風洞気流に対する模型の Blocking-Effect に関する実験的研究

An Experimental Study on the Blocking-Effect of the Model in the Wind Tunnel

藤田高司*・村上周三*
鎌田元康*・池田耕一*
Takashi SHODA, Shuzo MURAKAMI
Motoyasu KAMATA and Koichi IKEDA

目的

従来、建物の風圧係数に関して多くの風洞実験が行われてきたが、それらの実験結果には、ばらつきがある。その原因は、風洞気流に対する模型の Blocking-Effect に関する考察が不足していた事に考えられる。

ところで、測定や模型製作の立場からは模型は大きい方が便利であるが、Blocking-Effect を小さくするためには模型が小さい程良い事は明らかである。本論文では壁面における圧力の指標とは、模型の大きさと Blocking-Effect の間の関係を求め、実際に障害を起こさない模型の大きさの限界を知ることを目的としている。この問題について J. Jensen が N. P. L. 型風洞で家屋型模型を用いて実験を行ない、使用できる模型の大きさの限界は、風洞断面積に対する模型の投影面積の比が 5% 以下であるという結果を得ている。われわれは風洞形式の違い、模型形状の違い等を考慮して、より広範な実験を行ない、J. Jensen らの行なった実験を確認すると共に、種々の新しい結論を得た。

実験概要

1. 風洞形式の違いによる Blocking-Effect の差
 図 1 に示すような境界層型（以下 N. P. L. 型と略す）風洞と、図 2 に示すような自由噴流型（以下 O. J. 型と略す）風洞を用いて実験を行なった。

2. 模型の形状の違いによる Blocking-Effect の差
 図 3 に示すような 2 次元板状模型、2 次元柱状模型、3次元板状模型、3次元立方体模型を用いた。設置方法は図 4 に示す。

3. 模型の大きさによる Blocking-Effect の差
 使用した模型の大きさを表 1 に示す。測定位置における垂直風速分布を図 5 に示す。これによると、N. P. L. 型風洞では、境界層厚は 6cm O. J. 型風洞では 3cm である。3次元模型（立方体および板状）の場合は模型
表1 模型の寸法

<table>
<thead>
<tr>
<th>模型種類</th>
<th>寸法(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P.L.</td>
<td>4.5×4.5×120</td>
</tr>
<tr>
<td>O.J.</td>
<td>9×9×120</td>
</tr>
<tr>
<td>N.P.L.</td>
<td>9×120</td>
</tr>
<tr>
<td>O.J.</td>
<td>3×3×100</td>
</tr>
<tr>
<td>N.P.L.</td>
<td>18×18×120</td>
</tr>
<tr>
<td>O.J.</td>
<td>6×6×100</td>
</tr>
<tr>
<td>N.P.L.</td>
<td>36×36×120</td>
</tr>
<tr>
<td>O.J.</td>
<td>12×12×100</td>
</tr>
<tr>
<td>N.P.L.</td>
<td>23.2×23.2×23.2</td>
</tr>
<tr>
<td>O.J.</td>
<td>32.8×32.8×32.8</td>
</tr>
<tr>
<td>N.P.L.</td>
<td>13.4×13.4×13.4</td>
</tr>
<tr>
<td>O.J.</td>
<td>46.5×46.5×46.5</td>
</tr>
<tr>
<td>N.P.L.</td>
<td>19.0×19.0×19.0</td>
</tr>
<tr>
<td>O.J.</td>
<td>65.8×65.8×65.8</td>
</tr>
</tbody>
</table>

（板厚はすべて 1.2 cm）

高さに対する境界層厚の比を表2に示す。表よりわかるように、各大きさの模型高さと境界層厚の比は、N.P.L. 型風洞の場合と、O.J. 型風洞の場合ではほぼ等しくなっている。

4. 基準風速と基準静圧の測定

O.J. 型風洞では、吹出口付近（模型上流 50 cm）の風速を基準風速とし、大気圧を基準圧としている。N.P.L. 型風洞では、模型上流約 3 m の風速を基準風速とし、その点の静圧を基準静圧としている。

