リグニンの研究（第6報）
硫酸リグニンの分別並に各部分の性状

教授 右田 伸彦

Nobuiko Migita: Studies on Lignin (VI)
Fractionation of Sulphuric Acid Lignin and Properties of Each Fraction.
リグニンの研究（第6報）

硫酸リグニンの分別並に各部分の性状

著者は前報に於て調査研究リグニンは著しく重合度を異にする分子の混合物なること、特に硫酸リグニン B 即ち 72% 硫酸に溶解し酸濃度を 3% に稀弾した際再生する部分に就ては重合度の大なるものから小なるものへの変化が連続的であることを報告した。本報に於ては硫酸リグニン B を重合度の大小によって幾つかの部分に分別する方法を述べ、且分則した各部分に就て 2，3 の性状を比較した結果を述べる。

本研究に當り御懇願なる御指導を賜りたる三浦前教授に深く感謝の意を表し、又実験に協力された松井光瑞氏の努を深謝する。尚本研究の費用は文部省科学研究費を以て支弁した。

実験

1. 木粉試料の大きさと硫酸リグニン A 及び B の収量比

CAMPBELL 及び BRYANT 兩氏は西洲産ユーラリ属の材から調製した <50, 50～60, 60～80, 80～100, 100 メッシュの5種の木粉試料の組成を比較して、リグニンの含有量は試料の大きさが小なる程多いことを報告した。故に以下の実験に先立ってブナ材に就て試料の大きさにより全硫酸リグニン、硫酸リグニン A 及び B の定量値に変化があるか否かを確かめた。

アルコール・ベンゾール混合液 (1:1) を用いて脱脂した木粉試料を 60～80, 80～100, 100 メッシュの3種に分ち常法の如く全硫酸リグニン、硫酸リグニン B を定量した。共の結果第1表に示す如くである。

第1表 木粉試料の大きさとリグニンの定量値（脱脂試料に対する％）

<table>
<thead>
<tr>
<th>試料の大きさ（メッシュ）</th>
<th>全リグニン（％）</th>
<th>硫酸リグニン B（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 ～ 80</td>
<td>22.6</td>
<td>13.8</td>
</tr>
<tr>
<td>80 ～100</td>
<td>22.9</td>
<td>13.7</td>
</tr>
<tr>
<td>＞100</td>
<td>23.2</td>
<td>13.9</td>
</tr>
</tbody>
</table>

此の結果によれば 60～80, 80～100 及び 100 メッシュの3種の木粉試料間では全リグニン及び硫酸リグニン B の定量値は別質上変化しない。従って硫酸リグニンの研究には試料の調製をより容易ならしめるため木粉分析に常有する 80～100 メッシュ試料の代わりに，60～
100メッシュのものを用いて何等差支へなく、以下の実験にも60～100メッシュの木粉試料を用ひた。

2. 硫酸リグナン A 及び B の溶解性

硫酸リグナンの分別並に精製に有効に使用し得る溶剤を見出す目的で、ブナ材から常法で単離し常温にて減圧乾燥して得た硫酸リグナン A 及び B の各種溶剤に対する溶解性を検討した。

硫酸リグナンの少量を試験管に採り溶剤を加へてよく振潰し、1夜常温にて放置した結果を第2表に掲げる。

硫酸リグナン B は単獨にアセトン又は水を用ひて常温処理したのでは溶解しないが、アセトン・水の混合液には溶解し、アセトンと水との容積比が9:1～4:6の範囲内では完全に溶解する。又苛性ソーダ溶液の硫酸リグナン B の溶解性は濃度によって相違し、3~5% 濃度の時最も容易に溶解し、1% 及び 7% 溶液を用ひる時は完全に溶解する迄に長時間を要し、10% 濃度では数日を経過するも少量の不溶解部分を認めた。

一般にリグナンの溶解性はBAILEY氏も指摘する如く同一試料から同一方法で調製したものでも調製の部数多少異り、リグナン粒子の大きさも亦影響がある。殊に硫酸リグナン B に於ては再生直後のものと一旦気乾状態に迄乾燥したものとでは親水性溶剤に対する溶解性に顕著なる差異を生ずるものと思われる。即ち硫酸リグナン A を除いた濁液を酸濃度3%に稀釈し2時間煮沸して単離した硫酸リグナン B を直に多量の水中に投じて放置したところ

