Japanische Tetraxonida.

III. EUASTROSA UND IV. STERRASTROSA.

Von

Dr. Friedrich Lebwohl.

Mit 2 Tafeln.

III. TEIL.

DEMUS EUASTROSA.

Astrophora mit euastrosen Mikroskleren. Von den zwei Familien der Euastrosa, den Stellettidæ (ohne unregelmässig gelagerte Chelotrope oder kurzschäftige Teloklade im Inneren) und Calthropellidæ (mit unregelmässig gelagerten Chelotropen oder kurzschäftigen Telokladien im Inneren) ist nur die erstere in der Sammlung vertreten.

FAMILIA STELLETTIDÆ.

Euastrosa ohne Sterraster. Die tetraxonen Megasklere sind oberflächlich gelegene, radial orientierte, meistens langschäftige Teloklade mit distalem Kladoom. Im Innern finden sich keine unregelmässig angeordneten Chelotrope oder kurzschäftige Triäne.

* Fortsetzung von Artikel 2 dieses Bandes.
Sämtliche meiner Euastrosa gehören in die Familie der Stellettidae und in die eine der beiden Unterfamilien dieser, zu den Stellettina, zu den Stellettidae ohne besondere Oskularschornsteine und in dieser Unterfamilie zum Genus *Stelletta*.

Genus Stelletta O. Schmidt.

Stellettidae ohne besonderen Oskularschornstein, bei denen ausser den Euastern zuweilen Dragme, niemals aber Mikrorhabde vorkommen.

In der Sammlung finden sich 13 Stücke dieser Gattung, die sich auf 5 neue Arten, wovon eine 3 neue Unterarten umfasst, verteilen.

Stelletta tuba n. sp.

(Taf. I, Fig 1-19.)

Das grösste (Taf. I, Fig. 2) der drei in der Sammlung befindlichen, trockenen Stücke hat die Form eines nach oben sich schwach verjüngenden, unregelmässigen, schwach gekrümmten Zylinders von 23.5 cm Länge und 4.5 cm grösstem Durchmesser. Das untere Ende ist abgebrochen. Nahe dem unteren Ende ist eine Bruchfläche zu bemerken, die darauf hinweist, dass von ihr ein wahrscheinlich bei der Erbentung des Schwammes verloren gegangener Gabelast abging, mit welchem zusammen das erste Stück dem zweiten geglichen haben mag. Etwas über seiner Höhenmitte trägt das erste Stück einen knolligen Fortsatz von etwa 1 cm Durchmesser, der als eine Anlage zu einer weiteren Teilung zu deuten sein dürfte.

Das zweite Exemplar (Taf. I, Fig. 3) zeigt einen kurzen, etwa 2 cm starken, unten abgebrochenen Stiel, über dem sich der Schwamm in zwei Äste von der Form des ersten Stückes teilt, welche 14.5, bzw. 11 cm lang und bis 4 cm dick sind; der kleinere von diesen Ästen trägt etwas unter seiner Längenmitte einen 2 cm langen und ebenso dicken Zweigast, während der
grössere dicht unterhalb seines oberen Endes einen ebenso grossen hervorsprossen lässt.

Vom dritten Stücke ist nur der basale Teil in einer Länge von 3.5 cm und einem grössten Durchmesser von 2.5 cm erhalten. Dass dieses Exemplar ein Bruchstück eines der beiden ersten Schwämme sei, erscheint mir ausgeschlossen.

Aus den drei Bruchstücken ergibt sich für den Schwamm folgender Habitus. Von einem kurzen, verhältnismässig schwachen Stiele geht ein viel stärkerer Stamm von mehr oder weniger elliptischem Querschnitte ab, der sich nach kurzem Verlaufe in zwei Äste teilt, die sich dann an beliebiger Stelle wiederum teilen können, deren Gabeläste aber die Grösse der Hauptäste bei weitem nicht erreichen. Die Hauptäste verjüngen sich im Allgemeinen nach oben, im unteren Teil weniger, im oberen stärker, verdicken sich aber lokal dort, wo sie Zweigäste abgeben.

Die Oberfläche des Schwammers ist rauh, zum allergrössten Teile von einer Monaxonidenkrusté überzogen, die von zahlreichen 0.5—2 mm weiten Löchern durchsetzt ist, durch die das Wasser zu den jetzt nicht mehr nachweisbaren Poren strömte. An den von dem Überzuge freien Stellen zeigt der Schwamm eine rauchbraune Farbe und einen gegen 2 mm langen, rauen und stechenden Nadelpelz. Die Länge des Nadelpelzes nimmt von unten nach oben ab (vgl. Taf. I, Fig. 1), um in unmittelbarer Nähe des Scheitels des Astes zu verschwinden. Auf den terminalen Endflächen der Hauptzweige liegt je ein Oskulum (Taf. I, Fig. 13); die Weite dieser Oskula beträgt 2—6 mm. Eine noch deutlich erkennbare Sphinktereinrichtung ermöglichte wahrscheinlich einen völligen Schluss der Oskula. Von jedem Oskulum führt eine Röhre (Taf. I, Fig. 1) von veränderlicher Weite (6—9 mm) ind die Tiefe. Bis zum ersten Drittel von oben ist dieselbe zwar unregelmässigen Querschnittes, aber einfach. Von da ab beginnen quer ausgespannte, mit runden oder ovalen Löchern versehene Membranen (Taf. I, Fig. 10) das hier bis 14 mm weite Lumen des Oskularrohres abzuteilen. Diese Membranen sind untereinander durch längsverlaufende, ebenfalls durchlöcherte Membranen verbunden. Im untersten Schwammstück erscheinen, soweit sich
noch das Oskularrohr erstreckt, die Quermembranen nur mehr als Ringleisten an der Wand des Rohres, während die Längs-
membranen verschwunden sind. Von hier ab beginnt das Osku-
larrohr sich in grosse abführende Kanäle von unregelmässigem
Verlaufe aufzulösen. Diese ganze Diaphragmeneinrichtung dürfte
eine Schutzmassregel gegen Raumparasiten darstellen, die, den
Schwamm wohl nicht direkt bedrohend, durch ihre Anwesenheit
das Lumen des Oskularrohres in unerwünschtem Masse beein-
trächtigen würden. Allerdings erscheint dieser Schutz, wie der
durch die Umwachung eines Parasiten entstandene Hohlraum in
dem einen Stücke (Taf. I, Fig. 1 unten) zeigt, nicht als ein
absoluter. Ähnliche Bildungen sind von Sollas 1) bei Stelletta
(Myriastra) clavosa Ridley und Stelletta (Anthastra) pulchra Sollas
beschrieben worden.

Ein Längsschnitt durch den kleinen Hauptast des zweiten
Stückes in der Richtung des Zweigastes ergab, dass von dem
Oskularrohre des Hauptastes keine Verbindung zum Zweigaste
abgeht. Der Zweigast ist solid, aussen von radial gestellten,
ninnen von in der Längsachse liegenden Nadelbündeln durchzogen.
Dieses Bild ist ein ähnliches wie das im unteren Teile des
ersterwähnten Stückes. Unter der Annahme, dass das Wachstum
der Hauptäste in ähnlicher Weise vor sich ging, als die Zweig-
äste es zeigen, dürfte der junge Schwamm massige Form mit
annähernd von einem Zentrum abgehenden Nadelbündeln haben,
noch kein Oskularroh mit grossem Oskulum besitzen, sondern
den Wasserstrom aus zahlreichen kleinen Oskulis ergiessen.
Erst im späteren Lebensalter erscheint die Oskularöhre bei über-
wiegenden Längenwachstum und in der Oskularrhöhre das Mem-
bransystem.

Dem Bau des Schwamms entspricht eine Wasserströmung,
die durch (nicht mehr nachweisbare) Poren der äusseren Ober-
fläche einströmte, das Choaosom in einer senkrecht zur Ober-
fläche gelegenen, durch Kanäle und Lakunen gekennzeichneten

1) 1888 W. J. Sollas, Report on the Tetractinellida, in : The Voyage of H. M. S. Challenger,
Zoology, Vol. XXV, p. 117, 139.
Richtung durchsetzte und an der Oskularrohrwand durch (gleichfalls nicht mehr nachweisbare) Oskula s. s. ausmündete.

Die Farbe des Schwamminneren ist braun; die Wand des Oskularrohres erscheint schwarzbraun, die Membranen im Oskularrahe braun bis schwarzbraun. Die Struktur des Schwammes ist eine derbe von grosser Festigkeit. Eine feinere anatomische Untersuchung gestattet das Material nicht.

Das Skelet des Schwammes besteht aus dicken, schlanken und kleinen Rhabden, aus Dichotriären, denen sich einfache Plagiotriären in sparsamer Verteilung zugesellen und aus Sphären. Die Mikrosklere sind grössere Akanthylaster und kleinere Sphärauster. Die dicken Rhabde und die Triären bilden, in radialer Richtung gelagert, die Hauptmasse des Nadelpelzes, in dem ausserdem slanke Rhabde gefunden werden. Im Schwamminnern, von der Zone der proximalen Spitzen der Pelznadelbündel angefangen, kommen im Schwamme nur unregelmässig gelagerte, dicke Rhabde als Megasklere vor. Etwas zahlreicher als in den höheren Schwammteilen zeigen sich die slanken Rhabde im Nadelpelze der basalsten Partien. Die kleinen Rhabde sind auf die Oskularrohrwand und auf die Diaphragmen beschränkt (Taf. I, Fig. 10). Die Akanthylaster finden sich nur im Schwamminneren, die Sphärauster nur an der äusseren Oberfläche, in der Oskularrohrwand und in den Diaphragmen.

Die dicken Rhabde sind Amphioxe, Übergänge von solchen zu Stylen, Style und Tylostyle, sehr selten Amphityle, mit meist nur schwach entwickeltem Tyl. Die Amphioxe (Taf. I, Fig. 15) sind mässig gekrümmt, mit mehr oder weniger abgesetzter, nicht sehr scharfer Spitze. Ihre Länge schwankt zwischen 2.4–3.9 mm, ihre Dicke von 75–125 μ; die Mehrzahl ist 3.0–3.2 mm lang und etwa 110 μ dick. Als Übergänge zu den Stylen treten Nadeln (Taf. I, Fig. 16) auf, welche wohl die Spindelform der Amphioxe zeigen, jedoch ein gespitztes und ein abgerundetes, mitunter auch ganz schwach tylotes Ende tragen. Die grösseren Style (Tylostyle) sind gekrümmt wie die Amphioxe, die kleineren (Taf. I, Fig. 17) meist gerade. Von den Stylen führen Nadeln mit kaum merklicher Endverdickung zu echten Tylostylen. Die Style und
Tylostyle werden 1,3–2,9 mm lang und 100–165 μ dick; der größte beobachtete Tyldurchmesser betrug 175 μ.

Wie bei zahlreichen anderen Schwämmen zeigt sich auch hier das Vorkommen von Sphären nicht nur mit Verkürzungen und Verdickungen der Amphioxe zu Stylen und Tylostylen sondern auch mit Ausbildung von Aststrahlen, die meist unter großem Winkel von einem in der Nähe der Nadelmitte gelegenen Punkte abgehen (Taf. I, Fig. 19), oder von Bildungen, die wie eine Stockkrücke der sonst normalen Nadel an einem Ende quer oder schiefl aufgesetzt sind (Taf. I, Fig. 18), korreliert.

Die schlanken Rhabde sind gerade, gekrümmt, oder wellig gebogene, scharf gespitzte Amphioxe von 3,5–6,2 mm Länge und 15–35 μ Dicke.

Die kleinen megaskleren Rhabde sind Amphioxe (Taf. I, Fig. 10, 11), selten Style. Sie sind gerade, einfach oder s-förmig gekrümmt und scharf gespitzt. Sie werden 220–300 μ lang und 9–14 μ dick. Ab und zu ist in der Mitte eine leichte Anschwellung zu erkennen. Style erreichen nur eine etwas geringere Länge, gleichen aber in der Dicke den Amphioxen.

Die jüngsten beobachteten Teloklade erscheinen als einfache Plagioklade mit nicht ganz 1 mm langem, 25 μ dickem Schafte, 130 μ langen, gegen die Schäfte verlängerung schwach konkaven und mit dieser einen Winkel von 50–55 Grad einschliessenden Klade. Die Kladenden zeigen anfangs eine schwache Aufreibung, aus der sich später die Kladspaltung entwickelt. Die Spaltung der Klade tritt manchmal überhaupt nicht ein, so dass etwa 5% der Teloklade sich zu einfachen Plagiotriänen (Taf. I, Fig. 8) entwickeln; diese zeigen meist ein assymmetrisch ausgebildetes Kladom und tragen ab und zu auch ein überzähliges Klade. Bei einem noch geringeren Bruchteile dieser Nadeln erstreckt sich die Teilung nur auf ein oder zwei Klade. Die überwiegende Mehrzahl der Teloklade sind Dichotriäne (Taf. I, Fig. 4, 5, 7) mit plagiokladen Protoklade und orthoklade Deuteroklade. Nicht allzusetel teilt sich ein Deuteroklad in einer durch den Schafte gehenden Ebene nochmals (Taf. I, Fig. 9). Der Schafte ist gerade oder schwach gekrümmt, konisch und stumpf gespitzt.

Die Akanthtylastier (Taf. I, Fig. 6) tragen 4–14 (meist 6–12) gerade, schlank, konische, deutlich rauhe Strahlen mit einem Dornenwirtel unterhalb der Spitze; ein Zentrum ist nicht ausgebildet. Der ganze Durchmesser der Akanthtylastier beträgt 12–29 μ.

Die Sphärauster (Taf. I, Fig. 12) zeigen ein deutliches Zentrum, dem die Strahlen als dick-konische, gespitzte oder abgerundete Fortsätze, als halbkugelige Höcker, oder nur als mässige Unebenheiten aufsitzen. Bei noch schwächerer Ausbildung der Strahlen erscheint die Nadel als Akanthosphäroid. Die Strahlenzahl
schwankt zwischen 6 und 15, der Durchmesser zwischen 4 und 12 μ. Die Strahlen sind eben erkennbar rauh.

In den Mikrosklerenpräparaten fand ich ausserdem noch ganz glatt erscheinende, geschichtetes, mehr oder weniger regelmässige Kugeln von 6–15 μ Durchmesser, die ich als dem Schwamme angehörig ansehen muss. Ob diese in die Formenreihe der Sphaeraster gehören, oder ob sie eine eigene Mikrosklerenart repräsentieren, kann ich nicht entscheiden.

Das Vorkommen von Dichotriænen im Vévine mit den kleinen megaskleraren Rhabden, das Fehlen von Anatriænen, die Ausbildung der Diaphragmen in der Oskularröhre unterscheidet die beschriebenen Stücke von allen anderen bekannten Vertretern des umfangreichen Genus Stelleta. Der Speziesname bezieht sich auf die Röhrenform, die alle Hauptäste des Schwammes zeigen.

