アルカリ骨材反応によって早期劣化を生じた
大規模集合住宅の調査研究(II)
An Investigation on the Large Scale Housing Deteriorated by Alkali-Aggregate Reaction (II)
—Quality of Aggregate used for PC Panels(1)—

小 林 一 輔*・星 野 富 夫*
Kazusuke KOBAYASHI and Tomio HOSHINO

1．概 要
本報は狭山台2街区3段住居の構造物（壁式プレキャストコンクリート造）のプレキャストコンクリート板
に用いられた骨材の品質に関する調査結果をとりまとめたものである。調査方法は前報4）に示したとおりである。
調査試料は次の傾向のPC板より採取したコアに基づくものである。
a）14号棟浴室部外壁および16号棟トイレ部外壁
（施工会社A）
b）22号棟階段室側壁、トイレ部外壁および壁根板
（施工会社B）
c）18号棟浴室部外壁、階段室側壁および壁根板ならびに19号棟壁根板（施工会社C）
d）23号棟階段室側壁（施工会社D）

2．PC板に使用されていた骨材の品質
PC板に使用されていた骨材の品質調査結果を表-1 ～4に示す。これらの表と目視観察ならびに検査によっ
て明らかになった点をまとめて以下のようになる。
1）構成岩石の種類は砂岩、粘板岩などの堆積岩と安山岩が主体であるが、粗粒玄武岩、閃緑岩、凝灰
岩なども含まれている。
2）岩石の組合合わせは施工会社が同じであればほぼ
同様の種類比率となっている。これを以下に示す。
a）安山岩：20～30％、砂岩：30～40％、粘板岩：
30～40％
b）砂岩：30～40％、粘板岩：40～55％、粗粒玄武
岩：5～10％
c）細粒玄武岩：97～99％、粘板岩：1～3％
d）粗粒玄武岩を除くこれらの岩石中にはアルカリ骨
材反応をおこす典型的な反応性鉱物である玉結
(chalcedony)や火山ガラスを相当量含んでいる。

4）採取したほとんどのコア中の構成岩石中には有害
量を上回る量のモンモリロナイトが含まれてい
る。
5）一部のコアからは有害量のローモンタイトが検出
された。
6）全般的にいわゆる“死石”などの軟弱な粒の存在
が目立っている。

3．反応性鉱物について
今回の調査結果を通じて明らかにされた事項の中で最
も重要な点は、骨材中に玉結と火山ガラスという反応性
鉱物が多量に混在していることが確認されたことであ
る。
とくに玉結は、今回採取した全部のコアから少ないも
ので5～10％、多いものでは30～50％も含まれてい
た。玉結は微細なないし微細晶質の石英であって、珪質
堆積岩中によく産出するといわれている。砂岩や粘板岩
は我が国ではこれまでアルカリ骨材反応に関しては対象
外と考えられていたが、オーバールや玉結などが混在して
いると反応性骨材になることが指摘されており、米国の
内務省開拓局では低アルカリセメント用いない場合の
無害混在成分の上限値として、オーバール：0.25％、玉結：
5％、ガラス質～晶形晶質の酸化〜中性の火山岩または
凝灰岩：３％を与えている4）。今回の調査結果では最も
反応性鉱物の混在量の少ないコア番号19R-2の場合で
も玉結は5～10％含まれており、最も多い22R-1、22T
-05、22W-05などの場合には20～40％にも達している。
次なら、玉結のみでもアルカリリカ反応をおこすに十分な量が砂岩や粘板岩中に混在していることが明らか
となったが、さらに14号棟、16号棟および23号棟から
採取したコア中の安山岩には火山ガラスが含まれており
、これが14B-05および16T-05では3～5％、23W
-05では9～18％に達している。これらの結果は上記の開
拓局の規定値を大幅に上回っている。
表-1 使用骨材の調査結果（施工会社Aが建設した建物から採取したコア）

