地震研究所 司津 徳治

(昭和63年1月29日受理)

要 旨

日本の地震について、震央付近の震度 I_0 (気象庁震度階級)、マグニチュード M (気象庁方式)、震源の深さ h (km) の標準的関係を表す実験式を 1114 個の震度データを用いて求め、次式を得た。

$$M = 0.23 I_0 + 0.105 I_0^2 + 1.2 \log h + 1.3$$

この式は M が 2 〜 8、h が 0〜100 km、I_0 が 0〜6 の地震を対象としている。ただし $h=0$ と発表されている地震の実際の深さは数 km と考えて、$h<3$ km の場合は $h=3$ km と置く。M が 5 程度より大きい地震については

$$M = 1.2 I_0 + 1.2 \log h - 0.83$$

すなわち

$$I_0 = 0.83 M - \log h + 0.71$$

を用いてもよい。

1. まえがき

これまで日本付近の浅い地震について、震度 I (気象庁震度階級)、震央距離 D (km)、マグニチュード M (気象庁方式) の関係を表す実験式について報告した（宇津, 1984, 1986, 1987）。これらの実験式を求める際に用いたデータのほとんどは D が数十 km 以上の観測点のもので、震央付近の観測は極めて少ない。前報（宇津, 1986）にも述べたように、これらの式に $D=0$ と置いて得られる値を震央付近の震度とするのは問題があり、震央付近の震度 I_0 と M および震源の深さ h との関係は別に調べる必要がある。本報告はこの問題を蹙っている。

外国ではこれまでにも多数の I_0, M, h (km) の実験式が提出されている。たとえば

$$M = 0.6 I_0 + 1.8 \log h - 1.0 \quad (GUTENBERG and RICHTER, 1942) \quad (1)$$

$$M = (2/3) I_0 + (4/5) \log h - (1/2) \quad (MEI, 1960) \quad (2)$$

$$M = 0.5 I_0 + \log h + 0.35 \quad (KÁRNÍK, 1965) \quad (3)$$

これらの式の I_0 はみな MM 震度階またはそれに相当するものである。日本の地震については、このような研究はほとんどなされていない。
2. データ

筆者によるこれまでの \(I - D - M\) の関係の調査では、\(M 5\) ないし \(6\) 以上の地震のデータを扱ったが、今回はさらに小さい地震のデータも含める。小さい地震でも震央付近では有感となる一方、大きい地震については震央付近のデータは極めて少ないからである。なお、震源の深さは \(100\,\text{km}\) までのものを扱うこととした。東日本の太平洋岸付近の地震、例えば浦河付近の地震など、異常震域が現れるものでも、震央付近の震度は異常震域とは関係がないとみて採用している。

最近は、気象庁が内陸の深い地震については、\(M 2\) 程度のものまで震源と \(M\) を定めている。しかし、これら小地震の \(M\) を他機関が別的方法で求めた \(M\) との整合性はしっかりしないし、今後、気象庁でも小地震の \(M\) の定め方を改良する可能性がある。本報告の \(M\) は \(1987\) 年現在気象庁が採用している \(M\) であり、他の系統の \(M\) とは若干の系統的なずれがあることを見通しに直ぐ必要がある。

本研究に資料として用いた地震は次の期間のものである。
1923 年～1987 年の \(M 6\) 以上の地震、およびそれ以下でも被害を伴った地震（宇津、1982, 1985, 及び追加資料）。
1923 年～1943 年、1951 年～1960 年、1968 年～1986 年の \(M 5\) 以上の地震、1944～1950年は終戦前後に当り刊行されたデータが少なく精度にも問題があるため、1961～1967年は震源の深さが \(20\,\text{km}\) 程度で決められているため、\(M 6\) 以下の無被害地震は除外した。
1971 年～1975 年、1982 年～1986 年の気象庁により \(M\) が定められている地震。この10年間で小地震についてのデータは充分に得られた。なお、1986年11月13日16時17分頃に於て \(M 6.5\) の伊豆大島付近の地震については、11月21日17時58分に発生した。観測点の震度のデータを集めた、震央付近とは以下の条件（1）～（3）のいずれかを満たす場合である。

(1) 震央距離が震源の深さの \(1/2\) 以内、すなわち

\[d \leq h/2 \quad (4) \]

(2) 観測点が震源域（余震域）内あるいはその近傍にあること。余震域の長径 \(L\)（\(\text{km}\)）と \(M\) の関係式 \(\log L = 0.5 M - 1.8\) (UTSU, 1961) を考慮して

\[d \leq 10^{0.5 M - 1.8} \, \text{km} \quad (5) \]

