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Abstract

To estimate the complex refractive indices and the size distributions of aerosols and
hydrosols from light scattering measurements, we present a data processing technique using

both inversion and library methods.

Extensive numerical simulations have shown that the

true values of complex refractive index and size distribution are retrieved fairly well when
this method is applied to measurements of polarization components of scattered radiation
parallel and perpendicular to the scattering plane.

1. Introduction

Inversion techniques to solve the Fredholm in-
tegral equation of the first kind have been ap-
plied to estimate the size distribution of airborne
particles from spectral attenuation measurements
and from light scattering measurements. How-
ever, a priori knowledge of the refractive index
of particles necessary for these techniques is
occasionally unobtainable when the measurements
are performed in an ordinary atmosphere. In
this connection, Yamamoto and Tanaka (1969)
applied the Phillips-Twomey method to spectral
attenuation measurements, where they assumed
the refractive index of particles to be 1.5 to
calculate the coefficient matrix of the basic linear
equations. Such an assumption,- however, is not
necessarily correct in all the atmospheric condi-
tions. So, they examined the errors involved in
estimated values of the size distribution due to
an uncertainty in the refractive index, and found
that the error increases as the exponent of the
power law of size distribution increases. Grassl
(1971) and Badayev et al. (1975) also analyzed
attenuation data by the iteration method and the
statistical regularization method, respectively, and
they pointed out that an adequate knowledge of
the refractive index is necessary for successful
solutions.

* Present affiliation: National Defence Academy,

Yokosuka.

The relation between the intensity of singly
scattered light and the size distribution of parti-
cles has the same form of the integral equation
as in the attenuation measurement. Shifrin and
Gashko (1974) examined the size distribution in-
verted by the statistical regularization method
when the incorrect value of the refractive index
is assumed, and found that, even if the random
error involved in the measured phase function
is as small as 0.1%, the obtained size distribu-
tion does not follow the true one. They showed
that the incorrect assumption of the refractive
index introduces the same effect as noticeable
systematic errors in the measured phase function.
Especially, adequate accuracy in the choice of
the imaginary part of the refractive index is im-
portant for obtaining a successful solution.

On the other hand, scil:eral attempts to esti-
mate the refractive index of airborne or water
suspended particles by least-square fitting tech-
niques have been made assuming some a priori
forms of the size distribution, i.e. by the library
method. Ward et al. (1973) analyzed polariza-
tion data for bistatic laser scattering to obtain
best fit values of the complex refractive index
and the exponent of a regularizing power law
size distribution. Grams et al. (1974) obtained
the value of imaginary part of the refractive in-
dex of soil-derived particles by minimizing the
square deviation between the observed phase
function and the theoretical one calculated for
the log-normal size distribution giving the best
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fit to the simultaneously observed size distribu-
tion. Gorchakov er al. (1976a) also applied es-
sentially the same method to foggy haze data.
Zanaveld et al. (1974) used the converging de-
cent method to find the best fit combination of
refractive indices and size distributions to ac-

count for the observed phase function of water-

suspended particles. They found the suitable
model was the two component system consisting
of particles with refractive indices around 1.01—
1.05 and .15, which obey the power law size
distributions.

In this study, we present a method of simul-
taneous determination of the size distribution and
the refractive index of airborne and water-sus-
pended particles by combining the inversion tech-
nique of Phillips and Twomey with the library
method mentioned above. Already, Gorchakov
et al. (1976b) presented a similar method to ours
to analyze the phase matrix data of foggy haze.
We extend the library to include the imaginary
part of the refractive index. The availability of
the method is discussed as a preliminary model
study of the data processing of real observation
(see the paper following this study), taking ac-
count of both parallel and perpendicular polariza-
tion components of the scattered radiation. Re-
trievals of both size distribution and refractive
index have also been attempted by Reagan et al.
(1980) and Hansen (1980). Reagan et al. (1980)
obtained the size distribution from spectral at-
tenuation data, with which they selected most
plausible values of the refractive index from the
simultaneously observed bistatic lidar data. Han-
sen (1980) determined the complex refractive in-
dex and the exponent of the power law size
distribution by a library method to interpret polar
nephelometer data, similarly to Ward et al.
(1973). He next improved the size distribution
by a non-linear fitting technique using the refrac-
tive index obtained above. These authors have
treated carefully the inference problems so that
inference process of one variable, i.e. the refrac-
tive index or the size distribution, has minimum
effect on inference process of another variable.
It is worthwhile, however, to note that effective
size range for inversion of data of various
measurements or with various conditions differs
from one another. Thus, it is very interesting to
investigate efficiency of simultaneous fitting of
more than one variable to interpret observed
data.
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2. Theory