<table>
<thead>
<tr>
<th>溶剤</th>
<th>溶解性</th>
<th>溶剤</th>
<th>溶解性</th>
</tr>
</thead>
<tbody>
<tr>
<td>璜 酸</td>
<td>+</td>
<td>エタノール・アセトン</td>
<td>×</td>
</tr>
<tr>
<td>璜 酸</td>
<td>×</td>
<td>エタノール・クロホルム</td>
<td>×</td>
</tr>
<tr>
<td>酢 酸</td>
<td>×</td>
<td>アセトン</td>
<td>×</td>
</tr>
<tr>
<td>酢 酸 1:1</td>
<td>×</td>
<td>アセトン・水</td>
<td>+</td>
</tr>
<tr>
<td>ビリデン</td>
<td>+</td>
<td>クロロフォルム</td>
<td>-</td>
</tr>
<tr>
<td>ビリデン・酢 酸</td>
<td>+</td>
<td>デオキサン</td>
<td>×</td>
</tr>
<tr>
<td>ビリデン・酢 酸</td>
<td>+</td>
<td>デオキサン・水</td>
<td>×</td>
</tr>
<tr>
<td>エタノール</td>
<td>×</td>
<td>エタノール・アセトン</td>
<td>×</td>
</tr>
<tr>
<td>エタノール 1:1</td>
<td>×</td>
<td>5%苛性ソーダ</td>
<td>+</td>
</tr>
</tbody>
</table>

表中＋は溶解、×は一部溶解、△は僅に溶解、-は不溶解

者なる差異を生ずるものと思われる。即ち硫酸リグナン A を除いた濁液を酸濃度3%に稀釈し2時間煮沸して単離した硫酸リグナン B を直に多量の水中に投じて放置したところ
その大部分が溶解したが、一旦単離した硫酸リグロール B を減圧乾燥して乾燥状態となしたものを同程度の硫酸亜酸性の水に溶解しなかった。但硫酸亜酸性の水に溶解した硫酸リグロール B は酸濃度を 3% に高めると再び沈澱する。

一方硫酸リグロール A は第 2 表に掲げた各種の溶剤を用い同様に処理したが、何れも溶解せず、他の他に種々試みたが濁に適当なる溶剤は見出されなかった。次に硫酸リグロール A の一精製法としてこれをアセチル誘導体とし酸に溶解し酸化する方法も考へられるので、硫酸リグロール A のアセチル誘導体を作って共の溶解性を検したが、此の場合にも適当なる溶剤を発見し得なかった。但し硫酸リグロール A に過剰のフェノール及び少量の濃塩酸を加へて 130℃ に保ち多数の水中に投入して再溶せしめたものは、エタノール・アセトン混合液に完全に溶解する。又硫酸リグロール A を塩素化すればビリドンに可溶性となる。

3. 硫酸リグロールの分別

著者は前報に於て硫酸リグロール A 及び B の収量比は両者の分別時の硫酸濃度によって変化すること、即ち硫酸濃度が低い程硫酸リグロール A として定量される部分が増加し硫酸リグロール B として定量される部分が減少する事実を示した。従って 72% 硫酸による加水分解を経て試料を共の亜硫酸過して硫酸リグロール A 及び B を分ち、硫酸リグロール B を含む濁液に所定量の水を加へ硫酸濃度を低めて硫酸リグロール B 中比較的高重合度の部分を再生せしめ、更にこれを除いた濁液を所定の濃度迄稀釀して重合度の増すなる部分を再生せしめるとして順序を操作するならば、硫酸リグロール A 及び B の分別並に後者の重合度の大小による細別等は行い得るわけである。併しその 72% 硫酸による加水分解直後の試料を共の亜硫酸過することは相當時困難であり、又硫酸リグロール B を更に細別する場合にも濁別時の中濃度が大となる限り濁過は容易ではなく、稍もすれば濁過に長時間を要して不適當なる結果を與へる懸念がある。若し常法の如く操作して全硫酸リグロールを単離しがこれを適宜な溶剤を用ひて硫酸リグロール A 及び B に分ち、後者を更に細別し得るならば操作は容易となり、分別した各部分のリグロールを精製するに好都合である。

前報に於て検証した硫酸リグロール B の各種溶剤に対する溶解性に基づいて硫酸リグロール A 及び B の分別、並に硫酸リグロール A の細別を試みた結果、次の加く操作するのが最も適切であった（第 1 図参照）。

（1）全硫酸リグロール 脱脂試料 1g に対し 11cc の割合で 72% 硫酸を加へ 20℃ にて 4 時間加水分解した後、酸濃度を 3% に稀釀して 2 時間還流冷却剤下に煮沸、ガラス濁過ご器を用ひて濁過洗浄し、常温にて減圧乾燥して乾燥状態する。
第1回 硫酸リグニンの分別法

