
GEOMETRIC AND PHOTOMETRIC MERGING

FOR LARGE-SCALE OBJECTS

大規模観測対象のための幾何および光学情報の統合

by

Ryusuke Sagawa

佐川立昌

A Doctoral Dissertation

博士論文

Submitted to

the Graduate School of

the University of Tokyo

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Engineering
in Information and Communication Engineering

Thesis Supervisor:

Professor Katsushi Ikeuchi
池内克史教授





ABSTRACT

In this thesis, we consider the geometric and photometric modeling of large-scale and

intricately shaped objects, such as cultural heritage objects. When modeling such objects,

new issues occurred during the modeling steps which had not been considered in the

previous research conducted on the modeling of small, indoor objects. Since the entire

data of these objects cannot be obtained by a single observation, the main theme of this

thesis is the “merging” of multiple observations.

The first issue is creating a detailed model from a huge amount of data. When modeling

a large-scale and intricately shaped object, a huge amount of data is required to model

the object. We would like to propose three approaches to handling this amount of data:

the parallel processing of merging range images, the effective nearest neighbor search, and

the adaptive algorithm of merging range images. We developed a parallel computation

algorithm using a PC cluster which consists of two components, the distributed allocation

of range images to multiple PCs, and the parallel traversal of subtrees of octree. We also

propose a novel method for searching the nearest neighbor by extending the search algo-

rithm using a k-d tree. We constructed a merged model in adaptive resolution according to

the geometric and photometric attributes of range images for efficient use of computational

resources.

The second issue involved in handling a large amount of data is the merging of the pho-

tometric attributes of range images. We reconstructed a 3D model with an appearance

which successfully discarded outliers due to specular reflection, by taking a consensus of

the appearance changes of the target object from multiple range images. The photometric

attribute of the model can be used for aligning with 2D color images.

The third issue is constructing a precise model using noisy data. We propose an efficient

method to refine range images using multiple observations from various viewpoints. The

method refines range images during iterative computation by assuming that the distribu-

tion of their error is anisotropic according to the viewing direction.

The fourth issue is the need for a new range sensor to cover unobservable surfaces from the

ground. We developed a new range scanning system, which obtains a dense range image

by stereo matching. It is loaded on a balloon, and scans large-scale objects from the air.

The system consists of 9 digital steel cameras, which together construct a high resolution

model.

The fifth issue is complementing unobservable surfaces of an object. We propose a novel

method to complement such holes or gaps in the surfaces, areas which are not observed by

any scans. In this novel method, the surface of an object is scanned using various kinds of

sensors. We efficiently complement them by taking a consensus of the signed distances of

neighbor voxels.



論文要旨

３次元形状を計測する従来の研究では，観測対象が室内に置かれた物体などの比較的小さ

な物体であったが，文化遺産の中には建物や大仏などの大規模な構造物を観測対象とする場

合，モデリングの各段階において様々な新しい問題が発生する．そのような観測対象を行う

場合，1回の観測で全てのデータを取得することは不可能であるので，本論文における主題

は複数の観測をいかに「統合」するか，ということになる．

まず，観測対象が大規模かつ複雑な形状を持つ場合，大量のデータを取り扱う必要がある．

本論文では以下に提案する３つの手法を用いて大規模なデータの統合を行う．第一に PCク

ラスタを用いた並列計算により計算時間を削減する．この手法は複数の PCに距離画像を分

散配置する方法と，オクトツリーの部分木を並列に探索する方法から構成される．これによ

り PCクラスタの多数の CPUとメモリが利用可能になった．第二に k-d treeの探索方法を

拡張し，効率的に最近傍点を探索する方法を開発し，距離画像の統合過程における計算コス

トの大部分を占める最近傍点探索の高速化が可能になった．第三に観測対象の形状やテクス

チャに応じて適応的に距離画像の統合を行うことにより効率的に計算資源を利用する方法で

ある．

次に距離画像に付加された光学情報の統合する手法を提案する．複数の距離画像に付加さ

れた光学情報の合致をとることにより鏡面反射成分による光学情報の外れ値を取り除き，距

離画像統合の枠組みにおいて光学情報の統合を行う．光学情報付きモデルは 2次元カメラ画

像との位置合わせに応用することができる．

またノイズが多い距離画像を用いて精確なモデルを生成する手法を提案する．距離画像に

含まれるノイズの分布が視点位置に依存することを仮定し，様々な方向から計測された距離

画像を利用して反復計算により距離画像のノイズの除去を行う．

大規模な観測対象の場合には地上から観測できない部分が発生する．そのような部分を観

測するためにデジタルスチルカメラ 9台から構成されるシステムを気球に搭載し，ステレオ

マッチングによって距離計測を行うセンサを開発した．カメラを用いることにより空中で静

止していない状態においても距離計測が可能になった．

様々なセンサを用いて計測を行った場合においても計測できない部分が発生するため，そ

のような形状データの欠落を補う方法を提案する．本手法では統合過程において符号付距離

を計算しているが，その符号付距離の整合性を近傍のボクセル間でとることによりデータの

欠落を補間する．

これらの手法を用いていくつかの文化遺産についてモデリングを行い，大規模かつ複雑な

形状をもつ観測対象のモデリングが可能になったことを示す．
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Chapter 1

Introduction

The modeling of the shape and appearance of objects in the real world is an important

issue in many fields. If we create a model of a real object by observing it, we can see the

model on computer through the techniques of computer graphics. By analyzing the created

model instead of the real object itself, we can obtain a lot of information about the object

from studying the model. If the object is an artificial object, we can apply the information

obtained from studying the model to reverse engineering. If we create a new object by

editing the model using a CAD system, we can use the model obtained from observation

as an initial model, which is easier than creating a model from scratch. In the research

area of intelligent robotics and computer vision, such models are used in the automatic

recognition of objects, such as tracking the motion of an object and distinguishing an

object from others.

Cultural heritage objects are one of the worthiest candidates to model in shape and appear-

ance. There are three advantages to modeling these objects: presentation, preservation,

and restoration. There are many cultural heritage objects in various places throughout the

world. Thus, we can only see the objects in photographs and movies, unless we actually

visit the sites where they can be found. However if we have models of these objects, we

can learn much more about the object by examining it from various viewpoints. In addi-

tion, many cultural heritage objects are in danger of collapse due to the effects of weather,

or because of accidents or willful destruction. By modeling cultural heritage objects, we

can preserve information on them. Also, in case of their collapse, the models can provide

virtual information to assist restoration specialists.
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Among various kinds of cultural heritage objects, we have blueprints for buildings, and

can use these to reconstruct the shape of the objects. However, it is an exception to be able

to obtain blueprints of other cultural heritage objects, such as statues created by carving

and casting. Moreover, some cultural heritage objects are large-scale objects, and their

shapes consist of delicately and intricately curved surfaces.

1.1 Previous Work

When modeling the shape of an object, several approaches have been considered accord-

ing to the scale of the target object. In Figure 1.1 we classified several approaches. Images

observed by satellites [1] and airplanes [56] are used for the modeling terrain. The terrain

geometry is measured by the photogrammetric approach using multiple images. A syn-

thetic aperture radar (SAR) [26] can directly measure the terrain geometry by microwave

imaging techniques. Another approach to measuring the terrain geometry is airborne laser

scanning [48]. This method measures the distance from the airplane to the target by a

shooting laser. Since these approaches have been developed to measure the terrain geome-

try, they can observe a very large area; however, the resolution and precision is lower than

that of the measuring equipment used to measure small objects.

Our target objects were mainly outdoor objects, such as statues of the Great Buddha and

ancient temple buildings. High resolution and high precision are required for modeling

these objects, just as when modeling small objects. Several approaches have been de-

veloped to measure small objects, for example a laser range finder and a structured-light

range finder. They can measure with high resolution and precision; however, the area

which they can scan is small. Thus, these approaches could not be directly applied to our

target objects. Because our targets were larger and more intricate than the usual targets for

these sensors, however, we had several problems to solve.

It costs too much to model the shape of cultural heritage objects manually, by photogram-

metric methods. Therefore, these methods are not practical to use for objects with a highly

intricate shape. However, 3D digitizing techniques using laser light have been recently de-

veloped. In these techniques, the measuring device, which is called a laser range finder,

measures distance by shooting a laser and receiving its reflection from the target object.

The distance is computed by measuring the time duration between the laser shot and when
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Figure 1.1: Modeling approach for objects of different scales

it is received back, or by triangulation between the shooting point and the receiving point.

Laser range finders scan 2D dimensional areas by changing the direction of the laser by

moving mirrors. Thus, the acquired 2D data is called a range image. Since some of their

measuring ranges are over 50 meters, we can utilize these range finders for modeling cul-

tural heritage objects. So far, several researchers [51, 39, 44, 59] have studied the modeling

of cultural heritage objects using those sensors.

Other methods for measuring the shape of objects are automatic photogrammetric tech-

niques such as dense stereo matching [69, 15], and methods of projecting structured light

[81, 36]. Both methods compute distance by triangulation. Stereo matching is passive

measuring by observing the texture of the surface of an object using multiple cameras.

Because of the passiveness, the precision of range measurements are worse than those of

laser range finders and structured-light sensors. However, the advantage of this method

is that the images are acquired in less than a second. A structured-light method projects

various structured lights and encodes 3D space uniquely by these lights. Since the lights

are distinguished by a camera, this system is not suitable for a bright environment such as

outdoor scanning.
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As most range sensing systems, e.g., stereo, structured light, and laser range finders return

range images obtained from particular viewing points, each output range image covers

only a portion of the target object surface. To ensure that all of the 3D shape data is

acquired during the scanning process, several range images must be taken of each portion

of the object surface from various viewpoints. Thus, the issue of geometric modeling is

creating the entire model of an object from multiple range images. The “merging” of

multiple observations into a unified model is the main issue considered in this thesis.

In previous research on geometric modeling, the researchers dealt only with small objects.

Figure 1.2 shows the modeling steps for a small object. The 3D modeling of the shape of

the object is accomplished by performing the following three steps:

1. Acquiring the range images (Scanning).

2. Aligning of the many range images acquired from different viewpoints (Aligning).

3. Re-generating the unified meshes (Merging).

In the first step, an object is easily observed from various viewpoints by rotating it on a

turntable or mounting it on a robot arm. This is possible because small objects are small

enough to handle. Also, it is easy to acquire the entire surface of a small object, since the

scanning cost is negligible. If an occluded region of the surface exists, we can observe that

region by rotating the object and scanning it one more time.

Second, the aligning of multiple range images is accomplished by recording each local

coordinate system a priori, e.g., by using motion controlled stages, mounting range find-

ers on the robot arms or by establishing point correspondences and minimizing the to-

tal distance between those points, e.g., feature-based methods [90, 45], ICP-based meth-

ods [5, 6, 24, 25, 72, 63], etc. Besl and McKay [6] proposed a feature point-based matching

method, while Chen’s method [11] is based on the evaluation between the point and the

polygons. Neugebauer proposed the idea of ’simultaneous registration’ that aligns range

images simultaneously to avoid the error accumulation of the pairwise alignment meth-

ods [63]. A similar idea was proposed by Nishino et al. [66].

In the third step, for merging multiple pre-aligned range images, several approaches have

been proposed. Turk and Levoy [95] proposed a method to “zipper” two range images at

a time, by first removing overlapping portions of the meshes, clipping one mesh against
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Figure 1.2: Steps of geometric and photometric modeling of a small object.

another, and then re-triangulating the mesh on the boundary. Although this is an intuitive

process to merging two range images, pairwise merging does not work when merging

multiple range images. Given a number of range images overlapping each other, a merg-

ing procedure which extracts the isosurface is necessary. Merging methods that make use

of volumetric, implicit-surface representation and the marching-cubes algorithm [53] are

suitable for this purpose. Hoppe et al. [43] constructed 3D surface models by applying the

marching-cubes algorithm to a discrete, implicit-surface function generated from a set of

range images. After inferring local surface approximations from clouds of points based on

tangent plane estimations, a local search was accomplished to compute the signed distance

from each voxel to the surface of the point set. Curless and Levoy [17] enhanced Hoppe’s

algorithm in a few significant points. However, none of these methods, including several

others [40], compensate for noise or extraneous point data; the data is assumed to be part of

the object, and noise is assumed to be negligible. Each of these methods suffers from inac-

curacy due to their integration strategy, e.g., integrating unrelated observations, and these

accuracy problems will affect the result even when the data is noise-free. Whitaker [98]
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proposed a level-set approach for integrating range images, which introduced a smooth-

ness constraint using a Bayesian formulation. Wheeler et al. [96, 97] addressed these

important problems by designing a consensus surface algorithm. The consensus surface

algorithm attempts to justify the selection of observations used to produce the average by

finding a quorum or consensus of locally coherent observations. This process successfully

eliminates many troublesome effects of noise and extraneous surface observations, and

also provides desirable results with noise-free data.

As for photometric modeling of an object, color images are captured by a pre-calibrated

camera. Since the mutual posture of the camera and the range finder is calibrated, the

images can be directly mapped as texture on the 3D model. To calibrate the camera,

a marker object is usually used, which has some features that can be recognized by a

camera and range finder. The system acquires a color image and a range image of the

marker at the same time. The 3D positions of features are obtained by the range finder.

After taking matching 3D features and 2D features, which are obtained by the camera, the

camera parameters are computed using the techniques of camera calibration [94, 102]

1.2 Thesis Overview

Previous research which studied the modeling of the 3D shape of objects considered the

modeling of small, indoor objects. And yet some cultural heritage objects, like statues of

the Great Buddha, ancient temple buildings, and bas reliefs on walls are quite large, and

their shapes are intricate. In order to model such objects, various issues need to be solved

at each stage of the modeling process. This thesis proposes new techniques for solving the

following issues:

1. Creating a detailed model from a huge amount of data

2. The merging of photometric attributes of range images

3. Constructing a precise model using noisy data

4. Covering the entire surface of an object

5. Complementing unobservable surfaces of an object
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Figure 1.3 shows the new modeling process, which has been developed after considering

these issues.

Previously, it was not necessary to consider the amount of data and the computational

costs of compiling this data, because the shape of the objects modeled were simple, and

only a small number of range images were required. However, to create a detailed model

of a large-scale object, such as a cultural heritage object, a huge amount of data is needed.

Therefore, this paper proposes new methods for creating a detailed model from a huge

amount of data, during the step in which range images are merged. The methods consist

of the following three approaches:

• The parallel processing of merging range images

• A new technique of nearest neighbor search

• An adaptive algorithm of merging range images

When an object is large and far away from the sensors, it is difficult to calibrate between

the camera and range finder. That is because we have to use a marker for calibration that

is a similar size as the object, in order to sufficiently reduce the error of calibration. If we

used this approach when modeling an object the size of a Great Buddha, we would have to

use a marker of the same size, which is obviously not practical. Therefore, we propose a

new method which merges the photometric attributes of range images in the framework of

merging range images. The photometric attributes attached with the 3D model are utilized

in calibrating with color images.

An issue we considered is that the size of our target objects varied from 1 meter or less

to 100 meters, and we did not have a suitable sensor for every object of these various

sizes. Thus, in some cases, we had to choose sensors that did not have sufficient precision

to acquire the intricate shape of objects. Therefore, we propose a novel method which

reduces the measurement errors of range images using multiple observations. Each range

image has an anisotropic error distribution which depends on the viewpoint from which

the object is scanned. If there is an overlapping area of range images after aligning into

the common coordinate system, our new method refines the range images by taking a

consensus of them.
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Figure 1.3: Extended modeling steps for modeling a large-scale, intricately-shaped object
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Another issue we considered is that it is difficult to observe the entire surface of a large-

scale object. Our main sensor was a laser range finder which was set on the ground,

and it was heavy, weighing more than 20kg. Consequently, one of the largest portions of

unobservable surface for that sensor is the top of the target object. Thus, we developed a

new sensor that scans the area which cannot be observed from the ground. This sensor is a

stereo range finder which consists of multiple cameras, and which is loaded on a balloon.

There are often unobserved surfaces, even when full use of various kinds of sensors is

made. If the object has an intricate shape, many occluded areas can occur. However, it is

too costly to cover every hole which is not observed by any range images. In the worst case

scenario, we are not able to obtain the data needed to fill those holes or gaps. However, we

want to fill such holes to make use of the constructed models in many different applica-

tions. Therefore, we propose a new method to complement the geometric and photometric

models of the holes by estimating the neighborhood area of the holes.

1.3 Merging a Huge Amount of Range Images

This paper proposes a new merging algorithm based on Wheeler’s method [97]. We ex-

tended the method for creating a detailed model from a huge amount of range images. The

proposed method consists of the following three approaches:

• The parallel processing of merging range images

• A new technique for conducting a nearest neighbor search

• An adaptive algorithm of merging range images

1.3.1 Parallel Merging of Range Images

The first approach is parallel processing of the merging algorithm. Our merging algorithm

first converts range images to volumetric representation, which is called a signed distance

field (SDF) [31]. Then, we convert the volumetric representation to a unified mesh model

by extracting the isosurface based on marching-cubes algorithm [53] (we will abbreviate it

as MC throughout the rest of this paper). Though several parallel processing algorithms of

MC [2, 54] have been proposed, the most time-consuming step in the merging algorithm
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is the computation of a signed distance. As a choice for reducing the computational time,

a PC cluster is widely used. It is composed of multiple PCs connected by a network such

as an ethernet or Myrinet [60]. Since each PC is inexpensive, a PC cluster is a reasonable

system to use compared with shared-memory workstations which have the same number

of CPUs. Thus, we developed a new technique of parallel computation of signed distances

by making use of a PC cluster. This technique consists of the following two components:

1. Distributed allocation of range images to multiple PCs

2. Parallel traversal of subtrees of octree

In Chapter 2, we first describe Wheeler’s merging algorithm, which our method is based

on. Next, we will explain how we extended the method for parallel processing with a PC

cluster in the proposed method.

