ユーカリ細胞培養系におけるポリアミンと
増殖との関係 (II)*
——ポリアミンと細胞分裂——
寺田 珠実**・高山 悟**・佐分間義正**

Polyamines in Relation to Growth in Cell Suspension
Cultures of Eucalyptus polybractea (II)
—Polyamines and cell division—

Tamami TERADA**, Satoru TAKAYAMA** and Yoshimasa SABURI**

I. 緒 言

細胞周期の概念はシンマメの根端組織細胞を用いた研究で提唱された1)，一般に間 (G1) 期，DNA合成 (S) 期，間 (G2) 期，分裂 (M) 期として表現される。増殖中の正常な細胞は細胞周期のサイクルをくり返すが，栄養不足や増殖因子の欠乏，細胞過密などが原因となってG1期で増殖力を保持したまま増殖を停止することがある。このような状態は静止 (G0) 期2)と呼ばれ，G1期と区別されている。最近，細胞増殖過程におけるG1期，G2期の意義3)，ならびに分化誘導におけるG1期，G0期の意義4)が酵母や動物細胞を中心に活発に研究されている。植物細胞ではときにガン細胞についての研究から細胞増殖に重要な役割を果たすものとしてポリアミンが注目されてきた。増殖のさかんな細胞ではポリアミン生成活性が高く5)，G0期の細胞が再び細胞周期を進行させるとときポリアミン生成活性が急激に上昇する6)などポリアミンが細胞周期と密接な関わりを持っていることが明らかになってきた。

原植物において細胞分裂は生長点または形成層の細胞に限られるが，培養細胞では多くの細胞が分裂，増殖を繰り返している。従って細胞培養技術を高めるに，ことに草本植物よりも生長が遅いとされる木本植物の大量培養に活用するためには，まず細胞増殖機構を解析しなければならない。また培養細胞を有用物質生産に活用するためには細胞周期と関連づけた二次代謝活性の解析が必要である。しかし，通常の植物細胞培養では各細胞の周期が揃っていないので細胞周期に関わる実験系を組むためにはすぐれた同調培養系の確立が重要課題である。

本研究では木本植物培養細胞の増殖を細胞分裂の面から解析した。前報でユーカリ培養細胞にポリアミン合成阻害剤を投与すると増殖が阻害されること，そこにポリアミンを投与すると生重量レベルでの増殖が回復することが明らかになった。そこで本報では，ポリアミン合成阻害剤を用いた同調培養系の確立を目指して細胞分裂とポリアミンの関係を検討した。

* 本研究の一部は文部省科学研究費（奨励 A: 02760098）によって
** 東大大学農学部林産学科
Department of Forest Products, Faculty of Agriculture, The University of Tokyo.
II. 材料と方法

1. 培養細胞の継代
細胞の培養及び継代は前報7の通り行った。LINSMAIER 和 SKOOG 液体培地8にショ糖 (3%), 2,4-ジクロロフェノキシ酢酸 (0.5 mg/l), カイネチン (0.5 mg/l) を加えて、pH 6 に調整し 90 ml ずつ 500 ml 容のフラスコに分注した。高圧滅菌した後、ユーカリ (Eucalyptus polybractea) 培養細胞を初期密度が生重量 (fw) で 7~8 mg/ml になるように移植した。継代は 12 日毎に行行った。

2. 細胞分裂の確認

2.1 細胞数の計数
塩化カルシウム (1 mm) を添加したマンニトール水溶液 (1.2 m) 中で、セルラーゼ "オノヅカ" R-10 (ヤクルト本社) (4%), ドリセラーゼ (協和発酵) (4%), マセロチーム R-10 (ヤクルト本社) (2%) を混合し、その上澄み液を粗酵素液とした。この粗酵素液 2 ml と細胞培養液 2 ml を混合後 50 ml 容三角フラスコ中、30℃、90 回分で振蕩振とう処理して調製したプロトプラストを血球計数盤上で顕微鏡で観察しながら計数した。

2.2 DNA の定量
細胞からの DNA 抽出には Ogur–Rosen 法9を用いた。培養細胞約 300 mg (fw) を水冷エタノール中で粉砕し、70% エタノールで遠心分離し、3000 rpm、10 分間遠心分離した。沈殿物を 0.1% 過塩素酸を含む 70% エタノールで洗浄したあと、エタノール−エーテル (3:1) 混液を加えて懸濁させ、湯浴中で 3 分間沸騰させた。遠心分離により上澄みを捨て、沈殿をエタノール−エーテル混液で 2 回洗い、次に水冷 2 n 過塩素酸で 2 回洗った。洗浄後の沈殿は 1 n 過塩素酸 5 ml に懸濁し 4℃ で 24 時間放置した。遠心分離後、沈殿に 1 n 過塩素酸 3 ml を加えて 70℃、70 分間加熱した。冷却後、不溶性ポリビニルピロリドン約 100 mg くわえて懸濁させてから遠心分離し、上澄みを比色定量に供した。