を目安にし、\(M \geq 6.5\) の地震については、\(d\) がこの条件を満たすが（1）項の条件は満たさない全観測点について、余震分布図、地殻変動図を参照しつつ、個別に検討し採否を決めた。Table 1 には \(M \geq 6.5\)、あるいは \(M < 6.5\) でも震度 5 以上の場合は、（4）あるいは（5）式を満たすデータをすべてリストした。表の備考欄で不採用としたものは、観測点が震源域から離れているとみなしたものである。\(M < 6.5\) の地震については余震域がよくわ
Table 1. List of earthquakes of $M \geq 6.5$ for which seismic intensities were reported from JMA stations near the epicenter. Earthquakes of $M < 6.5$ for which intensities of 5 or more were reported from JMA stations near the epicenter are added. "Near the epicenter" means that the epicentral distance d satisfies the condition given by equation (4), (5), or (6) in the text.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>地震名</th>
<th>h (km)</th>
<th>M</th>
<th>観測官署</th>
<th>震度</th>
<th>d (km)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923</td>
<td>9</td>
<td>1</td>
<td>関東地震</td>
<td>20</td>
<td>7.9</td>
<td>横浜港</td>
<td>6</td>
<td>27.9</td>
<td>注(1)</td>
</tr>
<tr>
<td>1924</td>
<td>1</td>
<td>15</td>
<td>丹沢地震</td>
<td>20</td>
<td>7.3</td>
<td>横浜港</td>
<td>5</td>
<td>41.9</td>
<td>不採用 注(2)</td>
</tr>
<tr>
<td>1925</td>
<td>5</td>
<td>23</td>
<td>仙台地震</td>
<td>10</td>
<td>6.8</td>
<td>豊岡</td>
<td>6</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>1927</td>
<td>3</td>
<td>7</td>
<td>丹後地震</td>
<td>0</td>
<td>7.3</td>
<td>豊岡</td>
<td>6</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td>1927</td>
<td>4</td>
<td>1</td>
<td>丹後余震</td>
<td>0</td>
<td>6.5</td>
<td>豊岡</td>
<td>4</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>1927</td>
<td>7</td>
<td>13</td>
<td>根室半島西方沖</td>
<td>100</td>
<td>6.7</td>
<td>根室</td>
<td>4</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>1928</td>
<td>5</td>
<td>21</td>
<td>東京湾北部</td>
<td>70</td>
<td>6.2</td>
<td>東京</td>
<td>5</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td>11</td>
<td>26</td>
<td>北伊豆地震</td>
<td>0</td>
<td>7.3</td>
<td>東京</td>
<td>6</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>1931</td>
<td>1</td>
<td>21</td>
<td>根室半島</td>
<td>100</td>
<td>6.5</td>
<td>根室</td>
<td>4</td>
<td>9.2</td>
<td>注(3)</td>
</tr>
<tr>
<td>1935</td>
<td>8</td>
<td>21</td>
<td>埼玉地震</td>
<td>0</td>
<td>6.9</td>
<td>熊谷</td>
<td>5</td>
<td>14.6</td>
<td>注(4)</td>
</tr>
<tr>
<td>1936</td>
<td>2</td>
<td>21</td>
<td>河内大和地震</td>
<td>0</td>
<td>6.4</td>
<td>八木</td>
<td>6</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>1941</td>
<td>7</td>
<td>15</td>
<td>長野地震</td>
<td>0</td>
<td>6.1</td>
<td>長野</td>
<td>6</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>1943</td>
<td>3</td>
<td>4</td>
<td>鳥取群発地震</td>
<td>0</td>
<td>6.2</td>
<td>鳥取</td>
<td>5</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>1943</td>
<td>3</td>
<td>5</td>
<td>鳥取群発地震</td>
<td>0</td>
<td>6.2</td>
<td>鳥取</td>
<td>5</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>1943</td>
<td>9</td>
<td>10</td>
<td>鳥取地震</td>
<td>0</td>
<td>7.2</td>
<td>鳥取</td>
<td>5</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>1944</td>
<td>12</td>
<td>7</td>
<td>東南海地震</td>
<td>30</td>
<td>7.9</td>
<td>尾鷲</td>
<td>5</td>
<td>49.2</td>
<td>不採用</td>
</tr>
<tr>
<td>1946</td>
<td>12</td>
<td>21</td>
<td>南海地震</td>
<td>20</td>
<td>8.0</td>
<td>潮岬</td>
<td>5</td>
<td>48.2</td>
<td>不採用 注(5)</td>
</tr>