5. 測定位置における乱れの強さ

乱れの強さ u^2/U_0 は、N.P.L. 型、O.J. 型ともに、約 1％であった。

実験結果とその考察

1. N.P.L. 型風洞

（1）2次元模型の場合
表3 模型表面圧力係数

<table>
<thead>
<tr>
<th>二次元模型</th>
<th>風向</th>
<th>前面</th>
<th>側面</th>
<th>後面</th>
<th>上面</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5%</td>
<td>N.P.L.</td>
<td>+0.93</td>
<td>-1.66</td>
<td>-1.47</td>
<td></td>
</tr>
<tr>
<td>O.J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>N.P.L.</td>
<td>+0.91</td>
<td>-1.56</td>
<td>-1.42</td>
<td></td>
</tr>
<tr>
<td>O.J.</td>
<td>+1.06</td>
<td>-0.97</td>
<td>-0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>N.P.L.</td>
<td>+0.92</td>
<td>-1.80</td>
<td>-1.75</td>
<td></td>
</tr>
<tr>
<td>O.J.</td>
<td>+1.03</td>
<td>-0.39</td>
<td>-0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>N.P.L.</td>
<td>+0.92</td>
<td>-2.39</td>
<td>-1.99</td>
<td></td>
</tr>
<tr>
<td>O.J.</td>
<td>+1.02</td>
<td>-0.31</td>
<td>-0.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>三次元模型</th>
<th>風向</th>
<th>前面</th>
<th>側面</th>
<th>後面</th>
<th>上面</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5%</td>
<td>N.P.L.</td>
<td>+0.91</td>
<td>-0.74</td>
<td>-0.50</td>
<td>-0.69</td>
</tr>
<tr>
<td>O.J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>N.P.L.</td>
<td>+0.88</td>
<td>-0.86</td>
<td>-0.60</td>
<td>-0.81</td>
</tr>
<tr>
<td>O.J.</td>
<td>+0.97</td>
<td>-0.58</td>
<td>-0.35</td>
<td>-0.51</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>N.P.L.</td>
<td>+0.90</td>
<td>-1.14</td>
<td>-0.85</td>
<td>-1.10</td>
</tr>
<tr>
<td>O.J.</td>
<td>+0.97</td>
<td>-0.48</td>
<td>-0.31</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>N.P.L.</td>
<td>+0.87</td>
<td>-2.00</td>
<td>-1.41</td>
<td>-2.00</td>
</tr>
<tr>
<td>O.J.</td>
<td>+0.96</td>
<td>-0.42</td>
<td>-0.25</td>
<td>-0.42</td>
<td></td>
</tr>
</tbody>
</table>

上：2.5%柱状模型 下：5%板状模型
○：5% △：10% □：20%

図7 増加表面圧力係数（N.P.L.型、2次元模型）

柱状模型の模型表面圧力係数は図6、表3からわかるように、
- 模型前面において、すべての大きさの模型について、
 約1.0である。
- 2.5%模型と5%模型と値は前面はちるも、側面、後面ではほぼ一致し、その値は側面で -1.7、後面では -1.5である。
- 10%模型では、2.5%および5%模型と比べると、
 前面では一致するが、他の面では、絶対値で10%前後大きい。すなわち負圧が大きい。
- 20%模型では、2.5%および5%模型と比べると、
 前面では一致するが、側面では絶対値で40%、後面では絶対値で25%程度大きい。

図8において測定点1（基準点）では、
静圧 $P_{1}=0.0\text{mmAq}$

動圧 $P_{d1}=6.3\text{mmAq}$

したがって、全圧 $P_{t1}=P_{d1}+P_{s1}=0.0+6.3\text{mmAq}=6.3\text{mmAq}$ となる。測定点3（板小値を示した不動面）の静圧は $P_{s1}=-5.1\text{mmAq}$ である。測定点3の近くで、境界層の外側の点を3' とすれば、その静圧 P_{s1} は P_{s1} と同じと考えてよい。

測定点1 と3'の間でベルヌイの定理が成り立つと仮定すれば、3'の動圧は、

$P_{d1}=P_{t1}-P_{s1}=6.3-(-5.1)=11.4$

したがって、風速 U_{v} は、13.6m/secとなる。一方、測定点2（測定点3と同じだけ模型前面より下流で、模
(2) 3次元模型の場合

・立方体模型の表面圧力係数は図9、表3からわからるように、模型前面においては、すべての大きさの模型に対してほぼ1.0である。2.5%模型と5%模型は前面では0.1と完全に一致し、その他の面ではほぼ一致し、その値は上面および側面で-0.7、後面で-0.5である。10%模型は2.5%および5%模型と比べて、前面では一致するが、その他の面では30%程度大きい。