1.3.2 Effective Nearest Neighbor Search

To compute the signed distance from a voxel, the merging process finds the nearest neigh-

bor points of range images for each voxel. The original merging algorithm uses the k-d

tree [4, 30], which is one of the most widely used structures for searching for nearest

neighbors. It is a kind of binary tree that partitions space using hyperplanes that are per-

pendicular to the coordinate axes. If a k-d tree consists of n records, the k-d tree requires

O(n log2 n) operations to construct and a O(log2 n) to search.

A case in which a search finishes in O(log2 n) is an ideal case, in that only a leaf node is

examined, and the nearest neighbor belongs to it. However, a search using a k-d tree does

not actually finish in logarithmic time. In many cases, a search needs to examine several

leaf nodes before finding the nearest neighbor point. In the worst case scenario, all leaf

nodes must be examined. When the nearest neighbor is far from a query, the number of

leaf nodes is apt to increase.

However, if the nearest neighbor point of a range image is far from a voxel, the voxel

is used for extracting the isosurface by MC. Namely, the nearest neighbor point is not

important for merging. It is sufficient that we find out that there are no range images near

the voxel. Therefore, we introduced a novel test that takes place during the traversing of
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the k-d tree. This test compares the distance from a query to the nearest neighbor, with a

threshold defined by the user. We explain this technique in Chapter 3.

1.3.3 Adaptive Merging Algorithm

The third approach is adaptive integration of the range images according to the shape of the

object. The original algorithm produces a mesh model of the finest resolution everywhere;

however, the dense sampling for generating a mesh model is not necessary where the shape

of the object is near planar. Thus, we propose an algorithm to construct the 3D model in

an efficient representation. By taking the surface curvature into account when splitting

the voxels recursively in an octree manner, the resulting 3D surface will be subdivided

more in high curvature areas and less in surface areas that are near planar. Therefore,

the resulting geometric model will require less triangular patches to represent the object

surface. This is similar to research on mesh model simplification algorithms based on

surfaces [33, 41, 42], while we reconstructed a simplified 3D model through a range

image merging process based on implicit surface representation.

The simplification is done when splitting voxels recursively, enabling better preservation

of the topology and mass of the object compared with the results of other volume based

simplification methods [86, 87]. Frisken et al.[31] proposed adaptive sampling of the

signed distance field; however, their method does not produce a triangular mesh model.

For converting the volumetric representation of the 3D model to a triangular-based mesh

model, we propose an extended version of the marching-cube algorithm; this version han-

dle voxels in different resolutions. The proposed method is described in Chapter 4.

1.4 Merging Photometric Attributes of Range Images

Based on Wheeler’s algorithm to robustly integrate multiple range images, we propose

a range image integration method which can construct 3D models with photometric at-

tributes. Considering applications that utilize geometric models, for instance, 3D object

recognition and localization tasks, it is desirable to construct 3D models with additional

attributes such as color and intensity. With the additional information provided by photo-

metric attributes, higher accuracy and robustness can be expected from those applications.

By taking a consensus of the appearance changes of the target object from multiple range
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images, we reconstructed the 3D model with appearance values attached per vertex, suc-

cessfully discarding outliers due to noise produced in the image-capturing process. This

algorithm, taking a consensus of photometric attributes, can also be used to derive the rigid

part of the appearance change on the object surface, providing a 3D model with Lamber-

tian reflected light values under a static illumination environment. In some sense, our

method is analogous to “Voxel Coloring” [84, 16, 50], where photometric consistency is

used to carve a volume to reconstruct a geometric model with texture. Our framework goes

the opposite way; we already have 3D information; from it, we construct a photometric

consistent geometric model. The method is described in Chapter 5.

1.5 Refining Range Images

The errors of the final 3D model are considered to come from the following factors:

(a) A measurement error on the range images

(b) A matching error on the aligning process

(c) A quantizing error on the merging process

The type (b) and (c) errors depend on the object shape and the algorithm, and so are

solved by selecting a suitable algorithm according to the object. For the type (a) error,

Taubin [91] used the spatial smoothing filter, but fine features can be lost during this

procedure. Basically, this kind of error cannot be avoided from one range image by using

any software algorithms.

Taking many range images of the same surface is one of the solutions for this problem.

Generally, some range finders improve measurement accuracy by multiple observations.

Wheeler’s method [97] reduces the error using multiple range images based on this con-

sideration, but is weak if range images have high frequent errors. The signed distance

is calculated along the normal direction of the surface. If the normal directions are not

reliable because of a measurement error, then the final merging result is also not reliable.

We propose a new method to avoid this weakness and improve the accuracy of the final

3D model. This reduces the measurement errors on the distance value in the overlapping

areas of the aligned range images. By applying this method before the merging process,
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we extract a more precise model by taking a consensus of the range images. Unlike the

existing spatial filtering method, our method is able to not only smooth the surface of the

final 3D mesh model, but also to extract the fine features. The method is described in

Chapter 6 in detail.

1.6 Flying Stereo Range Finder

To solve the issue of covering the unobservable surface from the ground, we developed a

new range scanning system, which obtains a dense range image by stereo matching. It is

loaded on a balloon, and scans large-scale objects from the air. If a range finder is loaded

on a balloon, it will move because of wind or other reasons. Therefore, two approaches

can be considered. First, we can use a sensor whose acquisition is finished at a moment at

which we can ignore the motion of the sensor. Second, we can compensate for the motion

by measuring the motion using other sensors. In this paper, we chose the first approach,

which is the simpler one. The precision of a stereo range finder is lower than that of a laser

range finder; however, it has the great advantage of speed, in that the acquisition of the

stereo range finder is completed in less than a second, while a typical laser range finder

takes about 10 seconds to several minutes for each scan.

Though stereo matching can be accomplished by 2 cameras, the multi-baseline stereo

matching method [69] improves the precision of range sensing, which takes matching by

multiple pairs of cameras using more than 3 cameras. Thus, we constructed a system

consisting of 9 cameras. Chapter 7 describes the system we developed.

1.7 Complementing Unobservable Surfaces

Even after scanning an object using various kinds of sensors, there may still be unobserved

surfaces. As an approach to fill these scanning holes, we developed a new stereo range

finder, which will be described in Chapter 7. We propose one more alternative approach

to filling these holes. It complements the geometric and photometric model of the object

by estimating the neighborhood area of the holes.

Since filling the holes of a modeling is a major issue in this field, several approaches

have been proposed. The simplest approach is interpolation by triangulating the bound-

19



ary vertices of a hole. If a hole is small and the topology is simple, the triangulation

works well; however, triangulation becomes difficult if the surface is intricate and the

hole is large. The second approach is fitting a mesh model around the hole, that is, a

three-dimensional version of snakes [46]. In these methods [22, 12], a deformable surface

moves iteratively to fit the model with a satisfying smoothness constraint. The third ap-

proach is called “space carving”. Curless and Levoy [17] tagged one of the states, unseen,

empty and near the surface, to each voxel during the merging process. The hole filling is

accomplished by generating a surface between voxels of unseen state and ones of empty

state. The fourth approach is interpolation by volumetric representation, such as level-set

approaches [98, 103] and re-computation of implicit surface [10, 20].

Our method is similar to the third and fourth approaches. In our merging framework, we

have already computed the SDF; however, the sign of the SDF becomes sensitive around

the holes. Thus, we take a consensus of the sign of the SDF with those of the neighbor

voxels. We describe this technique in Chapter 8.
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Chapter 2

Parallel Processing of Merging

2.1 Consensus Surface Algorithm

In this chapter, we first describe the basic merging algorithm [97], which is called the

“consensus surface algorithm.”

2.1.1 Signed Distance Field

This method first constructs a volumetric representation, which is called a signed dis-

tance field (SDF), using all range images. Those range images are assumed to be already

aligned into a common coordinate system. In this volumetric representation, 3D space is

partitioned into a three dimensional grid of cubes. Each cube is called a“voxel” (volume

element). A voxel has a signed distance f(x) from the center of the voxel x to the nearest

surface. The sign of f(x) is positive if the center x is outside the object; it is negative if

the center x is inside the object. Because the surface of the object is represented implicitly

by f(x) = 0, f(x) is called the implicit surface function. Figure 2.1 shows a 2D slice

view of an example of SDF, which is composed of 9 voxels. If the surface is converted to

SDF, the f(x) of each voxel is computed as shown. The voxels inside the object are dark

gray, and the ones outside the object are white. Consequently, the issue of merging range

images is how we compute the implicit surface function f(x) of each voxel using multiple

range images.
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Figure 2.1: An example of implicit surface function computed from an explicit surface.

2.1.2 Taking Consensus of the Range Images

For computing the signed distance f(x) of an arbitrary point x using multiple range im-

ages, the simplest solution is to find the nearest neighbor point of range images from x.

Figure 2.2 shows an example of a situation in which there are three range images which

are intersecting between two neighboring voxels. The center points of the two voxels are x

and x�. Each range image consists of 3D vertices and triangles that connect the neighbor-

ing vertices. The normal vectors of the range images in Figure 2.2 look outside the object.

In the simplest solution, it finds the nearest neighbor point of all range images from the

center of each voxel. The magnitude of the signed distance |f(x)| is the distance from the

center x to the nearest point p. If (x− p) ·n > 0, where n is the normal vector of p, the

sign of f(x) is positive; otherwise, the sign of f(x) is negative. In the situation of Figure

2.2, since x is outside the object and x′ is inside, it should be f(x) > 0 and f(x′) < 0.

However, f(x) becomes negative because (x − p) · n < 0. Such a misjudgment occurs
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Figure 2.2: The incorrect sign of f(x) occurs due to a single noisy triangle in the simple

solution.

since the nearest point p is an outlier caused by the error of scanning. Consequently, the

implicit surface of the object is not generated between these two voxels.

To solve the problem, the consensus surface algorithm first finds the nearest point for each

range image respectively. In Figure 2.3, the point p0 is one of the nearest points from x.

Next, it searches the nearest points of the other range images from the point p0. In this

case, the points p1 and p2 are found as the corresponding points. The algorithm compares

the position and normal vector of the nearest point from x and those of its corresponding

points. Now, the normal vector of p0 and p1 is n0 and n1. If the following predicate is

satisfied, the surface 〈p0, n0〉 and 〈p1, n1〉 are regarded as the same surface,

SameSurface(〈p0, n0〉, 〈p1, n1〉) = (2.1)



True (‖ p0 − p1 ‖≤ δd) ∧ (n0 · n1 ≥ cos θn)

False otherwise
,

where δd is the maximum allowed distance and θn is the maximum allowed difference in

normal directions. In Figure 2.3, 〈p0, n0〉 and 〈p1, n1〉 are the same surface; however,

〈p0, n0〉 and 〈p2, n2〉 are not regarded as the same.

Next, the algorithm uses the weighted voting scheme to discard isolated surfaces. It com-

putes the confidence ω by summing up the confidence of each surface which is regarded
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Figure 2.3: Taking the consensus of range images: First, we find the nearest neighbor

point from the center of a voxel (the solid arrow). Second, we find the nearest neighbor

points of the other range images from the first nearest neighbor point (the dotted arrows).

as the same. If ω is larger than the threshold θquorum, the surfaces have consensus; and

the averaged surface is called “consensus surface”. The confidence of the surface of a

range image is proposed to be computed by v ·n in [97], where v is the viewing direction.

However, since the confidence of the surface of a range image depends on the range finder,

we simply use the number of the same surfaces as ω.

Figure 2.4 shows that the consensus surface algorithm is applied to the same situation with

Figure 2.2. It computes three signed distances from x, which are already averaged among

the same surfaces. In Figure 2.4, the consensus surfaces are A and B; the surface C does

not have consensus. Thus, the final signed distance from x is chosen from A or B. Since

the magnitude of A is smaller than that of B, A is chosen in this case. We can discard

the isolated observation C. Therefore, f(x) becomes positive and the implicit surface is

successfully generated.
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Figure 2.4: Consensus surface algorithm: The signed distance is chosen from the consen-

sus surfaces inside the gray circle.

2.1.3 Subdividing Voxels Based on Octree

To find out where the implicit surface is, we have to compute the signed distances of all

voxels around the zero level of the implicit function. It is costly to compute the signed

distances of all voxels, since the computational cost is O(n3) if the volume of interest

is uniformly divided into n × n × n voxels along each axis. Curless and Levoy [17]

efficiently traversed the volume by resampling range images along scanlines of voxels,

since their method finds corresponding points on the screen space by projecting voxels

and a range image. Level-set methods [98, 103, 85] use the narrow-band method to reduce

the computational cost, which updates the finite band of voxels on either side of zero level.

Wheeler [97] proposed the strategy of computing signed distances by subdividing the

volume of interest recursively in an octree manner. It starts the entire volume as a voxel

for computing the signed distance; it subdivides the voxel if the signed distance satisfies

the following inequality,

|f(x)| < 3
√

3
2

w, (2.2)

where w is the width of the voxel of interest. If (2.2) is satisfied, the implicit surface can

exist inside the voxel or the neighbor voxels. It stops subdividing if the voxel becomes the
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Figure 2.5: An example of a 2D slice of an octree subdividing volume. The resolution is

high around the surface and low elsewhere.

finest resolution. Since the width of voxels which contains the implicit surface is the same

(see Figure 2.5), MC [53] can be straightforwardly applied to the voxels subdivided in an

octree manner. Subdividing voxels in an octree manner practically reduces the computa-

tional cost to O(n2), because the finest resolution voxels exist only near the surface.

2.1.4 Marching Cubes Algorithm

Though a volumetric representation such as SDF can be visualized by volume render-

ing [29], a mesh model is suitable for our goal, which is geometric modeling and the

analysis of objects. Lorensen and Cline [53] proposed a method which converts the volu-

metric representation to a mesh model. The algorithm is called marching-cubes algorithm.

The marching-cubes algorithm constructs a surface mesh by “marching” around the cubes

which contain the zero level of the implicit surface f(x) = 0. In Figure 2.6, the white and
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Figure 2.6: Marching Cubes: An implicit surface is approximated by triangles. ◦: voxels

of outside surface. •: voxels of inside surface.

black circles are the center points of the voxels. The white ones mean the outside surface;

and the signed distance is more than 0. Also, the black ones mean the inside surface; and

the signed distance is less than 0. The marching-cubes algorithm is applied to each cube,

which consists of 8 adjacent voxels. The surface triangles are generated to intersect be-

tween a black circle and a white one. The position of the vertex of a triangle p is on the

edge of the cube; and it is interpolated by the following equation:

p = x1 +
−d1

d2 − d1
(x2 − x1), (2.3)

where x1 and x2 are the center points of adjacent voxels, and d1 and d2 are signed dis-

tances of these voxels. The marching cubes algorithm uses a lookup table to determine

how triangles are generated. Since the original algorithm [53] has ambiguity in the al-

gorithm of generating triangles, Nielson and Hamann [65] proposed a method to resolve

ambiguous cases.

2.1.5 Summary of Consensus Surface Algorithm

We summarize the consensus surface algorithm. First, Algorithm 2.1 shows the pseudo

code of the algorithm to find the nearest surface from an arbitrary point x with the taking

of a consensus of range images Rset. It searches the nearest surface of a range image

by SearchNearestNeighbor(x, R), which is accomplished using a k-d tree [30]. The k-d

tree is a structure for finding the nearest neighbor point in k dimensional space. If the
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confidence ω of the found surface 〈p, n, ω〉 is larger than θquorum, let it into the set of

consensus surfaces Cset; otherwise, let it into Oset. If Cset 	= 0, the nearest surface of

Cset is chosen; otherwise, the most confident one of Oset is chosen.

Second, Algorithm 2.2 shows the algorithm to compute the signed distance of a node

of octree N as the voxel of interest. The TraverseOctree(N, dmax, Rset) is recursively

called with subdividing the current node of the octree. It starts the entire volume as a voxel

and stops if |v| < 3
√

3
2 w or the depth of the current node reaches the maximum depth

dmax. At the maximum depth, the entire volume is divided into 2dmax×2dmax×2dmax

voxels along each axis.
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Algorithm 2.1 ConsensusSurface(x, Rset)
Input: Point: x

Input: Set of Range Images: Rset
Local: Point: p, p1, p2

Local: Normal Vector: n, n1, n2

Local: Weight: ω, ω1, ω2

Local: Set of 〈p, n, ω〉: Cset, Oset
Output: Tuple of Point, Normal and Weight: 〈p, n, ω〉

for all R ∈ Rset do

p← n← ω ← 0

〈p1, n1, ω1〉 ← SearchNearestNeighbor(x, R)

for all R′ ∈ Rset do

〈p2, n2, ω2〉 ← SearchNearestNeighbor(p1, R
′)

if SameSurface(〈p1, n1〉, 〈p2, n2〉) then

p← p + ω2p2

n← n + ω2n2

ω ← ω + ω2

end if

end for

p← 1
ω p

n← n
‖n‖

if ω ≥ θquorum then

Cset ← Cset ∪ 〈p, n, ω〉
else

Oset ← Oset ∪ 〈p, n, ω〉
end if

end for

if Cset 	= 0 then

〈p, n, ω〉 ← argmin〈p,n,ω〉∈Cset ‖ x− p ‖
else

〈p, n, ω〉 ← argmax〈p,n,ω〉∈Oset ω

end if

return 〈p, n, ω〉
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Algorithm 2.2 TraverseOctree(N, dmax, Rset)
Input: Current Node of Octree: N

Input: Maximum Depth of Octree: dmax

Input: Set of Range Images: Rset
Local: Center of N : x

Local: Octree Depth of N : d

Local: Width of N : w

Local: Tuple of Point, Normal and Weight: 〈p, n, ω〉
Output: Signed Distance of N : v

〈p, n, ω〉 ← ConsensusSurface(x, Rset)

if (x− p) · n > 0 then

v ←‖ x− p ‖
else

v ← − ‖ x− p ‖
end if

if |v| < 3
√

3
2 w ∧ d < dmax then

for all children Ni(i = 0, . . . , 7) of N do

TraverseOctree(Ni, dmax, Rset)

end for

end if
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2.2 Parallel Computation of Signed Distance

We scanned a cultural heritage object, the statue of the Great Buddha of Kamakura, in

Japan. When we tried to merge the range images obtained, we found that the size of the

range images was too large to be process[ed by a single computer, because a greater mem-

ory capacity was needed, and the computational time was very long. Thus, we propose a

parallel merging method to accomplish the merging of a huge size of range images [77].

