抵抗焼結による Fe-Al₂O₃ 合金の高温特性
High Temperature Characteristics of Fe-Al₂O₃ Alloy made by Resistance Sintering

坂井 徹郎*・原善丸四郎*
Tetsuo SAKAI and Zenshiro HARA

目的

筆者らは、瞬間抵抗焼結法によって Fe-Al₂O₃ 合金を製造する場合に、混合すべき粉末の電解鉄粉と分散相の Al₂O₃ 粉との最適粒度を求め、さらに粒度の組合せと Al₂O₃ 含量が製品の焼結密度および硬度（焼結後の常温硬度と高温硬度）に与える影響について報告した113).

今回は、上述の実験結果に基づいて得られた焼結体の耐熱性を調べるために、高溫引張試験および高溫クリーブ破断試験を行ない、耐電工、密度および Al₂O₃ 含量との関係を調べた204).

実験方法

電解鉄粉は粒度 -325 メッシュ、アルミナ粉は 0.5 μm の α-Al₂O₃ を選び、その配合割合をおのおの 0.4, 0.8 および 12% に変化させ、ポールミルで 24 時間機械的混合作を行なったのち、600℃で 30 分間水素還元に実施した。得られた混合粉を所定量に秤量し、湿粉を内装した金型（内径長さ 4×55 mm および 4×70 mm）中に装入し、抵抗焼結機にかけて焼結を行なった。実験試料の寸法は、引張試験では 4×55×15 mm、クリーブ破断試験では 4×70×15 mm の板状試験片を焼結後、Fig. 1, Fig. 2 のような形状の JIS 7 号試験片に切断加工した。また、これら 2 種の試験片の焼結条件を Table 1 に示した。

Table 1 Sintering conditions of samples

<table>
<thead>
<tr>
<th>Kinds of t.p.</th>
<th>Test piece for tensile test</th>
<th>Test piece for creep test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary voltage (V.)</td>
<td>6, 6.9, 7.4</td>
<td>6, 6.9</td>
</tr>
<tr>
<td>Pressure (ton/cm²)</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Pre-hold time (cycle)</td>
<td>56</td>
<td>46</td>
</tr>
<tr>
<td>Charge time (cycle)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Hold time (cycle)</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Electric current (K.A.)</td>
<td>12, 14, 16</td>
<td>13, 15, 17</td>
</tr>
</tbody>
</table>

なお、高溫引張試験は温度 600℃、900℃で行ない、また高溫クリーブ破断試験は 600℃において応力 3, 5 kg/mm² で行なった。

実験結果

Fig. 3 (a), (b) は 3 種の Al₂O₃ 含量の混合粉を、3 種の耐電工で焼結した試料の耐高溫および高溫の引張試験結果を図示したものであり、Fig. 4 はそれらの σ-ε 線図の温度依存性を示したものである。この結果によれば、鉄粉単味の焼結体は、高溫における引張強度が最大であり、耐電力の増加と共に強度も増加し、そのパラッキも小さくなっている。Al₂O₃ 含量が増加すると、高溫強度は次第に減少する傾向を示し、耐電力の増加にはあまり左右されず、そのパラッキはかえって大きくなっている。これは Bovarnick, Flood23)や Gati24)らの結果とはまった逆の結果となっている。この原因は、Al₂O₃ % が増加することにしたがって Al₂O₃ 粉末が粉末の混合時に粉体の変形に伴う変形を妨げるためと考えられる。Al₂O₃ を 8 〜 12% にすると、極めて抵抗焼結が困難となったので、上述の考察を確認するため、粉末の混合時間を短く変化させた結果、短時間の混合粉ほど容易に抵抗焼結を行なうことができた。混合時間が長くなると、Bonis や Grant25)らが指摘しているように、摩擦による加熱や均電現象が生じて Al₂O₃ 粉末が鉄粉粒子の表面に付着するため、抵抗焼結が難しい。したがって Al₂O₃ の增加にもかかわらず高溫強度が低下したものと考えられる。Al₂O₃ 粉と鉄粉との粒度の相対関係によって適当な混合時間が存在するように考えられ、足立26)らも指摘
Fig. 3 Relation between tensile strength, Al₂O₃ contents and electric currents at room temperature and elevated temperature