・風洞面圧力係数は図10に示すように、2.5%模型では、極小値が-0.11と小さく定常値も-0.05と小さい。また板状模型と立方体模型の差も全般に小さい。

ただし

C_P: 壓力係数
1〜5の数字は、風圧力の番号を示す。

A〜Eは各面に対応する。

図9 模型表面圧力係数分布（3次元、立方体模型）

図10 風洞面圧力係数（N.P.L型、3次元模型）

5%模型では、極小値が-0.25〜0.30と比較的小さく、定常値も-0.12と小さいが、板状模型は立方体模型より極小値で、15%絶対値が大きい。しかし、定常値ではほぼ等しくなっている。

10%および20%模型は2.5%模型に比べて極小値で6.5〜16倍大きく、板状模型は立方体模型より極小値で特に大きくなっており、その後方に行く程両者の差は小さくなる。また測定した範囲内では定常化していない。なお、垂直方向の風洞面圧の圧力係数は高さに関係なく、ほぼ一定であった。

3次元模型と2次元模型の Blocking-Effect の特徴

・模型表面圧力係数は、2次元模型では、2.5%模型と5%模型がほぼ一致した値をすべての面において示し、10%模型および20%模型はそれらに比べて前面外で10〜40%絶対値で大きい。3次元模型の場合には、2.5%模型と5%模型はすべての面において大体一致し10%模型および20%模型はそれらに比べて前面を除いた面で、30〜100%絶対値が大きくなっている。ただし、前面では模型形状、模型の大きさにかかわらず、常に1.0である。

・風洞面圧力係数は、2次元模型では、2.5%模型と5%模型がほぼ一致し、10%模型、20%模型はそれらより絶対値で2〜15倍大きく、5%模型と10%模型にはっきりした差があるが、3次元模型では、模型の大きさに比例して、圧力係数の絶対値も大きくなる。また、3次元の10%および20%模型では、測定した範囲内で定常に達していないので、2次元の場合は定常に達している。
状模型あるいは立方体模型のように尾縄のある模型との
差は、3次元模型においては極小値を示す点で最大となり
後方では次第に小さくなるのに対し、2次元模型では
逆に、極小値を示す点ではあまり差がないの前、後方で
差が大きくなくなっている。
（4）N、P、L 型風洞における模型の大きさの限界
・模型の形状、大きさに関係なく、模型表面圧力係数は
模型の前面においてほぼ +1.0 である。したがって模型
の前面の圧力係数だけを問題とするなら、20% 以下の
差しされた。よってこの場合、使用できる模型の大きさ
の限界は 5% と言える。3次元模型においては 5%～
20% 模型の間に大きな差が認められなかった。したが
ってこの場合は、使用できる模型の大きさの限界は、20%
と言える。
3. N、P、L 型風洞と O、I、O 型風洞の比較
① 模型前面（風上側）では、風洞形式、模型寸法、
模型形状にかかわりなく、表面圧力係数が、約 +1.0 あ
る。
② 実験した範囲（模型大きさで、20%～5%）では、
前面を除いて、N、P、L 型風洞の場合には、O、I、O 型風洞
の場合より、模型表面圧力係数が、絶対値で、大きな差
を示す。しかし、図11 からわかるように、後方、模型
が小さくなると共に増加する傾向にある。しかしながら
5% のところでは、両者の間にまだかなりの差がある。
③ N、P、L 型風洞では、模型が大きくなると、模型
表面圧力係数の絶対値が大きくなる傾向が顕著に現われ
るが、O、I、O 型風洞では、全く逆に、絶対値が小さくな
る傾向にある。しかし、その傾向は、N、P、L 型の方が
顕著である。
④ N、P、L 型風洞において、5% 模型と 10% 模型
とでは、前面以外の面で、模型表面圧力係数には、はっきり
した差がある。それに対して、O、I、O 型風洞における
3次元模型では、ほとんど差がない。
4. 本実験と M、Jensen, N、Frank の実験との比
較
Jensen らの実験では、流れと流れの行なった実験
は用いた模型の形状や実験条件が多少異ので全く同列
の比較はできないが、Jensen らの行なった実験結果と
われわれの行なった立方体模型の実験結果を
同じグラフの上にプロットすれば図11 のようになる。
M、Jensen らの実験との比較には、N、P、L 型風洞に
おける 3次元立方体模型の模型表面圧力係数を用いた。
図11 からわかるように、どちらの実験結果も模型前
面（風上側）において、表面圧力係数が、模型の大きさに
かわらず、ほぼ一定であるが、その値は、Jensen の結果が +0.6 であるのに対し、本実験結果は +1.0 である。模型後端（風下側）および上部・側面（尾根面）において Jensen の実験では、圧力係数を結んだ線の傾きが 5%付近で、はっきり変っているが、本実験では、それはほどはっきりした変化がない。したがって、Jensen の実験結果から、模型の大きさの限界は、5%であると言えることができるが、われわれの実験結果からは、厳密には、5%が、模型の大きさの限界であるとは言えない。しかし、2.5%模型と 5%模型の、模型表面圧力係数は、かなり近い値を示しているので、一応、大きさの限界を 5%とする。

