18. Fluggeschwindigkeit einiger vulkanischen Bomben.

von Takeo MATUZAWA.

1. Einleitung.

2. Allgemeines über Luftwiderstand.

Formen von vulkanischen Bomben sind natürlich mannigfaltig, aber im folgenden will ich die Berechnung auf die kugelförmigen Körper beschränken.

Für kleine Reynoldszahlen (etwa $R = Vd/\nu < 1$) gilt das Gesetz von Stokes

1) E. Oldham, Transactions of the Seismological Society of Japan, 13 (1890), 21-40.
S. Sekiya and Y. Kiruchi, ibid., 13 (1890), 139-222.
C. G. Knott and C. M. Smith, ibid., 13 (1890), 223-234.
G. Wagener, ibid., 13 (1890), 254-257.
T. Fukutomi, Disin (Erdbeken), 1 (1929), 852-862.
\[W = 3\pi \mu d V, \]
wo, \(\mu \): Viskosität der Luft, \(\rho \): Dichte der Luft, \(\nu = \frac{\mu}{\rho} \)
der Kugel, \(V \): relative Geschwindigkeit des Körpers ist.

Wenn die Reynoldssche Zahl zunimmt, geht der Luftwiderstand
zum Newtonschen Gesetz über, nämlich
\[W = K \rho d^2 V^2, \]
wo, \(K \) von \(R = V d / \nu \) abhängt.

Für \(K \) gibt es bisher eine Menge Untersuchungen, z. B. Wieselsberger,2) H. S. Allen,3) L. Schiller4) u. a., G. A. Shakespear,5) F. S. Schmidt,6) G. Cooke,7) R. G. Lunnos,8) Z. Aka9) u. a. u. s. w.

Aus diesen Untersuchungen kann man wie folgt zusammenfassen; für etwa \(10^3 < R < 10^5 \), nimmt \(\log K \) ungefähr geradlinig für \(\log R \) ab, für \(10^5 < R < 1.24 \times 10^5 \) ist \(K \) praktisch konstant und beträgt etwa 0.12, dann nimmt \(K \) plötzlich ab und nimmt den Wert etwa 0.08. Im folgenden wird dieser Wert angenommen, obgleich \(K \) für ungeheur großen Wert von \(R \) unbekannt sei.

Als Koordinaten sind die \(x \)-Achse horizontal auf dem Meeresniveau
und die \(y \)-Achse vertikal nach oben genommen.

In der Atmosphäre herrscht das Barometergesetz, nämlich
\[dp = -\rho g dy, \]
und die Zustandsgleichung der Gase ist \(p = R \rho T \), wo \(R \) die Gaskonstante
für ein Gramm Luft ist. In der Troposphäre nimmt die Lufttemperatur
gewöhnlich ungefähr geradlinig ab, also
\[T = T_0 - \beta y. \]

Nach Substitution ergibt sich
\[R(T_0 - \beta y) dp = -\rho (g - R \beta) dy = -\rho g dy. \]
\(R \rho \beta \) kann gegen \(g \) vernachlässigt werden, weil \(R \rho \beta = 0.000189 \) g. wenn

2) K. Wieselsberger, Z. F. M., (1914), 140.
3) H. S. Allen, Phil. Mag., VI 50 (1900), 323-328; 519-526.
5) G. A. Shakespear, Phil. Mag., 28 (1914), 723-734.
7) G. Cooke, Phil. Mag., 39 (1920), 350-352.
\[\beta = 0.005^\circ C/m, \text{ wie gewöhnlich der Fall ist. Wenn man für } y = 0, \rho = \rho_0, p = p_0 \text{ setzt,} \]
\[\rho = \rho_0 \left(1 - \frac{\beta}{T_0} y \right)^A, \]
wo \(A = \frac{\rho_0 T_0}{\rho_0 y} \).

Wenn der Temperaturgradient vernachlässigt werden kann, was manchmal der Fall ist, kann man durch Grenzübergang direkt finden
\[\rho = \rho_0 e^{\frac{\beta_0 y}{T_0}}, \]
weil
\[\lim_{\beta \to 0} \left(1 - \frac{\beta}{T_0} y \right)^{\frac{\beta_0 T_0}{T_0}} = e^{\frac{\beta_0 y}{T_0}}. \]

Dieser Ausdruck ist nichts anders als die Barometerformel. Die Bewegungsgleichungen für eine Kugel mit Durchmesser \(d \) und Diichte \(\rho' \) lauten also
\[\ddot{x} + \lambda \left(1 - \frac{\beta}{T_0} y \right)^A \dot{x} = 0, \quad \ldots \ldots \ldots \ldots (1) \]
\[\ddot{y} + \delta \lambda \left(1 - \frac{\beta}{T_0} y \right)^A \dot{y}^2 + g = 0, \quad \ldots \ldots \ldots \ldots (2) \]
wo \(\delta = 1 \) für \(\dot{y} \geq 0 \), \(\delta = -1 \) für \(\dot{y} \leq 0 \), und \(\lambda = \frac{6}{\pi} \frac{K}{d} \rho_0 \).