<tr>
<td>1948</td>
<td>4</td>
<td>18</td>
<td>南海余震</td>
<td>0</td>
<td>7.0</td>
<td>潮岬</td>
<td>4</td>
<td>23.1</td>
<td>不採用</td>
</tr>
<tr>
<td>1948</td>
<td>6</td>
<td>28</td>
<td>福井地震</td>
<td>0</td>
<td>7.1</td>
<td>福井</td>
<td>6</td>
<td>13.7</td>
<td>不採用</td>
</tr>
<tr>
<td>1952</td>
<td>3</td>
<td>4</td>
<td>十勝沖地震</td>
<td>0</td>
<td>8.2</td>
<td>十勝</td>
<td>5</td>
<td>118.9</td>
<td>不採用</td>
</tr>
<tr>
<td>1952</td>
<td>7</td>
<td>12</td>
<td>吉野地震</td>
<td>60</td>
<td>6.8</td>
<td>吉野</td>
<td>4</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>10</td>
<td>9</td>
<td>埼玉県沿岸</td>
<td>70</td>
<td>6.9</td>
<td>八戸</td>
<td>4</td>
<td>28.8</td>
<td>注(6)</td>
</tr>
<tr>
<td>1964</td>
<td>6</td>
<td>16</td>
<td>新潟地震</td>
<td>20</td>
<td>7.5</td>
<td>新潟</td>
<td>5</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>11</td>
<td>13</td>
<td>鳥取県近</td>
<td>50</td>
<td>6.5</td>
<td>鳥取</td>
<td>4</td>
<td>23.5</td>
<td>不採用 不採用 注(6)</td>
</tr>
<tr>
<td>1966</td>
<td>1</td>
<td>23</td>
<td>松代群発地震</td>
<td>0</td>
<td>5.1</td>
<td>松代</td>
<td>5</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>2</td>
<td>7</td>
<td>松代群発地震</td>
<td>0</td>
<td>4.9</td>
<td>松代</td>
<td>5</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>4</td>
<td>11</td>
<td>松代群発地震</td>
<td>0</td>
<td>4.7</td>
<td>松代</td>
<td>5</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>4</td>
<td>17</td>
<td>松代群発地震</td>
<td>0</td>
<td>4.7</td>
<td>松代</td>
<td>5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>5</td>
<td>28</td>
<td>松代群発地震</td>
<td>0</td>
<td>5.3</td>
<td>松代</td>
<td>5</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>10</td>
<td>14</td>
<td>松代群発地震</td>
<td>10</td>
<td>5.3</td>
<td>松代</td>
<td>5</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>8</td>
<td>6</td>
<td>愛媛県西部</td>
<td>40</td>
<td>6.6</td>
<td>宇和島</td>
<td>5</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>9</td>
<td>21</td>
<td>滝河岸</td>
<td>80</td>
<td>6.9</td>
<td>滝河</td>
<td>5</td>
<td>20.1</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>年 月 日</th>
<th>地 震 名</th>
<th>h (km)</th>
<th>M</th>
<th>観測官署</th>
<th>講度</th>
<th>d (km)</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970 1 21</td>
<td>日 高 山 震</td>
<td>50</td>
<td>6.7</td>
<td>広 尾</td>
<td>5</td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td>1973 6 17</td>
<td>根室半島沖地震</td>
<td>40</td>
<td>7.4</td>
<td>根 室</td>
<td>5</td>
<td>49.8</td>
<td></td>
</tr>
<tr>
<td>1974 5 9</td>
<td>伊豆半島沖地震</td>
<td>10</td>
<td>6.9</td>
<td>石 腳 崎</td>
<td>5</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>1978 1 14</td>
<td>伊豆大島近海</td>
<td>0</td>
<td>7.0</td>
<td>大 島</td>
<td>5</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>1980 6 29</td>
<td>伊豆半島東方沖</td>
<td>10</td>
<td>6.7</td>
<td>網 代</td>
<td>5</td>
<td>18.4</td>
<td>不採用</td>
</tr>
<tr>
<td>1982 3 21</td>
<td>浦 河 沖 地 震</td>
<td>40</td>
<td>7.1</td>
<td>津 河</td>
<td>6</td>
<td>18.1</td>
<td>不採用</td>
</tr>
<tr>
<td>1987 1 9</td>
<td>岩 手 県 中 部</td>
<td>72</td>
<td>6.6</td>
<td>藤 泉</td>
<td>4</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>1987 12 17</td>
<td>千 藤 県 東方沖</td>
<td>58</td>
<td>6.7</td>
<td>藤 泉</td>
<td>5</td>
<td>26.1</td>
<td></td>
</tr>
</tbody>
</table>