Stelleta japonica n. sp.

(Taf. I, Fig. 20–32.)

Das trockene Stück (Taf. I, Fig. 20) ist von ellipsoidischer Form, an der Anheftungsstelle etwas abgeplattet, 2.7 cm lang und 1.9 cm dick. Die Discodermia, der Schwamm aufsass, zeigt an ihrer Oberfläche zahlreiche Vorräumungen; zwei von diesen wurden von der Stelleta so fest umwachsen, dass bei der Trennung der beiden Spongien diese Teilé der Discodermia abbrachen und jetzt in die Stelleta eingesenkt erscheinen. Die Struktur des Schwammes ist, wie jener Umstand sehr deutlich kundgibt, eine sehr dichte, beinahe von Lithistiden-ähnlicher Festigkeit. Die Oberfläche ist von einem überaus dichten, starren Nadelpelze
bedeckt, dem an vielen Stellen eine dünne Monaxonidenkruste aufsitzt und der die eigentliche Schwammaroberfläche vollständig verbirgt. An Schnitten bemerkt man eine 2–3 mm dicke, bräunlichweisse Rinde, die vom granbraunen Choanosom deutlich absetzt. Aussen erscheint der Schwamm, soweit er von der lichtbraunen Monaxonidenkruste frei ist, braun bis dunkelbraun.

Poren lassen sich weder bei der Betrachtung der Oberfläche, noch an Schnitten nachweisen. An dem der Anheftungsfläche entgegengesetzten Pole sind etwa 10 Öffnungen, jede von ungefähr 1 mm Durchmesser, wahrscheinlich Oskula, zu beobachten. Das Schwamminnere ist von zahlreichen, namentlich dicht unter der Rinde auffallenden, bis 2 mm weiten Hohlräumen durchsetzt. Eine nähere Untersuchung der Weichteile ist nicht mehr möglich.

Das Skelet besteht aus Rhabden, Plagiotriären, Dichotriären und Sphären als Megaskleren, aus Sphärestern und Oxyastern als Mikroskleren. Von zwei, annähernd in den Brennpunkten des Ellipsoides, das der Schwamm darstellt, gelegenen Nadelzentren strahlen die Skelettnadeln radiär gegen die Oberfläche aus, liegen aber ausserdem in den, je 4 mm im Durchmesser haltenden Zentren und zwischen denselben wirr und ungeordnet. Im Inneren sind an Megaskleren nur Rhabde vorhanden; den Filz in den Nadelzentren und zwischen denselben bilden kleinere Rhabde, die aber von den grösseren, welche die radialen Nadelbündel darstellen, nicht unterschieden werden können, da sie mit ihnen durch eine vollständige Übergangsreihe verbunden sind. Die distalen Spitzen der radialen Rhabde erreichen oder überragen die Oberfläche nur selten, sondern enden meist in der Rinde. In der Rinde gesellen sich zu den Rhabden die Plagiotriäne und ihre Derivate, welche den im Mittel 1 mm langen Nadelpelz bilden. Zahlreiche Plagiotriäne enden jedoch mit ihren Kladomen schon in der Rinde. Dicht unter der Oberfläche liegen radial gelagert Dichotriäne in spärlicher Zahl, auf deren paratangentialen Kladomen eine gedrängte Lage von Sphärestern ruht. Sphäresten treten zwar auch vereinzelt im Schwamminnern auf, jedoch bilden hier die Oxyaster die Hauptmasse der Mikroskleren, die namentlich die
Kanalwände dicht erfüllt. Die Rindenschicht ist von Mikroskleren vollständig frei.

Die Rhabde sind Amphioxe, selten Style oder Amphistrongyle, die beiden letzteren öfters mit eben merklich entwickelten Tylen. Die Amphioxe (Taf. I, Fig. 30) sind gerade oder gekrümmt, in diesem Falle meist schlanker und schärfer gespitzt als die ersteren. Die Krümmung ist einfach oder s-förmig. Die Amphioxe werden 1.6–4.2 mm lang und 22–90 µ dick. Die Style (Taf. I, Fig. 29) messen 1.35–2.3 mm in der Länge und 80–150 µ in der Dicke. Die Amphistrongyle (Taf. I, Fig. 28) sind 0.65–1.1 mm lang und 90–140 µ dick. An Amphioxen und Styles ist ab und zu Ausbildung von Fortsätzen zu bemerken. Diese stehen unter ziemlich grossem Winkel von der Nadel ab und bleiben meist einfach, können sich aber auch verzweigen. Der Achsenfadens des Fortsatzes geht ohne auffällige Erscheinungen am Abzweigungs punkte vom Achsenfaden des Habedes ab. Nur in einem Falle beobachtete ich ein Styl, von dem in nächster Nähe des stumpfen Endes ein gegabelter Fortsatz abging, dessen Achsenfaden mit einer Verdickung in der Nähe des Hauptachsenfadens endete, ohne sich mit diesem zu verbinden. Etwas häufiger als diese Bildungen, mitunter auch mit diesen kombiniert, kommt gabelige Spaltung einer Amphiox- oder Stylspitze in zwei gleich lange Aeste unter kleinem Winkel vor. In diesem Falle teilt sich der Achsenfaden unter mässiger Verdickung an dieser Stelle schon weit (bis 0.8 mm) über der Gabelungsstelle; die beiden Achsenfäden, welche die Nadel von da ab bis zu den Spitzen durchziehen, weichen im weiteren Verlaufe auseinander und drehen sich spiralg uemeinander, so dass man in der Nadel einen oder zwei Kreuzungspunkte (Taf. I, Fig. 31,32) der Achsenfäden sieht, die nur selten, und zwar wenn die Teilung des Achsenfadens nur wenig von den Spitzen entfernt erfolgt, ausbleibt. Bei schwacher Vergrösserung täuscht das mikroskopische Bild oft zwei in der Ebene der Gabelspitzen liegende, auseinanderweichende und sich wieder vereinigende Achsenfäden vor; stärkere Vergrösserung und namentlich Drehen der Nadel um ihre Längsachse während der Beobachtung zeigen aber deutlich, dass die Achsenfäden vom

Die Plagiotriënae (Taf. I, Fig. 24) haben einen kräftigen, meist schwach gekrümmten Schaft von 1.1–2.7 mm Länge und 70–130 μ Dicke. Der Schaft endet massig gespitzt, nur selten bei geringer Verkürzung abgerundet. Häufig jedoch, bei ungefähr 20% aller Nadeln, ist der Schaft bedeutend verkürzt, abgerundet (Taf. I, Fig. 25), mitunter auch schwach tylot, wodurch die Länge auf 0.7 mm herabsinken, die Dicke auf 150 μ steigen kann.

1 1888 W. J. Sollas: Report on the Tetraclinellida in: The Voyage of H. M. S. Challenger, Zoology, Vol. XXV, p. LV.

Die spärlichen beobachteten Sphäre zeigen wenig bemerkenswertes. Sie waren alle einkernig, 60–70 μ gross und nicht ganz regelmässig kugelig.

Die Sphärestern (Taf. I, Fig. 21) haben ein deutliches, 3½–5 μ grosses Zentrum und meist etwa 16 abgerundete oder gespitzte Strahlen von 2–3 μ Länge, so dass ihr Gesamtdurchmesser 7–11 μ beträgt. In der Rinde kommen stumpf- und spitzstrahlige Sphäraster vor, im Innern jedoch treten in geringer Zahl nur spitzstrahlige auf.

Die Oxyaster sind in ihren grösseren Exemplaren (Taf. I, Fig. 23) von den spitzstrahligen Sphärestern deutlich unterschieden, scheinen aber in diese bei geringerer Grösse vollständig überzugehen (Taf. I, Fig. 22). Bei den grössten ist das Zentrum weniger deutlich, wird aber mit der Grössenabnahme immer markanter und erscheint dem der Sphärenaster gleich gross. Die Strahlen, acht bis etwa sechzehn an der Zahl, sind glatt, schlank konisch; scharf gespitzt und werden im Maximum 16 μ lang. Der Gesamtdurchmesser beträgt bis 36 μ, gewöhnlich 20–30 μ.
Die Art, der dieser Schwamm angehört, ist durch die unverhältnismässig kleinen Dichotrien gekennzeichnet und von allen anderen anatrienlosen Arten der Gattung unterschieden. Der Speziesname bezieht sich auf das Heimatsland.

Der Schwamm wurde am 22. Mai 1894 im Meeresgebiete Yodomi aus einer Tiefe von 280 m heraufgeholt.

Stelletta misakensis n. sp.

(Taf. I, Fig. 33–38).

Der stark beschädigte, in Alkohol aufbewahrte Schwamm (Taf. I, Fig. 33) dürfte in unversehrten Zustande ellipsoidische Form mit 19.5 mm grösstem und 14 mm kleinstem Durchmesser gehabt haben. Da von dem Stücke nur die eine Hälfte der Rinde, vom Choanosom beinahe gar nichts erhalten ist, lässt sich aus dem Reste keine sichere Beschreibung des Schwammes geben.

Die Oberfläche erscheint mit der Lupe betrachtet zum allerkürzesten Teile von Dichotrienkladomen bedeckt, welche zumeist im Niveau der Oberfläche liegen und nur selten dieselbe um ein geringes überragen. An einzelnen Stellen (die dunkleren Punkte in Fig. 33 auf Taf. I) fehlt dieser Belag, es treten kahle Vertiefungen auf, in denen die Poren liegen dürften, jedoch nicht nachweisbar sind. Als Oskulum sehe ich eine knapp 1 mm weite Öffnung in der Nähe des einen Poles des Schwammes an; wahrscheinlich gab es auch auf dem nicht erhaltenen Teile des Stückes noch ein oder mehrere Oskula.

Der Schwamm zeigt an den Bruchflächen aussen eine 1½–2 mm dicke Rinde, welche wie die äussere Oberfläche von grangelber Farbe ist, dann eine ½ mm breite, weisse Schichte, unterhalb welcher das hellgelbe Choanosom beginnt. An Schnitten bemerkt man an der Oberfläche eine Lage von Strongylosphärestern, unter dieser die paratangentialen Kladome der Dichotrien. Ihre Schäfte gehen radial durch die Rinde nach innen und werden von kleinen, noch ungeteilten Triären begleitet, welche wahrscheinlich die später gegen die Oberfläche vorrückenden Jugend-

Das Skelet des Schwammes besteht, wie aus Obigem hervorgeht, aus den Megaskleren Amphioxe, Plagiotriæen und aus den Mikroskleren Strongylosphærastern und Oxyastern.

Die Amphioxe (Taf. I, Fig. 36) sind gerade oder nur ganz schwach gekrümmt, an beiden Enden gleichmässig und ziemlich scharf gespitzt, 0.8–3.3 mm lang und 16–62 μ dick; die gewöhnliche Länge ist 2.0–2.8 mm bei einer Dicke von 30–50 μ.

Obwohl die in der Zone der Dichotriæae liegenden kleinen Plagiotriæae, die ihrer Lage nach als Jugendformen von Dichotriæen angesehen werden müssen, von den Jugendformen in der Nähe der Plagiotriæae nicht unterschieden werden können, erscheint es mir doch zweckmässig die beiden Triæenformen auseinanderzuhalten, da sie trotz des ziemlich gleichen Habitus ihrer Lagerung nach so scharf getrennt sind. Ausserdem fehlen Übergangsformen, die überall dort, wo ich Diho- und Plagiotriæae als eine Nadelart hinstellte, häufig zu beobachten sind, vollständig.

Die Plagiotriæae (Taf. I, Fig. 35) haben einen kräftigen,
konischen, geraden oder schwach gekrümmten Schaft, der unter dem Kladom häufig etwas eingeschnürt ist, mit stumpfer, seltener scharfer Spitze endet, 0,4–1,65 mm lang und 15–105 μ dick wird. Die durchschnittliche Schaftlänge beträgt 1,2 mm. Die Klade gehen vom Schaft unter einem Winkel von 125 Grad ab, sind bei jungen Nadeln gegen die Schaftverlängerung konkav, krümmen sich aber bei erwachsenen Nadeln etwa in der Längenmitte S-förmig gegen den Schaft zurück. Die Klade werden 50–320 μ lang; die Kladombreite beträgt 90–530, gewöhnlich etwa 400 μ.

Die Dichotriæne (Taf. I, Fig. 34) haben einen, dem der Plagiotriæne ähnlichen Schaft, der jedoch eine Länge von 1,2 mm selten überschreitet. Die Protoklade sind meist etwa 100 μ lang und gehen vom Schaft unter einem Winkel von 115 Grad ab. Die Deutero klade stehen in einer auf den Schaft senkrechten Ebene und sind meist 130–140 μ lang; die Kladombreite schwankt zwischen 340 und 530 μ und beträgt meist ebensoviel als die der häufigsten Plagiotriænkладоме. Die Jugendformen der Dichotriæne sind, wie schon erwähnt, den jungen Plagiotriænen vollständig ähnliche einfache Triæne, an denen die Teilung der Klade erst später erfolgt.

Der Schwamm wurde im August 1898 bei Misaki, auf welchen Fundort sich der Speziesnamen bezieht, wahrscheinlich in seichtem Wasser erbohrt.

Thiele1) beschreibt aus Enoshima, zirka 20 km von Misaki entfernt, seine Stelletta maxima. Dieser Art steht Stelletta misakensis zwar nahe, indem sämtliche Skelettelelemente der Stelletta maxima in Stelletta misakensis in derselben Grösse und annähernd denselben Proportionen wiederkehren, der aber die typisch angeordneten Dichotriäne der Stelletta misakensis fehlen. Von den übrigen Arten, die ebensolche riesige Oxyaster besitzen, wie Stelletta agulhana Lendenfeld, Stelletta brevis var. lutea Hentschel, Stelletta (Anthastra) communis Sollas, Stelletta farcimen Lendenfeld, Stelletta phrissens Sollas, Stelletta tethyoides Lendenfeld, Stelletta (Astrella) tuberosa Topsent ist Stelletta misakensis durch mehrere Merkmale unterschieden.

\textit{Stelletta pilula} n. sp.

(Taf. I, Fig. 39–53).

\begin{footnotesize}
1) 1898 Johannes Thiele: \textit{Studien über pazifische Spongien}, in \textit{Zoologica}, Heft 24, p. 15, Taf. 1, Fig. 8, Taf. 7, Fig. 3 a–f.
\end{footnotesize}
macht die grosse Entfernung der beiden Fundstätten (Ceylon und Japan) eine Identität meiner Stücke mit dem Carter'schen un-
wahrscheinlich.