In gewöhnlichen Fällen könnte man ruhig das Stokesgebiet außer acht lassen, denn in der Atmosphäre beschränkt sich die Geschwindigkeit für kleine Reynoldszahl nur auf ganz kleines Bereich, insofern es Auswürfungen mit Durchmesser über mehreren Zentimetern betrifft, z. B. für eine Kugel mit \(d = 40 \text{ cm} \). in der Atmosphäre \(0^\circ C \left(v = 0.1325 \right) \]
\[R = 302 \text{ v}, \quad v \text{ in cm/sec.} \]

4. Integration der Gleichungen.

Zuerst muß man die Gleichung für die Vertikalbewegung lösen und dann kommt die Lösung für die Horizontalbewegung. Die einmalige Integration lautet wie folgt,
\[e^{\frac{2\lambda t}{\beta (1+\lambda)}} (1 - \frac{\beta}{\gamma_{0}})^{1+\lambda} y^2 + 2g \int_0^y e^{\frac{2\lambda t}{\beta (1+\lambda)}} (1 - \frac{\beta}{\gamma_{0}})^{1+\lambda} dy = C, \quad \ldots \ldots (3) \]

wo \(C \) eine Integrationskonstant ist.

Weitere Integration ist theoretisch nicht schwer, aber praktisch nicht bequem. Es sei viel zweckmäßiger mechanisch zu integrieren in einzelnen Fall. In dieser Weise kann man \(\left(1 - \frac{\beta}{\gamma_{0}}\right)^A \) als Funktion von Zeit \(t \) finden, und dann die \(z \)-Gleichung finden, nämlich

\[
\dot{x} = \frac{\alpha V_x}{1 + \lambda_0 V_x \int_0^t \left(1 - \frac{\beta}{\gamma_{0}}\right)^A \, dt}, \quad \ldots \ldots \ldots (4)
\]

\[
x = \alpha V_x \int_0^t \frac{dt}{1 + \lambda_0 V_x \int_0^t \left(1 - \frac{\beta}{\gamma_{0}}\right)^A \, dt}, \quad \ldots \ldots \ldots (5)
\]

wo \(\alpha V_x \) die \(z \)-Komponente der Anfangsgeschwindigkeit ist.

Durch Grenzübergang \(\beta \to 0 \) ergibt sich für den Fall ohne Temperaturgradient,

\[
e^{\frac{2\lambda t}{\beta}} y^2 + 2g \int_0^y e^{-\alpha y} \, dy = C, \quad \ldots \ldots (3')
\]

\[
\dot{x} = \frac{\alpha V_x}{1 + \lambda_0 V_x \int_0^t e^{-\alpha y} \, dt}, \quad \ldots \ldots \ldots (4')
\]

\[
x = \alpha V_x \int_0^t \frac{dt}{1 + \lambda_0 V_x \int_0^t e^{-\alpha y} \, dt}, \quad \ldots \ldots \ldots (5')
\]

wo \(\alpha = \frac{P_0}{\rho_0} \), \(C \) eine Integrationskonstant ist.

T. Fukutomi\(^{10}\) hatte die vertikale Geschwindigkeit der Bomben im Endzustand geschätzt durch Untersuchungen von mehreren durch Bombeneinschlag erzeugten kegelförmigen Höhlen in der Nähe von Yunotaira ungefähr 2070 m. weit horizontal und 430 m. unten vom Krater. Die Kraterhöhe ist 2430 m. ü. d. M. Nach ihm war die Vertikalkomponente der Endgeschwindigkeit 216 m/Sek. Obgleich er bei der Schätzung sehr weite Extrapolation gemacht hatte, hier werde ich diesen Wert als

\(^{10}\) T. Fukutomi, loc. cit., 1)
richtig annehmen um die große Wirkung des Luftwiderstandes klar zu machen. Der Durchmesser der von ihm untersuchten Bomben reicht sich 20~80 cm. Als Mittelwert ist \(d = 49 \) cm angenommen.

Am 18. Sept. 1929 gegen 1 a.m. im Zentraljapan herrschten im Durchschnitt \(P_0 = 765 \) mm und \(T_0 = 283^\circ \text{K} \), also \(\rho_0 = 0.001256 \). Der Temperaturgradient in der Nähe vom Vulkan war leider nicht genau bekannt. Das war immer der Fall bei den in dieser Arbeit geschilderten Beispielen. Darum will ich den gewöhnlichen Wert \(\beta = 0.005^\circ \text{C/m} \) annehmen.

Also,
\[
\frac{\beta}{T_0} = 0.0001765,
\]
\[
\lambda = 6.83,
\]
\[
\lambda = 1.92 \times 10^{-4} \text{ m}^3.
\]

Nun ist die Endvertikalgeschwindigkeit \(-\dot{y}_{1000} = 216 \) m/Sek. gegeben, wo das Präfix \((-\)\) die nach unten gerichtete Geschwindigkeit bedeutet und das Suffix die Höhe gibt, wo die Geschwindigkeit beobachtet wurde.

Aus Gleichung (3) ergibt sich allgemein
\[
-\dot{y}_y^2 = \frac{2\alpha T_y}{\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} \left\{ \frac{2\alpha T_y}{e^\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} - \dot{y}_h^2 - 2g \int_{H_0}^{H} e^{\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} dy \right\}, \quad (3')
\]

wenn \(\dot{y}_h^2 \) gegeben ist.

