 Part II: Partial differential equations
Chapter 5 Chapter 5 reviews basics of geometric numerical integration methods for PDEs.

Chapter 6 Application of geometric numerical integration methods to more practical problems has
been attracting attention recently. However, the existing structure-preserving methods have been
developed mainly in the framework of finite difference methods, which prevented us from con-
sidering complicated domain of multidimensional problems, or using nonuniform meshes even
in one-dimensional problems. Several approaches have recently been made to overcome this re-
striction. For example, Matsuo showed that the discrete variational derivative method mentioned
above can be extended to Galerkin frameworks [135]. However, his idea had a big drawback: the
target class of PDEs to which his idea is applicable is much smaller than the original discrete vari-
ational derivative method even for one-dimensional problems. In Chapter 6, we shall construct
a more general framework which is free of the drawback. Furthermore, we show that the new
framework can be combined with the discontinuous Galerkin methods, which allows us to derive
spatially high-order energy-preserving/dissipative schemes.

Chapter 7 In Chapter 7, we shall show that several structure-preserving methods can be incorporated
with grid adaptation techniques in order to make the methods more practical.

Chapter 8 In Chapter 8, we focus on a more specific equation: the Hunter–Saxton equation. Several
nonlocal PDEs with rich geometric properties have been studied in some research fields. How-
ever, it is nontrivial how to apply structure-preserving numerical methods to such PDEs due to the
nonlocal operators. The Hunter–Saxton equation and related equations associated with the oper-
ator Ç−2

x are relatively new examples. In Chapter 8, we shall derive several structure-preserving
schemes for the Hunter–Saxton and its related equations. This work is a step in advance for
constructing a more general framework for nonlocal PDEs.

Motivation of Chapters 6, 7 and 8 will be explained in more detail at the end of Chapter 5.

1.2.3 Notes
Papers

New contribution of this thesis is mainly based on the author’s papers. Contents are partially modified
to make the thesis self-consistent. Some numerical experiments are newly done.

Chapter 3 is based on [144, 146, 145]. Chapter 4 is based on [34]. Chapter 6 is based on [1, 149].
Essential ideas of the early part of Chapter 6 were already presented in the author’s master thesis [147,
Chapter 4], but a more sophisticated framework is presented in this thesis. Chapter 7 is based on [152].
Chapter 8 is based on [148].

Notation

In Part I, an approximation of y(t0 + nh) with the stepsize h is denoted by yn. In Part II, numerical
solutions are denoted by un

k ≈ u(t0 + n∆t, x0 + k∆x) in the finite difference context, or u(n) ≈ u(t0 +
n∆t, ·) in the finite element context. We omit the time index when considering semi-discrete schemes.
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We use the following difference operators for the time derivative:

δ+t yn :=
yn+1 − yn

h
, δ−t yn :=

yn − yn−1

h
, δ

〈1〉
t yn :=

yn+1 − yn−1

2h
,

or

δ+t un
k :=

un+1
k − un

k

∆t
, δ−t un

k :=
un

k − un−1
k

∆t
, δ

〈1〉
t un

k :=
un+1

k − un−1
k

2∆t
.

Difference operators for the spatial derivative are defined in a similar way:

δ+x uk :=
uk+1 − uk

∆x
, δ−x uk :=

uk − uk−1

∆x
, δ〈1〉x uk :=

uk+1 − uk−1

2∆x
.

Central difference operators for the high order spatial derivatives are recursively defined as

δ〈2n+1〉
x uk := δ〈2n〉

x δ〈1〉x uk, δ〈2n+2〉
x uk := δ〈2n〉

x δ〈2〉x uk,

with the second order central difference operator

δ〈2〉x uk = δ+x δ
−
x uk =

uk+1 − 2uk + uk−1

∆x2
.

The summation-by-parts formula

N∑
k=0

′′ fk(δ
+
x gk)∆x +

N∑
k=0

′′(δ−x fk)gk∆x =

�
fk(gk+1 + gk−1) + ( fk+1 + fk−1)gk

4

�N

0

is frequently used to analyse finite difference schemes for PDEs, where
∑N

k=0
′′∆x(·) denotes the trape-

zoidal rule:

N∑
k=0

′′∆x fk =∆x

�
1
2

f0 +
N−1∑
k=1

fk +
1
2

fN

�
.
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Part I

Geometric numerical integration methods
for ODEs

11





Chapter 2

Preliminaries: existing methods and our
motivation

In Part I, we discuss geometric numerical integration methods for ODEs. This chapter is mainly devoted
to a survey of existing studies.

In Section 2.1, we introduce the fundamental idea of numerical methods for ODEs. In Section 2.2,
we then briefly review basic concepts and techniques for first-order ODEs with particular emphasis
on Runge–Kutta methods and B-series. Before going into geometric numerical integration methods,
we give short introduction of Hamiltonian mechanics in Section 2.3. As typical examples of geometric
numerical integration methods for Hamiltonian systems, we summarise symplectic methods and energy-
preserving methods in Sections 2.4 and 2.5, respectively. Note that although the main interest of Part I
is energy-preserving methods, it is important to study symplectic methods, and the relation between
symplectic methods and energy-preserving methods for a better understanding of our motivation and
the new contribution of Part I.

For other classes of geometric numerical integration methods which are not discussed in this thesis,
see, e.g., [97, 123, 133].

2.1 Numerical methods for first-order ODEs

We consider a non-autonomous system of first-order differential equations

ẏ = f (t, y(t)), y(t0) = y0,

where f : R × RN → RN is a nonlinear function. Sometimes, it is convenient to use an autonomous
form

ẏ = f (y(t)), y(t0) = y0.

Note that a non-autonomous form can be translated to an autonomous form by adding ṫ = 1. Since the
exact solution is expressed as

y(t) = y0 +

∫ t

t0

f (s, y(s))ds, (2.1)

it seems a natural way to consider the approximation of the integral appearing in the right-hand-side
when we consider numerical solutions.

We denote the time stepsize by h, and a numerical solution at tn = t0 + nh by yn ≈ y(tn). In this
thesis, we do not consider variable stepsizes. Discretising the integral of (2.1) by the rule∫ b

a
ϕ(t)dt ≈ (b− a)ϕ(a)

13
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leads to the formulation

y1 = y0 + hf (t0, y0),

which is often referred to as the “Euler method” or “explicit Euler method.” Other approximations give
other formulae. For example, the implicit Euler method

y1 = y0 + hf (t1, y1)

is obtained by the approximation ∫ b

a
ϕ(t)dt ≈ (b− a)ϕ(b).

The Euler methods are simple and easy to implement. However, they have various drawbacks. First,
the Euler methods are first-order methods in the sense that the Taylor series of the numerical solution
y1 and exact solution y(t0+h) coincide only up to the term of h (the precise definition of order is given
later in Definition 2.2). Second, the explicit Euler method is often unstable. For the harmonic oscillator,
the numerical solution by the explicit Euler method diverges while the exact solution is always on the
unit circle. On the other hand, although the implicit Euler method is A-stable1, the numerical solution
converges to the origin. This phenomenon illustrates that the good stability does not always imply a
good qualitative behaviour.

There have been a lot of studies on the extensions of the Euler methods. Most of these studies are
categorised into the following three types.

One-step methods A one-step method is a numerical integration method which is formulated as a map
yn 7→ yn+1. In this thesis, one-step method is often formulated as y0 7→ y1. A family of Runge–
Kutta methods, summarised in the next section, is a typical class of one-step methods. In Part I,
we mainly focus on one-step methods.

Linear multistep methods A linear multistep method is a numerical integration method which is for-
mulated as a map yn, yn+1, . . . , yn+k 7→ yn+k+1. The two-step Adams–Bashdorth method

yn+2 = yn+1 +
3
2

f (tn+1, yn+1)− 1
2

f (tn, yn)

is one of the simplest examples. Reviews of the linear multistep methods are found in [32, Chap-
ter 4] and [99, Section III].

General linear methods General linear methods are a large class of numerical methods, which con-
tain Runge–Kutta methods and linear multistep methods as special cases. These methods were
originally proposed by Gragg–Stetter [89], Butcher [27], Geer [87] and Byrne–Lambert [35] in
1964–1966. Reviews of the general linear methods are found in [31], [32, Chapter 5] and [99,
Chapter III.8].

2.2 Runge–Kutta methods and B-series

Around 1900, Runge [171], Heun [103] and Kutta [121] generalised the Euler method by adding ad-
ditional function evaluations in each time step. Without getting into the history of early days, we here
show a general formulation.

1 A method is said to be A-stable if it is unconditionally stable for a differential equation ẏ = λy , Reλ < 0 with a stepsize
h> 0. A more precise definition is as follows. Let us describe a numerical method as y1 = R(λh)y0. R(z) is called the stability
function and S = {z ∈ C | |R(z)| ≤ 1} is called the stability region. A method which has the property S ⊃ C−1 = {z | Re z ≤ 0}
is called A-stable. The definition of A-stability is originally due to Dahlquist [63].
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Definition 2.1 (Runge–Kutta method). Let bi , ai j (i, j = 1, . . . , s) be real numbers and ci =
∑s

j=1 ai j

(i = 1, . . . , s)2. We search for Y1, . . . , Ys and y1 satisfying

Yi = y0 + h
s∑

j=1

ai j f (t0 + c jh, Yj), i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

bi f (t0 + cih, Yi).

A one-step method y0 7→ y1 is called an s-stage Runge–Kutta method.

Note that another formulation

ki = f

 
t0 + cih, y0 + h

s∑
j=1

ai jk j

!
, i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

biki ,

which is mathematically equivalent to Definition 2.1, is often employed. It is customary to write the
collection of ai j , bi and ci in the Butcher tableau:

c A

b⊤
=

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

.

If the matrix A is lower triangular, one can compute the formula explicitly without solving any
systems of equations. Such methods are called explicit Runge–Kutta methods. In other cases, they are
referred to as implicit Runge–Kutta methods. Here are some examples of explicit Runge–Kutta methods
(0 entries of A are omitted).

0

1

0

1/2 1/2

1/2 1/2

0

1/2 1/2

1/2 1/2

1 1

1/6 2/6 2/6 1/6
Euler, order 1 Runge, order 2 Kutta, order 4

Note that the third formula is the so called Runge–Kutta method. This method is the most famous, and
widely used for non-stiff problems.

Order is an important barometer of the accuracy of numerical methods.

Definition 2.2 (Order of one-step methods). A Runge–Kutta method (or a general one-step method) is
of order p if for a sufficiently smooth problem,

∥y(t0 + h)− y1∥=O(hp+1) as h→ 0.

2When the coefficients depend on the stepsize h, we require ci =
∑s

j=1 ai j +O(h) instead.
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Table 2.1: The number of order conditions.
order p 1 2 3 4 5 6 7 8 9 10

number of conditions 1 2 4 8 17 37 85 200 486 1205

This definition means that the Taylor series for the exact solution y(t0 + h) coincides with that for
the numerical solution y1 up to the term hp.

It is of interest to construct high-order Runge–Kutta formulae. At first glance, it seems that we
just have to expand both the exact solution and numerical solution in the Taylor series, obtain order
conditions by comparing the coefficients, and solve such conditions algebraically (i.e., not numerically).
However, in general this is a tremendous task, because the number of conditions increases exponentially
with the order p as shown in Table 2.1, and worse, the conditions are nonlinear.

2.2.1 B-series
B-series3 is a powerful tool for constructing and analysing numerical methods. One of the major difficul-
ties in analysing numerical methods is the computation of the Taylor series expansion of the numerical
and exact solutions in powers of the stepsize h, because the number of the terms rapidly increases
when we consider high-order terms. The main idea of the B-series is to use rooted trees to express such
cumbersome series.

Let

T = { , , , , , , , , . . . }
be the set of rooted trees. This set is recursively defined as follows [97]:

(a) the graph , called a root, belongs to T ;

(b) if τ1, . . . ,τm ∈ T , then the graph obtained by connecting the roots of τ1, . . . ,τm to a new common
root also belongs to T . The new tree is denoted by τ= [τ1, . . . ,τm] (see Figure 2.1).

new root

τ1 τ2 τm· · ·
τ=

Figure 2.1: A recursively generated tree.

Note that we do not distinguish between equal (same shaped) trees. For example, we regard and
mean the same tree.

We introduce the concept of symmetry coefficients and elementary differentials, and define B-series,
following [97, Chapter III].

Definition 2.3 (Symmetry coefficients, e.g., [97, Chapter III]). The symmetry coefficient σ : T → R is
defined recursively by

σ( ) = 1, σ(τ) = σ(τ1) · · ·σ(τm)µ1! · · ·µm!,

where the integer µi denotes the number of the equal trees of τi .
3B-series was originally called Butcher-series in Hairer–Wanner [100] in honour of Butcher. The B-series theory of this

section is based on [97, Chapter III]
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Definition 2.4 (Elementary differentials4, e.g., [97, Chapter III]). For a τ ∈ T , the elementary differ-
ential is a mapping F(τ) : RN → RN , defined recursively by

F( )(y) = f (y),

F(τ)(y) = f (m)(F(τ1)(y), . . . , F(τm)(y)).

Using these two maps, we now define B-series.

Definition 2.5 (B-series, e.g., [97, Chapter III]). For a mapping a : T ∪ {;} → R, a formal series of the
form

B(a, y) = a(;)y +∑
τ∈T

h|τ|
σ(τ)

a(τ)F(τ)(y) (2.2)

is called a B-series.

We call a discrete flow Φh(y), whose Taylor series is of the form (2.2) with a(;) = 1, a B-series
integrator. A wide class of numerical methods, such as Runge–Kutta methods and the underlying one-
step methods of linear multistep methods, can be interpreted as a B-series integrator. Furthermore, the
exact solution can also be interpreted as a B-series integrator: the exact time-h flow of ẏ = f (y) can be
expressed as φh(y) = B(e, y), where the coefficients e are given by

e(;) = e( ) = 1, e(τ) =
1
|τ| e(τ1) · · · e(τm) for τ= [τ1, . . . ,τm].

i

j

k

l

m

n

p

Every Runge–Kutta method can be interpreted as a B-series
method y1 = B(ϕ, y0). The map ϕ, called the elementary weights,
is represented in terms of the Runge–Kutta coefficients b and A by a
simple rule. For example,

ϕ( ) =
∑

i, j,k,l,m,n,p

biai ja jkail almamnal p.

The rule is as follows. We add an index to each vertex, and multiply
bi (root) and the elements of A corresponding to all edges (e.g., amn
for m-n pass). Then we sum the product with respect to all indices.

Examples of the above mappings are illustrated in Table 2.2.
The order condition of Runge–Kutta methods is summarised in terms of the elementary weights.

Theorem 2.1 (e.g., [99]). The Runge–Kutta method is of order p if and only if

ϕ(τ) = e(τ) for |τ| ≤ p.

Now we can write down the order conditions immediately based on the above theorem. However,
the number of conditions is still too large to treat algebraically. Next, we consider simplifying assump-
tions, which are useful to check the order of implicit Runge–Kutta methods.

Let us consider B(ρ), C(η) and D(ζ) defined by

B(ρ) :
s∑

i=1

bic
q−1
i =

1
q

, q = 1, . . . ,ρ,

C(η) :
s∑

j=1

ai jc
q−1
j =

cq
i

q
, i = 1, . . . , s, q = 1, . . . ,η,

D(ζ) :
s∑

i=1

bic
q−1
i ai j =

b j

q
(1− cq

j ), j = 1, . . . , s, q = 1, . . . ,ζ.

4 There is a one-to-one correspondence between elementary differentials and rooted trees. This structure was first discov-
ered by Cayley [44] in 1857, and rediscovered by Merson [142] in 1957.
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Table 2.2: Trees and their related mappings.
|τ| τ tree F(τ) σ(τ) e(τ) ϕ(τ)

1 f 1 1
∑

i bi

2 [ ] f ′ f 1 1/2
∑

i, j biai j

3 [ , ] f ′′( f , f ) 2 1/3
∑

i jk biai jaik

3 [[ ]] f ′ f ′ f 1 1/6
∑

i jk biai ja jk

4 [ , , ] f ′′′( f , f , f ) 6 1/4
∑

i jkl biai jaikail

4 [ , [ ]] f ′′( f ′ f , f ) 1 1/8
∑

i jkl biai jaikakl

4 [[ , ]] f ′ f ′′( f , f ) 2 1/12
∑

i jkl biai ja jka jl

4 [[[ ]]] f ′ f ′ f ′ f 1 1/24
∑

i jkl biai ja jkakl

Theorem 2.2 ([26]). The order of a Runge–Kutta method satisfying the simplifying assumption B(ρ),
C(η) and D(ζ) is at least min(ρ, 2η+ 2,η+ ζ+ 1).

Symmetric methods5 have some important properties. For example, since the order is always even,
we do not have to consider the order conditions for even orders. Symmetry is defined via an adjoint
method.

Definition 2.6 (Symmetric methods, e.g., [99, Chapter II.8]). The adjoint method Φ∗h of Φh is an inverse
map of the original method with reversed stepsize, i.e., Φ∗h := Φ−1−h. A method satisfying Φ∗h = Φh is called
symmetric.

For example, let us consider the explicit Euler method

y1 = y0 + hf (y0).

We obtain the adjoint method by changing y1 with y0 each other and h with −h. This leads to the
implicit Euler method

y0 = y1 − hf (y1).

In this way, the adjoint method does not always coincide with the original method, and the explicit Euler
method (and correspondingly the implicit Euler method) is not symmetric. The simplest symmetric
method is the midpoint rule y1 = y0 + hf

� y1+y0
2

�
.

Theorem 2.3 (e.g., [97, Chapter II, Theorem 3.2], [123, Chapter 4, Theorem 1]). The order of a
symmetric method is always even.

Proof. Assume that Φh is of order p and has the following expansion

Φh(y0) = φh(y0) + C(y0)h
p+1 +O(hp+2),

where φh denotes the exact flow and C (̸= 0) is a smooth function. From this assumption, we can
immediately evaluate the error between y0 and Φ−h(φ(y0)):

Φ−h(φh(y0)) = y0 + (−1)p+1C(φh(y0))h
p+1 +O(hp+2).

Since φh(y0) = y0 +O(h), we have

Φ∗h(y0)−φh(y0) = (y0 −Φ−h(φh(y0)))(I +O(h)) = (−1)pC(φh(y0))h
p+1 +O(hp+2).

5 Symmetric method is sometimes regarded as a branch of geometric numerical integration methods [97, Chapter V].
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Thus, the adjoint method has the following expansion

Φ∗h(y0) = φh(y0) + (−1)pC(y0)h
p+1 +O(hp+2).

For a symmetric method Φ∗h = Φh, this expansion implies (−1)p = 1, which holds if and only if p is an
even number.

The following theorem characterises symmetric Runge–Kutta methods.

Theorem 2.4 (e.g., [99, Chapter II.8, Theorem 8.8]). If coefficients of an s-stage Runge–Kutta method
satisfy

as+1−i,s+1− j + ai j = b j, i, j = 1, . . . , s, (2.3)

then the Runge–Kutta method is symmetric.

Proof. It is checked that the adjoint method is also an s-stage Runge–Kutta method with coefficients

c∗i = 1− cs+1−i ,

a∗i j = bs+1− j − as+1−i,s+1− j ,

b∗j = bs+1− j .

Hence, the original method is symmetric if

ci = 1− cs+1−i ,

ai j = bs+1− j − as+1−i,s+1− j ,

b j = bs+1− j .

These conditions are all verified by the condition (2.3).

There are several ways of realising high-order Runge–Kutta methods. In the subsequent subsections,
we show two of them: collocation and composition approaches.

2.2.2 Collocation methods
Collocation methods are summarised. The idea is to approximate the exact solution by a polynomial so
that the differential equation holds at several (i.e., finite) points.

Definition 2.7 (Collocation methods, e.g., [99, Chapter II.7]). Let c1, . . . , cs be distinct real numbers
(0≤ c1 < · · ·< cs ≤ 1). The collocation polynomial u(t) is a polynomial of degree s satisfying

u(t0) = y0,

u̇(t0 + cih) = f (t0 + cih, u(t0 + cih)), i = 1, . . . , s,

and the numerical solution of the collocation method is defined by y1 = u(t0 + h).

The connection between the Runge–Kutta and collocation methods is summarised in the following
theorem.

Theorem 2.5 (e.g., Wright [197]). The collocation method is equivalent to the s-stage Runge–Kutta
method with coefficients

ai j =

∫ ci

0

l j(τ)dτ, bi =

∫ 1

0

li(τ)dτ,

where li(τ) is the Lagrange polynomial li(τ) =
∏

l ̸=i(τ− cl)/(ci − cl).
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Proof. Let ki := u̇(t0 + cih). Then u̇ can be expressed as

u̇(t0 +τh) =
s∑

j=1

k j · l j(τ).

Integrating this expression with respect to τ from 0 to ci leads to

u(t0 + cih) = y0 + h
s∑

j=1

k j

∫ ci

0

l j(τ)dτ.

Let c1, . . . , cs be the zeros of the s-th shifted Legendre polynomial

ds

dx s
(x s(x − 1)s).

In this case, the collocation methods have order p = 2s and are called Gauss methods. Here are the first
three examples.
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2.2.3 Composition methods

One can construct a higher-order integrator by composing low-order integrators with different step-
sizes. The idea of the composition methods was mainly developed by Yoshida [215], Suzuki [179] and
Mclachlan [140].

Definition 2.8 (Composition methods, e.g., [97, Chapter II.4]). Let Φh be a basic one-step method, and
γ1, . . . ,γs real numbers. We call its composition with stepsizes γ1h, . . . ,γsh, i.e.,

Ψh = Φγsh ◦ · · · ◦Φγ1h,

the corresponding composition method.

We regard Ψh as a new one-step method. The order of Ψh becomes larger than that of the basic
method Φh if the parameters γ1, . . . ,γs are selected such that they satisfy the assumptions in the follow-
ing theorem.

Theorem 2.6 (e.g., [97, Chapter II.4]). Let Φh be a one-step method of order p. If

γ1 + · · ·+ γs = 1, (2.4)

γ
p+1
1 + · · ·+ γp+1

s = 0, (2.5)

the corresponding composition method Ψh is at least of order p + 1, in the sense that ∥y(t0 + h) −
Ψh(y0)∥=O(hp+2).



2.2. Runge–Kutta methods and B-series 21

Proof. Assume that Φh is of order p and has the following expansion

Φh(y0) = φh(y0) + C(y0)h
p+1 +O(hp+2),

where φh denotes the exact flow and C (̸= 0) is a smooth function. We write z0 = y0 and denote
Φγih ◦ · · · ◦Φγ1h(y0) by zi (hence, y1 = zs). By the assumption, it follows that

ei := Φγih(zi−1)−φγih(zi−1)

= C(zi−1)γ
p+1
i hp+1 +O(hp+2).

Moreover,

Ei := φ(γi+1+···+γs)h
�
Φγih(zi−1)

�−φ(γi+1+···+γs)h
�
φγih(zi−1)

�
= (I +O(h))ei .

Note that Es = es, because zi = y0 +O(h), C(zi) = C(y0) +O(h). Consequently, we get

Ψh(y0)−φh(y0) =
s∑

i=1

Ei = C(y0)(γ
p+1
1 + · · ·+ γp+1

s )hp+1 +O(hp+2) =O(hp+2).

We here mention a simple but important example. Note that the equations (2.4) and (2.5) have no
real solutions for odd p. Let us consider a symmetric one-step method of order p (even number) as a
basic method Φh. By setting s = 3 and imposing γ1 = γ3, we obtain the solutions of (2.4) and (2.5):

γ1 = γ3 =
1

2− 21/(p+1)
, γ2 =

21/(p+1)

2− 21/(p+1)
. (2.6)

In this case, the corresponding composition method is also symmetric and thus of order p+2. This idea
is called the triple jump.

The composition method can be applied to not only Runge–Kutta methods but also every one-step
method. It is also worth mentioning that the composition of a Runge–Kutta method is also another
Runge–Kutta method [28]. In general, the composition of a B-series integrator is a B-series integra-
tor [100].

The composition methods have several advantages.

• In general, it is cumbersome to implement higher-order integrators. However, the implementation
of the composition methods is relatively easy: one only have to call a low-order integrator several
times. For example, by beginning with the midpoint rule or trapezoidal rule, one can obtain an
integrators of arbitrary high-order.

• The composition methods usually share several properties of the basic method. For example, if
the basic method preserves the energy of the problem, then the composition method also inherits
the energy-preservation.

On the other hand, the composition methods have the following drawbacks.

• The computational cost would be a big deal. For example, we have to call a symmetric, second-
order integrator 3s−1 times for an integrator of order p = 2s.

• Composition methods usually contain parameters whose absolute value is larger than 1 (e.g.,
|γ2|> 1 for the triple jump (2.6)). Such a parameter might deteriorate the stability. This becomes
pronounced as the order increases.

• Every composition method includes at least one negative parameter (see (2.5))6. Therefore, the
composition methods are unfit for problems like dissipative systems that are not time-symmetric.

6 Composition methods with complex-valued coefficients with positive real parts were recently considered in [12, 13].
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2.2.4 Partitioned Runge–Kutta methods
We consider a partitioned system of differential equations

ẏ = f (y, z),

ż = g(y, z).

Instead of applying the same Runge–Kutta method to both equations, different Runge–Kutta methods
can be applied. That is, we integrate the first system by (a, b, c) and the second by (â, b̂, ĉ):

Yi = y0 + h
s∑

j=1

ai j f (Yj , Z j), i = 1, . . . , s,

Zi = z0 + h
s∑

j=1

âi j g(Yj , Z j), i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

bi f (Yi , Zi),

z1 = z0 + h
s∑

i=1

b̂i g(Yi , Zi).

A numerical method of this type is called a partitioned Runge–Kutta method. In this thesis, the idea of
partitioning will be used only for Poisson systems in Sections 2.3.2, 2.5.5 and 3.5.

The concept of B-series can be extended to partitioned systems. Below the so called P-series is briefly
summarised [97, Chapter III.2].

Let

T P = { , , , , , , , , , , , , , . . . }
be a set of rooted bi-coloured trees. This set and some mappings are defined by analogy with those for
B-series. First, the above set of rooted bi-coloured trees is recursively defined as follows:

(a) the graph and belong to T P;

(b) if τ1, . . . ,τm ∈ T P, then the graph obtained by connecting the roots of τ1, . . . ,τm to a new com-
mon root also belongs to T P. The new tree is denoted by τ= [τ1, . . . ,τm]y . Similarly, the new
tree whose root is is denoted by τ= [τ1, . . . ,τm]z .

Next, the symmetry coefficient σ : T P → R is defined recursively by

σ( ) = σ( ) = 1, σ(τ) = σ(τ1) · · ·σ(τm)µ1! · · ·µm!,

for τ = [τ1, . . . ,τm]y or z , where the integer µi denotes the number of the equal trees of τi . Other
mappings are illustrated in Table 2.3.

For a mapping a : T P ∪ {;y ,;z , } → R, a formal series of the form

P(a, (y, z)) =


a(;y)y +

∑
τ∈T Py

h|τ|
σ(τ)

F(τ)(y, z)

a(;z)z +
∑
τ∈T Pz

h|τ|
σ(τ)

F(τ)(y, z)


is called a P-series.
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Table 2.3: Bi-coloured trees and their related mappings.
|τ| τ tree F(τ) σ(τ) e(τ) ϕ(τ)

1 f 1 1
∑

i bi

2 [ ]y f y f 1 1/2
∑

i, j biai j

2 [ ]y fz g 1 1/2
∑

i, j bi âi j

3 [ , ]y f y y( f , f ) 2 1/3
∑

i jk biai jaik

3 [ , ]y f yz( f , g) 1 1/3
∑

i jk biai j âik

3 [ , ]y fzz(g, g) 2 1/3
∑

i jk bi âi j âik

3 [[ ]y]y f y f y f 1 1/6
∑

i jk biai ja jk

3 [[ ]y]y f y fz g 1 1/6
∑

i jk biai j â jk

3 [[ ]z]y fz g y f 1 1/6
∑

i jk bi âi ja jk

3 [[ ]z]y fz gz g 1 1/6
∑

i jk bi âi j â jk

1 g 1 1
∑

i b̂i

2 [ ]z g y f 1 1/2
∑

i, j b̂iai j

2 [ ]z gz g 1 1/2
∑

i, j b̂i âi j

Theorem 2.7 (e.g., [99]). The partitioned Runge–Kutta method is of order p, i.e., y1 − y(t0 + h) =
O(hp+1) and z1 − z(t0 + h) =O(hp+1), if and only if

ϕ(τ) = e(τ) for |τ| ≤ p.

Theorem 2.8 (e.g., [97, Chapter V.2.2]). If both Runge–Kutta methods (a, b, c) and (â, b̂, ĉ) are sym-
metric (see Theorem 2.4), then the corresponding partitioned Runge–Kutta method is also symmetric.

2.3 Hamiltonian mechanics

Here, we give a short introduction of Hamiltonian mechanics based on [3, 107, 132].

2.3.1 Hamiltonian systems

We briefly overview Hamiltonian mechanics. Firstly, we derive Hamiltonian systems starting with Hamil-
ton’s principle of stationary action, and show some examples. We then summarise some geometric
properties of Hamiltonian systems.

We denote generalised coordinates of position of a mechanical system with d degrees of freedom by
q = (q1, . . . , qd)⊤, and introduce Lagrangian L(q, q̇). The variational principle of Hamilton states

δL= 0, L=
∫ t1

t0

L(q, q̇)dt,

with fixed start- and end-points q1 = q(t1) and q2 = q(t2). This principle means that q(t) between
q1 = q(t1) and q2 = q(t2) evolves in such a way that it is a stationary point of the Lagrangian L.
Taking the functional derivative for variations δq : [t0, t1] → Rd with vanishing boundary condition
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δq(t0) = δq(t1) = 0, we have

0=
d
dε

L[q+ εδq]

����
ε=0

=
d
dε

∫ t1

t0

L(q+ εδq, q̇+ εδq̇)dt

�����
ε=0

=

∫ t1

t0

�
ÇL
Çq
(q+ εδq, q̇+ εδq̇)δq+

ÇL
Çq̇
(q+ εδq, q̇+ εδq̇)δq̇

�
dt

�����
ε=0

=

∫ t1

t0

�
ÇL
Çq
− d

dt
ÇL
Çq̇

�
δq dt +

�
ÇL
Çq̇

δq
�t1

t0

=

∫ t1

t0

�
ÇL
Çq
− d

dt
ÇL
Çq̇

�
δq dt.

Since the above relation holds for all variations δq, Hamilton’s principle is equivalent to the Euler–
Lagrange equation

ÇL
Çq
− d

dt
ÇL
Çq̇
= 0. (2.7)

For classical mechanics, the Lagrangian L often has the form of kinetic minus potential energy:

L(q, q̇) = T (q, q̇)− U(q), T (q, q̇) =
1
2

q̇⊤M(q)q̇,

where M(q) is a symmetric, positive definite matrix.
In order to turn to the Hamiltonian formulation, we introduce the conjugate momenta

pi =
ÇL
Çq̇i

, i = 1, . . . , d,

and the Hamiltonian

H(q, p) = p⊤q̇− L(q, q̇).

By using the chain rule, it is easy to show that

ÇH
Çpi
= q̇i +

d∑
j=1

�
p j

Çq̇ j

Çpi
− ÇL

Çq̇ j

Çq̇ j

Çpi

�
= q̇i

and

ÇH
Çqi
=

d∑
j=1

p j
Çq̇ j

Çqi
− ÇL

Çqi
−

d∑
j=1

ÇL
Çq̇ j

Çq̇ j

Çqi
= −ÇL

Çq̇
= −ṗi .

Thus, the Euler–Lagrange equation is equivalent to Hamilton’s equations

q̇i =
ÇH
Çpi

, i = 1, . . . , d,

ṗi = −ÇH
Çqi

, i = 1, . . . , d.
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By introducing the coordinates y = (q1, . . . , qd , p1, . . . , pd) ∈ R2d , we often denote Hamilton’s equa-
tions by the form

ẏ = J−1∇H, J =

�
O −I
I O

�
(2.8)

where J is a skew-symmetric constant matrix defined with the identity matrix I ∈ Rd×d and zero ma-
trix O ∈ Rd×d . We often refer to such a system of differential equations as a Hamiltonian system.

l = 1

m= 1

q

Example 2.1 (Simple pendulum). A simple pendulum is described as
the second-order equation

q̈+ sin q = 0,

when the mass m = 1, length l = 1 and the gravitation acceleration
g = 1. This equation is equivalent to the Hamiltonian system with

H(q, p) =
1
2

p2 − cosq.

Example 2.2 (The Fermi–Pasta–Ulam problem). The Fermi–Pasta–Ulam problem [75] is a simple model
appearing in statistical mechanics. Due to its unexpected dynamical behaviour, this problem is regarded
as a highly oscillatory test problem for numerical simulations. The following formulation is a modified
version of the Fermi–Pasta–Ulam problem by Galgani et al. [84] (see also [97, Chapter I.5]).

As shown in Figure 2.2, we consider the motion of 2m mass points, connected with stiff linear and
weak nonlinear springs alternately. Here, oscillations are caused by the stiff linear springs. When we
consider springs with cubic nonlinearity, the motion is described by the Hamiltonian system with the
Hamiltonian

H(q, p) =
1
2

m∑
i=1

�
p2

2i−1 + p2
2i

�
+
ω2

4

m∑
i=1

(q2i − q2i−1)
2 +

m∑
i=0

(q2i+1 − q2i)
4

where pi = q̇i and ω≫ 1.

q1 q2 q2m−1 q2m· · ·

stiff harmonic soft nonlinear

Figure 2.2: A variant of the Fermi–Pasta–Ulam problem (This figure is almost the same as Figure 5.1 in
[97, Chapter I]). End points are fixed (q0 = q2m+1 = 0).

Following [97, Chapter I.5], we introduce the coordinate transformation

x0,i =
q2i + q2i−1p

2
, x1,i =

q2i − q2i−1p
2

,

y0,i =
p2i + p2i−1p

2
, y1,i =

p2i − p2i−1p
2

,
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so that the Hamiltonian becomes

H(y, x) =
1
2

m∑
i=1

�
y2

0,i + y2
1,i

�
+
ω2

2

m∑
i=1

x2
1,i

+
1
4

��
x0,1 − x1,1

�4
+

m−1∑
i=1

�
x0,i+1 − x1,i+1 − x0,i − x1,i

�4
+
�
x0,m + x1,m

�4
�

.

This system also nearly preserves the oscillatory energy defined by

I =
m∑

i=1

Ii , where Ii =
1
2

�
y2

1,i +ω
2 x2

1,i

�
.

More precisely, I(t) = I(0)+O(ω−1) holds [97, Chapter XIII]. In Figure 2.3, Hamiltonian and oscillatory
energies of the exact solution are plotted. There is an exchange of oscillatory energies of the scale O(1).
Moreover, oscillations of the scale O(ω−1) are observed. This figure indicates that while the oscillatory
energy of each stiff spring is slowly transferred to other springs, each spring itself oscillates faster.

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

I1

I2

I3

I = I1 + I2 + I3

H − 0.8

time

Figure 2.3: The Hamiltonian and oscillatory energies (H − 0.8, I , I1, I2, I3) for the exact solution of
the Fermi–Past–Ulam problem are plotted. The parameters are set to m = 3 and ω = 50. The initial
values are set to x0,1(0) = 1, y0,1(0) = 1, x1,1(0) = ω−1, y1,1(0) = 1 and zero for other components.
For the Hamiltonian, H − 0.8 is plotted just to save space.

We now give some basic properties of Hamiltonian systems. We denote the exact flow of the system
(2.8) by φ t

H : R2d ∋ y(t0) 7→ y(t0 + t) ∈ R2d .