<table>
<thead>
<tr>
<th>全硫酸リグニン</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>アセトン・水混合液（90:10）処理</td>
<td></td>
</tr>
<tr>
<td>濾液</td>
<td></td>
</tr>
<tr>
<td>水を加えて沈殿</td>
<td></td>
</tr>
<tr>
<td>デオキサン処理</td>
<td></td>
</tr>
</tbody>
</table>

| 濾液 |
| ペンゾールを加へて沈殿 |
| 95%エタノール処理 |

| 濾液 |
| エタノールを加へて沈殿 |

硫酸リグニンBIII 20% 50%
硫酸リグニンBII 25% 50%
硫酸リグニン BI 20% 50%
硫酸リグニン A 5%

(2) 硫酸リグニン A (1) の方法で得た全リグニンをアセトン・水混合液（90:10）を用ひて反復溶解し、濾液が無色となるに至って止める。残渣は充分に水洗し、減圧乾燥する。

(3) 硫酸リグニン BII (2) の濾液を 20 倍容量の水中に注ぎ生成する沈澱を濾過し、充分に水洗し、減圧乾燥する。得たる沈澱は乳鉢中にて細捏し摺拌器にて摺拌しつつデオキサン中に小量宛投入し、約 1 時間摺拌を積せ、1 夜放置したる後濾過、デオキサン次いでペンゾールにて充分に洗浄、減圧乾燥する。斯くして得たる部分を BI 号名付ける。

(4) 硫酸リグニン BII (3) の濾液に 10 倍のペンゾールを加へて生成する沈澱を濾過し、ペンゾールにて洗浄、減圧乾燥する。得たる沈澱は細揃し、(3) と同様に摺拌しつつエタノールを加へて 1 夜放置して濾過し、残渣はエタノール次いでエタノールにて洗浄、減圧乾燥する。斯くして得たる部分を BII とする。

著者に於て加水分解後の試料の稀釀度を種々に変更して不溶性部分として定量させられるリグニンと可溶性部分として定量させられるリグニンとの收量比を比較した結果、両者の分別時の硫酸濃度が 50% となると殆ど大部分のリグニンが不溶性部分（硫酸リグニン A50）として定量せられ、可溶性部分（硫酸リグニン B50）の量が減じることを報告した。故に硫酸リグニン A50 と B50 とを分別する溶剤を求めたところ、冷エタノールが後者のみを溶
解し前者を溶解しないことを知った。

（5）硫酸リグチン BIII（4）の溶液に10倍容量のエーテルを加へて生成する沈澱を通過し、エーテルにて洗浄、減圧乾燥する。これを硫酸リグチン BIIIと称する。

前記の操作中（3）及び（4）の溶液から沈澱を作る際40℃以下に減圧濃縮し、後沈澱剤を加へても差支へないと。又（2）の溶液からリグチンの再生が不完全なる時は液を酸性にするとよい。

グナ材から得た硫酸リグチンを前記の方法で別りたした結果は大約硫酸リグチン A=50%，
BIII=20%，BII=25%，BIII=5%であった。但しこの数値は前項に述べた如く実験条件の極めて僅かなる相違によって多少変化することは避け難い。各部分の収量と加水分解後の酸濃度を種々に変更して不溶性部分及び可溶性部分を別定量した結果とから考へて、BIIは略々硫酸リグチン A_{65-72}に相当し、硫酸リグチン BIIは A_{90-92}に相当するものと解される。

4. 硫酸リグチンの各部位の性状

前記の方法で得た硫酸リグチン A, BII, BIII 及び BIII の各部分に就て其の性状を比較した。

（1）色及び形狀 硫酸リグチン B の3部分は何れも無定形の粉末として得られ、色は
淡褐色乃至褐色である。BIIIは分離直後に淡黄色であるが空気中に曝しておけば褐色と
なる。一般に硫酸リグチン B の色は沈澱剤の種類並に沈澱を作る時の條件によって相違す
る。

硫酸リグチン A は細胞膜の構造を止め、色は暗褐色を呈する。併し此をアルカリ
溶液にして充分に洗い、水で醋酸及び水で洗浄して精製したものは色が淡くなり、硫酸リグ
チン B と略々同程度の褐色を呈するに至る。

（2）Mäule 反應 漬葉樹材リグチンは Mäule 反應が陽性であるが、針葉樹材は同反
應が陰性である。一方に針葉樹材から硫酸法で単離したリグチンは殆ど A のみから成るに対
し、漬葉樹材からのリグチンは略々等量の A 及び B から成る。故に硫酸リグチン B とし
て定量せられる部分と Mäule 反應との間に何等かの関係を考へ得る可能性があり、前記の
方法で別りたした各部分のリグチンに就て Mäule 反應を試みたのであるが、硫酸法で単離し
たリグチンは漬葉樹材から得たものであっても本反應は陰性であり、期待した結果は得られ
なかった。