注 (1) 関東地震では他に熊谷と甲府で震度6、(2) 丹沢地震では甲府で震度6、(3) 本文参照、(4) 深さを30-40 km程度は震源分布などから考え、(5) 気象庁が20 km刻みで求めた深さは40 kmであるが、震源分布の見通しは十分に考えられないので、(6) 気象庁の観測値から遠く離れているので ISC による震源を用いているが、気象庁では $h=0$ km としている。いずれにしても震源決定精度が悪いので不採用。

からならないもの、(5) 式を満たす場合は原則として採用する。以下についての条件 (3) があるので、本項は考慮する必要がある。

(3) 上記の条件を満たさなくとも、震央距離5 km 以内の観測点はすべて採用する。

$h \geq 10$ km の地震では $d \leq 5$ km なら (1) 項により採用されているから、本項は考慮する必要がない。小地震では、$d=5$ km の地点は震源域内あるいはその近傍といえよう。場合もあるが、この限界を小さくとるとデータが急に減ってしまうし、震源位置にも誤差があることを考え、これ以上限界を小さくしないこととした。

上記の条件によって、前記の期間、M の範囲から採用したデータの総数は 1114個である。

被害地震でも、震央付近に気象官署のない場合が少なくな、1945年三江地震 ($M=6.8$)、1949年今市地震 ($M=6.4$)、1961年長岡地震 ($M=5.2$)、1963年秋田県中部地震 ($M=6.1$) などは、被害の速報調査等から見えるように震源域のかなりの部分で震度6と感じていたとみられ、むしろ震央付近に気象官署があれば震度6が記録された可能性が高い一方。

1981年西崎玉地遠 (M=6.9) 、1961年北東沖地震 (M=7.0) 、1966年佐渡島中部地震 (M=6.6) 、1971年秋田県南部地震 (M=6.2) などでは局地的に震度6に達した地点もあるかもしれませんが、震源域の大部分が震度6であったとは思われず、震央付近に気象官署があったとしても震度6と報告された可能性が高い。従って前記のような例のみを取り上げて震央付近の震度6 とするデータを増やすのは適当でないので、本論文は前報と同じ様に、データは気象官署の観測値のみに限ることとした。ただし Table 1 の 1985年静岡地震については、詳しい被害分布の調査があり、現在の静岡地方気象台の位置に当時気象官署があったならば、震度6と報告されたと思われるので、採用することとし、Table 1
Fig. 1. Seismic intensities near the epicenter plotted in $M-h$ diagram. Hand-drawn curves indicate the approximate borders of the areas of intensity I_0 and I_0+1.
3. I_h-M の関係

以上のようにして取録した震央における震度 I_0 の全データを、h と M に対してプロットしたもののが Fig. 1 である。震度を表す数字が同じ場所にくるときは、重ならないよう少しずらして記入してある。この図を見ると、ある震度 I_0 と I_0+1 ($I_0=0, 1, \ldots, 5$) の領域の境界は必ずしも確定的ではない。図中の曲線はその境界の目安として引いたもので、I_0 と I_0+1 の境界線はそれより上側の I_0 以下のデータの数と、下側の I_0+1 以上のデータの数とがほぼ等しくなり、かつ線をあまりくねねくと曲げないようにしてある。

Fig. 1 はあるマグニチュード、ある深さの地震の震央付近における震度の見当をつけのに役立つ。この図を見てすぐ気付くことは

（1）ある M のレベルにおける I_0 の h による誤差は、M が大きいほど少ない。
（2）ある M における I_0 は、h が 0 に近づくと急に大きくなる。
（3）I_0 が小さい所で境界線の間隔が狭くなる。

これらの性質を含み、なるべく単純な形の実験式としてここでは

$$M = \alpha I_0 + \beta I_0^2 + \gamma \log h + \delta \tag{7}$$

の形のものを採用することとし、最小 2 術法で係数 $\alpha, \beta, \gamma, \delta$ を定めた。ただし、震度の高いデータほど数が少ないが重要であることを考慮して、10^5 に比例するウェイトをデータに付けた。また、上式は $h=0$ では使えないが、気象庁で $h=0$ と求められている地震の実際の深さは数 km であると考えて、$h=3 km$ の地震は $h=3 km$ に固定した。