<table>
<thead>
<tr>
<th>コア番号</th>
<th>構成岩石</th>
<th>反応性鉱物</th>
<th>有害鉱物</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>14B-05</td>
<td>安山岩</td>
<td>玻璃状安山岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量: 18～32%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>モンモリノサイト化安山岩</td>
<td></td>
<td>有害鉱物含有量: 7～15%</td>
</tr>
<tr>
<td></td>
<td>砂岩</td>
<td>砂岩</td>
<td>玉髓</td>
<td>熱骨材: 砂利、碎石</td>
</tr>
<tr>
<td></td>
<td></td>
<td>モンモリノサイト化砂岩</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14F-1</td>
<td>粘板岩</td>
<td>粘板岩</td>
<td>火山ガラス</td>
<td>場所打ちコンクリート</td>
</tr>
<tr>
<td></td>
<td></td>
<td>モンモリノサイト化粘板岩</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>玻璃状粘板岩</td>
<td>玻璃状粘板岩</td>
<td>玉髓</td>
<td>熱骨材: 砂岩、粘板岩</td>
</tr>
<tr>
<td></td>
<td>硅化粘板岩</td>
<td>硅化粘板岩</td>
<td>玉髓</td>
<td>熱骨材: 川砂</td>
</tr>
<tr>
<td>16T-05</td>
<td>安山岩</td>
<td>玻璃状安山岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量: 28～43%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>モンモリノサイト化安山岩</td>
<td></td>
<td>有害鉱物含有量: 1.6～6.1%</td>
</tr>
<tr>
<td></td>
<td>美化安山岩</td>
<td>玻璃状安山岩</td>
<td>玉髓</td>
<td>玉髓質石英：結晶格子にひずみを有する石英(粒径5～6μm以上のもの)</td>
</tr>
<tr>
<td></td>
<td>石英</td>
<td>玉髓</td>
<td>ローマルサイト</td>
<td></td>
</tr>
<tr>
<td>砂岩</td>
<td>硅化砂岩</td>
<td>硅化砂岩</td>
<td>玉髓</td>
<td>熱骨材: 砂利、碎石</td>
</tr>
<tr>
<td>風化砂岩</td>
<td>硅化風化砂岩</td>
<td>硅化風化砂岩</td>
<td>玉髓</td>
<td>熱骨材: 砂利、碎石</td>
</tr>
<tr>
<td>騰風化砂岩</td>
<td>砂礫</td>
<td>砂礫</td>
<td>玉髓</td>
<td>熱骨材: 砂利、碎石</td>
</tr>
</tbody>
</table>

| 資料 | 砂粒 | 石英: tr, 長石: 2%, 原石: tr | 玉髓: 4%, 長石: 4%, 原石: 1% | 玉髓質石英: 結晶格子にひずみを有する石英(粒径5～6μm以上のもの) |
4. 有害鉱物について

今回の調査によって判明したもう1つの重要な点は、骨材中に反応性の鉱物のみならず、これとは別のメカニズムによってコンクリートの劣化を早める有害鉱物として指摘されているモンモリロナイトやローモンタイトが存在していたことである。特にモンモリロナイトは今回調査したほとんどのコアから発見されている。

モンモリロナイトは\(X_2Al_2(Al_2Si_2O_8)(OH)_2 \)なる組成式を有する1μm～数μmの白色粉末状の結晶で、乾燥の変化に従って多量の水を吸・脱水し、同時に著しい体積変化を生ずることが明らかにされている。モンモリロナイトが骨材中に存在すると、乾燥のくり返しにともなってコンクリートに有害な膨張・収縮の体積変化を起こさせるのみならず、冬期には凍結融解作用によってコンクリートの劣化を促進することが指摘されている3)。

砂礫、礫岩、粘板岩、頁岩、凝灰岩などの堆積岩ではモンモリロナイトが数％程度含まれていて岩石が崩壊することがあり、10％以上の量があればほとんどの場合崩

表-2 使用骨材の調査結果（施工会社Bが使用した骨材から採取したコア）

<table>
<thead>
<tr>
<th>コア番号</th>
<th>構成岩石</th>
<th>反応性鉱物</th>
<th>有害鉱物</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 R-1</td>
<td>砂岩</td>
<td>砂岩</td>
<td>モンモリロナイト化砂岩</td>
<td>紅骨材</td>
</tr>
<tr>
<td>砂岩</td>
<td>34</td>
<td>タンク</td>
<td>20〜30</td>
<td>スリフレイト</td>
</tr>
<tr>
<td>砂岩</td>
<td>16</td>
<td>タンク</td>
<td>60〜90</td>
<td></td>
</tr>
<tr>
<td>灰岩玄武岩</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 T-05</td>
<td>安山岩</td>
<td>安山岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量：21〜40％</td>
</tr>
<tr>
<td>安山岩</td>
<td>29</td>
<td>タンク</td>
<td>20〜30</td>
<td></td>
</tr>
<tr>
<td>紅骨材</td>
<td>安山岩</td>
<td>安山岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量：28〜47％</td>
</tr>
<tr>
<td>砂岩</td>
<td>20</td>
<td>タンク</td>
<td>20〜30</td>
<td></td>
</tr>
<tr>
<td>紅骨材</td>
<td>砂岩</td>
<td>砂岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量：5〜9％</td>
</tr>
<tr>
<td>砂岩</td>
<td>30</td>
<td>タンク</td>
<td>60〜90</td>
<td>モンモリロナイト</td>
</tr>
<tr>
<td>紅骨材</td>
<td>灰岩玄武岩</td>
<td>12</td>
<td>モンモリロナイト</td>
<td>30〜60</td>
</tr>
<tr>
<td>関品岩</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 W-05</td>
<td>砂岩</td>
<td>砂岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量：27〜46％</td>
</tr>
<tr>
<td>砂岩</td>
<td>42</td>
<td>タンク</td>
<td>20〜40</td>
<td></td>
</tr>
<tr>
<td>砂岩</td>
<td>30</td>
<td>タンク</td>
<td>20〜40</td>
<td></td>
</tr>
<tr>
<td>紅骨材</td>
<td>砂岩</td>
<td>砂岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量：5.3〜</td>
</tr>
<tr>
<td>砂岩</td>
<td>12</td>
<td>タンク</td>
<td>20〜40</td>
<td></td>
</tr>
<tr>
<td>紅骨材</td>
<td>砂岩</td>
<td>砂岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量：5.3〜</td>
</tr>
<tr>
<td>砂岩</td>
<td>12</td>
<td>タンク</td>
<td>20〜40</td>
<td></td>
</tr>
<tr>
<td>紅骨材</td>
<td>砂岩</td>
<td>砂岩</td>
<td>火山ガラス</td>
<td>反応性鉱物含有量：5.3〜</td>
</tr>
<tr>
<td>コア番号</td>
<td>構成岩石</td>
<td>反応性鉱物</td>
<td>有効鉱物</td>
<td>備考</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>18 R-1</td>
<td>砂岩</td>
<td>玉礫</td>
<td>10～30</td>
<td>反応性鉱物含有量：10～30％</td>
</tr>
<tr>
<td>枯板岩</td>
<td>火山ガラス・玉礫</td>
<td>30～40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 B-05</td>
<td>砂岩</td>
<td>玉礫</td>
<td>10～20</td>
<td>反応性鉱物含有量：10～20％</td>
</tr>
<tr>
<td>枯板岩</td>
<td>玉礫</td>
<td>30～40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 W-05</td>
<td>砂岩</td>
<td>玉礫</td>
<td>10～30</td>
<td>反応性鉱物含有量：10～30％</td>
</tr>
<tr>
<td>枯板岩</td>
<td>火山ガラス・玉礫</td>
<td>30～40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 R-2</td>
<td>砂岩</td>
<td>玉礫</td>
<td>5～10</td>
<td>反応性鉱物含有量：5～10％</td>
</tr>
<tr>
<td>枯板岩</td>
<td>火山ガラス・玉礫</td>
<td>30～40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考：砂岩は全般的に風化しているものが多い。

