弾塑性波伝ばの有限要素解析

Finite Element Analysis of the Elastic-Plastic

——材料の構成方程式がひずみ速度に依存する場合——

Wave Propagation in Metal Obeying the Strain-Rate Dependent Constitutive Equation

中村 滋

Shigeru NAKAGIRI

1. 緒 言

材料が高速衝撃をうける場合に生ずる弾塑性波伝ばの問題は、Kármán等が解析して以来、金属の高速材料試験への応用などで多くの研究が進められている。金属の高速変形問題では、材料の構成方程式に及び、変形速度の影響を考慮しなければならず、粉末のひずみ速度依存性の構成方程式が提案されている。その一つは、塑性変形に対する過大応力の効果に着目して得られたMalvernの構成方程式である。これは定速度衝撃をうける構造の応力波が常に弾性波速度で進行するという実験事実を塑性域までに重視をもった構造においては、数学的取扱いが容易なためしばしば用いられている。他の例は従来の動的動力学的考察から塑性応力値を定めたJohnston-Gilman形の構成方程式を例に挙げて具体的な例を示すのがある。この構成方程式を用いてKuriyama-Kawataが弾性変形を考慮した材料の1次元弾塑性波伝ば解析し、弾性波伝ばが波の進行と共に減衰することを報告している。

構成方程式に現れるひずみ速度の影響を実験的に調査するには、試験片内の1点における応力とひずみを時間の関数として同時に測定すればよいのであるが、弾塑性波の通過中に両者の同時測定を行うのは実験技術上の難問である。そこで実験的に、まず構成方程式を仮定し、高速衝撃実験の境界条件と構成方程式を用いて応力変にヒずみ時間曲線を計算し、これと実測される応力変にヒずみ時間曲線を比較して、両者が一致するように構成方程式の修正を繰返す間接法を用いる場合もある。この様なときに、ひずみ速度依存性を考慮する構成方程式に従う材料の高速変形下での挙動を簡便に計算する方法を見出すことは高速材料試験の一助となると考えられる。

本稿では種々の衝撃速度波数並びに応力波の衝撃条件の取扱いが容易である利点に着目して有限要素変位法の応用を試み、ひずみ速度依存性構成方程式に従う材料内の1次元弾塑性波伝ば解析をNewmark β法に合する直接数値積分と組合せて行い、特性曲線法による解と一致する結果が得られることを検証した数値実験について述べる。

2. 直接数値積分に用いる時間積分

本稿では速度比例形の減衰項を省略した運動方程式の時間積分後の差分式を波動伝ばの基礎式に用いる。運動方程式の解, すなわち変位uをNewmark β法による直接数値積分, 0は式(2)、(3)式にて求める。

\[[k] \dot{u} + [m] \ddot{u} = f \] \hspace{1cm} (1)

\[\dot{u}_n = \Delta t \left(\frac{[u] + \frac{\Delta t^2}{2}[a]}{\Delta t} \right) \] \hspace{1cm} (2)

\[u_n = \Delta t^2 \left[\frac{[2u] + [a]}{\Delta t^2} \right] + \Delta t^3 [a] \] \hspace{1cm} (3)

ここでβはNewmark法の係数、[k]と[m]は剛性および慣性マトリックス、[f]は外荷重変動ベクトル、記号は時間に関する微分、下記符号は時間における値、添字の1は目番の自由度であることを示す。この直接積分は近似積分法であるから、その変位解には誤差が含まれている。有限要素法で弾性変形解析を行うときには応力とひずみを変位から算出するので、式(1)～(3)を時間ステップに対して繰返し計算すると、その積分誤差が増幅しないように注意を払わなければならない。

第3節に後述するように1次元ひずみ速度依存性構成方程式のdtに対する増分形は

\[\Delta s = E_r \Delta e + \xi \] \hspace{1cm} (4)

と近似的に表示することができる。ここで弾性域の場合にはEr=E(ヤング率), ξ=0である。今加速度変分を主変数として式(1)を変形し、線形化をE_rとして求めた剛性マトリックスを[k]とすると次式が導かれる。

\[([k] + [m]) \ddot{u} + [f] = \ddot{f} \] \hspace{1cm} (5)

