
Von Takeo MATUZAWA,

Institut für Erdbebenforschung.

(Vorgelegt den 27. Okt. 1953.—Eingegangen den 29. Okt. 1953.)

1. R. Yoshiyama’sche Forschung der beiden Erdbeben.

R. Yoshiyama hat diese zwei Erdbeben eingehend untersucht. Sein wichtiges Resultat lautet wie folgt.

2. Seismogramme in Simonoseki der beiden Erdbeben.

R. Yoshiyama hat mir freundlicherweise photographische Kontaktkopien der Seismogramme der beiden Erdbeben geschenkt, die an der Station in Simonoseki beobachtet wurden. Das Original des ersten Bebens war ziemlich verletzt durch Schrammen aber doch lesbar.

Fig. 1 ist die Abbildung nach der Kontaktkopien der Seismogramme.

In dieser Abbildung werden kleine superponierte Zacken der Wellen vernachlässigt, aber sie zeigt sicher die Hauptzüge der Wellen. In ihr können wir drei Phasen der Wellen ziemlich klar unterscheiden, wie P, P* und P markiert. Die Herdentfernungen dieser beiden Beben sind je ungefähr 470 km. Die P-P* und P*-P Zeiten sind andererseits respektiv ungefähr 9 sek. und 14 sek. Darum können wir sehr wahrscheinlich

Diese Phasen als die P, P* und P im gewöhnlichen Sinne ansehen gemäß der Laufzeiten dieser Wellen, die ich schon in 1928 veröffentlichte.

\[J = 470 \text{ km} \quad V = 57 \]

Fig. 1.

Wie schon R. Yoshiyama bemerkt hat, sehen wir in der Figur deutlich, dass die späteren Phasen des ersten Bebens erheblich grösser als die des zweiten Bebens, während die erste Phase ungefähr gleich miteinander bei jedem Beben ist. Obendrein sind sehr langperiodische Wellen besonders in der EW-Komponente des ersten Bebens deutlich bemerkbar, wie gewöhnlich beim Grossbeben der Fall ist\(^3\).

Wenn man einen punktförmigen Herd für jedes Beben annimmt, dann ist es ziemlich schwer, diese oben gezeigten Eigentümlichkeiten der Seismogramme genug zu erklären.

Ein Versuch zur Erklärung nach meiner Feldtheorie\(^3\) der Erdbeben ist wie folgt.

\[\text{Fig. 2a} \quad \text{Fig. 2b}\]

Beim Hauptbeben wäre eine Kette von Brüchen etwa wie B in Fig. 2a erzeugt worden, und beim zweiten wie B in Fig. 2b. Nämlich, beim Hauptbeben hätte die Kette der Brüche vom Quellengebiet bis zur Erdoberfläche sich erstreckt, was man von der Hebungen und Senkungen der Erdoberfläche und der Entstehung der grossen Tunami sehr wahrscheinlich vermuten kann.

Beim zweiten Beben aber wegen der Verminderung des Energievorrates im Quellengebiet und der Erniedrigung des Druckes hätte die Kette der Brüche nur in den unteren Teil der obersten Schicht eindringen können.

Nun bei dieser Annahme muss der erste Einsatz der P-Wellen an Stationen mit Herdentfernungen von einigen Hunderten von Kilometern vom unteren Teil der Bruchkette stammen. Dann wird die Grösse der ersten Phase jedes Bebens wahrscheinlich ungefähr gleich sein, weil der

Spannungszustand gleich vor der Entstehung jedes Bebens fast gleich sein mag, insofern die erste Phase anbetrifft.

Nun was die P-Phase betrifft, kommt natürlich der Bruch in der oberen Schicht in Frage. Gemäß des vorigen Modells in Fig. 2a und 2b muss sicher die P-Welle des Hauptbebens grösser sein als die des zweiten, weil die im grösseren Herdgebiet gelagerte Spannungsgenergie, nämlich grössere Menge Energie, befriedet werden kann.

Nun vor etwa 25 Jahren setzte ich beinahe solches Modell für die Grossbeben wie das vorigen voraus, um den frühzeitigen Eintritt der P-Welle in herdnahen Stationen zu erklären. Diese Annahme wird durch die jetzigen Überlegungen vorteilhaft gestützt.

Nun beim Hauptbeben, bei dem die Kette der Brüche vom Quellengebiet bis zur Erdoberfläche erzeugt wird, kann die Quasi-eigenschwingung des Bebenfeldes sehr wahrscheinlich erregt werden.

In dieser Beziehung ist die Forschung der langperiodischen Wellen an herdnahen Stationen bei Grossbeben sehr wichtig. Dazu ist der langperiodige Seismograph für starke Beben unbedingt nötig.

23. Zisin no Ba no Ron; 1946 nen 12 gatu 21 niti no Oozisin to 1948 nen 4 gatu 18 niti no Yosin to no Hikaku.

Zisin-Kenkyūsyō, Matuzawa-Takeo.

R. Yoshiyama ni yoreba kono hutatu no Zisin ni tuiteno omona Kotogara wa tugi no tōri de aru.
1. Hotondo onazi Basyo ni okotte iru.
2. P-Nami no Bubun wa 3-dan ni natte iru.
3. Dai-itī no Nami wa Ryōhō tomo hotondo hitosii.
4. Dai-san no Nami de Ookisa ga taizen tigau.
5. Hazime no Zisin niwa Syūki no nagai Nami ga kasanatte iru.
6. Energe wa mae no Zisin de 10^{20} erg, noti no Zisin dewa 10^{23} erg no Teido de aru.

Korera no Kotogara wo Zisin no Ba no Ron no Kangae kara Setumei suru.