Die Scheitelhöhe \(H \) der Flugbahn wird gegeben aus der Gleichung
\[
\dot{y}_y^2 = 2g e^{-\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} \int_{H_0}^{H_0} e^{-\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} dy, \quad \cdots \quad \cdots \quad (3'')
\]

Wen einmal \(H \) bestimmt wird, dann ist \(\dot{y}_y \) bequemer gegeben durch Gleichung (3'') (statt \(h \) soll \(y \) eingesetzt werden) als durch (3'),
\[
\dot{y}_y^2 = 2g e^{-\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} \int_{y}^{y} e^{-\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} dy.
\]

In ähnlicher Weise ergibt sich für die nach oben gerichtete Geschwindigkeit \(\dot{y}_y \),
\[
\dot{y}_y^2 = 2g e^{-\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} \int_{y}^{y} e^{-\beta (1+\delta)} \left(1 - \frac{\beta}{T_y}\right)^{1+\lambda} dy.
\]

Für kleine Strecke \((\Delta) \) vom Scheitelpunkt kann man bequemer die folgenden Annäherungsformeln benutzen
\[
\dot{y}_y = \frac{2g}{y_\Delta} \left\{1 \pm \frac{1}{2} \lambda \Delta \left(1 - \frac{\beta}{T_y} \right)^{1+\lambda}\right\}, \quad \cdots \quad \cdots \quad \cdots \quad (6)
\]
\[t_\Delta = \sqrt{\frac{2\Delta}{g}} \left[1 \mp \frac{1}{6} \lambda \Delta \left(1 - \frac{\beta}{T_0} H \right)^4 \right], \ldots \ldots \ldots \ldots \ldots (\alpha) \]

wo \(t \) die Zeit, die nötig ist, die Strecke \(\Delta \) zurückzulegen, bedeutet. Durch mechanische Integration kann man natürlich nicht \(t_\Delta \) genau bekommen, weil \(1/\pm \dot{y}_u \) unendlich wird.

Die Rechenergebnisse sind in der folgenden Tabelle zusammengestellt. (Tabelle I.)

Fig. 1. I: \(e^{\frac{3\lambda y_0}{\beta(1+\lambda)}} \left(1 - \frac{\beta}{T_0} \right)^{1+\lambda} \), II: \(e^{-\frac{3\lambda y_0}{\beta(1+\lambda)}} \left(1 - \frac{\beta}{T_0} \right)^{1+\lambda} \), III: \(-\dot{y}_y \rightarrow 0 \)

Kurve III in Fig. 1 gibt \(\dot{y}_y \rightarrow 0 \). Die Scheithöhe II wird graphisch so bestimmt daß \(-\dot{y}_u \rightarrow 0 \) = 216. Sie ergibt sich zu 5690 m.

Kurve I und II in Fig. 2 zeigt respektiv \(1/\pm \dot{y}_u \), \(1/\pm \dot{y}_y \). Dann wird die Flugzeit \(t_\Delta \) graphisch integriert mit Hilfe der Annäherung (6) und (7) in der Nähe vom Scheitelpunkt. (Kurve III und IV in Fig. 2.)
Tabelle I.

\[I: \quad c \cdot \frac{2\alpha T_0}{\beta (1+\lambda)} \left(1 - \frac{\beta}{T_0}\right)^{1+\lambda} \quad II: \quad c \cdot \frac{2\alpha T_0}{\beta (1+\lambda)} \left(1 - \frac{\beta}{T_0}\right)^{1+\lambda} \]

<table>
<thead>
<tr>
<th>y \left(1 - \frac{\beta}{T_0}\right)^\lambda</th>
<th>I</th>
<th>II</th>
<th>\int_{1200}^y dy</th>
<th>-\int_{y_0=1200}^y dy</th>
<th>\int_{y_0}^{y_0+800} II dy</th>
<th>\int_{y_0}^{y_0+800} II dy</th>
<th>+t</th>
<th>-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>0.7923</td>
<td>8.373</td>
<td>0.1194</td>
<td>0.000</td>
<td>0.000</td>
<td>216</td>
<td>0.000</td>
<td>39.19</td>
</tr>
<tr>
<td>2000</td>
<td>0.7823</td>
<td>8.125</td>
<td>0.1231</td>
<td>0.024</td>
<td>45.8</td>
<td>215.2</td>
<td>688.2</td>
<td>313.8</td>
</tr>
<tr>
<td>2500</td>
<td>0.7348</td>
<td>7.043</td>
<td>0.1420</td>
<td>4617.0</td>
<td>102.8</td>
<td>207.0</td>
<td>688.4</td>
<td>308.0</td>
</tr>
<tr>
<td>3000</td>
<td>0.6894</td>
<td>6.123</td>
<td>0.1633</td>
<td>7905.8</td>
<td>130.6</td>
<td>196.8</td>
<td>617.1</td>
<td>271.9</td>
</tr>
<tr>
<td>3500</td>
<td>0.6468</td>
<td>5.403</td>
<td>0.1851</td>
<td>10759.0</td>
<td>158.8</td>
<td>182.9</td>
<td>525.0</td>
<td>236.0</td>
</tr>
<tr>
<td>4000</td>
<td>0.6005</td>
<td>4.778</td>
<td>0.2033</td>
<td>13685.8</td>
<td>187.2</td>
<td>165.5</td>
<td>436.4</td>
<td>197.9</td>
</tr>
<tr>
<td>4500</td>
<td>0.5683</td>
<td>4.276</td>
<td>0.2239</td>
<td>15908.0</td>
<td>206.8</td>
<td>142.2</td>
<td>315.6</td>
<td>162.5</td>
</tr>
<tr>
<td>5000</td>
<td>0.5319</td>
<td>3.848</td>
<td>0.2300</td>
<td>17320.2</td>
<td>228.2</td>
<td>125.5</td>
<td>292.1</td>
<td>132.0</td>
</tr>
<tr>
<td>5500</td>
<td>0.4977</td>
<td>3.457</td>
<td>0.2500</td>
<td>19099.2</td>
<td>252.5</td>
<td>109.5</td>
<td>255.4</td>
<td>116.3</td>
</tr>
<tr>
<td>6000</td>
<td>0.4656</td>
<td>3.180</td>
<td>0.3144</td>
<td>21029.0</td>
<td>221.8</td>
<td>91.0</td>
<td>213.6</td>
<td>91.6</td>
</tr>
</tbody>
</table>

Fig. 2. I: \(1/y_y\). II: \(-\dot{y}_y\). III: +t. IV: -t.
Die senkrechte Komponente der Anfangsgeschwindigkeit ergibt sich zu 313,8 m/Sek.