最終式内に変位が線形であると仮定した変位を因数分解が式(1)の断面積をAとすると附加内力項fdvは

\[\Delta f = A \xi \left(- \frac{1}{E_r} \right) \] \hspace{1cm} (6)

となった。有限要素の固有円振動数をωを[m]の固有値から求め、[m]の正規直交固有ベクトルマトリックスを[R]とする。\[\Delta V = R \Delta u \] \hspace{1cm} (7)

と変数変換すると、[f]0なる場合には\[t = (n+1)dt \] \hspace{1cm} (8)

で数値計算における変数V0関係として次式が得られる。
ここで \(B = 1 + \beta \sigma_d \), \(\beta = \rho \) は密度, \(\Delta l \) は要素長さで分布関数をマトリックスに対しても \(f = 6 \sqrt{2} \xi / \rho d l \), \(f = 0 \) である。式(7)右边のマトリックス[G] は, 時間ステップを繰返すとき変位解に与える誤差の内, \(t = n d t \) における値に直接関係する誤差の増幅を示すものである。[G]の固有値 \(\lambda \) は

\[
\lambda = 1, 1 - \alpha d l / 2 B \pm \sqrt{\alpha d l / B} \sqrt{\alpha d l / B - 4 B} \cdots (8)
\]

であるから, \(\xi = 0 \) なる要素について考えれば, \(\beta \leq 1/4 \) であれば常に \(|\lambda| \leq 1 \), 数値積分は無条件安定であるという周知の結果が得られる。\(\beta < 1/4 \) のとき誤差が増幅しない条件 \(\lambda \leq 1 \) が成立するのは

\[
\alpha d l / 4 B \leq 1 \cdots (9)
\]

となる。その一方で, 速度変換速度 - 速度変換マトリックスを用いる場合, \(\alpha d l / \sqrt{2} \beta \) (\(\beta \) : 波動伝達速度) となるので, \(\beta = 1/6 \) であり数値積分を安定に保つ \(d l \) の限界値は \(d l = \Delta l / C_s \) という直感的定数値に一致する。 \(\beta = 1/4 \) ならば数値積分は安定であるが伝達速度を調節するステップ依存性波の伝はを \(d l = \Delta l / C_s \) として試算したところ, 応力波波に近傍の波形のゆがみが波の進行とともに増大する結果となった。これは応力値自体も材料降伏条件のために問題となる弾性波伝は解析では適当であるので, 以後の計算では全て \(\beta = 1/6 \) を用いた。この値は \(d l \) 内で加速度が線形に変化するとの仮定に対応する。

3. ひずみ速度依存性の構成方程式

ここでは塑性流動関数が応力とひずみの代数式で表わされているMalvern形と, 指数関数で表わされているJohnston-Gilman形の構成方程式のみを例と取る。前者の場合は, 特性曲線法による文献[3]の結果と比較するため, 同一数値の次式を用いる。

\[
\dot{\varepsilon} = \dot{\sigma} + g(\varepsilon, \sigma) \quad (g(\varepsilon, \sigma) = k(\sigma - f(\varepsilon)))
\]

\[
f(\varepsilon) = 20,000 - 100/\varepsilon \quad k = 0.05 (\sigma < \sigma_f) \quad k = 10^7 \cdots (10)\]

ここで \(E = 7.03 \times 10^7 \mathrm{kg/mm}^2 \), 断面積 \(A = 2.72 \times 10^{-8} \mathrm{kg} \cdot \mathrm{sec}^2 / \mathrm{mm}^4 \) である。また材料定数を表す関数については、Johnston-Gilman形の構成方程式として文献[3]と同様に次式を用いる。

\[
\dot{\varepsilon} = \dot{\sigma} + (4/3) E_b l N_0 + 0.75 M(\varepsilon - \sigma / E) \quad \times V^* \exp[-10^5 (\varepsilon - \sigma / E) / \sigma] \quad (11)
\]