Meine drei Stücke sind zwar einander recht ähnlich, weisen aber doch solche Verschiedenheiten auf, dass ich mich bestimmt fühle für jedes derselben eine neue Unterart aufzustellen. Der Speziesnamen bezieht sich auf die Pillenform namentlich der kleineren Stücke, die Namen der Unterarten wurden einfach nach der Grösse der Exemplare erteilt.

Stelletta pilula var. maior d. var.

Das in Alkohol aufbewahrte Stück (Taf. I, Fig. 45) ist nahezu kugelig, auf der einen Seite (in der Figur nur zum geringen Teile sichtbar) stark eingedrückt und misst 12 mm im grössten Durchmesser. Es sass auf einer lederigen Wurmröhre fest und war von zahlreichen fremden Organismen bedeckt, unter welchen ausser mehreren Bryozänkolonien namentlich die Wurzelnadeln eines Hexactinelliden (wahrscheinlich einer _Euplectella_) aufliegen, die den Schwamm einhüllten. Die bräunlich-grane Ober-
fläche ist glatt, an den basalen Teilen von einzelnen Anatriënen überragt. An der Oberfläche sind die Kladome der Orthotriene zu bemerken, swischen welchen die Porenfelder als fein punktierte, glatte und kalte Stellen liegen. Der Schwamm weist zwei, etwa 1/2 mm weite Oskula auf, die von niedrigen Papillen umgeben auf der Oberseite des Stückes, ziemlich weit von einander entfernt liegen. Das Schwamminnere zeigt dieselbe bräunlich-grane Fär-
bung wie die Oberfläche, ist von derben Gefüge, von zahlreichen von einem Zentrum ausstrahlenden Nadelbündeln durchsetzt und nur von wenigen, engen Kanälen durchzogen. Auch die 0.7 mm dicke Rinde zeigt keine grösseren Hohlräume.

Das Skelett besteht aus grossen und kleinen Rhabden, Orthotrienen und Anatrienen; die Mikroskleren sind Akanthtyl-
aster. Sämtliche Megaskleren sind radial gelagert. Die grossen Rhabde enden unterhalb der Oberfläche ohne sie jemals zu über-
ragen; ihre Grösse nimmt im Allgemeinen von Innen nach

Die grossen Rhabde sind Amphioxe; nur selten kommen Style vor. Die Amphioxe (Taf. I, Fig. 43) sind leicht gekrümmt, beiderseits gleich und scharf gespitzt, 0.7–2.74 mm lang und 15–47 μ dick; die meisten messen 2.0–2.5 mm in der Länge. Die Style (Taf. I, Fig. 44) sind entweder nur wenig kürzer und kaum dicker als Amphioxe gleicher Grösse, oder in der Länge der kleinsten Amphioxe und dann 2–3 mal dicker als erwachsene Amphioxe. In situ erscheint immer das abgerundete Ende nach Innen, das spitze nach aussen gerichtet.

Die kleinen Rhabde sind Amphioxe (Taf. I, Fig. 39) und Style (Taf. I, Fig. 40) in ziemlich gleicher Anzahl. Beide Nadelarten sind einander in Grösse und Form sehr ähnlich und unterscheiden sich voneinander nur dadurch, dass bei den Stylen die eine Spitze abgerundet erscheint. Die Spitzen sind plötzlich abgesetzt und sehr scharf. Die kleinen Rhabde sind gerade oder gebogen, 270–340 μ lang und 6–10 μ dick. Wie bei den grossen Rhabden liegt auch hier das stumpfe Ende der Style immer proximal, das spitze immer distal.

Die Orthotriäne (Taf. I, Fig. 41, 49) haben einen 0.24–2.6 mm langen, 12–95 μ dicken Schaft, der unterhalb des Kladomes öfters etwas eingeschnürt erscheint, im weiteren Verlaufe gerade oder mässig gekrümmt ist und mit scharfer oder abgerundeter Spitze endet. Die Klade zeigen in ihrer Entwicklungslaufbahn verschiedene Gestalt. Bei den kleinsten Nadeln sind sie gerade

Die jüngsten Anatriæne sind Orthotriäene mit nur sehr wenig gekrümmten Kladen. Die Krümmung der Klade (Taf. I, Fig. 46) geht im weiteren Verlaufe des Wachstumes nur in wenigen Fällen regelmässig vor sich, so dass die Klade der Mehrzahl der erwachsenen Triæne ein oder zweimal schwach geknickt erscheinen. Die Kladspitzen erreichen niemals eine zum Schafte parallele Richtung. Der Schafte (Taf. I, Fig. 42) ist gerade oder leicht gekrümmt, sein Ende abgerundet oder mit plötzlich absetzender Spitze versehen. Der Schafte ist 0.6–2.8 mm lang und 18–60 μ dick. Die Klade werden 30–180 μ lang; ihre Sehnen schliessen mit dem Schafte einen Winkel von 90–45 Grad ein, der mit dem Wachstume der Klade abnimmt. Die Kladombreite beträgt 60–230 μ. Der Kladscheitelt erscheint bei den jungen Nadeln eben, bei den erwachsenen konvex. Auch unter den Anatriænen kommen Diæne und Monæne von grösseren als den normalen Dimensionen vor; auch Gabelspaltung des Schaftes wie
bei den Orthotrienäen wurde beobachtet. Bei einem Anatrien war der Schaft bedeutend verdickt, bis auf das $1\frac{1}{2}$ fache der Kladlänge verkürzt und abgerundet.

Die Akanthtylaster (Taf. I, Fig. 52, 53) haben zwei bis vierzehn Strahlen. Die Strahlen erscheinen nahezu zylindrisch, namentlich die stärkeren an den Seiten bedornt, mit einem sehr auffallendem Dornenwirbel am Ende, über den hinaus sich die Spitze kaum merklich fortsetzt. Die Enden der Strahlen machen im ganzen den Eindruck, als ob dem Strahl ein stumpfwinkeliges, gleichschenkeliges Dreieck mit der Mitte der grössten Seite aufgesetzt wäre. Dass die Endverdickung tatsächlich aus Dornen besteht, zeigt sich nicht nur mit den besten optischen Systemen, sondern bei den grösseren Astern auch schon bei mittlerer Vergrösserung, da bei solchen Astern die Dornen genügend gross und oft nur an einer Seite entwickelt sind. Bei den vielstrahligen, meist kleineren Astern ist ein merkliches Zentrum vorhanden, das den wenigstrahligen grösseren fehlt. Die Strahlen werden 2–9.3 μ lang; der- ganze Durchmesser der Akanthtylaster schwankt von 5.6–17 μ und beträgt bei der Mehrzahl 7–9 μ. Die wenigstrahligen grossen Aster von über 10 μ Durchmesser erscheinen auf das Schwamminnere beschränkt.

Der Schwamm wurde am 5. August 1896 in einer Tiefe von ungefähr 275 m in der Sagami-See (ohne nähere Bezeichnung) gefunden.

_**Stelletta pilula** var. _media _n. var._

Das 9 mm im Durchmesser haltende, kugelige, in Alkohol aufbewahrte Stück von brauner Farbe zeigt bei Lupenbetrachtung äusserlich dicht gedrängt die Kladome von Orthotrienäen, zwischen welche sich stellenweise Anatriänkladome mengen. Die Klade dieser Triene begrenzen kahle, glatte Flächen, in denen die geschlossenen Poren als dunkle Punkte sichtbar sind. Ein von den Poren verschiedenes Oskulum ist nicht zu beobachten. An Schnitten erkennt man eine 0.6 mm dicke Rinde, die einerseits durch die oberflächlichen Kladome der Teloklade, andererseits von
einer inneren Lage von Telokladien begrenzt und von zahlreichen Lakunen durchsetzt wird.

Die grossen Rhabde sind Amphioxe, selten Style. Die radial gelagerten Amphioxe sind gerade oder nur leicht gekrümmt und etwas schlanker als die häufig stark gekrümmten, etwas dickeren des Nadelzentrums. Auch erscheint die Mehrzahl der radialen Nadeln schärfer gespitzt als die wirr gelegenen des Inneren. Ihre Dimensionen betragen 0.75–2.4 mm in der Länge und 15–56 μ in der Dicke. Die Style werden 0.9–2 mm lang; der Durchmesser des stumpfen Endes, das ab und zu schwach tylot erscheint, beträgt 35–100 μ. In situ konnte kein Styl gefunden werden.

Die kleinen Rhabde sind Amphioxe; Style sind sehr spärlich. Sie sind scharf gespitzt, meist gerade, 210–390 μ lang und 7–9 μ dick. Die wenigen Style, die ich in Schnitten beobachten konnte, zeigten keine bestimmte Orientierung der Enden; die Spitze wechselt mit distaler und proximaler Lage.

Die Orthotriäne (Taf. I, Fig. 50) haben einen kräftigen, konischen, geraden oder schwach gekrümmten Schaf von 0.3–2.1 mm Länge und 12–75 μ Dicke, der ab und zu dicht unter dem Kladome leicht eingeschnürt erscheint und mit abgesetzter,

Die Akanthytaster tragen 3–14 Strahlen, welche zylindrische Form haben und unterhalb der Spitze einen Dornenwirtel zeigen, der wie bei den anderen Varietäten den Eindruck eines dem Strahlenende dachartig aufgesetzten Dreieckes macht. Die Strahlen messen 2.6–8.7 μ in der Länge, die Gesamtdurchmesser der Aster betragen 5.8–17 μ, meist 8–10 μ. Eine Sonderung der Aster nach ihrer Grösse in Rindenaster und choanosomale Aster ist kaum durchzuführen.

Der Schwamm wurde im Meeresgebiete Doketsba vor Kap Sunosaki am 6. August 1894 in einer Tiefe zwischen 200 und 500 m erbeutet.
Stelleta pilula var. minor n. var.

Das Stück ist kugelig, von dunkelbrauner Farbe und 6 mm Durchmesser. An der Oberfläche sind die Kladome von Orthotriänen und Anatriänen zu erkennen, zwischen welchen in glatten Membranen die Poren als feine Punkte erscheinen. Einzelne dieser Membranen tragen je eine runde, 60-100 μ grosse Öffnung, die durchaus nicht den Eindruck von Artefakten machen und daher wohl als Oskula anzusehen sind. Die 0.6 mm dicke Rinde ist von zahlreichen, grossen Hohlräumen durchsetzt.

Die grossen Rhabde sind ausschliesslich Amphioxe. Sie sind mässig, oft welig gekrümmt, scharf gespitzt, 0.7–2.2 mm lang und nur 8–32 μ dick.

In einem Schnitte fand ich im Nadelzentrum liegend ein Sphäer von 112 μ Durchmesser mit einem dicken, abgerundeten Fortsatz.

Die Orthotriäne (Taf. I, Fig. 51) haben einen kräftigen, geraden oder gekrümmten Schaft von 0.4–2.2 mm Länge und 15–

Die Anatriæne (Taf. I, Fig. 48) tragen ein am Scheitel eingesehenes Kladom, dessen Krümmung meist von ziemlicher Regelmässigkeit ist. Die Kladspitzen divergieren immer gegen den Schafte. Dieser ist gerade oder gekrümmt, stumpf gespitzt oder abgerundet, 0.4–2.1 mm lang und 10–50 μ dick. Der Kladsehnenwinkel ist bei jungen Nadeln gross (bis 100 Grad) und nimmt bei der weiteren Ausbildung der Klade mit der Krümmung derselben nach rückwärts bis auf 50 Grade ab. Die Klade sind 25–190 μ lang, der Kladomdurchmesser beträgt 50–225 μ.

Der Schwamm stammt aus dem Meeresgebiete Doketsba vor Kap Sunosaki, wo er am 6. August 1894 aus einer Tiefe von 200 bis 500 m zusammen mit der Varietät media erbeutet wurde.

In der folgenden Tabelle sind die Merkmale der drei eben beschriebenen Schwämme in übersichtlicher Form zusammengestellt.
Stelleta pilula

<table>
<thead>
<tr>
<th></th>
<th>var. maior.</th>
<th>var. media.</th>
<th>var. minor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grösse</td>
<td>12 mm</td>
<td>9 mm</td>
<td>6 mm</td>
</tr>
<tr>
<td>Form</td>
<td>kugelig</td>
<td>kugelig</td>
<td>kugelig</td>
</tr>
<tr>
<td>Farbe</td>
<td>bräunlichgrau</td>
<td>braun</td>
<td>dunkelbraun</td>
</tr>
<tr>
<td>Oberfläche</td>
<td>schüttere Orthotrienkladome</td>
<td>dichte Ortho- und Anatrienkladome</td>
<td>dichte Ortho- und Anatrienkladome</td>
</tr>
<tr>
<td>Poren</td>
<td>in den glatten Stellen zwischen den Kladomen als Punkte</td>
<td>in den glatten Stellen zwischen den Kladomen als Punkte</td>
<td>in den glatten Stellen zwischen den Kladomen als Punkte</td>
</tr>
<tr>
<td>Oskula</td>
<td>2; ½ mm weit</td>
<td>keine von den Poren unterscheidbare</td>
<td>mehrere; 60–100 µ weit</td>
</tr>
<tr>
<td>Rinde</td>
<td>ohne auffallende Höhlen, 0.7 mm dick</td>
<td>mit grossen Höhlen, 0.6 mm dick</td>
<td>mit grossen Höhlen, 0.6 mm dick</td>
</tr>
<tr>
<td>Lage der Teloklade</td>
<td>in einer Schicht</td>
<td>in zwei getrennten Schichten</td>
<td>in zwei getrennten Schichten</td>
</tr>
<tr>
<td>Gröse Rhabde</td>
<td>Amphioxe, selten Style</td>
<td>Amphioxe, selten Style</td>
<td>nur Amphioxe</td>
</tr>
<tr>
<td>Kleine Rhabde</td>
<td>2.74 mm lang, 47 µ dick</td>
<td>2.4 mm lang, 56 µ dick</td>
<td>2.2 mm lang, 32 µ dick</td>
</tr>
<tr>
<td>Orthotriene</td>
<td>Amphioxe und Style</td>
<td>Amphioxe, selten Style</td>
<td>Style, selten Amphioxe</td>
</tr>
<tr>
<td>Schaftlänge</td>
<td>2.6 mm Schaftdicke 95 µ</td>
<td>2.1 mm Schaftdicke 75 µ</td>
<td>2.2 mm Schaftdicke 75 µ</td>
</tr>
<tr>
<td>Kladlänge</td>
<td>360 µ Kladselbenwinkel 90–100 Grad</td>
<td>400 µ Kladselbenwinkel 100–110 Grad</td>
<td>375 µ Kladselbenwinkel 100–110 Grad</td>
</tr>
</tbody>
</table>
Für das Zusammenfassen der drei Stücke in eine Art sprechen folgende Punkte. Alle drei Schwämme zeigen dieselbe kugelige Form, dieselbe Farbennuance in grösserer oder geringerer Sättigung und Grössenunterschiede, die durch verschiedenes Alter recht gut zu erklären sind. Das Skelet zeigt bei allen nahezu dieselbe Anordnung, ähnliche Dimensionen und ähnlichen Habitus im allgemeinen.