Theorem 2.9 (Symplecticity, e.g., [97, Chapter VI.2]). For all t, the flow map y 7→ φ t
H(y) is a symplectic

transformation, i.e., the map satisfies�
Çφ t

H

Çy

�⊤
J−1

�
Çφ t

H

Çy

�
= J−1. (2.9)

Proof. Let F(t) = Çφ t
H/Çy . By differentiating F(t) with respect to t, we obtain the variational equation

Ḟ = J−1∇2H(φ t
H(y))F , where∇2H(q, p) is a Hessian matrix of H(q, p), with the initial condition F(0) =

I2d (identity matrix of size 2d). We aim to prove F(t)⊤J−1F(t) = J−1. Since this obviously holds when
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t = 0, we only have to show d
dt F(t)⊤J−1F(t) = 0.

d
dt

F(t)⊤J−1F(t) = Ḟ⊤J−1F + F⊤J−1 Ḟ

=
�
J−1(∇2H)F

�⊤
J−1F + F⊤J−1J−1(∇2H)F = F⊤(∇2H)⊤F − F⊤(∇2H)F = 0.

The last equality follows from the symmetry of the Hessian matrix ∇2H.

The symplecticity (2.9) means that the sum of the oriented areas of the projections of a certain area
in (q, p) onto (qi , pi) is preserved along the flow map. The simplest case, where d = 1 and the map is
linear, is illustrated in Figure 2.4. We remark that although the exact flow of Hamiltonian systems also
preserves a volume, the symplecticity is not equivalent to the volume preservation except for the case
d = 1.

q

p

A

q

p

Figure 2.4: Illustration of symplecticity (area preservation when d = 1) of a linear mapping A.

The symplecticity can also be formulated in terms of differential forms.

Theorem 2.10 (e.g., [123, Chapter 3]). For all t, the flow map y 7→ φ t
H(y) preserves the symplectic

2-form

ω=
1
2

Jdy ∧ dy = dq ∧ dp.

This is equivalent to Theorem 2.9.

Proof. Let q(t + h) = ϕq(q, p) and p(t + h) = ϕp(q, t), i.e., ϕq(q, p) and ϕp(q, p) denote the q and p
part of φ t

H(y), respectively. Then, (2.9) is equivalent to

(ϕq
q)
⊤ϕp

q = (ϕ
p
q )
⊤ϕq

q , (2.10)

(ϕq
p)
⊤ϕp

p = (ϕ
p
p)
⊤ϕq

p, (2.11)

(ϕp
p)
⊤ϕq

q − (ϕq
p)
⊤ϕp

q = I ,

because the left hand side of (2.9) is calculated to be�
Çφ t

H

Çy

�⊤
J−1

�
Çφ t

H

Çy

�
=

�
(ϕq

q)⊤ (ϕp
q )⊤

(ϕq
p)⊤ (ϕp

p)⊤
��

O I
−I O

��
ϕ

q
q ϕ

q
p

ϕ
p
q ϕ

p
p

�
=

�
(ϕq

q)⊤ϕp
q − (ϕp

q )⊤ϕq
q (ϕq

q)⊤ϕp
p − (ϕp

q )⊤ϕq
p

(ϕq
p)⊤ϕp

q − (ϕp
p)⊤ϕq

q (ϕq
p)⊤ϕp

p − (ϕp
p)⊤ϕq

p

�
.

Note that (2.10) and (2.11) mean that (ϕp
q )⊤ϕq

q and (ϕp
p)⊤ϕq

p are symmetric matrices.
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Since dq̂ = ϕq
qdq+ϕq

pdp and dp̂ = ϕp
q dq+ϕp

pdp with the notation q̂ = q(t +h) and p̂ = p(t +h), it
follows

dq̂ ∧ dp̂ = (ϕq
qdq+ϕq

pdp)∧ (ϕp
q dq+ϕp

pdp)

=
�
(ϕp

q )
⊤ϕq

qdq
�∧ dq+

��
(ϕp

p)
⊤ϕq

q − (ϕq
p)
⊤ϕp

q

�
dq
�∧ dp+

�
(ϕp

p)
⊤ϕq

pdp
�∧ dp.

Therefore, dq̂ ∧ dp̂ = dq ∧ dp if and only if (2.9) holds.

Another well-known and important property of the flow is that it preserves the energy, i.e., Hamil-
tonian.

Theorem 2.11 (Energy-preservation). For all t, the flow map y 7→ φ t
H(y) preserves the energy in the

sense that

H
�
φ t

H(y)
�
= H(y).

Proof. The proof is straightforward.

d
dt

H(y) =∇H(y)⊤ ẏ =∇H(y)⊤J−1∇H(y) = 0.

Note that the last equality is due to the skew-symmetry of J .

2.3.2 Poisson systems

As a generalisation of Hamiltonian systems, Poisson systems play a crucial part in mathematical formula-
tions for more complicated phenomena such as constrained mechanical systems and infinite dimensional
mechanical systems. For more details, see, e.g., [97, Chapter VII.2].

Firstly we reformulate Hamiltonian systems using the Poisson bracket. A bracket of two functions
F(q, p) and G(q, p) defined by

{F, G}=
d∑

i=1

�
ÇF
Çqi

ÇG
Çpi
− ÇF

Çpi

ÇG
Çqi

�
is called the canonical Poisson bracket. It is easy to check that the Poisson bracket is bilinear and skew-
symmetric

{F, G}= −{G, F}
and satisfies the Jacobi identity

{{F, G}, H}+ {{G, H}, F}+ {{H, F}, G}= 0.

Every function f = f (q, p) along the flow of a Hamiltonian system satisfies

d
dt

f (y(t)) = { f , H}(y(t))
because of the chain rule:

d
dt

f (q(t), p(t)) =
d∑

i=1

�
Ç f
Çqi

q̇i +
Ç f
Çpi

ṗi

�
=

d∑
i=1

�
Ç f
Çqi

ÇH
Çpi
− Ç f

Çpi

ÇH
Çqi

�
.
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As the special case f = yi , a Hamiltonian system

ẏi = {yi , H}, i = 1, . . . , 2d

is recovered.
We now generalise the above idea to noncanonical cases. A skew-symmetric matrix Λ(y) =

�
λi j(y)

�
is called a Poisson structure matrix if the Poisson bracket defined by

{F, G}(y) =
N∑

i, j=1

ÇF
Çyi
λi j(y)

ÇG
Çyi

satisfies the skew-symmetry

{F, G}= −{G, F}
and the Jacobi identity

{{F, G}, H}+ {{G, H}, F}+ {{H, F}, G}= 0.

As with the canonical case, given a Hamiltonian H(y), the motion is governed by

d
dt

f (y(t)) = { f , H}(y(t)).
By taking f = yi , we obtain the system of equations

ẏ(t) = Λ(y)∇H(y),

which is called a Poisson system.
Below, we list two examples.

Example 2.3 (Lotka–Volterra equations). The Lotka–Volterra equations describe dynamics in biological
systems, in which two species interact each other. The systems is formulated as

u̇= u(v −α), ṗ = v(β − u),

where u and v denote the number of prey and predators, respectively. This system can be rewritten as
the Poisson system�

u̇
v̇

�
=

�
0 uv
−uv 0

�
∇H(u, v), H(u, v) = u− β ln u+ v −α ln v.

Example 2.4 (Euler equations). The motion of a rigid body under no forces is described by the Euler
equation

q̇ = ((α− β)q2q3, (1−α)q3q1, (β − 1)q1q2)
⊤.

This system can be seen as the Poisson system

q̇ =

 0 αq3 −βq2−αq3 0 q1
βq2 −q1 0

∇H(q), H(q) =
q2

1 + q2
2 + q2

3

2
.
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2.4 Symplectic methods

This section summarises symplectic integration methods. A numerical one-step method is said to be
symplectic if the solution satisfies

dqn ∧ dpn = dq0 ∧ dp0.

2.4.1 First examples

Firstly, we give a quick review on symplectic methods through the simplest example.

Theorem 2.12 (de Vogelaere [195]). The so called symplectic Euler methods

qn+1 = qn + hHp(qn, pn+1),

pn+1 = pn − hHq(qn, pn+1),

or

qn+1 = qn + hHp(qn+1, pn),

pn+1 = pn − hHq(qn+1, pn)

are symplectic and of order 1.

Proof. The first order convergence is obvious. We shall prove the symplecticity for the first method. It
immediately follows that

dqn+1 = dqn + h
�
Hpqdqn +Hppdpn+1

�
,

dpn+1 = dpn − h
�
Hqqdqn +Hqpdpn+1

�
.

Note that the matrices Hqq and Hpp are symmetric, and Hqp = H⊤pq. Taking the wedge product with
dpn+1 from the right to the first equation and dqn from the left to the second equation, we obtain

dqn+1 ∧ dpn+1 = dqn ∧ dpn+1 + hHpqdqn ∧ dpn+1,

dqn ∧ dpn+1 = dqn ∧ dpn − hHqpdqn ∧ dpn+1.

Then, we readily have dqn+1 ∧ dpn+1 = dqn ∧ dpn.

The symplectic Euler methods are implicit in general. For separable Hamiltonian systems H(q, p) =
T (p) + U(q), however, they become explicit.

When T (p) = p2/2, a Hamiltonian system can be written componentwise

q̇ = p, ṗ = −∇U(q),

or a second-order differential equation

q̈ = −∇U(q).

The most natural discretisation of the latter equation is

qn+1 − 2qn + qn−1 = −h2∇U(q), (2.12)
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which is called the Störmer–Verlet method. This method can be reformulated as a one-step method

pn+1/2 = pn − h
2
∇U(qn),

qn+1 = qn + hpn+1/2,

pn+1 = pn+1/2 − h
2
∇U(qn+1).

The Sörmer–Verlet method is symepectic, and moreover, in contrast to the symplectic Euler methods,
symmetric and thus of order two.

Some symplectic methods themselves had been found in the early twentieth century, long before
the concept of symplecticity became of interest. The Störmer–Verlet method is said to be the oldest one,
which was first constructed by Störmer [176] in the context of astronomy in 1907, and rediscovered
independently by Verlet [194] in the context of molecular dynamics in 1967.

2.4.2 Symplectic Runge–Kutta methods
Higher-order symplectic methods can be constructed by the composition method with second-order
symplectic methods. In addition, there are other ways to realise such methods. This subsection reviews
symplectic Runge–Kutta methods.

In 1988, a condition of Runge–Kutta methods being symplectic was obtained independently by
Lasagni [122], Sanz-Serna [173] and Suris [178].

Theorem 2.13 ([122, 173, 178]). A Runge–Kutta method solving Hamiltonian systems is symplectic if
the following conditions are satisfied

biai j + b ja ji = bi b j , 1≤ i, j ≤ s. (2.13)

Although this theorem can be proved in a more direct way, we here follows the approach by Boschev–
Scovel [14]. Their proof is based on the following theorem.

Theorem 2.14 ([14]). If a Runge–Kutta method conserves quadratic first integrals (i.e., for any dif-
ferential equations ẏ = f (y) with a quadratic first integral I(y) = y⊤Q y (Q is a symmetric matrix),
I(y1) = I(y0) holds), then it is symplectic.

Proof. For Runge–Kutta methods, the following diagram commutes:

ẏ = f (y), y(0) = y0
RK method−−−−−−→ {yn}

↓ Ç
Çy0

↓ Ç
Çy0

ẏ = f (y), y(0) = y0

Ψ̇ = f ′(y)Ψ(y), Ψ(0) = I

RK method−−−−−−→ {yn,Ψn}

Note that for the Hamiltonian system (i.e., ẏ = J−1∇H(y)), its variational equation is

Ψ̇ = J−1∇2H(y)Ψ.

Since

(J−1∇2H(y)Ψ)⊤JΨ +Ψ⊤J(J−1∇2H(y)Ψ) = 0,

the diagram indicates that Ψ⊤JΨ is a quadratic first integral of the variational equation.
Therefore every Runge–Kutta method that preserves quadratic first integrals is a symplectic method.
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Conversely, symplectic Runge–Kutta methods are usually constructed so that they preserve quadratic
first integrals.

Proof of Theorem 2.13. Let us assume that ẏ = f (y) has a quadratic invariant 〈y,Q y〉(:= y⊤Q y) =
const., which means 〈v,Q f (v)〉= 0 for all v. For the internal stages of the Runge–Kutta method

Yi = y0 + h
s∑

j=1

ai j f (Yj),

it follows from 〈Yi ,Q f (Yi)〉= 0 that

0= 〈Yi ,Q f (Yi)〉= 〈y0,Q f (Yi)〉+ h
s∑

j=1

ai j〈 f (Yj),Q f (Yi)〉.

Similarly, for the final stage

y1 = y0 + h
s∑

i=1

bi f (Yi),

it follows that

〈y1,Q y1〉= 〈y0,Q y0〉+ h
s∑

i=1

bi〈y0,Q f (Yi)〉+ h
s∑

j=1

b j〈y0,Q f (Yj)〉+ h2
s∑

i, j=1

bi b j〈 f (Yi),Q f (Yj)〉.

Therefore 〈y1,Q y1〉= 〈y0,Q y0〉 if the conditions (2.13) are satisfied.

Remark 2.1. A similar condition for the symplecticity of Runge–Kutta methods had been already known
as a condition of B-stability7 of Runge–Kutta methods [25, 30, 60]. Let us consider a nonlinear equation
ẏ(t) = f (t, y(t)) with the property

〈u− v, f (t, u)− f (t, v)〉 ≤ 0.

Two solutions y and ỹ starting from different initial values satisfy

d
dt
∥y(t)− ỹ(t)∥ ≤ 0.

A Runge–Kutta method is said to be B-stable if

∥yn+1 − ỹn+1∥ ≤ ∥yn − ỹn∥.
If the matrix M with the elements

mi j = biai j + b ja ji − bi b j

is positive semi-definite, and bi ≥ 0 (i = 1, . . . , s), the corresponding Runge–Kutta method is B-stable.

7 The concept of B-stability was first introduced by Butcher [30] and in that paper it was already referred to as the B-stability.
According to Butcher’s book [32, p. 250], it was named “because it is one step more stringent than A-stability.”
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2.4.3 Backward error analysis
When we consider the error estimate of a numerical method, we usually estimate the local error ∥y(t0+
h)− y1∥ or the global error ∥y(t0+nh)− yn∥. Such analyses are based on the Taylor expansion and called
forward error analyses. On the other hand, We can consider at least formally a differential equation
whose solution coincides with the numerical solution. The idea of backward error analysis is to search
for a differential equation of the form

d
dt

ỹ = f ( ỹ) + hf1( ỹ) + h2 f2( ỹ) + h3 f3( ỹ) + · · · , ỹ(t0) = y0

such that yn = ỹ(t0+ nh), and to analyse the above modified equation. If the method is of order p, we
have f j = 0 ( j = 1, . . . , p− 1).

In Chapter 1, we saw that the difference between numerical and exact energies are bounded for a
symplectic method over a long-time interval. This property is verified by the backward error analysis.

Theorem 2.15 (e.g., [97, Chapter IX, Theorem 3.1]). The modified equation of a symplectic integrator
applied to a sufficiently smooth Hamiltonian system is also a Hamiltonian system. More precisely, the
modified equation can be written as

d
dt

ỹ = J−1∇H̃( ỹ)

with the modified Hamiltonian

H̃( ỹ) = H( ỹ) + hH1( ỹ) + h2H2( ỹ) + h3H3( ỹ) + · · · . (2.14)

This theorem indicate that a symplectic method of order p preserves

H̃( ỹ) = H( ỹ) + hpHp( ỹ) + hp+1Hp+1( ỹ) + · · · ,
and thus |H(yn)−H(y0)| ≤O(hp).

Remark 2.2. Note that the expression of the modified Hamiltonian (2.14) does not converge in general.
Strictly speaking, we terminate the expansion after some finite number of terms, and have to check if
the corresponding approximation is valid for an exponentially long-time interval. See [97, Chapter IX]
for a more detailed discussion.

Sketch of proof of Theorem 2.15. The proof is by induction. We assume f j = J−1∇H j for j = 1, . . . , r
and prove the existence of Hr+1 so that fr+1 = J−1∇Hr+1.

Consider the truncated modified equation

˙̃y = f ( ỹ) + hf1( ỹ) + · · ·+ hr fr( ỹ),

and denote the exact flow of this truncated equation by φr,t(y0). It follows from the Taylor series
expansion that

Φh(y0) = φr,h(y0) + hr+2 fr+1(y0) +O(hr+3),

Φ′h(y0) = φ
′
r,h(y0) + hr+2 f ′r+1(y0) +O(hr+3).

Since Φh and φr,h are both symplectic maps and φ′r,h(y0) = I +O(h), we have

J−1 = Φ′h(y0)
⊤J−1Φ′h(y0) = J−1 + hr+2

�
f ′r+1(y0)

⊤J−1 + J−1 f ′r+1(y0)
�
+O(hr+3),

which indicates that J−1 f ′r+1(y0) is symmetric. Hence, there exists Hr+1 such that fr+1 = J−1∇Hr+1
because of the integrability lemma (see [97, Chapter VI, Theorem 2.7]): briefly speaking, if f ′ is sym-
metric, there exists H such that f =∇H.
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2.5 Energy-preserving methods

This section summarises energy-preserving integration methods. A numerical one-step method is said
to be energy-preserving if the solution satisfies

H(yn) = H(y0).

Energy-preserving methods are relatively new compared with symplectic methods. There are several
reasons, one of which is shown in the following theorem.

Theorem 2.16 (e.g., Celledoni et al. [47]). No Runge–Kutta method is energy-preserving in general.

Proof. Let us consider the case H(q, p) = p− F(q), i.e.,

q̇ = 1, ṗ = f (q),
�

f (q) = F ′(q)
�
.

Every Runge–Kutta method with the property
∑s

i=1 bi = 1 provides an exact solution for the variable q,
i.e., q1 = q0 + h. Thus, the energy-preservation requires that p1 also coincides with the exact solution

p(t0+h) = p0+
∫ t0+h

t0
f (t)dt. However, this is impossible in general (this can be verified by considering

an f that is 0 at the quadrature nodes but has non-zero integral).

Although Runge–Kutta methods cannot be energy-preserving, energy-preserving integrators can be
constructed relatively easily by simple approaches: projection methods (see [4, 6, 9, 62, 70, 92, 93]
and references therein) and methods on local coordinates [164, 165]. See also [97, Section IV.4 and
5]. However, more sophisticated approaches such as the discrete gradient method have been developed
in the last two decades. They are reviewed in the rest of this section.

Remark 2.3. In Part I, we promise that by energy-preserving integrators we mean we target only one
first integral. However, some Hamiltonian systems have more than one first integrals, and indeed, nu-
merical methods preserving more than one first integrals have been considered. For example, the Kepler
problem also preserves the so called angular momentum and Runge–Lenz vector. Energy-preserving
integrators which also inherit such invariants are proposed by Brugnano–Iavernaro [21], Brugnano–
Sun [24], Dahlby et al. [62], Kozlov [119] and Minesaki–Nakamura [143], for example.

Remark 2.4. Although we skip detailed explanations of the projection methods and methods on local
coordinates, they are important concepts in the context of numerical methods for differential equations
on manifolds. For example, Lie group integrators for differential equations on Lie groups have been
developed in the last two decades (reviews are found in [46, 114]).

2.5.1 Discrete gradient method for Hamiltonian systems
The discrete gradient method is summarised.

Definition 2.9 (Discrete gradient). Let N ∈ Z+ and H : RN → R. Let us consider a discrete approxima-
tion of the gradient, a map ∇H : RN ×RN → R, satisfying

H(x)−H(y) =∇H(x , y)⊤(x − y),

∇H(x , x) =∇H(x),

for any x , y ∈ RN . We call ∇H a discrete gradient.

Theorem 2.17 (Gonzalez [88]). The discrete gradient method

yn+1 − yn

h
= J−1∇H(yn+1, yn)

is energy-preserving.
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Proof.

H(yn+1)−H(yn) = h∇H(yn+1, yn)
⊤ yn+1 − yn

h
= h∇H(yn+1, yn)

⊤J−1∇H(yn+1, yn) = 0.

The first equality is due to the discrete chain rule. The last equality follows from the skew-symmetry of
J−1.

Although the essential idea had been known since 1970s (see, e.g., Greenspan [90]), Gonzalez [88]
in 1996 formulated the method explicitly for the first time in the context of numerical analysis (see also
McLachlan et al. [141]).

Let us turn to the construction of a discrete gradient. Note that in general a discrete gradient is
not unique. Several construction methods have been proposed. Here we show some of them, but the
average vector field method is commonly used these days.

Letting y1/2 = (y0 + y1)/2, Gonzalez [88] proposed the discrete gradient of the form

∇H(y0, y1) :=∇H(y1/2) +
H(y0)−H(y1)−∇H(y1/2)⊤(y0 − y1)

∥y0 − y1∥2 (y0 − y1).

This definition is theoretically clear, but there is a big drawback that due to 1/∥y0− y1∥2 in the second
term of the right hand side, each component of the discrete gradient contains all components of y0 and
y1. Therefore, this definition is impractical.

Before Gonzalez’s work, Itoh–Abe [116] had considered their approach to construct energy-preserving
integrators. For example, when d = 1 (y = (q, p)⊤), their discrete gradient reads

∇H(y0, y1) :=
�

H(q1, p1)−H(q0, p1)
q1 − q0

,
H(q0, p1)−H(q0, p0)

p1 − p0

�⊤
.

But since their discrete gradient does not have symmetry, the resulting scheme is of order 1. See Ishi-
mori [115] and references therein for symmetrisation of this discrete gradient.

Quispel–McLaren [167] proposed the average vector field (AVF) method:

∇H(y0, y1) :=

∫ 1

0

∇H(ξy0 + (1− ξ)y1)dξ.

Advantages of this definition are discussed by Celledoni et al. [48].

Remark 2.5. Since the discrete gradient method is implicit in general, it requires a nonlinear solver such
as the simplified Newton method. To reduce the computational cost, a linearisation technique (linearly-
implicit method) has been developed in [61, 137, 138], by relaxing the exact energy-preservation.

The idea is briefly illustrated by q̇ = p, ṗ = −q2 (i.e., H(q, p) = p2

2 +
q3

3 ). The AVF method gives an
energy-preserving integrator

q1 − q0

h
=

p1 + p0

2
,

p1 − p0

h
= − p2

1 + p1p0 + p2
0

3
.

On the other hand, the linearly-implicit method first defines the modified energy

Ĥ(q1, q0, p1, p0) =
p2

1 + p2
0

4
+

q2
1q0 + q1q2

0

6
,

so that it is symmetric in terms of q1 and q2 (and similarly p1 and p2), and quadratic in terms of q1
and p1. Note that the second constraint indicates that if the order of the Hamiltonian is bigger than 4,
additional timesteps are required. If we define a multistep scheme by

q2 − q0

2h
=

q2 + q0

2
,

p2 − p0

2h
= −q1(q2 + q1 + q0)

3
,
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the numerical solution satisfies

Ĥ(q2, q1, p2, p1) = Ĥ(q1, q0, p1, p0).

2.5.2 Energy-preserving continuous stage Runge–Kutta methods for Hamiltonian
systems

High-order energy-preserving integrators can be constructed by the combination of a symmetric discrete
gradient method and the composition method. However, it is not straightforward to derive high-order
integrators by collocation-like methods. In 2010, Hairer succeeded in generalising the AVF method to
arbitrary high-order [94]. The generalisation was made possible by slightly changing the idea of the
collocation method (Definition 2.7).

Definition 2.10 (AVF collocation method [94]). Let c1, . . . , cs be distinct real numbers (0 ≤ c1 < · · · <
cs ≤ 1). The collocation polynomial u(t) is a polynomial of degree s satisfying

u(t0) = y0,

u̇(t0 + cih) =
1
bi

∫ 1

0

li(τ) f (u(t0 +τh))dτ, i = 1, . . . , s,

where

li(τ) =
s∏

j=1, j ̸=i

τ− c j

ci − c j
, bi =

∫ 1

0

li(τ)dτ,

and the numerical solution of the next time step is defined by y1 = u(t0 + h).

Theorem 2.18 ([94]). The numerical solution of the AVF collocation method satisfies H(y1) = H(y0).

Proof will be given in Chapter 3 in a more general context.
If the ci values are the zeros of the s-th shifted Legendre polynomial, then the method has order

p = 2s. Here lists concrete expressions of Aτ,σ for s = 1, 2, 3:

s = 1 : Aτ,σ = τ,

s = 2 : Aτ,σ = τ((4− 3τ)− 6(1−τ)σ), (2.15)

s = 3 : Aτ,σ = τ
�
(9− 18τ+ 10τ2)− 12(3− 8τ+ 5τ2)σ+ 30(1− 3τ+ 2τ2)σ2

�
.

In Theorem 2.5, we saw that the collocation method can be interpreted as the Runge–Kutta method.
But according to Theorem 2.16, the AVF collocation method cannot be interpreted as the standard
Runge–Kutta method. Instead, Hairer showed that the AVF collocation method belongs to so called
continuous stage Runge–Kutta methods.

Definition 2.11 (Continuous stage Runge–Kutta method). Let Aτ,σ and Bσ = A1,σ be polynomials
with respect to the variables in the subscripts. Assume that A0,σ = 0. We search for a polynomial
Yτ ≈ u(t0 +τh) (τ ∈ [0, 1]) and y1 ≈ y(t0 + h) satisfying

Yτ = y0 + h

∫ 1

0

Aτ,σ f (Yσ)dσ,

y1 = y0 + h

∫ 1

0

Bτ f (Yτ)dτ.

This one-step method y0 7→ y1 is called a continuous stage Runge–Kutta (CSRK) method.
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In the above definition, it is obvious that y1 = Y1 because of Bσ = A1,σ. Note that in general, we
do not have to restrict functions to polynomials, and there is a more general definition (see, e.g., [29,
182]).

It is verified that the AVF collocation method can be interpreted as a CSRK method with the relation

Aτ,σ =
s∑

i=1

1
bi

∫ τ

0

li(α)dα li(σ), Bσ = 1.

Remark 2.6. Brugnano et al. have recently developed the so called Hamiltonian boundary value method
(see, e.g., [22, 23]). This method coincides with the AVF method for polynomial Hamiltonian systems.
For a specific polynomial Hamiltonian system, an energy-preserving Runge–Kutta method can be derived
based on the Hamiltonian boundary value method. However, such a Runge–Kutta method is not energy-
preserving for other Hamiltonian systems. Readers should not confuse this with Theorem 2.16.

2.5.3 Conjugate symplecticity

Symplectic methods exactly preserve the symplecticity and nearly preserve the Hamiltonian. Similarly,
it is of interest to consider to what extent energy-preserving methods inherit the symplecticity. As a
criterion, conjugate symplecticity has been considered recently.

Definition 2.12 (Conjugate symplecticity [97, Section VI.8]). A numerical method Φh of order p is said
to be conjugate symplectic up to order p + r (r ≥ 0), if there exists a change of coordinates z = χ(y)
that is O(hp) close to the identity such that Ψh = χ ◦Φh ◦χ−1 satisfies

Ψ′h(z)⊤J−1Ψ′h(z) = J−1 +O(hp+r+1).

The method Ψh has the same order as Φh, and the modified equation is Hamiltonian up to the term
hp+r−1.

Conjugate symplecticity of B-series integrators has been extensively studied by Hairer–Zbinden [102].
Below, some important results are summarised without proof.

Theorem 2.19 (Hairer [94, Theorem 7]). A symmetric composition of order four based on the average
vector field method cannot be conjugate-symplectic up to an higher than four.

Theorem 2.20 (Hairer–Zbinden [102, Theorem 6.3]). The AVF collocation method of order 2s is
conjugate-symplectic up to order 2s+ 2, but it is not conjugate symplectic up to a higher order.

Theorem 2.21 (Hairer–Zbinden [102, Theorem 5.11]). A B-series integrator of order 2s satisfying the
simplifying assumption C(s) and D(s− 1) is always conjugate symplectic up to order 2s+ 2. For s ≥ 2,
it is conjugate symplectic up to order 2s+ 4 if and only if

(s+ 2)(s+ 1)a(ts, [ , ts+1]) = (s+ 1)a(ts, ts+3) + (s+ 2)a(ts, [ts+2]),

(s+ 2)(s+ 1)a(ts+1, [ts+1]) = (s+ 2)a(ts+1, ts+2) + s(s+ 2)a(ts, [ts+2])− sa(ts, ts+3).

Here, t i denotes a tree with i vertices whose height is 1, e.g., t1 = , t2 = , t3 = and t4 = . a(u, v)
is defined by

a(u, v) := a(u ◦ v) + a(v ◦ u)− a(u)a(v)

where

u ◦ v = [u1, . . . , um, v] for u= [u1, . . . , um].
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2.5.4 Energy-preserving method based on Euler–Lagrange equation
The energy-preserving methods described above discretise Hamiltonian systems directly. On the other
hand, it is possible to construct energy-preserving integrators by discretising the Euler–Lagrange equa-
tion. This approach was proposed by Yaguchi [208].

Below, we consider the Hamiltonian system with the Hamiltonian

H(q, p) =
1
2

p⊤p+
1
2

q⊤Aq+ U(q),

where A is a positive semi-definite matrix. The Hamiltonian system is equivalent to the Euler–Lagrangian
equation (2.7) with the Lagrangian

L(q, q̇) =
1
2

q̇⊤q̇− 1
2

q⊤Aq− U(q).

The energy-preservation is verified by Noether’s theorem. Let qh(t) = q(t − h). The variation of the
action integral yields

0=
1
h

�∫ T+h

h
L(qh, q̇h)dt −

∫ T

0

L(q, q̇)dt

�
=

1
h

∫ T+h

T
L(qh, q̇h)dt − 1

h

∫ h

0

L(q, q̇)dt +
1
h

∫ T

h
(L(qh, q̇h)− L(q, q̇))dt

h→0→ L|t=T − L|t=0 −
∫ T

0

�
ÇL
Çq
− d

dt
ÇL
Çq̇

�
q̇ dt −

�
q̇
ÇL
Çq̇

�T

0

=
�

L − q̇
ÇL
Çq̇

�����
t=T
−
�

L − q̇
ÇL
Çq̇

�����
t=0
−
∫ T

0

�
ÇL
Çq
− d

dt
ÇL
Çq̇

�
q̇ dt. (2.16)

Therefore, for the Euler–Lagrange equation ÇL
Çq − d

dt
ÇL
Çq̇ = 0, it follows

L − q̇
ÇL
Çq̇
= const.,

which indicates the preservation of Hamiltonian because L − q̇ ÇL
Çq̇ = −H.

The idea of deriving an energy-preserving integrator is to mimic the calculation (2.16) in the discrete
setting. We first discretise the Lagrangian by

Ld(qn,δ+t qn) :=
1
2
(δ+t qn)

⊤(δ+t qn)− 1
2

q⊤n Aqn − U(qn).

Below, we use the abbreviation L(qn). It then follows that

0=
1
h

�N+1∑
n=1

Ld(qn−1)−
N∑

n=0

Ld(qn)

�
h

= Ld(qN )− Ld(q0) +
1
h

N∑
n=1

(Ld(qn−1)− Ld(qn))h

= Ld(qN )− Ld(q0)− h
N∑

n=1

�
(δ+t qn−1/2)

⊤(δ+t δ−t qn)− q⊤n−1/2A(δ−t qn)−∇U(qn, qn−1)
⊤(δ−t qn)

�
=
�
Ld(qN )− (δ+t qN−1/2)

⊤(δ+t qN )
�− �Ld(q0)− (δ+t q−1/2)

⊤(δ+t q0)
�

+ h
N∑

n=1

�
δ−t δ+t qn−1/2 + Aqn−1/2 +∇U(qn, qn−1)

�⊤
(δ−t qn),
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where ∇U(qn, qn−1) denotes the discrete gradient of U . This calculation immediately suggests the nu-
merical scheme

δ−t δ+t qn−1/2 + Aqn−1/2 +∇U(qn, qn−1) = 0. (2.17)

Theorem 2.22. The scheme (2.17) is energy-preserving in the sense that

Ld(qn)− (δ+t qn−1/2)
⊤(δ+t qn) = −

�
1
2
(δ−t qn)

⊤(δ+t qn) +
1
2

q⊤n Aqn + U(qn)
�
= const.

The most remarkable feature of the scheme (2.17) is that it is explicit, though q1 and q2 should be
given/calculated in advance. However, it should also be noted that the scheme does not preserve the
genuine Hamiltonian. It is still open if the scheme is conjugate symplectic.

2.5.5 Energy-preserving partitioned continuous stage Runge–Kutta methods for
Poisson systems

In the above subsections, we saw the energy-preserving methods for Hamiltonian systems. In this sub-
section, we summarise how such methods are extended to Poisson systems. While the projection meth-
ods and methods on local coordinates are still applicable, it turns out that a CSRK method cannot be
energy-preserving for Poisson systems. The difficulty is due to the dependence of the matrix Λ on y(t).
We here review the method by Cohen–Hairer [53], where a partitioned version of CSRK methods, called
a partitioned CSRK (PCSRK) method, is considered.

First, let us consider the simplest case, i.e., the discrete gradient method of order two. In the proof
of Theorem 2.17, the last equality is due to the skew-symmetry of J−1. Therefore, the matrix Λ(y)
of Poisson systems should be discretised with yn and yn+1 so that the discrete version is still skew-
symmetric. Although such a discretisation is arbitrary, the following way is preferable because it is
symmetric

yn+1 − yn

h
= Λ

� yn + yn+1

2

�
∇H(yn+1, yn).

The above example indicates that the matrix Λ(y) and gradient ∇H(y) should be discretised in
a different manner. Therefore, the CSRK framework is insufficient for the construction of high-order
energy-preserving integrators. Following Cohen–Hairer [53], we here introduce PCSRK methods.

Definition 2.13 (Partitioned continuous stage Runge–Kutta method). Let Aiτ, jσ be a polynomial of
degree s with respect to the variables τ and σ. We search for a polynomial Yτ ≈ u(t0+τh) (τ ∈ [0, 1]),
Zi (i = 1, . . . , s) and y1, z1 ≈ y(t0 + h) such that they satisfy

Yτ = y0 + h
s∑

j=1

∫ 1

0

Aiτ, jσΛ(Z j)∇H(Yσ)dσ,

Zi = z0 + h
s∑

j=1

∫ 1

0

bAiτ, jσΛ(Z j)∇H(Yσ)dσ, i = 1, . . . , s, (2.18)

y1 = y0 + h
s∑

i=1

∫ 1

0

BiτΛ(Zi)∇H(Yτ)dτ,

z1 = z0 + h
s∑

i=1

∫ 1

0

bBiτΛ(Zi)∇H(Yτ)dτ,

with y0 = z0, where



40 Chapter 2. Preliminaries: existing methods and our motivation

• Yτ is a polynomial in τ of degree s and satisfies Y0 = y0,

• 0≤ c1 < · · ·< cs ≤ 1,

• bAiτ, jσ = Aci , jσ,

• B jσ = bB jσ = A1, jσ.

This one-step method y0 7→ y1 is called a partitioned continuous stage Runge–Kutta (PCSRK) method.

The notation Aiτ, jσ, which was introduced in [53], depends on τ, σ ∈ [0, 1], j = 1, . . . , s and i. In
reality, it does not depend on i, but we leave it as it is because it becomes useful when considering order
conditions. In other places, we can simply understand this as Aiτ, jσ = Aτ, jσ.

It is clear that y1 = z1 and (2.18) is equivalent to Zi = Yci
. As mentioned in [53], these methods are

consistent with the partitioned system of differential equations

ẏ = Λ(z)∇H(y), y(t0) = y0,

ż = Λ(z)∇H(y), z(t0) = z0,

whose solutions satisfy y(t) = z(t) if y0 = z0.
It is shown in [53] that the PCSRK method is energy-preserving independently of c1, . . . , cs if

Aiτ, jσ =
l j(σ)

b j

∫ τ

0

l j(α)dα.

