1,1,1-トリクロルエタンとα,β-不飽和化合物との反応

The Reaction of α,β-Unsaturated Compounds with 1,1,1-Tetrachloroethane.

佐藤 磯*・森尾 学*・浅原 照三*
Teru SATÔ, Manabu SENÔ and Teruzo ASAHARA

1. 結 言

亜リン酸トリエチル～塩化亜鉛開始剤を用い、四塩化炭素～エチレン系のテロメラージョンより生成する n=1 テロマ～1,1,1-トリクロロブロパン をテロマとしエチレンをタクソーゲンとする再テロメラージョンにおいて、通常のラジカル開始剤と異なり、選択的にトリクロロメタノールに対しエチレン単位が付加した化合物（主生成物は、1,3,5-テトラクロルペンタン）を与える。また、ヘキサメチルシラントリアミン（以下 H.M.P.A. と略）～塩化鉄系も四塩化炭素をテロマ～1,1,1-トリクロロブロパンとするテロメラージョンに対して有効な開始剤として用い、これを前報に報告した。報告において、これらの開始剤によるトリクロロメタノールに対する選択的ラジカル付加に対し、1:1 α,β-不飽和化合物をタクソーゲンとしたテロメラージョンについて検討した。

2. 実 験

（1） 原料および試薬

1,1,1-トリクロルエタン、各種 α,β-不飽和化合物は市販を水蒸気留去して用い、溶媒としてガス状のモノマーはそのまま使用した。H.M.P.A.（日本オイルシチュール製）、塩化第一鉄（特級）は市販品をそのまま使用した。

（2） 方法および装置

反応は上下電磁振動式オートクレーブ（材質 SUS32、内容積 200ml）を用い、1,1,1-トリクロルエタン 100ml（約 1 モル）、各種モノマー約 0.3 モル（常温において、ガス状のモノマーは、トリクロルエタンに冷却下溶解）、さらに開始剤として H.M.P.A., FeCl₃・4H₂O をそれぞれ 0.01 モルを加えて、オートクレーブを密封し、内部を窒素ガスで数回置換し、窒素圧約 10kg/cm² に加圧し、反応温度を 130℃に固定し 2 時間反応を行なった。

反応後、常温に冷却、ガスを放出、アンモニア水にて塩酸水素の発生の有無を試験した後、反応液を取り出す。反応液は洗浄後減圧下に未反応トリクロルエタンおよびモノマーを除去し、さらに減圧度を高め生成物を分留する。

3. 結果と考察

表 1 各種テロマーの収率およびその組成を示す。表より明らかのように、いずれのモノマーにおいても n=1 テロマーの選択率は高く、ヘキサン-1、オクタン-1 などのα-オレフィンではほぼ定量的に n=1 テロマーを与え、さらに、ステレン、塩化ビニルなど、α-オレフィンのラジカル重合体を示すモノマーにおいても 60～70 wt% の選択率で n=1 テロマーを得ることができる。モノマーの変化率はおおよそ次の順である。2-メチルブテン-1、イソブチレン＞ヘキサン-1、オクタン-1＞スチレン。

<table>
<thead>
<tr>
<th>モノマー</th>
<th>α-オレフィン</th>
<th>α-ヘキサン-1</th>
<th>アクリルアミド</th>
<th>イソブチレン</th>
<th>アセティレン</th>
<th>塩酸ビニル</th>
<th>スチレン</th>
<th>シプロピレン</th>
<th>エチレン</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1</td>
<td>52.5</td>
<td>3</td>
<td>96.3</td>
<td>3.7</td>
<td>71.4</td>
<td>無</td>
<td>54.8</td>
<td>2.9</td>
<td>94.2</td>
</tr>
<tr>
<td>n=2</td>
<td>15.7</td>
<td>3.7</td>
<td>80.9</td>
<td>19.1</td>
<td>24.9</td>
<td>無</td>
<td>43.8</td>
<td>9</td>
<td>82.5</td>
</tr>
<tr>
<td>n=3</td>
<td>11.8</td>
<td>3.6</td>
<td>77</td>
<td>23</td>
<td>23</td>
<td>無</td>
<td>43</td>
<td>5.3</td>
<td>89</td>
</tr>
<tr>
<td>n=4</td>
<td>43.6</td>
<td>10.1</td>
<td>81.2</td>
<td>18.8</td>
<td>18</td>
<td>無</td>
<td>7.4</td>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>n=5</td>
<td>49.3</td>
<td>6.3</td>
<td>86.8</td>
<td>13.2</td>
<td>77.9</td>
<td>無</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
</tbody>
</table>