Bei schärfcerem Zusehen ergeben sich aber für alle drei Schwämme Abweichungen voneinander in verschiedenen Merkmalen, unter denen sich aber nur bei einem Paare eine Kor-

<table>
<thead>
<tr>
<th>Anatriae</th>
<th>var. maior</th>
<th>var. media</th>
<th>var. minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kladomscheitel erhaben</td>
<td>Kladomscheitel eingesenkt</td>
<td>Kladomscheitel eingesenkt</td>
<td></td>
</tr>
<tr>
<td>Kladkrümmung unregelmässig</td>
<td>Kladkrümmung unregelmässig</td>
<td>Kladkrümmung ziemlich regelmässig</td>
<td></td>
</tr>
<tr>
<td>Kladspitzen divergieren mit dem Schaft</td>
<td>Kladspitzen dem Schaft parallel</td>
<td>Kladspitzen divergieren mit dem Schaft</td>
<td></td>
</tr>
<tr>
<td>Schaftröße 2.8 mm</td>
<td>Schaftröße 2.3 mm</td>
<td>Schaftröße 2.1 mm</td>
<td></td>
</tr>
<tr>
<td>Schaftröhre 60 μ</td>
<td>Schaftröhre 56 μ</td>
<td>Schaftröhre 50 μ</td>
<td></td>
</tr>
<tr>
<td>Kladlänge 180 μ</td>
<td>Kladlänge 180 μ</td>
<td>Kladlänge 190 μ</td>
<td></td>
</tr>
<tr>
<td>Kladombreite 230 μ</td>
<td>Kladombreite 210 μ</td>
<td>Kladombreite 225 μ</td>
<td></td>
</tr>
<tr>
<td>Kladsehnenwinkel 45 Grad</td>
<td>Kladsehnenwinkel 32 Grad</td>
<td>Kladsehnenwinkel 50 Grad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Akanthylaster</th>
<th>Strahlenzahl 2-14</th>
<th>Strahlenzahl 3-14</th>
<th>Strahlenzahl 4-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser 5.6-17 μ</td>
<td>Durchmesser 5.8-17 μ</td>
<td>Durchmesser 5.3-16 μ</td>
<td></td>
</tr>
<tr>
<td>Strahlenlänge 2-9.3 μ</td>
<td>Strahlenlänge 2.6-8.7 μ</td>
<td>Strahlenlänge 2.2-7 μ</td>
<td></td>
</tr>
<tr>
<td>Strahlen stark</td>
<td>Strahlen schlank</td>
<td>Strahlen schlank, oft unregelmässig ausgebildet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fundort</th>
<th>Sagami-See</th>
<th>Doketsba</th>
<th>Doketsba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundtiefe</td>
<td>275 m</td>
<td>200-500 m</td>
<td>200-500 m</td>
</tr>
</tbody>
</table>

Ich glaube mit dieser Einteilung der drei Schwämme das Richtige getroffen zu haben. Allerdings ist es bei unserer derzeitigen Unkenntnis über die Variationsgrösse der einzelnen Merkmale eines Schwammes leicht möglich, dass spätere Untersuchungen der Wahrheit in anderer Weise näher kommen.

Stelletta teres n. sp.

(Tafel II, Fig. 1–9).

Die Sammlung enthält fünf in Alkohol aufbewahrte Stücke dieser Art; sie sind sämtlich kugelig (Taf. II, Fig. 1), in der Farbe von lichtbraun bis dunkelbraun schwankend, innen etwas dunkler als aussen gefärbt. Die Grösse beträgt bei Stück 1:6.5 mm, bei 2:6 mm, bei 3:5.5 mm, bei 4:5 mm und bei 5:4.5 mm. Die fünf Stücke sind dem Skelette und dem Baue nach vollständig gleich, mit Ausnahme des Umstandes, dass bei zwei

An Schnitten fällt vor allem die Regelmässigkeit der Anordnung des Stützskellettes auf. Von einem in der Mitte des Schwammes gelegenen Nadelzentrum, das von den proximalen Spitzen der Nadeln durchsetzt wird, gehen Bündel von Amphioxen, Dicho- und Anatriaen ab; die distalen Enden der Amphioxe liegen etwa 0.7 mm unter der Schwammoberfläche und knapp über diesen die Kladome von Dichotriänen und Anatriänen (die letzteren in etwas überwiegender Zahl) in einer dichten Reihe. Eine ähnliche Panzerreihe wird dicht unter der Oberfläche, hier jedoch überwiegend aus Dichotriänen bestehend, angetroffen. Zwischen diesen beiden Panzerreihen liegen zahlreiche, von den Kladomen der Teloklade nach oben und unten, von den Schäften der äusseren Telokladreihe seitlich begrenzte, 0.5–0.6 mm hohe und meist etwa 0.3 mm breite Hohlräume. Ähnliche Höhlungen

Die Amphioxe (Taf. II, Fig. 4) sind kräftig, gerade, leicht oder stärker gekrümmt, mit mehr oder weniger scharfen Spitzen, 1.3–2.0 mm lang und 20–42 μ dick. Die Maximaldimensionen betrugen bei 2 : 1.95 mm und 41 μ, bei 3 : 2.0 mm und 42 μ, bei 3 : 1.95 mm und 41 μ. Bei den Amphioxen stimmen auch die Minimaldimensionen der drei genau gemessenen Stücke überein; da aber bei den anderen Megasklerenarten die jüngsten Nadeln so selten zu finden sind, dass ein reeller Vergleich ihrer Minimaldimensionen nicht möglich ist, sehe ich auch bei den Amphioxen von einem Vergleiche der kleinsten Nadeln der einzelnen Stücke ab.

Die Dichotriaeae (Taf. II, Fig. 2, 6) haben einen starken, konischen Schafft, der in der Jugend scharf gespitzt, später stumpfer gespitzt oder abgerundet erscheint; als grosse Seltenheit finden sich Dichotriaeae mit stark verkürztem, zylindrischen, abgerundeten Schafften. Die Dimensionen des Schafftes betragen 0.36–1.95 mm in der Länge und 16–80 μ in der Dicke. Die jungen Dichotriaeae sind einfache Plagiotriaeae mit konischen, gegen den Schafft kaum merklich konkaven Kladen. Die Teilung der Klade (Taf. II, Fig. 7) tritt ein, wenn sie eine Länge von etwa 80 μ erreicht haben. Von diesem Zeitpunkte ab ist das Längenwachstum der Protoklade ein minimales, so dass die Länge von 120 μ auch bei den grössten Nadeln nicht überschritten wird, während durch rascheres Dickenwachstum aus den schlank-konischen Protokladden bald dicke Zylinder werden. Die Proto-
Die Ausbildung des Kladomes der Dichotriaene ist, von geringfügigen Asymmetrien abgesehen, zum allergrößten Teile eine regelmässige und normale. Umso auffallender erscheinen einzelne, sehr selten vorkommende Nadeln mit Trichotriaentendenz, bei welchen zwei (Taf. II, Fig. 3) oder auch alle drei Protoklade beiläufig im ersten Drittel ihrer Länge gleichzeitig nach rechts und links je ein Deuteroklad abgeben, sich selbst aber von diesen Zweigen unbeeinflusst in der ursprünglichen

Die Anatriaene (Taf. II, Fig. 5) haben einen runden Kladoscheitel und Klade, die in der Jugend bei geringer Krümmung nahezu unter rechtem Winkel von dem Schaft abgehen, später aber sich ziemlich plötzlich nach hinten biegen, wodurch der Verlauf der Krümmung häufig ein unregelmäßiger wird. Die Klads spitzen divergieren meist mit dem Schaft, selten kommt Parallelität, noch seltener Konvergenz zur Beobachtung. Der Schaft ist dünn, bei jungen Nadeln häufig in einen wellig gekrümmten, äußerst scharf gespitzten Endfaden ausgezogen, bei erwachsenen meist plötzlich und stumpf gespitzt. Die Masse der Anatriaene betragen: Schaftlänge 0.46–1.88 mm, Schaftdicke 5–23 μ, Kladränge 15–90 μ, Kladombreite 28–102 μ. Die Messungen an den einzelnen Stücken ergaben:

<table>
<thead>
<tr>
<th></th>
<th>bei Stück 2</th>
<th>bei Stück 3</th>
<th>bei Stück 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größte Schaftlänge</td>
<td>1.71 mm</td>
<td>1.96 mm</td>
<td>1.85 mm</td>
</tr>
<tr>
<td>Größte Schaftdicke</td>
<td>21 μ</td>
<td>23 μ</td>
<td>19 μ</td>
</tr>
<tr>
<td>Größte Kladränge</td>
<td>68 μ</td>
<td>90 μ</td>
<td>64 μ</td>
</tr>
<tr>
<td>Größte Kladombreite</td>
<td>93 μ</td>
<td>102 μ</td>
<td>84 μ</td>
</tr>
<tr>
<td>Kladscheinenwinkel</td>
<td>40–73°</td>
<td>32–60°</td>
<td>34–75°</td>
</tr>
</tbody>
</table>

Die Akanthtylaster (Taf. II, Fig. 8, 9) erreichen einen Durchmesser von 7.0–16.8 μ bei einer Strahlenlänge von 2.3–8.4 μ und einer Strahlennzahl von 3–14. Ein Zentrum ist vorhanden oder fehlend, in ersterem Falle von kaum merklicher Grösse bis zu

Das Skelett von Stelletta teres ist dem von Stelletta pisum Thiele¹) auffallend ähnlich, nur stärker entwickelt, so dass man Stelletta teres als eine Tiefseeform der Seichtwasserform Stelletta pisum Thiele gegenüberstellen könnte. Gegen eine solche Gleichstellung der beiden Schwämme spricht aber die doppelte Kladomreihe an der Oberfläche von Stelletta teres, eine Erscheinung, die Thiele bei Stelletta pisum sicher erwähnt hätte, wenn seine Stücke eine solche aufgewiesen hätten.

IV. TEIL.

DEMUS STERRASTROSA.

Astrophora mit Sterrastern.

abgeändert, dass das Genus *Erylus* mit scheibenförmigen Sterrastern (Aspidastern) als Familie Erylidae von den übrigen Gattungen, welche in der Familie Geodidae (charakterisiert durch echte Sterraster) verbleiben, abgetrennt wurde.

Die in der Sammlung vertretenen Sterrastrosa gehören alle in die Familie Geodidae.

Familia Geodidae.

Sterrastrosa mit einem aus massiven, sphaeroidischen oder ellipsoidischen Sterrastern bestehenden Oberflächenpanzer.

Von den 7 Gattungen dieser Familie, *Caminella*, *Pachymatisma*, *Caminus*, *Isops*, *Sidonops*, *Geodia* und *Geodinella*, sind in der Kollektion die Genera *Caminella* und *Geodia* durch 4 Stücke vertreten.

Genus Caminella Lendenfeld.

In der Sammlung befindet sich ein Stück dieser Gattung, welches eine neue Art repräsentiert.

Caminella velata n. sp.

(Taf. II, Fig. 10–36).

Von dieser seltenen Gattung befindet sich in der Sammlung ein in Alkohol aufbewahrtes Stück, von dem aber leider bei früheren Bearbeitungsversuchen ein großer Teil verbraucht wurde, so dass ich nur über eine, durch einen Längsschnitt entstandene Hälfte, die überdies noch quer zergeht und am Scheitel angeschnitten ist, sowie über eine Anzahl von kleineren Bruchstücken verfüge. Das vorhandene Material reicht aber zur Untersuchung vollständig aus.
Der Schwamm (Taf. II, Fig. 36) hat die Form eines Zukkerhutes von 5,5 cm Höhe und 2,6 cm Dicke an der Basis. Der unterste Teil des Stückes fehlt. Die Oberfläche ist mit einem grob sammtig sich anfühlenden Nadelpelz bedeckt; nähere Untersuchung ergibt, dass dieser Nadelpelz hauptsächlich aus den Tylostylen eines nahezu den ganzen Schwamm inkrustierenden Monaxoniden besteht, unter welchen die die Oberfläche überragenden Rhabde der Caminella einen nur geringen Anteil nehmen. An den von der Monaxonidenkruste freien Stellen bemerkt man die offenen Poren (Taf. II, Fig. 29); sie sind gleichmässig und ziemlich dicht über die Oberfläche des Schwammes verteilt, in den oberen Schwammteilen kleiner und zahlreicher, in den unteren etwas weniger zahlreich und etwas grösser. Am Scheitel des Schwammes münden auf einer kahlen, etwas eingesenkteten Fläche (Taf. II, Fig. 30) die Oskula als Öffnungen von unregelmässig eckiger Form von 1–2 mm grösstem Durchmesser; ihre Zahl dürfte, nach den kümmlichen Resten zu schliessen, 12–16 betragen haben. Am Querschnitte durch den Schwamm sieht man einen grösseren, $\frac{3}{4}$ zu $2\frac{1}{2}$ mm weiten, und mehrere kleinere, etwa 1–1½ mm weite Längskanäle, die nahe der Schwammbasis beginnen, den Schwamm der Länge nach durchziehen und mit je einem Oskulum an dem Schwammscheitel ausmünden. Die Farbe des Nadelpelzes ist graubraun, der Oberfläche dunkelbraun, die des Inneren braun.

Schnitte senkrecht zur Oberfläche (Taf. II, Fig. 10, 27) zeigen folgendes Bild. An der Oberfläche liegt eine 50–60 µ dicke, in dem derzeitigen Erhaltungszustande des Materials homogen erscheinende Schichte von brauner Farbe, der dunkelbraune Elemente von unregelmässiger, meist länglicher Gestalt eingelagert sind, die eine Länge von 6–10 µ erreichen. Bei starker Vergrösserung lässt sich eine ballige Struktur erkennen. Bei Caminella loricata beschreibt Lendenfeld 1) im distalen, sterrasterfreien Teile der Rinde ovale, 40 µ lange und 20 µ breite Elemente, welche zahlreiche, grünlichbraune Pigmentkörner enthalten; mit

JAPANISCHE TETRAXONIDA.

diesen Bildungen dürften wohl auch die von mir gefundenen identisch sein. Unter dieser Dermalschicht folgt die Sterrasterschichte der Rinde, deren Grenze nach aussen scharf abgesetzt, nach innen aber verschwommen ist; die Dicke dieser Schichte beträgt 0.46–0.55 mm. Das Grundgewebe dieser Schichte ist hellbraun und stark faserig. Das Choanosom enthält an Einschluss zahlreiche, eiförmige Blasen mit stark tingierbarer Hülle und ebenfalls stark färbbarem, zu körnigen Klumpen zerfallenen Inhalte. Ich vermute, dass diese Gebilde, die eine Grösse von 170 zu 250 μ erreichen, Genitalprodukte sind.