We assume the polydispersion . consisting of
homogeneous’ dielectric spheres with the same
refractive index m=m,—mji. Validity of this
assumption has become to be one of the most
interesting problems in the atmospheric optics in
the last decade (Powell et al. 1967; Holland and
Gagne 1970; Chylek et al. 1977; Heintzenberg
and Welch 1982 and others).” Although the
general characteristics of difference between the
scattering pattern of radomly oriented nonspheri-
cal particles and that of spheres are still open to
discussion, it may come to an agreement that
backward portion of the phase function of non-
spherical particles depends less on ‘the scattering
angle than it does for spheres. Then, as pointed
out by Grams et al. (1974), the value of imagi-
nary part of the refractive index inferred from
observation of the phase function must be re-
garded as the upper limit of the true value when
the size distribution is known. In this context,
Pinnick et al. (1976) tried to fit scattering :pat-
terns of nonspherical particles to those of spheri-
cal particles by introducing a fictitious absorp-
tion correspondmg to 1mag1nary part of the re-
fractive index of 0.02-0.12.

Assuming scattering by spherical particles, ob-
served polarization components of scattered radi-
ation perpendicular and parallel to scattering
plane (I, I;) can be related to the correspondmg
incident radiation (Io,, Ioy) as follows '

HE RN US

where r is the distance between the scattering
volume and the observation point, and. f; and
B2 are the phase functions given b.y :

"amHISl(@ ka, m)IQn(a)da o -
] for I1=1,2, (2)

where k=2z/ 2:2 being the wavelength of llght
a is the partlcle radius, n(a) is the particle. num-
ber spectrum, @ is the scattering angle, and S
is the scattering amplitude function calculated
for particles with the complex refractive index m.
Before approximating the above integral opera-
tion by an adequate finite sum, we convemently
take the volume, spectrum msteag of the number
spectrum, i.e.

BiO) = kl

v(na)dIna= 47” a*n(a)da ,

or
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v(ln a)= 4%(1411(11) . (3)
Substituting Eq. (3) into Eq. (2), we have
x ax
ﬂl(@i)=s " KU, @, myv(a)da
min |
N
~ 3 Kujv; for /=12
Jj=1
and i=1,2,--- M, (4)
where
z=Ina, «5)
Kzij¥ng+l/2 Ki(©;, 2, m)dzx , (6)
Lj-1/2
.3 S,
K0, z, nz)=m SO, ka, )|z,  (7)

and v; is a some representative value of v(z) in
the subinterval (xj_1/2, j+1/2). Such a transforma-
tion is justified by reasons that (i) the kernel K;
is a rapidly oscillating function so that an aver-
aging procedure is necessary to replace the inte-
gral by a finit sum, (ii) the kernel K, averaged
over a subinterval is a slowly varing function of
2 having the following asymptotic behaviors

a®  for a—0

Kici a for a—oo and a®—0

. (8)

1/a for a—co and aB—o

and (iii) v(x) is a slowly varing function of «
because the typical number spectrum of airborne
particles is the Junge’s distribution of the form
of n(a)oca=* (Toon and Pollack, 1976).
Dividing the Eq.(4) by the observed phase
functions, we obtain a matrix equation

G(m)V=1+¢, (9)
where
_ Gl(m)] . o Kuij(m)
G(m)_[Gz(m) with (Gi(m))ij= 5Oy
(10
and (1);=1. The error vector ¢ comes from

several origins such as’ observational error, ap-
proximation by homogeneous spheres, finite sum
approximation and so on. Inversion of the over-
determined system given by the Eq. (9) (with con-
dition of 2M>N), i.e. V'=(G*G)~1G*1, where
G* is the transpose of G, allows us the least
square solution minimizing the relative error in
the phase functions. The solution V’ thus ob-
tained, however, is generally an erroneous, high-
ly fluctuating function of x because of inflation
of the error vector e in the process of matrix in-
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version (Twomey, 1963; Twomey and Howell,
1967; Dave, 1971). Several techniques to solve
such a singular linear system have been pre-
sented: Phillips-Twomey method (Phillips, 1962;
Twomey, 1963, 1965; Twomey and Howell,
1967), statistical regularization method (Turchin
and Nozik, 1969; Shifrin et al., 1972), iteration
method (Grassl, 1971; Twitty, 1975), Backus-
Gilbert method (Westwater and Cohen, 1973)
and so on. We adopt the Phillips-Twomey
method with the constraint condition to minimize
the norm of the second derivative of the volume
spectrum, i.e.