DNA 定量にはインドール法10 (Keck の変法11) を用いた。DNA 含有上澄み液 1 ml に 0.06% インドール試薬と 2 n 塩酸を加えて 10 分間加熱した。冷却後、酢酸アミル 2 ml による抽出操作を 3 回繰り返すことによって不純物を除去した後、水層の 490 nm の吸光度を分光光度計で測定した。

3. ポリアミンの定量
細胞からポリアミン抽出と定量は前報7の通り行った。

4. 薬剤添加
メチルグリオキザル ピス-(グアニュリヒドラゾン) (MGBG), スペルミジン (Spd), スペルミン (Spm) はいずれも水溶液 (pH 6) として滅菌フィルターを通した培地に添加した。アフィディコリン (和光純薬) は微量のジメチルスルホキシドに完全に溶解させたのちに水溶液として無菌的に培地に添加した。また、3 日間細胞培養して得た培地を新鮮培地とを混合 (3:2) して調製したコンディション培地で数回細胞を洗浄することによりアフィディコリンの除去を行った。
III. 結果と考察

1. MGBG による同調培養系確立の試み

MGBG は、S-アデヌシルメチオニン脱炭酸酵素の拮抗阻害剤である^{11}。MGBG の添加によりユーカリ培養細胞の生重量増加が完全に抑制されること、Spd と Spm の添加で増殖が回復することをすでに報告した^{7}。今回はまず細胞数と DNA 量を測定しながら MGBG と Spd, Spm の添加条件を検討した。細胞移植後 2 日間はプロトプラストの生成率が非常に悪いので、MGBG は継代後 3 日目に添加した。MGBG 濃度が 1 μM 以上の時生重量の増加は著しく阻害され、細胞数と DNA 量も 2 日目以降の増加が止まった（図-1）。MGBG 添加により細胞分裂も停止したと思われる。なお MGBG を 2 μM にした場合には 4 日目までに細胞は線維状に変化して全く死滅した。そこで以後の実験は MGBG を 1 μM 添加するという条件下で行った。ポリアミン添加時期は、細胞分裂がより確実に停止している方が好ましいので、阻害剤添加の 2 日後すなわち細胞継代後 5 日目として以下の実験を行った。また添加したポリアミンの組み合わせから Spd と Spm の効果の相違を検討した。

MGBG で増殖を抑制後 Spd, Spm いずれを添加した場合でも生重量は徐々に増加した。このとき DNA 量は一時的に激減に増加したが、細胞数はそれより 1〜2 日遅れて増加することが判明した（図-2）。MGBG 添加で停止していた細胞分裂を、ポリアミンが再び分裂過程へ進行させたものと考えられる。またこのとき DNA 量の増加が先行し、それと細胞数が増加してきたことから、MGBG により細胞周期は S 期、もしくは S 期以前に停止したと思われる。さらに MGBG での分裂停止に 2 日を要したことを考え合わせると、MGBG はおそらく G1/S 期付近で細胞周期を停止させるが、S 期を既に通過した細胞に対しては細胞周期をそのまま進行させ、次の S 期に来たとき停止させるものと考えられる。

MGBG を添加した後、Spd (1 μM) または Spm (1 μM) を加えて培養した細胞中のポリアミン
図-2 ポリアミン添加後の細胞の増殖（生重量（A）、細胞数（B）、DNA量（C）の変化）
Fig. 2. Effect of addition of polyamines on cell growth. (Changes in fresh weight (A), cell number (B), and DNA content (C) after treatment of polyamines.)
The cells were precultured for 3 days without any agents and then for 2 days in MGBG. Polyamines were added at day 0.

図-3 MGBG添加後、Spdを加えた時のポリアミン量の変化
Fig. 3. Effect of addition of Spd on polyamines contents after MGBG treatment.
Cells were precultured 3 days. MGBG was added at day 0 and Spd was added at day 2.