Das Porensystem ist uniporal, das heisst, es entspricht jeder Pore ein eigener Porenkanal; dieser durchsetzt die Rinde radial, ist an der Grenze zwischen Rinde und Choanosom mit einer Chone versehen und ergießt sich in einen an die Chone anschliessenden Subdermalraum (vergl. Taf. II, Fig. 10). Die Poren sind kreisrund, 50–140 μ weit. Der Porenkanal ist zylindrisch, nach aussen durch eine am Rande der Pore vorspringende Ringmembran etwas eingeengt, sonst etwa 100–150 μ weit und gegen das Schwamminnere durch die Chone geschlossen. Die Chone erscheint als eine zirka 75 μ dicke Membran, der gegen den Subdermalraum zu der halbkugelige, 40 μ hohe Chonaldropf aufsitzt. Alle diese Teile des einführenden Kanalsystemes zeigen deutlich kräftige Zirkulärfaserung. Die Subdermalhöhlen sind Räume von meist einfacher Eiform mit hoch- oder quergestellter grosser Achse und von 350–450 μ grösstem Durchmesser. Von ihnen gehen 100–150 μ weite Kanäle ab, die sich bald in die Zufuhrkanäle zu den Geisselkammern auflösen. Die Geisselkammern sind breit oval, im Durchschnitt 30 μ lang und 22 μ breit, auf dem grössten Umfange von 12–14 Kragenzellen besetzt, deren Reste noch gut erkenntlich sind. Alle abführenden Kanäle sind, sobald sie eine gewisse geringe Weite überschritten haben, durchaus von Diaphragmen begleitet, die in geringen Abständen von einander als Ringmembranen (in dem derzeitigen, fixierten Zustande) das Lumen der Kanäle bis auf die Hälfte des Durchmessers einengen (Taf. II, Fig. 27, 28). Bei den ausführenden Hauptstämmen erscheinen sie nur als schwache Ringleisten,

Der Abfluss des Wasserstromes erfolgt durch die schon erwähnten Hauptlängskanäle, von denen die grössten schon an der Basis, die kleineren aber erst weiter oben auftreten; mit der Verjüngung des Schwammes nach oben nähern sie sich einander ohne jedoch miteinander zu verschmelzen und münden getrennt durch die Oskula auf dem eingesenkten Scheitelfelde aus. Die Oskula sind einfache Öffnungen ohne Chonen. Das Oskularfeld ist von derselben Struktur wie die Rinde, jedoch porenlos.

Das Skelet des Schwammes besteht aus rhabden und telokliden Megaskleren und aus Sterrastern, Öxysphaerastern zweier Art und Öxastern als Mikroskleren. In der Längsachse des Schwammes, die grossen ausführenden Kanäle stützend, liegen die Rhabde in Bündeln, längsverlaufende Stränge bildend. Diese Längsbündel werden von einzelnen Rhabden, welche die letzten

Die Sterraster bilden in dichter Lage den Panzer der Rinde, welche äusserlich, im Sterraster-freien Teile, von Oxyphaerastern mit starkem Zentrum durchsetzt wird. Im Oskularfelde fehlen die Megasklere; die Anordnung der Mikrosklere ist genau dieselbe wie in der Rinde. Im Choanosom treten an Zahl stark überwiegend die Oxyaster auf. Zwischen diesen zerstreut kommen Oxyphaeraster mit kleinem Zentrum vor und verdrängen die Oxyaster in unmittelbarer Nähe der Kanalwänne sowor in den Diaphragmen vollständig. Junge Sterraster in verschiedenen Grössen und Ausbildungsstufen werden im Choanosom angetroffen. Die Rhabde sind Amphioxe und hin und wieder Style. Die Amphioxe (Taf. II, Fig. 11) sind gedrungen, gerade oder nur leicht gekrummt, isoaktin oder eben merklich anisoaktin; eine Beziehung der ungleichen Spitzen zur Lagerung lässt sich nicht feststellen. Jugendformen sind bedeutend schlanker und in sehr scharfe Spitzen ausgezogen, während erwachsene stark abgesetzt,
stumpfe Spitzen tragen. Die Mehrzahl der Amphioxen ist 1.5–1.9 mm lang und 40–50 μ dick; insgesamt schwankt ihre Größe zwischen 1.0–2.1 mm in der Länge und 18–60 μ in der Dicke. Die Style (Taf. II, Fig. 12) zeigen entweder den Habitus von Amphioxen oder von echten Stylen, da einerseits die größte Dicke in einem Punkte, der etwa 1/3 der Gesamtlänge vom stumpfen Ende entfernt ist liegt, andererseits das stumpfe Ende selbst das Dickenmaximum aufweist. Wie allgemein, erscheinen auch hier die Style kürzer (1.2–1.6 mm) und dicker (40–65 μ) als die Amphioxen. An den Rhabden ist Ausbildung von Fortsätzen, oft in der Weise, dass durch mehrere solcher ein meso-kladähnliches Gebilde erzeugt wird, sowie Knickung nicht selten.

Die Teloklade fallen durch die überaus schwankende Ausbildung ihres Kladomes auf. Der Typus der Teloklade ist ein einfaches Plagiotriaen. Der Schaft der Triaene ist stark, konisch, meist stumpf gespitzt, selten abgerundet und dabei etwas verkürzt; die dickeren Schäfte tragen häufig dicht unterhalb des Kladomes eine leichte Einschnürung. Der Schaft misst 0.8–1.9, meist 1.4–1.7 mm in der Länge und 20–60 μ in der Dicke. Den Typus der Plagiotriaene zeigen am reinsten alle jungen Nadeln. Diese haben gegen den Schaft sehr schwach konkave Klade, von welchen die kürzesten 38 μ messen und welche mit dem Schaft einen Winkel von 110–115 Grad einschliessen. Eine nur mässige Anzahl wächst zu normalen Plagiotriaen heran, bei deren Kladen die Krümmung gegen den Schaft zwar etwas zunimmt und deren Länge bis 220 μ beträgt, deren Kladehenwinkel aber nicht stark unter die oben angegebenen Grenzen sinkt. Das Verhältnis der Schaftdicke zur Kladdicke ist dabei ein normales, da die Klade am Grunde ungefähr eben so dick sind wie der Schaft. Eine andere Gruppe bildet Klade aus, die am Grund bedeutend dünner sind als der Schaft (Taf. II, Fig. 13), sich stark und oft unregelmässig krümmen, meist ungleich lang sind und eine Maximallänge von 380 μ erreichen; der Kladehenwinkel sinkt dabei bis 90 oder steigt bis 120 Grad. Eine weitere Reihe bilden Plagiotriaene mit regelmässigen, kurzen und abgerundeten Kladen (Taf. II, Fig. 15). Durch Teilung eines
oder mehrerer Klade kommen Uebergänge zu Dichotriaenen und echte Dichotriaeno (Taf. II, Fig. 14) zustande; durch frühzeitige Teilung eines oder zweier Klade entstehen Tetraene und Pentaene, durch Verkümmerung von Kladen Diaene und Monaene. Als letzte Form findet man dem Schafte nach als Teloklade anzusehende Nadeln (Taf. II, Fig. 16, 17) mit einem oder mehreren Kladen, die scheinbar gesetzlos von dem Schafte abgehen. Ich bin geneigt, solche Bildungen, die von Rhabden über Rhabde mit Fortsätzen zu kaum noch erkennbaren Telokladen und von diesen über eine Unzahl von Missbildungen zu normalen Telokladen führen, als Beweis für die von Sollas aufgestellte Theorie von der Abstammung der Teloklade von Rhabden zu erblicken. Dass diese Übergänge in diesem Schwamme noch ersichtlich sind, zugleich aber auch Sphaere in dem Schwamme vorkommen, ist ein neues Indizium für die Richtigkeit meiner Auffassung der Sphaere als die urprünglichsten Skeletelemente der Kiesel- schwämme, welche derzeit nur mehr bei Spongien angetroffen werden, welche noch auf einer niedrigen phylogenetischen Entwicklungsstufe stehen.

Die jüngsten Sterraster, die im Choanosom zu finden waren, zeigten die Form der für die Familie typischen Strahlenkugel (Taf. II, Fig. 24); von einem 12 µ im Durchmesser haltenden Zentrum gehen zahlreiche, je 4 µ lange Strahlen ab, so dass der ganze Durchmesser der jüngsten Sterraster 20 µ beträgt. Das Zentrum und die Strahlen wachsen in gleichem Masse weiter, so dass auch späterhin die Strahlenspitzen 4 µ von der Oberfläche des Zentrums entfernt bleiben. Wenn das Zentrum eine gewisse Grösse erreicht hat, beginnen sich die Strahlen zu verdicken und abzurunden; es scheint aber, dass mit diesem Stadium dem Gesammtwachstume des Sterrasters noch kein Ziel gesetzt ist: es messen nämlich die kleinsten Sterraster, bei welchen diese Veränderungen schon beobachtet wurden, nur 52 µ im Durchmesser, welche Grösse ausgebildete Sterraster überschreiten. Späterhin stumpfen sich die Strahlen noch mehr ab, so dass die Terminalflächen als Polygone auftreten, auf welchen dann die Enddornen hervorsprossen. Diese entwickeln sich zuerst auf der
Terminalfläche selbst (Taf. II, Fig. 32) und erst später auch am Rande derselben (Taf. II, Fig. 33–35). Der Nabel erscheint bei jungen Sterrastern als ein eingesenkter Kugelsektor von ovaler Basis, der sich auf etwa 30 Grad in die Länge und 20 Grad in die Breite erstreckt. Bei erwachsenen Sterrastern ist der Nabel länglich (Taf. II, Fig. 34), von drei- bis fünfeckigem Umriss. Die angebildeten Sterraster (Taf. II, Fig. 31) sind kugelig bis breit ellipsoidisch; das Verhältniss des grössten zum kleinsten Durchmesser schwankt von 1 bis 1.13. Die Durchmesser betragen 60–80 μ. Die Endflächen der Strahlen sind drei- bis sechseckig, im Durchschnitte 8–9 μ lang, an der Fläche mit 1–4, an den Rändern mit 5–8 Dornen besetzt. Die Grösse der Endflächen sowie ihr gegenseitiger Abstand ist ziemlich grossen Schwankungen unterworfen; oft ist die Zahl Strahlen eine nur geringe (Taf. II, Fig. 31 links), die Ausdehnung der Endfläche, die dann von einer grossen Zahl von Dornen bedeckt ist (Taf. II, Fig. 35) eine bedeutende.

Die Oxysphaeraster der Rinde (Taf. II, Fig. 22, 23) haben ein sehr grosses Zentrum, das etwa die Hälfte oder mehr des Gesamtdurchmessers einnimmt, und breit konische Strahlen mit äusserst scharfer Spitze und einem eben noch wahrnehmbaren Dornenwirbel unterhalb derselben. Der Gesamtdurchmesser beträgt 13–25 μ, der des Zentrums 7–17 μ, die Strahlenlänge 3–6 μ. Die Jugendformen haben ein verhältnismässig kleines Zentrum und schlankere, glatte Strahlen.

Die choanosomalen Oxysphaeraster (Taf. II, Fig. 25, 26) unterscheiden sich zwar im erwachsenen Zustande sehr scharf von den Oxysphaerastern der Rinde, gleichen ihnen aber in den Jugendstadien ungemäss, so dass man diese zwei Arten als ihrer Lage und Bestimmung nach differenzierte Abkömmlinge einer und derselben Nadelform ansehen könnte. Ein Zentrum ist bei den choanosomalen Oxysphaerastern meist entwickelt und erreicht im Maximum ein Drittel des Gesamtdurchmessers, gewöhnlich aber nur ein Fünftel bis ein Sechstel desselben und ist öfters auch überhaupt kaum zu beobachten. Die Strahlen sind schlank konisch, glatt, 6.5–14 μ lang, der Zahl nach 5–16. Der Gesammt-
durchmesser beträgt 18–29 μ, der des Zentrums bis 6 μ.

Der Schwamm wurde im August 1893 im Meeresgebiete Okinose in einer Tiefe von 55 m erbeutet.

Von der Gattung Caminella sind bisher nur zwei Arten bekannt gewesen. Die typische Art ist die von Lendenfeld 2) beschriebene Caminella loricata aus der Adria bei Lesina, die zweite die von Lindgren 3) bearbeitete Caminella (Isops) nigra aus der Javasee. Caminella velata schliesst sich diesen beiden Arten vollständig an, unterscheidet sich aber von ihnen ausser in den Merkmalen des Skelettes besonders durch die Ausbildung der Diaphragmen in den Kanälen.

1) 1912 R. v. Lendenfeld: Die Mikroskleren der Caminussarten in: Denkschriften der math.-naturw. Klasse der k. Akademie der Wissenschaften in Wien, LXXXVIII. Bd., Taf. I, Fig. 35–40, 60–70.
2) 1894 R. v. Lendenfeld: Die Tetmatinelliden der Adria in: Denkschriften der math.-naturw. Klasse der k. Akademie der Wissenschaften in Wien, LXXI. Bd., p. 150, Taf. II, Fig. 27, Taf. III, Fig. 52, Taf. VIII, Fig. 143–146.
3) 1898 N. G. Lindgren: Beitrag zur Kenntnis der Spongienfauna des Malayischen Archipels und der chinesischen Meere in: Zoologische Jahrbücher, Abt. f. Systematik etc. Bd. 11, p. 332, Taf. 18, Fig. 11, Taf. 20, Fig. 7 a–e.
Genus Geodia Lamarck.

In der Sammlung finden sich 3 Angehörige dieser Gattung, die sich auf 3 Arten verteilen. Eine dieser Arten ist neu. Die beiden anderen Schwämme bilden je eine neue Varietät bekannter Arten.

Geodia orthomesotriaena n. sp.

(Taf. II, Fig. 37–50).