（3）メトキシル基含有量 リグチン分子の構成単位はフェニルプロパン誘導體（C₆—C₃）
と考えられておる。而して針葉樹材リグニンは共の芳香族部分がメトキシル基及び水酸基を
1個宛もったグアシル基から成ってあるが、潤葉樹材リグニンは芳香族部分が針葉樹材リ
グニンと同様にグアシル基であるものを外に、2個のメトキシル基及び1個の水酸基をも
tたシリンジル基となったものを含み、両者の量比は略々1:1である。一方既述の如く硫
酸法で単離した針葉樹材リグニンは殆ど硫酸リグニンから成るに反し、潤葉樹材リグニ
ンは略々同量の硫酸リグニンA及びBの混合物である。故にシリンジル基を有する部分は
これも硫酸法で単離する際硫酸リグニンBとして得られるかとの見解から、上の方法で分
別した各部分のリグニンに就て常法によりメトキシル基を定量した。共の結果は第3表に示
す如くである。

第3表 硫酸リグニンの各部分のメトキシル基含有量

<table>
<thead>
<tr>
<th>試料</th>
<th>硫酸リグニンA</th>
<th>硫酸リグニン B</th>
<th>硫酸リグニン BII</th>
<th>硫酸リグニン BIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>メトキシル基(%)</td>
<td>19.2</td>
<td>20.5</td>
<td>22.1</td>
<td>22.6</td>
</tr>
</tbody>
</table>

本表の結果から明らかなる如く各部分のメトキシル基の含有量は A＜BII＜BIII の順であ
り、卵もリグニンの重合度が大なる部分程メトキシル基の含有量は多い。此の傾向はカバ
材から得た醗酸リグニンを各種の溶剤を應用して4部分に分け、共のメトキシル基含有量を
比較した Hibbert 氏等の実験結果にも示されている。

併しそれ硫酸リグニンAのメトキシル基含有量も19.2%であるって、針葉樹材リグニン
の平均メトキシル基含有量が14～16%であるのに較べて明らかに多い。本実験の結果ではシ
リンジル基を有する部分が硫酸リグニンBとして、又強アシル基を有する部分が硫酸リ
グニンAとして前記に分れて定量されるとはいいえない。たとシリンジル基を有する部分が
前記の分別操作に際して比較的低重合度の部分に多量に現われることは確からしい。これ等
の事実から潤葉樹材リグニンがグアシル基を有するフェニルプロパン系の重合体とシリン
ジル基を有するフェニルプロパン系の重合体との混合物であると見ると、兩フェニルプロ
パン系の共重合体と見ることが妥当であると考えられる。而してシリンジル基を有するフ
ェニルプロパン系に富む部分は然らざる部分に較べて何等かの理由で重合が妨げられ、比較
的低重合体を作っているものと解される。

総括

プナ材を試料として次の実験を行った。
114

(1) 木粉試料の大きさと酸素リグミン A 及び B の収量比との関係を求め、60～80 メッシュの試料と 80～100 メッシュの試料の間に殆ど差異なきことを認めた。

(2) 硫酸リグミン A 及び B の溶解性を検討した。

(3) 常法によって全硫酸リグミンを分離し、適宜の溶剤を用ひて硫酸リグミン A 及び B を分ち、更に後者を重合度の大小により 3 個の部分（硫酸リグミン BI, BII 及び BIII）に分別する方法を案出した。ブナ材から得られる各部分の収量は大約 A=50%、BI=20%、BII=25%、BIII=5% となる。

(4) 前項の方法で分别した硫酸リグミンの各部分の形狀、色、Müle 反應の有無並にメトキシル基含有量を比較した。Müle 反應は何れの部分も総て陰性である。メトキシル基含有量は低重合度の部分程多い。併し乍ら硫酸リグミン A のメトキシル基含有量も針葉樹材リグミンのメトキシル基含有量よりは大である。

引文文献

(1) 右田伸彦：繊維学会誌，1，273（昭和 19 年）。
(2) W. G. Campbell & S. A. Bryant：Biochem. J., 20, 748 (1937)。
(3) 右田伸彦及び川村一夫：農化学会誌，20，348（昭和 19 年）。
(4) 右田伸彦：パルプ及製紙工工業実験法，169（昭和 18 年）。
(5) W. Fuchs：Die Chemie des Lignins, 66, (1936)。
C. Dorée: Methods of Cellulose Chemistry, 455–471（1933）。
(6) A. J. Bailey：Paper Trade J., 111, No. 7, 27 (1940)。
(7) L. G. de Lamarlière：Rev. gén. botan., 15, 149 (1903)。
(9) 右田伸彦：パルプ及製紙工工業実験法，74（昭和 18 年）。
(11) 八瀧義和及び上代昌：人緯界，9，639（昭和 19 年）。