Moreover, if c1, . . . , cs are the zeros of the sth shifted Legendre polynomial, the method has the accuracy
order 2s.

2.6 Motivation and summary of the subsequent chapters

Chapter 3

For ordinary differential equations with periodic or oscillatory solutions, there have been many branches
of research activities. For example, trigonometric methods for second-order ODEs and exponentially-
fitted (EF) methods for first-order ODEs have been studied in the last few decades. The trigonometric
methods have been mainly developed in the context of highly oscillatory differential equations (see,
e.g., [54, 68, 91, 95, 104, 183] and references therein), after the first theoretical foundation given by
Gautschi [86] and Lyche [131]. The EF methods were first considered by Simos [175] and Paternos-
ter [162] independently, and then have been developed by several authors [76, 77, 78, 160, 161, 186,
187, 188, 190].

In Chapter 3, we first focus on the EF methods. Recently, symplectic EF methods have been devel-
oped for Hamiltonian systems (see, e.g., [36, 37, 38, 39, 40]) by combining the ideas of symplectic
methods and EF methods. However, if we turn our attention to energy-preserving integrators, only a
few papers (e.g., [199]) have been written in this context, and thus it seems much is left to be inves-
tigated. Taking these facts into account, we aim to construct energy-preserving EF methods. Below,
the difficulty of this challenge is clarified. The symplectic EF methods have been constructed by the
combination of

• the characterisation of Runge–Kutta methods being symplectic (Theorem 2.13), and

• a standard theory of exponentially-fitted Runge–Kutta methods (which will be summarised in
Chapter 3).
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As we saw in the previous section, Runge–Kutta methods cannot be energy-preserving, and thus we are
forced to construct our intended methods in a framework of CSRK methods. Actually we show that we
can newly develop

• characterisation of CSRK methods being energy-preserving,

• a standard theory of exponentially-fitted CSRK methods

and combine the two theories to derive energy-preserving EF integrators. We would like to emphasise
that the energy-preservation characterisation, which corresponds to Theorem 2.13, is an important
theorem in a more general context of geometric numerical integration methods.

Next, we extend the above ideas to Poisson systems.
Finally, we briefly consider the trigonometric methods. It is known that several existing trigono-

metric methods are symplectic. We show that energy-preserving trigonometric methods can also be
constructed by using the theory summarised in Section 2.5.4.

Chapter 4
Butcher–Imran [33] have recently shown that we can construct efficient high-order symplectic integra-
tors for Hamiltonian systems. In fact they constructed fourth-order symplectic integrators, whose com-
putational costs are comparable to the midpoint rule (the simplest second-order symplectic method)
if parallelism is available. Motivated by their work, in this chapter, we consider a derivation of effi-
cient, high-order energy-preserving methods for Hamiltonian systems. The accuracy order can be easily
increased by the composition method (Section 2.2.3) based on the AVF method. However, there is a
tradeoff between the accuracy order and computational cost. For example, if we employ the triple-jump
technique (2.6), we have to call an AVF integrator 3s−1 times per each timestep in order to achieve 2s-
order. The AVF collocation method (Definition 2.10) is an alternative way to achieve 2s-order. In this
method, we have to solve a system of nonlinear equations of size sN once per each timestep.

The aim of Chapter 4 is to derive a new family of energy-preserving methods which can be high-
order, and at the same time, whose computational cost is just comparable to that of the AVF method
when parallelism is available. We here would like to emphasise that in this thesis we do not intend to
implement the existing high-order methods in parallel architecture by making the best use of charac-
teristics of each problem, though such a technique can also be incorporated with the proposed method.

Our idea is summarised as follows. Our derivation is based on continuous stage Runge–Kutta (CSRK)
methods. For conventional RK methods, an s-stage implicit RK method can be implemented in parallel
with s processors, if the coefficient matrix has only real, distinct eigenvalues. Precisely speaking, in such
cases, if we apply the simplified Newton method, the resulting linear system of size sN can be divided
into s linear systems of size N . Motivated by this fact, we shall seek a similar condition for CSRK
methods. We then derive new CSRK integrators satisfying this condition, characterisations for energy-
preservation, and order conditions. Note that the characterisation of CSRK methods being energy-
preserving is given in Section 3.2. Also note that to check the order conditions is the most cumbersome
part in the derivation, and in order to avoid such a heavy task, we characterise the order conditions in
terms of the coefficient polynomial of CSRK methods.
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Chapter 3

Energy-preserving
exponentially-fitted/trigonometric integrators
for Hamiltonian/Poisson systems

In this chapter, we consider energy-preserving numerical methods for differential equations with pe-
riodic or oscillatory solutions. Section 3.1 briefly reviews the basic concepts of exponentially-fitted
Runge–Kutta (EFRK) methods and symplectic EFRK methods. A characterisation of CSRK methods be-
ing energy-preserving, and theory of EF continuous stage Runge–Kutta (CSRK) methods are shown
in Sections 3.2 and 3.3, respectively. Energy-preserving EF methods for Hamiltonian systems are then
constructed in Section 3.4, and they are further extended to Poisson systems in Section 3.5. Energy-
preserving trigonometric methods are considered in Section 3.6.

In this chapter we use several abbreviations. The following table shows their list.

RK Runge–Kutta
EF exponentially-fitting, exponentially-fitted
FF functionally-fitting, functionally-fitted
EF(FF)RK exponentially-fitted (functionally-fitted) Runge–Kutta
SEFRK symplectic EFRK
(P)CSRK partitioned continuous stage Runge–Kutta
EPCSRK energy-preserving CSRK
EFCSRK exponentially-fitted CSRK
EPEFCSRK energy-preserving exponentially-fitted CSRK

3.1 A brief review of exponentially-fitted Runge–Kutta methods and symplectic
exponentially-fitted Runge–Kutta methods

In this section, we briefly review the basic concepts of EFRK methods and symplectic EFRK (SEFRK)
methods.

3.1.1 Characterisations of symplecticity and symmetry of modified RK methods

We already saw the characterisations for symplecticity and symmetry in terms of RK methods in Chap-
ter 2 (Theorem 2.13). Just for the explanation of symplectic EF methods, we introduce modified RK
methods.

43
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We consider an s-stage modified Runge–Kutta (mRK) method defined by

Yi = γi y0 + h
s∑

j=1

ai j f (Yj), i = 1, . . . , s, (3.1)

y1 = y0 + h
s∑

i=1

bi f (Yi), (3.2)

where y1 ≈ y(t0 + h), Yi ≈ y(t0 + cih) (i = 1, . . . , s) and the real parameters ci and bi (i = 1, . . . , s)
denote the nodes and the weights of the method. In the standard RK methods, all γi = 1, but several
authors introduced the γi parameters in the context of EF methods [76, 186, 187]. We often refer to
(3.1) and (3.2) as the internal and final stages, respectively. The mRK method (3.1) and (3.2) is often
represented by means of Butcher’s tableau

c γ A
b⊤ =

c1 γ1 a11 · · · a1s
...

...
...

. . .
...

cs γs as1 · · · ass

b1 · · · bs

or equivalently the quartet (c,γ, A, b).
As an extension of Theorem 2.13, the characterisation of mRK methods being symplectic was ob-

tained by Van de Vyver [184, 185].

Theorem 3.1 (Van de Vyver [184, 185]). A mRK method solving Hamiltonian systems is symplectic if
the following conditions are satisfied

b j
a ji

γ j
+ bi

ai j

γi
− bi b j = 0, 1≤ i, j ≤ s.

In [36], for mRK methods whose coefficients are even functions of h, the symmetry conditions are
given by

c + Sc = e, b = Sb, γ= Sγ, SA+ AS = γb⊤, (3.3)

where

e = (1, . . . , 1)⊤ ∈ Rs and S = (si j) ∈ Rs×s with si j =

¨
1, if i + j = s+ 1,

0, otherwise.

3.1.2 Exponentially-fitted RK methods
In this subsection, we briefly review the basic concepts of EFRK methods. In the context of RK methods,
a formula can be constructed by the collocation approach: we choose the available parameters (c,γ, A, b)
so that the resulting scheme exactly solves problems whose solution belongs to the linear space spanned
by

F = {u1(t), u2(t), . . . , ur(t)}, r ≤ s.

The set F = {1, t, t2, . . . , ts} is usually considered. In this case, the parameters of the resulting scheme
are independent of h. If F contains exponential or trigonometric functions, these methods are called
EFRK methods. In more general cases in which F contains general functions, these methods are called
functionally-fitted RK (FFRK) methods [160, 161]. In general, the coefficients (c,γ, A, b) of an EFRK
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or FFRK method may depend on not only the fitting functions u1, . . . , ur , but also the step size h. The
coefficients of the FFRK method (3.1)–(3.2) are determined by the linear systems

uk(t0e+ hc)− γuk(t0) = hAu′k(t0e+ hc), k = 1, . . . , r, (3.4)

uk(t0 + h)− uk(t0) = hb⊤u′k(t0e+ hc), k = 1, . . . , r, (3.5)

where e = (1, . . . , 1)⊤ ∈ Rs and we use the notation g(v) = (g(v1), . . . , g(vs))⊤ for v = (v1, . . . , vs) ∈ Rs

and a scalar function g.
In general cases, the coefficients may depend on t0, h and F , but under some standard requirements

on F , they are independent of t0.
Let us consider the solvability of the systems (3.4) and (3.5). When r = s, the coefficients b and A

are uniquely determined for all h> 0 and t ∈ [t0, T], if the matrix

M(t, h) =

u′1(t + c1h) · · · u′1(t + csh)
...

. . .
...

u′s(t + c1h) · · · u′s(t + csh)


is non-singular [160]. Below we explain the key idea of the proof of this statement. If the functions
uk(t) (k = 1, . . . , s) are sufficiently smooth, from the Taylor expansion we have

M(t, h) =W⊤(t)


1 1 · · · 1

c1h c2h · · · csh
...

...
. . .

...
(c1h)s−1

(s−1)!
(c2h)s−1

(s−1)! · · · (csh)s−1

(s−1)!

+O(hs), (3.6)

where W (t) is the Wronskian matrix defined by

W (t) :=

 u′1(t) · · · u′s(t)
...

. . .
...

u(s)1 (t) · · · u(s)s (t)

 where u(i) :=
di

dt i
u(t).

Therefore, due to the continuity of determinant, if the nodes are distinct (ci ̸= c j, i ̸= j) and W (t) is
non-singular, the coefficients b and A are uniquely determined.

In the context of EFRK methods, we usually consider

F1 = {exp(λt), exp(−λt)} (3.7)

or F2 = {cos(ωt), sin(ωt)}. Note that F2 is obtained from F1 with λ = iω. When we consider the set
F1, the linear systems (3.4)–(3.5) reduce to

Acosh(cz) =
sinh(cz)

z
, Asinh(cz) =

cosh(cz)− γ
z

, (3.8)

b⊤ cosh(cz) =
sinh(z)

z
, b⊤ sinh(cz) =

cosh(z)− 1
z

, (3.9)

where z = λh. For s = 2, by the above statement, the coefficients b and A are uniquely determined in
terms of the nodes ci and parameters γi . By simply choosing the Gaussian nodes (c1, c2) = (

1
2 −
p

3
6 , 1

2 +p
3

6 ) and γ1 = γ2 = 1, we can obtain the fourth order EFRK method which reduces to the two-stage
Gauss method when λ = 0 [190]. Unfortunately, however, this EF method is not symplectic as shown
in [40], which indicates that the derivation of symplectic EFRK methods needs some more tricks.
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Table 3.1: Symplectic EFRK methods.

2nd order Van de Vyver [184]
4th order Vyver [185], Calvo et al. [37]
6th order Calvo et al. [36, 38]
8th order Calvo et al. [40], Vanden Berghe–Van Daele [189]
2s order Calvo et al. [39]

3.1.3 Symplectic exponentially-fitted RK methods

Recently, some symplectic (and symmetric) EFRK (SEFRK) methods have been proposed by several
authors. In Table 3.1, some existing methods are shown.

We illustrate here the key for the construction of SEFRK methods, following [37]. By taking the
derivation of fourth order SEFRK scheme as our example, let us start with the two stage mRK formulation

c1 γ1 a11 a12
c2 γ2 a21 a22

b1 b2

.

The coefficients should be related by

c1 γ1 a11 a12
c2 γ2 a21 a22

b1 b2

=

1
2
− θ γ

γb
2

a
1
2
+ θ γ γb− a

γb
2

b b

(3.10)

so that the method is symplectic and symmetric. Here, Theorem 3.1 and (3.3) were used.
When we consider the set of functions F1 (3.7), the linear systems (3.4)–(3.5) reduce to (3.8)–(3.9).

Firstly, from b1 = b2 = b, c1,2 =
1
2 ∓ θ and (3.9), we can easily obtain

b1 = b2 = b =
sinh( z

2)

z cosh(θz)
.

Next, from γ1 = γ2 = γ and (3.8), the coefficients A are given by�
a11 a12
a21 a22

�
=

1
z sinh(2θz)

�
γ cosh((1

2 + θ )z)− cosh(2θz) 1− γ cosh((1
2 − θ )z)−1+ γ cosh((1

2 + θ )z) −γ cosh((1
2 − θ )z) + cosh(2θz)

�
.

The parameter γ can be also determined as

γ1 = γ2 = γ=
2cosh(2θz)

cosh((1
2 + θ )z) + cosh((1

2 − θ )z)
in order to satisfy the relation (3.10). Finally we select the parameter θ using the order conditions.
The resulting scheme is of order four if θ =

p
3/6. This fourth order SEFRK scheme coincides with that

obtained in [185].

Remark 3.1. As pointed out in almost all papers dealing with EF methods, the coefficients are subject
to heavy cancellation when evaluated for small values of |z|, because the denominator gets close to 0.
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In that case the following series expansions should be used:

a11 = a22 =
1
4
− 7

8640
z4 +

31
272160

z6 − 167
13063680

z8 + · · · ,

a12 =
1
4
−
p

3
6
+
p

3
216

z2 −
�

7
8640

+
p

3
6480

�
z4 +

�
31

272160
+

17
p

3
3265920

�
z6

−
�

167
13063680

+
31
p

3
176359680

�
z8 + · · · ,

a21 =
1
4
+
p

3
6
−
p

3
216

z2 +

�
− 7

8640
+
p

3
6480

�
z4 +

�
31

272160
− 17

p
3

3265920

�
z6

+

�
− 167

13063680
+

31
p

3
176359680

�
z8 + · · · ,

γ= 1− 1
288

z4 +
1

2160
z6 − 881

17418240
z8 + · · ·

b =
1
2
+

1
8640

z4 − 1
272160

z6 +
13

104509440
z8 + · · · .

It is clear that in the limit z→ 0 the well known classical fourth-order Gauss method is recovered.

3.2 Characterisations of energy-preservation and symmetry

In this section, we present characterisations of CSRK methods being energy-preserving and symmetric
for Hamiltonian systems. We also show similar characterisations of partitioned CSRK (PCSRK) methods
being energy-preserving and symmetric for Poisson systems.

3.2.1 CSRK methods and their characterisations of energy-preservation and sym-
metry for Hamiltonian systems

As defined in Definition 2.11, we consider an s-degree CSRK method defined by

Yτ = y0 + h

∫ 1

0

Aτ,σ f (Yσ)dσ, (3.11)

y1 = y0 + h

∫ 1

0

Bσ f (Yτ)dτ, (3.12)

where Yτ is a polynomials of degree s with respect to τ satisfying Y0 = y0, and Aτ,σ and Bσ are polyno-
mial with respect to the variables in the subscripts. The following theorem show a characterisation of
CSRK methods being energy-preserving.

Theorem 3.2. A CSRK method solving Hamiltonian systems is energy-preserving if Ç
ÇτAτ,σ is symmetric,

i.e.,

A′τ,σ = A′σ,τ where A′τ,σ :=
Ç

Çτ
Aτ,σ. (3.13)

Proof. We can express Ç
ÇτAτ,σ as

Ç

Çτ
Aτ,σ =

s−1∑
l=0

a′(l, l)τlσl +
∑
m<n

�
a′(m, n)τmσn + a′(n, m)τnσm

�
.
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Note that the symmetry of Ç
ÇτAτ,σ is equivalent to a′(m, n) = a′(n, m). Thus we have

H(y1)−H(y0) =

∫ 1

0

d
dτ

H(Yτ)dτ=

∫ 1

0

Ẏτ
⊤∇H(Yτ)dτ

= h

∫ 1

0

�∫ 1

0

Ç

Çτ
Aτ,σJ−1∇H(Yσ)dσ

�⊤
∇H(Yτ)dτ

= h
s−1∑
l=0

a′(l, l)

�∫ 1

0

σl∇H(Yσ)dσ

�⊤
J−⊤

∫ 1

0

τl∇H(Yτ)dτ

+ h
∑
m<n

(
a′(m, n)

�∫ 1

0

σn∇H(Yσ)dσ

�⊤
J−⊤

∫ 1

0

τm∇H(Yτ)dτ

+a′(n, m)

�∫ 1

0

σm∇H(Yσ)dσ

�⊤
J−⊤

∫ 1

0

τn∇H(Yτ)dτ

)
= 0.

In the last equality, the first term vanishes due to the skew-symmetry of J . The second term vanishes
because of �∫ 1

0

σn∇H(Yσ)dσ

�⊤
J−⊤

∫ 1

0

τm∇H(Yτ)dτ

= −
�∫ 1

0

σm∇H(Yσ)dσ

�⊤
J−⊤

∫ 1

0

τn∇H(Yτ)dτ

and the symmetry a′(m, n) = a′(n, m).

The symmetry condition of a CSRK method is shown in [94].

Theorem 3.3 ([94]). A CSRK method is symmetric if

A1−τ,1−σ + Aτ,σ = Bσ. (3.14)

This statement is still true even when the coefficients are even functions of h.

3.2.2 PCSRK methods and their characterisations of energy-preservation and sym-
metry for Poisson systems

As defined in Definition 2.13, we consider an s-degree PCSRK method defined by

Yτ = y0 + h
s∑

j=1

∫ 1

0

Aiτ, jσΛ(Z j)∇H(Yσ)dσ,

Zi = z0 + h
s∑

j=1

∫ 1

0

bAiτ, jσΛ(Z j)∇H(Yσ)dσ (i = 1, . . . , s),

y1 = y0 + h
s∑

i=1

∫ 1

0

BiτΛ(Zi)∇H(Yτ)dτ,

z1 = z0 + h
s∑

i=1

∫ 1

0

bBiτΛ(Zi)∇H(Yτ)dτ,

with y0 = z0, where



3.2. Characterisations of energy-preservation and symmetry 49

• Yτ is a polynomial in τ of degree s and satisfies Y0 = y0,

• Aiτ, jσ is a polynomial in τ and σ,

• 0≤ c1 < · · ·< cs ≤ 1,

• bAiτ, jσ = Aci , jσ,

• B jσ = bB jσ = A1, jσ.

Theorem 3.4. A PCSRK method solving Poisson systems is energy-preserving if Ç
ÇτAiτ, jσ is symmetric

for all j = 1, . . . , s.

Proof. We can express each Ç
ÇτAiτ, jσ as

Ç

Çτ
Aiτ, jσ =

s−1∑
l=0

a j(l, l)τlσl +
∑
m<n

�
a j(m, n)τmσn + a j(n, m)τnσm

�
.

Note that the symmetry of Ç
ÇτAiτ, jσ is equivalent to a j(m, n) = a j(n, m) for all j, m, n. Thus we have

H(y1)−H(y0) =

∫ 1

0

d
dτ

H(Yτ)dτ=

∫ 1

0

Ẏ⊤τ ∇H(Yτ)dτ

= h

∫ 1

0

 
s∑

j=1

∫ 1

0

Ç

Çτ
Aiτ, jσΛ(Z j)∇H(Yτ)dσ

!⊤
∇H(Yτ)dτ

= h
s∑

j=1

s−1∑
l=0

a j(l, l)

�∫ 1

0

σl∇H(Yσ)dσ

�⊤
Λ⊤(Z j)

∫ 1

0

τl∇H(Yτ)dτ

+ h
s∑

j=1

∑
m<n

(
a j(m, n)

�∫ 1

0

σn∇H(Yσ)dσ

�⊤
Λ⊤(Z j)

∫ 1

0

τm∇H(Yτ)dτ

+a j(n, m)

�∫ 1

0

σm∇H(Yσ)dσ

�⊤
Λ⊤(Z j)

∫ 1

0

τn∇H(Yτ)dτ

)
= 0.

Symmetry condition is also given as follows.

Theorem 3.5. A PCSRK method is symmetric if Ai(1−τ),(s+1− j)(1−σ)+Aiτ, jσ = A1, jσ, and the nodes ci are
symmetric, i.e., cs+1−i = 1− ci .

Proof. Based on Theorem 2.8, it is checked that the PCSRK method is symmetric if

bA(s+1−i)(1−τ),(s+1− j)(1−σ) + bAsτ, jσ = bB jσ.

This condition holds if Ai(1−τ),(s+1− j)(1−σ) + Aiτ, jσ = A1, jσ and cs+1−i = 1− ci are satisfied.
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3.3 Exponentially-fitted CSRK methods

In this section, we develop a theory of standard EFCSRK methods. But we consider a wider class of
functionally-fitted CSRK (FFCSRK) methods which contain EFCSRK methods as special cases. For s-
stage FFRK methods, we can consider the fitting on s + 1 nodes, i.e., t = t0 + c1h, . . . , t0 + csh, t0 + h,
because the coefficients A and b can be chosen independently. However, for s-degree FFCSRK methods,
since Aτ,σ and Bσ are dependent, we can consider the fitting on only s nodes, and one of them should
be t = t0 + h. This fact is the biggest difference between FFRK methods and FFCSRK methods.

The coefficients Aτ,σ and Bσ of a FFCSRK method are determined by the linear systems

uk(t0e+ hc)− uk(t0) = h

∫ 1

0

Ac,σ
fu′k(t0 +σh)dσ, k = 1, . . . , r, (3.15)

uk(t0e+ h)− uk(t0) = h

∫ 1

0

Bσfu′k(t0 +σh)dσ, k = 1, . . . , r, (3.16)

where c = (c1, . . . cs−1)⊤ ∈ Rs−1, e = (1, . . . , 1)⊤ ∈ Rs−1. Here we also introduced the following notation:
for a scalar function g and a vector v = (v1, . . . , vs−1)⊤ ∈ Rs−1, g(v) means the abbreviation g(v) =
(g(v1), . . . , g(vs−1))⊤, and eg(t0+σh) denotes a polynomial of degree s which is a linear combination of
g(t0), g(t0 + c1h), . . . , g(t0 + cs−1h), g(t0 + h).

Proposition 3.1. Assume that u1, . . . , ur are sufficiently smooth. When r = s, the coefficients Aτ,σ are
uniquely determined for all h and t ∈ [t0, T] if the Wronskian matrix

W (t) :=

 u′1(t) · · · u′s(t)
...

. . .
...

u(s)1 (t) · · · u(s)s (t)


is non-singular and the nodes 0< c1, . . . , cs−1 < 1 are distinct.

Proof. Since Ac,σ and fu′k(t0 +σh) are polynomials of degree s − 1 and s in terms of σ, the right hand
side of (3.15) can be integrated exactly by the s-points Gaussian quadrature rule:

h

∫ 1

0

Aci ,σ
fu′k(t0 +σh)dσ = h

s∑
j=1

b′jAci ,c
′
j

fu′k(t0 + c′jh)

where c′j ( j = 1, . . . , s) denote the Gaussian nodes and

b′i =
∫ 1

0

s∏
j=1, j ̸=i

τ− c′j
c′i − c′j

dτ.

Therefore if the matrix  eu′1(t + c′1h) · · · eu′1(t + c′sh))
...

. . .
...eu′s(t + c′1h) · · · eu′s(t + c′sh)

 (3.17)

is non-singular, Aci ,c
′
j
are uniquely determined. Moreover if the nodes 0< c1, . . . , cs−1 < 1 are different,

the coefficients of Aτ,σ are also uniquely determined.
Obviously the non-singularity of the matrix (3.17) is equivalent to that of M(t, h) in (3.6). Following

the discussion there, we can conclude that if the Wronskian matrix is non-singular, the matrix (3.17) is
also non-singular. This completes the proof.
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We consider order conditions. Let

T = { , , , , , , , , . . . }
be the set of rooted trees. We denote the elementary weights byϕ(τ) (τ ∈ T). Then the order conditions
are summarised as follows.

Theorem 3.6. An EFCSRK method is of order p if

ϕ(τ) =
1
γ(τ)

+O(hp−|τ|+1) for τ ∈ T, |τ| ≤ p,

where |τ| denotes the order of τ.

3.4 Energy-preserving exponentially-fitted methods for Hamiltonian systems

In this section, we derive second and fourth order EPEFCSRK schemes for Hamiltonian systems. In what
follows, we again consider F1 = {exp(λt), exp(−λt)}.

3.4.1 Second order EPEFCSRK scheme
Let us start with the one-degree CSRK formulation: Aτ,σ = a11τ. In this case, the energy-preservation
condition (3.13) and symmetry condition (3.14) are automatically satisfied. Therefore, the only thing
we have to do is to determine the parameter a11 satisfying the EF conditions. When we consider the set
F1, the linear system (3.16) reduces to

ez = 1+ a11z
1+ ez

2
, e−z = 1− a11z

1+ e−z

2
,

where z = λh. We can easily obtain

a11 =
2sinh( z

2)

z cosh( z
2)

,

and the resulting scheme reads

y1 = y0 + a11h

∫ 1

0

f ((1−σ)y0 +σy1)dσ.

When we implement the scheme, if the value |z| is small, the following series expansion should be used:

a11 = 1− 1
12

z2 +
1

120
z4 − 17

20160
z6 +

31
362880

z8 − 691
79833600

z10 +
5461

6227020800
z12 + · · · .

It is clear that in the limit z→ 0 the standard AVF method is recovered.

3.4.2 Fourth order EPEFCSRK scheme
Let us start with the two-degree CSRK formulation:

Aτ,σ = a11τ+ a12τσ+ a21τ
2 + a22τ

2σ.

Firstly, we consider the energy-preservation and symmetry conditions. The energy-preservation condi-
tion (3.13) is equivalent to

a12 = 2a21,
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and the symmetry condition (3.14) is equivalent to

a22 + 2a21 = 0, a22 + a12 = 0.

Therefore, it follows that a two-degree CSRK method whose coefficients are related by

a11 a12
a21 a22

b1 b2

=
a11 2a21
a21 −2a21

a11 + a21 0
(3.18)

is energy-preserving and symmetric.
Next we consider the EF conditions. We write Yτ as a linear combination of y0, Yc and y1, i.e.,

Yτ = y0
(τ− c)(τ− 1)

c
+ Yc

τ(τ− 1)
c(c − 1)

+ y1
τ(τ− c)

1− c
.

Then the method becomes

Yc = y0 + h

∫ 1

0

Ac,σ f (Yσ)dσ,

y1 = y0 + h

∫ 1

0

Bτ f (Yτ)dτ.

Note that although y1 is independent of c in standard CSRK methods, the parameter c plays an important
role in EFCSRK methods.

When we consider the set F1, the linear systems (3.15) and (3.16) reduce to∫ 1

0

Ac,σ
ßcosh(σz)dσ =

sinh(cz)
z

,

∫ 1

0

Ac,σ
Þsinh(σz)dσ =

cosh(cz)− 1
z

, (3.19)∫ 1

0

Bσßcosh(σz)dσ =
sinh(z)

z
,

∫ 1

0

BσÞsinh(σz)dσ =
cosh(z)− 1

z
, (3.20)

where z = λh, ßcosh(σz) denotes a polynomial of degree two which is a linear combination of cosh(0),
cosh(cz) and cosh(z), and the similar notation is used for sinh. Since Bσ is independent of σ (see
(3.18)), the second conditions (3.20) are equivalent to

Bσ
(3c2 − 4c + 1)− cosh(cz) + (3c2 − 2c) cosh(z)

6c2 − 6c
=

sinh(z)
z

,

Bσ
− sinh(cz) + (3c2 − 2c) sinh(z)

6c2 − 6c
=

cosh(z)− 1
z

.

We obtain c = 1/2 from the compatibility condition

(3c2 − 4c + 1)− cosh(cz) + (3c2 − 2c) cosh(z)
sinh(z)

=
− sinh(cz) + (3c2 − 2c) sinh(z)

cosh(z)− 1

⇔ (2c − 1)(1− cosh(z)) + 2sinh
� z

2

�
sinh

�
(2c − 1)z

2

�
= 0,

and thus have

Bσ = a11 + a21 =
6(cosh(z)− 1)

z
�
4sinh( z

2) + sinh(z)
� . (3.21)
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Using the relation (3.18) and c = 1/2, we can write Ac,σ as

A1/2,σ =
a11

2
+

a12

2
σ+

a21

4
+

a22

4
σ =

a21

2
σ+

�a11

2
+

a21

4

�
.

From the first EF conditions (3.19), a11 and a21 are uniquely determined as follows.

a11 =
6
�−7+ 4cosh( z

2) + 3cosh(z)
�

z
�
4sinh( z

2) + sinh(z)
� , (3.22)

a21 =
12
�
3− 2cosh( z

2)− cosh(z)
�

z
�
4sinh( z

2) + sinh(z)
� . (3.23)

Obviously they satisfy (3.21). Therefore, we can conclude that the EF conditions (3.19) and (3.20) are
compatible if and only if c = 1/2, and the relations (3.22) and (3.23) are satisfied. Note that for the
numerical computation, the following series expansions should be employed:

a11 = 4− 1
16

z2 +
7

5760
z4 − 113

3870720
z6 +

79
92897280

z8 − 229
11678515200

z10

+
55067

76517631590400

12

+ · · · ,
a21 = −3+

1
16

z2 − 1
640

z4 +
17

430080
z6 − 31

30965760
z8 +

691
27249868800

z10

− 5461
8501959065600

z12 + · · · .
It is clear that in the limit z→ 0 the standard fourth order EP method (2.15) is reproduced.

The derived scheme has at least the accuracy of order two because it is symmetric. Moreover since
the coefficients satisfy the conditions for order three (Theorem 3.6)∫ 1

0

∫ 1

0

∫ 1

0

BσAσ,τAσ,ν dσdτdν=
1
3
+O(z2),∫ 1

0

∫ 1

0

∫ 1

0

BσAσ,τAτ,ν dσdτdν=
1
6
+O(z2),

the scheme has the accuracy of order four.

3.4.3 Numerical examples
We present two numerical experiments that confirm the effectiveness of the EPEFCSRK methods. Through
some typical Hamiltonian problems, we compare the EPEFCSRK methods with the standard EPCSRK
methods. Note that although in the previous subsections we considered F1 = {exp(λt), exp(−λt)}, we
can automatically obtain EF schemes for F2 = {cos(ωt), sin(ωt)} by substituting λ= iω. In the follow-
ing examples, we consider problems where we know a suitable value of the parameterω in advance. Of
course, the choice of the parameter ω is one of the important issues in the use of EF methods. Several
standard ways are summarised in [183, Section 6]. For the numerical experiments, we used MATLAB.
Nonlinear equations were solved by the simplified Newton iteration with tolerance 10−12.

The Kepler problem

We consider the Kepler two-body problem defined by the Hamiltonian

H(q, p) =
p2

1 + p2
2

2
− 1q

q2
1 + q2

2

,
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with the initial conditions q1 = 1 − e, q2 = 0, p1 = 0, p2 =
p
(1+ e)/(1− e), where e (0 ≤ e ≤ 1)

represents the eccentricity of the elliptic orbit. In the numerical experiments, we have set the values to
e = 0.02, λ= iω with ω= (q2

1 + q2
2)
−3/2.

Before showing the numerical results, we mention some implementation issues. For energy-preserving
methods, we have to exactly compute the average of the vector field, i.e., the right hand side of (3.11)
and (3.12) before the implementation. Although we can integrate them exactly for second order
schemes, we cannot do that for fourth order ones (in the sense that mathematica could not calculate
them exactly). Instead, we have integrated them numerically, using integral function in MATLAB with
the tolerance 10−12.
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Figure 3.1: The variation of the errors of Hamiltonian for the Kepler problem (e = 0.02). The stepsize
was set to h= 0.05.

The variations of the error of the Hamiltonian are shown in Figure 3.1. All schemes preserve the
Hamiltonian well.
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Figure 3.2: LEFT: The variation of the maximum global errors for the Kepler problem (e = 0.02). The
stepsize was set to h= 0.05. RIGHT: The global errors at t = 5.

In Figure 3.2 (left) one can see that the errors are growing linearly with time for all four schemes.
The result by the second order EPEFCSRK scheme is more or less the same as that by the standard
second order EPCSRK scheme. But the result by the fourth order EPEFCSRK scheme is better than
that by the standard fourth order EPCSRK scheme. Figure 3.2 (right) shows the convergence of the
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numerical solutions. One can observe the expected convergence rates in all the schemes.
In this example, we used a very small eccentricity e = 0.02 so that the solution is close to the circle.

Numerical behaviour with the large eccentricity is also of interest. We observed that the fourth order
EPEFCSRK scheme gives better numerical solutions than others if e is up to around 0.45. .

An oscillatory Hamiltonian problem with cubic nonlinearity

We consider an oscillatory Hamiltonian problem with cubic nonlinearity defined by

H(q, p) =
1
2

p2 +
1
2
ω2q2 − 1

4
q4.

with ω= 10 and the initial condition (q, p) = (1.5, 0).
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Figure 3.3: The variation of the errors of Hamiltonian for the oscillatory Hamiltonian problem. The
stepsize was set to h= 0.05.

The variations of the error of the Hamiltonian are shown Figure 3.3. All schemes preserve the
Hamiltonian well. The error of fourth order EPEFCSRK scheme seems to grow linearly due to rounding
errors. Such errors might be controlled by the technique presented in [98] or by setting a new stopping
criteria for the (simplified) Newton method in terms of the Hamiltonian.

In Figure 3.4 (left) one can see that the errors are growing linearly with time for all four schemes.
The results by the EPEFCSRK schemes are better than those by the standard EPCSRK schemes. Figure 3.4
(right) shows the convergence of the numerical solutions. One can observe the expected convergence
rates in all of the schemes.

Discussions

The advantage of using EF methods is much more remarkable for the oscillatory Hamiltonian problem
than for the Kepler problem. The main reason would be that the period of the oscillatory Hamiltonian
problem is smaller then that of the Kepler problem, and moreover the oscillatory Hamiltonian problem
behaves like the simple harmonic oscillator.

In order to obtain a more good performance for the Kepler problem, it is possible to use different
ω values at different time steps. However, this approach might deteriorate the quality of the numerical
solution over a long-time interval, because the excellent long-time behaviour is usually guaranteed
based on the assumption that we do not change the integrator or stepsize during the computation.
An alternative way would be to construct energy-preserving integrators which exactly solve elliptic
solutions. However, it is still open if this approach is possible.



56 Chapter 3. Energy-preserving exponentially-fitted/trigonometric integrators

0 20 40 60 80 100
10−5

10−3

10−1

time

er
ro

r

10−3 10−2 10−1

10−10

10−6

10−2

102

stepsize

er
ro

r

2EP
2EPEF
4EP
4EPEF

Figure 3.4: LEFT: The variation of the maximum global errors for the oscillatory Hamiltonian problem.
The stepsize was set to h= 0.05. RIGHT: The global errors at t = 5.

3.5 Energy-preserving exponentially-fitted methods for Poisson systems

We shall derive second- and fourth-order energy-preserving EF schemes for Poisson systems. While the
derivation of second-order scheme is relatively easy, the derivation of fourth-order one requires a more
careful treatment.