ここで \(\sigma = b = 2.5 \times 10^{-2} \mathrm{mm} \), 最終転位速度 \(V^* = 3.2 \times 10^6 \mathrm{mm/sec} \), 転位速度密度 \(N_0 = 3.75 \times 10^{10} \mathrm{mm}^{-2} \), 分散体積 \(M = 10^{14} \mathrm{mm}^{-2} \), 特性ドライプ力 \(D = 200 \mathrm{kg/mm}^2 \), 加工硬化係数 \(H = 10.66 \mathrm{kg/mm} \), 重力 \(E = 2.1 \times 10^8 \mathrm{kg/mm} \), \(\rho = 8.01 \times 10^{-10} \mathrm{kg} \cdot \mathrm{sec}^2 / \mathrm{mm}^4 \) である。

応力速度 \(\dot{\sigma} \) およびひずみ速度 \(\dot{\varepsilon} \) を含む式(4), (11)を有限要素法と組合わせたためにはそれぞれの増分が必要である。粘弹性波伝はの解析に用いた \(\dot{\sigma} \) と \(\dot{\varepsilon} \) の関係を有する

\[
\dot{\sigma} = \dot{\sigma} + \text{const.} \quad \dot{\varepsilon} \quad \text{の関係から}
\]

\[
\dot{\sigma} = \dot{\sigma} + \text{const.} \quad \dot{\varepsilon} / \text{const.} \quad \text{の関係から}
\]

が得られる。また \(t = (n+1) d t \) と \(t = n d t \) における構成方程式の差から増分形の構成方程式を求める。\(d \sigma \) と \(d \dot{\varepsilon} \) を与えて消去すると, Malvern形の場合には

\[
\dot{\varepsilon} = \dot{\sigma} / \sigma \quad \text{の仮定の下で}
\]

\[
\dot{\sigma} = E + k d \quad (10/\varepsilon) \quad \dot{\varepsilon}
\]

\[
-\quad k d t \quad \text{か30度} \quad \sigma - \text{度}
\]

\[
\text{の関係から}
\]

Johnston-Gilman形の場合には

\[
\dot{\sigma} = -\sigma / \sigma \quad \text{の場合}
\]

\[
\dot{\sigma} = E(\sigma)^n / (4 b C_s / 3) C_s \quad \dot{\sigma} \quad \text{の場合}
\]

\[
\dot{\sigma} / \sigma \quad \text{の場合}
\]

\[
\dot{\sigma} = E(\sigma)^n / (4 b C_s / 3) C_s \quad \dot{\sigma} \quad \text{の場合}
\]

が求められる。ここで \(C_s = 2 D + 0.75 F(\varepsilon - \sigma / E) / \sigma \), \(E = 200 \mathrm{kg/mm}^2 \) である。式(3), (4)はそれぞれのしての形であるから、慣用の有限要素定式化により剛性方程式に組み込むことが可能となる。

4. 数値計算結果

数値計算は式(5)のように加速度増分を主変数とし、速度変形条件を変化とし変換を与え、式(3)により変位を求め、微小変形微小ひずみの変位を関係式からひずみ等を求めた。

Newmark \(\beta(\beta = 1/6) \)

法では \(t = 3 d t \) が動いていた。したがって波後端の速度変位、速度、ひずみには誤差が含まれるが、10安定度衝突条件をステップ状に与えることはできない。そこで境界条件として4b4cに示すようなある推定値間を一定値になるように与えた。また要素長さは \(d l = 0.2 \mathrm{mm} \)、棒の全長は500要素として \(l = 100 \mathrm{mm} \) とした。軟鋼の場合は \(t = d l / C_s = 0.0308 \mathrm{sec} \), Malvern形の場合には \(t = 0.0303 \mathrm{sec} \) である。Malvernの計算結果との比較を図1に示す。図中のO,D, □, □印は衝突端より \(x = 0.1, 8.1, 32.5 \mathrm{mm} \) における応力とひずみ関係を文献[3]より図をもとにしたものです。実線は
図1 棒内各断面における応力とひずみの変化

図2 応力とひずみ分布の時間的変化（速度形）

図3 応力波頭とひずみ波頭の減衰

\(x = 0.1, 8.1, 32.1 \text{ mm} \)における有限要素解で、衝撃波形のちがいが支配的となる衝撃端近傍を除き、両者はほぼ一致している。式(3)は \(d \varepsilon / \varepsilon \leq 1 \) の仮定が成立しなければ得られないが、図1の数値計算結果では \(d \varepsilon / \varepsilon \) は \(10^{-2} \sim 10^{-4} \) の程度であり、式(3)を用いてもよいこととが確かめられた。文献[3]と同様に、ひずみ分布にプラトーが現れず、応力波頭が減衰を伴いながら進行する結果も得られている。