So ist die vertikale Bewegung gelöst. Um die horizontale Bewegung zu lösen muß man \(1 - \frac{\beta}{T_0} y^4\) als Funktion von \(t\) zuordnen. (Tabelle II).

<table>
<thead>
<tr>
<th>(t)</th>
<th>000</th>
<th>022</th>
<th>195</th>
<th>333</th>
<th>624</th>
<th>903</th>
<th>1237</th>
<th>1816</th>
<th>2436</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(1 - \frac{\beta}{T_0} y^4\right)^4)</td>
<td>0,7415</td>
<td>0,7348</td>
<td>0,6904</td>
<td>0,6408</td>
<td>0,6065</td>
<td>0,5883</td>
<td>0,5319</td>
<td>0,4977</td>
<td>0,4855</td>
</tr>
<tr>
<td>(\int_0^t \left(1 - \frac{\beta}{T_0} y^4\right)^4 dt)</td>
<td>000</td>
<td>0,1624</td>
<td>1,394</td>
<td>2,717</td>
<td>4,106</td>
<td>5,805</td>
<td>7,752</td>
<td>10,630</td>
<td>13,683</td>
</tr>
<tr>
<td>(\left(1 - \frac{\beta}{T_0} y^4\right)^4)</td>
<td>0,4977</td>
<td>0,5319</td>
<td>0,5683</td>
<td>0,6065</td>
<td>0,6468</td>
<td>0,6894</td>
<td>0,7348</td>
<td>0,7823</td>
<td>0,7923</td>
</tr>
<tr>
<td>(\int_0^t \left(1 - \frac{\beta}{T_0} y^4\right)^4 dt)</td>
<td>16,75</td>
<td>19,74</td>
<td>21,96</td>
<td>23,88</td>
<td>25,68</td>
<td>27,44</td>
<td>29,20</td>
<td>30,99</td>
<td>31,35</td>
</tr>
</tbody>
</table>

![Graph with two curves](image)

Aus Kurve II in Fig. 3 sehen wir daß bei Berechnung von Gleichung (5) \(\int_0^t \left(1 - \frac{\beta}{T_0} y^4\right)^4 dt\) in genügender Annäherung durch 0,573 \(t\) ersetzt werden kann.

Nun aus

\[
2070 = \alpha V_z \int_0^{\frac{4.35}{\alpha}} \frac{dt}{1 + \lambda_0 V_z \times 0.573 t}
\]

bekommt man

\[
\alpha V_z = 42.5 \text{ m/Sek.}
\]
Also die Horizontalgeschwindigkeit im Endzustand ist

\[\varepsilon V_x = 33.9 \text{ m}/\text{Sek.} \]

Die Rechenergebnisse sind so zusammengefasst wie folgt,

\[\varepsilon V_x = 42.5 \text{ m}/\text{Sek.}, \]
\[\varepsilon V_y = 313.8 \text{ m}/\text{Sek.}, \]
\[H = 5690 \text{ m. also } 3270 \text{ m. vom Krater.} \]

Diese Höhe stimmt mit der Beobachtung der Wolkenhöhe beim Ausbruch überein. T. Fukutomi berechnete ohne Berücksichtigung des Luftwiderstandes \(\varepsilon V_x = 195 \text{ m}/\text{sek. und } H = 4300 \text{ m.} \) Wir sehen also daß man bei Berechnung des Anfangszustandes die Wirkung des Luftwiderstandes nicht Vernachlässigen kann.

6. Ausbruch des Asamayama vom 22. Okt. 1911.\(^{11}\)

F. Omori untersuchte genau die Endzustände der Auswürflinge. Nach ihm ereignete sich dieser Ausbruch um 3\(^{\text{h}}\) 46\(^{\text{m}}\) 04\(^{\text{h}}\) a.m. am 22. Okt. 1911. Im Zentraljapan herrschte damals der atmosphärische Druck ungefähr zu 763 mm und die Temperatur ungefähr zu 12\(^{\circ}\)C. Die Windgeschwindigkeit erreichte höchstens nur wenige Meter per Sekunde.

In diesem Falle ergeben sich also

\[\rho_0 = 0.001248, \quad T_0 = 285\text{°K}, \quad p_0 = 763 \text{ mm. Hg.} \]
\[\frac{\beta}{T_0} = 0.00001755, \quad A = 6.86, \quad \lambda = 7.34 \times 10^{-5}. \]

Der Durchmesser der von ihm betrachteten Bomben war ungefähr \(d = 3.5 \approx 100 \text{ cm.} \) Er fand den Einfallswinkel 63\(^{\circ}\) mit dem Horizont. Der Einfallspunkt befand sich 2000 m. weit vom Krater und 490 m. darunter, also 1910 m. ü. d. M.