3.5.1 Second order scheme
Let s = 1. In this case, we have c = 1/2 from the symmetry condition. The PCSRK method reduces to

y1 = y0 + a11hΛ
� y0 + y1

2

�∫ 1

0

∇H(y0 +τ(y1 − y0))dτ

with a parameter a11. This method is always energy-preserving independently of a11. When one con-
siders the set F1 = {exp(λt), exp(−λt)}, the EF condition is given as

ez = 1+ a11z
1+ ez

2
, e−z = 1− a11z

1+ e−z

2
,

where z = λh, from which we immediately obtain

a11 =
2sinh( z

2)

z cosh( z
2)

.

The resulting scheme reads

y1 = y0 +
2sinh( z

2)

z cosh( z
2)

hΛ
� y0 + y1

2

�∫ 1

0

∇H(y0 +τ(y1 − y0))dτ.

3.5.2 Fourth order scheme
A more interesting, nontrivial example is the derivation of fourth order schemes. Setting s = 2, we
consider coefficient polynomials of the form Aiτ, jσ = a j

11τ+ a j
12τσ + a j

21τ
2 + a j

22τ
2σ ( j = 1, 2). Our

aim is to determine these eight parameters and two nodes c1, c2 (thus, there are 10 unknowns) so
that they satisfy conditions of energy-preservation, symmetry, exponential-fitting, and order. Note that
considering symmetry conditions makes the derivation simple, that is, we do not have to care conditions
for odd orders. The procedure consists of the following four steps.
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Step 1 (Energy-preservation condition) From Theorem 3.4, the energy-preservation condition is equiv-
alent to a j

12 = 2a j
21 ( j = 1, 2).

Step 2 (Symmetry condition) From Theorem 3.5, the symmetry condition is equivalent to

a1
22 = a2

22, a1
21 + a2

21 = −a1
22, a1

11 − a2
11 = 4a2

21 + 2a2
22, c1 + c2 = 1.

Step 3 (EF condition) Next we consider the EF conditions, which make the scheme exact for ODEs
whose solution belongs to F1 = {exp(λt), exp(−λt)}. Note that there is a linear ODE whose
solution belongs to this space. Thus, we can reduce the discussion of the EF conditions into the
framework of CSRK methods with Aτ,σ =

∑2
j=1 Aiτ, jσ. From the discussion in Section 3.4.2, the

parameters of Aτ,σ are given as (3.22) and (3.23). Hence, for the coefficients of PCSRK methods,
we have

a1
11 + a2

11 =
6(−7+ 4cosh( z

2) + 3cosh(z))

z(4sinh( z
2) + sinh(z))

, a1
21 + a2

21 =
12(3− 2cosh( z

2)− cosh(z))

z(4sinh( z
2) + sinh(z))

.

Step 4 (Order condition) Finally, we consider the order conditions. Let

T P = { , , , , , , , , , , , , , . . . }
be a set of rooted bi-coloured trees. We denote the subset of T P whose roots are by T Py , and the
remains by T Pz . We also denote the elementary weights by ϕ(τ) (τ ∈ T P). Since the elementary
weights depend on h for EF methods, we have to consider the order conditions taking this effect
into consideration. The order conditions are summarised as follows. An EF PCSRK method is of
order p if

ϕ(τ) =
1
γ(τ)

+O(hp−|τ|+1) for τ ∈ T Py , |τ| ≤ p,

where |τ| denotes the order of τ (i.e., the number of vertices). Note that we do not have to
consider T Pz because y1 = z1. Since symmetric methods always have even order, it is sufficient
to consider only first- and third-order conditions:

ϕ( ) = 1+O(h4),

ϕ( ) =
1
3
+O(h2), ϕ( ) =

1
3
+O(h2), ϕ( ) =

1
3
+O(h2),

ϕ( ) =
1
6
+O(h2), ϕ( ) =

1
6
+O(h2), ϕ( ) =

1
6
+O(h2), ϕ( ) =

1
6
+O(h2).

These conditions are all satisfied if the perturbations of all parameters from those of the standard
fourth-order energy-preserving scheme

Aiτ,1σ =
1

2
p

3

�
(4
p

3+ 6)τ− 6(1+
p

3)τσ− 3(1+
p

3)τ2 + 6
p

3τ2σ
�

, (3.24)

Aiτ,2σ =
1

2
p

3

�
(4
p

3− 6)τ+ 6(1−p3)τσ+ 3(1−p3)τ2 + 6
p

3τ2σ
�

, (3.25)

c1,2 =
1
2
∓
p

3
6

(3.26)

are less than O(h2). Note that we have obtained the eight independent conditions for the ten
parameters by Step 3, and thus two freedoms still remain at this stage. If one introduces two
additional constraints arbitrarily so that they are consistent with the above order conditions, all
parameters are uniquely determined.
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In the next section, we simply consider the choices

c1 =
1
2
−
p

3
6

, 2a21 + a22 = −p3

as additional constraints in Step 4. Then all parameters are uniquely determined to be

a1
11 =

3(−7+ 4cosh( z
2) + 3cosh(z))

z(4sinh( z
2) + sinh(z))

+
p

3,

a1
12 =

12(3− 2cosh( z
2)− cosh(z))

z(4sinh( z
2) + sinh(z))

−p3,

a1
21 =

6(3− 2cosh( z
2)− cosh(z))

z(4sinh( z
2) + sinh(z))

−
p

3
2

,

a1
22 = −

12(3− 2cosh( z
2)− cosh(z))

z(4sinh( z
2) + sinh(z))

,

a2
11 =

3(−7+ 4cosh( z
2) + 3cosh(z))

z(4sinh( z
2) + sinh(z))

−p3

a2
12 =

12(3− 2cosh( z
2)− cosh(z))

z(4sinh( z
2) + sinh(z))

+
p

3,

a2
21 =

6(3− 2cosh( z
2)− cosh(z))

z(4sinh( z
2) + sinh(z))

+
p

3
2

,

a2
22 = −

12(3− 2cosh( z
2)− cosh(z))

z(4sinh( z
2) + sinh(z))

,

c1 =
1
2
−
p

3
6

,

c2 =
1
2
+
p

3
6

.

It is checked that the perturbations of these parameters from those in (3.24), (3.25) and (3.26) are less
than O(h2).

3.5.3 Numerical examples
We test the derived schemes numerically. For a problem whose period is estimated to T = 2π/ω, we
consider the set F1 = {exp(λt), exp(−λt)} with λ= iω, which is equivalent to {sin(ωt), cos(ωt)}. We
used Python and its numpy and scipy packages.

We consider the Euler equation

q̇ = f (q) = ((α− β)q2q3, (1−α)q3q1, (β − 1)q1q2)
⊤,

which describes the motion of a rigid body under no forces. This system can be seen as the Poisson
system

q̇ =

 0 αq3 −βq2−αq3 0 q1
βq2 −q1 0

∇H(q), H(q) =
q2

1 + q2
2 + q2

3

2
.

We set the initial value to q(0) = (0, 1, 1)⊤, and the parameters to α = 1 + (1/
p

1.51), β = 1 −
(0.51/

p
1.51), which are employed in [38]. The exact solution is given by

q(t) = (
p

1.51 sn(t, 0.51), cn(t, 0.51), dn(t, 0.51))⊤,
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Figure 3.5: Global errors at t = 2 of (left) the first and (right) second examples for Euler equations.
2EP: standard second-order energy-preserving scheme, 2EPEF: second-order energy-preserving EF
scheme, 4EP: standard fourth-order energy-preserving scheme, 4EPEF: fourth-order energy-preserving
EF scheme.

where sn, cn, dn are the Jacobi elliptic functions [38]. This solution is periodic with the period T =
4K(0.51) = 7.450563209330954, where K(k) stands for the complete elliptic integral of the first kind
defined by

K(k) =

∫ π/2

0

1p
1− k2 sin2 θ

dθ =

∫ 1

0

1p
(1− t2)(1− k2 t2)

dt.

Figure 3.5 (left) plots the global error, from which one can see that the solution by the second-
order energy-preserving EF scheme is better than that by the standard second-order energy-preserving
scheme. Despite the expectation, the results by the fourth-order EF scheme is worse than the standard
fourth-order scheme. The reason would be that the period of the solution is relatively large. As already
mentioned in the previous section, it is still open if the energy-preserving methods can be fitted to elliptic
functions.

We also consider a more anomalous case. When β ≈ 1, we expect, at least intuitively, q̇3 ≈ 0 and
thus q3(t) ≈ 1. Therefore, the variables q1 and q2 seem to behave like harmonic oscillator with period
T = 2π/(α− 1). We set α= 51 and β = 1.01. The global error is shown in Figure 3.5 (right). One can
see that EF schemes produce much better solutions than the same order, standard energy-preserving
schemes.

For the second problem, the error of the Hamiltonian obtained by the fourth-order energy-preserving
EF scheme is plotted in Figure 3.6. In addition, the error of another invariant I = (q2

1 +βq2
2 +αq2

3)/2 is
plotted. It is observed that the second invariant is nearly preserved without any drift.

3.6 Explicit methods

We saw in Section 2.5.4 that an explicit energy-preserving integrator can be constructed for Hamiltonian
systems with Hamiltonian

H(q, p) =
1
2

p⊤p+
1
2

q⊤Aq+ U(q),

where A is a positive semi-definite matrix. A corresponding differential equation reads

q̇ = p, ṗ = −Aq−∇U(q),
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Figure 3.6: Errors of two conserved quantities obtained by the fourth-order energy-preserving EF
scheme with the stepsize h= 0.1.

or

q̈+ Aq = g(q), where g(q) = −∇U(q).

Recall that the explicit energy-preserving integrator does not preserve the energy exactly, but preserve
the modified version exactly. Here, we consider the situation where A is a positive semi-definite constant
matrix (so that A= Ω2) with large norm. In this case, the system exhibits oscillatory behaviour. In this
section, by modifying the scheme (2.17), we shall derive explicit energy-preserving integrators, which
capture the oscillation by a large stepsize. To this aim, we use the idea of the so called trigonometric
method.

3.6.1 A brief review of trigonometric methods
Trigonometric methods are briefly reviewed. For more details, see [97, Chapter XIII].

The Störmer–Verlet method (2.12) often gives qualitatively nice numerical solutions with a relatively
large stepsize h, but we cannot use a large stepsize for oscillatory Hamiltonian systems because of the
explicitness of the method. For a while, just for simplicity, let us consider a one-dimensional problem
with Ω = ω ∈ R. The linear stability analysis tells us that the method is stable only if h = O(ω−1).
In particular, when g = 0, we have to chose a stepsize so that hω ≤ 2. This drawback is overcome by
trigonometric methods.

The main idea of trigonometric methods is modifying the Störmer–Verlet method so that they are
exact for linear problems with g(q) = −∇U(q) = 0. This aim is made possible by the two-step form

qn+1 − 2cos(hΩ)qn + qn−1 = 0. (3.27)

When g(q) ̸= 0, the most natural extension seems qn+1 − 2cos(hΩ)qn + qn−1 = h2 g(qn), but several
modifications have been considered. They can be written in the form

qn+1 − 2cos(hΩ)qn + qn−1 = h2Ψ g(Φqn)

with Ψ = ψ(hΩ) and Φ = ϕ(hΩ), where the filter functions ψ and ϕ are even and real-valued with
ψ(0) = ϕ(0) = 1. Here are several choices of the filter functions (sincξ := sinξ

ξ ). The alphabetical
order follows [97, Chapter XIII.2.2], and the method (F) is omitted because it is a two-force method.
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(A) ψ(ξ) = sinc2(1
2ξ) ϕ(ξ) = 1 Gautschi [86] (1961)

(B) ψ(ξ) = sinc(1
2ξ) ϕ(ξ) = 1 Deuflhard [68] (1979)

(C) ψ(ξ) = sinc2(ξ) ϕ(ξ) = sinc(ξ) García-Archilla et al. [85] (1998)
(D) ψ(ξ) = sinc2(1

2ξ) ϕ(ξ) = sincξ(1+ 1
3 sin2(1

2ξ)) Hochbruck–Lubich [104] (1999)
(E) ψ(ξ) = sinc2(ξ) ϕ(ξ) = 1 Hairer–Lubich [95] (2000)
(G) ψ(ξ) = sinc3(ξ) ϕ(ξ) = sinc(ξ) Grimm–Hochbruck [91] (2006)

For the motivation of each choice, see each reference.
In addition to the initial value q0, we have to compute q1 in advance. As this was done for the

Störmer–Verlet method in Section 2.4.1, the formula (3.27) can be written in the one-step form

qn+1 = cos(hΩ)qn +Ω
−1 sin(hΩ)pn +

1
2

h2Ψ gn, (3.28)

pn+1 = −Ω sin(hΩ)qn + cos(hΩ)pn +
1
2

h(Ψ0 gn +Ψ1 gn+1), (3.29)

where gn = g(Φqn) and Φ0 =ψ0(hΩ), Φ1 =ψ1(hΩ) with functions ψ0, ψ1 satisfying

ψ(ξ) = sinc(ξ)ψ1(ξ), ψ0(ξ) = cos(ξ)ψ1(ξ).

The one-step form (3.28), (3.29) is interpreted as follows. The exact solution of the system can be
expressed as the variation-of-constants formula�

q(t)
p(t)

�
=

�
cos tΩ Ω−1 sin tΩ
−Ω sin tΩ cos tΩ

��
q0
p0

�
+

∫ t

0

�
Ω−1 sin(t − s)Ω

cos(t − s)Ω

�
g(q(s))ds. (3.30)

Thus, 1
2h2Ψ gn and 1

2h(Ψ0 gn +Ψ1 gn+1) can be seen as results of discretising the integral in the variation-
of-constants formula.

Grimm–Hochbruck [91] considered the error estimate of the one-step form (3.28), (3.29). Similar
results are proved in [97, Chapter XIII] by a different technique.

3.6.2 Energy-preserving trigonometric integrators
As is the case with the Störmer–Verlet method, the explicit energy-preserving integrator (2.17) cannot
solve highly oscillatory Hamiltonian systems efficiently. Then, based on the scheme (2.17), we consider
a class of trigonometric methods of the form

qn+1 + (1− 2cos(hΩ))(qn + qn−1) + qn−2 = −2h2Ψ∇U(Φqn,Φqn−1), (3.31)

so that it exactly solves Hamiltonian systems when ∇U = 0. Here, ∇U denotes the discrete gradient of
U .

Theorem 3.7. The integrator (3.31) is energy-preserving in the sense that

1
2

�qn+1 − qn

h

�⊤�qn − qn−1

h

�
+ sinc2(hΩ/2)

�
1
2

q⊤n Aqn +ΨU(Φqn)
�
= const.

Proof. Note that the integrator (3.31) is derived based on the Lagrangian

Ld(qn,δ+t qn) :=
1

2sinc2(hΩ/2)
(δ+t qn)

⊤(δ+t qn)− 1
2

q⊤n Ω2qn − U(qn).

Then, by construction, the energy-preservation property immediately follows.
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Because the integrator (3.31) is of a three-step form, we have to compute q1 and q2 in advance.
Below, to this end, we rewrite (3.31) in a one-step form. First, we show the idea of this reformulation
for the basic integrator (2.17). We introduce approximations of p = q̇ and r = q̈:

pn =
qn+1 − qn−1

2h
, rn =

qn+1 − 2qn + qn−1

h2
.

We supplementarily use

pn+1/2 =
qn+1 − qn

h
.

Then, writing (2.17) as

pn+1 − pn = −h∇U(qn+1, qn)

or

rn+1 + rn = −2∇U(qn+1, qn)

and using the relations

pn+1/2 − pn−1/2 = hrn, pn+1/2 + pn−1/2 = 2pn,

we get the formula

pn+1/2 = pn +
h
2

rn,

qn+1 = qn + hpn+1/2,

pn+1 = pn − h∇U(qn+1, qn),

rn+1 = −rn − 2∇U(qn+1, qn).

Eliminating pn+1/2 leads to

qn+1 = qn + h
�

pn +
h
2

rn

�
,

pn+1 = pn − h∇U(qn+1, qn),

rn+1 = −rn − 2∇U(qn+1, qn).

Next, let us consider a similar discussion for the trigonometric integrator (3.31). We introduce
approximations of p = q̇ and r = q̈:

pn =
qn+1 − qn

2h sinc(hΩ)
, rn =

qn+1 − 2qn + qn−1

h2 sinc2(hΩ/2)
.

By supplementarily using

pn+1/2 =
qn+1 − qn

h sinc(hΩ/2)
,

we finally obtain

qn+1 = qn +Ω
−1 sin(hΩ)pn +

h2

2
sinc2(hΩ/2)rn, (3.32)

pn+1 = −4Ω
sin2(hΩ/2)

sin(hΩ)
qn + cos(hΩ)pn − h

sin2(hΩ/2) sinc2(hΩ/2)
sinc(hΩ)

rn − h
Ψ

sinc(hΩ)
∇U(Φqn+1,Φqn),

(3.33)

rn+1 = −2Ω2qn −Ω sin(hΩ)pn − (1+ 2sin2(hΩ/2))rn − 2Ψ
sinc(hΩ)

∇U(Φqn+1,Φqn). (3.34)
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The initial value of rn is computed by either r0 = −Ω2q0 −∇U(q0) or r0 = −Ω2q0 −Ψ∇U(Φq0).
Note that the first term of the right hand side of (3.33) is not bounded for all h. In fact, the term

diverges when hω = 2kπ (k ∈ N). In such a case, we adopt the three-step form (3.31) by preparing
q±1 based on (3.32). In a similar way, pn can also be computed by a three-step form

pn+1 + (1− 2cos(hΩ))(pn + pn−1) + pn−2 = − hΨ
sinc(hΩ)

�∇U(Φqn+1,Φqn)−∇U(Φqn−1,Φqn−2)
�
.

The starting values p±1 is obtained by

p±1 =∓Ω sin(hΩ)q0 + cos(hΩ)p0

± h sin2(hΩ/2) sinc2(hΩ/2)
Ψ

sinc(hΩ)
∇U(Φq0)∓ h

Ψ

sinc(hΩ)
∇U(Φq0,Φq±1).

3.6.3 Numerical examples and discussions
We apply the proposed integrators to the Fermi–Pasta–Ulam problem (Example 2.2). Figure 3.7 shows
the energy exchanges of the standard energy-preserving integrator (2.17) and the energy-preserving
trigonometric integrators (3.31) with the choices of the filter functions (A)–(G) (see Figure 2.3 for the
exact solution).

The results of the standard integrator is stable in the sense that the energies do not diverge, because
hω ≤ 2 is satisfied. However, the oscillation of the time scale O(ω−1) is much bigger than that of the
exact solution. On the other hand, the scales of the oscillations of the methods (3.31) with (A)–(G)
are similar to the exact solution. In this sense, these methods with (A)–(G) are more practical than
the standard energy-preserving method. However, these methods also behave differently from each
other, and it is observed that only the methods (B) and (D) produce a nice approximation of the energy
exchange.

In the above example, the methods (3.31) with (B) and (D) seem good, but they also have the
drawback: clearly, the two methods do not give a good numerical solution when hω is close to an
integer multiples of π, because some fractions appearing in (3.32) and (3.33) become quite large. This
phenomena is problematic especially for problems with several constant frequencies, because after all
h=O(ω−1) is necessary.

For the methods (3.31), the following should be further investigated. First, the convergence analysis
is still missing. The reason is that while the analysis of the method (3.28) and (3.29) is based on the
observation that it can be regarded as a discretisation of the variation-of-constants formula (3.30),
the relation between the new methods (3.31) (and their one-step formulations (3.32)–(3.34)) and the
variation-of-constants formula is not clear. Second, it would be interesting to search a choice of the
filter functions, which not only gives a good approximation of the energy exchange but also remains in
a good approximation even when hω is close to an integer multiples of π. Finally, it is still not clear
under what circumstances (or for what kind of problems) the new methods (3.31) is superior to the
standard trigonometric methods (3.27). They should also be further studied.
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Figure 3.7: The Hamiltonian and oscillatory energies (H−0.8, I , I1, I2, I3) obtained by several integra-
tors, as well as the exact solution, for the Fermi–Past–Ulam problem are plotted. The parameters are set
to m = 3 and ω = 50. The initial values are set to x0,1(0) = 1, y0,1(0) = 1, x1,1(0) = ω−1, y1,1(0) = 1
and zero for other components. For the numerical computation, the stepsize was set to h= 0.03.



Chapter 4

Parallelism in energy-preserving integrators

Contents of Chapter 4 are not publicised, because this chapter is a work of joint authorship and the
publication is not approved by a co-author.
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Chapter 5

Preliminaries: existing methods and our
motivation

In Part II, we discuss geometric numerical integration methods for PDEs. In Section 5.1, some classes of
PDEs and the associated properties are summarised. In Sections 5.2, 5.3 and 5.4, symplectic methods,
energy-preserving/dissipative methods and multi-symplectic methods are reviewed. These methods are
explained by assuming the smoothness and uniqueness of example PDEs. Motivation of the subsequent
chapters is explained in Section 5.5.

5.1 Classification of PDEs and their geometric properties

We introduce three classes of PDEs and summarise the associated geometric properties. Note that each
class is not separated, and some PDEs belong to all three classes. See [74, 132, 158] for more details.

5.1.1 Hamiltonian PDEs
In this subsection, we introduce the concept of infinite dimensional Hamiltonian systems, which are
called Hamiltonian PDEs. It should be noted that Hamiltonian PDEs are natural generalisations of
Poisson systems rather than Hamiltonian systems.

First, we show an abstract definition of Hamiltonian PDEs. Briefly speaking, Hamiltonian PDEs are
defined by the following replacements

Poisson systems Hamiltonian PDEs
yi(t), i = 1, . . . , N → u(t, x), x ∈ R∑

i

→
∫
R

dx

function H(y) → functional H[u]
Ç

Çyi
→ δ

δu
.

A skew-symmetric differential operator D(u) is called a Poisson operator if the Poisson bracket defined
by

{F ,G}[u] =
∫
R

δF
δu

D(u)δG
δu

dx (5.1)

satisfies the skew-symmetry

{F ,G}= −{G,H}

69
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and the Jacobi identity

{{F ,G},H}+ {{G,H},F}+ {{H,F},G}= 0, (5.2)

where the variational derivative δH
δu is defined by

d
dε

H[u+ εv]

����
ε=0
=

∫
R

δH
δu

v dx .

Note that in the discussion here the space R can be replaced with other spaces such as the torus T.
Given a Hamiltonian H[u], let us consider the motion governed by

Ç

Çt
F[u(t, x)] = {F ,H}[u(t, x)].

By taking F = u, we obtain a PDE

ut =D(u)δH
δu

,

which is called a Hamiltonian PDE.
Next, we consider two concrete examples.

Example 5.1 (The semi-linear wave equation). The semi-linear wave equation

qt t = qx x − f ′(q), x ∈ T (5.3)

is the simplest case in the sense that this equation can be regarded as an extension of Hamiltonian
systems. This equation preserves the symplectic form

Ω=

∫
T

dq ∧ dp dx

and the Hamiltonian

H[u] =
∫
T

�
1
2

p2 +
1
2

q2
x + f (q)

�
dx , (5.4)

where p = qt and u= (q, p)⊤. The corresponding Poisson bracket is defined by

{F ,G}=
∫
T

�
δF
δq

δG
δp
− δF

δp
δG
δq

�
dx .

This bracket is surely of the form (5.1) with

δH
δu
=
�
δH
δq

,
δH
δp

�⊤
, D =

�
0 1
−1 0

�
.

Example 5.2 (The Korteweg–de Vries (KdV) equation). The KdV equation

ut = Çx

�
1
2

u2 + u2
x

�
, x ∈ T (5.5)

is a typical example of non-canonical cases. This equation can be rewritten as a variational form

ut = Çx
δH
δu

, H[u] =
∫
T

�
1
6

u3 − 1
2

u2
x

�
dx ,
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which suggests the Poisson bracket

{F ,G}=
∫
T

δF
δu

Çx
δG
δu

dx .

The skew-symmetry and Jacobi identity are easily verified. The KdV equation also has another Hamil-
tonian form

ut =
�

1
3
(uÇx + Çxu) + Ç2

x

�
δH̃
δu

, H̃[u] =

∫
T

u2

2
dx .

In general, if a PDE has two independent Hamiltonian structures, i.e., bi-Hamiltonian structure, the
equation also has infinitely many Hamiltonian structures, which indicates that there are infinitely many
invariants. Such a PDE is said to be completely integrable [158, Section 7.3].

5.1.2 Variational PDEs

We consider PDEs which can be written as the variational form

ut =D(u)δH
δu

,

where D(u) is a skew-symmetric or negative semi-definite differential operator. Hamiltonian PDEs are
typical examples of this class.

Let us first consider the case where D(u) is a skew-symmetric operator with respect to the L2 inner
product. In this case, we also denote the operator by S(u). Under appropriate boundary conditions
with a domain such as [0, L] ⊂ R, the energy H is constant along the solution

d
dt

H =
∫ L

0

δH
δu

ut dx =

∫ L

0

δH
δu

S(u)δH
δu

dx = 0.

This property is called the energy-preservation or energy-conservation. We often call H the energy
instead of Hamiltonian. Note that there exist skew-symmetric operators which do not satisfy the Jacobi
identity (5.2).

If D(u) is negative semi-definite (in this case D(u) is also denoted by N (u)), the equation is dissi-
pative in the sense that

d
dt

H =
∫ L

0

δH
δu

ut dx =

∫ L

0

δH
δu

N (u)δH
δu

dx ≤ 0.

In this case, H is called an energy or a Lyapunov function.

Example 5.3 (The Cahn–Hilliard equation). The Cahn–Hilliard equation

ut = Ç2
x

�
αu+ γu3 + βux x

�
(5.6)

with real parameters α, β , γ is a model equation of phase separation. This equation can be written in
the variational form

ut = Ç2
x
δH
δu

, H =
∫ L

0

�
α

2
u2 +

γ

4
u4 − β

2
u2

x

�
dx ,
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with the negative semi-definite operator Ç2
x . The solution of the Cahn–Hilliard equation is energy-

dissipative under the periodic boundary condition. We here show the solution is also dissipative under
the boundary condition ux |x=0,L = ux x x |x=0,L = 0. Using the notation H[u] =

∫ L
0 H(u, ux)dx , we have

d
dt

H =
∫ L

0

�
ÇH
Çu

ut +
ÇH
Çux

ut x

�
dx =

∫ L

0

�
ÇH
Çu
− Çx

ÇH
Çux

�
ut dx +

�
ÇH
Çux

ut

�L

0

=

∫ L

0

δH
δu

Ç2
x
δH
δu

dx = −
∫ L

0

�
Çx

δH
δu

�2

dx +
�
δH
δu

Çx
δH
δu

�L

0
≤ 0.

The two boundary terms in the above calculation vanish due to the boundary condition.

5.1.3 Multi-symplectic PDEs
Variational formulations treat the time variable t and space variable x differently. We here summarise
a multi-symplectic formulation which treats the two variables equally. A PDE is said to be multi-
symplectic, if it can be written as a system of first order equations

Mzt + Kzx =∇zS(z), (5.7)

where z ∈ Rd is a vector of state variables including u itself, M , K ∈ Rd×d are constant skew-symmetric
matrices, and S is a smooth function of z. Note that while the Hamiltonian/variational structures are
classical concepts, the multi-symplecticity, which was formulated in 1990s, is a relatively new concept.
The variational equation associated with (5.7) is

Mdzt + Kdzx = Szzdz,

where Szz denotes the Hessian of S(z).

Theorem 5.1 (Multi-symplecticity [18, 19]). Let

ω= dz ∧Mdz, κ= dz ∧ Kdz.

Then they satisfy the multi-symplectic conservation law

Çtω+ Çxκ= 0.

Proof. Because of the skew-symmetry of M , K and symmetry of Szz , it follows that

ωt = dzt ∧Mdz + dz ∧Mdzt

= −Mdzt ∧ dz + dz ∧Mdzt

= −(Szzdz − Kdzx)∧ dz + dz ∧ (Szzdz − Kdzx)

= −(dzx ∧ Kdz + dz ∧ Kdzx) = −(dz ∧ Kdz)x = −κx .

Theorem 5.2 (Local conservation laws [18, 19]). A multi-symplectic PDE has local energy and momen-
tum conservation laws

Çt E(z) + Çx F(z) = 0, Çt I(z) + Çx G(z) = 0

with the density functions

E(z) = S(z)− 1
2

z⊤x K⊤z, F(z) =
1
2

z⊤t K⊤z,

G(z) = S(z)− 1
2

z⊤t M⊤z, I(z) =
1
2

z⊤x M⊤z.
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Proof. We show the energy conservation law.

Çt E(z) = z⊤t ∇zS(z)− 1
2
(z⊤x K⊤z)t = z⊤t Kzx − 1

2
(z⊤x K⊤z)t

= z⊤t Kzx − 1
2

z⊤x t K
⊤z − 1

2
z⊤x K⊤zt = −1

2
(z⊤t K⊤zx + z⊤x t K

⊤z) = −1
2
(z⊤t K⊤z)x = −Çx F(z).

The momentum conservation law can be proved in the same manner.

Integrating the local conservation laws over the spacial domain immediately leads to the global
conservation laws.

Theorem 5.3 (Global conservation laws [18, 19]). Assume that the boundary conditions are set such
that [F(z)]L0 = [G(z)]

L
0 = 0. Then, a multi-symplectic PDE has global energy and momentum conserva-

tion laws

d
dt

E(z) = 0, E(z) =
∫ L

0

E(z)dx ,

d
dt

I(z) = 0, I(z) =
∫ L

0

I(z)dx .

Example 5.4 (The KdV equation (5.5)). The KdV equation (5.5) has the multi-symplectic structure
0 −1

2 0 0
1
2 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

M

zt +

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


︸ ︷︷ ︸

K

zx =∇zS(z), (5.8)

where z = (ϕ, u, v, w)⊤ and S(z) = uw+ u3/6+ v2/2 [5, 216]. This formulation can be written in the
componentwise fashion

−1
2

ut −wx = 0,

1
2
ϕt + vx = w+

u2

2
,

−ux = v,

ϕx = u.

The density functions are calculated to be

E(z) =
u3

6
− u2

x

2
+
(ϕw)x − (uv)x

2
, I(z) =

ϕxu− uxϕ

4
.

Hence, under the periodic boundary condition, we have global conservation laws

E(z) =
∫
T

�
u3

6
− u2

x

2

�
dx , I(z) =

∫
T

u2

2
dx .
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5.2 Symplectic methods

The main idea of symplectic methods for Hamiltonian PDEs is to first discretise the equation in space
variables such that the resulting system of finite dimensional equations can be seen as Poisson systems,
and then apply a symplectic time integration method for the time variable. We illustrate the space
discretisation part for the semi-linear wave equation and KdV equation, as our working examples, The
following examples are based on [20].

Example 5.5 (The semi-linear wave equation (5.3)). We consider a simple approximation to the Hamil-
tonian (5.4)

Hd(u) =
N−1∑
k=0

∆x
�

1
2

p2
k +

1
2
(δ+x qk)

2 + f (qk)
�

,

where u = (q0, . . . , qN−1, p0, . . . , pN−1)⊤. Here numerical solutions of q(t, ·) on [0, L] with the periodic
boundary condition are denoted by qk(t)≈ q(t, k∆x)with∆x = L/N . A discrete version of the periodic
boundary condition is defined by qk = qk+N . Similar notation is also used for p. Let us also define a
finite dimensional Poisson bracket by

{Fd,Gd}= 1
∆x

N−1∑
k=0

�
ÇFd

Çqk

ÇGd

Çpk
− ÇFd

Çpk

ÇGd

Çqk

�
=

N−1∑
k=0

∆x
��

1
∆x

ÇFd

Çqk

��
1
∆x

ÇGd

Çpk

�
−
�

1
∆x

ÇFd

Çpk

��
1
∆x

ÇGd

Çqk

��
.

Then, the finite dimensional equations are given by

u̇= {u,Hd},
from which we obtain a more concrete form

q̈k = δ〈2〉x qk − f ′(qk).

Example 5.6 (The KdV equation (5.5)). Let us define discrete Hamiltonian and Poisson bracket by

Hd(u) =
N−1∑
k=0

∆x
�

1
6

u3
k − 1

2
(δ+x uk)

2
�

(5.9)

and

{Fd,Gd}= 1
∆x

N−1∑
k=0

�
(Çuk

Fd)δ
〈1〉
x (Çuk

Gd)
�
.

It is easy to check that this bracket satisfies the Jacobi identity (5.2). Then the resulting semi-discrete
scheme reads

u̇k = {uk,Hd}= δ〈1〉x

�
1
2

u2
k + δ〈2〉x uk

�
.
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5.3 Discrete variational derivative method
(energy-preserving/dissipative methods)

5.3.1 Idea of the discrete variational derivative method

In this section, we summarise the so called discrete variational derivative (DVD) method, which was first
proposed by Furihata [80, 81] (see also Furihata–Mori [83]), for variational PDEs. The DVD method
consists of special spatial discretisation and energy-preserving/dissipative time discretisation such as
the discrete gradient method.

Spatial discretisation should be done in such a way that the resulting semi-discrete scheme, i.e.,
a system of ODEs, has a certain energy-preservation/dissipation property. The main idea of the DVD
method is to mimic the proof of the energy-preservation/dissipation property of variational PDEs in a
discrete setting.

Below, we summarise the procedure of the DVD method in an abstract form, without focusing on
the boundary condition. Then we give some concrete examples.

Discretisation in space

The procedure is summarised as follows.

1. Define a discrete version of the energy Hd(u) of the form

Hd(u) =
N−1∑
k=0

∆xHk(u)

with functions Hk corresponding to H, where u= (u0, . . . , uN−1)⊤.

2. Define a discrete version of the variational derivative δHd
δuk

(k = 0, . . . , N − 1), so that it satisfies
the chain rule

d
dt

Hd(u) =
N−1∑
k=0

∆x
δHd

δuk
u̇k.

3. Define a skew-symmetric (or negative semi-definite) difference operator Sd (orNd) corresponding
to the skew-symmetric (or negative semi-definite) differential operator S (or N ).

4. Define a semi-discrete scheme as follows

u̇k = Sd
δHd

δuk
.

The semi-discrete scheme preserves the energy

d
dt

Hd(u) =
N−1∑
k=0

∆x
δHd

δuk
u̇k =

N−1∑
k=0

∆x
δHd

δuk
Dd

δHd

δuk
= 0.

Discretisation in time

The procedure is summarised as follows.
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1. Define a discrete variational derivative δHd
δ(un+1,un)k

(k = 1, . . . , N −1), so that it satisfies the discrete
chain rule

1
∆t

�
Hd(u

n+1)−Hd(u
n)
�
=

N−1∑
k=0

∆x
δHd

δ(un+1, un)k

un+1
k − un

k

∆t
.

In principle, the discrete variational derivative is automatically found by applying the discrete
gradient method.

2. Define a fully-discrete scheme as follows

un+1 − un

∆t
= Sd

δHd

δ(un+1, un)k
.

The fully-discrete scheme still preserves the energy

1
∆t

�
H(un+1)−H(un)

�
=

N−1∑
k=0

∆x
δHd

δ(un+1, un)k

un+1 − un

∆t
=

N−1∑
k=0

∆x
δHd

δ(un+1, un)k
Sd

δHd

δ(un+1, un)k
= 0.

Remark 5.1. In the original DVD method, the space and time variables were discretised simultaneously.
However, each part has recently developed separately, and thus it is convenient to treat each variable
in tern, as pointed out in [45].

The following examples are based on [80].

Example 5.7 (Energy-preserving finite difference scheme for the KdV equation). We derive an energy-
preserving finite difference scheme for the KdV equation (5.5).

First, we define a discrete Hamiltonian by (5.9), and calculate its time derivative

d
dt

Hd(u) =
N−1∑
k=0

∆x
�

1
2

u2
ku̇k − (δ+x uk)(δ

+
x u̇k)

�
=

N−1∑
k=0

∆x
�

1
2

u2
k + δ〈2〉x uk

�
u̇k.

