第三章 降灰及被害 硫黄岳 燒岳 噴火事項調査報告

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>加藤 鉄之助</td>
</tr>
<tr>
<td>雑誌名</td>
<td>震災豫防調査会報告</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td>1913年3月28日</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2261/17167</td>
</tr>
</tbody>
</table>
第四期 自四十四年六月同年至七月

第一章 降灰及被害

第二章 降灰及被害

第三章 降灰及被害

第四章 降灰及被害

第五章 降灰及被害

第六章 降灰及被害

第七章 降灰及被害

第八章 降灰及被害

第九章 降灰及被害

第十章 降灰及被害

第十一章 降灰及被害
輝石の量が斜長石及びゴーニルまで達せず、長柱方向を含めて淡緑色を呈する。斜長石晶面に沿って長柱形の変形が見られ、特に南側の斜状地域に集中する。ゴーニルの変形は不規則で、斜長石の変形と同様な特徴を有する。

硫黄は火山灰分析表

○標準採集地 明治四十四年六月十三日午後八時十分硫黄岳

爆発・火口上部高気温場～硫黄岳上部等温で同様に爆発計算を行ない、結果を比較・検証する。

模型を用いた爆発計算は、硫黄岳の爆発場を予測し、その性質を明らかにする。

模型を用いた爆発計算は、硫黄岳の爆発場を予測し、その性質を明らかにする。
第二節 被害

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58.99</td>
<td>0.98</td>
<td>69.63</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.33</td>
<td>0.16</td>
<td>11.34</td>
</tr>
<tr>
<td>FeO</td>
<td>5.81</td>
<td>0.18</td>
<td>5.71</td>
</tr>
<tr>
<td>MnO</td>
<td>1.74</td>
<td>0.01</td>
<td>0.37</td>
</tr>
<tr>
<td>MgO</td>
<td>1.74</td>
<td>0.04</td>
<td>3.08</td>
</tr>
<tr>
<td>CaO</td>
<td>3.80</td>
<td>0.07</td>
<td>4.93</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.70</td>
<td>0.06</td>
<td>4.23</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.92</td>
<td>0.01</td>
<td>0.69</td>
</tr>
<tr>
<td>Loss on Ignition</td>
<td>6.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.19</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>S</td>
<td>2.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ossan's Formula

\[
\begin{align*}
\text{A} & = 69.72 \\
\text{B} & = 4.92 \\
\text{C} & = 6.43 \\
\text{D} & = 7.66 \\
\text{E} & = 5 \\
\text{F} & = 7 \\
\text{G} & = 8 \\
\text{H} & = 8 \\
\end{align*}
\]

Familie der Hyperstenandesit

Typus Mt. Shasta, California.

Typen Formuli

\[
\begin{align*}
\text{A} & = 68.80 \\
\text{B} & = 5.26 \\
\text{C} & = 6.17 \\
\text{D} & = 8.34 \\
\text{E} & = 55 \\
\text{F} & = 6.5 \\
\text{G} & = 8.5 \\
\end{align*}
\]

文献に従って、被害と被害の相関関係について述べます。合気ノ産業は、自然ノ変化ノ影響ヲ受けて被害ノ相関関係ヲ示ス。各ノ変化ノ影響ノ強さノ差異ノ原因ヲ検討スル為ニテ、合気ノ影響ノ相関関係ヲ把握スル。
<table>
<thead>
<tr>
<th>열</th>
<th>열</th>
<th>열</th>
<th>열</th>
<th>열</th>
<th>열</th>
<th>열</th>
<th>열</th>
</tr>
</thead>
<tbody>
<tr>
<td>열</td>
<td>열</td>
<td>열</td>
<td>열</td>
<td>열</td>
<td>열</td>
<td>열</td>
<td>열</td>
</tr>
</tbody>
</table>

다음은 이미지와 같은 내용입니다.