We constructed a PC cluster for parallel processing and developed a parallel algorithm

which consists of the following two methods:

• Distributed allocation of range images and the parallel computation of the nearest

neighbor search

• Parallel subdivision and traversal of an octree

2.2.1 Distributed Allocation of Range Images

In Algorithm 2.1, ConsensusSurface(x, Rset) computes the nearest surface 〈p, n, ω〉 of

each range image R from the center point x of a voxel by SearchNearestNeighbor(x, R).

Since a range image includes a lot of vertices and triangles, the computational cost of

searching the nearest surface is very high; it occupies most of the cost of the consensus

surface algorithm. Moreover, we have to handle many range images when the target is

a cultural heritage object. Thus, it is difficult for a single computer to allocate all of the

range images. We propose a new method, which distributes the images to multiple PCs to

allocate them, and computes the signed distances in parallel.

ConsensusSurface(x, Rset) executes SearchNearestNeighbor(x, R) for each range im-

age sequentially. Since each search is independent from the other searches, we can execute

them in parallel. Figure 2.7 shows the parallel computation of finding the nearest surface

in the same situation of Figure 2.4. If range images R1, R2 and R3 are allocated by PC1,

PC2 and PC3, respectively, PC1 computes the nearest neighbor points A and A′ only for

R1. Similarly, PC2 finds only B, B′ of R1; and PC3 finds only C, C′ of R2.
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Figure 2.7: Distributed allocation of range images and parallel computation of signed

distances

2.2.2 Parallel Subdivision and Traversal of Octree

Algorithm 2.2 computes the signed distance of each node of an octree sequentially by

subdividing a voxel and traversing its children. Since the traversal of one of its children is

independent from the traversals of the other children, we can traverse subdivided children

in parallel. We assigned a partial space of the entire volume to each PC, as shown in Figure

2.8. A partial space is represented by a subtree of the octree. Since no synchronization

is necessary while traversing subtrees and the results of computing signed distances are

collected after the traversal of every subtree is completed, we can make full use of the

power of the PCs. Thus, the performance of the parallel traversal algorithm increases

almost linearly according to the number of PCs used.

2.2.3 Combining Two Parallel Algorithms

Since the computation of signed distances occurs independently and asynchronously for

each traversal of octree, each traversal consists of a group of processes, a process of

traversing the octree, and several processes of computing signed distance (see Figure 2.9).
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Figure 2.8: Assignment of partial space of the octree to each PC and parallel traversal of

subtrees

The number of the processes of the computing signed distances depends on the data size

of the range images. In our implementation, since the maximum memory size of a process

is restricted by the 32bit memory of a PC, it is about 2GB. If the data size is larger than

2GB, we increased the number of traversing processes to reduce the size allocated for each

process to be less than 2GB. Moreover, if the allocated size was larger than the size of the

physical memory, we had to manage the working set of the data. We accomplished this

management by using the memory mapping function of the operating system.

The pseudo code of the first method, the distributed allocation of range images, is shown in

Algorithm 2.3. The change from Algorithm 2.1 is indicated by gray boxes. The sequential

execution of SearchNearestNeighbor is replaced by ParallelSearchNearestNeighbor.

Since the computational cost of ParallelSearchNearestNeighbor is expected to be equal

to SearchNearestNeighbor, the computational cost of Algorithm 2.3 becomes O(m),

while that of Algorithm 2.1 is O(m2), where m is the number of range images. However,

the computational cost of Algorithm 2.3 is actually worse than O(m), because synchro-

nization and communication is necessary after searching the nearest neighbor point in

parallel.

Algorithm 2.4 shows the pseudo code of the second method, parallel subdivision and

traversal of an octree. It assigns a subtree of the octree to an idling process M , until

sending tasks to all processes. The depth of the distribution ddist is set to be that 8ddist is

larger than the number of Mall in order to balance the load of each process; for example,
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Figure 2.9: Combination of parallel computation of signed distances and parallel traversal

of partial trees

we used ddist = 4 when the number of Mall = 16 and dmax = 10. For the node of the

octree whose depth is less than ddist, we computed the signed distances by a single pro-

cess or by calling ParallelTraverseOctree(Mall, ddist − 1, 1, Rset). After finishing the

computing signed distances for all subtrees, the result was the creation of a whole octree.

34



Algorithm 2.3 ParallelConsensusSurface(x, Rset)
Input: Point: x

Input: Set of Range Images: Rset
Local: Point: p, p1, p2

Local: Normal Vector: n, n1, n2

Local: Weight: ω, ω1, ω2

Local: Set of 〈p, n, ω〉: Cset, Oset, Pset, Qset
Output: Tuple of Point, Normal and Weight: 〈p, n, ω〉

Pset ← ParallelSearchNearestNeighbor(x, Rset)

for all 〈p1, n1, ω1〉 ∈ Pset do

p← n← ω ← 0

Qset ← ParallelSearchNearestNeighbor(p1, Rset)

for all 〈p2, n2, ω2〉 ∈ Qset do

if SameSurface(〈p1, n1〉, 〈p2, n2〉) then

p← p + ω2p2

n← n + ω2n2

ω ← ω + ω2

end if

end for

p← 1
ω p

n← n
‖n‖

if ω ≥ θquorum then

Cset ← Cset ∪ 〈p, n, ω〉
else

Oset ← Oset ∪ 〈p, n, ω〉
end if

end for

if Cset 	= 0 then

〈p, n, ω〉 ← argmin〈p,n,ω〉∈Cset ‖ x− p ‖
else

〈p, n, ω〉 ← argmax〈p,n,ω〉∈Oset ω

end if

return 〈p, n, ω〉
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Algorithm 2.4 ParallelTraverseOctree(Mall, dmax, ddist, Rset)
Input: Set of Processes for Parallel Traversing: Mall
Input: Maximum Depth of Octree: dmax

Input: Depth of Octree for Distribution: ddist
Input: Set of Range Images: Rset
Local: Set of Idling Processes: Midle
Local: Set of Octree Nodes: Nset

Midle ←Mall
Nset ← all nodes of octree at depth ddist
for all N ∈ Nset do

M ∈Midle
Midle ← Midle ∩ M̄

execute TraverseOctree(N, dmax, Rset) by process M in parallel

if Midle = 0 then

Wait finishing one of TraverseOctree

Midle ← finished process M

end if

end for

repeat

Wait finishing one of TraverseOctree

Midle ← Midle∪ finished process M

until Midle = Mall
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Figure 2.10: The Great Buddha of Kamakura

Figure 2.11: Range Images of the Great Buddha of Kamakura

2.2.4 Evaluation

To evaluate the performance of the proposed method we constructed a PC cluster, which

consisted of eight PCs. Each PC has two 800MHz PentiumIII processors and 1GB physi-

cal memory. They were connected by a 100BASE-TX ethernet. The target object was the

statue of the Great Buddha of Kamakura, which has a height of about 11.3m (see Figure

2.10). We acquired 16 range images of the Buddha by Cyrax2400 [18]. The scanning

range of the sensor was about 1.5m to 50m. Each range image had about 0.3 million ver-

tices and 0.6 million triangles (see Figure 2.11). Figure 2.12 shows the merging result of
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Figure 2.12: Merging result of the Great Buddha of Kamakura

Table 2.1: Results of computation time of merging with different numbers of traversals

# of Traversals Computational Time

1 945 min.

2 450 min.

4 227 min.

8 116 min.

16 61 min.

those range images, using the proposed parallel merging algorithm. The volume is divided

to 1024× 1024× 1024(= 210) voxel in the finest resolution, and the width of the finest

voxel is about 1.4cm. The merged model consists of 3.0 million vertices and 6.0 million

triangles. The mean difference between the merged model and a range image is 2.7mm. It

is appropriate compared the maximum error of Cyrax2400, which is about 7–8mm.

We tested our merging algorithm by changing the number of traversals. Table 2.1 shows

the result of the computational time. Since the time was almost inversely proportional to

the number of traversals (see Figure 2.13), we proved that our algorithm efficiently uses

the computational resources.
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Figure 2.13: Relationship of the number of traversals and computational time

2.3 Summary

We have proposed a new method to merge a huge amount of range images by parallel com-

putation of the signed distance using a PC cluster, which is extended from the consensus

surface algorithm. It consists of the following two components:

1. Distributed allocation of range images to multiple PCs

2. Parallel traversal of subtrees of octree

We handled a huge amount of range images, which were larger than the size of the physical

memory, by the first technique. The second technique makes full use of many CPUs in a

PC cluster, and reduces the computational time.
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Chapter 3

Effective Nearest Neighbor Search

The nearest neighbor problem in multidimensional space is a major issue in many appli-

cations. Many methods have been developed to search for the nearest neighbor of a query.

A simple exhaustive search computes the distance from a query to every point. Its com-

putational cost is O(n). This approach is clearly inefficient. Hashing and indexing[99, 8]

search in constant time, these methods require a large space to store the index table. Some

hierarchical structures have been proposed to access multidimensional data, such as k-d

tree[4, 30], quadtree[79], k-d-B tree[74], hB-tree[52] and R-tree[35]. These trees differ in

structure, but their searching algorithms are similar. For details, refer to [32].

The k-d tree[4, 30] is one of the most widely used structures for searching for nearest

neighbors. It is a kind of binary tree that partitions space using hyperplanes that are per-

pendicular to the coordinate axes. If a k-d tree consists of n records, the k-d tree requires

O(n log2 n) operations to construct and O(log2 n) to search. In this chapter, we analyze

the search algorithm using the k-d tree and propose a novel method of pruning branches

to reduce the computational cost.

A case in which a search finishes in O(log2 n) is an ideal case, in that only a leaf node is

examined, and the nearest neighbor belongs to it. However, a search using a k-d tree does

not actually finish in logarithmic time. In many cases, a search needs to examine several

leaf nodes before finding the nearest neighbor point. In the worst case scenario, all leaf

nodes must be examined. When the nearest neighbor is far from a query, the number of

leaf nodes is apt to increase (see 3.1). Therefore, we introduced a novel test that takes

place during the traversing of the k-d tree. This test compares the distance from a query to
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the nearest neighbor with a threshold defined by the user (See 3.2).

Since the threshold depends on the application, we tested our new method in the following

three applications: aligning range images, merging range images, and retrieving similar

color images. The first two applications were three-dimensional cases, in which 3-D mod-

els were compared. For aligning range images, several methods have been proposed to

speed up the search of a k-d tree by caching the closest points [88, 34]. The third appli-

cation is a high-dimensional case, and we analyzed the effectiveness of our method for

high-dimensional applications. Nene and Nayar[62] proposed a method to find the near-

est neighbor point within a distance ε in high-dimensional space. However, this method

cannot find any point outside the distance ε, and it has to re-create the data structure if ε

changes.

3.1 Basic Search Algorithm using k-d Tree

First, we explain the basic algorithm by which the k-d tree searches for the nearest neigh-

bor. Figure 3.1 shows a 2-D example of a k-d tree that consists of four leaf nodes labeled

A, B, C and D. We do not describe how to construct a k-d tree in this paper; please refer

to [4, 30] for more details.

3.1.1 Finding the Nearest Neighbor Point

Now we will find the nearest neighbor point from a query point p. In the searching algo-

rithm, we will start at the root node and traverse down to the leaf node that contains the

query point. In Figure 3.1, the leaf node A contains p, and we compute the distances from

p to the records of A.

To avoid examining all leaf nodes, the algorithm prune branches by the Bounds-Overlap-

Ball (BOB) test[30]. After node A is examined, the distance from p to the nearest neighbor

is d. We examine B if d satisfies the following BOB test:

d > dB, (3.1)

where dB is the distance from the query point p to the boundary of A and B. Similarly,

we compare d with dC and dD to decide whether or not we will examine C and D. In this

case, d satisfies (3.1) for B, C and D. Thus, we have to examine all nodes.
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Figure 3.1: A 2-D example of a k-d tree

The basic search algorithm is represented by a recursive function (Algorithm 3.1). N is the

node interested in. p is the query point. d is the distance of the current nearest neighbor.

rightson(N ) and leftson(N ) mean the sons of node N . drightson(N) and dleftson(N) are

the distance from the query to the boundary of the right/left son of N .

3.1.2 Estimating Computational Cost

If a k-d tree contains n records, the depth of the tree is O(log2 n). Because of this, Fried-

man et al.[30] says that the computational cost of searching for the nearest neighbor using

the k-d tree is O(log2 n). However, this is only for a case in which the leaf node that

contains the query is examined, and all other branches are pruned by the BOB test.

Actually, in the worst case, such as Figure 3.1, no branch can be pruned, and the computa-

tional cost becomes O(n)1. In particular, when the distance d from the query to the nearest

neighbor is large in comparison with the distribution of records in the k-d tree, almost all

boundaries can be inside the ball.

1This is a rough estimation. A more accurate estimation is O(
∑log2 n

k=0
2k)
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Algorithm 3.1 SearchNearestNeighbor(N )
Input: Node N

if N is leaf node then

Examine records of N

else

if p is inside leftson(N ) then

Search(leftson(N ))

if d > drightson(N) then

Search(rightson(N ))

end if

else

Search(rightson(N ))

if d > dleftson(N) then

Search(leftson(N ))

end if

end if

end if

3.2 Bounds-Overlap-Threshold Test

In this section, we propose a new method to reduce the computational cost of searching

for the nearest neighbor points using the k-d tree. Many applications need nearest neigh-

bor points that are actually near queries. Thus, when the records are far from the queries,

they are either not used or contribute minimally. However, as we estimated the compu-

tational cost in the previous section, if all records in a k-d tree are far from a query, the

computational cost is larger than it is when the nearest neighbor is close.

If we can assume that it is not important if the nearest neighbor is far from a query, it is

sufficient that we find out that there are no records near the query. Then, we propose a new

method to reduce the computational cost when the nearest neighbor is far from a query.

We introduce the Bounds-Overlap-Threshold (BOT) test to the searching algorithm.

Now, we assume that it is not important if the nearest points are farther than δ. Figure 3.2

shows the same situation with Figure 3.1. When we decide whether to examine node B or
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Figure 3.2: The Bounds-Overlap-Threshold (BOT) test

not, we define the BOT test as follows:

δ > dB. (3.2)

We prune a branch if the BOB test or the BOT test fails. Since the BOT test failed in the

cases of B and D, we did not examine them. However, we examined C, since d > dC and

δ > dC .

If d ≤ δ, the algorithm is completely the same as that before the BOT test is introduced. If

d > δ, the new algorithm may not find the true nearest neighbor point. The distance dtrue

from the query to the true nearest neighbor is

δ < dN < dtrue ≤ d, (3.3)
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Algorithm 3.2 SearchNearestNeighborBOT(N )
Input: Node N

if N is leaf node then

Examine records of N

else

if p is inside leftson(N ) then

Search(leftson(N ))

if d > drightson(N) ∧ δ > drightson(N) then

Search(rightson(N ))

end if

else

Search(rightson(N ))

if d > dleftson(N) ∧ δ > dleftson(N) then

Search(leftson(N ))

end if

end if

end if

where dN is the smallest distance from the query to the boundary of node N, which is

larger than δ.

If the maximum distance of two points in a k-d tree is 2D, the volume of the hypersphere,

which contains all points of a k-d tree, is proportional to Dk. The volume of the hyper-

sphere of radius δ is also proportional to δk. Therefore, if the points in a k-d tree have

uniform distribution, our new method reduces the computational cost of the worst case

from O(n) to O(( δ
D)kn).

The search algorithm with the BOT test is represented by a recursive function (Algorithm

3.2). N is the node interested in. p is the query point. d is the distance of the current

nearest neighbor. rightson(N ) and leftson(N ) mean the sons of node N . drightson(N)

and dleftson(N) are the distance from the query to the boundary of the right/left son of N .

The difference from the basic algorithm is illustrated by gray boxes.
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Figure 3.3: Relationship between distance from a query to the nearest neighbor and the

number of records examined using the basic search algorithm for merging range images.

3.3 Applying to Consensus Surface

As described in Chapter 2, to merge range images, we convert the images to volumetric

representation by computing the signed distance field (SDF) from the multiple range im-

ages. We create a mesh model of the whole object by converting from the SDF by using

the marching cubes algorithm[53]. If the distance from a voxel to the range images is

larger than
√

3
2 w, where w is the interval of voxels, there is no surface around the voxel.

Thus, it is enough for us to find that no point in the k-d tree is closer than
√

3
2 w, and we set

δ =
√

3
2 w.

Our merging method, which is based on Wheeler’s method[97], reduces the computation

of the SDF in an octree manner. Therefore, the voxel width w varies according to the

depth of octree subdivision to which the current voxel belongs. We change the threshold

δ as well as the voxel width w.
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Figure 3.4: Relationship between distance from a query to the nearest neighbor and the

number of records examined with the BOT test for merging range images.

Figure 3.3 and Figure 3.4 shows an example of the distribution of the number of records

examined during the search for a nearest neighbor point in the merging application. When

we search for the nearest neighbor points using the BOT test, the number of records exam-

ined gets closer to 1 at any distance from the query. This is because we adjust threshold

δ according to the voxel width. In this example, the total numbers of records examined

are 11,844,253 without the BOT test and 2,716,475 with the BOT test. Specifically, the

computational cost of searching the nearest neighbor points is reduced to 22.9% of that of

the basic search algorithm.
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a single mesh model

Texture mapping

Figure 3.5: Steps of geometric and photometric modeling of an object

3.4 Other Applications

To test our new method, we considered two other applications that use nearest neighbors

in a multidimensional space: aligning range images and retrieving similar images. The

former application is for 3-D cases, and the latter is for a higher-dimensional case.