Sxmu d?v(x)
Zmin

da?
where H is the finite difference representation of
the fourth derivative operation d*/dxz*. The least
square solution for the Eq. (9) which allows the
minimization condition of the Eq. (11) is

Ve(m)=[G*(m)G(m)+ yHI'G*(m)1 . (12)

This is essentially the same formula as for the
statistical. regularization method. Although ap-
proximate magnitude of the Lagrangean multi-
plier 7 can be determined by several considera-
tions (Turchin and Nozik, 1969; Dave, 1971),
we simply select the optimum value of y which
minimizes the standard deviation ¢ given in Eq.
(15) for each m, among the following prepared
values

2

(3]

de=V-HV,

1 N
— exp{— > 1n<G*G)ﬁ}
N j=i

with 70=1073 102 ... 102. (13)

Further, we reassign the null value to negative
values in the inverted size spectrum of the Eq.
(12).

In the study of inversion problems, many
authors have been interested in the degree of
reconstruction of the size distribution, but have
not compared in a systematic way the observed
phase function with the reconstructed phase func-
tion

1.(m)=G(m)Vc(m),
or,

Be, O:, m) = Bu(O)(1c(m)); . (14)

However, the degree of reconstruction can only
be tested in terms of the observed quantities.
Then, we investigate the standard deviation of
relative error in S,

a(m)= V[1—1(m)[2/2M . (15)
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It is natural to expect the deviation of the recon-
structed phase function from the observed one
will be large if an unrealistic value of the refrac-
tive index is assumed as pointed out by Gor-
chakov et al. (1976b) and Shifrin and Gashko
(1974). The most plausible value of the refrac-
tive index of particles is, therefore, obtained by
choosing the value m=my, at which the standard
deviation ¢ in the Eq.(15) takes a minimum
value. Correspondingly, the final estimation of
the size distribution is given by V. (my).

3. Models and parameters

Seven polydispersions are selected to cover the
range of variability of the size distribution of
the tropospheric aerosols as shown in Fig. 1. In
the figure, JUNGE-3, 4 and S show extensions
of the power law size distribution first proposed
by Junge (1955) in terms of the volume spec-
trum, i.e.,
4rA
TGXP(4$C—I:E0) for x<xo
v(x) = )

A
—7;— exp{(d—DNx} for x>0

(16)

where xo=Inag, ap=0.1ym and /=3, 4 and 5.
Toon and Pollack (1976) and Gorchakov and

1070

V (cm3/cm3)

cLoup-Ct

10"

107" I
0.01 0.1 1 10

PARTICLE RADIUS (um)

Fig. 1 Model volume spectra of airborne par-
ticles. For definition of each curve, see the
text. Ordinate for the cloud is 103 times
the values in the figure.
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Yemilenko (1974) have shown that the JUNGE-
4 is the good representative of the size distribu-
tion of aerosols in the lower troposphere. On
the other hand, Deirmendjian (1969) has pro-
posed that the size distributions of aerosols and
clouds can be approximated by the modified
gamma distribution, which is written in terms of
the volume spectrum as

v(w)=“TAexp{(a+4)x—ﬁe”’} . a7
We take his HAZE L(f=15.1186, a=2, y=
0.5), HAZE M(p=8.944, «=1, y=0.5), and
CLOUD CI(f=1.5, a=6, y =1) models as the
size distributions of continental aerosols, mari-
time aerosols and clouds, respectively.

The size distribution of aerosols sometimes
reveals a multi-modal feature with superimposed
background particle mode and soil-derived parti-
cle mode (Patterson, 1977). Volume spectrum
named “BIMODAL” in Fig. 1 is the log normal
approximation of a spectrum measured under
conditions of slight visibility reduction

4r A exp{‘m_i(m—wm >2}
3 2 1[1S2
47 As 1/ 2—2me)?
+——3~exp{4x—7< S, >}, (18)

where 2, =Ina, and involved parameters are
$1=1.55, 4p;=0.0611 and 4;,=1.77x10~2 for
the first mode, and S»=2.11, a,,=0.232 and
A,=1.78x10-5 for the second mode. The size
range of particles is limited to 0.01<a<10ym
for all the spectra. Division points {xj-12} in
the Eq. (4) are chosen with equidistant spacing
as follows

@j_19=0.64j—5.18 for j=1,2, --- 12.
(19)

For such equidistant division points, the expres-
sion of the matrix H in the Eq. (11) is given by
Yamamoto and Tanaka (1969). Angular division
points {@;} are chosen as 7(1) 10(2.5) 25(5) 170
degrees to meet the practical condition of our
experiment (Takamura and Tanaka 1978).

v(x)=

4. Analysis of the aerosol phase function

A typical example of our analysis is shown in
Figs. 2, 3 and 4. Observed phase functions and
corresponding values of the degree of linear
polarization shown in Fig. 2 are estimated by ad-
ding Gaussian random errors e=+/{e-e>, where
< > means averaged quantity, to the theoreti-
cal values calculated from Mie theory for the
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JUNGE-3 aerosols with m=1.55—0.01/ at wave-
length of 2=0.5145ym. By applying the Eq.
(12) to the observed phase functions thus ob-
tained (8; and B in Fig. 2), we can infer the
volume spectrum of aerosols corresponding to a
specified value of the refractive index. As for
the refractive index, we adopt the following set
of values

mr=1,45(0.05)1.65,
and

m;=0,005,0.01,0.02,0.03,0.05 and 0.08,

(20)

where m, and m; are the real and imaginary
parts of the refractive index, respectively. Then,
we apply the Eq. (14) to the spectra thus ob-
tained and get a family of reconstructed phase
functions. Two examples of the phase functions
in this family are shown in Fig. 2 by solid and