Thus it is natural to define a discrete version of the variational derivative by

δHd

δuk
=

1
2

u2
k + δ〈2〉x uk.

Using a skew-symmetric difference operator δ〈1〉x , we define a semi-discrete scheme

u̇k = δ〈1〉x
δHd

δuk
.

Next, we calculate the discrete chain rule

1
∆t

�
Hd(u

n+1)−Hd(u
n)
�
=

N−1∑
k=0

∆x

�
(un+1

k )2 + (un+1
k )(un

k) + (u
n
k)

2

6
+ δ〈1〉x

�
un+1

k + un
k

2

��
un+1

k − un
k

∆t
.

Based on this calculation, we define the fully-discrete scheme

un+1 − un

∆t
= δ〈1〉x

δHd

δ(un+1, un)k

with the discrete variational derivative

δHd

δ(un+1, un)k
=
(un+1

k )2 + (un+1
k )(un

k) + (u
n
k)

2

6
+ δ〈1〉x

�
un+1

k + un
k

2

�
.
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Example 5.8 (Energy-dissipative finite difference scheme for the Cahn–Hilliard equation). We derive
an energy-dissipative finite difference scheme for the Cahn–Hilliard equation (5.6). In contrast to the
KdV case, the boundary condition should be treated more carefully.

First, we define a discrete version of the energy by

Hd(u) =
N∑

k=0

′′∆x

�
α

2
(uk)

2 +
γ

4
(uk)

4 − β
2

(δ+x uk)2 + (δ−x uk)2

2

�
,

where
∑N

k=0
′′∆x(·) denotes the trapezoidal rule:

N∑
k=0

′′∆x fk =∆x

�
1
2

f0 +
N−1∑
k=1

fk +
1
2

fN

�
.

Here, numerical solutions of u(t, ·) on [0, L] are denoted by uk(t) ≈ u(t, k∆x) (k = 0, . . . , N) with
∆x = L/N . We also define a discrete version of the boundary condition ux |x=0,L = ux x x |x=0,L = 0 by

δ〈1〉x uk

��
k=0,N = δ〈3〉x uk

��
k=0,N = 0

�
δ〈3〉x := δ〈2〉x δ〈1〉x

�
.

The boundary conditions for δ〈1〉x uk are defined so that the boundary terms in the following calculation
are eliminated.

d
dt

Hd(u) =
N∑

k=0

′′∆x

�
αuku̇k + γ(uk)

3u̇k − β (δ
+
x uk)(δ+x u̇k) + (δ−x uk)(δ−x u̇k)

2

�
=

N∑
k=0

′′∆x
�
αuk + γ(uk)

3 + βδ〈2〉x uk

�
u̇k − β

�
2(δ〈1〉x uk)u̇k + (δ+x uk)u̇k+1 + (δ−x uk)u̇k−1

4

�N

k=0

.

We then define a semi-discrete scheme by

u̇k = δ〈2〉x
δHd

δuk
,

δHd

δuk
= αuk + γ(uk)

3 + βδ〈2〉x uk.

The boundary conditions for δ〈3〉x uk are defined so that boundary terms in the following calculation are
eliminated, and the dissipation property follows.

d
dt

Hd(u)

=
N∑

k=0

′′∆x
δHd

δuk
u̇k =

N∑
k=0

′′∆x
δHd

δuk
δ〈2〉x

δHd

δuk

= −1
2

N∑
k=0

′′∆x

��
δ+x

δHd

δuk

�2

+
�
δ−x

δHd

δuk

�2�
+

1
4

�
2
δHd

δuk
δ〈1〉x

δHd

δuk
+

δHd

δuk−1
δ−x

δHd

δuk
+

δHd

δuk+1
δ+x

δHd

δuk

�N

0

≤ 0.

Since it follows that

1
∆t

�
Hd(u

n+1)−Hd(u
n)
�

=
N∑

k=0

′′∆x

�
α

un+1
k + un

k

2
+ γ
(un+1

k )3 + (un+1
k )2un

k + un+1
k (un

k)
2 + (un

k)
3

4
− βδ〈2〉x

un+1
k + un

k

2

�
,



78 Chapter 5. Preliminaries: existing methods and our motivation

we define the fully-discrete scheme

un+1 − un

∆t
= δ〈2〉x

δHd

δ(un+1, un)k

with the discrete variational derivative

δHd

δ(un+1, un)k
= α

un+1
k + un

k

2
+ γ
(un+1

k )3 + (un+1
k )2un

k + un+1
k (un

k)
2 + (un

k)
3

4
− βδ〈2〉x

un+1
k + un

k

2
.

5.3.2 Extensions of the DVD method
The DVD method has been extended in various ways. Several extensions and applications of the DVD
method in 2000s are reviewed in Furihata–Matsuo [82].

Linearisation

The DVD method often produces qualitatively nice numerical solutions. However, a heavy computa-
tional cost is inevitable, which is problematic especially in multidimensional problems. This drawback
is due to the fact that DVD schemes are implicit and furthermore nonlinear if the target PDE is nonlinear.
To avoid the heavy computation, linearly implicit methods have been developed [61, 137]. The idea
was already summarised in Remark 2.5, and in most cases the derived schemes actually work very well.

However, there remains a big issue: the derived schemes are sometimes unstable, because the def-
inition of the energy in the linearly implicit methods is different from that in the standard methods.
There is no systematic strategy, at the present time, for defining a modified energy so that the corre-
sponding scheme is always stable. For limited examples, an idea for solving this problem was recently
proposed by Matsuo–Furihata [138].

Extensions to complicated PDEs

The DVD method originally targeted conservative PDEs of the form

ut = Ç2s+1
x

δH
δu

, H = H(u, ux),

and dissipative PDEs of the form

ut = (−1)s+1Ç2s
x
δH
δu

, H = H(u, ux).

Then the method has been extended to complex-valued PDEs [137] and second-order PDEs [134], and
applied to a lot of PDEs (see [82]). Since around 2010, the method has also been extended/applied to
nonlocal PDEs [150, 153, 154, 181, 210] (see also Cohen–Raynaud [57]).

Extensions to nonuniform meshes

The application of the DVD method to spatial discretisation has been restricted to uniform meshes, which
requires rectangular domains. This restriction is problematic especially in multidimensional problems,
which must frequently be solved in nonuniform meshes. Furthermore, even in one-dimensional cases,
nonuniform meshes are often preferred when the solution exhibit locally complicated behaviour. For
this reason, several researchers have extended the DVD method to nonuniform meshes. Yaguchi et
al. extended the DVD method to nonuniform meshes by either the mapping method [209] or discrete
differential forms [211]. Matsuo gave another solution by extending the DVD method to Galerkin
framework [135].
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5.4 Multi-symplectic methods

In this section, we discuss numerical discretisation methods which preserve the multi-symplectic con-
servation law (Theorem 5.1). In contrast to symplectic methods and energy-preserving/dissipative
methods which treat the space and time variables differently, multi-symplectic methods discretise both
variables on equal footing. The main idea of multi-symplectic methods is to apply symplectic discreti-
sation methods also to the space variable. Below, we explain how such an application is done through
two specific schemes.

Euler box scheme
Recall that the symplectic Euler method for Hamiltonian systems discretises the variables of position
and momenta in a different manner. A similar idea can be applied to multi-symplectic PDEs. Let us
introduce a splitting of two matrices M and K , i.e., M = M++M− and K = K++K− so that M⊤+ = −M−
and K⊤+ = −K−. The so called Euler box scheme reads

M+δ
+
t zn

k +M−δ−t zn
k + K+δ

+
x zn

k + K−δ−x zn
k =∇zS(zn

k ). (5.10)

Theorem 5.4 (Moore–Reich [157]). The Euler box scheme (5.10) satisfies the discrete multi-symplectic
conservation law

δ+t ω
n
k + δ+xκ

n
k = 0,

where

ωn
k = dzn−1

k ∧M+dzn
k , κn

k = dzn
k−1 ∧ K+dzn

k .

Proof. The variational equation associated with (5.10) is

M+δ
+
t dzn

k +M−δ−t dzn
k + K+δ

+
x dzn

k + K−δ−x dzn
k = Szzdzn

k .

Taking the wedge product with dzn
k yields

dzn
k ∧

�
M+δ

+
t dzn

k +M−δ−t dzn
k

�
+ dzn

k ∧
�
K+δ

+
x dzn

k + K−δ−x dzn
k

�
= 0

due to the symmetry of Szz . Expanding the first term, we have

dzn
k ∧

�
M+δ

+
t dzn

k +M−δ−t dzn
k

�
= dzn

k ∧M+δ
+
t dzn

k + δ−t dzn
k ∧M+dzn

k = δ+t

�
dzn−1

k ∧M+dzn
k

�
= δ+t ω

n
k.

Similarly, it is easy to check that the second term becomes

dzn
k ∧

�
K+δ

+
x dzn

k + K−δ−x dzn
k

�
= δ+xκ

n
k.

Preissmann box scheme
Recall that the midpoint rule is symplectic. Applying the midpoint rule to both time and space variables
in (5.7) leads to the so called Preissmann box scheme or centred box scheme

Mδ+t zn
k+1/2 + Kδ+x zn+1/2

k =∇zS(zn+1/2
k+1/2). (5.11)

This scheme was originally introduced by Preissmann in 1961 [166], and has been widely used in
hydraulics.
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Theorem 5.5 (Bridges–Reich [19]). The Preissmann box scheme (5.11) satisfies the discrete multi-
symplectic conservation law

δ+t ω
n
k+ 1

2
+ δ+xκ

n+ 1
2

k = 0,

where

ωn
k = dzn

k ∧Mdzn
k , κn

k = dzn
k ∧ Kdzn

k .

Proof. The variational equation associated with (5.11) is

Mδ+t dzn
k+ 1

2
+ Kδ+x dz

n+ 1
2

k = Szzdz
n+ 1

2

k+ 1
2
.

Taking the wedge product with dz
n+ 1

2

k+ 1
2

yields

dz
n+ 1

2

k+ 1
2
∧Mδ+t dzn

k+ 1
2
+ dz

n+ 1
2

k+ 1
2
∧ Kδ+x dz

n+ 1
2

k = 0

due to the symmetry of Szz . Expanding the first term, we have

dz
n+ 1

2

k+ 1
2
∧Mδ+t dzn

k+ 1
2
=

1
2∆t

�
dzn+1

k+ 1
2
+ dzn

k+ 1
2

�
∧M

�
dzn+1

k+ 1
2
− dzn

k+ 1
2

�
=

1
2∆t

�
dzn+1

k+ 1
2
∧Mdzn+1

k+ 1
2
− dzn

k+ 1
2
∧Mdzn

k+ 1
2

�
=

1
2
δ+t ω

n
k+ 1

2
.

For the second term, we can easily check

dz
n+ 1

2

k+ 1
2
∧ Kδ+x dz

n+ 1
2

k =
1
2
δ+xκ

n+ 1
2

k

in a similar manner.

Example 5.9 (Preissmann box scheme for the KdV equation [123, Chapter 12]). We derive a Preissmann
box scheme for the KdV equation (5.5). Applying (5.11) to the multi-symplectic form (5.8), we obtain

−1
2
δ+t un

k+1/2 − δ+x wn+1/2
k = 0,

1
2
δ+t ϕ

n
k+1/2 + δ+x vn+1/2

k = wn+1/2
k+1/2 +

�
un+1/2

k+1/2

�2

2
,

−δ+x un+1/2
k = vn+1/2

k+1/2 ,

δ+xϕ
n+1/2
k = un+1/2

k+1/2.

By introducing two matrices

A=
1
2


1 1

1 1
¨ ¨

1 1
1 1

 ∈ RN×N and D =
1
∆x


−1 1
−1 1

¨ ¨
−1 1

1 −1

 ∈ RN×N
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and assuming δ+x u0
k = v0

k+1/2 and δ+xϕ
0
k = u0

k+1/2, the above scheme can be rewritten as a vector form

−1
2
δ+t Aun − Dwn+1/2 = 0,

1
2
δ+t Aϕn + Dvn+1/2 = Awn+1/2 +

�
Aun+1/2

�2
2

,

−Dun = Avn,

Dϕn = Aun,

where un = (un
0, . . . , un

N−1)
⊤, similar notation is used for other variables, and

�
Aun+1/2

�2
denotes the

componentwise vector product. The matrix A is invertible if N is odd. In this case, eliminating ϕn, vn

and wn, we finally obtain the scheme

δ+t Aun = DA−1

�
Aun+1/2

�2

2
+ DA−1DA−1Dun+1/2.

Backward error analysis
As is the case with the symplectic methods for Hamiltonian systems, the multi-symplectic methods
approximate a multi-symplectic PDE by another multi-symplectic PDE. In other words, the solution of
a multi-symplectic integrator is an exact solution of the modified multi-symplectic equation. Hence,
the errors of the energy and momentum of the multi-symplectic methods are bounded by a constant
independently of t. Moore–Reich showed this property by using the backward error analysis [157] (see
also [156]). Below, we show the idea of the backward error analysis taking the Euler box scheme as
our working example.

We consider the Taylor series of the exact solution z(tn+1, xk) around (tn, xk):

z(tn+1, xk) = z(tn, xk) +∆tzt(tn, xk) +
∆t2

2
zt t(tn, xk) +

∆t3

6
zt t t(tn, xk) +O(∆t4).

From this, we immediately obtain

δ+t z(tn, xk) = zt(tn, xk) +
∆t
2

zt t(tn, xk) +
∆t2

6
zt t t(tn, xk) +O(∆t3).

Similarly, it follows that

δ−t z(tn, xk) = zt(tn, xk)− ∆t
2

zt t(tn, xk) +
∆t2

6
zt t t(tn, xk)−O(∆t3),

δ+x z(tn, xk) = zx(tn, xk) +
∆x
2

zx x(tn, xk) +
∆x2

6
zx x x(tn, xk) +O(∆x3),

δ−x z(tn, xk) = zx(tn, xk)− ∆x
2

zx x(tn, xk) +
∆x2

6
zx x x(tn, xk)−O(∆x3).

Substituting these expressions into (5.10), we obtain

Mzt +
∆t
2
(M+ −M−)zt t + Kzx +

∆x
2
(K+ − K−)zx x =∇zS(z). (5.12)

Here, higher-order termsO(∆t2+∆x2) are omitted to simplify the notation, but even though such terms
are taken into account, the following discussion still makes sense. The PDE (5.12) is multi-symplectic.
Indeed, by letting L = (M+ −M−) and N = (K+ − K−), the PDE (5.12) is equivalent to

M̃ z̃t + K̃ z̃x =∇z̃ S̃(z̃),
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where z̃ = (z, zt , zx)⊤,

M̃ =

 M ∆t
2 L 0

−∆t
2 L 0 0
0 0 0

 , K̃ =

 K 0 ∆x
2 N

0 0 0
−∆x

2 N 0 0


and

S(z̃) = S(z)− ∆
2

z⊤t Lzt − ∆x
2

z⊤x Nzx .

Therefore, the Euler box scheme exactly preserves the energy and momentum of the modified multi-
symplectic PDE.

Extensions/applications of multi-symplectic method

In addition to the Euler box scheme and Preissmann box scheme, several discretisation methods have
been proposed. For example, Reich applied Runge–Kutta methods to both space and time variables [170]
(see also Runge–Kutta–Nyström methods [109, 130] and partitioned Runge–Kutta methods [129]). In
contrast to energy-preserving/dissipative methods, every discretisation method can be readily applied
to a multi-symplectic formulation once the structure is found. Multi-symplectic formulations of a variety
of PDEs have been found (see, e.g., [55, 56, 108]).

5.5 Motivation and summary of the subsequent chapters

Chapter 6

Among several recent developments of the discrete variational derivative (DVD) method to nonuni-
form meshes and high-dimensional problems, we focus on the Galerkin framework proposed by Mat-
suo [135], which is referred to as the discrete partial derivative (DPD) method. He targeted dissipative
PDEs of the form

Çu
Çt
= (−1)s+1

�
Ç

Çx

�2s δH
δu

, s = 0, 1, 2, . . . , (5.13)

and conservative PDEs

Çu
Çt
=
�

Ç

Çx

�2s−1δH
δu

, s = 1, 2, 3, . . . , (5.14)

where δH/δu is the variational derivative of H(u, ux)with respect to u(t, x). The DPD method has been
applied to several specific PDEs [120, 136, 139]. Various dissipative/conservative schemes proposed
in the literature have been identified as the special cases of the method, including the famous Du–
Nicolaides scheme for the Cahn–Hilliard equation [69]. These findings demonstrate the comparative
success of the DPD method.

However, a major limitation remains in the DPD method. First, the DPD method defines H1-weak
forms with explicit dissipation or conservation properties, and then discretises them appropriately
with P1 elements. P1 elements reduce the computational complexity, particularly in two- or three-
dimensional problems. However, as the variational structures become more complicated than those in
(5.13) and (5.14), finding an appropriate H1-weak form for PDEs becomes increasingly difficult. Such
PDEs can be categorised into two types.
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Type 1: PDEs whose energy functional contains higher-order derivatives, i.e., (5.13) or (5.14) with
H = H(u, ux , ux x , . . . ). For such PDEs, the energy in H1 space is not clearly defined. An example
of these dissipative PDEs is the Swift–Hohenberg (SH) equation [180]

Çu
Çt
= −

�
−2u+ u3 + 2

Ç2u
Çx2

+
Ç4u
Çx4

�
, 0< x < L, t > 0.

This equation belongs to class (5.13) with s = 0 and H(u, ux , ux x) = −u2+u4/4−u2
x +u2

x x/2. An
example of a conservative PDE is the Kawahara equation (fifth-order KdV-type equation) [117]

Çu
Çt
=

Ç

Çx

�
−1

2
u2 −α Ç2u

Çx2
+ β

Ç4u
Çx4

�
, 0< x < L, t > 0. (5.15)

This equation belongs to class (5.14) with s = 1 and H(u, ux , ux x) = −u3/6+αu2
x/2+ βu2

x x/2.

Type 2: PDEs in which a complicated differential operator acts on the variational derivative (specifically,
the operator S in ut = S δH

δu is complicated). In this case, the dissipation or conservation property
arises from the negative semi-definite or skew-symmetric property of the differential operator.
When the operator cannot operate on functions in H1, special treatments are required. Typical
examples are the Camassa–Holm equation [41, 42, 79]

ut − ux x t = uux x x + 2uxux x − 3uux , 0< x < L, t > 0, (5.16)

and the Degasperis–Procesi equation [66]

ut − ux x t = uux x x + 3uxux x − 4uux , 0< x < L, t > 0. (5.17)

The Camassa–Holm equation can be written in variational (Hamiltonian) form with S = (1 −
Ç2

x)
−1(mÇx + Çx m)(1 − Ç2

x)
−1 and H(u, ux) = −(u2 + u2

x)/2. Similarly, the Degasperis–Procesi
equation can be written with S = (1− Ç2

x)
−1Çx(4− Ç2

x) and H(u) = −u3/6.

To our knowledge, no systematic procedure exists for finding dissipative or conservative H1-weak
forms of the above equation types. This complicates the application of the DPD method. One solution
is to adopt smoother function spaces; however we would prefer to stick to H1-weak forms since

• the H1-formulation can be implemented by computationally inexpensive P1 elements. This ad-
vantage is mandatory in multidimensional problems;

• for high-order PDEs with H1 solutions, such as the Camassa–Holm equation (which has peaked
soliton solutions), H1-formulations are preferable from a theoretical perspective.

With these considerations, we propose a new framework that automatically constructs H1 schemes
for Types 1 and 2 PDEs. Similar to the original DPD method, the proposed method exploits the varia-
tional structure of PDEs, but finds the intended schemes rather than the underlying dissipative or con-
servative H1-weak forms. This nontrivial approach is rendered possible by the concept of L2-projection
operators. Note that the proposed method is not a superset of the original DPD method, in the sense
that the proposed method often derives different schemes from the original DPD method for the simple
PDEs (5.13) and (5.14). Moreover, by using the proposed method, we propose a new class of energy-
preserving/dissipative methods in discontinuous-Galerkin framework.
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Chapter 7
There remain other issues to be settled for energy-preserving/dissipative methods. For example, they
assumed static grids, and it is not clear at all if it could be incorporated with a dynamic grid adaptation
technique. Such a technique is required in practical problems where a localised point (or area) moves as
time passes (consider, for example, a moving solitary wave), in order to increase the overall efficiency.
Unfortunately, however, it seems that no study has ever succeeded in such a challenge, not only in the
context of energy-preserving/dissipative methods, but also in the more general context of geometric
numerical integration methods for PDEs, except in very specific studies such as [219]. The reason for
this is that such structure-preserving methods usually employ a very sophisticated time stepping for the
desired structure-preservation, which generally seems to contradict the concept of grid adaptation.

Motivated by this background, in Chapter 7 we shall show that by a simple idea we can establish an
adaptive energy-preserving/dissipative method. This is done by combining the energy-preserving/dissipative
method on static nonuniform grids and a grid adaptation technique. We here would like to emphasise
that a simple combination of them would destroy the desired properties. The key is to introduce an
additional optimisation step, by which the destruction can be avoided.

Remark 5.2. As noted in Section 1.2, Chapter 7 is mainly based on [152]. During the revision pe-
riod of [152], we noticed a recent, essentially equivalent study [71]. While in [152] the energy-
preserving/dissipative Galerkin method and a wavelet-based grid adaptation technique are combined,
in [71] the energy-preserving/dissipative finite difference method on nonuniform grids and an equidistribution-
based grid adaptation technique are incorporated. In Chapter 7, the equidistribution-based grid adap-
tation technique is also considered.

Chapter 8
A time-dependent PDE is usually formulated locally, in the sense that it is of the form

ut = f (u, ux , ux x , . . . ).

On the other hand, in the last few decades, the study of nonlocal PDEs has become popular in several
research fields such as wave theory, PDE theory and integrability. Here lists several, famous examples.

• b-family equation:

(1− Ç2
x)ut = −(b+ 1)uux + buxux x + uux x x .

When b = 2 this equation is called the Camassa–Holm equation (5.16). When b = 3 this equation
is called the Degasperis–Procesi equation (5.17). Both equations describe shallow water waves,
and only these equations are completely integrable.

• Ostrovsky equation [159]

ut +αuux − βux x x = γÇ
−1
x u,

where α, β and γ are real parameters.

• Hunter–Saxton equation [111]

ux x t + 2uxux x + uux x x = 0. (5.18)

• Short-pulse equation [50, 174]

ux t = u+
1
6
(u3)x x .
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For nonlocal PDEs, nonlocal operators, such as (1−Ç2
x)
−2, Ç−1

x and Ç−2
x , should be carefully handled,

so that the intended geometric structure is kept even after the discretisation. It is strongly hoped to
construct a general framework for handling these nonlocal operators. However, since the treatment of
nonlocal operators is also related to boundary conditions, structure-preserving discretisations of non-
local PDEs are not obvious at all in general, and have been considered for individual equation, as it is
now.

The Camassa–Holm equation has been intensively studied in the last decade. This equation is usually
considered under the periodic boundary conditions. Under the periodic boundary conditions, the opera-
tor (1−Ç2

x)
−1 is invertible. This property can be kept in the finite difference context, and thus structure-

preserving schemes can be derived. Energy-preserving schemes were proposed by Takeya [181] (see
also [82, Chapter 4.7] and [153]). Multi-symplectic integrators were proposed by Cohen et al. [56].
The operator (1− Ç2

x)
−n of the modified Camassa–Holm equation was considered in [153].

In the context of structure-preserving numerical methods, the operator Ç−1
x of the Ostrovsky equation

was discussed by Yaguchi et al. [210] and Miyatake et al. [154]. For this equation, we usually assume the
existence of a potential ϕ = Ç−1

x u under the periodic boundary condition. In other words,
∫
T u dx = 0

is assumed for all t > 0. Structure-preserving schemes derived in [154, 210] are also based on this
assumption.

In Chapter 8, we will consider the Hunter–Saxton equation which is associated with the operator Ç−2
x .

Readers might feel that since the treatment of Ç−1
x was already studied, it is straightforward to handle

Ç−2
x . However, it is not easy to derive structure-preserving schemes for the Hunter–Saxton equation,

because the existence of the potential is not assumed in general for the equation.
Since its introduction in the seminal paper [111], the Hunter–Saxton equation has been attracting

much attention. This is mainly due to its rich mathematical structures: the Hunter–Saxton equation
is integrable; it is bi-Hamiltonian; it possess a Lax pair; it does not have global smooth solutions but
enjoy two distinct classes of global weak solutions (conservative and dissipative); it can be seen as the
geodesic equation of a right-invariant metric on a certain quotient space; etc. (see [17, 112, 113, 125]
and references therein). Furthermore, the Hunter–Saxton equation arises as a model for the propagation
of weakly nonlinear orientation waves in a nematic liquid crystal [111] and it can be seen as the high
frequency limit of another well known and well studied equation, namely the Camassa–Holm equation.
Note that More about this last equation can be found, for example, in the work [168], the recent review
[106], and references therein.

Furthermore, there are a lot of ongoing research activities on the two extensions of the Hunter–
Saxton equation: the modified Hunter–Saxton equation (introduced in [124])

ux x t + 2uxux x + uux x x − 2ωux = 0,

where ω> 0, and the two-component Hunter–Saxton system (introduced in [200])

ux x t + 2uxux x + uux x x −κρρx = 0,
ρt + (uρ)x = 0,

where κ ∈ {−1, 1} and ρ := ρ(x , t). These two equations also enjoy many interesting properties. The
modified Hunter–Saxton equation is a model for short capillary waves propagating under the action of
gravity [126]. An interesting feature of this modified version of the original problem is that it admits
(smooth as well as cusped) travelling waves. This is not the case for the original problem (5.18). More-
over, this partial differential equation is also bi-Hamiltonian [126]. The two-component generalisation
of the Hunter–Saxton equation is a particular case of the Gurevich–Zybin system which describes the
dynamics in a model of non-dissipative dark matter, see [163] and also [128]. As the original equation,
this system is integrable; has a Lax pair; is bi-Hamiltonian; it is also the high-frequency limit of the
two-component Camassa–Holm equation; has peakon solutions; its flow is equivalent to the geodesic
flow on a certain sphere; etc. (see [118, 127, 155, 198, 201] and references therein).
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Despite the fact that the above equations are well understood in a more theoretical way, there are not
much results on numerical discretisations of these problems. We are aware of the numerical schemes
from [105, 206, 207] proposed only for the original Hunter–Saxton equation. The work [105] proves
convergence of some discrete finite difference schemes to dissipative solutions of the Hunter–Saxton
equation on the half-line. The references [206, 207] analyse local discontinuous Galerkin methods
for the Hunter–Saxton equation and in particular, using results from [105], prove convergence of the
discretisation scheme to the dissipative solutions. The main goal of this chapter is to present novel
numerical discretisations of the Hunter–Saxton equation and of its above two generalisations. The pro-
posed numerical schemes are based on a multi-symplectic, resp. on a variational, formulation of the
problems. They are specially designed to preserve two geometric features of the original partial differ-
ential equation, namely the multi-symplectic structure and the conservative property of the problem.
In the present work, we are not concerned about convergence results.



Chapter 6

A general Galerkin framework with
L2-projection

In this chapter, a general Galerkin framework for automatically deriving energy-preserving/dissipative
schemes is proposed. In Section 6.1, we review the original discrete partial derivative (DPD) method and
clarify its limitation. We propose a new framework for one-dimensional PDEs in Section 6.2, and then
extend it to multidimensional problems in Section 6.3. Furthermore, we combine the new framework
with the discontinuous Galerkin methods in Section 6.4.

We use the following notation. The numerical solution is denoted by u(n) ≃ u(n∆t, ·), where ∆t is
the time step. For a positive integer j and appropriate domain and boundary conditions, H j denotes
the standard Sobolev space equipped with the norm

∥ f ∥H j =

 
∥ f ∥2L2 +

j∑
l=1

∥Çl
x f ∥2L2

! 1
2

.

In one-dimensional problems, the interval (domain) is set to [0, L], and the L2 inner product is defined
by ( f , g) =

∫ L
0 f g dx . Si and Wi (i = 1, 2, . . . ) denote the trial and test spaces, respectively. When

imposing periodic boundary conditions, we often use the notation H1(T) (where T denotes the torus of
length L).

In multidimensional problems, the domain is specified by Ω ⊂ Rd (d = 2, 3). The L2 inner product
is defined by ( f , g) =

∫
Ω

f g dx when f and g are scalar-valued functions, and by ( f , g ) =
∫
Ω

f · g dx
when f and g are vector-valued functions (the dot signifies f · g = f ⊤g ). L2 and H j denote (L2)d and
(H j)d , respectively. Γ = ÇΩ and n denote the boundary of Ω and the normal vector at the boundary,
respectively. The Green theorem∫

Ω

( f△g +∇ f · ∇g)dx =

∫
Γ

f n · ∇g dΓ (6.1)

is used instead of the integration-by-parts formula.
Later, we shall apply the proposed framework to several PDEs. However, since the aim of such

applications is just to support the advantages of the framework: the wide range of applications and
the completely automatic procedure, we do not mind whether or not global/local well-posedness of the
exact solution for each equation is already verified in the PDE theory.

6.1 Discrete partial derivative method and its limitation

In this section, we introduce the original DPD method [135] and its essential limitations. The DPD
method is implemented in three steps, as shown below.

87
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Step 1 Construct an H1-weak form that explicitly expresses the desired dissipation/conservation prop-
erty.

Step 2 Spatially discretise the weak form such that the resulting semi-discrete scheme is consistent in
some finite-dimensional approximation spaces of H1 and it retains the dissipation/conservation
property.

Step 3 Temporally discretise the semi-discrete scheme such that the desired property is retained (this
step is essentially that of the discrete gradient method).

As an example, we demonstrate Steps 1–3 for the dissipative case (5.13) with s = 0.

Step 1
First, we define a dissipative H1-weak form with

δH
δu
=

ÇH
Çu
− Ç

Çx
ÇH
Çux

in mind.

Weak form 1 (dissipative H1-weak form for (5.13) when s = 0 [135]). Suppose that u(0, ·) is given in
H1(0, L). We find u(t, ·) ∈ H1(0, L) such that for any v ∈ H1(0, L),

(ut , v) = −
�
ÇH
Çu

, v
�
−
�
ÇH
Çux

, vx

�
+
�
ÇH
Çux

v
�L

0
. (6.2)

Proposition 6.1 (Weak form 1: dissipation property [135]). Assume that the boundary conditions
satisfy �

ÇH
Çux

ut

�L

0
= 0, (6.3)

and also assume that ut(t, ·) ∈ H1(0, L), ÇH
Çu ∈ L2(0, L) and ÇH

Çux
∈ L2(0, L). Then the solution of Weak

form 1 satisfies

d
dt

∫ L

0

H(u, ux)dx ≤ 0.

Proof.

d
dt

∫ L

0

H(u, ux)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
= −∥ut∥2 +

�
ÇH
Çux

ut

�L

0
≤ 0.

The first equality is a simple application of the chain rule, while the second follows from (6.2) with
v = ut ∈ H1(0, L). The last inequality follows from assumption (6.3).

Note that the partial derivatives ÇG/Çu and ÇG/Çux play an important role in constructing the above
weak form.

Step 2
In this step, the function space H1(0, L) in Weak form 1 is replaced by finite-dimensional approxi-

mation spaces S1 and W1 ⊂ H1(0, L). Thus, we obtain the following semi-discrete scheme.
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Semi-discrete scheme 1 (semi-discrete dissipative scheme for (5.13) when s = 0 [135]). Suppose that
u(0, ·) is given in S1. We find u(t, ·) ∈ S1 such that for any v ∈W1,

(ut , v) = −
�
ÇH
Çu

, v
�
−
�
ÇH
Çux

, vx

�
+
�
ÇH
Çux

v
�L

0
.

Proposition 6.2 (Semi-discrete scheme 1: dissipation property [135]). Assume that the boundary con-

ditions and the trial and test spaces are set to satisfy
�

ÇH
Çux

ut

�L

0
= 0 and ut ∈ W1. Also assume that

ÇH
Çu ∈ L2(0, L) and ÇH

Çux
∈ L2(0, L). Then the solution of Semi-discrete scheme 1 satisfies

d
dt

∫ L

0

H(u, ux)dx ≤ 0.

Proof. The proof is similar to that of Proposition 6.1:

d
dt

∫ L

0

H(u, ux)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
= −∥ut∥2 +

�
ÇH
Çux

ut

�L

0
≤ 0.

The substitution v = ut is allowed by the assumption ut ∈W1.

Step 3
To discretise Semi-discrete scheme 1 in time, we introduce discrete partial derivatives.

Definition 6.1 (discrete partial derivatives [135]). For two functions u(n+1) and u(n), we call the discrete
quantities

ÇHd

Ç(u(n+1), u(n))
and

ÇHd

Ç(u(n+1)
x , u(n)x )

, (6.4)

which correspond to ÇH/Çu and ÇH/Çux , “discrete partial derivatives,” if they satisfy the following
identity:

1
∆t

∫ L

0

�
H(u(n+1), u(n+1)

x )−H(u(n), u(n)x )
�

dx

=

�
ÇHd

Ç(u(n+1), u(n))
,
u(n+1) − u(n)

∆t

�
+

�
ÇHd

Ç(u(n+1)
x , u(n)x )

,
u(n+1)

x − u(n)x

∆t

�
. (6.5)

Note that the subscript d just means that we consider discrete versions of the partial derivatives (Hd
does not make any sense). Since (6.5) corresponds to the continuous chain rule:

d
dt

∫ L

0

H(u, ux)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
,

it is referred to as the discrete chain rule. Calculations of discrete partial derivatives are given in [135]:
essentially, these calculations can be done based on the discrete gradient method or more specifically
AVF method (see Section 2.5). For example, for H(u, ux) =

1
6u3− 1

2u2
x so that ÇH

Çu =
1
2u2 and ÇH

Çux
= −ux ,

ÇHd

Ç(u(n+1), u(n))
=
(u(n+1))2 + u(n+1)u(n) + (u(n))2

6
and

ÇHd

Ç(u(n+1)
x , u(n)x )

= −u(n+1) + u(n)

2

satisfy the discrete chain rule (6.5).
Let us return to the temporal discretisation of Semi-discrete scheme 1. Replacing the time derivative

ut with (u(n+1) − u(n))/∆t, and the partial derivatives ÇH/Çu and ÇH/Çux with the discrete partial
derivatives (6.4), we obtain the following fully discrete scheme.
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Scheme 1 (dissipative Galerkin scheme for (5.13) when s = 0 [135]). Suppose that u(0) is given in S1.
Find u(n+1) ∈ S1 (n= 0, 1, . . . ) such that for any v ∈W1,�

u(n+1) − u(n)

∆t
, v

�
= −

�
ÇHd

Ç(u(n+1), u(n))
, v
�
−
�

ÇHd

Ç(u(n+1)
x , u(n)x )

, vx

�
+

�
ÇHd

Ç(u(n+1)
x , u(n)x )

v

�L

0

. (6.6)

Theorem 6.1 (Scheme 1: dissipation property [135]). Assume that the boundary conditions and the
trial and test spaces are set to satisfy�

ÇHd

Ç(u(n+1)
x , u(n)x )

�
u(n+1) − u(n)

∆t

��L

0

= 0 (6.7)

and (u(n+1) − u(n))/∆t ∈ W1. Also assume that ÇHd
Ç(u(n+1),u(n)) ∈ L2(0, L) and ÇHd

Ç(u(n+1)
x ,u(n)x )

∈ L2(0, L). Then

the solution of Scheme 1 satisfies

1
∆t

∫ L

0

�
H(u(n+1), u(n+1)

x )−H(u(n), u(n)x )
�

dx ≤ 0, n= 0, 1, 2, . . . .

Proof.