3.4.1 Aligning Range Images

Figure 3.5 shows the steps in modeling an object’s shape (same with Figure 1.2). We

can acquire the shape of an object from various viewpoints using range finders[18, 58]. A

range image acquired by the range finders contains part of the shape of an object. Thus, we

capture range images from various viewpoints to acquire the whole shape of the object. We

do not know the mutual relationship of the range images a priori. Therefore, we align them

into a common coordinate system using iterative registration techniques [6, 97, 72, 55]. To

find corresponding points between two range images, we use the nearest neighbor points

by searching a k-d tree that we construct from each range image.
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In aligning range images, some methods remove wrong correspondences by thresholding

or M-estimation [72, 97, 55]. Thus, in computing the posture of range images, we can

assume that the presence of corresponding points farther than the threshold distance is

not important. In this experiment, by considering the distribution of the error of the laser

range finder, we set the threshold δ = 1.0cm. Figure 3.6 shows the distribution of the

number of records examined during the search for a nearest neighbor point in the aligning

application.

When we use the basic search algorithm, the number of records examined grows according

to the distance from the queries. On the other hand, when we search for nearest neighbor

points using the BOT test, we can drastically reduce the number of records examined in

the area where the distance from the query is larger than d. (See Figure 3.7). The total

number of records examined are 1,842,640 without the BOT test, and 470,300 with the

BOT test. The computational cost of searching for the nearest neighbor points is regarded

as 25.5% of that of the basic search algorithm.

3.4.2 Retrieving Similar Images

The third application is image retrieval from the image database by comparing pixels of

color images. The difference between the first two applications and this one is the number

of dimensions. Since a vector stored in a k-d tree is a vector of RGB values converted from

a color image by arranging them in a raster scan manner, the dimension is very high. The

test image set we used is the Columbia-Utrecht reflectance and texture database[19]. We

used 100×100 pixels of the center of the database images, which are originally 640×480

pixels. Thus, the dimensionality is 3(RGB) ×100× 100 = 30, 000. For the criterion for

comparing vectors, we simply used

C12 =
∑
i,j

D2(i, j) (3.4)

D2(i, j) =
R,G,B∑

(I1(i, j)− I2(i, j))2,

where I(i, j) is the intensity of each RGB element. Each RGB element is normalized to

0.0-1.0 in the k-d tree.

We constructed a k-d tree that contained 2501 images, which is 20% of the original image

database. The number of reference images for the sake of comparison is 2135; these
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Figure 3.6: An example of the relationship between the distance from a query to the

nearest neighbor and the number of records examined, using the basic search algorithm

for aligning range images.

images were randomly sampled from the original database and blurred by a Gaussian

filter. That is, the original image of a reference image is not always contained in the k-d

tree.

Figure 3.9 shows the distribution of the number of records examined without the BOT

test. Because the dimensionality is very high, the BOB test does not work effectively.

Consequently, many image searches will examine all records of the k-d tree. We estimated

that a typical distance between a blurred image and its original image is less than 1000.

Thus, we set the threshold δ to 1000. Figure 3.10 shows the result with the BOT test of

delta = 1000. We see that the BOT test is less effective than low-dimensional cases, and

is also less effective than the BOB test. Because the distance from a query to the nearest

neighbor is summed up over all dimensions, we cannot set δ to a smaller value, even when
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Figure 3.7: Relationship between distance from a query to the nearest neighbor and the

number of records examined, using the BOT test for aligning range images.

each distance in a dimension is quite small.

Although the effectiveness of the BOT test is reduced in high-dimensional applications,

this test improves the efficiency of searching for nearest neighbors. The total numbers of

records examined are 4,666,740 without the BOT test and 1,746,480 with it. The compu-

tational cost of searching the nearest neighbor points is reduced to 37.4% of that of the

basic search algorithm.

3.5 Discussion

The performance of the BOT test depends on the application. In this section, we consider

the condition of the application in which our method works best. First, the most important

requirement in applying our method is that the threshold δ can be determined in the appli-
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Database images in a k-d tree

Reference image

(blurred by  Gaussian filter)

Figure 3.8: Image retrieval: Images are stored in a k-d tree. The k-d tree contains 20 % of

the original image database. A reference image is blurred by a Gaussian filter from one of

the images in the original database.

cation. After determining δ, the performance of the BOT test depends on the distribution

of distances from queries to nearest neighbor points. Our method works best when the

portion of the number of nearest neighbor points that are farther than δ becomes larger.

As shown in merging range images, our method can be applied with the variable threshold

δ without re-creating the structure of a k-d tree. Therefore, our method is efficient in cases

in which the appropriate threshold varies according to the situation.

In a high-dimensional case such as image retrieval, the BOT test is less effective than it

is in a low-dimensional case. However, since the performance improves drastically, as we

see in 3.4.2, our method can be applied to high-dimensional applications.

From the viewpoint of the correctness of the nearest neighbor point, if the distance is

smaller than δ, the found result is correct. If the distance is larger than δ, the distance

to the correct nearest neighbor is in the range given by (3.3). Thus, (3.3) gives us the

estimation for the distance of the true nearest neighbor. However, we cannot obtain a good

estimation for the vector of the true nearest neighbor. Therefore, we have to set δ larger

than the minimum distance of the vector of the nearest neighbor that we need to obtain.
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Figure 3.9: The relationship between the distance from a query to the nearest neighbor

and the number of records examined when the basic search algorithm is used to retrieve

similar color images.

3.6 Summary

In this chapter, we proposed a new algorithm for searching for the nearest neighbor us-

ing the k-d tree. If the nearest neighbor point is far from a query, it is not an important

nearest neighbor in many applications. Thus, we propose the Bounds-Overlap-Threshold

test, which does not search strictly by pruning branches if the nearest neighbor point is

beyond a threshold. This technique drastically reduces the computational cost if the near-

est neighbor is far from a query. Since the threshold of the BOT test can be changed

without re-creating a k-d tree, it is suitable for applications in which variable threshold is

considered. Finally, we discuss the performance, which depends on the distribution of the

distance from a query to the nearest neighbor.
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Figure 3.10: Relationship between the distance from a query to the nearest neighbor and

the number of records examined when the BOT test is used to retrieve similar color images.
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Chapter 4

Adaptive Merging Algorithm

The third approach to merging a huge amount of range images is an adaptive algorithm

of merging range images according to the shape of the object. The original algorithm

produces a mesh model of the finest resolution everywhere; however, the dense sampling

for generating a mesh model is not necessary where the shape of the object is near planar.

Thus, we propose two algorithms to construct the 3D model in an efficient resolution.

We consider two methods to compute the curvature of surface. The first one is the curva-

ture of an implicit surface. Since we compute the signed distance field (SDF) using range

images in our merging process, the curvature of the surface can be computed by SDF. If

the curvature around a voxel is near planar, we use the larger voxel of the octree to convert

to a mesh model. Thus, we can reduce the data size of the created mesh model.

The second method computes the curvature of a surface from the curvature of range im-

ages. Since the first method reduces the data size after computing SDF in the finest res-

olution everywhere of the volume of interest, it cannot reduce the computational cost of

computing the SDF. However, the second one reduces both the computational cost and the

data size of the mesh model, since it computes SDF only in high curvature areas.

4.1 Shrinking Octree Based on Curvature of Implicit Surface

To reduce the data size of a mesh model which is generated by the marching cubes al-

gorithm (MC), we shrink the octree created in the merging process by removing voxels

which are subdivided in an octree manner. If the curvature of SDF in a voxel is small and
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Algorithm 4.1 ImplicitCurvature(N )
Input: Current Node of Octree: N

Output: Curvature of SDF around N : κ

compute κ by (4.1)

if N is terminal then

return |κ|
else

for all children Ni(i = 0, . . . , 7) of N do

κi = ImplicitCurvature(Ni)

end for

return max(|κ|, |κi|)(i = 0, . . . , 7)

end if

the surface is near planar, we do not use the voxel to generate a mesh model by MC. The

mean curvature κ of SDF is computed by the following equation [85]:

κ = ∇ · ∇φ

|∇φ| =





(φyy + φzz)φ2
x + (φxx + φzz)φ2

y + (φxx + φyy)φ2
z

−2φxφyφxy − 2φyφzφyz − 2φzφxφzx





(φ2
x + φ2

y + φ2
z)3/2

, (4.1)

where φ is the SDF of the volume. φx means ∂φ
∂x and other subscripted notations similarly

mean partial derivatives. In the numerical implementation, the derivatives are calculated

by centralized differences.

The curvature of SDF is computed by Algorithm 4.1. We shrink an octree by removing

voxels whose curvature κ are less than a threshold κθ. Therefore, if the surface is near

planar, the voxels of finer resolution are removed from the octree, and the resolution of

the new octree becomes adaptive according to the curvature of the surface. Algorithm 4.2

shows the algorithm for removing voxels from the octree based on the curvature.

This approach need to generate a fine SDF and shrink it as a post process. Thus, the

computational cost becomes larger. Moreover, since this process is a simpilification of

a model, it can be replaced by the techniques of mesh simplification [33, 41, 42] after

generating a mesh model. Then, in the next section, we describe a method to reduce the

computional cost of generating a SDF.
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Algorithm 4.2 ShrinkOctree(N )
Input: Current Node of Octree: N

κ = ImplicitCurvature(N )

if κ < κθ then

remove N and its descendants from the octree

return

end if

if N is nonterminal then

for all children Ni(i = 0, . . . , 7) of N do

ShrinkOctree(Ni)

end for

end if

4.2 Subdividing Voxels Based on the Geometric Attributes of Range Images

As the second method, we determined the sampling interval of the signed distance depend-

ing on the variation of geometric attributes to efficiently represent the final mesh model.

As an example, we used the surface curvature. Depending on the change in surface cur-

vature, the proposed method coarsely samples in planar areas, consequently reducing the

amount of data and computation, while creating a finer model of an intricate object by

efficiently utilizing computation power.

Our method determines the variation of surface curvature comparing surface normals of

range images. We compare the normal ni of each 3D point of all range images inside

the voxel in interest and the normal n̄ of the approximated plane (see Figure 4.1), which

can be estimated by applying principal component analysis (PCA) to all point data in the

voxel. If the angle between the data point normals ni and approximate normal n̄ satisfies

max
i

(arccos(ni · n̄)) < δn, (4.2)

where δn is the threshold of the angle, the sampling interval is fine enough, and no further

voxel splitting is required.

To avoid erroneous subdivisions of voxels by the influence of noise included in each range

image, our method takes a consensus between range images on the decision of voxel sub-

division. Now, Nn is the number of range images which satisfies (4.2). Our method does
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not subdivide the voxel if

Nn > Tn, (4.3)

where Tn is the threshold of consensus for normal vectors.

Another approach to avoid erroneous subdivisions of voxels is taking the consensus of

range images before the merging process. The algorithm for taking consensus described

in Algorithm 2.1 requires an arbitrary point x and a set of range images Rset as input.

Thus, we can compute the consensus of each vertex of range images. By computing the

consensus of vertices a priori, we only use vertices which have sufficient consensus for

computing (4.2). We propose a novel method to computing the consensus of range images

in Chapter 6, which is applied before the merging process; therefore, the method can be

used to avoid the erroneous subdivisions of voxels.

The algorithm of traversing an octree with adaptive voxel subdivision is represented as Al-

gorithm 4.3. The changes from Algorithm 2.2 are indicated by gray boxes. To determine

if we subdivide the current voxel N or not, we consider the curvature of range images

inside the voxel by LocalCurvature(N, Rset) (see Algorithm 4.4). LocalCurvature re-

turns the number of range images which satisfies (4.2). Moreover, since we subdivide the

voxels adaptively, the voxels attain sufficient resolution even if the threshold value of the

magnitude of a signed distance is reduced to
√

3
2 w.

4.3 Marching Cubes for Adaptive Octree

The original marching cubes algorithm (MC) can be applied only to voxels that have the

same resolution (size of voxels). We extend the algorithm for the triangulation of voxels

in adaptive resolution generated from our method.

For voxels that are surrounded by voxels with the same resolution, the vertices of a cube to

march are the central points of 8 adjacent voxels. In a similar manner, voxels surrounded

by different size voxels will have a set of connected voxels in a form of quadratic pyramid

or other special forms to march. Figure 4.2 shows the edges connecting adjacent voxels

in an adaptive octree. The 3D space is partitioned into cubes or quadratic pyramids, etc.

Since these forms can be considered to be degenerated and transformed cubes, the original

marching cube algorithm can be applied to these irregular forms without creating new

tables of mesh generation for each form. When we use voxels of fixed resolution (grids
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Figure 4.1: Comparison of the normal vector of each vertex and the approximate normaln̄

by PCA

of gray lines), a mesh model of the dotted line is generated, and its vertices are on the

edge of cubes. When we use adaptively subdivided voxels (grids of black lines), the mesh

model of a solid line is generated, and its vertices are on the edge of transformed cubes. If

we subdivide the high curvature area into small voxels, we can effectively create a precise

mesh model. Since a transformed cube becomes a skewed rectangle or a triangle in a 2D

slice of the volume, as shown in Figure 4.2, the vertices of the mesh model generated by

MC are on those edges. The detailed algorithm used to determine the voxels to be used to

MC is described in Appendix A.

Figure 4.3 shows examples of a transformed cube in a 3D isometric view. Figure 4.3(b)

is a pyramid, since the upper four vertices are not subdivided. We can regard that (a)

becomes (b) by moving the upper four vertices of (a) to the same position, which have the

same signed distance. Thus, we can generate the isosurface of (b) by applying MC to (a),

which has the same signed distance with (b). MC uses a table to generate an isosurface,

which is classified by the state of signed distances of its eight vertices. Since we regard a

voxel of the adaptive octree as a transformed cube, we can apply MC without creating a

new table. In the case of Figure 4.3(b) and (c), two triangles are generated. However, the

number of triangles are reduced in the case of Figure 4.3(d), because the number of edges
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Algorithm 4.3 AdaptiveTraverseOctree(N, dmax, Rset)
Input: Current Node of Octree: N

Input: Maximum Depth of Octree: dmax

Input: Set of Range Images: Rset
Local: Center of N : x

Local: Octree Depth of N : d

Local: Width of N : w

Local: Tuple of Point, Normal and Weight: 〈p, n, ω〉
Output: Signed Distance of N : v

〈p, n, ω〉 ← ConsensusSurface(x, Rset)

if (x− p) · n > 0 then

v ←‖ x− p ‖
else

v ← − ‖ x− p ‖
end if

if |v| <
√

3
2 w ∧ d < dmax∧ LocalCurvature(N, Rset) > Tn then

for all children Ni(i = 0, . . . , 7) of N do

AdaptiveTraverseOctree(Ni, dmax, Rset)

end for

end if

of the transformed cube are reduced. Therefore, we removed the redundant vertices of the

mesh model after generating it by applying MC.

4.4 Experiment of Adaptive Merging

We experimented with the adaptive merging algorithm using range images of the Great

Buddha of Kamakura. The specification of the range images was the same with 2.2.4; we

acquired 16 range images by Cyrax2400 [18], which contained about 0.3 million vertices

and 0.6 million triangles in each range image. Figure 4.4 shows one of the range images

(column A), the merging result without adaptive subdivision (column B), and the merg-

ing result with adaptive subdivision (column C). The statistics of the merging process are
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Algorithm 4.4 LocalCurvature(N, Rset)
Input: Current Node of Octree: N

Input: Set of Range Images: Rset
Local: Set of Range Images: Rcurved

Compute the approximate normal vector n̄

Rcurved ← 0

for all R ∈ Rset do

for all normal vector ni of vertices inside N do

if arccos(ni · n̄) < δn then

Rcurved ← Rcurved ∩ R

end if

end for

end for

return Number of elements of Rcurved

Table 4.1: Statistics of models of the Great Buddha of Kamakura
number of points Time for Merging Mean Difference

(B) 3.0 million 61 min. N/A

(C) 1.4 million 25 min. 0.99 mm

described in Table 4.1. The adaptive merging algorithm reduces the amount of data and

computation time required using the original merging method. We compared the differ-

ence between (B) and (C) using Metro [13]. The mean difference (0.99mm) was quite

small compared to the height of the Buddha (11.3m tall).

The figures in the top row are rendered using triangle faces. The result of the adaptive

merging seems (C) completely the same as the result of the fixed resolution (B). However,

if they are rendered by a wireframe, as shown in the middle row, we can see that our adap-

tive merging algorithm generates larger faces in planar areas. Thus, the size of the result

of the adaptive merging is reduced to less than 50% of the result of the fixed resolution.

Consequently, the time for merging is also reduced to less than 50%. The figures in the

bottom row are zoom-ups of the forehead of the Buddha.
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Figure 4.2: Edges connecting adjacent voxels in an adaptive octree and the generate mesh

model by MC

4.5 Summary

We have proposed an algorithm for constructing a 3D model in an efficient representation.

Considering the surface curvature, we constructed 3D models that have higher detail in

surface areas that contain high curvature. We have proposed two approaches, one which

considers the curvature of the implicit surface of SDF after the merging process, and the

other, which is an adaptive merging technique based on the curvature of the range images.

We can efficiently use the computational resources by these methods.
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Figure 4.3: Examples of degenerated cubes and the surfaces generated by MC
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(A) (B) (C)

Figure 4.4: Adaptive Merging Results of the Great Buddha of Kamakura
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Chapter 5

Merging of Photometric Attributes of Range Images

In this chapter, we propose a novel method of merging photometric attributes attached

to range images. In applications utilizing geometric models, e.g., 3D object recogni-

tion/localization, non-rigid appearance variation plays a crucial role in the accuracy and

robustness. In particular,, specular reflection causes the appearance to change non-rigidly,

consequently making the whole process difficult. Thus, to date, most object recognition

and object localization algorithms simply neglect specular reflection as outliers, and as-

sume Lambertian surfaces for the target scene and model. To cooperate with this basic as-

sumption on photometric properties, it is highly desirable to construct the geometric model

to be used in such applications with Lambertian reflection properties. If the 3D model is

represented with photometric attributes that are rigid against changes in illumination and

viewing directions, a higher accuracy and robustness can be expected. Furthermore, if

the illumination directions and viewing directions can be pre-estimated when processing

recognition algorithms, a non-rigid appearance variation such as specular reflection can be

predicted and added to the 3D model appearance to further elevate the accuracy.