JUNGE-3(1.55-0.01i) 7-170°

10 -3 €=5% 7

S
N

PHASE FUNCTION (B,.8; /km)

0 60
SCATTERING ANGLE (DEGREES)

120 180

Fig. 2 Initially given and reconstructed phase
functions: circles and triangles show initial-
ly given phase functions B8; and B, respec-
tively, calculated for the JUNGE-3 model
with m=1.55—0.01i. Random observation-
al error of 5% is assumed. Solid and
broken lines show two examples of recon-
structed phase functions, the best fit (my=
1.55—0.01i, 0—¢=0.002, y,=10"2) and a
poor fit (my=1.50—0.03/, 0 —¢=0.12, y,=
1), respectively. Corresponding linear po-
larization (B;—Bs)/(B1+B2) is also shown
in the Yower part of the figure.
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dashed lines. These examples represent the best
and a rather poor fit corresponding to the volume
spectra shown in Fig. 3 by circles and triangles,
respectively. ‘

We can now calculate the standard deviation
of reconstructed phase functions from observed
one, i.e. ¢, by the Eq. (15). In Fig. 4 are shown
numerical values of ¢g—¢min for the case we
concerned, where g, is the minimum value of
g. Since the value of gnin is close to the value
of ¢, inherent random errors are subtructed from
the total errors by such a procedure; the values
of ¢— gmin roughly correspond to the systematic
errors in reconstructed phase functions due to
incorrect assumption of the refractive index.
Drawing error contours on the table of the
reconstruction errors in Fig. 4 we can find an
acute minimum around the true value of the
refractive index and, then, can infer the most
plausible value of the refractive index as moy=
1.55—0.01; which, in this case, is just identical
with the true value.

In the course of model studies such as men-
tioned above, the following general properties

-10

10 T T /
/°/Q
ot e
o
4
4 o
5 107 l v
£
2
E i JUNGE-3(1.55-0.011)
~ N 7-170° € =5%
> 0 o}
—100
1074k
0 F.A\ x
/,0'“""0""' \ﬁ\\& 150 &
ok 0.

107 N’g/ > 1 \w‘:@;;do
0.01 01 1 10
PARTICLE RADIUS (um)

Fig. 3 [Initially given and inverted volume

spectra: solid line indicates initially given
volume spectrum corresponding to the phase
functions shown in Fig. 2, circles with error
bars the best fit'(my=1.55—0.01i, y,=10"2)
and triangles with error bars the poor fit
(my=1.50—0.03i, yo=1). The maximum
contribution, C,, .y, ; of each size interval is
shown in per cent in the lower part of the
figure.
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JUNGE-3 Omin=4.9%
0.005H16" 54 41 8.5 :
8.8

m; 7.4
. 8.5

10\_/

1.7 11.1

15
u;xu.ls
145 1.50 1.55 .60 1.65
me

Fig. 4 Table of reconstruction errors o—oy;y
(in per cent) for initially given phase func-
tions shown in Fig. 2. Abscissa and ordi-
nate are the real and imaginary parts of
the refractive index, respectively. Cross
bars at 1.55—0.01/ indicate the true value

of the refractive index.

are observed for spherical particles: (i) the back-
ward portion of the phase function is very sensi-
tive to the trial values of the refractive index,
(ii) the steepness of the forward portion of the
phase function also contains useful information
for determining the refractive index, (iii) the
acute minimum of ¢—gmin, if it were found,
successfully shows the true value of the complex
refractive index, (iv) extinction coefficients and
single scattering albedos, as well as observed
phase functions, are reproduced without signifi-
cant errors from the assumed refractive index
and the corresponding size distribution thus de-
rived, (v) the relative root mean square devia-
tions (RMSD) of the reconstructed volume spec-
trum (Turchin and Nozik, 1969) and the maxi-
mum contribution of a given spectral portion
(say the j-th portion) to any portion of the phase
functions defined respectively by Eqgs. (21) and
(22) provide good criterions for specifying relia-
bility of our inversion
RMSD =~/{0%) /<v;> =/ (G*G+7H)is™
(20
Crmax, j=max {Ku;v;/81(60)