Damit können wir wieder den Anfangszustand der Bombe berechnen. Erstens haben wir

\[\tan 63^{\circ} = \varepsilon V_y / V_x = 1.963, \]

wo \(\varepsilon V_y \): Vertikalkomponente der Endgeschwindigkeit, \(\varepsilon V_x \): Horizontalkomponente der Endgeschwindigkeit bedeutet. Zweitens ist gegeben \(x = 2000 \text{ m. in Gl. (5)}. \) Wir müssen \(\varepsilon V_y \) bzw. \(\varepsilon V_x, \varepsilon V_y \) und \(\varepsilon V_x \) so finden daß \(x = 2000 \text{ m.} \) wird.

Für Berechnung bilde man zuerst die folgende Tabelle (Tabelle III) wie vorher.

Tabellen III.

\[I: \quad e^{\frac{2\alpha T_0}{T_0}} \left(1 - \frac{\beta}{T_0}\right)^{1 + 1} \]
\[II: \quad e^{\frac{2\alpha T_0}{T_0}} \left(1 - \frac{\beta}{T_0}\right)^{1 + 1} \]

<table>
<thead>
<tr>
<th>(y)</th>
<th>(\left(1 - \frac{\beta}{T_0}\right)^{1 + 1})</th>
<th>I</th>
<th>II</th>
<th>(\int_{100}^{y} \frac{dy}{d})</th>
<th>(-y_{n=10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910</td>
<td>0.795</td>
<td>2.259</td>
<td>0.4426</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2400</td>
<td>0.745</td>
<td>2.138</td>
<td>0.4677</td>
<td>1677.2</td>
<td>96.6</td>
</tr>
<tr>
<td>3000</td>
<td>0.690</td>
<td>2.068</td>
<td>0.4981</td>
<td>2331.6</td>
<td>141.7</td>
</tr>
<tr>
<td>3500</td>
<td>0.6475</td>
<td>1.912</td>
<td>0.5231</td>
<td>3301.0</td>
<td>160.0</td>
</tr>
<tr>
<td>4000</td>
<td>0.607</td>
<td>1.826</td>
<td>0.5477</td>
<td>4235.0</td>
<td>191.5</td>
</tr>
</tbody>
</table>

Kurve III in Fig. 4 gibt \(-y_{n=10}\).

In Fig. 4 ist:

I: \(e^{\frac{2\alpha T_0}{T_0}} \left(1 - \frac{\beta}{T_0}\right)^{1 + 1} \),
II: \(e^{\frac{2\alpha T_0}{T_0}} \left(1 - \frac{\beta}{T_0}\right)^{1 + 1} \),
III: \(-y_{n=10}\).

Durch sukzessive Annäherung kann man \(\epsilon V_y \) u. s. w. finden. Für \(\epsilon V_y = -\dot{y}_{1900} = 140.5 \text{ m/Sek.} \) bzw. \(\epsilon V_x = 71.5 \text{ m/Sek.} \) bekommt man \(H = 2985 \text{ m.} \) und \(\epsilon V_y = -\dot{y}_{2400} = 110.3 \text{ m/Sek.} \). Man erhält wieder \(\left(1 - \frac{\beta}{T_0}\right)^{1 + 1} \) als
Part 2: Fluggeschwindigkeit einiger vulkanischen Bomben.

Funktion von \(t \). (Tabelle IV).

Tabelle IV.

<table>
<thead>
<tr>
<th>(t)</th>
<th>000</th>
<th>457</th>
<th>107</th>
<th>1685</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(1 - \frac{\beta}{T_0} y\right)^4)</td>
<td>0.745</td>
<td>0.692</td>
<td>0.705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td>2400</td>
<td>2800</td>
<td>2985</td>
<td>2800</td>
<td>1910</td>
</tr>
</tbody>
</table>

Kurve II in Fig. 5 zeigt diese Funktion.

Fig. 5.

Durch Einsetzen von \(\psi V = 71.5 \text{ m/Sek.} \) bekommt man \(\psi V = 79.1 \text{ m/Sek.} \). Dann aus Gl. (5) ergibt sich \(x = 1995 \text{ m.} \), was genügend genau ist.

Die Zusammenfassung gibt also

\(\psi V = 79.1 \text{ m/Sek.}, \quad \psi V = 110.3 \text{ m/Sek.}, \quad \psi V = 140.5 \text{ m/Sek.}, \quad \psi V = 71.5 \text{ m/Sek., und } H = 2985 \text{ m. ü. d. M.} \)

Die Flugzeit ist \(\tau = 25.3 \text{ Sek.} \). Die zusammengesetzte Anfangsgeschwindigkeit ist \(\psi V = 135.7 \text{ m/Sek.} \). Nach F. Omori ergibt sich ohne Berücksichtigung des Luftwiderstandes \(\psi V = 134 \text{ m/Sek.} \) und \(\tau = 26 \text{ Sek.} \). In diesem Falle ist die Abweichung nicht so groß, weil \(\lambda \) ziemlich kleiner ist als im vorigen Falle. Das kommt natürlich von der Größe der Bombe. Man sehe also, daß für die Bomben von solcher Größe die Wirkung des Luftwiderstandes praktisch vernachlässigt werden kann, wenn die Flugstrecke nicht ungewöhnlich weit ist.

Dieser Ausbruch wurde auch von F. Omori eingehend untersucht. Nach ihm ereignete sich dieser Ausbruch um 7h 45m 08s am 12. Aug. 1913. Einfallswinkel der Auswürflinge war 44°. Der Durchmesser betrug ungefähr 15 cm. Die Windgeschwindigkeit war kleiner als 4 m/Sek. Der atmosphärische Druck und die Temperatur in Zentraljapan waren respektiv etwa 753 mm. Hg und 25°C.