We accomplish this photometrically rigid 3D model construction in our range image inte-

gration framework. As examples of photometric attributes attached to range images, we

consider two different attributes: laser reflectance strength and intensity/color.
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Figure 5.1: Two images of the Great Buddha in Kamakura, using LRS values as pixel

values.

5.1 Laser Reflectance Strength Attached to Range Images

Laser range finders measure distance by shooting a laser and receiving its reflection from

the target object. The distance to a particular point on the target object is computed by

measuring the time duration between the laser shot and received back time in time-of-flight

range finders, by measuring the phase difference in phase-transition based range finders,

or by optical triangulation of the illuminant, surface, and optical sensors. In either case,

the ratio of the discharged laser strength and the reflected laser strength can be returned

per each 3D point. We will refer to this additional attribute of range images obtained from

laser range finders as laser reflectance strength (LRS). As the laser can be considered as

light with a very narrow wavelength distribution, almost a single value, the behavior of

the reflected laser on the target surface can be considered the same as the general light

reflection. Namely, almost isotropic reflection analogous to diffuse reflection and sharp

reflection distributed around the perfect mirror direction analogous to specular reflection

occurs. Since the laser reflected in the perfect mirror direction will not be observed from

the range finder direction, the portion of the laser that is reflected back can be considered

to be caused by this diffusive reflection. Figure 5.1 depicts two images using the LRS

values attached to each 3D point as pixel values, rendered from the view point of the laser

range finder.
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Figure 5.2: Reflection model of a laser light

LRS values are considered to depend on the characteristics of the surface, the incident

angle of laser light, and the distance from the sensor. The LRS value which we obtain

by a laser range finder is the ratio of the discharged laser strength and the reflected laser

strength. If we assume that the LRS value depends only on the diffusive reflection, the

relationship of the LRS value and the other parameters are represented by the following

equation:

I1 = I0e
−αx (5.1)

I2 = rI1e
−αx cos θ, (5.2)

where I0 is the discharged laser strength, I1 is the incident laser strength on the surface,

and I2 is the reflected laser strength. As for the other parameters, x is the distance from

the laser range finder; α is the absorption coefficient of the laser; r is the reflectance

parameter of the surface; and θ is the incident angle of the laser (see Figure 5.2). The LRS

value which we obtain by a laser range finder is I2/I0. Then, (5.1) and (5.2) become

I2

I0
= re−2αx cos θ. (5.3)

Since the reflectance parameter r is peculiar to the surface, we want to obtain r by using

several observations from various viewpoints.

Since we can obtain I2/I0, x and θ for each vertex of range images, the unknown variables
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Figure 5.3: Finding corresponding points in taking a consensus of the range images

are r and α. The logarithm of (5.3) becomes

log
I2

I0
= log r − 2αx + log cos θ. (5.4)

Therefore, the system becomes a linear equation with two unknowns. Since we find cor-

responding points of the range images in taking a consensus of range images, as shown in

Figure 5.3 (same with Figure 2.3), we can solve the system if more than two correspond-

ing points are found. If we have more than three equations, we can solve the system by

the least square method.

Another method to estimate the reflectance parameter r is calibrating the absorption co-

efficient α before scanning a target. Since the absorption coefficient α depends on the

atmosphere around the environment of the target, α can be assumed constant to all points

of range images which are acquired at a time. If we measure the same point from a fixed

direction with varying distances, we can estimate α by fitting α to the following equation:

y = −2αx + c, (5.5)

where y = log I2/I0 and c = log r + log cos θ. Then, we compute r by using I2/I0, x, θ

and α for each point of the range images. In the merging process, we take a consensus of

r of the corresponding points of the range images. The method used to take the consensus
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of r is the same as that used with the color/intensity of range images. We will describe it

in 5.2.

5.2 Color/Intensity Images Attached to Range Images

Some range sensors can acquire a color/intensity image simultaneously with a range im-

age. For example, laser range sensors which measure distance by triangulation, such as

Minolta VIVID [58], use CCD for sensing laser lights emitted from the illuminant; thus,

they can acquire a color/intensity image while scanning an object. Also, structured-light

range finders [81, 36] and stereo range finders [69, 15] use cameras for sensing. When we

use those sensors, we obtain color/intensity values as photometric attributes for each point

of range images. Otherwise, we can use 2D images taken separately by aligning to the

range images obtained by the laser range finders [49, 89].

In the case of color/intensity values attached to range images, the light sources vary, in-

cluding, for example, the sun and electric lights. As is well-known, the color variation on

the object surface is composed of two reflection components: the diffuse reflection and

the specular reflection. While the diffuse reflection is almost independent of the view-

ing direction and its strength varies depending on the illumination direction, the specular

reflection changes its strength drastically depending on the viewing direction and illumi-

nation direction. For simplicity, we considered a situation where the color images of the

target object were taken under a static illumination environment, with only the viewing

direction varying, while the object stays static. This assumption can be made naturally

when scanning objects with laser range finders, especially when the target object is large,

and also when scanning small objects to build 3D models for use in object recognition

tasks in indoor scenes. Though some researchers [21, 80, 68] have estimated the radiance

and positions of light sources to analyze the reflectance properties of the surface, we sim-

ply computed the reflectance property by taking a consensus of the color/intensity values

attached to the range images without estimating the light sources.

As in the case of LRS, natural light has an almost isotropic reflection analogous to diffuse

reflection and sharp reflection distributed around the perfect mirror direction analogous

to specular reflection. Since the light reflected in the perfect mirror direction will not be

observed from the range finder direction, the portion of the light that is reflected back can
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Figure 5.4: Reflection model of natural light

be considered to be caused by this diffusive reflection. If we assume that the radiance and

position of light sources are static during scanning, the color/intensity values are almost

view-independently constant. Namely, θ1 is constant of all range images and θ2 varies

according to the positions of the range finders in Figure 5.4. Since they do vary slightly

depending on the scanned direction [61] besides the occasional specular reflection, we

computed the parameter of the diffuse reflection under a static illumination environment

by taking a consensus of the color/intensity values r attached to the range images.

As the illumination direction can be considered to be static for all color images, the inten-

sity variation of each 3D point on the target object surface should have a DC component

because of the invariant diffuse reflection with a sharp peak caused by specular reflection

added to it, which can be observed from a narrow viewing direction. Thus, if each 3D

point is observed from a sufficient number of viewing directions, the histogram of the

intensity values should have a sharp peak at the diffuse reflection value, with some distri-

bution around it due to image capturing noise. Figure 5.5 depicts an example of this from

real data. Based on this consideration, by taking the the median from multiple range im-

ages inside each voxel and assigning it to each voxel, we can determine the color/intensity

values to be attached to the resulting 3D model.
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Figure 5.5: An example of the histogram of the intensity values of consensus points. Some

outliers due to specular reflection are observed. In this case, the median value is 0.04.

5.3 Subdividing Voxels Based on the Photometric Attributes of Range Im-

ages

We have introduced a new criterion of voxel subdivision based on the geometric attributes

of the surface for the adaptive merging method in 4.2. Voxel subdivision based on the

variation of photometric attributes can be accomplished in a similar manner. When the

voxel is subdivided depending on geometric attributes only or without consideration of

any attributes, the appearance of the resulting object will be significantly smoothed out.

Since ordinary shaders such as smooth shading and phong shading will simply interpolate

the intensity values attached to each vertex, this smoothing is unavoidable. However,

if we can triangulate the 3D mesh model with regards to the appearance variation, i.e.,

fine around appearance boundaries and having each triangular patch contain almost the

same texture color, simple shading will work dramatically well. Also, the 3D models

tessellated with regards to the texture variation of the models are useful to accomplish

further texture analysis and synthesis. For instance, view-dependent texture mapping like

[67] can achieve higher compression, since global texture compression stacking triangular
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patches with a similar texture can be applied.

In a similar manner to subdividing by the curvature of the surface, our method computes

the variation of photometric attributes of 3D points inside the voxel of interest. Now,

ci, cj are the photometric attributes of neighbor points included in a range image. If the

maximum difference satisfies

max
i,j

(Distance(ci, cj)) < δc, (5.6)

where δc is the threshold and Distance(ci, cj) is the function which computes the dif-

ference of two photometric attributes, the sampling interval is fine enough for the range

image.

Our method also takes a consensus while considering the photometric attributes. Similar

to (4.3), our method does not subdivide the voxel if

Nc > Tc, (5.7)

where Nc is the number of range images which satisfy (5.6), and Tn is the threshold of

consensus for the photometric attributes. Similar with subdivision based on the geometric

attributes, we can take another approach to avoid erroneous subdivisions of voxels by tak-

ing a consensus of range images before the merging process. By computing the consensus

of vertices a priori, we only use vertices which have sufficient consensus for computing

(5.6).

5.4 Experiment of Photometric Merging

Figure 5.6 shows the merging results of the Great Buddha of Kamakura with the LRS

values as photometric attributes. Figure 5.6(a) is one of the range images with LRS. By

taking a consensus of the LRS values, we constructed a 3D model of the Buddha with

LRS (Figure 5.6(b)). Figure 5.6(c) and (d) are the result of the adaptive merging technique

which we have proposed in Chapter 4, which subdivides voxels only based on the geo-

metric attributes. Thus, the texture of LRS is smoothed out compared with Figure 5.6(b).

Figure 5.6(e) and (f) are the result of adaptive merging with voxel subdivision based on the

photometric attributes proposed in 5.3. Figure 5.6(g) and (h) are zoom-ups of the forehead

of Figure 5.6(c) and (d). Similarly, Figure 5.6(i) and (j) are zoom-ups of the forehead of
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Figure 5.6: Merging results of the Great Buddha of Kamakura with the LRS values

Figure 5.6(e) and (f). By considering the photometric attributes as the criterion of voxel

subdivision, the sharp edges due to the variation in LRS values are well preserved. The

statistics of the merging results with photometric attributes are shown in Table 5.1. Adap-

tive merging based on the photometric attributes successfully reduces the amount of data

and the computational time, while well preserving the edges of the LRS values.
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Table 5.1: Statistics of models of the Great Buddha of Kamakura with photometric at-

tributes
Number of points Time for Merging Mean Difference

(b) 3.0 million 61 min. N/A

(c),(d) 1.4 million 25 min. 0.99 mm

(e),(f) 1.7 million 30 min. 0.44 mm

5.5 Applications

As an example of applications utilizing the photometric attributes of the attached 3D

model, a robust 2D-3D registration can be considered [49]. Though in this paper we

mainly presented the results of our studies on the geometric modeling of objects, the next

step of modeling is the photometric modeling of objects. As a method to acquire pho-

tometric information, texture acquisition using a camera is considered; which requires

knowing the posture of the camera at the time that it acquired a texture image, to combine

with the geometric model of the object.

A laser range finder is often much heavier than a camera; for example, Cyrax 2500 [18] is

about 20kg. Therefore, the viewing positions of laser range finders are restricted, because

the finders cannot be set up at an arbitrary position. If we calibrate a camera with the

range finder a priori, the viewing position of the camera also become restricted. However,

if we consider view-dependent photometric information such as BRDF [64], many images

acquired from various directions are necessary.

Thus, it is useful to estimate the posture of a camera using a texture image and a geometric

model which have already been acquired. Wheeler [96] have proposed a technique for

aligning a 2D image and a 3D model which compares the edges of the intensity values of

the 2D image and the occluding edges which are obtained when the 3D model is rendered

from a viewpoint. Kurazume et. al. [49] have extended the technique to use photometric

attributes attached to a 3D model.

Figure 5.7 shows an example of aligning a 2D image and a 3D model of the Kamakura

Buddha. Figure 5.7(b) is the edges of the color values extracted from Figure 5.7(a) using

a Canny filter [9]. Figure 5.7(c) is the geometric model to be aligned to the image. The
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Figure 5.7: Aligning a 2D image with a 3D model of the Kamakura Buddha using the

photometric attributes of the 3D model

original algorithm used occluding edges such as Figure 5.7(d). Figure 5.7(d) is the edges

of the LRS values extracted from the 3D model(Figure 5.7(e)). The method estimates the

posture of the camera by taking matching edges of 2D image (red lines) and 3D model

(blue lines). Figure 5.7(f) is the initial posture of camera before iterative computation and

the posture converges to Figure 5.7(g). Finally, texture mapping is accomplished using

estimated camera parameter(Figure 5.7(h) and (i)).
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5.6 Summary

We have proposed an extension of the merging framework, which consists of the merging

of photometric attributes which are attached with range images. By taking a consensus of

the appearance changes of the target object from multiple range images, we reconstructed

a 3D model with an appearance which successfully discards outliers due to noise. Also,

we were able to provide a model with Lambertian reflected light values by discarding

specular reflection as outliers. The photometric attributes of the model can be used for

aligning with 2D color images.
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Chapter 6

Refining Range Images

The errors of the final 3D model are considered to come from the following factors:

(a) A measurement error on the range images

(b) A matching error on the aligning process

(c) A quantizing error on the merging process

The merging algorithm described in Chapter 2 and Chapter 4 reduces the error using mul-

tiple range images by taking a consensus of them. However, since the signed distance is

calculated along the normal direction of the surface, it is weak if range images have high

frequent errors, and, in such a case, the normal directions are not reliable.

The merging process consists of two components:

• De-noising range images

• Generating a unified mesh model

The former component accomplishes the improvement of the accuracy of the measure-

ment. In this chapter, we propose a novel method [78] to improve the accuracy of the

measurement in place of taking a consensus of the range images in the merging process.

The error distribution of a range image is anisotropic according to the line of sight of the

scanning. If we observe a surface from various directions, we can improve the precision

of the measurement by considering the multiple error distributions of different directions.
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Figure 6.1: Measurement error

6.1 Error model of Range Measurement

Laser range finders measure distance by shooting a laser and receiving its reflection from

the target object. The 3D position of the point of reflection is computed by the distance and

the ray vector. The error of the 3D position mainly depends on the error of the distance.

The error of the vertical direction to the ray vector, which is caused by the mechanism of

the range finder, is much smaller than the error of the distance. Thus, we assume the error

of the range measurement by a laser range finder is anisotropic and exists only along the

ray vector (Figure 6.1).

6.2 Algorithm Overview

Our method corrects errors by iterative computation similar to registration techniques like

ICP[6, 63]. Let us call the base range image the ’model’ and the others the ’scenes.’ We

first search the corresponding points on all scenes of each vertex of the model. Then, we

move every vertex of the model respectively to reduce the distance of each correspondence.

Our method continues this process until the distances become sufficiently small.
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Algorithm 6.1 RefineRangeImages(Rset)
Input: Set of Range Images: Rset

while e > θ do

for all Ri ∈ Rset do

for all vik ∈ Ri do

Vset ← 0

for all Rj ∈ Rset do

if Ri 	= Rj then

v ← CorrespondenceSearch(vik, Rj)

Vset ← Vset ∪ v

end if

end for

v′ik ← ComputeNewPosition(vik, Vset)

Compute error eik between vik and Vset
end for

end for

Update vertices vik → v′ik for all i, k

Compute average e of eik for all i, k

end while

Algorithm 6.1 shows the proposed algorithm. Rset is the set of input range images. For

each vertex vik of the model range image Ri, we find the corresponding points of other

scene range images Rj . Then, we compute the new vertex position v′ik using vik and

Vset. After computing the new position of all vertices, we update all vertices of the range

images. We iterate this computation until the average error e becomes smaller than a user

defined threshold θ.

6.3 Correspondence Search

Since we assume that error exists only along the ray vector and that range images are

completely aligned, our method searches corresponding points along the ray vector. Now,

�x is the vector from the center of the sensor to the vertex of the model, and �y is the vector
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Figure 6.2: Search correspondence

from the center to the corresponding point of the scene. Then,

�y = a�x (6.1)

where a is the coefficient. Thus, these points are on the same line (Figure 6.2).

To eliminate wrong correspondences, if the distance of the corresponding points is larger

than a threshold, we remove the scene point from the correspondence. We use the maxi-

mum error of the range finder as the threshold. This correspondence search is computed

for every combination of range images.

6.4 Computing New Vertex Position

Errors are corrected by moving each vertex to the new position, which is estimated from

the corresponding points. Since the direction of error of each range image is different,

some correspondences are not accurate. If the number of overlapped range images is

small, it is difficult to estimate an accurate point. Thus, we move each vertex to the

weighted average point of the correspondence in order to gradually converge the error.
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Figure 6.3: Error by resolution and geometry

The kth vertex of the ith range image �xik is moved to the weighted average point

�x′
ik = (1−w) · �xik + w · 1

nik − 1

∑
i�=j

�yjk (6.2)

where nik is the number of corresponding points, and w is the weight. In this paper, we

use w = 0.5. This process is applied to all vertices of each range image. We reiterate it

until the error of correspondence converges sufficiently.

6.5 Discussion

The error of corresponding points ε depends on the error of measurement εMeasure and

the error by sparse sampling of a range image εGeometry .

ε = εMeasure + εGeometry (6.3)

εMeasure is corrected by iterative computation. However, εGeometry is caused by the cur-

vature of the surface and the sampling interval of a range image.

In Figure 6.3, the range measurement is noise-free and the vertices of the range images

are on the real surface (namely εMeasure = 0); however, the error exists between �x and �y.

Thus, ε = 0 only if the surface is planar.