I=1,2;i=1,2 --- M}. (22)
In Fig. 3 are shown the values of RMSD and
Chax,j by error bars and curves drawn in the
lower part of the figure, respectively. For the
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correct value of the refractive index (i.e. m.=
1.55—0.01¢), error bars are short and Ciax,;
values are large in the region of good recon-
struction, whereas either error bars are long or
Cumax.j values are insignificant in the region of
poor reconstruction. Thus, the information ex-
tracted from our inversion technique depends on
the RMSD and Cyay ; values defined by, -the
Eqgs. (21) and (22). However these criterions are
no longer applicable when the refractive index
is incorrect, since the kernel matrix K;; in the
Eq. (4) depends on the size distribution in differ-
ent way from the true one. Therefore, plausible
values of the refractive index should be deter-
mined by minimizing of the reconstruction error
g — ogmin, before determination of the final volume
spectrum. Once we obtain the most plausible
value of the refractive index, our scheme can
then be used to invert the volume spectrum.
Errors involved in the inverted volume spectrum
are found to be insignificant in the size range
from 0.1 to 3pum for aerosol models shown in
Fig. 1 except for the CLOUD CI model, as ex-
pected from the result of Dave (1971).

Fig. 5 shows similar error contours to Fig. 4
for the six other models shown in Fig. 1. The
true value of the refractive index and the ob-
servational error are assumed to be m=1.55—
0.01i and 5%, respectively. Observational scat-
tering angles, ©;€[7, 170], are given in Section
3. From Figs. 4 and 5, we can see that the
validity of determination of the refractive index
depends more or less on the form of the volume
spectrum. As the modal radius of the volume
spectrum increases, the reconstruction error be-
comes more sensitive to the imaginary part of
the refractive index, whereas the sensitivity to
the real part does not change seriously. Also,
it is of interest to note the general tendency that
the basin of the error contour tends to extend
from the upper left to the lower right portions
of the map. This property of error contours can
be understood more clearly when we investigate
the dependence of the phase functions in parti-
cle sizes and refractive indices. In Fig. 6 are
shown the relative differences of the steepness
of the phase functions calculated with various
values of the refractive index from that calcu-
lated for a standard value of my=1.55—0.01/,
ie.

01(01, Oz, m)= 48Oy, O3, m)

/Aﬁl(el, @2, mo) — 1, (23)

where,
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Fig. 5 As in Flg 4 but for different aerosol models.

1,45 1.50 155 160 1.65

Solid lines are for

analyses of the phase functions with the observational error of 5%

and the scattering angles of 7 (1) 10 (2.5) 25 (5) 170 degrees.

Dotted

and dashed-dotted lines in the figure for the JUNGE-5 model show

the results for the observationdl error of 11%

" tering angle of [0, 180].

- 4BUOy, Oz, m)=1n'{B(O1, m)/Bu(O:2, m)}.
For simplicity, we present only the result for the
vertical polarization component (/=1). Three an-
gular ranges of (25, 45),:(45, 90) and (180, @in),
where O,in is the scattering angle at which $,(0)
takes the- minimum value, are investigated. Deir-
mendjian’s HAZE M and H models are adopted

as representative- size distributions containing

and for the entire scat-

larger and smaller particles, respectively. The
HAZE H model is calculated by the Eq. (17)
with parameters =20, «=2 and y=1 and,
although not shown in Fig. I, has the maximum
around ¢=0.3pum. On the other hand, the HAZE
M model has the maximum around a=1.5pm.
The contour of ¢1(O1, @2, m) for the HAZE H
model depend less on the imaginary part of the
refractive index than those for the HAZE M
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0.005

0.01

0.02

0.03

HAZE -M

0.05

0.08

0.02

HAZE -H

0.03

005N\

0.08 b
145

1.50

Fig. 6 Relative differences of the steepness of
B; from that for my=1.55—0.01; at wave-
length of 0.45 um. Solid, dashed-dotted
and dotted lines indicate o(25, 45), o(45,
90) and (180, ©,,;n).