図-4 MGBG添加後、Spmを加えた時のポリアミン量の変化
Fig. 4. Effect of addition of Spm on polyamines contents after MGBG treatment.
Cells were precultured 3 days. MGBG was added at day 0 and Spm was added at day 2.
量の変化を図-3と図-4に示した。ユーラリ培養細胞からはブレスシン(Put), Spd, Spmの3種の脂肪族ポリアミンが検出された7)のだが、MGBGの添加によりSpdとSpm生成は抑制され、それにともなって増殖が停止し、Put量も減少した。Spdを添加すると、すぐにPutが増加し、それに続いてSpmも増加してきたが、Spmを添加した場合は他のポリアミンの顕著な変化は観察されなかった。生重量、細胞数、DNA量、ポリアミン量のいずれの結果からもMGBGによる増殖阻害の回復にはSpmよりもSpdの方が有効であることも明らかになった。Spdの方が細胞内への取り込みの効率がよいという可能性も考えられ、ユーラリ培養細胞においてSpdはより増殖に重要な因子であると思われる。

植物培養細胞を用いた細胞周期の同調は、栄養失調10)やDNA合成阻害剤の添加14)などで試みられてきたが、同調化は低く、細胞分裂以外の阻害作用を伴うことが多かった。DNAポリメラーゼの特異的阻害剤であるアフィディコリンを使用することにより同調化が著しく改良されてきた15,16)ものの同調系の確立には至っていない。今回、MGBGの添加により細胞周期がG1/S期で停止した原因は不明であるが、MGBGは細胞周期制御剤になり得るものと考えられ、Spdを増殖の回復のために使用すれば同調培養系の確立も可能性があるものと思われる。

2. アフィディコリン添加とポリアミン

継代時にアフィディコリン(5mg/l)を添加して培養した場合、細胞中のポリアミンはほとんど検出されなかった(図-5)。継代後2日目にアフィディコリンを添加すると、DNA量だけでなく生重量はすぐに、細胞数も添加後3日目からは増加しなくなった。そこでアフィディコリン添加の3日後になんだが継代後5日目にコンディション培地でアフィディコリンを洗浄し、さらに培養を続けたところ、洗浄して2日後に細胞数が急激に増加した(図-6)。このときそれに先だってポリアミン類、特にPutが増加したことがわかった(図-7)。以上のことからも細胞分裂にポ

図-5 アフィディコリンを添加した時のポリアミン変化の図

Fig. 5. Effect of addition of aphidicolin on polyamines contents.

図-6 アフィディコリン除去後の細胞数の変化

Fig. 6. Change in cell number after removal of aphidicolin.

Cells were precultured for 2 days without any agents and then for 3 days in aphidicolin. Aphidicolin was removed at day 0.
リアミンが何らかの役割を果たしていると思われる。MGBGを用いた実験も合わせて考えるとポリアミンの細胞周期における作用点はS期付近ではないかと想像される。

要旨
MGBGを添加して生重量、細胞数、DNA量いずれの増加も抑制したユーラリ培養細胞にSpdあるいはSpmを添加すると、まずDNA量が急激に増加し、1〜2日遅れて細胞数が増加した。またSpmよりもSpdの方が増殖回復に有効であった。MGBGの添加により細胞周期のS期付近で停止したユーラリの細胞分裂が、Spdの添加で再び進行したものと考えられ、この方法で同調培養系の確立も可能性があるものと思われる。細胞分裂（S期）制御剤のアフィディコリンを用いた場合、アフィディコリンを除去すると細胞数の増加に先立ちポリアミンの增加が観察されたことからも、細胞分裂へのポリアミンの関与が示唆された。

キーワード：ユーラリ、細胞分裂、S期、MGBG、Spd

引用文献
3) 吉田 桃・別府輝彦：蛋白質 酸・酵素, 34(9), 1069, 1989.
6) 井出利恵：蛋白質 酸・酵素, 34(9), 1097, 1989.

(1992年4月30日受理)
Summary

Addition of Spd or Spm to a medium containing MGBG, which reduced the cell growth (fw, cell number, DNA content) of *Eucalyptus polybractea* cultured cells, could restore the DNA content first, and cell number 1–2 days later. Spd was more effective for restoration from growth inhibition than Spm. Cell division was arrested in the neighborhood of the S phase of the cell cycle by MGBG and Spd operated the cell cycle again. Therefore, synchronous cultures may be established using MGBG in combination with Spd. In the case of the treatment of cell division (S phase) regulator (aphidicolin), after removal of the block, levels of polyamines increased prior to the increase of cell number. These results suggest that polyamines correlate to cell division.

Key words: *Eucalyptus polybractea*, cell division, S phase, MGBG, Spd