前報（宇津、1984）でも述べたように、震度 0 のデータの扱いは難しい。ある M, h の地震で震度 0 が記録されたということは重要な情報であり、そのデータを捨ててしまうのはまずない。しかし、0 より小さい震度は定義されていないので、物理的に扱うならば震度 $-1, -2, \ldots$ とすべき微弱な地震動でも、すべて震度 0 と報告されている。このようなデータをそのまま最小 2 術法にかけるのは不適当なので、ここではまず全データを用いて最小 2 術法により (7) 式の 4 係数を定め、その式による $I_0=0.5$ に対応する M より、$M \leq 0.5$ 以外は小さな地震の震度データは削除することとした。震度 2 程度以上については、削除してもいなくても、結果に差はほとんど出てこない。削除後のデータセットについて計算で 4 係数を定めた結果

$$M = 0.23 I_0 + 0.105 I_0^2 + 1.2 \log h + 1.3 \quad 3 \text{ km} \leq h \leq 100 \text{ km} \tag{8}$$

を採用することとした。この式による震度 I_0 と I_0+1 の境界線、すなわち (8) 式に $I_0 = 0.5, 1.5, \ldots, 5.5$ と置いた場合の $M-h$ 曲線を Fig. 1 と同じデータに重ねたものが Fig. 2 である。

なお、$M \leq 5$ において (8) 式を I_0^2 の項を含まない式に改めてみると

$$M = 1.2 I_0 + 1.2 \log h - 0.83 \tag{9}$$

すなわち

$$I_0 = 0.88 M - \log h + 0.71 \quad 3 \text{ km} \leq h \leq 100 \text{ km} \tag{10}$$
Fig. 2. Same graph as Fig. 1, but the curves are calculated from equation (8).
が得られる。M が 5〜8 の範囲では、同じ I_0 に対する M は、(8) によっても (9) によっても 0.15 を超える差は生じないから、大きい地震を扱うときには (9) 式で差し支えない。なお、M 5 以上の地震のデータは少ないので、それのみを用いて実験式を作るうとしてもうまくゆかない。

4. 考 察

Fig. 2 を見ると、震央付近の震度は (8) または (9) 式で与えられる値を基準にして、だいたい ±1 の範囲におさまっているが、±2 以上の場合も若干ある。このばらつきは、地盤など観測条件の差、地震の性質（低周波地震、高周波地震など）、震度判定の個人差などによるものであろう。ごく浅い小地震についてばらつきが大きいのは、地震動が短周期で細長い時間内に震度の判定が難しいとの、距離による減衰が大きく震源距離の値が震度に影響するためと思われる。

ある M, h の地震の震央付近の震度は (8) 式によってほぼ推定できるが、ごく浅い小地震についてはばらつきが大きいことに留意すべきである。これらの式による震度は平均的な値であるから、例えばある M の地震の震央付近の震度が式から 4 となったとき、条件の悪い場所では震度 5 に達し、被害が出ることも考えられるだろう。

一方、震央付近の震度がわかつても、それから M を推定することは難しい。$h=5$ km の地震で震度 5 すなわち $I_0=4.5〜5.5$ となるのは、(9) 式からは $M=5.3〜6.6$ であるが、震度に ±1 のばらつきを見込むと $M=4.2〜8.1$ までありうる。実際に $M=4$ 近くの小地震でも、条件が悪いと震央付近で被害が生じることがあり、また $M=8$ クラスの地震の震源域内でも震度 5 の地点がある。

謝 辞

データ収集・整理、図の作成について加藤育子技官の協力を得た。

文 献

宇津徳治, 1986, 震度一震央距離一マグニチュードの関係。その 2. 東日本太平洋岸沖地震を除く日本のマントル最上部の地震, 地震研報, 61, 551-561.
Relation between Seismic Intensity near the Epicenter, Focal Depth and Magnitude

Tokuji UTSU

Earthquake Research Institute

An empirical formula for the seismic intensity (JMA scale) I_o near the epicenter of an earthquake of magnitude M and focal depth h has been determined using 1114 data on seismic intensity recorded in Japan. The formula has the form

$$M = 0.23 I_o + 0.105 I_o^2 + 1.2 \log h + 1.3$$

for $M=2-8$, $h=3-100$ km, and $I_o \geq 0$. For larger earthquakes ($M=5-8$), this formula is almost equivalent to

$$M = 1.2 I_o + 1.2 \log h - 0.83.$$