Jensen の実験では、N.P.L. 型風洞の3次元模型に限られているが、われわれの実験では、さらに N.P.L. 型2次元、O.J. 型風洞の2次元および3次元模型についても行った。その結果、N.P.L. 型風洞の2次元模型と、O.J. 型風洞の2次元模型の、模型表面圧力係数は 5%以下の模型と 10%以上の模型では、大きな差が認められるので、模型の大きさの限界は、5%とする（ただし、前面は除く）。

O.J. 型風洞の3次元模型では、5%〜20%模型の模型表面圧力係数に大きな差がなく、20%以下の大ささならばしきつかえない。ただし、模型前面の表面圧力係数は模型形状、模型の大きさに関係なく、ほぼ +1.0 である。

結論

1. 模型前面（風上側）では、模型表面圧力係数は、風洞型式、模型の大きさおよび形状に関係なく、ほぼ +1.0 である。

2. O.J. 型風洞の表面圧力係数は、N.P.L. 型風洞の表面圧力係数より常に絶対値で小さな値を示す。ただし、模型前面は除く。

3. N.P.L. 型風洞では、模型が大きくなると、模型表面圧力係数の絶対値が大きくなるが、O.J. 型風洞では、逆に絶対値が小さくなる。ただし前面は除く。

4. N.P.L. 型風洞の2次元模型と3次元模型およびO.J. 型風洞の2次元模型では、模型表面圧力係数が、5%以下の模型と 10%以上の模型とは、大きな差が認められるが、O.J. 型風洞の3次元模型では、5%、10%、20%模型の間に大きな差が認められない。

5. 実験した範囲内（模型の大きさで 20%〜5%）では前面を除いて N.P.L. 型風洞の場合は、O.J. 型風洞の場合より、模型表面圧力係数が、絶対値で大きな値を示す。しかし、両者は、模型が小さくなるとともに一致する傾向にある。しかしながら、5%のところでは、両者の間には、まだかなりの差がある。

6. 以上より、模型の大きさの限界に関し、一応、次のような結論が得られた。

<table>
<thead>
<tr>
<th>N.P.L. 型風洞の2次元模型</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.P.L. 型風洞の3次元模型</td>
<td>5%</td>
</tr>
</tbody>
</table>

（厳密には小さい程良い）

O.J. 型風洞の2次元模型

O.J. 型風洞の3次元模型

ただし、模型前面（風上側）の模型表面圧力係数だけを問題にするならば、風洞型式、模型の大きさおよび形状に関係なく、20%以下の大ささであれば差し支えない。

謝辞　本実験を行なうに當っては、上原 清君（建設工学会勤務）森 幸司君（三菱建設勤務）の全面的な協力にあずかった。ここに記して深く感謝の意を表します。

（1971年4月26日受理）

参考文献

1) Martin Jensen, Niels Frank; Model Scale Tests in Turbulent Wind II; 1965.