<table>
<thead>
<tr>
<th>コア番号</th>
<th>構成岩石</th>
<th>反応性鉱物</th>
<th>有効鉱物</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>安山岩</td>
<td>砂岩</td>
<td>玉礫</td>
<td>20～40</td>
<td>反応性鉱物含有量：20～30％</td>
</tr>
<tr>
<td>23 W-05</td>
<td>許板岩</td>
<td>3</td>
<td>40～60</td>
<td>ロームサイト 1～2</td>
</tr>
<tr>
<td>灰岩</td>
<td>16</td>
<td></td>
<td></td>
<td>モンモリノサイト 10～80</td>
</tr>
<tr>
<td>23 W-05</td>
<td>灰岩</td>
<td>玉礫</td>
<td>40～60</td>
<td></td>
</tr>
<tr>
<td>許板岩</td>
<td>9</td>
<td></td>
<td></td>
<td>モンモリノサイト 40</td>
</tr>
<tr>
<td>灰岩</td>
<td>4</td>
<td></td>
<td></td>
<td>モンモリノサイト 60</td>
</tr>
<tr>
<td>灰岩</td>
<td>3</td>
<td></td>
<td></td>
<td>モンモリノサイト 20</td>
</tr>
</tbody>
</table>

備考：砂岩は川砂

欠損するといわれている。岩石が欠損すればコンクリートの崩壊を加速されるのは自然の理である。今回の調査結果では14 B-05 と23 W-05のコアから10％を超える量のモンモリノサイトが検出されており、また22 T-05および22 W-05のコアからは数％以上のモンモリノサイトが検出されている。雨水に暴露されている屋根板や浴塩透りのP C板は当然、このモンモリノサイトのみによっても変化は生じることになる。

今回の調査によって発見された1つの有効鉱物はロームサイト（泥泥石）である。これはCaAl₂SiO₄, 4H₂Oの化学組成を有する数μm～数mmの白色板状あるいは柱状の結晶であって、乾燥のくり返しによって吸・脱水し、脱水したときに軟化するといわれている。したがって骨材中にロームサイトが存在すると乾燥のくり返し条件下で、これが粉砕して骨材が崩壊し、コンクリートは表層部から崩壊が進行することになる。ロームサイトはまた乾燥の変化にともなって体積変化するので、コンクリートに有害な体積変化をおこすことも指摘されている。

我が国でもすでに2, 3のロームサイトによるコンクリート構造物の劣化事例が発生している。骨材中にロームサイトが存在するとポーライト現象を生じたり、またこれが10％以上も存在すると凍結融解作用によって劣化が著しく促進されることも指摘されている。

今回の調査では施工会社Dの建設した23号棟より採取したコアに1～2％程度のロームサイトが検出されたが、これ以外の建物のP C板にも相当量のロームサイトが含まれている可能性があるので今後さらに調査を必要とする。　(1986年5月7日受理)

参考文献
1) 小林・星野：生産研究，Vol.38，No.6（1986，6）
2) Mielenz，R．C．and Witte，L．P：Proc．ASTM，No．48，pp．1071～1107，1948
3) 丸藤：セメントコンクリート，No.415，pp.129－134，1981