1
∆t

∫ L

0

�
H(u(n+1), u(n+1)

x )−H(u(n), u(n)x )
�

dx

=

�
ÇHd

Ç(u(n+1), u(n))
,
u(n+1) − u(n)

∆t

�
+

�
ÇHd

Ç(u(n+1)
x , u(n)x )

,
u(n+1)

x − u(n)x

∆t

�

= −




u(n+1) − u(n)

∆t





2

+

�
ÇHd

Ç(u(n+1)
x , u(n)x )

�
u(n+1) − u(n)

∆t

��L

0

≤ 0.

The first equality is a simple application of the discrete chain rule (6.5), while the second follows from
(6.6) with v = (u(n+1) − u(n))/∆t ∈W1. The last inequality follows from assumption (6.7).

Note that Steps 2 and 3 are completely automatic. In other words, once a dissipative/conservative
H1-weak form is found, an intended fully discrete Galerkin scheme can be systematically obtained. Dis-
sipative/conservative H1-weak forms for (5.13) and (5.14) have been published in the literature [135].

Unfortunately, however, finding the desired weak forms of complicated PDEs is less straightforward.
The partial derivatives of Type 1 PDEs do not always exist in H1 space. For Type 2 PDEs, the complicated
operator is not easily handled in H1 space.

6.2 New framework for one-dimensional problems

To overcome the above difficulty, we propose a new framework. The new procedure is summarized as
follows (Figure 6.1).

PHASE 1

Step 1′ Construct a formal weak form that need not be formulated within H1 space, but whose dissi-
pation/conservation property can be explicitly obtained by formal calculations. The meaning of
“formal” will be clarified shortly.

Step 2′ Spatially discretise the formal weak form. The resulting semi-discrete scheme should be con-
sistent in some finite-dimensional approximation spaces of H1 and should retain the dissipa-
tion/conservation property. In this step, the L2-projection operators play an important role.
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Original DPD method

PDE dissipative/conservative
H1-weak form

semi-discrete scheme fully-discrete scheme

Step 1 Step 2 Step 3

Proposed method

PDE dissipative/conservative
H1-weak form

semi-discrete scheme
without L2-projection

fully-discrete scheme

dissipative/conservative
formal weak form

semi-discrete scheme
with L2-projection

Step 1′
Step 2′ Step 3

Step 4Step 5
Step 6

Phase 1 Phase 2

Figure 6.1: Standard versus proposed strategies.

Step 3 Temporally discretise the semi-discrete scheme such that the desired property is retained.

If the theoretical aspects of the schemes (such as convergence behaviour) are of interest, finding the
underlying dissipative/conservative H1-weak forms is assisted by the following steps.

PHASE 2

Step 4 The semi-discrete scheme derived in Step 2′ explicitly uses the L2-projection operators. In this
step, these operators are expanded into a more familiar form.

Step 5 Restore the semi-discrete scheme to a weak form that is consistent in H1. This step merely
rewrites the finite-dimensional approximation spaces to infinite-dimensional subspaces of H1.

Step 6 Check the relationship between PDE and the obtained H1-weak form.

The proposed method avoids the need to find obscure proper dissipative/conservative H1-weak
forms. This advantage is conferred by the L2-projection operators. Note that our approach is completely
automatic, except that some degrees of freedom must be specified in Step 2′ (see Remark 6.6).

The L2-projection operators are introduced in Section 6.2.1. In Section 6.2.2 and Section 6.2.3,
the proposed method is defined for Types 1 and 2 PDEs, respectively. Applications of the method are
presented in Section 6.2.4.

Remark 6.1. In Propositions 6.1 and 6.2 and Theorem 6.1, we assumed that partial derivatives and
discrete partial derivatives are in L2. In the rest of this chapter, we do not write similar assumptions
explicitly, but we promise that they are always assumed.

6.2.1 L2-projection operators

The L2-projection operators are the principle devices of the proposed method. Although here the con-
cept of the L2-projection operators is demonstrated in one-dimensional problems, it is equally applicable
to multidimensional problems, as shown in Section 6.3.
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The L2-projection operator is defined as PX : L2→ X ⊆ H1 (where X is a closed (finite-dimensional
approximation) space of H1) satisfying

(u, v) = (PX u, v), (6.8)

for any v ∈ X . For convenience, we denote PX ux by DX u, namely DX := PXÇx : H1 → X . We regard
Dp

X (:= (DX )p) (p ≥ 1) as the operator that approximates Ç
p
x . The following formula is straightforward.

Lemma 6.1. For any u ∈ H1 and v ∈ X , the following holds�
Dp

X u, v
�
=
�
(Dp−1

X u)x , v
�

(p ≥ 1). (6.9)

Proof. The relation (6.9) follows from (6.8):�
Dp

X u, v
�
=
�
PX (D

p−1
X u)x , v

�
=
�
(Dp−1

X u)x , v
�
.

The operator DX can operate on any functions in H1 any number of times (note that Dp
X : H1 →

X ). The following equalities, obtained from (6.9), demonstrate that DX is skew-symmetric and D2
X is

symmetric, corresponding to the skew-symmetry of Çx and symmetry of Ç2
x , respectively.

Corollary 6.1. For any u ∈ X and v ∈ X , if [uv]L0 = 0, the following holds

(DX u, v) = −(u,DX v).

Also assume that [(DX u)v]L0 = [u(DX v)]L0 = 0. Then we have�
D2

X u, v
�
=
�
u,D2

X v
�
.

Proof. These properties can be proved by (6.9) and integration-by-parts.

Provided that the boundary conditions are periodic, the above operators are sufficient for the new
method. However, as will be shown, multiple different boundary conditions require a more sophisticated
treatment. As an extension of PX , we define an operator PX (Y ) : L2 → X ⊆ H1 (where X (⊆ Y ) and Y
are closed (finite-dimensional approximation) spaces of H1) satisfying�

PX (Y )u, v
�
= (u, v) (6.10)

for any v ∈ Y ⊆ H1. Accordingly, we define an operator DX (Y ) by DX (Y ) := PX (Y )Çx : H1→ X .

Lemma 6.2. It follows that for any u ∈ H1 and v ∈ Y ,�
DX (Y )u, v

�
= (ux , v). (6.11)

Although the operators PX (Y ) and DX (Y ) can no longer be considered “projection” operators, we
can regard them as extensions of PX and DX . Thus, we refer to PX (Y ) and DX (Y ) as “L2-projection”
operators.

6.2.2 Proposed method for Type 1 PDEs
We now apply the new method to the dissipative equation (5.13) with H = H(u, ux , ux x) and s = 0:

ut = −δH
δu

, H = H(u, ux , ux x) (6.12)

as a working example, which is sufficient to show the essential idea. Note that in this case, the variational
derivative δH/δu becomes

δH
δu

:=
ÇH
Çu
− Çx

ÇH
Çux
+ Ç2

x
ÇH
Çux x

.
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Design of dissipative schemes: PHASE 1

We describe the procedure of Phase 1 (derivation of dissipative schemes) for (6.12).

Step 1′
First, we state that finding a dissipative H1-weak form for (6.12) is not straightforward. In fact,

because (6.12) contains a ÇH/Çux x term, a weak form of this equation would require H2 elements.
Instead, motivated by the construction of Weak form 1, we consider the following formulation, obtained
by integrating each term by parts only up to once. We find u such that for any v,

(ut , v) =−
�
ÇH
Çu

, v
�
+
�
Çx

ÇH
Çux

, v
�
−
�
Ç2

x
ÇH
Çux x

, v
�

=−
�
ÇH
Çu

, v
�
−
�
ÇH
Çux

, vx

�
+
�
ÇH
Çux

v
�L

0
+
�
Çx

ÇH
Çux x

, vx

�
−
��

Çx
ÇH
Çux x

�
v
�L

0
.

Note that, by virtue of the restricted integration-by-parts, the fourth term on the most right-hand side
is not

−
�

ÇH
Çux x

, vx x

�
as in the standard finite-element formulation. This formulation remains viable in H2 (or smoother
spaces) but not in H1. By following the rules below, we define the following formal weak form, in
which the test functions alone are in H1.

Rules for defining formal weak forms

(R1′ a) Eliminate all derivatives before the partial derivatives by introducing intermediate functions

q = Çx
ÇH
Çux x

, r = Ç2
x

ÇH
Çux x x

, . . . ,

and their associated equations, such that the test functions contain only first-order derivatives
(this step should be done recursively, as required).

(R1′ b) Leave other derivatives untouched.

In our working example, applying these rules to the above formulation yields the following formal
weak form. We replace Çx(ÇH/Çux x) with q and add (6.14) by rule (R1′ a), leaving all other terms
intact by (R1′ b).

Formal weak form 1. Suppose that u(0, ·) is given. We find u, q such that for any v1, v2,

(ut , v1) = −
�
ÇH
Çu

, v1

�
−
�
ÇH
Çux

, (v1)x

�
+
�
ÇH
Çux

v1

�L

0
+ (q, (v1)x)− [qv1]

L
0 , (6.13)

(q, v2) = −
�

ÇH
Çux x

, (v2)x

�
+
�

ÇH
Çux x

v2

�L

0
. (6.14)

As is obvious from the construction, the above formulation is not formulated in H1 space, and
thus is only formally valid (hence the term formal weak form). Note that if we ignore this defect,
the dissipation property can be explicitly obtained by formal calculations. Under the assumptions:
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[qut]
L
0 = 0,

�
ÇH
Çux

ut

�L

0
= 0 and

�
ÇH
Çux x

ux t

�L

0
= 0,

d
dt

∫ L

0

H(u, ux , ux x)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
+
�

ÇH
Çux x

, ux x t

�
=
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
− (q, ux t) +

�
ÇH
Çux x

ux t

�L

0

=− ∥ut∥2 +
�
ÇH
Çux

ut

�L

0
− [qut]

L
0 ≤ 0. (6.15)

Here the first equality is obtained by the chain rule. The second follows from (6.14) with v2 = ux t , and
the third from (6.13) with v1 = ut .

Remark 6.2. Other definitions of formal weak forms for which the dissipation property can be formally
checked are possible. However, the definition of formal weak forms following the proposed rule is
ideally suitable for implementing Step 2′ (presented below).

Step 2′
In this step, the above formal weak form is spatially discretised such that the semi-discrete scheme

is consistent in some finite-dimensional approximation spaces of H1. The rules are described below.

Rules for constructing semi-discrete schemes

(R2′ a) Set finite-dimensional trial and test function spaces for solutions of the formal weak form;

(R2′ b) Replace derivatives in H and in partial derivatives with DS j(Wj) by introducing function spaces
S j ’s, Wj ’s as necessary such that

ux →DS j(Wj)u, ux x →DS j+1(Wj+1)DS j(Wj)u, . . .

(i.e., introduce new function spaces for each additional derivative);

(R2′ c) Place projection operators before the partial derivatives by introducing new function spaces
for each partial derivative;

(R2′ d) Leave remaining derivatives (mainly in test functions) intact.

Hereafter, where their meanings are unambiguous, we denote PS j(Wj) and DS j(Wj) by the simpler
forms P j and D j , respectively.

Semi-discrete scheme 2 (with L2-projection operators). Suppose that u(0, ·) is given in S1. We find
u(t, ·) ∈ S1, q ∈ S2 such that for any v1 ∈W1, v2 ∈W2,

(ut , v1) = −
�
ÇH
Çu

, v1

�
−
�
P5

ÇH
Ç(D3u)

, (v1)x

�
+
��

P5
ÇH

Ç(D3u)

�
v1

�L

0
+ (q, (v1)x)− [qv1]

L
0 , (6.16)

(q, v2) = −
�
P6

ÇH
Ç(D4D3u)

, (v2)x

�
+

��
P6

ÇH
Ç(D4D3u)

�
v2

�L

0

, (6.17)

where H = H(u,D3u,D4D3u).

Following (R2′ a), we introduce trial function spaces S1 and S2 for u(t, ·) and q, respectively, and
corresponding test function spaces W1 and W2. Following (R2′ b), we replace derivatives with S3, W3,
S4, and W4 such that

ux →D3u, ux x →D4D3u.
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Following (R2′ c), we introduce trial and test functions S5, W5, S6, and W6 for the projection operatorsP5
andP6, which is placed before the partial derivatives. Provided that the rules are obeyed, the numbering
is arbitrary. The following proposition specifies sufficient conditions for the dissipation property in each
given numbering.

Remark 6.3. In the proposed method, the semi-discrete scheme is consistent in H1 by virtue of (R2′ a),
(R2′ b), and (R2′ d). Rule (R2′ c) is necessary for the dissipation property.

Remark 6.4. The proposed method imposes many (test and trial) function spaces. Each space must be
selected to comply with the boundary conditions and satisfy the assumptions of the following proposi-
tion. Selection can be based on the standard theory of finite element methods. An example is given in
Section 6.2.4.

Remark 6.5. Some remarks on the notation: ÇH/Ç(D ju) denotes the substitution of ux , ux x , . . . in
ÇH/Çux by D ju,D j+1D ju, . . . , and similarly for ÇH/Çux x ,ÇH/Çux x x , . . . . For example, given a function
H(u, ux , ux x) = uuxux x ,

ÇH
Çu
= (D ju)(D j+1D ju),

ÇH
Ç(D ju)

= u(D j+1D ju),
ÇH

Ç(D j+1D ju)
= u(D ju).

Proposition 6.3 (Semi-discrete scheme 2: dissipation property). Assume that the boundary conditions
satisfy ��

P6
ÇH

Ç(D4D3u)

�
D3ut

�L

0

= 0,
��

P5
ÇH

Ç(D3u)

�
ut

�L

0
= 0, [qut]

L
0 = 0.

Also assume that S5 ⊆ W3, S6 ⊆ W4, S2 ⊆ W3, D3ut ∈ W5, D4D3ut ∈ W6, D3ut ∈ W2,ut ∈ W1 and
ux ,D3u ∈ C1(R+; L2(0, L)). Then the solution of Semi-discrete scheme 2 satisfies

d
dt

∫ L

0

H(u,D3u,D4D3u)dx ≤ 0.

Proof. The proof is similar to the formal calculation of (6.15) and involves carefully checking each
equality.

d
dt

∫ L

0

H(u,D3u,D4D3u)dx

=
�
ÇH
Çu

, ut

�
+
�

ÇH
Ç(D3u)

,D3ut

�
+

�
ÇH

Ç(D4D3u)
,D4D3ut

�
=
�
ÇH
Çu

, ut

�
+
�
P5

ÇH
Ç(D3u)

,D3ut

�
+

�
P6

ÇH
Ç(D4D3u)

,D4D3ut

�
=
�
ÇH
Çu

, ut

�
+
�
P5

ÇH
Ç(D3u)

, ux t

�
+

�
P6

ÇH
Ç(D4D3u)

, (D3ut)x

�
=
�
ÇH
Çu

, ut

�
+
�
P5

ÇH
Ç(D3u)

, ux t

�
− (q,D3ut) +

��
P6

ÇH
Ç(D4D3u)

�
D3ut

�L

0

=
�
ÇH
Çu

, ut

�
+
�
P5

ÇH
Ç(D3u)

, ux t

�
− (q, ux t) = −∥ut∥2 +

��
P5

ÇH
Ç(D3u)

�
ut

�L

0
− [qut]

L
0 ≤ 0.

The first equality is obtained by the chain rule. Eq. (6.10) is used in the second and third terms of the
second equality, as permitted by the assumption D3ut ∈W5 for the second term and D4D3ut ∈W6 for
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the third term. Note that the terms included in the partial derivatives remain in L2: by the Sobolev
embedding theorem, S3, S4 ⊂ H1 ⊂ C0 (for example, [7, Theorem 7.3.8]).

The third equality follows from (6.11), which is allowed by the assumptions S5 ⊆W3 and S6 ⊆W4.
The fourth follows from (6.16) with v2 =D3ut ∈W2. The fifth equality again uses (6.11) as allowed by
the assumption S2 ⊆W3, while the sixth equality derives from (6.17) with v1 = ut ∈W1.

Remark 6.6. The procedure of this step was designed for completely automatic implementation, but
can be slightly modified if necessary. Above, we considered an energy term of the form∫ L

0

H(u,D3u,D4D3u)dx .

However, other definitions may be possible. For example, if the energy takes the form∫ L

0

H(u, ux ,D4D3u)dx ,

an intended semi-discrete scheme can also be derived.

Step 3
In this step, we temporally discretise Semi-discrete scheme 2, such that the dissipation property is

retained. We adopt the following notation for convenience. Hereafter we also call the discrete quantities

ÇHd

Ç(u(n+1), u(n))
,

ÇHd

Ç(D ju(n+1),D ju(n))
,

ÇHd

Ç(D j+1D ju(n+1),D j+1D ju(n))
,

corresponding to ÇH/Çu, ÇH/Çux and ÇH/Çux x , respectively, the discrete partial derivatives, provided
that they satisfy the following discrete chain rule:

1
∆t

∫ L

0

�
H(u(n+1),D ju

(n+1),D j+1D ju
(n+1))−H(u(n),D ju

(n),D j+1D ju
(n))
�

dx

=

�
ÇHd

Ç(u(n+1), u(n))
,
u(n+1) − u(n)

∆t

�
+

�
ÇHd

Ç(D ju(n+1),D ju(n))
,
D ju

(n+1) −D ju
(n)

∆t

�
+

�
ÇHd

Ç(D j+1D ju(n+1),D j+1D ju(n))
,
D j+1D ju

(n+1) −D j+1D ju
(n)

∆t

�
,

cf. Definition 6.1 for the standard case. Using these discrete partial derivatives, we define a dissipative
scheme as follows.

Scheme 2 (dissipative H1-Galerkin schemes for (6.12)). Suppose that u(0) is given in S1. We find
u(n+1) ∈ S1 and q(n+

1
2 ) ∈ S2 (n= 0, 1, . . . ) such that for any v1 ∈W1 and v2 ∈W2,�

u(n+1) − u(n)

∆t
, v1

�
= −

�
ÇHd

Ç(u(n+1), u(n))
, v1

�
−
�
P5

ÇHd

Ç(D3u(n+1),D3u(n))
, (v1)x

�
+
�
P5

ÇHd

Ç(D3u(n+1),D3u(n))
v1

�L

0
+
�
q(n+

1
2 ), (v1)x

�− �q(n+ 1
2 )v1

�L

0
,

�
q(n+

1
2 ), v2

�
= −

�
P6

ÇHd

Ç(D4D3u(n+1),D4D3u(n))
, (v2)x

�
+

��
P6

ÇHd

Ç(D4D3u(n+1),D4D3u(n))

�
v2

�L

0

.

The following theorem, which states that the scheme is dissipative, immediately follows from the
scheme construction.
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Theorem 6.2 (Scheme 2: dissipation property). Assume that the boundary conditions satisfy��
P6

ÇHd

Ç(D4D3u(n+1),D4D3u(n))

��
D3u(n+1) −D3u(n)

∆t

��L

0

= 0,��
P5

ÇHd

Ç(D3u(n+1),D3u(n))

��
u(n+1) − u(n)

∆t

��L

0

= 0,

�
q(n+

1
2 )

�
u(n+1) − u(n)

∆t

��L

0

= 0.

Also assume that S5 ⊆W3, S6 ⊆W4, S2 ⊆W3, (D3u(n+1)−D3u(n))/∆t ∈W5, (D4D3u(n+1)−D4D3u(n))/∆t ∈
W6, (D3u(n+1)−D3u(n))/∆t ∈W2 and (u(n+1)− u(n))/∆t ∈W1. Then the solution of Scheme 2 satisfies

1
∆t

∫ L

0

�
H(u(n+1),D3u(n+1),D4D3u(n+1))−H(u(n),D3u(n),D4D3u(n))

�
dx ≤ 0, n= 0, 1, 2, . . . .

Design of dissipative schemes: PHASE 2

In Phase 1 (Steps 1′-3), we designed a dissipative H1-Galerkin scheme. In the remaining steps, we
confirm the validity of the scheme by finding an underlying H1-weak form of Scheme 2.

Step 4
In this step, we express Semi-discrete scheme 2 in a more familiar form, eliminating the L2-projection

operators. No new concepts are introduced at this stage; the semi-discrete scheme is merely rewritten.
Hence, the following Semi-discrete scheme 2′ is mathematically equivalent to Semi-discrete scheme 2.
This step is implemented on the basis of the definition of the L2-projection operators. For instance,
introducing an intermediate function a1 ∈ S3, we rewrite the term ÇH/Ç(D3u) as ÇH/Ça1, as adding a
new equation (a1, v) = (ux , v) for any v ∈W3 (see Lemma 6.2).

Semi-discrete scheme 2′ (without L2-projection operators). Suppose that u(0, ·) is given in S1. We
find u(t, ·) ∈ S1, q ∈ S2, a1 ∈ S3, a2 ∈ S4, r1 ∈ S5, r2 ∈ S6 such that for any v1 ∈W1, v2 ∈W2, v3 ∈W3,
v4 ∈W4, v5 ∈W5, v6 ∈W6,

(ut , v1) = −
�
ÇH
Çu

, v1

�
− (r1, (v1)x) + [r1v1]

L
0 + (q, (v1)x)− [qv1]

L
0 ,

(q, v2) = −(r2, (v2)x) + [r2v2]
L
0 ,

(a1, v3) = (ux , v3),�
a2, v4

�
=
�
(a1)x , v4

�
,

(r1, v5) =
�
ÇH
Ça1

, v5

�
,

(r2, v6) =
�
ÇH
Ça2

, v6

�
.

Proposition 6.4 (Semi-discrete scheme 2′: dissipation property). Assume that the boundary conditions
satisfy

[r2(a1)t]
L
0 = 0, [r1ut]

L
0 = 0, [qut]

L
0 = 0.

Also assume that S5 ⊆ W3, S6 ⊆ W4, S2 ⊆ W3, (a1)t ∈ W5, (a2)t ∈ W6, (a1)t ∈ W2, ut ∈ W1 and
ux , (a1)x ∈ C1(R+; L2(0, L)). Then the solution of Semi-discrete scheme 2′ satisfies

d
dt

∫ L

0

H(u, a1, a2)dx ≤ 0.
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Proof. The proof is omitted since we have proved Proposition 6.3.

Step 5
In this step, all finite-dimensional function spaces Si ’s and Wi ’s are replaced by their corresponding

infinite-dimensional function spaces Sc
i ’s and W c

i ’s, which are subspaces of H1(0, L). This replacement,
which is valid for commonly used finite-dimensional subspaces, yields the following weak form.

Weak form 2. We find u(t, ·) ∈ Sc
1, q ∈ Sc

2, a1 ∈ Sc
3, a2 ∈ Sc

4, r1 ∈ Sc
5, r2 ∈ Sc

6 such that for any v1 ∈W c
1 ,

v2 ∈W c
2 , v3 ∈W c

3 , v4 ∈W c
4 , v5 ∈W c

5 , v6 ∈W c
6 ,

(ut , v1) = −
�
ÇH
Çu

, v1

�
− (r1, (v1)x) + [r1v1]

L
0 + (q, (v1)x)− [qv1]

L
0 ,

(q, v2) = −(r2, (v2)x) + [r2v2]
L
0 ,

(a1, v3) = (ux , v3),�
a2, v4

�
=
�
(a1)x , v4

�
,

(r1, v5) =
�
ÇH
Ça1

, v5

�
,

(r2, v6) =
�
ÇH
Ça2

, v6

�
.

Clearly, Weak form 2 is consistent in H1, and has the dissipation property.

Proposition 6.5 (Weak form 2: dissipation property). Assume that the boundary conditions satisfy

[r2(a1)t]
L
0 = 0, [r1ut]

L
0 = 0, [qut]

L
0 = 0.

Also assume that Sc
5 ⊆ W c

3 , Sc
6 ⊆ W c

4 , Sc
2 ⊆ W c

3 , (a1)t ∈ W c
5 , (a2)t ∈ W c

6 , (a1)t ∈ W c
2 , ut ∈ W c

1 and
ux , (a1)x ∈ C1(R+; L2(0, L)). Then the solution of Weak form 2 satisfies

d
dt

∫ L

0

H(u, a1, a2)dx ≤ 0.

Thus, we have found the desired underlying weak form, which is consistent in H1 and retains the
dissipation property. Clearly, this form and the five intermediate functions from which it is derived
are not easily determined from the original PDE (6.12). Simply by following the proposed approach,
we have automatically extracted the desired dissipative scheme and the underlying weak form, which
highlights the power of the new method.

Step 6
Finally, we must check the relationship between (6.12) and Weak form 2. In fact, Weak form 2 is

the natural weak formulation of the system of equations

ut = −ÇH
Çu
+ (r1)x − qx , q = (r2)x , a1 = ux ,

a2 = (a1)x , r1 =
ÇH
Ça1

, r2 =
ÇH
Ça2

,

which is equivalent to (6.12).



6.2. New framework for one-dimensional problems 99

6.2.3 Proposed method for Type 2 PDEs
We now apply the new method to the conservative equation:

ut = S δH
δu

, (6.18)

where S = S(u, ux , ux x , . . . ,Çx ,Ç2
x , . . . ) is skew-symmetric and polynomial with respect to u, ux , ux x , . . . ,

Çx ,Ç2
x , . . . . For simplicity, we assume that H = H(u, ux).

To clarify the essential idea of the proposed method, we restrict our attention to the conservative case
and assume periodic boundary conditions (see Remark 6.8). Moreover, we will describe the framework
with the toy problem S = (ux xÇx + Çxux x) + Ç3

x (which, as in the usual interpretation, operates on
a function f such that (gÇx + Çx g) f = g fx + Çx(g f )). This operator includes two typical forms of
complicated differential operators:

• S contains not only Çs
x but also functions of u, ux , . . . ,

• S is the summation of differential operators.

Current research frequently involves operators that are considerably more complex than these, such as
inverses of differential operators. We will demonstrate the treatment of such complex operators with a
concrete example in the next subsection.

Design of conservative schemes: PHASE 1

In this subsection, we apply the Phase 1 procedure (derivation of dissipative schemes) to (6.18).

Step 1′
Consider the following formulation. Since this formulation may not valid in H1 (depending on the

operator S), we call it the formal weak form.

Formal weak form 2. Suppose that u(0, ·) is given. We find u, p such that for any v1, v2,

(ut , v1) = (Sp, v1),

(p, v2) =
�
ÇH
Çu

, v2

�
+
�
ÇH
Çux

, (v2)x

�
.

If the operator S is skew-symmetric, the conservation property can be obtained by formal calcula-
tion:

d
dt

∫
T

H(u, ux)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
= (p, ut) = (Sp, p) = 0. (6.19)

Step 2′
In this step, the above formal weak form is spatially discretised such that the semi-discrete scheme is

consistent within an approximation space Xp of H1(T). This step is completely automatic and achieved
by replacing differential operators with DXp

; i.e., replacing S(ux x ,Çx ,Ç3
x)with Ssd = S(D2

Xp
u,DXp

,D3
Xp
).

Note that for the above-defined S(ux x ,Çx ,Ç3
x), S(D

2
Xp

u,DXp
,D3

Xp
) is skew-symmetric.

Semi-discrete scheme 3 (with L2-projection operators). Suppose that u(0, ·) is given in Xp. We find
u(t, ·) ∈ Xp and p ∈ Xp such that for any v1 ∈ Xp and v2 ∈ Xp,

(ut , v1) = (Ssdp, v1),

(p, v2) =
�
ÇH
Çu

, v2

�
+
�
ÇH
Çux

, (v2)x

�
where H = H(u, ux).
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Note that replacing the operator S with Ssd renders the scheme consistent in H1 space.

Proposition 6.6 (Semi-discrete scheme 3: conservation property). The solution of Semi-discrete scheme 3
satisfies

d
dt

∫
T

H(u, ux)dx = 0.

Proof. Since Ssd is valid in H1 space, the calculation (6.19) becomes mathematically rigorous rather
than merely formal.

Step 3
In this step, we temporally discretise the obtained semi-discrete scheme. Since this step merely

discretise the gradients by the discrete gradient method, we omit the details and show only the result.

Scheme 3 (Conservative H1-Galerkin schemes for (6.18)). Suppose that u(0) is given in Xp. We find

u(n+1) ∈ Xp and q(n+
1
2 ) ∈ Xp (n= 0, 1, . . . ) such that for any v1 ∈ Xp and v2 ∈ Xp,�

u(n+1) − u(n)

∆t
, v1

�
=
�
Sdp(n+

1
2 ), v1

�
,

�
p(n+

1
2 ), v2

�
=
�

ÇHd

Ç(u(n+1), u(n))
, v2

�
+

�
ÇHd

Ç(u(n+1)
x , u(n)x )

, (v2)x

�
,

where Sd = S(D2
Xp

u(n+
1
2 ),DXp

,D3
Xp
) and u(n+

1
2 ) = (u(n+1) + u(n))/2.

Theorem 6.3 (Scheme 3: conservation property). The solution of Scheme 3 satisfies

1
∆t

∫
T

�
H(u(n+1), u(n+1)

x )−H(u(n), u(n)x )
�

dx = 0, n= 0, 1, 2, . . . .

Design of conservative schemes: PHASE 2

Step 4
Recall that Ssdp = S(D2

Xp
u,DXp

,D3
Xp
)p = (D2

Xp
u)(DXp

p) +DXp
((D2

Xp
u)p) +D3

Xp
p. Introducing new

variables

u1 :=DXp
u, u2 :=DXp

u1,

p1 :=DXp
p, p2 :=DXp

p1, p3 :=DXp
p2,

q :=DXp
(u2p),

we can rewrite Semi-discrete scheme 3 in a more familiar form as follows.

Semi-discrete scheme 3′ (without L2-projection operators). Suppose that u(0, ·) is given in Xp. We
find u(t, ·),u1,u2,p,p1,p2,p3,q ∈ Xp such that for any v1,v2,v3,v4,v5,v6,v7,v8 ∈ Xp,

(ut , v1) = (u2p1 + q+ p3, v1),

(p, v2) =
�
ÇH
Çu

, v2

�
+
�
ÇH
Çux

, (v2)x

�
,

(u1, v3) = (ux , v3), (u2, v4) = ((u1)x , v4),

(p1, v5) = (px , v5), (p2, v6) = ((p1)x , v6), (p3, v7) = ((p2)x , v7),

(q, v8) = ((u2p)x , v8).
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Steps 5 and 6
A conservative H1-weak form is easily obtained by converting Xp in 3′ into H1(T), and confirming

its conformity to the original equation (6.18). The calculations are straightforward but tedious, and are
hence omitted. As commented at the end of Section 6.2.2, we emphasize that the weak form and its
seven intermediate functions are not at all obvious from the original PDE.

Remark 6.7. In illustrating the proposed method, we defined Ssd = S(D2
Xp

u,DXp
,D3

Xp
). Other defi-

nitions such as S(D2
Xp

u,Çx ,D3
Xp
) can be adopted, provided that they are consistent with H1 and are

skew-symmetric.

Remark 6.8. For PDEs containing higher-order derivatives in H and complicated S, the desired Galerkin
schemes can be derived by combining the proposed methods developed for Types 1 and 2. Similarly,
general boundary conditions can be treated as discussed in the procedure for the Type 1 PDEs.

6.2.4 Applications of the proposed method
This subsection is devoted to the applications of the proposed method. Firstly, we treat the Swift–
Hohenberg equation, a dissipative equation of Type 1, and discusses its boundary conditions. Next, we
consider the Kawahara equation, a conservative equation of Type 1, discuss the implementation issues,
and present the result of numerical experiments. Finally, we focus on the Camassa–Holm equation, a
conservative PDE of Type 2.

Type 1: The Swift–Hohenberg equation

The Swift–Hohenberg equation is a form of (6.12) with H(u, ux , ux x) = −u2+u4/4−u2
x +u2

x x/2, which
usually assumes the following boundary conditions

ux = ux x x = 0 at x = 0, L, (6.20)

or

ut = ux x = 0 at x = 0, L. (6.21)

In either case, the classical solution is easily shown to be energy-dissipative. Applying the procedure
developed in Section 6.2.2, we automatically obtain the formal weak form, semi-discrete scheme and
fully discrete scheme. Here we demonstrate the selection of the function spaces (based on standard
finite element theory, as mentioned in Remark 6.4). Let Sh ⊂ H1(0, L) be a piecewise linear function
space over the grids. Let Sh,0 = {v | v ∈ Sh, v(0) = v(L) = 0} and Sh,g = {v | v ∈ Sh, v(0) = v(L) = g},
where g is a constant. Obviously, Sh,0 corresponds to H1

0 = {v | v ∈ H1, v(0) = v(L) = 0} and Sh,g
corresponds to H1

g = {v | v ∈ H1, v(0) = v(L) = g}. For boundary conditions (6.20), natural choices
are S1 = W1 = S4 = W4 = S6 = W6 = Sh,0 and S2 = W2 = S3 = W3 = S5 = W5 = Sh. Correspondingly,
Sc

1 = W c
1 = Sc

4 = W c
4 = Sc

6 = W c
6 = H1

0 and Sc
2 = W c

2 = Sc
3 = W c

3 = Sc
5 = W c

5 = H1. For boundary
conditions (6.21), natural choices are S2 = W2 = S3 = W3 = S6 = W6 = Sh,0, S1 = W1 = Sh,g and
S4 = W4 = S5 = W5 = Sh, with corresponding spaces Sc

2 = W c
2 = Sc

3 = W c
3 = Sc

6 = W c
6 = H1

0 , Sc
1 =

W c
1 = H1

g and Sc
4 = W c

4 = Sc
5 = W c

5 = H1. These relationships are consistent with the assumptions of
Proposition 6.3 and Proposition 6.5.

Type 1: The Kawahara equation

Consider a PDE of the form

ut = Çx
δH
δu

, H = H(u, ux , ux x).
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In applying the proposed method to this form of PDE, we adopt the Kawahara equation (5.15), assuming
the periodic boundary conditions for simplicity. We set S1 = S2 = · · · = W1 = W2 = · · · =: Xp ⊂ H1(T)
(where T denotes a torus of length L). To conserve space, we omit all steps (Steps 1-6), and present
only the formal weak form, the resulting Galerkin scheme, and its underlying weak form.

First, we define a formal weak form. Introducing an intermediate function p, the equation is con-
verted to the system

ut = (p1)x , p1 =
δH
δu

.

Let us consider the following formulation, obtained by integrating-by-part up to once each term. We
find u, p1 such that for any v1, v2,

(ut , v1) = ((p1)x , v1),

(p1, v2) =
�
ÇH
Çu

, v2

�
+
�
ÇH
Çux

, (v2)x

�
−
�
Çx

ÇH
Çux x

, (v2)x

�
.

To derive the formal weak form, we follow the procedure of Section 6.2.2. We find u, p and q such that
for any v1, v2 and v3,

(ut , v1) = ((p1)x , v1),

(p1, v2) =
�
ÇH
Çu

, v2

�
+
�
ÇH
Çux

, (v2)x

�
− (q, (v2)x),

(q, v3) = −
�

ÇH
Çux x

, (v3)x

�
.

Note that the new intermediate function q is introduced by rule (R1′ a). The conservation property can
be obtained by formal calculation:

d
dt

∫
T

H(u, ux , ux x)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
+
�

ÇH
Çux x

, ux x t

�
=
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
− (q, ux t)

=(p1, ut) = ((p1)x , p1) = 0.

We next derive a semi-discrete scheme using the L2-projection operators. Suppose that u(0, ·) is
given in Xp. We find u(t, ·), p1, q ∈ Xp such that for any v1, v2, v3 ∈ Xp,

(ut , v1) = ((p1)x , v1),

(p1, v2) =
�
ÇH
Çu

, v2

�
+

�
PXp

ÇH
Ç(DXp

u)
, (v2)x

�
− (q, (v2)x),

(q, v3) = −
 
PXp

ÇH
Ç(D2

Xp
u)

, (v3)x

!
,

where

ÇH
Çu
= −u2

3
,

ÇH
Ç(DXp

u)
= αDXp

u,
ÇH

Ç(D2
Xp

u)
= βD2

Xp
u.