model. To have a crude image of the scattering
process by large (ka~10) and small (ka~1)
particles, we have examined phase functions
cauculated by the ray optics under the same
condition as in Fig. 6, even though the ray
optics is not a good approximation for Mie’s
solution unless the size parameter ka is larger
than a few hundreds (Liou and Hansen, 1971).
According to the ray optics, internal radiation
in a large particle is rapidly absorbed as the
imaginary part of the refractive index increases
due to their long optical path in the particle.
Thus the shape of the phase function drastically
changes for large particles (ka~10) as the imagi-
nary part of the refractive index increases in
the range of m;<0.1. On the other hand, the
change is slight for small particles as long as m;
is not so large. Also, the ray optics is useful to
understand the skewed pattern of the contour
maps observed in Figs. 4 and 5. Since the inten-
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sity of the reflected ray is a slowly varying func-
tion of the scattering angle, the backward portion
of the phase function becomes more flat as
refracted rays decrease with increase (or de-
crease) of imaginary (or real) part of the refrac-
tive index. Thus, the backward portion of the
phase function for particles with small values of
both imaginary and real parts of the refractive
index resembles that for particles with large
values of both imaginary and real parts of the
refractive index, as shown by dotted lines in
Fig. 6. On the other hand, the forward portion
of the phase function, say the phase function at
scattering angles from 25 to 45 degrees, becomes
more steeper either when the diffracted ray pre-
vails with an increase of the imaginary part or
when the anisotropy of the refracted ray in-
creases with a decrease of the real part of the
refractive index. Thus, the pattern of ¢4(25, 45)
on the refractive index plane is similar to that
of ¢1(180, Omin), though directions of the gradi-
ent are opposite to each other. As the result, it
is observed from Fig. 6 that a phase function
with a steep forward portion is likely to have
a flat tail in the backward portion. Therefore,
if we use only the forward portion or the back-
ward portion of the phase function, it is difficult
to obtain a unique set of values of the real and
imaginary parts of the refractive index. For-
tunately, an intermediate angular region of the
phase function depends in different way on each
part of the complex refractive index as shown
by dashed-dotted lines of ¢4(45,90) in Fig. 6.
At these intermediate angles, the reflected ray
prevails with the absorption, so that the phase
function becomes rather flat as the imaginary
part of the refractive index increases. Since this
portion of the phase function also becomes flat
with an increase of the real part of the refrac-
tive index, contours of ¢1(45, 90) distribute from
the upper left to the lower right of the map. In
this way, the entire angular region of the phase
function is required for a reliable estimate of
the refractive index. Detailed investigation shows
that ¢{(25,45) and ¢1(180, ®nin) depend more
sensitively on the refractive index than ¢(45, 90)
does, so that the skewed pattern of error con-
tours as shown in Figs. 4 and 5 will be found
in general for an inversion utilizing phase func-
tions alone. This implies that it is more or less
difficult to distinguish the true value of the re-
fractive index from an index of which real and
imaginary parts are simultaneously overstimated
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or underestimated.

Returning to Fig. 5, we examine the error
contours in detail. Comparing the location of
the minimum of the reconstruction error with
the true value, it is seen that the errors in esti-
mating the real and imaginary parts, are, respec-
tively, less than 0.025 in absolute value and 1.2
in factor except for the case of the CLOUD ClI
model. Fig.5 also shows the results of two
other experiments for the JUNGE-5 model; one
is for the data containing random error of ¢=
0.1, and the other is for the data sampled from
the entire angular region ©;[0, 180] by adding
new five angles of 0, 2, 4, 5.5 and 180 degrees.
Since the basic patterns of the error contours
hardly change with such modifications, it is ex-
pected that the refractive index can be deter-
mined with an accuracy comparable to this study
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for other experimental conditions.

Finally, we examine the case for which data
are incomplete comparing with standard observa-
tion. Fig. 7 shows the error contours for ana-
lyses using forward portions of f; and fs, back-
ward portions of f; and S, the vertical compo-
nent B; alone, the parallel component f, alone,
and the averaged phase function (B:1+ B2)/2.
The upper two maps are for the JUNGE-5 model
and the lower two for the JUNGE-3 model.
Comparing Fig. 7 with Figs. 4 and 5, we can
see that each part of the phase function con-
tributes in different manner to the estimation of
the real and imaginary parts of the refractive
index, and lack of the data reduces the reliability
of inversion, as already pointed out. For a poly-
dispersion containing small particles, such as the
JUNGE-5 model, the imaginary part of the re-

7 - 95° - B
wereeen 90 -170° JUNGE-5 e (B1oBo)I2
.01} || —flﬂ*— U \Q
N AN
0.02 S \~\
0.03f, 1\0 \.\ '
0.05 NN .
NN <\
0.08] AN R S JJ
145 150 155 160  1.65
m;
JUNGE-3
0.008f o \
\
0.01 \
002
0.03
0.05
0.08 E . X ]
145 150 155 160 1.65 145 150 155 1.60  1.65
mf

Fig. 7 As in Figs. 4 and 5, but for different experimental conditions; data

for different parts of the standar
tional error of 5%; forward an

d phase functions with the observa-
d backward portions of B; and B,

over the range of [0, 95] and [90, 180], respectively, vertical compo-
nent B; alone, parallel component B, alone and the averaged phase

function (8;+85)/2.



1268

fractive index cannot be estimated precisely in
any case in the figure, and both the real and
imaginary parts cannot be estimated either from
B: alone or from the averaged phase function.
On the other hand, for a polydispersion contain-
ing larger particles such as the JUNGE-3 model,
the damage to the accuracy of the estimation is
relatively slight and the interpolated minimum
roughly indicates the true value.