* エチレン圧 20kg/cm², 20℃
表2 n=1テロマーの沸点及び元素分析値

<table>
<thead>
<tr>
<th>テロマー</th>
<th>沸点</th>
<th>元素分析</th>
<th>上段計算値</th>
<th>下段実測値</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃(CH₂)₅CHCl₂CCH₂Cl</td>
<td>85〜86°C/1.5 mmHg</td>
<td>C: 48.87, H: 7.79, Cl: 43.34</td>
<td>42.72</td>
<td>42.72</td>
</tr>
<tr>
<td>CH₃(CH₂)₅CHCl₃CCH₂Cl</td>
<td>56〜57°C/1 mmHg</td>
<td>C: 43.73, H: 6.88, Cl: 43.39</td>
<td>48.76</td>
<td>48.76</td>
</tr>
<tr>
<td>CH₃CCH₂CH₂CH₂ClCCl₃</td>
<td>48〜49°C/1.5 mmHg</td>
<td>C: 28.59, H: 3.84, Cl: 67.57</td>
<td>67.47</td>
<td>67.47</td>
</tr>
<tr>
<td>CH₃CCH₂CH₂CH₃CCH₂Cl</td>
<td>70〜71°C/8.5 mmHg</td>
<td>C: 38.00, H: 5.85, Cl: 56.15</td>
<td>56.03</td>
<td>56.03</td>
</tr>
<tr>
<td>CH₃CCH₂CH₃CCH₂Cl</td>
<td>66〜67°C/28 mmHg</td>
<td>C: 34.19, H: 5.16, Cl: 69.65</td>
<td>69.47</td>
<td>69.47</td>
</tr>
<tr>
<td>CH₃CCH₂CH₃Cl</td>
<td>66〜68°C/19.5 mmHg</td>
<td>C: 24.50, H: 3.09, Cl: 72.41</td>
<td>73.57</td>
<td>73.57</td>
</tr>
<tr>
<td>CH₃CCH₂CH₃Cl</td>
<td>98〜99°C/1.5 mmHg</td>
<td>C: 50.53, H: 4.67, Cl: 44.80</td>
<td>44.79</td>
<td>44.79</td>
</tr>
<tr>
<td>CH₃CCH₂CH₃Cl</td>
<td>80〜81°C/1.5 mmHg</td>
<td>C: 35.98, H: 4.70, Cl: 46.06</td>
<td>46.81</td>
<td>46.81</td>
</tr>
<tr>
<td>CH₃CCH₂CH₃Cl</td>
<td>69°C/39 mmHg</td>
<td>C: 23.73, H: 4.37, Cl: 65.90</td>
<td>65.92</td>
<td>65.92</td>
</tr>
<tr>
<td>CH₃CCH₂CH₃Cl</td>
<td>58〜60°C/3 mmHg</td>
<td>C: 32.14, H: 4.86, Cl: 63.40</td>
<td>61.17</td>
<td>61.17</td>
</tr>
<tr>
<td>CH₃CCH₂CH₃Cl</td>
<td>60〜62°C/5.5 mmHg</td>
<td>C: 41.28, H: 6.39, Cl: 52.33</td>
<td>51.35</td>
<td>51.35</td>
</tr>
</tbody>
</table>

ただし: C, H は実測値(%)、Cl は 100-(C+H)/2(%)、O は 100-(C+H+Cl)/2(%)。この場合 Cl は実測値

レンゼ酸アリル、塩化ビニル、アリルクロリド、メタクリルクロリド、表2に n=1 テロマーの沸点および元素分析値を示す。

メチルクロロホルムはクロロホルムと同様に、ラジカル的にメチル基の水素引き抜き、あるいはトリクロロメタンの水素引き抜きによるテロマーを与える可能性がある。よって 1:1 付加体の構造としては次の二つが考えられる。

1. CH₂CH₃CH₃ + RCH = CH₂ → RCH₂CH₃ + CH₂CH₃
 水素引き抜き

2. CH₂CH₃CH₃ + RCH = CH₂ → RCH₂Cl + CH₂CH₃Cl + CH₂Cl
 塩素引き抜き

たとえばエチレンをモノマーとして用いた場合、n=1 テロマーの構造は CH₃CH₂CH₂CH₂ClI あるいは CH₃CH₂Cl₂CH₂ClII とされる。

ここで化合物 (I) はクロロホルムをテローゲンとしてアゾピースイソブチトリルを開始剤としたエチレン系のテロマーと類似の構造を示し、CH₂Cl₂ + nCH₂Cl₂ = CH₂Cl₂ + CH₂Cl₂
また化合物 (II) は、1,1,1,3-テトラクロプロパン～エチレン系テロマー

| CH₂CH₂-CH₂-CCl₃+nCH₂=CH₂=CH₂ |
| CH₂CH₂-CH₂-CCl₃+(CH₂=CH₂)Cl |

と近似した構造を示し、これらの化合物の NMR スペクトルはすでに解析されている113。その結果を表-3 に示す。

表3 各種テロマーのプロトン NMR クミカルシフト

| CH₂CH₂-CH₂-CCl₃+nCH₂=CH₂=CH₂ ppm |
| CH₂CH₂-CH₂-CCl₃+(CH₂=CH₂)Cl ppm |
| CCl₂CH₃Cl₂CH₂Cl₂ | 1.00 | 1.60 |
| CH₂=CH₂-CH₂Cl₂ ppm |
| CH₂=CH₂-CH₂Cl₂ ppm |
| 3.85 | 3.14 |
| (ClCH₂=CH₂)Cl₂ ppm |
| (ClCH₂=CH₂)Cl₂ ppm |
| 3.85 | 2.64 |

上表より化合物 (I) および (II) に対して予想される NMR スペクトルはそれぞれ次のようにある。

| a | b | c |
| a | b | c |

本研究によって得られたテロマーの NMR スペクトルは図-1 に示すように、明らかに構造式 (II) のそれ
図1 エチレン

図2 イソブチレン
図3 スチレン

図4 塩化ビニル

と一致する。図-2、図-3、図-4にそれぞれ、イソブチル、スチレン、塩化ビニルよりのn=1、テロマーのNMRスペクトルを示す。いずれもテローゲンよりの塩素引き抜き型のテロマーと解釈される。

反応に次のように進むと考えられる。

(II) → (H.M.P.A.₅)₅FeCl₃ + CH₂CCl₂CH₂CH₂Cl

配位子移動

(II) + RCH = CH₂ → [(H.M.P.A.₅)₅FeCl₃

CH₂CCl₂CH₂CH₂CH₂CH₂Cl]

(III) 生長

(1972年3月2日受理)

文献
1) 小原・佐藤：工化，74，1847（'71）
2) 小原・佐藤：生産研究，23，133（'71）
3) 小原・呉：工化，70，1197（'67）