ε




= 0 planar area

> 0 otherwise
(6.4)

81



Figure 6.4 shows a 2D example of range images. For simplicity, we assume the new

positions of x2, y1, y2 after an iteration is computed as

x′
2 = (1−w)x2 + w((1− α)y1 + αy2)

y′1 = (1− w)y1 + w((1− β)x1 + βx2) (6.5)

y′2 = (1− w)y2 + w((1− γ)x2 + γx3)

where w, α, β, γ are coefficients. Coefficients α, β, γ are determined by the correspon-

dence of x1, x2, x3, y1 and y2. After one more iteration, x′
2 moves to

x′′
2 = (1−w)x′

2 + w((1− α′)y′1 + α′y′2)

= w2(1− α′)(1− β)x1 + w2α′γx3 +

((1−w)2 + w2(1− α′)β + w2α′(1− γ))x2 +

w(1−w)(2− α− α′)y1 +

w(1−w)(α + α′)y2 (6.6)

where α′ is a coefficient. Since the equation of x′′
2 includes the neighbor vertices x1, x3,

the smoothing effect occurs during an iteration similar to the smoothing filter. However,

the weight of x1 and x3 in (6.6) is small compared with that of the smoothing filter, for

example,

x′
2 = αx1 + βx2 + (1− α− β)x3, (6.7)

which does not include y1, y2. Thus, the propagation of the smoothing effect of our method

is slower than that of the smoothing filter. In our present implementation, we determine

the number of iterations by estimating manually whether the iteration is sufficient.

With regard to the computation cost, most of the computation cost is due to searching for

correspondences. Our algorithm searches for correspondences of vertices by rendering

all range images from the viewpoint of the reference range image. Thus, the order of

computation is O(MN 2) for an iteration of refining all range images, where N is the

number of range images, and M is the number of vertices of a range image.
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Figure 6.4: Smoothing effect by iteration

6.6 Experiment

6.6.1 Error Distribution of Laser Range Finder

Among the types of laser range finders, time-of-flight range finders are useful for measur-

ing a distant object with high accuracy. We use a laser range finder of the time-of-flight

type, Cyrax 2500 [18] made by Cyra Technologies, Inc. To estimate the error distribution

of the Cyrax 2500, we set the range finder in front of a concrete wall, and measured the

distance to the wall many times. We tested three configurations of different distances, the

far range (67m), middle range (20m), and near range (2m) The recommended range of

Cyrax 2500 is 1.5–50m. Figure 6.5 shows the results of the measurements, and the av-

erage, variance, and standard deviation are depicted in Table 6.1. The error distribution

becomes wide in the near range; however, it can be regarded as a normal distribution with

about 3mm standard deviation. The maximum error is about 7–8mm, which is a little

larger than the 6mm (at 50m range) of the catalog specification.

We did not test the error distribution of the vertical direction to the ray vector. According

to the catalog, it is 0.25mm at a 50m range (0.0003 degree), which is drastically smaller

than that of the ray direction. Thus, the error distribution of the range image by Cyrax
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Figure 6.5: Distribution of errors of Cyrax2500

2500 depends on the ray direction.

6.6.2 Error Correction of Artificial Data

First, we created artificial range images with random noise, and experimented with error

correction. Figure 6.6(a) shows the model without noise. Its width and height are 40cm, its

depth is 20cm, and it consists of 100× 100 points. The range image with noise, of which

the maximum error is 6mm, is Figure 6.6(b). We created 10 range images, to which were

added noises coming from different directions. The result of error correction is shown in

Figure 6.7(a). Figure 6.7(b) is one of the range images filtered by the Gaussian filter. It

can be seen that our method corrects error sufficiently and preserves edges more accurately

than the Gaussian filter. Figure 6.8 compares these two results.

We used a PC with a PentiumIII 866MHz processor and a NVIDIA GeForce3 graphics

card. Since our method searches correspondences by rendering range images, it can be ac-
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Table 6.1: Distance measurement error of Cyrax 2500

Average distance [mm] Var. [mm2] STD. [mm]

2017.2 (near) 11.0 3.3

21518.0 (middle) 9.1 3.0

67591.1 (far) 7.7 2.8

(a) (b)

Figure 6.6: Artificially created model

celerated by the use of graphics hardware. The computation time required for 20 iterations

is 413 seconds.

6.6.3 Error Correction of Real Data

Next, we experimented on the error correction of range images acquired by a laser range

finder Cyrax 2400, whose accuracy is the same as that of the Cyrax 2500.

The object observed was the Asuka Great Buddha in Nara, which is considered to be the

oldest statue of Buddha in Japan. The height of the statue is about 2.7m. Cyrax 2400 is a

range finder used for long range, but it is not suitable for measuring objects of the Asuka

Buddha’s size. Because the surroundings of this Buddha prevented us from getting close
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(a) (b)

Figure 6.7: Refined model

to it, we were not able to use a more accurate range finder for near range distances. Thus,

we measured the Buddha from a short distance away by using the Cyrax 2400.

We acquired 9 range images of the front of the Buddha. We aligned these range images

simultaneously by using a robust registration method [66] (see Figure 6.10). Since the

object was relatively small and the range was near, the noise of the range image can be

obviously seen in the range images.

Figure 6.11 shows the result of the error correction by our method. The noise was removed

from the model, and its surface is smooth. In spite of that, the edges are well preserved,

because our method, unlike the Gaussian filter, is not a smoothing operation. In Figure

6.12, the error converges to 0 as the number of iterations increases. The computation time

for 20 iterations was 1510 seconds.

Figure 6.13 shows the results of merging range images using both the original range im-

ages and the refined range images. We used the merging technique created by Sagawa [76].

Since the method takes a consensus of range images using the distance and normal direc-

tion [97], it can remove errors caused by measurement and registration. However, in this

experiment, it was difficult to correct the errors, because the range images were too noisy

and the normal direction of each vertex of the range images cannot be relied upon. An
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Figure 6.8: Compare our method and the Gaussian filter

error remained in the merging result when the original range images in Figure 6.13 were

used. However, an accurate model was reconstructed in the merging result with the refined

range images. In the area where range images were not overlapped, such as the side of the

head, the error was not removed.

We compared our method with the model filtered by the Gaussian filter. Figure 6.14 shows

the part of the model filtered by the Gaussian filter after merging, and the model that was

merged from the refined range images. The model with the Gaussian filter was smoothed

out; however, our method removed noise and preserved the edge of the surface.

Finally, we considered whether our method can be applied to other range finders, for ex-

ample, a stereo range finding system. We constructed a multi-baseline stereo system [69],

which consisted of 9 cameras. Figure 6.15 shows one of the camera images and a stereo

range image. Since the multi-baseline stereo generated a range image for each camera by

taking matching images with the other 8 cameras, we generated 9 stereo range images.

These range images were pre-aligned by stereo calibration. Thus, our refining process
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Figure 6.9: Great Buddha at Asuka Temple

could be applied directly to the 9 range images. In the raw stereo range image (Figure

6.16(a)), we can see the step-shaped error caused by the quantization of the images. Fig-

ure 6.16(b) is the refined model after iteration was performed 10 times. The step-shaped

error was removed after refinement. Also, Figure 6.16(a) contained a lot of debris, due to

mismatching. Since the refining process is an estimation of the confidence of the range

data, we can regard the vertices of the range image which cannot be refined as unreliable

vertices. Figure 6.16(c) is the range image after the unreliable vertices were removed.

6.7 Summary

In this paper, we have proposed an efficient range image refining method, taking into con-

sideration the unique error distributions of multiple range images. We described how we

applied this method to model artificial test objects and actual cultural heritage objects from
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Figure 6.10: Original range image of Asuka Buddha

the images acquired by a time-of-flight range sensor. Finally, we applied our method to the

range images which were generated by the multi-baseline stereo system. The experimen-

tal result shows the validity of this method compared with that of the existing filter-based

methods.
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Figure 6.11: Refined range image of Asuka Buddha

Figure 6.12: Convergence of error
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Figure 6.13: Results of merging of Asuka Buddha

Gaussian Filter Our Method

Figure 6.14: Comparison with Gaussian filter
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Original camera image Stereo range image

Figure 6.15: Range measurement by stereo

(a)Raw model by stereo (b)Refined model

(c)Remove unreliable vertices

Figure 6.16: Refining range image by stereo
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Chapter 7

Flying Stereo Range Sensor

Our target objects were mainly cultural heritage objects. Since some cultural heritage

objects are very large, it is difficult to completely cover the surface of such objects using

the usual range finders. The reasons why the surfaces cannot be observed from the sensors

were considered to be due to the following two reasons. First, the surface is self-occluded

or occluded by other objects from any viewpoints. Because most cultural heritage objects

are intricately shaped, the line of sight for a laser range finder for some points of the

surface cannot be obtained. To acquire a range image of intricately-shaped surfaces, it

was necessary to develop a new device which was completely different from the usual

range finders.

Second, if the line of sight for a range finder can be obtained, it is difficult in some cases

to settle a sensor stably at the best point of view. The laser range finders we mainly used

to acquire the range images of these objects were set up on the ground. Thus, the large

part of the unobservable surfaces of those sensors was the upper side of the object surface.

To acquire a range image of the upper surface, it was necessary to develop a new method

to acquire the range image from the air. In this paper, we report on our development of a

new range finder which is loaded on a balloon, and which acquires range images from the

air.
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7.1 Overview of Range Sensing System Sent Aloft by Balloon

The problem with mounting a range finder on a balloon and sending it aloft is that the

range finder cannot remain stationary, and moves due to wind. A typical laser range finder

requires about 10 seconds to several minutes for each scan. Since it is necessary for the

sensors to remain stationary while scanning, we cannot load send them aloft by balloon.

To solve this problem, the following two approaches were considered:

• Measuring the motion of the sensor during scanning

• Scanning during a moment in which the motion of the sensor can be ignored

The first approach measures the motion of the sensor during scanning and computes the

laser direction. If we know the laser direction of each range measuring, we can construct a

range image from a moving sensor. To measure the motion of the sensor, several methods

were considered, such as GPS, gyroscope, and visual markers. Miller [57] developed a

helicopter whose position is measured by differential GPS and by an inertial measurement

unit (IMU), which scans the terrain using a laser range sensor which is loaded on it. This

approach necessitates using those additional sensors to construct a system.

In this paper, we used the second approach. Since laser range finders require at least

several seconds to scan, we developed a new range finder which measures distance by

stereo matching. The precision of this stereo range finder is lower than that of a laser

range finder; however, it has a great advantage in that acquisition is completed in less than

a second. Also, since other devices are not required to augment this approach, we were

able to construct a simpler system. We call our new stereo range finder, which is loaded

on a balloon, a “flying stereo range finder” (FSRF).

7.1.1 System of the Flying Stereo Range Finder

Though stereo matching can be accomplished by only 2 cameras, the multi-baseline stereo

matching method [69] improves the precision of range sensing, which takes matching

by multiple pairs of cameras using more than 3 cameras. In the case in which we used

more than 3 images captured from different viewpoints for multi-baseline stereo, two ap-

proaches were considered: motion stereo by a single camera [70, 82] and fixed multiple

cameras [73, 47]. Since we need to capture various viewpoints by moving the balloon, in
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(a) (b)

Figure 7.1: FSRF which consists of 9 cameras

order to cover the entire surface of the object, and because it is costly to move the balloon

to arbitrary viewpoints, we developed a stereo range finder which consists of 9 cameras

which generate a dense range image by the multi-baseline stereo matching method. This

reduces the cost to move cameras.

Figure 7.1 shows our new stereo range finder. We placed 9 cameras as 3 × 3 matrix on

the frame. We used a digital still camera, the Nikon D1, for each camera of the system; it

acquires an image of 2000×1312 pixels. Since we need high resolution images to measure

the distance accurately by stereo matching, we used digital still cameras rather than video

cameras.

Figure 7.2 shows the system of FSRF. The FSRF is lifted up by a balloon, whose loading

capacity is about 50kg. In our current system, the weight of each camera is 1.5kg and that

of the frame, 10kg; the total weight is about 25kg. The balloon is controlled manually by
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Figure 7.2: System of FSRF

rope. Though other ways to lift up the system can be considered, such as a a helicopter,

we chose a balloon, since it is important to be able to control the system. The frame of

the system is suspended by the balloon, and cameras are fixed to the frame. The cameras

are fixed almost parallel, at an interval of 1m. A notebook PC was also loaded on the

balloon, and this PC controls the cameras through an IEEE1394 network. We were able to

change the parameters of the image acquisition of the cameras from the ground. We had

two ways to release the cameras, by the IEEE1394 network, and by remote release cable.

We controlled the system from the ground through wireless communication. The images

acquired by the cameras were kept in the memory cards of the cameras; the system can

also send images to the computer on the ground by IEEE1394 and the wireless network.

96



Pre-scanning Calibration

Dense Range Image Generation

Image Acquisition

Calibration Refining

Figure 7.3: Scanning Steps of FSRF

7.1.2 Scanning Steps of FSRF

Several steps are required to generate a range image using the FSRF. Figure 7.3 shows

the scanning steps of FSRF. To take matching of multiple images, we first calibrated the

intrinsic and extrinsic parameters of the cameras. Since the cameras of the FSRF are fixed

on a frame, we calibrated them before acquiring the images, using a visual marker (see

7.2.1).

At the time of scanning, we controlled the position of the cameras on the balloon. Since

the balloon has no mechanism to move itself, it was controlled manually by rope from the

ground. The images were acquired at the same time, and the acquisition was completed at

a moment at which we could ignore the motion of the system. The distance to the object

was typically about 10m in our experiments.

Though it is necessary to use a marker which is a similar size to the target object in cali-

brating the extrinsic parameters of the cameras, our target can be larger than 10m. Also,

it is impossible to prepare such a large marker to calibrate the parameters. The error of
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calibration becomes large if the size of the target object is much larger than that of the

marker. Thus, we refined the parameters of the cameras using the image of the target itself

after acquiring the images (see 7.2.2). If we computed a range image using the image

sequences which were obtained by the smooth motion of the camera, the distance of the

corresponding points in the images was small; however, the distance of the corresponding

points when we used the FSRF became larger, since the baseline of the FSRF is wider

than that of the image sequences. Therefore, we used the range images which were com-

puted using the current parameters to find corresponding points, which restricts the area

for searching corresponding points. We fed the refined parameters back to the dense range

image generation recursively.

After acquiring the images by multiple cameras, we generated a dense range image by

stereo matching. We used a multi-baseline algorithm [69] to generate a range image from 9

images. To accelerate the matching process, we used the algorithm of recursive correlation

calculation [27] and graphics hardware accelerators to rectify the image pairs.

7.2 Calibration of Multiple Cameras

This section describes the calibration of the camera parameters of the FSRF. The method

consists of pre-scanning calibration and refining calibration after image acquisition.

7.2.1 Pre-scanning calibration

Before scanning the target object, we calibrated the intrinsic and extrinsic parameters of

the cameras using a visual marker. Since the error of calibration becomes large if the size

of the target object is much larger than that of the marker, we used a marker which was

larger than usual to scan a large-scale object. Figure 7.4 shows the marker we used, which

had a cubic frame of 1.2m width. We acquired images of the cube by all cameras at the

same time. We used the 8 corners of the cube as features by finding them manually, and

measuring their correspondence. If we had more than 6 corresponding points, we were

able to calibrate the camera parameters [81].

98



Figure 7.4: Cubic frame for calibration

7.2.2 Refining Calibration

To generate a precise range image, we had to refine the parameters of the cameras because

the position and size of the target objects differed from those of the calibration marker that

was used for pre-scanning calibration. Therefore, we refined the parameters of the cameras

using the image of the target itself after acquiring the images. The steps to refining the

parameters consisted of two components:

1. Matching features by utilizing a range image by the current parameters

2. Refining the parameters of all cameras by bundle adjustment [7, 93]

Restricting the Search Area using A Range Image

When we find features of an image pair using feature extraction techniques such as Harris

corner detector [37], When we find features of an image pair, we have to search the entire

image if we have no knowledge of camera parameters. Since this is extremely exhaustive,
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Figure 7.5: Constraints for searching corresponding feature points

several constraints were considered to restrict the search area. Figure 7.5 shows three

constraints for searching corresponding feature points [3]. If we use an image sequence

by the smooth motion of a camera, the corresponding feature points exist at a similar

position to the reference image. Thus, we search the neighborhood of the feature (Figure

7.5(a)). However, with the FSRF, we cannot use this constraint, because the baseline of

the FSRF is wide. If we know a rough estimation of the epipolar geometry, we can restrict

the search area to the epipolar line of the feature (Figure 7.5(b)). Since we have already

computed the camera parameters, we can apply this constraint. After computing a dense

range image, the position of the corresponding feature is computed by the 3D position of

the feature. We can restrict the search area to the predicted position of the feature (Figure

7.5(c)).

Bundle Adjustment

After taking the correspondence of features, we used bundle adjustment [7, 93] to refine

the camera parameters. This method minimizes the error of camera parameters of multi-

ple cameras globally by the maximum likelihood estimation. First, we computed the 3D

position of feature points by triangulation. Since corresponding rays do not completely

intersect in the 3D point due to the errors of camera parameters, we found the optimal

point by estimating the error using a polynomial of degree 6 [38] and a midpoint of the

corresponding rays [3].

If we have m images and n feature points, we minimize the following criterion:

min
Pi,Mj

m∑
i=1

n∑
j=1

D(mij, PiMj), (7.1)

where Pi is the projection matrix from the world coordinate to the image coordinate of the
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i-th image, Mj is a 3D point which is computed by triangulation of the j-th corresponding

feature points, mij is a 2D point of the j-th feature point in the i-th image, and D(m, m′)

means the Euclidean image distance. The minimization is accomplished by Levenberg-

Marquardt minimization [71]. Since the number of feature points can be larger than a

thousand, a straightforward computation is difficult. Thus, a special technique [93, 70] was

developed by utilizing the sparse structure of Jacobian matrix which is used in Levenberg-

Marquardt minimization.

In many cases, the correspondences of the feature points contain the wrong matches of

features. Since the minimization of the bundle adjustment is a least-square minimiza-

tion, the estimation Pi and Mj is affected, and fails by those outliers. Robust estimation

methods such as RANSAC (RANdom SAmpling Consensus) [28] and LMedS (Least

Median Square) are used to detect wrong matches for computing the fundamental matrix

of the epipolar geometry [92, 101]. In our implementation, we introduced the RANSAC

approach to bundle adjustment to detect and remove wrong matches.