Der Schwamm (Taf. II, Fig. 49) ist von Eiform, 4.5 cm lang, 3.5 cm breit und 3.2 cm dick; in dieser letzteren Richtung erscheint er auf der einen Seite abgeflacht, auf der anderen konvex. Ein Anheftungsstelle scheint an der einen Seite, wo der Schwamm beschädigt ist, gelegen zu sein. Der konvexe Teil, in der Figur nicht sichtbar, ist bis nahe zu seinem Äquator von zahlreichen, ekigen, bis 0.7 mm weiten Grübchen bedeckt, auf welche eine 1/2–2 cm breite, grübchenfreie Zone folgt; auf der flachen Seite, in der Figur deutlich sichtbar, liegen wieder zahlreiche Grübchen von ähnlichem Aussehen wie die auf der anderen Seite, jedoch von etwas grösserer Ausdehnung. Zweifellos ist der eine Bezirk von kleinen Grübchen das Porenfeld, der andere das Oskularfeld. Über die Orientierung des Schwammes lassen sich nur Vermutungen aufstellen. Die drei Formen, Geodia reniformis Thiele 1), die im späteren beschriebene Geodia reniformis Thiele var. robusta und der an dieser Stelle bearbeitete Schwamm ähneln sich im Habitus in ganz ausserordentlicher Weise. Alle drei Stücke zeigen eine Porenseite, dann eine grübchenfreie Region und auf der anderen Seite, dem Porenfelde gegenüber, das

1) 1889 Johannes Thiele: Studien über pazifische Spongien, in: Zoologica, Heft 24, p. 9, Taf. 1, Fig. 3.
Oskularfeld. Nach der gewöhnlichen Orientierung einer einfach becherförmigen Geodia, Porenseite aussen und unten, Oskularseite innen und oben, wäre anzunehmen, dass die Anheftungsfläche seitlich gelegen und der Schwamm an eine mehr oder minder senkrechte Fläche so angeheftet gewesen sei, dass auch die Unterseite vom Wasser bespült wurde. Andererseits wird aber diese Möglichkeit eingeschränkt durch die Angabe Ijimas " über die Bodenbeschaffenheit des Meeresgebietes Yodomi, woher der Schwamm stammt, das zugleich der Hauptfundort von Euplectella imperialis Ijima ist; er gibt als Bodenbedeckung vulkanischen Schlamm und Sand an, bei welcher Flächen, die eine derartige Anheftung erlaubten, wohl nicht vorkommen kürften. Es bleibt also als zweite Möglichkeit der Orientierung eine Anheftung wie sie bei vielen Metastrosen vorkommt, nämlich die einer senkrecht stehenden Platte, auf deren Oberfläche einerseits die Poren, andererseits die Oskula liegen.

Das Skelett des Schwammes besteht aus grossen und kleinen Rhabden, aus Orthotriakenen, Dichotriakenen, Promesotriakenen, Orthomesotriakenen, grossen und kleinen Anatriakenen und Sphaeren.

Die grossen Rhabde sind nahezu ausschliesslich Amphioxe (Taf. II, Fig. 37), äusserst selten Style. Die Amphioxe sind kräftig, gerade oder leicht gekrümmt, mit abgesetzten, stumpfen Spitzen. Ihre Länge beträgt 2.5–4.5 mm, ihre Dicke 50–70 µ. Einzelne Amphioxe zeigten gespaltene Spitzen; das Aussehen dieser Spitzen, sowie der Verlauf der Achsenfaden in ihnen ergibt dasselbe Bild wie bei der oben beschriebenen Stelletta japonica (Taf. I, Fig. 29, 31, 32). Hin und wieder treten auch in der Nähe der Spitze knollige Verdickungen auf.

Die kleinen Rhabde sind gerade oder gekrümnte Style (Taf. II, Fig. 38) von amphioxähnlicher Spindelform mit einer wenig verkürzten, am Ende kaum ein Drittel des Maximaldurchmessers der Nadel dicken, abgerundeten Spitze. Sie werden 150–290 µ
lang und an der stärksten Stelle 5–6 µ dick.

Die Orthotriaene (Taf. II, Fig. 39) haben einen kegelförmigen, geraden oder schwach gekrümmten Schaft von 2.1–4.4 mm Länge; dicht unterhalb des Kladomes ist der Schaft eingeschnürt und verdickt sich dann zu seinem größten Durchmesser im Betrage von 70–100 µ und endet mit stumpfer Spitze. Junge Orthotriaene sind mehr plagiotriaenähnlich mit einem Kladsehnenwinkel von ungefähr 115 Grad und mit gegen den Schaft schwach konvexen Kladen; ihre Dimensionen sinken bis auf 0.6 mm Schaftlänge, 12 µ Schaftdicke und 70 µ Kladlänge. Beim weiteren Wachstum der Klade wird ihre Krümmung meist stärker; in seltenen Fällen bleibt sie die gleiche oder wird eine geringere als die ursprüngliche. Auf diese Weise schwankt der Kladsehnenwinkel bei erwachsenen Orthotriaenen von 95–115 Grad, oft auch an den Kladen eines und desselben Triaenes. Auch die Länge der Klade ist im allgemeinen, sowie an einer Nadel verschieden, so dass man kaum zwei annähernd gleiche Orthotriaene finden kann. Die größten Differenzen in den Kladlängen einer Nadel verhalten sich wie 1 : 2 und noch etwas darüber. Insgesamt schwankt die Länge der Klade von 70–680 µ und beträgt bei den meisten Triaenen normaler Grösse 330–580 µ. Hier und wieder erscheint ein Klad verkürzt und abgerundet oder geknickt.

Die Dichotriaene (Taf. II, Fig. 40) haben einen kräftigen, konischen, am Ende abgerundeten Schaft der seine größte Dicke (60–85 µ) unterhalb einer schwachen Einschnürung beim Kladome erreicht und 1.4–2.2 mm lang wird. Die Protoklade gehen vom Schaft unter einem Winkel von 100–106 Grad ab und krümmen sich im weiteren Verlaufe, ebenso wie die Deuteroklade gegen den Schaft, wodurch der Kladsehnenwinkel auf 85–92 Grade herabsinkt. Die Protoklade sind untereinander gleich lang und messen 90–180 µ. Die Deutero klade eines zusammengehörigen Paares sind meist annähernd gleich lang, gegen die übrigen Deutero klade der Nadel aber oft auffallend verschieden. Die Deutero klade sind, in der Aufsicht auf das Kladom gesehen, nahezu gerade; zugehörige Deutero klade eines Paares schliessen miteinander einen Winkel von rund 90 Grad ein. Die Deutero-
klade werden 105-370 μ lang; die Breite des Kladoms beträgt 500-690 μ.

Die Promesotriaene (Taf. II, Fig. 43) variieren in dem Habitus des Kladomes durch die Kombination schwankender Merkmale ziemlich stark. Der Kladsehnwinkel beträgt 135-150 Grade, die Kladlänge 90-180 μ, das Verhältnis der Länge des Epirhabdes (35-160 μ) zur Kladlänge ist ein sehr verschiedene, 1/3-1 1/4 der Kladlänge; außerdem wird der Habitus des Kladomes durch die häufig vorkommende Knickung eines Klades verändert. Der Schaft ist 4.3-7.3 mm lang und stumpf gespitzt. Seine Dicke ist meist in einer Entfernung von etwa ein Drittel der Gesamtlänge des Schaftes vom Kladome am grössten (25-52 μ) und nimmt von da ab gegen das Kladom um 10-20 μ ab; nur selten ist der obere Schaftteil zylindrisch. Die Klade sind gegen das Epirhabd hin schwach konkav; ihre Zahl ist den allermeisten Fällen drei, nur sehr selten werden Promesodiaene beobachtet.

Die Orthomesotriaene (Taf. II, Fig. 41) sind die für diese Art charakteristischen Nadelelemente. Sie kommen sonst nur bei Geodia agassizii Lendenfeld1 vor, bei welcher sie die Eigentümlichkeit zeigen, dass das Epirhabd immer länger ist als der Schaft. Bei meinem Schwamme sind sie unzweifelhaft echte, nicht verkümmerte Mesotriaene, immer wohl entwickelt, was man von den entsprechenden Elementen von Geodia agassizii wohl nicht sagen kann. Schaft und Epirhabd sind von annähernd gleicher Dicke, das Epirhabd jedoch kürzer gespitzt als der Schaft, so dass beide Teile zusammen die Form eines anisoaktiven Amphioxes besitzen. Das Epirhabd ist immer bedeutend kürzer als der Schaft, es erreicht höchstens ein Fünftel seiner Länge. Die Klade zeigen die bei nahezu allen Orthotriaen auftretende leichte, gegen den Schaft konkave Krümmung, wodurch die ohnehin schon plausible Annahme des längeren Teiles als Schaft noch weiter bestätigt wird. Der Schaft wird 1.84-3.68 mm lang, das Epirhabd 370-610 μ. Die ganze Länge der Orthomesotriaene

1) 1910 R. v. Lendenfeld: The Sponges I. The Geodidae, in: Memoirs of the Museum of Comparative Zoology at Harvard College, Vol. XLI, Nr. 1, p. 124, Taf. 26, Fig. 1, Taf. 29, Fig. 7, Taf. 34, Fig. 16.
schwankt zwischen 2.24 und 4.2 mm, das Verhältnis der Länge des Schaftes zu der des Epithabdes zwischen 1 : 0.1–0.2. Die Klade sind am Grunde etwa so dick wie der Schaft und untereinander oft ungleich lang; ihre Länge beträgt 150–360 μ, ihr Sehnenwinkel 102–115 Grade.

Die grossen Anatriaene (Taf. II, Fig. 44) sind die längsten Nadeln des Schwammes. Der Schaft wird 5.5–9.3 mm lang und 27–50 μ dick; sein oberer, stärkerer Teil ist gerade oder nur schwach gekrümmt, der untere, sich verjüngende meist wellig gebogen und endet entweder abgerundet oder mit langem, dünnen Endfaden. Der Kladomscheitel ist spitzbogenförmig, die Klade sind stark, hakenförmig gekrümmt. Sie werden 90–150 μ lang, ihr Sehnenwinkel beträgt 37–52 Grade, die Kladombreite 130–165 μ.

Die kleinen Anatriaene (Taf. II, Fig. 42) haben einen unterhalb des Kladomes nur 1.8–2.5 μ dicken, s-förmig gekrümmten Schaft, der sich bis gegen das letzte Viertel seiner Länge auf 3.4–5 μ verdickt und abgerundet endigt. So viel ich beobachten konnte, betrug die Zahl der Klade immer drei. Die Klade sind 5–8 μ lang, gegen den Schaft schwach konkav; der Kladosehnenwinkel beträgt 45–60 Grade.

In dem Schwamme fand ich auch mehrere Sphaere; eins davon lag in einem Schnitte etwa 2 mm unterhalb der Oberfläche. Alle sind rund und einkernig, konzentrisch geschichtet, 15–106 μ gross.

Die Sterraster (Taf. II, Fig. 50) sind ellipsoidisch, in der Richtung des Nabels abgeplattet, 110–140 μ lang, 98–125 μ breit und 75–90 μ dick. Die Terminalflächen der Strahlen sind 3 μ breit und mit 3–8, meist 5 oder 6 sehr regelmässig angeordneten Randstrahlen versehen. Gegen den Nabel zu verlängern sich die Terminalflächen der Strahlen radial gegen den Nabel zu und tragen dort 8–10 Randdornen. Der Nabel ist 11–15 μ weit und von rundem oder dreieckigen Umrisse. Am optischen Querschnitte der Sterraster bemerkt man ein Zentrum, das in Form und Grösse, so weit man durch die dicke Kieselschichte beobachten kann, vollständig den Strongylosphaerastern der Dermalischichte.
zu gleichen scheint. Junge Sterraster in verschiedenen Stadien der Ausbildung werden zahlreich im Choanosome angetroffen; die jüngsten haben die bekannte Strahlenkugelform mit 2 μ langen Strahlen und 10 μ grossem Zentrum. Die Abplattung der Sterraster pflegt erst in den nächst grösseren Entwicklungsstadien deutlich zu werden.

Die Strongylophaeraster (Taf. II, Fig. 48) verdienen diesen Namen nur zum Teile, da kaum die Hälfte aller Nadeln als solche ausgebildet ist, die übrigen aber eher in die Gruppe Ataxaster einzureihen wären. Von einem 2.5–3 μ grossen Zentrum von kugeliger, ellipsoidischer oder unregelmässig eckiger Form gehen 1–15 Strahlen ab. Bei den mehrstrahligen Astern sind diese ziemlich regelmässig angeordnet; mit der Reduktion der Strahlenzahl wird auch die Verteilung der Strahlen eine unregelmässige, die ausserdem noch durch das namentlich bei solchen Nadeln häufige, eckige Zentrum erhöht wird. Die Strahlen werden mit der Abnahme ihrer Zahl grösser und stärker; von 1.2–1.5 μ Länge bei den acht- bis fünfzehnstrahligen Astern wachsen sie bis auf 3.5 μ Länge bei den wenigstrahligen. Der ganze Durchmesser schwankt bei der unregelmässigen Verteilung der wenigen, grossen Strahlen nur in den geringen Grenzen von 5–7,5 μ und erreicht nur in sehr seltenen Fällen 8 μ. Die Strahlen sind schwach konisch, abgerundet und kaum merklich rauh.

Die grossen Oxyaster (Taf. II, Fig. 47) haben 3–8 starke, am Grunde bis 9.5 μ dicke, konische Strahlen, die zwar meist gerade, öfters aber auch gekrümmt sind und von denen ab und zu einer gegabelt ist. Die Strahlen sind stark rauh und unterhalb der Spitze mit einem winzigen Dornenwirbel versehen. Durch die Dicke der Strahlen wird ein Zentrum vorgetäuscht, doch ist eine zentrale, kugelige Verdickung nicht nachzuweisen. Die Strahlenlängen und die ganzen Durchmesser der grossen

Wie schon erwähnt, zeichnet sich dieser Schwamm durch den Besitz von wohlentwickelten Orthomesotriaenen ausser Promesotriaenen aus, die bisher, allerdings als meist missgebildete Formen, nur bei Geodia agassizii Lendenfeld (l. c.) beobachtet wurden. Von dieser unterscheidet sich mein Schwamm durch den Besitz von Dichotriaenen und von Oxyastern zweierlei Art, und noch durch zahlreiche kleinere Unterschiede im Skelet.

Geodia reniformis Thiele var. robusta p. var.

(Tafel II, Fig. 51–62).

1898 Geodia reniformis, J. Thiele: Studien über pazifische Spongien, in: Zoologica, Heft 24, p. 9, Taf. 1, Fig. 3, Taf. 6, Fig. 5 a–h.
Das Stück (Taf. II, Fig. 51) ist im Aussehen dem Thiele'schen Originale (l. c. Taf. I, Fig. 3) zum Verwechseln ähnlich. Wie dieses ist es nahezu von Nierenform und war an der einen Seite, wo es beschädigt ist, festgewachsen. Muschelschalen und Wurmbröhren sitzen dem Schwamme auf. Auf der einen, konvexen Seite zeigen sich deutlich die Porenfelder als dichtgedrängte Vertiefungen von länglichem, drei- oder viereckigen Umrisse und von einer größten Länge von 0,5–0,7 mm. Der Rand zwischen der konvexen Seite und der flacheren anderen (in der Abbildung sichtbaren) ist von Öffnungen frei und wahrscheinlich infolgedessen von einer starken Schmutzkruste bedeckt. Die andere, flache bis schwach konkave Seite trägt ebenfalls zahlreiche Grübchen von mehr rundlichem Umrisse. Diese als Oskularefelder anzusehenden Vertiefungen sind auch von etwas grössem Durchmesser als die Poreengruben. Bei starker Lupenvergrösserung sind an manchen Vertiefungen der flacheren Seite die einzelnen Oskula als Öffnungen von etwa 40 μ Durchmesser zu erkennen; der Zahl nach dürften auf eine Oskularmembran etwa 6–10 kommen. An den Porenmembranen sind die Poren äusserlich nicht zu erkennen.