Besides the phase functions, the extinction co-
efficient Ceyx and the single scattering albedo wy
= Cyea/ Cext (Csea being the scattering coefficient)
can also be reconstructed from the inverted
volume spectrum as shown in Table 1. It is im-
portant to note that; (i) an increase in the ob-
servational error from 5 to 10% has only a
small effect on the accuracy of reconstruction,
(ii) the single scattering albedo can be recon-
structed with errors less than 5% and the ex-
tinction coefficient with errors less than 10%,
except for the CLOUD CI1 model. For the
CLOUD C1 model, the scattering albedo can be
estimated accurately despite the poor estimate of
the extinction coefficient. This is due to the fact
that the single scattering albedo approaches the
asymptotic value of 0.5 for large absorbing
particles.

The cause of breakdown in the estimation of
the refractive index seen in the CLOUD ClI
model can be explained when we examine the
inverted volume spectrum. The volume spectrum
of the CLOUD CI model is nearly a delta func-
tion having a sharp maximum around the radius
of 7um, as shown in Fig. I, so that only three

Table 1
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columns of coefficient matrix Kj;;, i.e. only three
size intervals, can be utilized to construct the
phase function. Thus, our size division given in
the Eq. (19) is too coase for the CLOUD CI1
model to adequately approximate the integral in
the Eq. (2) by the finite sum, resulting in poor
fit of the phase function and, consequently, an
unreliable estimate of the refractive index. In
this case, however, the large value of y in the
Egs. (12) and (13) and the large value of ¢ com-
pared with observational error ¢ can be regarded
as symptoms for which the procedure should be
modified with a suitable division of size intervals
that are small enough for an adequate inversion.
For the other six polydispersions in Fig. 1, it is
unnecessary to reset the size intervals. This fact
means that our size division in the Eq. (19) is
not too coase to determine refractive indices and
volume spectra of the lower tropospheric aero-
sols.

5. Analysis of hydrosol phase functions

Because the water has the refractive index of
about 1.34 for the visible wavelength region, the
refractive index of hydrosols is generally close to
unity. According to our previous paper (Tanaka
and Nakajima, 1977), expected values of the
real part of the refractive index range from 1.05
to 1.20, while the values of imaginary part are
highly uncertain. For numerical test of our
method, we assume the following set of trial re-
fractive indices

m;=1.05,1.10,1,20,1.30,1.35;
and

Assumed and reconstructed extinction coefficients, Cey and Cegt, o in km™1

and corresponding single scattering albedos, w, and wy, .. Observed phase functions

are for m=1.55—0.01i and ®=7 (1) 10 (2.5) 25 (5) 170 degrees.

Upper and lower

figures in each row are for observational errors of 5 and 10%, respectively..

Model Coxt Clextse 9;-error o Wose 9%-error

HAZE-M 0.156 0.154 —-1.3 0.846 0.855 1.1
) 0.170 9.0 0.814 —3.8

HAZE-L 0.0788 0.0808 - 2.5 0.905 0.895 —1.1
0.0861 9.3 0.868 —4.1

CLOUD-C1 16.5 8.61 —47.8 0.584 0.606 3.8
JUNGE-3 0.0706 0.0681 —3.5 0.795 0.801 0.8
0.0659 —6.7 0.815 2.5

JUNGE-4 0.0218 0.0218 0.0 0914 0911 —-03
0.0226 3.7 0.904 —1.1

JUNGE-5 0.0125 0.0123 —1.6 0.939 0.939 0.0
0.0124 —0.8 0.934 —0.5

BIMODAL 0.0709 0.0768 8.3 0.856 0.832 —2.8
0.0767 8.2 0.828 —33
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m:=0,0,005,0.01,0.03,0.05. 25)

The JUNGE-3 and -5 models are assumed for
the size distribution because the Jungc-type spec-
trum is typical again in the ocean. Fig. 8 shows
the model phase functions with the refractive
index of 1.05—0.01i. Comparing with Fig. 2,
Ba-component decreases drastically at the right
scattering angle. The linear polarization changes
very sensitively with variation of the real part of
the refractive index as well as of the size dis-
tribution. This is very clearly supported by Fig.
9 which shows the reconstruction error for the
simulated observation given in Fig. 8. Compar-
ing Fig. 9 with Figs. 4 and 5, it is known that
the sensitivity of estimation much increases for
the real part of the refractive index, and the
value of the real part of hydrosols’ refractive
index is determined very precisely if both of the
phase functions f; and pg are available. If we
have the averaged phase function (B 52)/2
alone, it is difficult to determine precisely the
both parts of the complex refractive index as in
the case for aerosols. Fig. 9 also shows that it
is more or less difficult to determine the magni-
tude of the imaginary part of the refractive in-
dex, especially for size distributions abounding
in small particles, such -as the JUNGE-5 model.