図2は3.9μsecで一定衝撃速度 \(V = 50 \text{ m/sec} \)とあたえた以外は文献[5]と同じ条件で計算した結果を実線で示したもので、\(t = 10.6, 30.9, 51.2 \mu \text{sec} \)における応力とひずみ分布は文献[5]の結果（△印10.2，△印30.5，△印50.9μsec）とよく一致している。文献[5]では \(d \varepsilon / \varepsilon \leq 0.001 \mu \text{sec} \)を用いているので、波頭近傍の様相が解錐に求められている。短時間領域での応力とひずみ波頭の減衰を図3の実線で示す。図中の破線は文献[5]のひずみ波中の波頭と波底の包絡線である。以上の計算に用いた衝撃速度を図4上段に実線で示す。この衝撃条件下での衝撃端における要素の応力値から、その断面に作用している荷重の時間的変化を求め線図にて示すが、助走区間内は約950kg以上となり、その後は漸増するのみである。そこで図4下段に破線で示すように \(t = 3.9 \mu \text{sec} \)で一定衝撃力 \(F = 950 \text{ kg} \)となる一定応力形の衝撃を加えたときの、衝撃波速度を同図に実線で、内部に進行する応力とひずみ分布を図5に示す。この場合衝撃速度は40m/secに低下して行くが、図5の結果は図2の結果と類似している。この実験結果によれば衝撃が一定速度形かつ一定応力形によらずひずみ分布がほぼ同じであるから、測定精度を考慮すれば、
両者の差異を実験的に検出するのは困難であろうと考えられる。

第3節で述べたように、dt内で応力速度値をひずみ速度値が線形に変化すると仮定すれば、ひずみ速度依存性構成方程式も有限要素定式化に組込むことが可能であり、その数値計算結果は$dt=0.039\mu \text{sec}$と$dt=0.001\mu \text{sec}$および衝撃速度変条件の差の影響を除けば特性曲線解と一致するものといえよう。また要素長さ$A\ell=0.2$mmと式（9）から定めたdt値に対して$\Delta a/e^g$と$\Delta a/a$はいずれも10^{-5}以下となるので、近似式（13）と（14）の成立条件は満たされている。弾性要素についてでは$dt=d\ell/C\ell$の条件は直接数値積分の安定限界を与えるが、$e=0$である塑性要素については式（7）に見られるように誤差の拡大は応力とひずみ値にも影響される。本計算では、ある弾性要素の応力値がdt時間内の途中で降伏応力を越えても弾性要素をままとして取扱い、次のdt時間内ではじめて塑性要素としての取扱いを行っている。したがって弾性要素としての応力値にはゆきすぎが量があり、この誤差を小さくするため、dtでのpを小さく定めている。Johnson-Gilman形構成方程式の場合についての計算結果では、自由端または固定端とする衝撃をうけない側の端部より波の反射が生じる程の長時間領域に対しても時間増幅ステップを安定に進めることが可能であった。一方Malvern形構成方程式の場合には$t=20\mu \text{sec}$以上の長時間領域では弾塑性境界後流側で加速度の傾動成分が漸次現われ、これは上記の応力値ゆきすぎ量から生ずる誤差が式（7）右辺第2項を通じて増幅したのではないかと考えられ

この小論は、Newmark β法を用いて運動方程式の安定な直接数値積分を行うための時間増分の限界値について付け加え、微小応効果微小ひずみ理論の枠内で構成方程式の非線形形に注目し、応力速度とひずみ速度が時間に対して線形に変化するとの仮定の下で、衝撃による1次元弾塑性波の伝播を有限要素法により解析し、特性曲線法により従来得られている解とほぼ一致する結果が得られたことを述べたものである。

終りに前川に用いて材料定数について御教示いただいた東洋大航学 河田幸三教授と本稿の数値計算の実行に協力された東大大学院学生 下村滋君に深甚なる感謝を表する。

（1975年12月20日受理）

参考文献

9) Yamada, Y. et al.; 生産研究 23 (1971) 186.
10) 中村 濐; 生産研究 25 (1973) 63.