Fig. 4 The temperature dependence of flow stress on the Al₂O₃ contents

しているように、Al₂O₃ 粒子の付着防止策を考える必要がある。Fig.3（b）における Al₂O₃ 4% および 8% の高温強度が同程度であることも、上述の Al₂O₃ 8% の試料の高温強度の低下と同様な原因によるものと考えられる。また、同図によれば、900℃における高温強度は5〜10 kg/mm²に低下するが、鉄粉単味の場合の高温強度2〜4 kg/mm²に比較すれば、Fe-Al₂O₃ 合金は約2倍以上の値を有し、ほとんど Al₂O₃ % や通電量に無関係に一定の強度値を示している。このような Fe-Al₂O₃ 合金の良好な耐熱性は、また Fig.4 の σ-ε 線図からも明白である。

Fig.5 は引張試験における伸び、Al₂O₃ %、通電量および試験温度との関係を示したものである。この図から、伸びは Al₂O₃ % が少しほど高く、通電量の増加による
Fig. 5 Relation between elongation, Al₂O₃ contents and electric currents at room temperature and elevated temperature

Fig. 6Relation between creep strength, Al₂O₃ contents and electric currents at 600℃ (Stress 5 kg/mm²)

Fig. 7 Relation between creep rupture strength, Al₂O₃ contents and electric currents at 600℃ (Stress 3 kg/mm²)

Fig. 8 The dependence of strain rate on the Al₂O₃ contents (Stress 5 kg/mm²)
研究法報

Fig. 6, Fig. 7 は応力がおのおのおの 5 kg/mm², 3 kg/mm² で 600°C の場合におけるクリープ破断時間と Al₂O₃ % との関係を図示したものです。この図から、Fe-Al₂O₃ 合金の耐クリープ特性は、鉄粉単独の場合よりもはるかに優れていることがわかる。また、鉄粉単独の場合には通電量の増加と共に耐クリープ特性も良好となるが、Fe-Al₂O₃ 合金の場合にはまっただけ逆の現象を示している。

この原因は、前記の Al₂O₃ 粉の鉄粉粒子周囲への付着による影響と同時に、通電量が大きいときに焼結体内部に溶融部、焼結部および未焼結部を生じ、焼結組織が不均一になることも、影響をおよぼしているものと考えられる。

Fig. 8, Fig. 9 は応力がおののおの 5 kg/mm², 3 kg/mm² で、600°C のクリープ時におけるひずみ速度におよぼす Al₂O₃ 含量の影響を示したものである。この図によれば、鉄粉単独の場合のひずみ速度はきわめて大きいが、Al₂O₃ 含量の増加と共にひずみ速度は次第に減少することがわかる。

（1970 年 12 月 17 日受理）

参考文献

1) 坂井, 私: 鉄粉粉末冶金協会昭和 42 年度春季大会講演概要集, 22-23
2) 同上：生産研究, 第 20 巻, 第 7 号, 367-369
3) 同上: 鉄粉粉末冶金協会昭和 45 年度秋季大会講演概要集, 52-53
5) B. Bovarnick, H. W. Flood, Progress in Powder Metallurgy, (1964), 20, 64-81

Fig. 9. The dependence of strain rate on the Al₂O₃ contents. (Stress 3 kg/mm²)

2 月号改正表

<table>
<thead>
<tr>
<th>ページ</th>
<th>段</th>
<th>行</th>
<th>種別</th>
<th>正</th>
<th>誤</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>左</td>
<td>18</td>
<td>水文</td>
<td>もちこんだところに</td>
<td>もちこんだところに</td>
</tr>
<tr>
<td>16</td>
<td>右</td>
<td>3</td>
<td>参考文献</td>
<td>R. L. Arnett</td>
<td>R. L. Arnett</td>
</tr>
<tr>
<td>17</td>
<td>左</td>
<td>参考文献</td>
<td>第4部</td>
<td>別</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>右</td>
<td>21 20</td>
<td>水文</td>
<td>平衡関係、速度などに依存し、速度などに依存し、</td>
<td></td>
</tr>
</tbody>
</table>