JUNGE - §

m =1.05-001¢

PHASE FUNCTION (RELATIVE UNIT)
=y
T

\\ /

0 30 60 S0 120 150 180
SCATTERING ANGLE
Fig. 8 Model phase functions for the JUNGE-
S hydrosols with m=1.05—0.01/ at wave-
length of 0.5um in vacuum.
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Fig. 10 shows the inverted volume spectra:
solid lines are the results for the full polarization
set, and dashed lines for the averaged phase
function. The results are shown for spectral
ranges where the maximum contribution exceeds
10% because inverted size spectra out of this
range do not follow the true values. In Fig. 10
are also shown examples of unsuccessful inver-
sion by dotted lines. These poor estimations
caused by inadequate selection of the trial re-
fractive index are more serious for hydrosols
than for aerosols. This can be understood if we
recall the Rayleigh-Gans theory (van de Hulst,
1957). When the magnitude of the complex re-
fractive index is very close to unity and the
phase shift of the scattered electromagnetic wave
is very small, the scattering efficiency factor for
a dielectric sphere is given as follows

Qsca=|m—1|2¢(ka) , (26)
where ¢ is a function of only ka. If we choose
the refractive index as m=1.05—0.03/ instead
of the true value of my=1.05—0.01/, the Eq.
(26) shows that the volume spectrum is under-
estimated by a factor about 0.77. On the other
hand, if we choose m=1.10—0.01;/ instead of
my=1.20—0.01/, the volume spectrum is over-
estimated by a factor about 4. In this way, errors
in the estimation of the complex refractive index
introduces very serious errors in the retrieved
volume spectrum in the case of hydrosols. Since
hydrosols are always suspended in the medium
as naked particles, the non-sphericity of parti-
cles is expected to be more noticeable for hydro-
sols than for aerosols. The results of the above
analysis shows that this non-sphericity of hydro-
sols is a serious obstacle to successful inversion
of the volume spectrum as well as to successful
estimation of the refractive index of hydrosols.

6. Summary and problems.

We have proposed a new method to estimate
simultaneously the refractive index and the
volume spectrum of aerosols or- hydrosols. The
applicability of the method is shown by numeri-
cal simulations for spherical particles. In sum-
mary, the following properties are observed: (i)
the most plausible refractive index of a poly-
dispersion is one which minimizes the reconstruc-
tion error ¢; (ii) using the refractive index thus
obtained, the volume spectrum can also be in-
ferred for particles with radii from about 0.1 to
3pm; (iii) any portion of the inverted volume
spectrum for which the maximum contribution
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POLARIZATION COMPONENTS

JUNGE-5 Ol =58% JUNGE-3 O, =56%

0.05 T T

70 100
004 50 )
0.03F .
m;

0.02+ .
0.01+ .

1 1
o 1.2 1.2 13 14

mr mr
AVERAGE

JUNGE-5  O,.=4.8% JUNGE-3 @, =4.9%

0‘05 T T L] T T T

| 70100
0.04r ! 30 50 1
0.0 o .
m;

0.02} .
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Fig. 9 Reconstruction errors o-omin (in per cent) for hydrosol models with m=
1.05-0.01i. Upper figures are for both components of the phase functions (83,
B2), and lower figures for average phase function (B;+ f2)/2.

0.01 0.1 1 10
T T T T

JUNGE-3

V (RELATIVE UNIT)
T

1
o
Cmax

0.01
RADIUS ( um)

Fig. 10 Inverted volume spectra and their maximum contributions for the JUNGE-3
and -5 models. Initially given data are (B3, B2) for (0O) and (A), and their aver-
age values (814 B2)/2 for ([]) and (V7). Assumed values of the refractive index
are m=1.05-0.01; for (O) and ([7J), and m=1.20-0.01i for (A) and (V). Most
plausible values of the refractive index obtained are same as the true values
excepting mo=1,05-0,03; for ([]) and my=1.10-0.03; for (V).
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in the Eq. (22) exceeds 10% is in close agree-
ment with the true spectrum; (iv) reliability of
estimation of the imaginary part of the refrac-
tive index increases when the polydispersion con-
tains larger particles; (v) for a reliable analysis,
both B; and By must be observed over a wide
range of the scattering angles.

Although our method is useful for a polydis-
persion of spherical particles, non-sphericity of
the real particles, if it exist, will affect the ac-
curacy so as to overestimate the imaginary part
of the refractive index and, correspondingly, to
leads to either underestimation or overestimation
of particle number densities at specific size
ranges. For future problems, the effects of non-
sphericity of particles, especially for hydrosols,
must be investigated. It is.also interesting to
investigate the efficiency of our method when it
is applied to other types of data, such as spectral
attenuation measurements, or to combinations of
different types of data.
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