Das Stück ist 8,4 cm lang, 6,5 cm breit und bis 3,4 cm dick, aussen lichtbraun, innen leicht graubraun. Die Oberfläche ist derzeit glatt, trägt aber an geschützten Stellen noch einen schütteren Nadelpelz, der sich ursprünglich wohl über den ganzen Schwamm erstreckt haben mag, bei der langjährigen, trockenen Aufbewahrung aber verloren ging.

An oberflächlichen Paratangentialschnitten sind die Poren als ovale Löcher von 15–20 μ Länge zum Teile noch zu erkennen; ein Porenfeld dürfte 20–30 Poren enthalten. Der Porenkanal hat im distalen Teile einen Durchmesser von 60–70 μ und eine zarte, mikrosklerenfreie Wand; weiter nach innen wird die Wand dicker, zirkulärfaserig, von Sphaerastern durchsetzt und bildet an der unteren Grenze der Sterrasterlage eine Chone. Unter der Chone liegt ein eiförmiger Subdermalraum von etwa 250 μ querem Durchmesser und meist bedeutend grösserer Höhe. Der weitere Verlauf des Kanalsystemes ist nicht zu verfolgen. Man sieht nur, dass das Choanosom von zahlreichen, bis 2½ mm weiten
JAPANISCHE TETRAxonIDA.

Kanälen durchzogen wird. Die Oskularkanäle weisen ein etwas weiteres Lumen auf als die Porenkanäle, sind aber sonst ebenso gebaut wie jene.

Die grossen Rhabde sind Amphioxe und Style (Tylostyle). Die Amphioxe (Taf. II, Fig. 60) sind gerade oder schwach und
einfach gekrömt und mit abgesetzten, wenig scharfen Spitzen versehen. Ihre Länge schwankt von 2.7–4.8 mm, ihre Dicke von 45–75 µ. Die Style sind teils echte Style mit unverdicktem runden Ende, teils Tylostyle (Taf. II, Fig. 59), teils Zwischenformen. Sie werden 1.9–3.2 mm lang und am stumpfen Ende 50–140 µ dick.

Die kleinen Rhabde sind amphioxähnliche Style (Taf. II, Fig. 62); diese Ähnlichkeit wird dadurch hervorgebracht, dass das Dickenmaximum wie bei Amphioxen annähernd in der Längenmitte der Nadel liegt. Die Style sind einfach oder wellenformig gekrömt und tragen ein abgerundetes und ein scharf gespitztes Ende. Sie werden 150–300 µ lang, an der stärksten Stelle 4–7.5 µ, am runden Ende meist 2.5 µ dick.

Die Orthoklade sind sehr kräftig entwickelte einfache Orthotriaeae (Taf. II, Fig. 61) mit konischem, unterhalb des Kladomes schwach eingeschnürtem, mässig gespitzten Schafte, der 3.2–4.6 mm lang und 80–110 µ dick wird. Die Klade sind von der Dicke des Schaftes an der Einschnürung, streben anfangs etwas nach vorwärts und krümmen sich später leicht nach rückwärts, so dass sie gegen den Schaft schwach konkav erscheinen. Ihre Länge beträgt meist 300–600 µ steigt jedoch ausnahmsweise bis 730 µ. Unter sich sind die Klade beinahe niemals gleich lang; häufig ist eines oder zwei kürzer als die anderen, öfters tritt auch Knickung an ihnen auf. Der Kladsehnenwinkel beträgt 90–100 Grade.

Die Promesoklade sind Promesotriaeae, Promesodiaeae (Taf. II, Fig. 56) und Promesomonaene in annähernd gleichem Zahlverhältnisse, mit langem, geraden Schaft, der abgerundet oder gespitzt endet. Dieser wird 4–7 mm lang und 27–52 µ dick. Die grösste Dicke liegt ungefähr ein Drittel der Gesamtlänge vom Kladome entfernt. Die Klade sind gegen das Epirhabd schwach konkav und schliessen mit demselben einen Winkel von 25–35 Grad ein, der im allgemeinen bei den Triäen am grössten, bei den Monaen am kleinsten ist. Bei Ausbildung mehr als eines Klades ist häufig eines länger als die anderen. Die Länge der Klade steht auch in einem gewissen Verhältnisse zu ihrer Zahl, indem die Triäene durchschnittlich die kürzesten, die Monaene durch-
schnittlich die längsten Klade haben. Im Ganzen schwankt die Kladlänge zwischen 80 und 180 μ. Das Epirhabd ist meist kürzer, selten ebensolange oder länger als die Klade, an Stärke diesen etwas nachstehend; seine Länge beträgt 75–120 μ. An den Kladen ist öfters meist nach aussen gerichtete Knickung zu bemerken.

Die Anatriaene (Taf. II, Fig. 55) haben einen in den Präparaten gewunden erscheinenden Schaft mit lang ausgezogener, scharfer Spitze, der 4,5–8,3 mm lang und 20–32 μ dick ist. Die Klade krümmen sich von ihrem Ursprunge auf etwa ein Viertel ihrer Gesamtlänge nach rückwärts und verlaufen dann, gegen den Schaft divergierend, beinahe vollständig gerade und werden 90–150 μ lang. Der Kladomscheitel ist stark konvex, der Kladesehnwinkel beträgt 35–40 Grade. Diaene oder Monaene scheinen nicht vorzukommen.

Die Sterraster (Taf. II, Fig. 57) haben, in der Richtung des Nabels gesehen, einen meist elliptischen, in der Richtung der kleinen Achse etwas abgeplatteten Umriss; selten ist in dieser Ansicht ihr Umriss nahezu kreisförmig; genähählich ist das Verhältnis der grossen zur kleinen Achse etwa 1:0,8. Die Dicke in der Richtung des Nabels ist noch etwas kleiner als die Breite. Die Masse erwachsener Sterraster betragen: Länge 100–125 μ, Breite 90–105 μ; Dicke 75–85 μ. Die Terminalflächen der Strahlen sind meist etwa 3 μ gross und tragen am Rande 4–6, meistens 5 Dornen. Dem Nabel gegenüberliegend findet sich eine Stelle mit etwas kleineren Terminalflächen der Strahlen, welche meist nur 4 oder 3 Dornen tragen. In der Umgebung des Nabels sind die Terminalflächen bei massig vergrössarter Breite in der Richtung gegen den Nabel auf ungefähr das doppelte der normalen Grösse verlängert und mit 6–9 Randdornen besetzt. Der Nabel ist länglich oder rundlich, im ersteren Falle meist längs, öfters aber auch schief oder quer auf die grosse Achse orientiert und misst 8–14 μ. Von einem Zentrum ist in den Sterrastern nichts zu beobachten.

Die Strongylosphaeraster (Taf. II, Fig. 58) sind grösstenteils unregelmässig entwickelt. Nadeln mit kugeligem Zentrum und
gleichlangen, gleichmässig verteilten Strahlen sind recht spärlich vorhanden. Bei den meisten Astern sind die Strahlen ungleichmässig angeordnet, indem durch Ausfall von Strahlen merkliche Lücken entstehen; das Zentrum kann dabei seine Kugelform beibehalten, oder eiförmig bis unregelmässig klumpig werden. Die Strahlenzahl, die bei normal ausgebildeten Strongylosphaerastern 12–16 beträgt, sinkt in dieser Weise bis auf eins herunter. Die Strahlen sind nahezu zylindrisch, gegen das Ende zu nur schwach verjüngt; das Ende erscheint abgerundet und lässt mit den stärksten Vergrösserungen leichte Rauhigkeiten erkennen. Der Durchmesser der Strongylosphaeraster beträgt meist 5.6–6.8 μ, sinkt selten bis auf 4.5 μ, in welchem Falle die Strahlen zahlreich, aber sehr klein sind, oder steigt bei Ein- und Zweistrahlern, bei welchen die wenigen übrigen Strahlen sehr stark entwickelt sind, bis auf das Höchstmass von 9 μ. Der Durchmesser des Zentrums ist ziemlich konstant und beträgt 3.2–5 μ. Die Strahlenlänge schwankt von nahezu Null bis 4.2 μ; bei den annähernd regelmässig entwickelten Nadeln beträgt sie 1.2–1.4 μ. Auch wenn die Strahlenlänge eine äusserst geringe ist, kann man die betreffenden Nadeln von den echten Sphaeren gut unterscheiden.

Die Oxysphaeraster (Taf. II, Fig. 52) tragen 18–30 konische, scharf gespitzte Strahlen, die 3.4–6 μ lang werden und in regelmässiger Anordnung von dem 4–6 μ grossen Zentrum abgehen. Der ganze Durchmesser dieser Aster beträgt 11–18 μ. Ab und zu werden Oxysphaeraster mit stärkeren Strahlen in unregelmässiger Anordnung angetroffen; die Strahlen solcher Aster zeigen deutlich eine rauhe Oberfläche, woraus sich auch auf eine, mit gewöhnlichen Systemen an den regelmässig ausgebildeten Astern nicht mehr sichtbare Bedornung schliessen lässt, wie sie auch Lendenfeld in seinen Geodidae der Albatross-Expedition durch Photographie im ultraviolettem Lichte nachgewiesen hat.

Die grossen Oxyaster (Taf. II, Fig. 54) haben kein merkliches Zentrum und 3–6 starke, konische, gegen die Spitze zu rauhe Strahlen, die am Grunde bis 10 μ dick werden und meist gerade, selten schwach gekrümmt sind. Die Strahlenlängen und die Gesamtdurchmesser schwanken bei den Dreistrahlern von 48–

Die kleinen Oxyaster (Taf. II, Fig. 53) unterscheiden sich ausser durch ihre geringere Grösse auch durch das, wenigstens bei den mehrstrahligen Formen deutlich ausgebildete, kleine Zentrum. Die Strahlen sind kegelförmig, gerade, die kleineren kaum merklich rauh, die grösseren deutlich rauh und ganz schwach akanthtyl. Die Strahlenzahl beträgt 2–8, die Strahenlänge, annähernd verkehrt proportional zur Strahlenzahl, 11–33 μ, der ganze Durchmesser 22–58 μ.

Ich halte die eben beschriebene Form für einen Angehörigen der Spezies Geodia reniformis Thiele. Dem von Thiele (l. c.) beschriebenen, aus seichtem Wasser (bei Enoshima) stammenden Typus der Art gleich der Schwamm im Habitus vollständig. Das Skelet beider besteht aus denselben Elementen in derselben Anordnung, von annähernd denselben Proportionen, ist jedoch bei meinem Schwamm bedeutend stärker entwickelt, was durch den Namen der Varietät angedeutet ist. Behufs leichterer Vergleichung des Skelettes der beiden Schwämme gebe ich die Dimensionen der Nadeln beider Schwämme (die Kladschennwinkel von var. typica an Thiele's Abbildungen gemessen) in tabellarischer Form wieder.
Dimensionen der Spikula der beiden Varietäten von *Geodia reniformis*.

<table>
<thead>
<tr>
<th></th>
<th>var. typica</th>
<th>var. robusta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Amphioxen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länge</td>
<td>3.3 mm</td>
<td>2.7–4.8 mm</td>
</tr>
<tr>
<td>Dicke</td>
<td>45 μ</td>
<td>45–75 μ</td>
</tr>
<tr>
<td>Kleine Style</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länge</td>
<td>170 μ</td>
<td>150–300 μ</td>
</tr>
<tr>
<td>Dicke</td>
<td>—</td>
<td>4–7.5 μ</td>
</tr>
<tr>
<td>Orthotriaene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaftlänge</td>
<td>2.8 mm</td>
<td>3.2–4.6 mm</td>
</tr>
<tr>
<td>Schaftdicke</td>
<td>90 μ</td>
<td>80–110 μ</td>
</tr>
<tr>
<td>Kladlänge</td>
<td>500–600 μ</td>
<td>300–730 μ</td>
</tr>
<tr>
<td>Kladsehnenwinkel</td>
<td>94°</td>
<td>90–100°</td>
</tr>
<tr>
<td>Promesoklade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaftlänge</td>
<td>über 1.5 mm</td>
<td>4–7 mm</td>
</tr>
<tr>
<td>Schaftdicke</td>
<td>25 μ</td>
<td>27–52 mm</td>
</tr>
<tr>
<td>Kladlänge</td>
<td>70 μ</td>
<td>80–180 μ</td>
</tr>
<tr>
<td>Epiphylaxlänge</td>
<td>30–40 μ</td>
<td>75–120 μ</td>
</tr>
<tr>
<td>Klad-Epiphylaxwink.</td>
<td>33–44°</td>
<td>25–35°</td>
</tr>
<tr>
<td>Anatriaene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaftlänge</td>
<td>4–4.5 mm</td>
<td>4.5–8.3 mm</td>
</tr>
<tr>
<td>Schaftdicke</td>
<td>—</td>
<td>20–32 μ</td>
</tr>
<tr>
<td>Kladlänge</td>
<td>50 μ</td>
<td>90–150 μ</td>
</tr>
<tr>
<td>Kladsehnenwinkel</td>
<td>40°</td>
<td>35–40°</td>
</tr>
<tr>
<td>Sterraster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länge</td>
<td>130 μ</td>
<td>100–125 μ</td>
</tr>
<tr>
<td>Breite</td>
<td>113 μ</td>
<td>90–105 μ</td>
</tr>
<tr>
<td>Dicke</td>
<td>—</td>
<td>75–85 μ</td>
</tr>
<tr>
<td>Strongylaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganzer Durchmesser</td>
<td>5 μ</td>
<td>4.5–9 μ</td>
</tr>
<tr>
<td>Strahlenlänge</td>
<td>—</td>
<td>1.2–4.2 μ</td>
</tr>
<tr>
<td>Strahlenzahl</td>
<td>—</td>
<td>12–16</td>
</tr>
<tr>
<td>Oxysphaeraster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganzer Durchmesser</td>
<td>12 μ</td>
<td>11–18 μ</td>
</tr>
<tr>
<td>Strahlenlänge</td>
<td>—</td>
<td>3.4–6 μ</td>
</tr>
<tr>
<td>Strahlenzahl</td>
<td>—</td>
<td>18–30</td>
</tr>
<tr>
<td>Grosse Oxyaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganzer Durchmesser</td>
<td>—</td>
<td>79–188 μ</td>
</tr>
<tr>
<td>Strahlenlänge</td>
<td>40–70 μ</td>
<td>38–105 μ</td>
</tr>
<tr>
<td>Strahlenzahl</td>
<td>von 2 aufw.</td>
<td>3–6</td>
</tr>
<tr>
<td>Kleine Oxyaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganzer Durchmesser</td>
<td>—</td>
<td>22–58 μ</td>
</tr>
<tr>
<td>Strahlenlänge</td>
<td>15–20 μ</td>
<td>11–33 μ</td>
</tr>
<tr>
<td>Strahlenzahl</td>
<td>—</td>
<td>2–8</td>
</tr>
</tbody>
</table>

Aus dieser Tabelle ersieht man, dass die Varietät *robusta*, die aus bedeutend tieferem, erfahrungsgemäss die Grösse der Nadeln förderndem Wasser stammt, in Bezug auf die Megasklere die
typische *Geodia reniformis* bedeutend übertrifft. Die Megasklere sind bei *Geodia reniformis* var. *robusta* durchaus $1\frac{1}{4}$ bis doppelt so lang und auch viel dicker als bei der var. *typica*, welches Verhalten auch die Klade der tetraxonen Elemente zeigen. Die Kladsehnenwinkel sind ziemlich gleich, nur die Anatriaenkladome sind in ihrer Form bei den beiden Schwämmen verschieden. Die Unterschiede an den Sterrastern, Strongylosphaerastern und Oxyastern sind so gering, dass man sie füglich übergehen kann. Die grossen und die kleinen Oxyaster beider Schwämme sind einander sehr ähnlich; ihre Dimensionen schwanken aber bei *Geodia reniformis* var. *robusta* nach oben und unten in weiteren Grenzen als bei *Geodia reniformis* var. *typica*.