Here following rule (R2′ b), ux and ux x in the partial derivatives are replaced by DXp
u and D2

Xp
u, and

PXp
’s are placed in front of the partial derivatives by (R2′ c). (R2′ a) is implicitly obeyed. We do not
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discuss the function spaces since they are Xp on account of the periodic boundary conditions. This
scheme is consistent in Xp ⊂ H1(T) and has the following rigorous conservation property:

d
dt

∫
T

H(u,DXp
u,D2

Xp
u)dx = 0.

Third, we temporally discretise the above semi-discrete scheme to obtain the following fully discrete

scheme. Suppose that u(0) is given in Xp. We find u(n+1), p
(n+ 1

2 )
1 , q(n+

1
2 ) ∈ Xp (n= 0, 1, . . . ) such that for

any v1, v2, v3 ∈ Xp,�
u(n+1) − u(n)

∆t
, v1

�
=
�
(p
(n+ 1

2 )
1 )x , v1

�
, (6.22)�

p
(n+ 1

2 )
1 , v2

�
=
�

ÇHd

Ç(u(n+1), u(n))
, v2

�
+

�
PXp

ÇHd

Ç(DXp
u(n+1),DXp

u(n))
, (v2)x

�
− �q(n+ 1

2 ), (v2)x
�
,(6.23)

�
q(n+

1
2 ), v3

�
= −

 
PXp

ÇHd

Ç(D2
Xp

u(n+1),D2
Xp

u(n))
, (v3)x

!
, (6.24)

where

ÇHd

Ç(u(n+1), u(n))
= −(u(n+1))2 + u(n+1)u(n) + (u(n))2

6
,

ÇHd

Ç(DXp
u(n+1),DXp

u(n))
= α

 
DXp

u(n+1) +DXp
u(n)

2

!
,

ÇHd

Ç(D2
Xp

u(n+1),D2
Xp

u(n))
= β

 
D2

Xp
u(n+1) +D2

Xp
u(n)

2

!
.

These discrete partial derivatives are the discretised form of ÇH/Çu = −u2/2, ÇH/Çux = αux and
ÇH/Çux x = βux x (recall that H(u, ux , ux x) = −u3/6+ αu2

x/2+ βu2
x x/2) and satisfy the discrete chain

rule.

Theorem 6.4. The solution of schemes (6.22), (6.23), (6.24) satisfies

1
∆t

∫
T

�
H(u(n+1),DXp

u(n+1),D2
Xp

u(n+1))−H(u(n),DXp
u(n),D2

Xp
u(n))

�
dx = 0, n= 0, 1, 2, . . . .

Finally, following the procedure of Phase 2, we obtain the underlying H1-weak form; that is, we find
u(t, ·), p1, q, a1, a2 ∈ H1(T) such that for any v1, v2, v3, v4, v5 ∈ H1(T),

(ut , v1) = ((p1)x , v1),

(p1, v2) =

�
−u2

2
, v2

�
+α(a1, (v2)x)− (q, (v2)x),

(q, v3) = −β((a2, (v3)x),�
a1, v4

�
=
�
ux , v4

�
,

(a2, v5) = ((a1)x , v5).

We now focus on numerical experiments. The implementation of schemes (6.22), (6.23), (6.24) is
straightforward. Denoting the basis functions of Xp by ψi(x) (i = 0, 1, . . . , N − 1), the concrete form of
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the scheme is written as

A
�

u(n+1) − u(n)

∆t

�
= Bp

(n+ 1
2 )

1 , (6.25)

Ap
(n+ 1

2 )
1 = f

�
u(n+1), u(n),q

(n+ 1
2 )

1

�
, (6.26)

Aq
(n+ 1

2 )
1 = g

�
u(n+1), u(n)

�
, (6.27)

where u(n) := (u(n)0 , u(n)1 , . . . , u(n)N−1) are the coefficient vectors of u(n)(x) =
∑N−1

i=0 u(n)i ψi(x) (identical

notation is used for p
(n+ 1

2 )
1 (x) and q

(n+ 1
2 )

1 (x)), and f and g are the vectors derived from the right-hand
side of (6.23) and (6.24), respectively ( f is nonlinear and g is linear in u(n+1)). Matrix A is the mass
matrix whose elements are Ai j =

�
ψi ,ψ j

�
, while the elements of B are Bi j =

�
(ψi)x ,ψ j

�
. Since matrix

A is invertible, (6.25), (6.26), and (6.27) immediately reduce to

A
�

u(n+1) − u(n)

∆t

�
= BA−1 f

�
u(n+1), u(n),A−1g

�
(u)(n+1), u(n)

��
.

Thus, we need not compute the intermediate variables p
(n+ 1

2 )
1 and q

(n+ 1
2 )

1 , and the dimension of the
nonlinear systems to be solved is reduced from 3N to N .

The operator DXp
is implemented as follows. Denoting DXp

u(n) =
∑N−1

i=0 d(n)i ψi(x), the coefficient

d(n) = (d(n)0 , d(n)1 , . . . , d(n)N−1)
⊤ is calculated by

Ad(n) = Bu(n),

which is equivalent to
�
DX u(n),ψi

�
= (ux ,ψi) (i = 0, 1, . . . , N − 1).

Next we check the qualitative behaviour and discrete conservation law of the numerical solution.
For simplicity, we adopt a uniform mesh and P1 elements. The parameters were set to α = β = 1,
t = [0, 400], x ∈ [0, 50], ∆x = 50/101 (N = 101), ∆t = 0.1. Given that the Kawahara equation has a
solitary wave solution [196]

u(t, x) =
105α2

169β
sech4

�
1
2

√√ α

13β

�
x − x0 − 36α2

169β
t

��
, x ∈ R,

we set the initial value to u(0, x) = (105/169) sech4((1/2)
p

1/13(x − 25)). Figure 6.2 plots the nu-
merical solution obtained by schemes (6.22), (6.23) and (6.24). Over an extended time, the scheme
accurately captures the solitary solutions and the maximum value of the error in the discretised energy
is 5.82× 10−16 which favourably agrees with the discrete conservation law (Theorem 6.4).

Finally, we investigate the scheme from an alternative viewpoint. The following is one of the simplest
H1-weak formulations of the Kawahara equation (5.15). We find u(t, ·), p, q ∈ H1(T) such that for any
v1, v2, v3 ∈ H1(T),

(ut , v1) =

�
u2

2
, (v1)x

�
+α(p, (v1)x)− β(q, (v1)x),

(p, v2) = −(ux , (v2)x),

(q, v3) = −(px , (v3)x).

We consider a standard spatial discretisation of the above naive weak form (which is not conservative),
and the conservative semi-discrete scheme derived by the proposed method, and time-discretise them
by the fourth-order explicit Runge–Kutta method. Although the temporal discretisation destroys con-
servation in both formulations, the results are truly different. The time stepsize was set to∆t = 0.0025
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Figure 6.2: Numerical solution to the Kawahara equation solved by schemes (6.22), (6.23) and (6.24).

(other parameters were set to those of the above experiment). From Figure 6.3, we observe that nu-
merical solution based on the conservative weak form was stable in t ∈ [0, 10], while that based on the
naive weak form was amplified uncontrollably within the first four steps. This example validates the
conservative weak form itself, obtained as a byproduct of the proposed method.
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Figure 6.3: Numerical solutions to the Kawahara equation obtained by the fourth-order explicit Runge–
Kutta method, based on (left) conservative weak form and (right) naive weak form.

Type 2: The Camassa–Holm equation

In this example, we derive conservative schemes for the Camassa–Holm equation (5.16), a conservative
PDE of Type 2. Although one of the schemes has been previously published in [151], we here provide
additional discussions, with special focus on the weak formulation.

We begin by emphasising the difficulty of finding a conservative H1-weak form for the Camassa–
Holm equation (5.16). As is well known, the Camassa–Holm equation has a characteristic peakon
(peaked soliton) solution: u(t, x) = c exp(−|x − ct|) which exists in H1 but not in C1. One H1-weak
formulation has been established in [58] (see also [59]):

ut +
1
2

�
u2 +K

�
u2 +

u2
x

2

��
x
= 0, where K = (1− Ç2

x)
−1.
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This formulation is inconvenient in our study since it seems to prohibit the direct establishment of a
conservation law. On the other hand, Matsuo [136] proposed the following weak form: Find m(t, ·), p ∈
H1(T) such that for any v1, v2 ∈ H1(T),

(mt , v1) = ((mÇx + Çx m)p, v1),

(p, v2) =
�

ÇH
Ç(Km)

,Kv2

�
+
�

ÇH
Ç(Kmx)

,K(v2)x

�
,

from which the conservation law is directly obtained. One drawback of this formulation is that it cap-
tures only H3 (when m ∈ H1) or smoother solutions in terms of the original variable u. Note that when
u is a peakon solution, m becomes a delta function.

The Camassa–Holm equation has the Hamiltonian structure

mt = (mÇx + Çx m)
δH
δm

,

where

H = −u2 + u2
x

2
, and m= (1− Ç2

x)u,

or equivalently

ut = (1− Ç2
x)
−1(mÇx + Çx m)(1− Ç2

x)
−1δH

δu
. (6.28)

Introducing an intermediate variable p, we can transform (6.28) into the system

(1− Ç2
x)ut = (mÇx + Çx m)p,

(1− Ç2
x)p =

δH
δu

. (6.29)

First, we consider the following formal weak form: Find u, p such that for any v1, v2,�
(1− Ç2

x)ut , v1

�
= ((mÇx + Çx m)p, v1), (6.30)�

(1− Ç2
x)p, v2

�
=
�
ÇH
Çu

, v2

�
+
�
ÇH
Çux

, (v2)x

�
. (6.31)

The conservation law is explicitly obtained by formal calculation:

d
dt

∫
T

H(u, ux)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çux

, ux t

�
=
�
(1− Ç2

x)p, ut

�
=
�
p, (1− Ç2

x)ut

�
= ((mÇx + Çx m)p, p) = 0.

The first equality is an application of the chain rule. The second equality follows from (6.31) with
v2 = ut , the third from the symmetry of (1 − Ç2

x), and the fourth from (6.30) with v1 = p. The last
derives from the skew-symmetry of (mÇx + Çx m).

Remark 6.9. The transformation from (6.28) to (6.29) is automatic in the following sense. In perform-
ing the transformation, we note that

• skew-symmetric operators should be retained (in this case, (mÇx + Çx m));

• variational derivatives (such as the second equation of (6.29)) require separate treatment.
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Then we can easily find a formally conservative system. Such a system is usually nonunique; for in-
stance, another formally conservative system for the Camassa–Holm equation is

ut = (1− Ç2
x)
−1(mÇx + Çx m)(1− Ç2

x)
−1p,

p =
δH
δu

.

The subsequent procedure is applicable to all of these systems.

Second, we derive a semi-discrete scheme from the L2-projection operators. Suppose that u(0, ·) ∈
Xp is given. We find u(t, ·), p(t, ·) ∈ Xp such that for any v1, v2 ∈ Xp,�

(1− (DXp
)2)ut , v1

�
= ((mÇx + Çx m)p, v1),�

(1− (DXp
)2)p, v2

�
=
�
ÇH
Çu

, v2

�
+
�
ÇH
Çux

, (v2)x

�
,

where m = (1− (DXp
)2)u. This semi-discrete scheme is consistent in Xp ⊂ H1(T), and has the rigorous

conservation property

d
dt

∫
T

H(u, ux)dx = 0.

Remark 6.10. If the rules of the proposed method are strictly obeyed, (mÇx +Çx m) should be replaced
with (mDXp

+DXp
m). However, as mentioned in Remark 6.7, we can omit the replacement of Çx because

in this case the operator (mÇx+Çx m)with m= (1−D2
Xp
)u is valid in H1. The above semi-discrete scheme

is identical to that proposed in our recent report [151].

Third, we time-discretise the above semi-discrete scheme to obtain the following fully discrete
scheme. Suppose that u(0) ∈ Xp is given. We find u(n+1), p(n+

1
2 ) ∈ Xp (n = 0, 1, . . . ) such that for

any v1, v2 ∈ Xp,��
1− (DXp

)2
�u(n+1) − u(n)

∆t
, v1

�
=
�
(m(n+

1
2 )Çx + Çx m(n+

1
2 ))p(n+

1
2 ), v1

�
, (6.32)

��
1− (DXp

)2
�
p(n+

1
2 ), v2

�
=
�

ÇHd

Ç(u(n+1), u(n))
, v2

�
+

�
ÇHd

Ç(u(n+1)
x , u(n)x )

, (v2)x

�
, (6.33)

where m(n+
1
2 ) = (1− (DXp

)2)(u(n+1) + u(n))/2,

ÇHd

Ç(u(n+1), u(n))
= −u(n+1) + u(n)

2
,

ÇHd

Ç(u(n+1)
x , u(n)x )

= −u(n+1)
x + u(n)x

2
.

Theorem 6.5. The solution of schemes (6.32), (6.33) satisfies

1
∆t

∫
T

�
H(u(n+1), u(n+1)

x )−H(u(n), u(n)x )
�

dx = 0, n= 0, 1, 2, . . . .

Finally, following the procedure of Phase 2, we obtain the underlying H1-weak form. We find
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u, m, p, q1, q2, q3 ∈ H1(T) such that for any v1, . . . , v6 ∈ H1(T),

(mt , v1) = ((mÇx + Çx m)p, v1),

(m, v2) = (u, v2) + (q1, (v2)x),

(q1, v3) = (ux , v3),

(q2, v4) =
�
ÇH
Çu

, v4

�
+
�
ÇH
Çux

, (v4)x

�
,

(q2, v5) = (p, v5) + (q3, (v5)x),

(q3, v6) = (px , v6).

The solution of this weak form is conservative as follows:

d
dt

∫
T

H(u, ux)dx = 0.

6.3 Extension to multidimensional problems

In this section, the proposed method is extended to multidimensional cases. The extension is illustrated
by example. Consider a dissipative equation of the form

Çu
Çt
= (−1)s+1△s δH

δu
, H = H(u,∇u,△u), (6.34)

where the variational derivative in two or three dimensions is defined by

δH
δu

:=
ÇH
Çu
−∇ · ÇH

Ç∇u
+△ ÇH

Ç△u
.

We first introduce the notation of the L2-projection operators in higher-dimensions, and demonstrate
their properties. Next we derive dissipative schemes for (6.34) with s = 0. As an example, we adopt
the two-dimensional Swift–Hohenberg (2D-SH) equation

ut = −u3 + 2u− 2∇u−△2u,

on the torus T2, whose energy functional is H(u,∇u,△u) = u4/4− u2 − |∇u|2 + (△u)2/2. To conserve
space, we show only a formal weak form and the resulting scheme, but the underlying weak form can
be also derived by the procedure of Phase 2.

6.3.1 L2-projection operators in multidimensional cases

We define L2-projection operators PX : L2→ X ⊆ H1(Ω) ⊂ L2(Ω) satisfying

(PX u, v) = (u, v)

for any v ∈ X , and PX : L2(Ω)→ X ⊆ H1(Ω) ⊂ L2(Ω) satisfying

(PX u, v) = (u, v)

for any v ∈ X . We also denote PX∇u and PX∇ · u by DXu and DX u. That is, DX := PX∇ : H1(Ω)→ X
and DX := PX∇· : H1(Ω)→ X . The following formulas for these operators are analogous to Lemma 6.1
and 6.1, and are straightforward.
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Lemma 6.3. For any u ∈ H1(Ω) and v ∈ X , the following holds

(DXu, v) = (∇u, v),

and for any u ∈ H1(Ω) and v ∈ X , the following holds

(DX u, v) = (∇ · u, v).

Corollary 6.2. For any u ∈ X and v ∈ X such that
∫
Γ

u(n · v)dΓ = 0, we have

(DXu, v) = −(u,DX v). (6.35)

For any u ∈ X and v ∈ X such that
∫
Γ
(n ·DXu)v dΓ =

∫
Γ

u(n ·DX v)dΓ = 0, we have

(DXDXu, v) = (u,DXDX v). (6.36)

For any u ∈ X and v ∈ X such that
∫
Γ
(DX u)(n · v)dΓ = ∫

Γ
(n · u)(DX v)dΓ = 0, we have

(DXDXu, v) = (u,DXDX v). (6.37)

Proof. Eq. (6.35) directly follows from the Green theorem (6.1). Eqs. (6.36) and (6.37) immediately
follow from (6.35).

We can also define operators corresponding to PX (Y ) and DX (Y ), but these are omitted here.

6.3.2 Application to the 2D-SH equation

We now derive a dissipative scheme for the 2D-SH equation, assuming the periodic boundary condi-
tions for simplicity. We first show a formal weak form and its fully discrete scheme, and then plot the
numerical results.

We begin with the following formal weak form. We find u and q , such that for any v1 and v2,

(ut , v1) = −
�
ÇH
Çu

, v1

�
−
�

ÇH
Ç∇u

,∇v1

�
+ (q ,∇v1),

(q , v2) = −
�

ÇH
Ç△u

,∇ · v2

�
.

Since this formal weak form is completely analogous to Formal weak form 1, the subsequent procedures
are straightforward, and we simply state the fully discrete scheme. Suppose that u(0) is given in Xp. We

find u(n+1) ∈ Xp and q (n+
1
2 ) ∈ Xp (n= 0, 1, . . . ) such that for any v1 ∈ Xp and v2 ∈ Xp,�

u(n+1) − u(n)

∆t
, v1

�
= −

�
ÇHd

Ç(u(n+1), u(n))
, v1

�
−
�
PXp

ÇHd

Ç(DXp
u(n+1),DXp

u(n))
,∇v1

�
+
�
q (n+

1
2 ),∇v1

�
, (6.38)

�
q (n+

1
2 ), v2

�
= −

�
PXp

ÇHd

Ç(DXp
DXp

u(n+1),DXp
DXp

u(n))
,∇ · v2

�
, (6.39)
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where

ÇHd

Ç(u(n+1), u(n))
=
((u(n+1))2 + (u(n))2)(u(n+1) + u(n))

4
− (u(n+1) + u(n)),

ÇHd

Ç(DXp
u(n+1),DXp

u(n))
= −(DXp

u(n+1) +DXp
u(n)),

ÇHd

Ç(DXp
DXp

u(n+1),DXp
DXp

u(n))
=

DXp
DXp

u(n+1) +DXp
DXp

u(n)

2
,

which correspond to ÇH/Çu= u3 − 2u, ÇH/Ç∇u= −2∇u, and ÇH/Ç△u=△u.

Theorem 6.6. The solution of schemes (6.38) and (6.39) satisfies

1
∆t

∫
Ω

�
H(u(n+1),DXp

u(n+1),DXp
DXp

u(n+1))

−H(u(n),DXp
u(n),DXp

DXp
u(n))

�
dx ≤ 0, n= 0, 1, 2, . . . .

6.4 Extension to local discontinuous Galerkin framework

We established the general Galerkin framework of energy-preserving/dissipative methods in the pre-
vious sections. The framework was constructed by assuming P1 elements. Therefore, the implemen-
tation is easy, while the accuracy is limited. The aim of this section is to construct a spatially high-
order Galerkin method which is still easy to implement. For this aim, we further extend the energy-
preserving/dissipative method to the local discontinuous Galerkin framework.

The discontinuous Galerkin (DG) method is a variant of finite element method that uses discontin-
uous piecewise polynomial spaces for test and trial functions. It can be regarded as something between
finite element and finite volume methods, and thanks to the discontinuity of functions, it has favourable
features that it is easy to increase the order of accuracy, and also that the resulting schemes are highly
parallelisable when schemes are explicit. The DG method was first introduced by Reed–Hill for solving
hyperbolic equations [169]. It was then extended by Bassi–Rebay [8] for an elliptic problem so that
higher-order derivatives can be also handled. Encouraged by this success, Cockburn–Shu [52] devel-
oped a generalisation called local discontinuous Galerkin (LDG) method. The basic idea of the LDG
method is to rewrite a higher-order differential equation into a system of first-order equations by em-
ploying intermediate variables. History and further information of the DG method can be found in Cock-
burn et al. [51]. The DG method has various examples. Below we list limited examples. Yan–Shu [212]
applied LDG method to the KdV equation. DG method has been also applied to other nonlinear wave
equations such as the Camassa–Holm equation [205] and nonlinear Schrödinger equation [204]. Xia–
Xu–Shu applied the LDG method to the Cahn–Hilliard equation [202]. DG methods have been also
combined with structure-preserving methods. Xing–Chou–Shu [203] proposed an energy-preserving
LDG scheme for linear wave equations and gave an error estimate. Bona–Chen–Karakashian–Xing [15]
derived a quadratic invariant preserving DG scheme for the generalised KdV equation. A similar study
has been made by Yi–Huang–Liu [214] where a variant of DG method, called direct DG method, is
employed.

In this section, we show that we can automatically construct energy-preserving/dissipative LDG
schemes for wide variety of variational PDEs. To clarify our idea, we only consider conservative PDEs
of the form

ut = Çx
δH
δu

, H = H(u, ux), (6.40)
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and dissipative PDEs of the form

ut = Ç2
x
δH
δu

, H = H(u, ux). (6.41)

We further make an assumption that H(u, ux) is separable: H(u, ux) = H1(u)+H2(ux) for some functions
H1 and H2, and H2 is a quadratic function. This greatly simplifies the discussion, and still covers many
PDEs. Below we show weak forms of the above PDEs. The weak forms, derived by the technique
established in the previous sections, are based on systems of first order equations.

Weak form 3 (Energy-preserving weak form of (6.40)). Find u(t, ·), p, q ∈ H1(0, L) such that, for any
v1, v2, v3 ∈ H1(0, L),

(ut , v1) = (px , v1), (6.42)

(p, v2) =
�
ÇH
Çu

, v2

�
−
�
Çx

ÇH
Çq

, v2

�
, (6.43)

(q, v3) = (ux , v3). (6.44)

We usually restrict function spaces to appropriate subspaces of H1(0, L) corresponding to bound-
ary conditions. Nevertheless to make the discussion in the next subsection clear and avoid confusing
notation, we leave this issue to later consideration, and simply assume the existence of the solution.

Theorem 6.7 (Energy-preservation of Weak form 3). Assume that ut ∈ H1(0, L), and the boundary
conditions satisfy �

ÇH
Çq

ut

�L

0
= 0, [p2]L0 = 0.

Then the solution of Weak form 3 satisfies

d
dt

∫ L

0

H(u, q)dx = 0.

Proof.

d
dt

∫ L

0

H(u, q)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çq

, qt

�
=
�
ÇH
Çu

, ut

�
+
�
ÇH
Çq

, ux t

�
=
�
ÇH
Çu

, ut

�
−
�
Çx

ÇH
Çq

, ut

�
+
�
ÇH
Çq

ut

�L

0
= (p, ut) = (p, px) =

1
2
[p2]L0 = 0.

The first equality is a simple application of the chain rule. Temporally differentiating (6.44) and sub-
stituting v3 = ÇH/Çq, we obtain the second equality. This procedure is allowed by the assumption that
ÇH/Çq∝ q belongs to the same space as q. The third equality is obtained by integration-by-parts. The
fourth and fifth equalities follow from (6.43) with v2 = ut and (6.42) with v1 = p, respectively. In the
calculation, the boundary terms are eliminated due to the boundary conditions.

Remark 6.11. It is also possible to consider more general PDEs. For example, if we drop the restriction
on H(u, ux) (i.e., H(u, ux) is not necessarily separable and quadratic with respect to ux), we find the
following weak form: Find u(t, ·), p, q, w ∈ H1(0, L) such that, for any v1, v2, v3, v4 ∈ H1(0, L),

(ut , v1) = (px , v1),

(p, v2) =
�
ÇH
Çu

, v2

�
− (wx , v2),

(w, v3) =
�
ÇH
Çq

, v3

�
,�

q, v4

�
=
�
ux , v4

�
.
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Then we can carry out the same procedure below, but the discussion would become slightly cumbersome
due to the additional intermediate variable w. Note that the above weak form reduces to Weak form 3
when H(u, ux) is separable: H(u, ux) = H1(u) +H2(ux), and H2 is a quadratic function.

Remark 6.12. A key device for obtaining intended weak forms is to use the framework of the previous
sections so that the partial derivative Çx does not operate on the test functions. For example, for the
equation (6.40), we start with the following formal weak form

(ut , v1) = (px , v1),

(p, v2) =
�
ÇH
Çu

, v2

�
−
�
Çx

ÇH
Çux

, v2

�
.

By defining appropriate L2-projection operators PX and DX , we obtain the semi-discrete scheme

(ut , v1) = (px , v1),

(p, v2) =
�
ÇH
Çu

, v2

�
−
�
Çx

�
PX

ÇH
Ç(DX u)

�
, v2

�
.

Finally, by following the procedures of Phase 2 (i.e., eliminating the projection operators), we have the
above weak formulation.

Weak form 4 (Energy-dissipative weak form of (6.41)). Find u(t, ·), p, q, r ∈ H1(0, L) such that, for any
v1, v2, v3, v4 ∈ H1(0, L),

(ut , v1) = (rx , v1), (6.45)

(r, v2) = (px , v2), (6.46)

(p, v3) =
�
ÇH
Çu

, v3

�
−
�
Çx

ÇH
Çq

, v3

�
, (6.47)�

q, v4

�
=
�
ux , v4

�
. (6.48)

Theorem 6.8 (Energy-dissipation of Weak form 4). Assume that ut ∈ H1(0, L), and the boundary con-
ditions satisfy �

ÇH
Çq

ut

�L

0
= 0, [rp]L0 = 0.

Then the solution of Weak form 4 satisfies

d
dt

∫ L

0

H(u, q)dx ≤ 0.

Proof.

d
dt

∫ L

0

H(u, q)dx =
�
ÇH
Çu

, ut

�
+
�
ÇH
Çq

, qt

�
=
�
ÇH
Çu

, ut

�
+
�
ÇH
Çq

, ux t

�
=
�
ÇH
Çu

, ut

�
−
�
Çx

ÇH
Çq

, ut

�
+
�
ÇH
Çq

ut

�L

0
= (p, ut) = (rx , p)

= −(r, px) + [rp]L0 = −(r, r) = −∥r∥2L2(0,L) ≤ 0.

The second equality is obtained by (6.48) with v4 = ÇH/Çq. The fourth, fifth and seventh equalities
follow from (6.47) with v3 = ut , (6.45) with v1 = p and (6.46) with v2 = r, respectively.
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6.4.1 Energy-preserving/dissipative LDG method

We here propose a new method to derive energy-preserving/dissipative LDG schemes.
We divide the computational domain [0, L] into N intervals

0= x1/2 < · · ·< x j−1/2 < x j+1/2 < · · ·< xN+1/2 = L.

We denote the computational cell by I j = (x j−1/2, x j+1/2) for j = 1, . . . , N . We denote by u+j+1/2 and

u−j+1/2 the values of u at x j+1/2, from the right cell I j+1 and from the left cell I j (see Figure 6.4). This
rule applies also to other variables and functions. We define the piecewise polynomial space Vh as the
space of polynomials of degree up to k in each cell I j , i.e.,

Vh = {v : v|I j
∈ Pk(I j), j = 1, . . . , N}.

x j−1/2 x j+1/2 x j+3/2

u−j+1/2
û j+1/2

u+j+1/2

Figure 6.4: Notation in LDG methods.

Conservative cases

Here, we shall derive an energy-preserving LDG scheme. We first show a semi-discrete scheme and
then summarise the essential idea of our method. Finally, we derive a fully discrete scheme. We start
the derivation with the following abstract form of a semi-discrete LDG scheme, which is obtained from
Weak form Weak form 3.

Semi-discrete scheme 4. Find u(t, ·), p, q ∈ Vh such that, for any v1, v2, v3 ∈ Vh and for j = 1, . . . , N ,

(ut , v1)I j
= −(p, (v1)x)I j

+ [p̂v1]I j
, (6.49)

(p, v2)I j
=
�
ÇH
Çu

, v2

�
I j

+
�
ÇH
Çq

, (v2)x

�
I j

−
�dÇH
Çq

v2

�
I j

, (6.50)

(q, v3)I j
= −(u, (v3)x)I j

+ [ûv3]I j
, (6.51)

where [ f̂ w]I j
= f̂ j+1/2w j+1/2 − f̂ j−1/2w j−1/2.

The “hat” terms, called numerical fluxes, result from integration-by-parts in each cell, and are single
valued functions defined on the edges (see Figure 6.4). In the standard LDG theory, these terms are
introduced to ensure the numerical stability and reflect boundary conditions. Here we show that there
is another choice such that the semi-discrete scheme become energy-preserving. In what follows, we
call fluxes at x = x1/2, xN+1/2 boundary fluxes, and others internal fluxes.
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We assume that internal fluxes are given by, for j = 1, . . . , N − 1,

p̂ j+1/2 =
1
2

�
p+j+1/2 + p−j+1/2

�
, (6.52)dÇH

Çq j+1/2
= λ

ÇH
Çq

+

j+1/2
+ (1−λ)ÇH

Çq

−

j+1/2
, (6.53)

û j+1/2 = (1−λ)u+j+1/2 +λu−j+1/2, (6.54)

with a real parameter λ, and boundary fluxes are set to satisfy

�
1
2

p−N+1/2 − p̂N+1/2

�
p−N+1/2 −

�
1
2

p+1/2 − p̂1/2

�
p+1/2 = 0, (6.55)�

u−N+1/2

�
t

ÇH
Çq

−

N+1/2
− �ûN+1/2

�
t

ÇH
Çq

−

N+1/2
− �u−N+1/2

�
t

dÇH
Çq N+1/2

− �u+1/2�t

ÇH
Çq

+

1/2
+
�
û1/2

�
t

ÇH
Çq

+

1/2
+
�
u+1/2

�
t

dÇH
Çq 1/2

= 0. (6.56)

Obviously, the conditions (6.55) and (6.56) corresponds to [p2]L0 = 0 and
�
ÇH
Çq ut

�L

0
= 0, respectively.

We will discuss the derivation of the above energy-preserving fluxes after seeing the following theorem
and its proof.

Theorem 6.9. Assume that the fluxes are set to (6.52), (6.53), (6.54), and set such that (6.55), (6.56)
hold. Then the solution of Semi-discrete scheme 4 satisfies

d
dt

∫ L

0

H(u, q)dx = 0.

Proof. First, we note that for Semi-discrete scheme 4 the following holds.

d
dt

∫ L

0

H(u, q)dx = −Θp2 −Θuq,

where

Θp2 =
N∑

j=1

�
1
2

p2 − p̂p
�

I j

, Θuq =
N∑

j=1

�
ut

ÇH
Çq
− ût

ÇH
Çq
− ut

dÇH
Çq

�
I j

,
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independently of the choice of fluxes. This can be checked as follows.

d
dt

∫ L

0

H(u, q)dx

=
N∑

j=1

¨�
ÇH
Çu

, ut

�
I j

+
�
ÇH
Çq

, qt

�
I j

«

=
N∑

j=1

(�
ÇH
Çu

, ut

�
I j

−
��

ÇH
Çq

�
x
, ut

�
I j

+
�
ÇG
Çq

ût

�
I j

)

=
N∑

j=1

(
(p, ut)I j

−
�
ÇH
Çq

, ux t

�
I j

−
��

ÇH
Çq

�
x
, ut

�
+

�
ÇH
Çq

ût +
dÇH
Çq

ut

�
I j

)

=
N∑

j=1

(
−(p, px)I j

+ [p̂p]I j
−
�
ÇH
Çq

ut − ÇH
Çq

ût −
dÇH
Çq

ut

�
I j

)

=
N∑

j=1

(
−
�

1
2

p2 − p̂p
�

I j

−
�
ÇH
Çq

ut − ÇH
Çq

ût −
dÇH
Çq

ut

�
I j

)
= −Θp2 −Θuq. (6.57)

This calculation is quite similar to that in the proof of Theorem 6.8. The first equality is a simple
application of the chain rule. The second follows from (6.51) with v3 = ÇH/Çq. The third and fourth
are obtained from (6.50) with v2 = ut and (6.49) with v1 = p, respectively.

Next, we show that Θp2 = Θuq = 0. Since Θp2 is rewritten as

Θp2 =
N∑

j=1

§
1
2

�
p−j+1/2

�2 − 1
2

�
p+j−1/2

�2 − p̂ j+1/2p−j+1/2 + p̂ j−1/2p+j−1/2

ª
=

N−1∑
j=1

§
1
2

��
p−j+1/2

�2 − �p+j+1/2

�2�− p̂ j+1/2

�
p−j+1/2 − p+j+1/2

�ª
+

1
2

�
p−N+1/2

�2 − p̂N+1/2p−N+1/2 − 1
2

�
p+1/2

�2
+ p̂1/2p+1/2

=
N−1∑
j=1

§
1
2

�
p−j+1/2 + p+j+1/2

�− p̂ j+1/2

ª�
p−j+1/2 − p+j+1/2

�
+
�

1
2

p−N+1/2 − p̂N+1/2

�
p−N+1/2 −

�
1
2

p+1/2 − p̂1/2

�
p+1/2,
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Θp2 = 0 holds under the assumptions (6.52) and (6.55). Similarly, since Θuq is rewritten as

Θuq =
N∑

j=1

��
u−j+1/2

�
t

ÇH
Çq

−

j+1/2
− �û j+1/2

�
t

ÇH
Çq

−

j+1/2
− �u−j+1/2

�
t

dÇH
Çq j+1/2

−�u+j−1/2

�
t

ÇH
Çq

+

j−1/2
+
�
û j−1/2

�
t

ÇH
Çq

+

j−1/2
+
�
u+j−1/2

�
t

dÇH
Çq j−1/2

�
=

N−1∑
j=1

���
u−j+1/2

�
t

ÇH
Çq

−

j+1/2
− �u+j+1/2

�
t

ÇH
Çq

+

j+1/2

�
−�û j+1/2

�
t

�
ÇH
Çq

−

j+1/2
− ÇH

Çq

+

j+1/2

�
− ��u−j+1/2

�
t
− �u+j+1/2

�
t

�dÇH
Çq j+1/2

�
+
�
u−N+1/2

�
t

ÇH
Çq

−

N+1/2
− �ûN+1/2

�
t

ÇH
Çq

−

N+1/2
− �u−N+1/2

�
t

dÇH
Çq N+1/2

− �u+1/2�t

ÇH
Çq

+

1/2
+
�
û1/2

�
t

ÇH
Çq

+

1/2
+
�
u+1/2

�
t

dÇH
Çq 1/2

,

Θuq = 0 holds under the assumptions (6.53), (6.54) and (6.56). This completes the proof.

Here we summarise the procedure to find energy-preserving fluxes. Note that the calculation (6.57)
is standard in the LDG context, whereas the terms Θp2 and Θuq are intrinsic to the discontinuous case—
i.e., they essentially do not appear in the standard continuous Galerkin context. Thus, it is natural to
demand that these terms vanish Θp2 = Θuq = 0 by choosing special fluxes. In order to find such fluxes,
we separate Θp2 and Θuq into the internal and boundary terms, and first choose internal fluxes such
that the terms Θp2 and Θuq are cancelled out in internal edges. Then we confirm the remaining terms
successfully correspond to the original boundary conditions, so that we can set appropriate discrete
boundary conditions. Note also that, in the standard DG, the strategy is different in that they are set
such that Θp2 ,Θuq ≥ 0 hold, which often implies “energy stability.”