Algorithm 7.1 shows bundle adjustment with RANSAC. First, it generates sample sets

Fset from the set of corresponding feature points Fall. The number of the sample sets m

is determined by

Γ = 1− (1− (1− ε)p)m, (7.2)

where Γ is a probability that a good subsample is selected, ε is the rate of contaminated

data and p is the number of feature points in each sample (Refer [75] for detail). We

compute a new camera parameters Cnew for each sample and estimate Cnew by counting

the feature points which are near the epipolar line with Cnew. After testing all samples,

we select the best solution of Cnew, which has the maximum number of inliers. We refine

Cnew using all feature points which are consistent with Cnew. Finally, we refine Cnew

one more time.

7.3 Range Sensing by Stereo Matching

We generated a dense range image by taking a matching of the window areas of multiple

images based on the multi-baseline stereo algorithm [69]. Since we computed the correla-

tion of 8 stereo pairs using 9 images and each image was high resolution, we accelerated

the computation by the algorithm of recursive correlation calculation [27] and graphics
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Algorithm 7.1 BundleAdjustmentWithRANSAC(C, Fall)
Input: Camera Parameters: C

Input: Corresponding Feature Points: Fall
Output: New Camera Parameters: Cnew

Generate random sample set Fset of corresponding feature points from Fall
for all F ∈ Fset do

Cnew ← BundleAdjustment(C, F )

Estimate solution by counting inliers consistent with Cnew

end for

F ← feature points consistent with best solution of Cnew

Cnew ← BundleAdjustment(C, F )

F ← feature points consistent with Cnew

Cnew ← BundleAdjustment(C, F )

hardware accelerators to rectify the image pairs. Though the image rectification by special

hardware [14] exists, we use common graphics hardware.

7.3.1 Hardware Acceleration of Rectification

The 3D point M of the corresponding feature points are computed as follows:

M = P1m1 = P2m2, (7.3)

where P1 and P2 are the projection matrices from the world coordinate to the image co-

ordinate, and m1 and m2 are the image coordinates of the feature points. Therefore, the

position of a corresponding point is computed by

m2 = P−1
2 P1m1. (7.4)

If an image has N × N pixels and we examine D disparities for each pixel, the compu-

tational cost of (7.4) for every pixel of an image is O(N 2D). This forms a major part of

the computational cost of stereo matching. Since the computation is the transformation

of coordinates, it can be accelerated by using graphics hardware. When we compute the

correlation of a disparity, we transform the reference image as a rectangle with texture.

The transformation by (7.4) is computed for four corners of the image explicitly; and the
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Figure 7.6: Rectifying image pair by reprojection

transformation of the internal areas is interpolated by using texture mapping of the refer-

ence image. Since those operations are supported by recent graphics hardware, we can

compute them efficiently.

Figure 7.6 shows rectification of the points at depth d. The plane P ′
1 is parallel to the

image plane P1 and the distance from the camera center C1 to P ′
1 is d. First, we compute

the positions of four corners on P ′
1 which are projection of the four corners of the image

plane P2. Second, we render the quadrangle with mapping the image of P2 as texture. The

corresponding point is reprojected to the same position. We iterate this reprojection for

each depth d to search different disparities.

7.3.2 Recursive Computation of Correlation

We used the sum of the sum of absolute distance (SSAD) as the criterion for stereo match-

ing, which is represented by

N (m) =
W×W∑

i

n∑
k

|I0(mi)− Ik(m′
i)|, (7.5)

where m is a point of the reference image, mi is a point of the reference image in a win-

dow of size W and m′
i is the corresponding point of mi. Namely m′

i = P−1
k P0mi, where
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P0 and Pk are the projection matrices of the reference image and k-th image. The compu-

tational cost is O(N 2W 2D). It can be reduced to O(N 2D) by recursive computation of

correlation [27]. The pointwise correlation of each pixel for depth d is computed by

P (x, y, d) =
n∑
k

|I0(x, y)− Ik(P−1
k P0(x, y, d)T)|. (7.6)

Then, (7.5) is rewritten as

N (x, y, d) =
W−1∑
i=0

W−1∑
j=0

P (x + i, y + j, d). (7.7)

Now, we define Q(x, y, d) as

Q(x, y, d) =
W−1∑
j=0

P (x, y + j, d). (7.8)

N (x, y, d) can be computed recursively by

N (x + 1, y, d) = N (x, y, d)+ Q(x + W, y, d)−Q(x, y, d). (7.9)

as shown in Figure 7.7. Q(x, y, d) is also computed recursively.

7.3.3 Matching by Recursive Correlation

The computation of disparity by (7.5) is represented by

O(x, y) = mind{N (x, y, d)}
N (x, y, d)=

∑W
i

∑n
k |I0(x, y)− Ik(P−1

k P0(x, y, d)T))|
(7.10)

The computation can be reduced by recursive computation of N (x, y, d):

P (x, y, d) =
∑n

k |I0(x, y)− Ik(P−1
k P0(x, y, d)T)|

Q(x, 0, d)=
∑

j P (x, j, d)

Q(x, y + 1, d) = Q(x, y, d)+ P (x, y + W, d)− P (x, y, d)

N (0, y, d)=
∑

i Q(i, y, d)

N (x + 1, y, d)= N (x, y, d)+ Q(x + W, y, d)−Q(x, y, d)

(7.11)
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Figure 7.7: Recursive correlation calculation
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After refining

Figure 7.8: Refining camera parameters by bundle adjustment

7.4 Experiments

First, we calibrate camera parameters using a marker shown in Figure 7.4. Next, we re-

fine the camera parameters by bundle adjustment. Figure 7.8 shows the result of refining

camera parameters. 2 images of each row consist a pair of camera images. Red points

are extracted feature points and green lines means epipolar lines. Since we know rough

epipolar geometry, these feature points can be matched automatically. Before applying

bundle adjustment, feature points are not accurately on the line of corresponding epipo-

lar lines. After refining camera parameters by minimizing the distances between feature

points, feature points becomes on the line of corresponding epipolar lines.

Figure 7.9 shows generating a range image by stereo matching. Figure 7.9(a) is one of 9

camera images of FSRF. Figure 7.9(b) is the result of stereo matching. Dark pixels are

near the camera and light pixels are far. Figure 7.9(c) is the 3D model constructed from

the range image and Figure 7.9(d) is the model with mapping the camera image as texture.
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Figure 7.9: Generating a range image by stereo matching

7.5 Summary

We developed a new range scanning system to cover unobservable surfaces from the

ground. This system obtains a dense range image by stereo matching. It is loaded on

a balloon and scans a large-scale object from the air. Since it moves by wind, the system

acquires multiple images using 9 cameras at the same time, to avoid the difficulty of cal-

ibration. To construct a model with high resolution, we use digital steel cameras, which

can obtain high resolution images. Also, since there are difficulties when in calibrating

a camera when we scan a large-scale object, we developed a calibration technique using

range images. For efficient computation of stereo matching, our algorithm uses rectifica-

tion accelerated by graphics hardware and recursive correlation calculation.
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Chapter 8

Complement of Unobservable Surface

Even after scanning an object using various kinds of sensors, unobserved surfaces may

exist in many cases. In this chapter, we propose an approach to fill those holes. This

approach complements the geometric and photometric model of the object by estimating

the neighborhood area of the holes. In our merging framework, we have already computed

the signed distance field (SDF). Since we separate the entire volume into two manifolds by

SDF, we can generate a closed surface by converting SDF to a mesh model. However, the

sign of SDF becomes sensitive around the holes. Thus, we cannot interpolate the holes by

a suitable surface by applying the merging method straightforwardly. In this chapter, we

thus propose a novel method to interpolate the holes of range images by taking a consensus

of the sign of SDF with those of the neighbor voxels.

8.1 Convert from Range Images to SDF

We have already described the method “consensus surface algorithm” [97, 77] to convert

multiple range images to SDF in Chapter 2. In this section, we explain the algorithm in

brief again. Figure 8.1 shows that the consensus surface algorithm is applied to a situation

in which there are three range images which are intersecting between two neighboring

voxels. First, it finds the nearest point of each range image from the the center of the voxel

x. Next, it searches the nearest points of the other range images from them. If the found

points are similar in terms of their positions and normal vectors, we say that the points

have consensus and we regard them as the same surface. By averaging the positions and
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Figure 8.1: Compute signed distance by considering consensus of range images.

normal vectors of the same surfaces, we compute three signed distances f(x) from x. In

Figure 8.1, the consensus surfaces are A and B; the surface C does not have consensus.

Thus, the final signed distance from x is chosen from A or B. Since the magnitude of A

is smaller than that of B, A is chosen in this case. We can discard the isolated observation

C. Finally, since f(x) is positive and f(x′) is negative, the isosurface f(x) = 0 is

successfully generated to intersect between x and x′ by the marching cubes algorithm

(MC) [53]. Since the computation of the signed distance is necessary near the surface, our

algorithm computes signed distances by subdividing the volume of interest recursively in

an octree manner to reduce the cost of computation.

The consensus surface algorithm robustly computes the signed distance by discarding the

outliers of range images. Since MC generates a closed surface by converting SDF to a

mesh model, we can interpolate the holes of the surface which any range image does not

cover if we can compute signed distances of voxels around holes. However, the compu-

tation of SDF becomes sensitive to noise around the holes; Thus, it is actually difficult to

fill the holes by applying the merging method directly. We analyze the reasons why the

computation of SDF becomes sensitive to noise in the next section.
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8.2 Sensitiveness of Computing Sign of SDF

In this section, we point out the problem of the merging algorithm. It often make a mistake

in computing the sign of a signed distance. This especially happens where the surface of

the object is highly curved. Figure 8.2 shows an example of computing signed distances

when there is high curvature surface of an object. The gray line means the real surface of

the object. The black solid lines are the range images. In this situation, we regard every

point of the range images as having consensus. Each arrow is the vector from the center of

a voxel to the nearest point. If a voxel is inside the object by considering normal vectors

of range images, the sign is negative, and the voxel is filled by the color gray in Figure 8.2.

In a high curvature area, it is difficult to cover both sides of a corner by a single range

image. Thus, we need several range images to cover the entire corner; and to align them

into a common coordinate system. Though the lower left area is obviously outside in

Figure 8.2, the signs of those voxels are negative because they are considered inside by the

normal vector of the nearest point. Consequently, the surface generated by MC corrupts,

as represented by dotted lines. The signs of the signed distances become sensitive to noise

around a sharp corner, which are caused by the following four reasons:

1. Their relative positions after aligning contains errors caused by the errors of mea-

suring.

2. It is difficult for range images to overlap each other at the point of sharp corners.

3. The sampling interval of the points of a range image can be too coarse to represent

a sharp corner.

4. There are holes of the surface which any range image does not cover.

First, since the signs of SDF can change sensitively due to a small error of the position of a

range image, the shape of the generated mesh model is greatly affected by change of signs

of SDF. Second, because a single range image cannot cover both sides of a sharp corner,

the sign of a voxel changes according to range images which are used to compute SDF.

Thus, it is difficult to determine that the voxel is inside or outside the surface. Third, if the

sampling interval of a range image is coarse, the shape of the corner can be smoothed out.

Fourth, it is often difficult to acquire range images to cover a sharp corner, and holes in
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Figure 8.2: Corruption of the surface caused by wrong sign of SDF

range images can be found in many cases. If a hole exists, the sign of SDF can be sensitive

around the hole.

Figure 8.3(a) shows the range images of an object which has sharp corners. Figure 8.3(d)

is a zoom-up of one of the sharp corners. Due to the above reasons, it is hard to determine

whether a voxel is inside or outside near the corner, even if we take a consensus of the

signed distances using the position and normal vector of points of the range images. Con-

sequently, the result of converting SDF to a mesh model by MC is shown in Figure 8.3(b),

and its zoom-up is Figure 8.3(e). Since the signs of SDF of some voxels are wrong, many

vertices and triangles are generated outside the object.

111



(a) (b) (c)

(d) (e) (f)

Figure 8.3: Merging result of a sharp corner

If the magnitude of a signed distance is smaller than the width of the voxel, the nearest

point is inside the voxel. Thus, the generated vertices and triangles are not far from the real

surface. Therefore, if we restrict the magnitude of SDF to apply the SDF to MC comparing

the magnitude with the width of the voxels, erroneous meshes are not generated. Namely,

if the signed distance of a voxel is d and that of its neighbor voxel is d′, we can remove

erroneous meshes by applying the voxel to MC, only if the signed distances satisfy

|d− d′| < W (8.1)

for all voxels which consist of a cube, where W is the width of the voxels. After restricting

by (8.1), the merging result becomes Figure 8.3(c) and (f). Erroneous meshes are removed;

however, holes in the surface remain where the magnitude of the signed distances was
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Figure 8.4: Three examples of signed distances of adjacent voxels

larger than the width of voxels. To interpolate holes of the surface, a method is needed to

determine the signs of SDF which are resistant to errors caused by the above reasons.

8.3 Consistency of the SDF

Our merging algorithm takes a consensus of range images for outlier detection; however,

it does not consider a consensus of the signed distances of adjacent voxels. In this section,

we introduce a new criterion to estimate whether the signed distances of adjacent voxels

are consistent with each other or not.

Figure 8.4 shows three examples of the signed distances of adjacent voxels. The width

of the voxels was 1.0. In Figure 8.4(a), both voxels are outside an object, whose signed

distances are 1.0 and 0.8. If the sign of the adjacent voxels are the same, the isosurface

does not exist between them. Since the arrows from the center of the voxel to the surface

represents the nearest neighbor points and the normal vector looks outside, the situation

that both signed distances are same is possible, as shown in Figure 8.4(a). Thus, they are

considered consistent with each other.

In Figure 8.4(b), the signs of the adjacent voxels are different. The signed distances are

−0.3 and 0.6. The gray voxel means that it has a negative signed distance. An isosurface

exists between two voxels. Since it is possible to compute the situation from a surface as

shown in Figure 8.4(b), the signed distances of the two voxels are considered consistent.

In Figure 8.4(c), the sign of the adjacent voxels are different, similarly with Figure 8.4(b).

The difference from Figure 8.4(b) is that the signed distances are −1.0 and 0.8. By con-

sidering the SDF of these two voxels, an isosurface exists between them; however, if the
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original surface exists between them, the sum of the magnitude of the two signed distances

is smaller than the width of the voxel. Thus, the original surface does not exist between

the two voxels, as shown in Figure 8.4(c), and the situation is considered inconsistent to

generate meshes between them. The inconsistent situation such as Figure 8.4(c) occurs

by the reasons described in 8.2. If the signed distances of two adjacent voxels satisfy the

following inequality, we define the situation as inconsistent:

|d− d′| > W, (8.2)

where d and d′ are the signed distances of two adjacent voxels. Consequently, if there is

an inconsistency of SDF, the sign of the signed distance is doubtful, and we examine the

situation to generate a mesh model which is consistent with the original surface.

8.4 Flip Sign of SDF

We propose a novel method to examine whether the signed distance of a voxel is appropri-

ate or not. Since we find the nearest neighbor point of a range image using a k-d tree [30],

the magnitude of each signed distance is computed by Euclidean distance. Thus, its mag-

nitude is appropriate as an element of SDF to generate an isosurface. The factor we have to

examine is the sign of each signed distance to generate a mesh model which is consistent

with the original surface.

The merging algorithm described in Chapter 2 takes a consensus of range images by

searching the nearest neighbor points. However, it does not consider the consistency of the

signed distances of adjacent voxels. Thus, our new method takes a consensus of the signed

distances of adjacent voxels. We have already introduced a criterion by (8.2). We com-

pared a voxel with its adjacent voxels. Since our merging method uses voxels of adaptive

resolution, as described in Chapter 4, (8.2) is modified to

|d− d′| > α
W + W ′

2
, (8.3)

where W is the width of the current voxel, W ′ is the width of the adjacent voxel and α is

a parameter defined by the user.

Figure 8.5 shows a 2D slice of adjacent voxels to take the consistency of the signs of

SDF. The number of adjacent voxels in a 3D space is 26 if the resolution of the voxels is
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Figure 8.5: Adjacent voxels to take consistency of the signs of SDF

constant. We compared a voxel with all adjacent voxels. If the number of voxels which

satisfy (8.3) is larger than n/2, where n is the number of adjacent voxels, we consider the

sign of the signed distance of the voxel to be inconsistent. Then, we flip its sign to make it

consistent with the adjacent voxels. We compute the consistency as for all voxels, and flip

its sign if it is inconsistent with its adjacent voxels. We iterate the process until all voxels

are consistent.

The algorithm used to take the consistency of adjacent voxels becomes Algorithm 8.1.

d, d′ and do are the signed distance of the voxels N, N ′ and No, respectively. If a voxel is

determined as an inconsistent voxel by computing the consistency with all adjacent voxels,

we flip the sign of the signed distance and add the voxel No to output octree O. If it is

consistent, we add the new voxel No without changing the signed distance. We tested all

voxels by traversing the current octree. We iterated FlipSign(N ) until the number of voxel

whose signed distance was flipped became 0 (see Algorithm 8.2). Since the signs of the
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flipping voxels may oscillate and do not converge to 0, we increased α and relaxed the

condition during iteration if the convergence became slow.

After one iteration, we can restrict the voxels to examine their signs. If the signs of a voxel

and its adjacent voxels did not flip in the previous iteration, we did not have to examine it

in the current iteration. Thus, we recorded the voxels whose signs were flipped, and used

the database to determine whether we needed to examine a voxel or not.

8.5 Experiments

We first tested our algorithm to take the consistency of signed distances with adjacent

voxels using a small object. In Figure 8.3, the signed distances around sharp corners are

sensitive to noises. We applied our new method to the SDF of the object, and obtained

the model shown in Figure 8.6. Since we took the consistency of the signed distances of

the adjacent voxels, we removed erroneous vertices and triangles from the generated mesh

model at the same time as we filled holes on the original surface. Figure 8.7 shows the

rendering results of SDF directly by volume rendering [29]. The red spaces mean voxels

which have positive signed distances; and the blue spaces are voxels which have negative

ones. The green faces are the isosurface of zero level of the SDF. In Figure 8.7(a), there are

blue spaces outside the object. However, after taking the consistency of SDF, our method

removes them, as shown in Figure 8.7(b), and successfully extracts the isosurface of zero

level.