Im Ganzen erscheint daher *Geodia reniformis* var. *robusta* der *Geodia reniformis* typica gegenüber als eine Tiefseeform mit stärker ausgebildetem, aber beinahe vollständig ähnlichen Skelette. Eine Ausnahme in der Ähnlichkeit machen nur die Anatriaene, durch deren abweichendes Verhalten die Trennung der beiden Varietäten begründet ist. Ob sich die starke Ausbildung des Skelettes bei der var. *robusta* auf den Einfluss der Tiefsee allein zurückführen lässt, oder ob auch diese für die Varietät charakteristisch ist, muss ich dahingestellt lassen.

Geodia variopticulosa THIELE var. *aapta* n. var.

(Tafel II, Fig. 63–77).

1898 *Geodia variopticulosa* : Johannes Thiele: Studien über pazifische Spongien in: Zoologica, Heft 24, p. 10, Taf. 6, Fig. 6 a–l.

Von dem Schwamme sind nur zwei, in Alkohol aufbewahrte, abgeschnittene Stücke vorhanden, nach deren Begrenzungsf lächen der Schwamm annähernde Kugelform von etwa 18 mm Durch-

Die grossen Rhabde sind durchwegs Amphioxe. Unter ihnen lassen sich zwei in einander übergehende Formen unterscheiden. Die eine (Taf. II, Fig. 64) meist längere ist in ziemlich lange, scharfe Spitzen ausgezogen, die andere (Taf. II, Fig. 63) meist kürzere, ist stumpfer und kürzer gespitzt. Zwischenglieder zwischen diesen beiden extremen Formen sind in allen Stadien vorhanden und erschweren die Untersuchung der Lagerung, der derart zu sein scheint, dass die langgespitzten Amphioxe hauptsächlich die ursprünglichen, innersten Nadelbündel bilden, während die kurzgespitzten Amphioxe erst in den distaleren Schwammteilen ausserhalb dieser Bündel auftreten und dass nur solche Amphioxe die Oberfläche überragen. Die langgespitzte Form ist meist ziemlich gerade und verhältnismässig schlanker als die häufig gekrümmte, kräftigere kurzgespitzte Form. Die Länge der grossen Amphioxe beträgt 1.5—3.5 mm, die Dicke 30—45 μ.

Die kleinen Rhabde wurden von Thiele als Amphioxe, von Lendenfeld als Style beschrieben. Bei meinem Schwamme sind die kleinsten Nadeln dieser Art Amphioxe, die erwachsenen teils Amphioxe (Taf. II, Fig. 68), teils Style. Die Form der Style ist jedoch eine derart spindelförmige und amphioxähnliche, dass die Verwechslung derselben mit wirklichen Amphioxen leicht möglich ist, da die Abrundung der einen Spitze oft nur bei genauer Beobachtung mit den stärksten Systemen erkenntlich ist. Sicherlich sind die kleinen Rhabde meines Schwammes als Diaktine, die erst sekundär das Aussehen von Monaktinen erlangen, zu betrachten. Die kleinen Rhabde werden 140—450 μ lang und 3—10 μ dick.

Die reinen Dichotriaene (Taf. II, Fig. 65, 66) sind bedeutend kleiner als die Orthotriaene. Ihr Schaft wird höchstens 1.6 mm lang; auch er weist eine Einschnürung unter dem Kladome auf, die hier jedoch viel weniger auffallend ist als bei den Ortho-
triaenen, da sie nur um ein Sechstel der grössten Schaftdicke schmäler ist als diese. Die Protoklade gehen nahezu senkrecht oder nur wenig schief nach vorne vom Schafte ab, werden 120–190 μ lang und teilen sich in die Deuteroklade, die eine Länge von 140–330 μ erreichen. Protoklade und Deuteroklade krümmen sich mässig schaftwärts, so dass der Kladsehnenwinkel meist 90 Grade oder noch eine Kleinigkeit weniger beträgt. Die Deuteroklade eines zusammengehörigen Paares sind gegeneinander konkav und schliessen Winkel von ungefähr 80 Grad miteinander ein. Die Kladombreite wächst bis 800 μ.

Die wenigen Promesoklade, die der Schwamm aufweist, sind annähernd zu gleichen Teilen Triaene und Diaene (Taf. II, Fig. 74). Der Schaft ist 3–4 mm lang, unterhalb des Kladosomes 16–24 μ dick, verbreitert sich von hier bis zum ersten Längenviertel auf 20–30 μ und geht von da ab gleichmässig in eine langgezogene Spitze über. Bis auf einen einzigen beobachteten Ausnahmsfall, in dem ein Diaen an der Verzweigungsstelle der Achsenfäden nur eine geringe Auftreibung in der Richtung der Schaftverlängerung aufweist, ist das Epirhabd immer entwickelt und wird 60–135 μ lang. Die Klade sind unter sich meist nicht gleich lang und gegen das Epirhabd konkav. Der Winkel zwischen Klad und Epirhabd schwankt zwischen 43 und 52 Grad. Die Länge der Klade beträgt 120–225 μ, meist nicht ganz das doppelte der Länge des zugehörigen Epirhabdes.

Die grossen Anatriaene bilden zwei Formen von Kladomen aus. Die eine mit längeren, schlanken Kladen (Taf. II, Fig. 76) und grösserem Kladsehnenwinkel ist in den Schnitten vertreten. In Nadelpräparaten finde ich ausser dieser Art noch Anatriaene mit kürzeren, dickeren Kladen (Taf. II, Fig. 77) und geringerem Kladsehnenwinkel, welche ich in Schnitten niemals beobachten konnte. Da ich über die Orientierung der mir zur Verfügung stehenden Bruchstücke nichts weiss, ausserdem die geringe Menge des Materiales eine gewisse Sparsamkeit bei der Untersuchung auferlegt, kann ich über dickkladigen Anatriaene nur die Vermutung aufstellen, dass sie wohl schwammigen sind, jedoch nur an besonderen Stellen vorkommen und wahrscheinlich Ankerndeln
sind. Der Schaft beider Formen ist gleich gebaut, 3–6 mm lang und 24–37 μ dick. Die Klade werden einerseits 100–130, andererseits 75–100 μ lang, sind im ersteren Falle in der Nähe der Spitze plötzlich stärker gebogen, in letzteren Falle in der ganzen Länge von gleichmässig abnehmender Krümmung, so dass die Kladspitzen nahezu gerade erscheinen. Der Kladsehnenwinkel beträgt bei den schlankkladigen Anatriaenen rund 60 Grade, bei den dickkladigen 45–50 Grade.

Die Strongilosphaeraster (Taf. II, Fig. 72) haben ein meist kugeliges, selten eiförmiges Zentrum von 2.8–4.5 μ Durchmesser. Ganz vereinzelt findet man Aster, bei welchen ein Zentrum kaum ausgebildet ist, deren unregelmässig verteilte Strahlen jedoch durch ihr Aussehen die Zugehörigkeit zu den Strongilosphaerastern verraten. Die Strahlen der Strongilosphaeraster sind kegelstumpfförmig mit abgerundeten Enden, meist 2 μ lang und 9–16 an der Zahl. Der ganze Durchmesser der Strongilosphaeraster beträgt 5.8–7.5 μ.

Die Oxyphaseraaster (Taf. II, Fig. 71) werden 14–20 μ gross, wovon auf das kugelige Zentrum 5–8 μ, auf die Strahlen 3–6 μ entfallen. Die Strahlen, deren Zahl 15–22 beträgt, sind konisch und scharf gespitzt.

Die kleinen Oxyaster (Taf. II, Fig. 70) haben ein wenigstens bei den viestraligen deutlich ausgebildetes Zentrum und konische, rauhe Strahlen. Die Strahlenzahl beträgt 4–9, die Strahlenlänge 8–22 μ, der gesammte Durchmesser 20–44 μ.

Der Vergleich der Varietäten der Geodia variospiculosa zeigt,

Die letzte Gruppe der Tetractinelliden, die Untergattung Megasclerophora, ist in der Sammlung nicht vertreten.
TAFEL I.

Fig. 1–19: *Stelletta tuba* n. sp.

1. Längsschnitt durch das in Fig. 2 dargestellte Exemplar. Vergr. 1/2. Phot. (Zeiss Anastigmat 167 mm, 1 : 8).
7. Dichotriaen.
8. Plagiotriaen.
13. Ansicht des Oskulums des in Fig. 2 dargestellten Stückes. Vergr. 1. Phot. (Zeiss Anastigmat 167 mm, 1 : 8).
15. Amphiox.
17. Tylostyl.
18. Rhabd mit krückenförmig aufsitzendem Fortsätze.
19. Amphiox mit zwei Fortsätzen.

Fig. 20–32: *Stelletta japonica* n. sp.

ART. 5.—FRIEDRICH LEBWOHL:

22. Zwischenform zwischen Sphaerastern und Oxyastern.
23. Oxyaster.
28. Amphistrongyl.
29. Gabelspaltiges Styl.
30. Amphiox.
31, 32. Ansichten der Kreuzungen der Achsenfäden im unteren Teile des in Fig. 29 dargestellten gabelspaltigen Styles. Vergr. 400. Phot. (Zeiss Apochromat 3 mm, Komp. Ok. 6).

Fig. 33–38: Stelletta misakensis n. sp.

34. Dichotriaenum.
35. Plagiatriaenum.
36. Amphiox.
37. Oxyaster.
38. Strongylomphaeaster.

Fig. 39–52: Stelletta pilula n. sp.

39–45. Stelletta pilula var. maior.
40. Styl.
46. Anatriaenum von Stelletta pilula var. maior.
47. Anatriaenum von Stelletta pilula var. media.
JAPANISCHE TETRAXONIDA.

49. Orthotriaen von Stelletta pilula var. maior.
50. Orthotriaen von Stelletta pilula var. media.
51. Orthotriaen von Stelletta pilula var. minor.

TAFEL II.

Fig. 1-9: Stelletta teres n. sp.

 2. Ansicht eines Dichotrikenkladomes.
 3. Ansicht eines Dichotrikenkladomes mit zwei trichotom geteilten Kladen.
 4. Amphiox.
 5. Anatриae.
 7. Junges Dichotriaen.

Fig. 10-36: Caminella velata n. sp.

10. Radialschnitt durch die Rinde mit Pore, Chone und Subdermalraum. Vergr. 60. Phot. (Zeiss Apochromat 16 mm, Komp. Ok. 6).
 11. Amphiox.
 12. Styl.
 13. Plagiotriaen.
 15. Plagiotriaen mit kurzen, abgerundeten Kladen.
 16, 17. Unregelmässige Telokladederivate.
 18. Fünfstrahliger Oxyaster.
 20. Dreistrahliger Oxyaster.
22, 23. Oxyphaeraster der Rinde.
32. Sterraster mit Dornen an den Terminalflächen.
33. Sterraster mit Dornen an und an den Rändern der Terminalflächen.
34. Sterraster in der Richtung auf den Nabel gesehen.
35. Sterraster mit wenigen Strahlen und grossen Terminalflächen.

Fig. 27–50: *Geodia orthomesotriaena* n. sp.

44. Anatriaenkladom. Vergr. 50. Phot. (Zeiss Apochromat 16 mm, Komp. Ok. 2).
45. Kleiner Oxyaster.
46. Oxyphaeraster.
47. Grosser, vierstrahliger Oxyaster.

Fig. 51–62: Geodia reniformis Thiele var. robusta n. var.
53. Kleiner Oxyaster.
54. Grosser Oxyaster.
57. Sterneraster. Vergr. 100. Phot. (Zeiss Apochromat 16 mm, Komp. Ok. 6).

Fig. 63–77: Geodia variospiculosa Thiele var. aapta n. var.
63. Kurzgespitztes, grosses Amphiox.
64. Langgespitztes, grosses Amphiox.
65. Dichotriaen.
66. Dichotriaenkladom.
67. Orthotriaen.
73. Sterraster. Vergr. 100. Phot. (Zeiss Apochromat 16 mm, Komp. Ok. 6).
74. Promesodiaen.
75. Junges Orthotriaen.
76. Schlanckladiges grosses Anatriaen.
77. Dickkladiges grosses Anatriaen.

Published March 15th, 1914.
Fig. 1-19: Stelletta tuba *n.* *sp.*
Fig. 20-32: Stelletta japonica *n.* *sp.*
Fig. 33-38: Stelletta misakensis *n.* *sp.*
Fig. 39-53: Stelletta pilula *n.* *sp.*
Fig. 1-9: Stelletta teres n. sp.
Fig. 10-36: Caminella velata n. sp.
Fig. 37-50: Geodia orthomesotriacna n. sp.
Fig. 51-62: Geodia reniformis Thiele var. robusta n. var.
Fig. 63-77: Geodia variispiculosa Thiele var. adapta n. var.