Remark 6.13. In this and next remarks, we mention the treatment of boundary conditions (which as
described before we basically ignore in the main text). First, let us consider the periodic boundary con-
ditions. In this case, obviously the internal fluxes (6.52), (6.53) and (6.54) can be used throughout the
domain, only with the small modification for periodicity: u1/2 = uN+1/2, p1/2 = pN+1/2, q1/2 = qN+1/2.
Then the boundary conditions (6.55) and (6.56) are automatically satisfied. Next, let us consider the
Dirichlet boundary condition u|x=0 = u|x=L = 0. To simplify the presentation, let us in particular con-
sider the case that ÇH/Çq = q; in this case the numerical flux cÇh/Çq is simplified as q̂. Then we just
take û1/2 = ûN+1/2 = 0, p̂1/2 =

1
2 p+1/2, p̂N+1/2 =

1
2 p−N+1/2, q̂1/2 = q+1/2, q̂N+1/2 = q−N+1/2. The first one

corresponds to the Dirichlet condition, and the rest are set such that (6.55) and (6.56) are satisfied.

Now we are in a position to derive a fully-discrete scheme in which the discrete partial derivatives
are used (recall that the discrete partial derivatives are defined in Definition 6.1).

Scheme 4. Find u(n+1), p(n+1/2), q(n+1/2) ∈ Vh such that, for any v1, v2, v3 ∈ Vh and for j = 1, . . . , N ,

1
∆t

�
u(n+1) − u(n), v1

�
I j
= −�p(n+1/2), (v1)x

�
I j
+
�
p̂(n+1/2)v1

�
I j

,

�
p(n+1/2), v2

�
I j
=
�

ÇHd

Ç(u(n+1), u(n))
, v2

�
I j

+
�

ÇHd

Ç(q(n+1), q(n))
, (v2)x

�
I j

−
� ÛÇHd

Ç(q(n+1), q(n))
v2

�
I j

,

�
q(n+1/2), v3

�
I j
= −

��
u(n+1) + u(n)

2

�
, (v3)x

�
I j

+

��
û(n+1) + û(n)

2

�
v3

�
I j

.
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The following energy-preservation property immediately holds.

Theorem 6.10. Assume that the fluxes are set to (6.52), (6.53), (6.54), and set such that (6.55), (6.56)
hold. Then the solution of Scheme 4 satisfies

1
∆t

∫ L

0

�
H(u(n+1), q(n+1))−H(u(n), q(n))

�
dx = 0.

Dissipative cases

As was done for the conservative cases, we start the derivation of an energy-dissipative LDG scheme
with an abstract semi-discrete scheme.

Semi-discrete scheme 5. Find u(t, ·), p, q, r ∈ Vh such that, for any v1, v2, v3, v4 ∈ Vh and for j =
1, . . . , N ,

(ut , v1)I j
= −(r, (v1)x)I j

+ [r̂ v1]I j
, (6.58)

(r, v2)I j
= −(p, (v2)x)I j

+ [p̂v2]I j
, (6.59)

(p, v3)I j
=
�
ÇH
Çu

, v3

�
I j

+
�
ÇH
Çq

, (v3)x

�
I j

−
�dÇH
Çq

v3

�
I j

, (6.60)�
q, v4

�
I j
= −�u, (v4)x

�
I j
+
�
ûv4

�
I j

. (6.61)

We then assume that the internal fluxes are given by, for j = 1, . . . , N − 1,

r̂ j+1/2 = ηr+j+1/2 + (1−η)r−j+1/2, (6.62)

p̂ j+1/2 = (1−η)p+j+1/2 +ηp−j+1/2, (6.63)dÇH
Çq j+1/2

= λ
ÇH
Çq

+

j+1/2
+ (1−λ)ÇH

Çq

−

j+1/2
, (6.64)

û j+1/2 = (1−λ)u+j+1/2 +λu−j+1/2, (6.65)

with real parameters η and λ, and boundary fluxes are set to satisfy

r−N+1/2p−N+1/2 − r̂N+1/2p−N+1/2 − r−N+1/2 p̂N+1/2 − r+1/2p+1/2 + r̂1/2p+1/2 + r+1/2 p̂1/2 = 0, (6.66)

and again (6.56). Obviously (6.66) corresponds to [rp]L0 = 0.

Theorem 6.11. Assume that the fluxes are set to (6.62), (6.63), (6.64), (6.65), and are set such that
(6.66), (6.56) hold. Then the solution of Semi-discrete scheme 5 satisfies

d
dt

∫ L

0

H(u, q)dx ≤ 0.

Proof. First, we note that for Semi-discrete scheme 5 satisfies

d
dt

∫ L

0

H(u, q)dx = −∥r∥2L2(0,L) −Θrp −Θuq,

where

Θrp =
N∑

j=1

[rp− r̂ p− r p̂]I j
, Θuq =

N∑
j=1

�
ut

ÇH
Çq
− ût

ÇH
Çq
− ut

dÇH
Çq

�
I j

,
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independently of the choice of fluxes. This can be checked as follows.

d
dt

∫ L

0

H(u, q)dx

=
N∑

j=1

¨�
ÇH
Çu

, ut

�
I j

+
�
ÇH
Çq

, qt

�
I j

«

=
N∑

j=1

(�
ÇH
Çu

, ut

�
I j

−
��

ÇH
Çq

�
x
, ut

�
I j

+
�
ÇH
Çq

ût

�
I j

)

=
N∑

j=1

(
(p, ut)I j

−
�
ÇH
Çq

, ux t

�
I j

−
��

ÇH
Çq

�
x
, ut

�
I j

+

�
ÇH
Çq

ût +
dÇH
Çq

ut

�
I j

)

=
N∑

j=1

(
−(r, px)I j

+ [r̂ p]I j
−
�
ÇH
Çq

ut − ÇH
Çq

ût −
dÇH
Çq

ut

�
I j

)

=
N∑

j=1

(
−(r, r)I j

− [rp− r̂ p− r p̂]I j
−
�
ÇH
Çq

ut − ÇH
Çq

ût −
dÇH
Çq

ut

�
I j

)
= −∥r∥2L2(0,L) −Θrp −Θuq.

The first equality is a simple application of the chain rule. The second follows from (6.61) with v4 =
ÇH/Çq. Substituting v3 = ut in (6.60) leads to the third equality. Integrating the second term by parts
and substituting v1 = p in (6.58), we obtain the fourth equality. Integrating the first term by-parts and
substituting v2 = r in (6.59), we obtain the fourth equality.

Next, we show that Θrp = Θuq = 0. Since Θuq = 0 under the assumptions (6.64), (6.65) and (6.56)
was already proved previously, we here show only Θrp = 0. Since

Θrp =
N∑

j=1

¦
r−j+1/2p−j+1/2 − r̂ j+1/2p−j+1/2 − r−j+1/2 p̂ j+1/2 − r+j−1/2p+j−1/2 + r̂ j−1/2p+j−1/2 + r+j−1/2 p̂ j−1/2

©
=

N−1∑
j=1

¦�
r−j+1/2p−j+1/2 − r+j+1/2p+j+1/2

�− r̂ j+1/2

�
p−j+1/2 − p+j+1/2

�− �r−j+1/2 − r+j+1/2

�
p̂ j+1/2

©
+ r−N+1/2p−N+1/2 − r̂N+1/2p−N+1/2 − r−N+1/2bpN+1/2 − r+1/2p+1/2 + r̂1/2p+1/2 + r+1/2bp1/2,

Θrp = 0 holds under the assumptions (6.62), (6.63) and (6.66). This completes the proof.

Remark 6.14. Corresponding to Remark 6.13, and also in view of the Cahn–Hilliard example shown
later, here we mention the choices of numerical fluxes when Neumann boundary conditions are imposed.
In this case we set fluxes as follows: r̂1/2 = r̂N+1/2 = 0, p̂1/2 = p+1/2, p̂N+1/2 = p−N+1/2, û1/2 = u+1/2,
ûN+1/2 = u−N+1/2 and q̂1/2 = q̂N+1/2 = 0. Here we used the same, additional assumption as Remark 6.13
that ÇH/Çq∝ q. It is obvious that the above choices satisfy the conditions (6.66) and (6.56).

We can now immediately derive an energy-dissipative fully-discrete scheme with the discrete partial
derivatives.

Scheme 5. Find u(n+1), p(n+1/2), q(n+1/2), r(n+1/2) ∈ Vh such that, for any v1, v2, v3, v4 ∈ Vh and for j =
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1, . . . , N ,

1
∆t

�
u(n+1) − u(n), v1

�
I j
= −�r(n+1/2), (v1)x

�
I j
+
�
r̂(n+1/2)v1

�
I j

,�
r(n+1/2), v2

�
I j
= −�p(n+1/2), (v2)x

�
I j
+
�
p̂(n+1/2)v2

�
I j

,�
p(n+1/2), v3

�
I j
=
�

ÇHd

Ç(u(n+1), u(n))
, v3

�
I j

+
�

ÇHd

Ç(q(n+1), q(n))
, (v3)x

�
I j

−
� ÛÇHd

Ç(q(n+1), q(n))
v3

�
I j

,

�
q(n+1/2), v4

�
I j
= −

��
u(n+1) + u(n)

2

�
, (v4)x

�
I j

+

��
û(n+1) + û(n)

2

�
v4

�
I j

.

Theorem 6.12. Assume that the fluxes are set to (6.62), (6.63), (6.64), (6.65), and are set such that
(6.66), (6.56) hold. Then the solution of Scheme 5 satisfies

1
∆t

∫ L

0

�
H(u(n+1), q(n+1))−H(u(n), q(n))

�
dx ≤ 0.

6.4.2 Applications to the KdV and Cahn–Hilliard equation
KdV equation

First, we consider the KdV equation under the periodic boundary conditions. The fully-discrete scheme
is given in Scheme 4 with the energy-preserving fluxes (6.52), (6.53), (6.54) and the discrete partial
derivatives

ÇHd

Ç(u(n+1), u(n))
=
�
u(n+1)

�2
+ u(n+1)u(n) +

�
u(n)

�2
,

ÇHd

Ç(q(n+1), q(n))
= −q(n+1) + q(n)

2
.

We check the qualitative behaviour of the numerical solutions. We consider the interaction of two
solitons. The parameters were set to x ∈ [0, 20] (L = 20),∆x = 20/80 (N = 80),∆t = 0.01 and λ= 0.
We set the initial value to u(0, x) = 4sech2(

p
2(x−4))+2sech2(x−12). The numerical solutions plotted

in Figure 6.5 are qualitatively good. It is observed that the results become smooth as k increases, if we
look them carefully.

We also check the convergence order in terms of spatial discretisations, by using P1, P2 and P3
elements. The initial value was set to u(0, x) = 4sech2(

p
2(x−5))+4sech2(

p
2(x+5))+4sech2(

p
2(x−

15)) with the spatial domain x = [0, 10]. The last two terms were added so that the boundaries, i.e.
x = 0, 10, are connected smoothly. We used the time stepsize ∆t = 10−4. Table 6.1 shows the results,
where the order is calculated by

order=
log(err(N)/err(2N))

log2
.

The expected order (k+ 1 for Pk elements) is observed.
The KdV equation has infinitely many conservation laws, such as

G =
∫ L

0

u2

2
dx .

For convenience, we call this quantity the norm. The Hamiltonian form associated with the norm is

ut =
�
(uÇx + Çxu) + Ç3

x

�δG
δu

,
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Figure 6.5: Numerical solutions at T = 0, 1, 5 obtained by the energy-preserving scheme (k = 1, 2, 3)
for the KdV equation. The initial value was set to u(0, x) = 4sech2(

p
2(x − 4)) + 2sech2(x − 12). The

parameters were set to N = 80, ∆t = 0.05 and λ= 0.

Table 6.1: L2-errors of the numerical solutions at the end time T = 0.1 by the energy-preserving
scheme with polynomial degree k = 1, 2, 3, on uniform mesh. The initial values was set to u(0, x) =
4sech2(

p
2(x − 5)) + 4sech2(

p
2(x + 5)) + 4sech2(

p
2(x − 15)). Time stepsize was set to ∆t = 10−4.

k = 1 k = 2 k = 3
N error order error order error order
10 4.5722 — 1.3489 — 6.8365e–2 —
20 4.7424e–1 3.2691 5.3649e–2 4.6521 4.7125e–3 3.8586
40 8.5016e–2 2.4798 4.4407e–3 3.5946 2.8043e–4 4.0707
80 1.9800e–2 2.1021 4.7646e–4 3.2203 1.7367e–5 4.0132
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and a norm-preserving scheme can be derived based on this structure. The norm preserving scheme is
given as follows: Find u, r, q ∈ Vh such that, for any v1, v2, v3 ∈ Vh and for j = 1, . . . , N ,

(ut , v1)I j
= −�3u2, (v1)x

�
I j
+
�Òu2v1

�
I j
− (r, (v1)x)I j

+ [r̂ v1]I j
,

(r, v2)I j
= −(q, (v2)x)I j

+ [q̂v2]I j
,

(q, v3)I j
= −(u, (v3)x)I j

+ [ûv3]I j
.

Note that Òu2, a flux arising from the quadratic term u2, is different from (û)2. Norm-preserving fluxes
are obtained to be

Òu2
j+1/2 =

�
u+j+1/2

�2
+ u+j+1/2u−j+1/2 +

�
u−j+1/2

�2
,

r̂ j+1/2 =
1
2

�
r+j+1/2 + r−j+1/2

�
,

q̂ j+1/2 = λq+j+1/2 + (1−λ)q−j+1/2,

û j+1/2 = (1−λ)u+j+1/2 +λu−j+1/2,

with a real number λ. The midpoint rule for the temporal discretisation leads to a fully-discrete norm-
preserving scheme.

Remark 6.15. Some norm-preserving DG schemes have been already proposed in [15, 214], but they
are not LDG methods. It should also be mentioned that the norm-preserving H1 weak form is not
new (e.g., see [43, 65]), and was used to derive an LDG scheme in [212], but there the strict norm-
preservation was not considered.

Cahn–Hilliard equation

Next, we consider the Cahn–Hilliard equation under the Neumann boundary conditions ux |x=0,L =
ux x x |x=0,L = 0. The fully-discrete scheme is given in Scheme 5 with the discrete partial derivatives

ÇHd

Ç(u(n+1), u(n))
= α

u(n+1) + u(n)

2
+ γ

�
u(n+1)

�3
+
�
u(n+1)

�2
u(n) + u(n+1)

�
u(n)

�2
+
�
u(n)

�3
4

,

ÇHd

Ç(q(n+1), q(n))
= −β q(n+1) + q(n)

2
.

The internal fluxes are set to (6.62), (6.63), (6.64), (6.65), and the boundary fluxes are set to q̂1/2 =
q̂N+1/2 = 0, r̂1/2 = r̂N+1/2 = 0, p̂1/2 = p+1/2, p̂N+1/2 = p−N+1/2, û1/2 = u+1/2, ûN+1/2 = u−N+1/2.

The computational parameters were set to x ∈ [0, 1], N = 40, ∆t = 0.01 and λ= η= 0. The initial
value was set to

u(0, x) = 0.1 sin(2πx) + 0.01cos(4πx) + 0.06 sin(4πx) + 0.02cos(10πx).

with the parameters of the equation are α = −1, β = −0.001, γ = 1. Numerical solutions are plotted
in Figure 6.6, and the evolution of the energy is in Figure 6.7. The results are qualitatively good.

Remark 6.16. Although the fully-discrete scheme proposed by Xia et al. [202] is not an energy-dissipative
scheme, the underlying semi-discrete scheme coincides with our semi-discrete scheme. This illustrates
that the existing scheme can also be automatically derived based on our proposed method.
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Figure 6.6: Numerical solutions obtained by the energy-dissipative scheme (k = 2) for the Cahn–
Hilliard equation. The initial value was set to u(0, x) = 0.1 sin(2πx)+0.01cos(4πx)+0.06 sin(4πx)+
0.02cos(10πx). The parameters were set to N = 40, ∆t = 0.01 and λ= η= 0.
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Figure 6.7: The evolution of the energy.



Chapter 7

Adaptivity in the Galerkin framework

In this chapter, an adaptive energy-preserving/dissipative discretisation method is proposed. The pro-
posed method is a simple combination of existing moving grid methods and energy-preserving/dissipative
method on nonuniform meshes. For simplicity, we consider only the Galerkin method.

In Section 7.1, we show a proposed adaptive numerical method. The method is discussed in detail
in Sections 7.2 and 7.3. In Section 7.4, we present numerical experiments.

7.1 Adaptive energy-preserving/dissipative method

We propose an adaptive energy-preserving/dissipative numerical method. Firstly, we summarise the
procedure of finite difference methods. The procedure consists of three steps.

1. Apply a suitable energy-preserving/dissipative method to (xn
k , un

k) to obtain (xn
k , ũn+1

k ). Here, un
k ≈

u(tn, xn
k ).

2. Use a suitable grid adaptation technique to obtain a new set of grid points {xn+1
k }. Compute

(xn+1
k , ûn+1

k ) from (xn
k , ũn+1

k ) by a suitable interpolation, if ûn+1
k is used in the next step.

3. Compute (xn+1
k , un+1

k ) by projecting (xn
k , ũn+1

k ) or (xn+1
k , ûn+1

k ) such that the energy of (xn+1
k , un+1

k )
is equal to that of (xn

k , ũn
k).

This can be extended to the finite element context in a straightforward way.

1. Apply a suitable energy-preserving/dissipative method to u(n) associated with the set of grid points
{xn

k} to obtain ũ(n+1) associated with the grid {xn
k}.

2. Use a suitable grid adaptation technique to obtain {xn+1
k }. Compute û(n+1) associated with {xn+1

k }
by a suitable interpolation, if û(n+1) is used in the next step.

3. Compute u(n+1) associated with {xn+1
k } by projecting ũ(n+1) or û(n+1) such that the energy of u(n+1)

is equal to that of ũ(n).

Obviously, the energy is preserved or dissipated in the first step, and is kept in the third step. Thus,
the energy-preservation and dissipation properties are guaranteed for conservative and dissipative PDEs,
respectively.

The new method differs from standard moving grid methods in the following two points. First, in
the standard methods, the time-integrator is not restricted to be energy-preserving/dissipative. Second,
the last step is usually not considered and ûn+1

k (or û(n+1)) is used as un+1
k (or u(n+1)).

The proposed procedure has an obvious drawback that we have to solve nonlinear systems twice in
each time step.
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For conservative PDEs, this drawback can be weakened. In principle, we can use every (not always
energy-preserving) time-integration method in the first step, by modifying the constrained condition of
the last step: the energy of un+1

k (or u(n+1)) is equal to that of previous time. However, because the first
step takes a central role in the time integration, we suggest that one uses an energy-preserving method
for qualitatively good numerical solution, especially when a large time stepsize is used. For dissipative
PDEs, the use of a dissipative method in the first step is mandatory.

In the following two sections, we shall look at the procedures of the second and third steps in detail.

7.2 Moving grid methods

There have been a lot of research activities on moving grid methods. Among them, we survey two
techniques. First, we summarise a method based on equidistribution. Next, we summarise a method
based on wavelets. There are several differences between these approaches. In the first approach,
the number of grid points is kept during the time evolution. Moreover, this approach can be easily
incorporated with finite difference methods. In the second approach, the maximum of the total amount
of grid points is fixed. This approach is for finite element methods. This section should be read as a
survey.

7.2.1 Equidistribution

The following method is based on the equidistribution principle. The idea was first introduced by de
Boor [16]. Set the domain to [0, L]. For a function u(x) to be adapted and given function ρ(x)> 0, we
divide the domain to N intervals 0= x0 < x1 < · · ·< xN = L such that∫ x1

x0

ρ(x)dx =

∫ x i+1

x i

ρ(x)dx , i = 1, . . . , N − 1.

The function ρ(x) is called the monitor function or mesh density function (in the context of the latter
case, ρ2(x) is called the monitor function). There are several typical choices of the monitor function,
e.g.,

• Arc-length density function:

ρ(x) =
�
1+ u2

x

� 1
2 , (7.1)

• Curvature density function:

ρ(x) =
�
1+ u2

x x

� 1
4 .

For a more detailed discussion including error estimates, see [110] for example.

7.2.2 Moving grid based on wavelets

A standard dynamic grid adaptation technique which is known in the context of wavelet based numerical
methods [11, 191, 192, 193] is briefly reviewed without getting involved into the concept of wavelets.

Let V 0 ⊂ V 1 ⊂ V 2 ⊂ . . . which satisfy
∪∞

j=0 V j = L2(0, L) be a sequence of finite dimensional

function spaces, and {ϕ j
k(x)}k be the basis functions of V j . The basis functions of W j , the complement

of V j in V j+1, i.e., V j+1 = V j ⊕W j , are denoted by {ψ j
k(x)}k.
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Let J be a natural number. The function uJ ∈ V j which approximates u ∈ L2 can be expressed as

uJ (x) =
∑

k∈K(J)
cJ

kϕ
J
k (x), (7.2)

whereK(J) denotes the set of indices of the basis functions. The definition (7.2) means that we use basic
functions up to the depth J . Suppose that basis functions satisfy the interpolation property: ϕ j

k(x
j
i ) =

δi,k (x j
i are the grid points). Then u(x J

k) can be chosen as the coefficient cJ
k . Since VJ = V 0⊕W 0⊕· · ·⊕

W J−1, the approximate function (7.2) can also be rewritten as

uJ (x) =
∑

k∈K(0)
c0

kϕ
0
k(x) +

J−1∑
j=0

∑
k∈KC ( j)

d j
kψ

j
k(x),

where KC( j) denotes the set of indices of the basis functions{ψ j
k}k. The second term can further de-

composed into a sum of two groups whose coefficients are above and below the threshold ε j . This leads
to

uJ (x) =
∑

k∈K(0)
c0

kϕ
0
k(x) +

J−1∑
j=0

∑
k∈KC ( j)
|d j

k|≥ε j

d j
kψ

j
k(x)

︸ ︷︷ ︸
uJ≥(x)

+
J−1∑
j=0

∑
k∈KC ( j)
|d j

k|<ε j

d j
kψ

j
k(x)

︸ ︷︷ ︸
uJ
<(x)

. (7.3)

When the threshold ε j(≥ 0) is sufficiently small, uJ≥(x) can be regarded as a rough approximation in
V J . Because of the interpolation property of the basis functions, each basis function corresponds to each
grid point. Thus, extracting basis functions based on the decomposed form (7.3) implies the selection
of the grid points, i.e., a grid adaptation (in terms of uJ≥(x)).

We usually assume that {ψ j
k(x)}k also satisfy the interpolation property. But since explicit formu-

lations can be quite cumbersome since they depend on {ϕ j
k(x)}k and the numbering of the indices, we

illustrate this only by a concrete example in Remark 7.1.

Remark 7.1. In what follows, we assume as V j the simplest one, i.e., the piecewise linear function space
on uniform grids. Although it is rare to adopt P1 elements in the context of wavelet based numerical
methods, this assumption makes the following discussion clear. In particular, we promise that V j ( j =
0, 1, 2, . . .) is generated by recursively halving the subintervals. Let us, for example, V 0 consists of a
single interval [0, L], V 1 of two subintervals [0, L/2] and [L/2, L], and so on. (In the actual numerical
experiment later on, we take finer grids as V 0 and consider its recursive divisions.) This automatically
satisfies the assumption V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · . The basis functions are then given by

ϕ
j
k(x) =



x − x j
k−1

x j
k − x j

k−1

, x ∈ [x j
k−1, x j

k],

x j
k+1 − x

x j
k+1 − x j

k

, x ∈ [x j
k, x j

k+1],

0, otherwise,

for k = 0, . . . , 2 j where x j
k = kL/2 j (note that special care for ϕ j

0 and ϕ j
2 j is required to fit the boundary

conditions, although at this point we do not get into its detail here). To help the readers’ understanding,
the basis functions of V 0, W 1, W 2 are illustrated in Figure 7.1. The coarsest space V 0 is spanned by ϕ0

0
and ϕ0

1 , which correspond to the grid points x0
0 and x0

1 , respectively. The first correction space W 0 has
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a single new basis ψ0
1. Note that W 0 ⊂ V 1 and ψ0

1 is equivalent to ϕ1
1 . The grid points x1

0 (= x0
0) and

x1
2 (= x0

1) are already employed in the coarser level V 0, and thus we do not consider them on this level
(thus, accordingly, the corresponding bases ϕ1

0 and ϕ1
2 in V 1 are not taken into account as well; the grid

names x1
0 and x1

2 are prepared just to make notation consistent). Similar observation can be done for
W 2, where two new basesψ1

1 andψ1
2 (corresponding to the new grid points x2

1 and x2
3) are introduced.

It is easy to examine that the interpolation property holds for them.

x2
0

W 1

x2
1 x2

2 x2
1 x2

2

x1
0

W 0

x1
1 x1

2

x0
0

V 0

x1
1

Figure 7.1: Bases of [V 0] ϕ0
0 ,ϕ0

1 ; [W 0] ψ0
1 (= ϕ1

1); [W 1] ψ1
1 (= ϕ2

1), ψ1
2 (= ϕ2

3).

This example illustrates how the grid adaptation based on the decomposition (7.3) works. Suppose
we work with the space V J where the depth J is fixed. Then the following three are equivalent:

• dropping some set of basis functions {ψ j
k(x)} in V J ,

• dropping the corresponding grid points {x j
k},

• choosing a subspace of V J comprised only of the remaining grid points.

In this sense, dropping the small terms in (7.3), i.e., uJ
<(x), gives a grid adaptation based on the given

function uJ (x).
In more general wavelet context, the basis functions are usually derived from a so-called scaling

function, see, e.g., [10, 192, 218].

Below we explain how we select appropriate grid points. Although this was already seen through
(7.3), an additional technique is often incorporated for the quality of numerical solutions.

We introduce the concept of “adjacent zone.” We say that the grid point x s
i (or equivalently, the

corresponding basis functionψs
i) belongs to the adjacent zone of x j

k (or equivalentlyψ j
k), if the following

relations are satisfied:

|s− j| ≤ M , |x s
i − x j

k| ≤ a j,

where a j is the width of the adjacent zone, and M is the extent to which coarser and finer scales are
taken into account.
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In the wavelet based numerical methods, we first select the set of grid points based on (7.3), and
then add the adjacent zone to the points. This strategy means, roughly speaking, the recovery of the
dropped grid points (or corresponding bases) near the surviving points. Adding adjacent zone is not
necessarily mandatory, but often makes the computation quite effective, since if the solution is moving
to the left or right, it is better to include the grid points outside the surviving grid zone to catch such
a behaviour accurately. The parameters M and a j of adjacent zone should be carefully determined so
that the algorithm catches the solution well in that sense. For example, it is good to set relatively large
values for a problem whose solution drastically changes.

7.3 Projection

We explain the procedure of the last step of the proposed method. This step for finite element methods
is formulated as a minimisation problem:

min


u(n+1) − ũ(n+1)



 ,

s.t.

∫ L

0

H(u(n+1))dx =

∫ L

0

H(ũ(n+1))dx ,

or

min


u(n+1) − û(n+1)



 ,

s.t.

∫ L

0

H(u(n+1))dx =

∫ L

0

H(ũ(n+1))dx .

A similar formulation for finite difference methods is straightforward. The simplest way of solving
the above problem is to apply a existing solver for constrained nonlinear equations such as fmincon of
matlab. The minimisation problem can also be solved by the Lagrangian multiplier technique, whose
computation is faster than the first approach in most cases. However, special care must be taken for
both approaches. Our preliminary experiments demonstrated that iterations of both approaches some-
times failed to converge or decrease the residual sufficiently. These drawbacks were sometimes avoided
successfully by changing the initial value of the iteration, or using a relatively large tolerance, say 10−6.

7.4 Numerical experiments

We show numerical experiments for the KdV and Cahn–Hilliard equations.

KdV equation
For the KdV equation

ut = Çx

�
3u2 + ux x

�
,

with the periodic boundary condition, we show the numerical results by the equidistribution approach.
Note that we can intuitively understand that the wavelet based moving grid method is less effective.

We are forced to use a very small time stepsize or chose wide adjacent zones in order to capture a soliton
because the speed of the wave could be very fast. Thus, we consider the equidistribution approach. As
mentioned in Remark 5.2, the use of the equidistribution approach to the KdV equation was originally
due to [71]. Results by the wavelet based moving grid method are found in [152].

We set the domain to [0, 10] and consider the initial value to u(0, x) = 4sech2(
p

2(x − 4)). The
number of grid points is 100. The arc-length density function (7.1) is chosen as a mesh density function.
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Figure 7.2: Evolution of the numerical solution for 1-soliton of the KdV equation. Each figure below a
numerical solution shows the number of cumulative grid points. The grid points are dense where the
slope is steep. The time stepsize was set to ∆t = 0.02.
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Results are plotted in Figure 7.2. There, the second figure of each time shows the number of cumulative
grid points. Hence, the grid points are dense where the slope is steep. It is observed that the grid points
are dense around the soliton at each time. Note that the slope is less steep at the centre of the soliton.

Similar results are also observed for 2-soliton solutions as shown in Figure 7.3, where the domain,
initial value and the number of grid points were set to [0, 20], u(0, x) = 4sech2(

p
2(x−4))+2sech2(x−

12) and 200, respectively.

Cahn–Hilliard equation
For the Cahn–Hilliard equation

ut = Ç2
x

�
αu+ γu3 + βux x

�
,

with the boundary condition ux |x=0,L = ux x x |x=0,L = 0, we show the numerical results by the wavelet-
based approach. The initial value was set to u(0, x) = cos(2πx) in the domain [0, 1]. Results for
different thresholds are plotted in Figure 7.4 and Figure 7.5. More grid points are used when the
threshold is small. It is also observed, for both cases, the grid points are moved to an appropriate area:
at T = 0.5 the grid points are dense where the slope of u is sharp.

Discussions
Although we saw some nice snapshots in the above examples, it is too early to say that the proposed
algorithm is more practical than the standard energy-preserving/dissipative methods. The main reason
is that we have to solve nonlinear systems twice per each time step, and the computation of the pro-
jection is heavier than that of the time stepping part. As a future work, the algorithms for solving the
projection part should be investigated.

Assume that we have an algorithm solving the projection part, whose computational cost is compa-
rable with the simplified Newton method for the time stepping part. Also assume that their costs are
O(N3), where N is the size of the nonlinear system (i.e., the number of grid points). Then it is roughly
estimated that the overall computation of the proposed method is faster than the standard methods, if
the number of grid points can be constantly reduced to (1/2)(1/3) ≈ 0.7973 times the number at the
initial time.
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Figure 7.3: Evolution of the numerical solution for 2-soliton of the KdV equation. Each figure below a
numerical solution shows the number of cumulative grid points. The grid points are dense where the
slope is steep. The time stepsize was set to ∆t = 0.02.
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Figure 7.4: Evolution of the numerical solution and the set of grid points for the Cahn–Hilliard equation.
The wavelet-based grid adaptation technique was used. The parameters were set to ∆t = 0.01, J = 8,
ε j = 10−2, M = 1 and a j = 1/2 j .
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Figure 7.5: Evolution of the numerical solution and the set of grid points for the Cahn–Hilliard equation.
The wavelet-based grid adaptation technique was used. The parameters were set to ∆t = 0.01, J = 8,
ε j = 10−3, M = 1 and a j = 1/2 j .



Chapter 8

Geometric integrators for Hunter–Saxton like
equations

Contents of Chapter 8 are not publicised, because this chapter is a work of joint authorship and the
publication is not approved by a co-author.
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Chapter 9

Conclusion and future prospects

In this thesis, we have developed several geometric numerical integration methods for energy-driven
evolution equations. We briefly summarise the main results of each chapter and discuss future prospects.

Part I

Chapter 3 The main motivation of Chapter 3 was to construct efficient energy-preserving numeri-
cal methods for Hamiltonian systems with periodic/oscillatory solutions. For this aim, we first
gave in Theorem 3.2 a new characterisation of continuous stage Runge–Kutta methods being
energy-preserving for Hamiltonian systems. By combining the characterisation with the idea of
exponential-fitted methods, we succeeded in designing energy-preserving exponentially-fitted nu-
merical methods. We then extended the new methods to Poisson systems. As our working exam-
ple, we derived second- and fourth-order integrators. As our future work, we should study a more
systematic strategy for deriving higher-order integrators. In addition, we showed that trigonomet-
ric energy-preserving integrators can be constructed for oscillatory Hamiltonian systems.

Chapter 4 By using the energy-preserving condition Theorem 3.2 and characterisation of the order
conditions in terms of the coefficient polynomial of CSRK methods, we constructed a new class of
energy-preserving integrators for Hamiltonian systems. The main advantage of the new method
is that it is much faster than the average vector field collocation (i.e., existing energy-preserving)
method (Definition 2.10). The computational cost of the new method becomes further reduced
when parallelism is available. As our working example, we derived fourth- and sixth-order inte-
grators. Our future works include the following.

• Although we newly derived up to sixth-order integrators, it seems quite complicated to obtain
higher-order integrators because the characteristic polynomial appearing in the derivation
becomes cumbersome. It would be of interest to consider a systematic strategy for deriving
intended high order integrators.

• The advantage of the new method becomes notable for large scale problems. Thus, the
method should be applied to such problems, e.g., semi-discrete schemes for two- or three-
dimensional Hamiltonian PDEs, in order to estimate practical efficiency.

Part II

Chapter 6 We constructed a general framework for deriving energy-preserving/dissipative H1 Galerkin
schemes. The new framework can be applicable to PDEs with complicated variational structures.
We further combined the framework with the idea of discontinuous Galerkin methods, which
allows us to implement spatially high-order energy-preserving/dissipative schemes easily.
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This chapter ignored mathematical analyses such as unique solvability, existence and convergence.
In particular, backward error analysis for both spatial and temporal discretisations would be in-
teresting. For these aims, properties of underlying weak-forms should also be investigated.

Chapter 7 We combined energy conservative/dissipative numerical methods on static nonuniform grids
with grid adaptation techniques. We applied the proposed method to the KdV and Cahn–Hilliard
equations. As a future work, convergence analysis would also be a challenging topic. One can
apply the standard finite element theory to the time stepping part. On the other hand, analysis of
the optimisation part would be difficult and quite challenging.

Chapter 8 We constructed several structure-preserving integrators for Hunter–Saxton like equations.
It was not obvious how we can handle a nonlocal operator Ç−2

x in the context of geometric numer-
ical integration methods. This problem was successfully settled for some boundary conditions
and target geometric properties. It would be of interest to apply the presented techniques to
other PDEs with the same nonlocal operator Ç−2

x and get more insight into the behaviour of such
equations. Furthermore, the treatment of other nonlocal operators in the context of geometric
numerical integration methods should also be studied.

Finally, we discuss future perspectives from a broader point of view.
The main purpose of geometric numerical integration methods is to simulate practical evolution

equations efficiently over a long period of time, and analyse the methods mathematically. It is strongly
hoped that some existing methods (including new methods presented in this thesis) will be extended
in various ways so that they solve large-scale problems efficiently. Most of the contents of this thesis
aimed to contribute to this purpose in a relatively fundamental level, and these studies should be further
pushed forward from a practical, as well as theoretical, point of view.

In the context of energy-preserving temporal discretisation, relaxation methods would be an inter-
esting topic. As mentioned in Remark 2.5, second order linearly implicit methods have been considered
by relaxing the exact energy-preservation. It is hoped that high order methods can also be constructed,
however, no one has succeeded in deriving such methods. Numerical methods preserving multiple first
integrals would also be an interesting topic. There are a number of studied on this topic. However, all
of the existing methods have the drawback that they are not B-series methods, and thus it is difficult to
study the long time behaviour. Therefore, we have to study if it is possible to construct B-series integra-
tors preserving multiple first integrals. If it is impossible, a new analysis method for existing methods
will be hoped.

In the context of spatial discretisation, we should further develop efficient discretisation techniques
and analyse them.

In this thesis, we dealt with only deterministic problems. However, there are a number of non-
deterministic problems such as stochastic differential equations. Moreover, practical problems do not
always possess nice geometric properties. Therefore, it would be interesting to consider to what extent
the idea of geometric numerical integration methods is useful for such problems. Indeed, geometric
numerical integration methods for stochastic equations have recently been attracting attention, and
similar studies should be carried out for other type of equations.
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