Also
\[
\rho_0 = 0.001173, \quad \chi = 4.78 \times 10^{-4}
\]
\[
A = 6.84, \quad \frac{\beta}{T_0} = 0.0001678,
\]
\[
\tan 44^\circ = \frac{V_y}{V_z} = 0.9657.
\]

Der Einfallspunkt war 2080 m. weit horizontal vom Krater und 500 m. darunter (1900 m. ü. d. M.) Die Berechnung ist in ganz ähnlicher Weise wie in Abschnitt (5) ausgeführt. Tabelle V gibt, was nötig ist für diese Berechnung.

Tabelle V.

<table>
<thead>
<tr>
<th></th>
<th>(\left(1 - \frac{\beta}{T_0} y\right))²</th>
<th>I: (e^{\frac{2\alpha T_0}{\beta(1+\delta)} (1-\frac{\beta}{T_0} y)^{4+4}})</th>
<th>II: (e^{-\frac{2\alpha T_0}{\beta(1+\delta)} (1-\frac{\beta}{T_0} y)^{4+4}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>0.8011</td>
<td>281.5</td>
<td>0.003553</td>
</tr>
<tr>
<td>2000</td>
<td>0.7916</td>
<td>262.4</td>
<td>0.003810</td>
</tr>
<tr>
<td>2200</td>
<td>0.7732</td>
<td>228.9</td>
<td>0.004427</td>
</tr>
<tr>
<td>2400</td>
<td>0.7548</td>
<td>194.4</td>
<td>0.005144</td>
</tr>
<tr>
<td>2460</td>
<td>0.7496</td>
<td>181.3</td>
<td>0.005517</td>
</tr>
</tbody>
</table>

Kurve III in Fig. 6 zeigt \(-\dot{y}_{yz}\).

Für \(-\dot{y}_{yz} = V_y = 95.0 m/Sek.\) bzw. \(V_z = 98.3 m/Sek.\) erhält man \(H = 2460 m.\) und \(V_y = 34.8 m/Sek.\) für \(1 - \frac{\beta}{T_0} y\)^4 als Funktion von \(t\) ist gegeben in der folgenden Tabelle. (Tabelle VI.)

Fluggeschwindigkeit einiger vulkanischen Bomben.

\[I: \quad \frac{2\gamma T_0}{c^{\beta(1+\beta)}} \left(1 - \frac{\beta}{T_0}\right)^{1+\beta} \]

\[II: \quad \frac{2\gamma T_0}{\beta(1+\beta)} \left(1 - \frac{\beta}{T_0}\right)^{1+\beta} \]

\[III: \quad \frac{\gamma}{\beta^2(1+\beta)} \]

Fig. 6.

Tabelle VI.

<table>
<thead>
<tr>
<th>(t)</th>
<th>000</th>
<th>3:47</th>
<th>7:00</th>
<th>11:04</th>
<th>13:58</th>
<th>14:68</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(1 - \frac{\beta}{T_0}\right)^{\frac{4}{3}})</td>
<td>0.7548</td>
<td>0.7486</td>
<td>0.7548</td>
<td>0.7732</td>
<td>0.7916</td>
<td>0.8011</td>
</tr>
<tr>
<td>(y)</td>
<td>2400</td>
<td>2460</td>
<td>2400</td>
<td>2200</td>
<td>2000</td>
<td>1900</td>
</tr>
<tr>
<td>(\int_0^1 \left(1 - \frac{\beta}{T_0} y^4 \right) dt)</td>
<td>000</td>
<td>2618</td>
<td>5276</td>
<td>8362</td>
<td>10:35</td>
<td>11:23</td>
</tr>
</tbody>
</table>

Kurve I und I' in Fig. 5 machen diese Rechenergebnisse anschaulich.

In ähnlicher Weise wie im Abschnitt (6) ergibt sich

\[\omega V = 208 \text{ m/Sek.} \]

\[x = 208 \int_0^{14:68} \frac{dt}{1 + 4 \times 78 \times 10^{-4} \times 0.766 t \times 208} = 2050 \text{ m}, \]

womit man zufrieden sein kann.

Die Anfangsgeschwindigkeit ergibt sich zu \(\omega V = 211 \text{ m/Sek.} \). Ohne Berücksichtigung des Luftwiderstandes ist \(\omega V = 131 \text{ m/Sek.} \), bzw.
Für Bomben von solcher Größe ist die Wirkung der Luft sehr bedeutend.

Dieser Ausbruch wurde von H. Tsuya13 genau beobachtet.
Die Größe der Bomben: ungefähr armvoll also \(d \approx 40 \text{ cm} \),
die Scheitelhöhe: \(H = 2500 \text{ bis } 3100 \text{ m} \),
die Kraterhöhe: \(h = 2100 \text{ m} \),
die Reichweite: höchstens 500 m.,
die Lufttemperatur: \(11^\circ \text{C} \),
der Luftdruck in Zentraljapan: \(768 \text{ mm Hg} \).
Der Temperatureffekt kann in diesem Falle vernachlässigt werden,
weil die Flugstrecke nicht weit ist.

\[
\rho_0 = 0.00126, \quad \lambda = 1.97 \times 10^{-4} \text{ m}^{-1},
\]
\[
\alpha = \frac{\rho_0 g}{\rho} = 1.25 \times 10^{-4} \text{ m}^{-1}.
\]

Da in diesem Falle die Scheitelhöhe gegeben ist, ist die Berechnung
von \(\lambda V_s \) nicht schwer.
Aus Gleichung (3') ergeben sich

\[
\hat{y}^2 = \lambda V_s^2 = 2 g e^\alpha \int e^{-\lambda y} dy,
\]
und

\[
x = \lambda V_s \int \frac{dt}{1 + \frac{\lambda}{V_s} \int e^{-\lambda y} dy}.
\]

\(\lambda V_s = 126 \text{ m/Sek. für } H = 2800 \text{ m} \),
\(\lambda V_s = 154 \text{ m/Sek. für } H = 3100 \text{ m} \).
Die Flugzeit für \(H = 2800 \text{ m} \) ist angeordnet wie folgt (Tabelle VII.)