We iterated the traversal of an octree 32 times; the number of flipped voxels changed,

as shown in Figure 8.8. In this experiment, α was fixed to 1. The number of flipped

voxels was reduced quickly at the beginning. Since the total number of voxels in the

octree was 130521, the number of flipped voxels were much smaller than the total number

of voxels. Thus, the reduction of computation by using the database of flipped voxels

worked effectively.

Next, we complemented the unobserved surface of the Great Buddha of Kamakura. Af-

ter merging range images of the Buddha, we obtained the model shown in Figure 8.9(a).

Since the mesh model was generated with restriction by (8.1), the model has holes around

the unobserved areas, such as the top of the head, the shoulders, and the arms. By taking

the consistency of SDF, we complemented those unobserved surfaces, as shown in Figure
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(a) (b) (c)

Figure 8.6: Result of taking consistency of the SDF

8.9(b). We were able to successfully generate a plausible model of the unobserved sur-

faces. Figure 8.10 shows the SDF by volume rendering. There are many voxels whose

signs are doubtful, which was caused by sensitive computation of the signed distance in

Figure 8.10(a). After taking the consistency of SDF, we were able to remove those doubt-

ful voxels and extract a robust isosurface.

8.6 Summary

We have proposed a novel method to complement such holes of surfaces. Since the signed

distance field, which is computed during the merging process, has inconsistencies for the

signs of neighbor voxels because it becomes sensitive around the holes of range images,

we efficiently complemented the unobserved surfaces by taking a consensus of their signs.
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(a) (b)

Figure 8.7: SDF by volume renderer
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Figure 8.8: Number of voxels whose signs are flipped
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Algorithm 8.1 FlipSign(N )
Input: Current Node of Octree: N

Local: Node of Octree: N ′, No

Local: Signed Distance: d, d′, do

Local: Width of N, N ′: W, W ′

Local: Number of Voxels: n, ni
Output: Output Octree: O

No ← N

if need to examine N then

ni ← 0, n← the number of adjacent voxels

for all adjacent voxels N ′ of N do

if |d− d′| > αW+W ′
2 then

ni ← ni + 1

end if

end for

if ni > n/2 then

do ← −d

else

do ← d

end if

end if

add No to output octree O

if N is nonterminal then

for all children Ni(i = 0, . . . , 7) of N do

FlipSign(Ni)

end for

end if
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Algorithm 8.2 IterateFlipSign(O)
Input: Current Octree: O

Local: New Octree: O′

Local: Root Voxel of Octree: Nroot
Local: Number of Flipped Voxels: n, nprev

n←∞
while n > 0 do

Nroot ← root node of octree O

O′ ← 0

O′ ← FlipSign(Nroot)

nprev ← n

n← number of voxels whose signed distance is flipped

if nprev − n < ε then

increase α

end if

O ← O′

end while

(a) (b)

Figure 8.9: Complementing the unobserved surfaces of the Buddha
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(a) (b)

Figure 8.10: SDF of Kamakura Buddha rendered by volume renderer
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Chapter 9

Conclusion

In this thesis, we have considered the geometric and photometric modeling of large-scale

and intricately shaped objects, such as cultural heritage objects. In modeling such ob-

jects, the following new issues occurred during the modeling steps, which have not been

considered in previous research on the modeling of small, indoor objects:

1. Creating a detailed model from a huge amount of data

2. Merging of photometric attributes of range images

3. Constructing a precise model using noisy data

4. Covering of the whole surface of an object

5. Complementing unobservable surfaces of an object

Concerning the first issue, we have proposed three approaches, the parallel processing of

merging range images, an effective nearest neighbor search, and an adaptive algorithm of

merging range images. In addition, we proposed a new technique to merge photometric

attributes attached with range images in our merging framework. If the obtained range

images are noisy, we have proposed a novel method to refine the range images using

multiple observations. To obtain range images and color images of the areas of the object

which cannot be observed from the ground, we have developed a new stereo range finder

which is loaded on a balloon, and which acquires images from the air. Since unobservable

surfaces still exist after making full use of various kinds of sensors, we have proposed a

new method to complement the holes of surfaces which cannot be observed by any scans.
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9.1 Parallel Merging of Range Images

A huge amount of data is needed to create a detailed model of a large-scale object such as

a cultural heritage object. Thus, we have proposed a new method to merge a huge amount

of range images by parallel computation of signed distances using a PC cluster, which

is extended from the consensus surface algorithm [97]. It consists of the following two

components:

1. Distributed allocation of range images to multiple PCs

2. Parallel traversal of subtrees of an octree

We handled a huge amount of range images, which were larger than the size of the physical

memory of a single PC, by the first technique. The second technique made full use of many

CPUs belonging to a PC cluster, and reduced the computational time.

9.2 Effective Nearest Neighbor Search

As the second approach to handling a huge amount of data, we have proposed a new

algorithm for searching for the nearest neighbor using a k-d tree. If the nearest neighbor

point is far from a query, it is not as important as the nearest neighbor in many applications.

Thus, we have proposed the Bounds-Overlap-Threshold test, which does not search strictly

by pruning branches if the nearest neighbor point is beyond a threshold. This technique

drastically reduces the computational cost if the nearest neighbor is far from a query. Since

the threshold of the BOT test can be changed without re-creating a k-d tree, it is suitable

for applications in which variable threshold is considered. We discussed the performance,

which depends on the distribution of the distance from a query to the nearest neighbor.

9.3 Adaptive Merging Algorithm

The third approach to handling a huge amount of data is the adaptive algorithm of merging

range images. We have proposed an algorithm for constructing a 3D model in an effi-

cient representation. Considering the surface curvature and the photometric attributes, we

constructed 3D models that have a higher detail in surface areas that contain either high
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curvature or a significant variation of appearance. We have proposed two approaches:

considering the curvature of the implicit surface of SDF after the merging process, and an

adaptive merging technique based on the curvature of range images. We can efficiently

use the computational resources by these methods.

9.4 Merging Photometric Attributes of Range Images

Another extension of the merging framework is the merging of photometric attributes

which are attached with range images. By taking a consensus of the appearance changes

of the target object from multiple range images, we reconstructed a 3D model with an

appearance which successfully discards outliers due to noise. Also, we provided a model

with Lambertian reflected light values by discarding specular reflection as outliers. The

photometric attributes of the model can be used for aligning with 2D color images.

9.5 Refining Range Images using Multiple Observations

We have proposed an efficient method of refining range images under the consideration

of unique error distributions of multiple range images. We described how we applied

this method for the modeling of the artificial test object and the actual cultural heritage

object from the images acquired by the time-of-flight range sensor. We also applied our

method to the range images which were generated by a multi-baseline stereo system. The

experimental result shows the validity of this method compared with that of the existing

filter-based methods.

9.6 Flying Stereo Range Finder

To cover unobservable surfaces from the ground, we developed a new range scanning

system, which obtains a dense range image by stereo matching. It is loaded on a balloon,

and scans a large-scale object from the air. Since it moves by wind, the system acquires

multiple images using 9 cameras at the same time to avoid difficulty of calibration. To

construct a high resolution model, we used digital steel cameras, which can obtain high

resolution images. Also, since it is difficult to calibrate cameras when scanning a large-

scale object, we developed a calibration technique that uses range images. For efficient
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computation of stereo matching, our algorithm uses rectification accelerated by graphics

hardware and recursive correlation calculation.

9.7 Complementing Unobservable Surfaces

After scanning the surface of an object using various kinds of sensors, unobserved surfaces

often exist. We have proposed a novel method to complement such holes of surfaces. Since

the signed distance field, which is computed during the merging process, has inconsisten-

cies with regards to the signs of neighbor voxels because it becomes sensitive around the

holes in the range images, we efficiently complemented the unobserved surfaces by taking

a consensus of their signs.

9.8 Contributions

We would like to list the contributions of this thesis:

• Parallel processing algorithm of computation of signed distances: we have analyzed

the algorithm of computation of signed distances and developed a parallel compu-

tation algorithm.

• A novel algorithm for searching for the nearest neighbor using a k-d tree: we have

proposed an efficient search algorithm to reduce the computational cost by pruning

branches if the nearest neighbor point is beyond a threshold.

• Adaptive merging algorithm using octree: we constructed a model in adaptive res-

olution which depends on curvature and photometric variation. Consequently, we

can efficiently use the computational resources available.

• Merging photometric attributes of range images: we have proposed a new technique

to integrate photometric attributes of range images in our merging framework. We

can utilize them for aligning color images.

• Refining range images using multiple observations from various viewpoints: we

refined range images during iterative computation by assuming that the distribution

of their error is anisotropic according to the viewing direction.
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• Flying Stereo Range Finder: this sensor obtains a dense range image by stereo

matching while it is loaded on a balloon and moving in the air.

• Complementing unobserved surfaces which are not observed from any scans: we

have proposed a new technique which fills holes of the surface by taking a consensus

of the signed distances of neighbor voxels.

9.9 Future Work

We have proposed a novel method of merging range images in adaptive resolution. The

main goal of the adaptive merging method is to reduce the computational cost and the size

of generated model. Though the method works well, the quality of the result as a mesh

model is lower than a model generated by a mesh simplification technique because our

method generates irregular meshes based on marching cubes. We will consider the quality

of the resulting mesh model as several research [100, 23] do.

We have developed a method of refining range images. So far, we have tested the method

using several kinds of range finders, for example, laser range finders and a stereo range

finder, whose ray directions are perspective. We plan to test range images which are ob-

tained by other types of range finders, such as by an airborne laser scanner [48]. Since the

range image obtained by an airborne laser scanning is obtained from an airplane in flight,

it does not give perspective but rather a pushbroom panorama [83]. We will experiment

with our refining technique by applying it to range images obtained by other types of range

finders.

In our current implementation, we were able to refine range images after aligning range

images. The refining method can be considered as a problem of estimating the parameters

which are attached to each vertex of range images. Since the aligning of range images is

a problem of estimating the parameters of rotation and translation, we will consider the

relationship of refining and aligning range images.

We have developed a stereo range finder which consists of 9 cameras. To generate a more

accurate range image, we plan a new sensor which has more than 9 cameras or which

utilizes structure-from-motion.

Though we have developed the FSRF for filling holes of the surface of objects which
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cannot be observed from the ground, unobservable surfaces still exist, such as concave

surfaces in a narrow space. We plan to develop a new sensor to observe those types of

unobservable surfaces.
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Appendix A

Determine Adjacent Voxels of Octree

A.1 Determine Adjacent Voxels

To apply the marching cubes algorithm (MC) to an adaptive octree, we have to determine

8 voxels which consists 8 vertices of a cube. Since these 8 voxels are adjacent to each

other, we must first determine the adjacent voxels of a voxel. To identify a node in the

entire volume, we define the ID L of a node N of the octree, which corresponds to the

voxel. L is a list of codes which represent the relative position compared with the parent

node. Namely, if N is at depth d of the octree, L of the node N represented a list of code:

L = {L1, L2, . . . , Ld}, (A.1)

where Li is the code at depth i. Figure A.1 shows the coding of child nodes relative to the

parent node. If a node at depth i is larger side of the axis as to x axis among brothers of

the node, we set δx = 1; otherwise, δx = 0. Similarly, we also set δy and δz . Then, the

code Li relative to the parent is

Li = δx + 2δy + 4δz. (A.2)

A node has 6 adjacent nodes along to the x, y and z axes. We compute the adjacent node

by Algorithm A.1. If we compute the ID of the adjacent node which is the larger side of

N along the x axis, we set v = 1. However, if we compute the one which is the smaller

side along the x axis, we set v = −1. Similarly, we set v = 2 or v = −2 for the adjacent

node along the y axis, and we set v = 4 or v = −4 for the adjacent node along the z axis.

In Algorithm A.1, ⊗ means bit-by-bit logical AND.
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Figure A.1: Coding of 8 child nodes relative to the parent node

Figure A.2 shows one dimensional view of an example of computing the ID of the adjacent

node. The ID of node a is {0, 1, 1}. We compute the adjacent node b of larger side as to x

axis, namely v = 1. We obtain that the ID of b is {1, 0, 0} by AdjacentNode(a, 1).

A.2 Determining 8 Voxels of A Cube

The next step is to determine the 8 voxels which consist of a cube. Since the 8 voxels are

adjacent to each other, we can determine those ID by applying Algorithm A.1 in order.

However, since the depth of a node in the octree varies according to the distance from

the surface of the object, there is curvature of the surface and variation of the photometric

attributes of the surface. Thus, the depth of the node which is computed by Algorithm A.1

may be less than d; or the node may have child nodes. We have to use terminal nodes,

which have no children, for a cube to be applied to MC, because we want to generate a

mesh model which is as fine as possible.

Therefore, we have to determine if the computed 8 voxels are suitable for a cube to be

applied to MC. Algorithm A.2 shows the algorithm to determine the cube which voxel N

belongs to. Since voxel N may belong to 8 cubes, the combination of vx, vy and vz is 8
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Figure A.2: An example of computing the ID of the adjancent node

cases: {1, 2, 4}, {-1, 2, 4}, {1, -2, 4}, {-1, -2, 4}, {1, 2, -4}, {-1, 2, -4}, {1, -2, -4}, {-1,

-2, -4}. If vx, vy and vz are negative, we sort these voxels by swapping them.

If the depth of the node which is computed by Algorithm A.1 may be less than d, some

nodes of cube C become the same nodes. In such cases, C is not a hexahedron. However,

we can apply it to MC, as described in 4.3. If we apply all nodes to MC when we generate

a mesh model, a cube can be repeatedly applied to MC. Thus, the same vertices and

triangles are generated redundantly. We can then remove redundant vertices and triangles

after generating a mesh model.
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Algorithm A.1 AdjacentNode(N, v)
Input: Node of Octree: N

Input: Direction of Adjacent Node: v(= −4,−2,−1, 1, 2, 4)

Local: ID of a Node: L, L′

Local: Depth of L: d

Output: Adjacent Node: N ′

L′ ← L

for i = d to 0 do

if i = 0 then

adjacent node does not exist

return

end if

if (v > 0 ∧ L′
i ⊗ v > 0) ∨ (v < 0 ∧ L′

i ⊗ (−v) = 0) then

L′
i ← L′

i − v

else

L′
i ← L′

i + v

exit loop

end if

end for

N ′ ← root of octree

for i = 1 to d do

if N ′ has children then

N ′ ← N ′
Li

else

return N ′

end if

end for

return N ′
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Algorithm A.2 ComputeCube(N, vx, vy, vz)
Input: Node of Octree: N

Input: Direction of Adjacent Nodes: vx, vy, vz

Output: 8 Voxels of Cube: C = {Ni|i = 0, . . . , 7}
N0 ← N

N1 ← AdjacentNode(N, vx)

N2 ← AdjacentNode(N, vy)

N4 ← AdjacentNode(N, vz)

N3 ← AdjacentNode(N1, vy)

N5 ← AdjacentNode(N1, vz)

N6 ← AdjacentNode(N2, vz)

N7 ← AdjacentNode(N3, vz)

for i = 0 to 7 do

if Ni has children then

this cube is not suitable to be applied to MC

return

end if

end for

if vx < 0 then

N0 ↔ N1, N2↔ N3, N4↔ N5, N6↔ N7

end if

if vy < 0 then

N0 ↔ N2, N1↔ N3, N4↔ N6, N5↔ N7

end if

if vz < 0 then

N0 ↔ N4, N1↔ N5, N2↔ N6, N3↔ N7

end if

return C
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Appendix B

Modeling Results of Cultural Heritage Objects

We now present some results of modeling cultural heritage objects which we have scanned

so far. Figure B.1 shows some examples of the objects we have scanned. The two statues

of the top row are the Great Buddha of Kamakura and the Great Buddha of Kamakura in

Japan. They are also famous big statues of the Buddha. It is outside as we can see and the

height of the Great Buddha of Kamakura is 11.3m. We constructed scaffolds to obtain the

top view of the statue. However, we cannot see the top of the head and shoulder. We fill

holes of the model by the technique described in Chapter 8. The result is shown in Figure

B.2. We obtain 16 range images of the Buddha using Cyrax2400 [18]. Each range image

has about 0.3 million vertices and 0.6 million triangles The model has about 3.0 million

vertices and 6.0 million triangles. We took 61 minutes to merge range images.

The height of the Great Buddha of Nara is 14.98m and it is inside of the hall. We brought

up to the ceiling and scanned it from the upper side. We took 90 range images of the

Buddha and the total size of range images is about 1.3GB. Figure B.3 shows the merging

result. The model has about 7.2 million points and 14.0 million triangles. The computa-

tional time is about 31 hours and 44 minutes.

The middle row of Figure B.1 is the stone statue of the Buddha made in China It is smaller

than the former two statues. We obtain 40 range images using VIVID [58], which can

acquire a range image with RGB values for each pixel of a range image. 7-9 range images

overlap at each point of the Buddha. We merge range images with RGB values by the

technique described in Chapter 5. Figure B.4 shows the merging result of the Buddha.

The two photographs of the bottom row in Figure B.1 are the Great Buddha in Sukhothai,
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Thailand. The statue is inside the wall and we obtain range images from the top of the

wall. We have acquired 176 range images (including 68 images of the Buddha and 108

images of the wall). The total size of range image is about 2.5GB (Buddha: 790MB, wall:

1.7GB). Figure B.5 shows the merging result of the Buddha. The model only including

the Buddha has about 1.2 million vertices and 4.8 million triangles. The computational

time is about 6 hours and 58 minutes.
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Figure B.1: Top row: Kamakura Buddha(left), Nara Buddha(right). Middle row: China

Buddha. Bottom row: Thai Buddha
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Figure B.2: The merging result of the Kamakura Buddha
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Figure B.3: The merging result of the Nara Buddha
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Figure B.4: The model of China Buddha with RGB values as photometric attributes
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Figure B.5: The model of Thai Buddha and the wall
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