<table>
<thead>
<tr>
<th>(t)</th>
<th>000</th>
<th>39</th>
<th>72</th>
<th>117</th>
<th>1625</th>
<th>1965</th>
<th>239</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>2100</td>
<td>2500</td>
<td>2700</td>
<td>2800</td>
<td>2700</td>
<td>2500</td>
<td>2100</td>
</tr>
</tbody>
</table>

Also

\[0 \nu \approx e^{0.671 \lambda t} - 1 = 21.7 \text{ m/Sek.,} \]

\[\nu = 128 \text{ m/Sek.} \]

Dieser Ausbruch wurde von mehreren Autoren\(^{14}\) beschrieben und diskutiert. Nach S. Sekiya und Y. Kikuchi begann die erste Explosion um 7\(^{h}\) 45\(^{m}\) an diesem Tage, dann folgten 15–20 Explosionen hintereinander. Die Explosionswolkensäule erreichte die Höhe 1280 m. über dem Krater, dessen Höhe ü. d. M. ungefähr 1200 m. ist. Die damaligen meteorologischen Zustände habe ich nicht wissen können wegen des Mangels der Materialien. Darum will ich hier annehmen 755 mm. Hg für den Luftdruck und 20\(^\circ\) C als die Lufttemperatur für \(g = 0 \) m. in der Nähe von Bandaisan. Diese sind ungefähr die Mittelwerte in dieser Jahreszeit. Die Größe einer Bombe, die sie beschrieben, war etwa 50 cm.

Also

\[\lambda = 1.464 \times 10^{-4} \text{ m}^{-1}. \]

\[\lambda = 6.84 \]

Die Berechnung wird in ähnlicher Weise im Abschnitt (8) ausgeführt. Die Rechenergebnisse sind in Tabelle VIII gegeben.

Tabelle VIII.

<table>
<thead>
<tr>
<th></th>
<th>((1 - \frac{\beta}{T_0 \cdot \eta})^4)</th>
<th>I</th>
<th>II</th>
<th>(\int_{y}^{z} \text{I} , dy)</th>
<th>(\int_{y}^{z} \text{II} , dy)</th>
<th>(\dot{y})</th>
<th>(\ddot{y})</th>
<th>(+t)</th>
<th>(-t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>0.9735</td>
<td>0.599</td>
<td>0.1515</td>
<td>735.4</td>
<td>227.9</td>
<td>171.5</td>
<td>147.7</td>
<td>0.00</td>
<td>16.47</td>
</tr>
<tr>
<td>1500</td>
<td>0.9744</td>
<td>0.610</td>
<td>0.1636</td>
<td>5447</td>
<td>189.7</td>
<td>147.0</td>
<td>132.1</td>
<td>1.90</td>
<td>14.31</td>
</tr>
<tr>
<td>2000</td>
<td>0.9659</td>
<td>0.525</td>
<td>0.1843</td>
<td>2563</td>
<td>93.67</td>
<td>99.8</td>
<td>96.2</td>
<td>5.96</td>
<td>9.99</td>
</tr>
<tr>
<td>2200</td>
<td>0.9665</td>
<td>0.525</td>
<td>0.1936</td>
<td>1404</td>
<td>55.88</td>
<td>75.2</td>
<td>73.0</td>
<td>8.26</td>
<td>7.61</td>
</tr>
<tr>
<td>2400</td>
<td>0.9577</td>
<td>0.485</td>
<td>0.2056</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>15.81</td>
<td>0.00</td>
</tr>
</tbody>
</table>

S. SEKIYA und Y. KIKUCHI, ebenda., 13 (1890), 139–222.

C. G. KNOTT und C. M. SMITH, ebenda., 13 (1890), 223–257.
In diesem Falle kann man I und II über y stückweise integrieren bequemer als graphisch, weil die Krümmungen dieser Kurven verhältnismäßig klein sind. Kurve I und II in Fig. 7 zeigen $1/\dot{y}_{\nu}$ und $1/\dot{y}_{\nu}$, woraus man die Flugzeit mechanisch integrieren kann.

In der Nähe vom Scheitelpunkt benutzt man natürlich die Näherungsformeln.

Die Anfangsvertikalgeschwindigkeit \dot{y}_{1000} ergibt sich zu 171.5 m/Sek.

Dieser Ausbruch wurde von F. Omori beschrieben. Nach ihm war die Maximalreichweite der Bomben ungefähr $1\frac{1}{2}$ km. Die Bombengröße war 15 cm. ca. Die Kraterhöhe ist 1600 m. ü. d. M. Als meteorologischen Elementen für diese Jahreszeit nehme ich an $p=760$ mm. und $T_{0}=15^\circ C$.

Daraus ergeben sich

$$\rho_{0}=0.001226, \quad \lambda=5.00 \times 10^{-4},$$
$$A=6.83, \quad \frac{\beta}{T_{0}}=0.00001735.$$

In diesem Falle ist die Maximalreichweite gegeben. Es ist nicht einfach, daraus die Anfangsgeschwindigkeit zu berechnen, weil die Maximalreichweite nicht nur von dem Anfangswinkel sondern auch von der Anfangsgeschwindigkeit abhängt. Die Tabelle (Tabelle IX), die zur Berechnung nötig ist, ist gegeben wie folgt.

Kurve III und Kurve IV in Fig. 8 geben respektiv \dot{y}_{1000} und \dot{y}_{ν}.

Tabelle IX.

\[
I: \frac{2TA_{xb}}{c^{(1+\alpha)}} \left(1-\frac{\beta}{\tau_{xb}}\right)^{1.4}, \quad II: \frac{2TA_{xb}}{\beta(1+\alpha)} \left(1-\frac{\beta}{\tau_{xb}}\right)^{1.4}
\]

<table>
<thead>
<tr>
<th>y</th>
<th>(1-\frac{\beta}{\tau_{xb}})^{1.4}</th>
<th>I</th>
<th>II</th>
<th>(\int_{1000}^{y} I , dy)</th>
<th>(\int_{1000}^{y} II , dy)</th>
<th>(-\dot{y}_{\tau=1000})</th>
<th>(-\dot{y}_{\tau=1000})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>0.8232</td>
<td>366.8</td>
<td>0.002725</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1700</td>
<td>0.8151</td>
<td>337.0</td>
<td>0.002960</td>
<td>35290</td>
<td>0.2843</td>
<td>43.4</td>
<td>45.2</td>
</tr>
<tr>
<td>1800</td>
<td>0.8059</td>
<td>312.2</td>
<td>0.003203</td>
<td>67740</td>
<td>0.5924</td>
<td>60.2</td>
<td>65.2</td>
</tr>
<tr>
<td>1900</td>
<td>0.7953</td>
<td>287.4</td>
<td>0.003480</td>
<td>97710</td>
<td>0.9266</td>
<td>72.3</td>
<td>81.6</td>
</tr>
<tr>
<td>2000</td>
<td>0.7856</td>
<td>265.6</td>
<td>0.003765</td>
<td>125390</td>
<td>1.2888</td>
<td>81.8</td>
<td>96.2</td>
</tr>
<tr>
<td>2100</td>
<td>0.7759</td>
<td>245.4</td>
<td>0.004075</td>
<td>150610</td>
<td>1.6808</td>
<td>89.7</td>
<td>110.0</td>
</tr>
<tr>
<td>2200</td>
<td>0.7619</td>
<td>227.5</td>
<td>0.004390</td>
<td>174560</td>
<td>2.1040</td>
<td>96.6</td>
<td>122.9</td>
</tr>
<tr>
<td>2400</td>
<td>0.7584</td>
<td>195.4</td>
<td>0.005117</td>
<td>216850</td>
<td>3.0547</td>
<td>107.5</td>
<td>148.0</td>
</tr>
</tbody>
</table>

Nach umständlichen Berechnungen ergibt sich das folgende Ergebnis. (Tabelle X)

Tabelle X.

Anfangsgeschwindigkeit = 148.5 m/Sek.

\(\theta\); Anfangswinkel mit dem Horizont.

\(x\); Reichweite in m.

\(\mathcal{H}\); Scheitelhöhe in m.

\(\tau\); Flugzeit in Sek.

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(x)</th>
<th>(\mathcal{H})</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43°</td>
<td>1518</td>
<td>2035</td>
<td>9.99</td>
</tr>
<tr>
<td>44°</td>
<td>1529</td>
<td>2050</td>
<td>10.11</td>
</tr>
<tr>
<td>45°</td>
<td>1510</td>
<td>2065</td>
<td>10.12</td>
</tr>
</tbody>
</table>

![Fig. 8](image-url)

![Fig. 9](image-url)
\(\theta - x \) Kurve ist in Fig. 9 eingetragen. Daraus kann man sehen, daß in diesem Falle die Maximalreichweite dem Anfangswinkel 43°-8 entspricht. Als die erste Annäherung könne man die Anfangsgeschwindigkeit 148.5 m/Sec. annehmen.

11. Zusammenfassung.

Die obigen Rechenergebnisse lehren uns, daß in gewöhnlichem Falle vulkanischer Ausbrüche die Wirkung des Luftwiderstandes auf den Bombenflug bedeutend groß ist, wenn die betreffende Bombe klein ist, genauer zu sagen, wenn deren Durchmesser etwa unter 50 cm. ist. Dagegen wenn der Durchmesser etwa ein Meter übertrifft, kann man in gewöhnlichen Fällen der Explosionen die Luftwirkung vernachlässigen.

Nukigaki (Zusammenfassung.)

Kwazandan wo Tama no Katati to site Kuki no Teikō wo Kangae ni irete sono Hikōsokudo wo sirabeta. Tyokkei 1 m. gurai no Ookisa ni nareba hutō no Hunkwa no Baai niwa madu Kuki no Teikō wa Kangaenakumo sasitukae nai. 50 cm. gurai no Tama dewa 2 km. mo tobuto daibu Eikyō ga arawareru.

Nippon no Kwazan no Rei deka tobidasu Toki no Hayasa wa ōkii Baai de 200-210 m/Sek. gurai no mono de aru.