夏季の大槌湾における内部潮汐

松本 佳・長倉秀樹・井上直祐・安保綾子
東京水産大学海洋環境学科

乙部 弘隆
東京大学海洋研究所

大槌湾は岩手県に位置し、三陸リアス式湾の一つである。三陸沿岸水域には養殖場が多く存在し、冬季においても津軽暖流の影響で安定した生産量がある。また、沖合水域は観潮系水と黑潮系水が混合し、世界でも有数な漁業生産をあげる水域として名高い。大槌湾は、南北約3km、東西約7km、平均水深約80m、湾奥はほぼ東西で湾口部は東向きであり、湾内には3つの河川が流入する。冬季は北西の季節風が卓越し表層水は湾外へ流出し、底層ではそれを補償するため沖合水が流入するという鉛直循環が生じ水交換がよいことが知られているが、夏季は風速も弱く南東風が卓越するため一般に海水交換が悪いとされている。しかし、乙部ら(1996)の研究によると季節風が発達する初夏から秋にかけて半日または日周期で底層から湾内水が約2-3℃低い沖合水が流入することがわかった。これは岡崎(1990)が示している内部潮汐流であると考えられる。そこで今回は1999年に大槌湾内に設置された流向・流速データを用い、内部潮汐について検討するとともに、その湾内熱収支量への影響を検査した。

解析データは、湾内に設置されている海象・気象装置で得られたものをとして1999年の水温データ(1,5,10,15m)、気象要素(風速、風向、気温、湿度、海面気圧、日射、全放射、雨量)、流向・流速データ(1,5,8.5,26.5m)を用いた。

まず、大槌湾の鉛直循環を把握するために8月～10月までの流向・流速データを用いて、流れの東西成分の主成分分析を行った。その結果、第1主成分の固有ベクトルの符号が上層では異なり逆向きの流れが生じ、上層では湾の外へ、下層では湾の内へ流れとなっていた。また各月の第1主成分の寄与率から判断すると、夏季に顕著で秋季にかけて緩やかに低下する傾向が顕著にみられたことがわかった。さらに、第1主成分の主成分得点のスペクトル解析よりサルまたは日周期の変動が卓越していた。以上のことより、1999年8月～10月の大槌湾では内部潮汐が発達していたと考えられる。

次に、海面熱フラックスを総合・四畑(1988)に従い推算した。その結果1999年の大槌湾の海面熱収支は、1992年～1999年の6ヶ月平均および季節的な変動は統計されているが、平均値は-13.5W/m²とまり、平均より湾内から大気への熱フラックスが多い年であった。

さらに、大槌湾を4層に分け湾内の熱収支を求めた。

大槌湾の範囲については湾奥から湾外側へと鰹湾を結ぶラインまでとし、湾の面積及び水深についてはKAWAMINE(1995)の400×400グリッドデータの水深を用いた。熱収支の変動と海面熱収支と比較すると、季節的な変動は似通っているが、海面熱収支に比べ、熱収支の変動は夏季に短期変動が卓越していた。そこで、海面熱収支では説明のつかない変動を残差（湾内の熱収支の時間変化から湾内の海面熱収支を引いたもの）として、流れの東西成分と比較すると両者の変動は逆相関であることがわかった。さらにこの関係を詳しく調べるために主成分分析を行った。その結果、残差の変動の約70％が内部潮汐で説明が可能であると考えられた。残りの30％は河川水や沖合湾の冷水などの影響があるものと考えられるが、今後の課題である。

三陸沖の海況を表現する指標について

宮尾 孝
函館海洋気象台

函館海洋気象台は東日本海区（三陸沖および北海道周辺海域）を対象とした「夏季海面水温予報」を毎年3月・6月に発表している。予報文は、東日本海区を細分化した6海域段階に、30年間の統計による年平均値を引用し「高い」「平年値」「低い」（予測値が30年統計の上位10位以内、11～20位、21位以下、21位以下）のカテゴリー表現で記述している。予報の基礎となるのは、大気と海洋の変動の規模を考慮する様々な指標を取り入れた重回帰モデル（「アイムラグ付け」）による予測である。このモデルの予測値を基に、海洋の指標から流れる特性、風向、波の影響、津波等の影響を考慮し、対象海域における水温の変動予測は可能である。

したがって、海面水温が上がりやすいかどうかを総合的に判断することができる。ここではこの予報手法が抱える問題のうち、(1)対象海域の絶対値、(2)100海里深水で評価する水温と海面水温との間の関係、(3)重回帰モデルの改善の余地、(4)予報の精度、(5)予報の精度について考察する。

(1) 対象海域を6つに細分化した後も1海域内の海面水温が13℃に達するとき、平年値からみて約3℃以上の変動があると予測される。これには「北海道の太平洋側では年間よりも高い」と表現されていて、情報を受け取る側にとっては「変動の対象となる海域の海面水温が拡大するか」は全く分からないであろう。ただし、地域の細分化をさらに進めることは可能な場合がある。
北海道南東沖における親潮の係留観測結果について

日下 彰・川崎 康寛
北海道水産研究所

北水研では、1987年から開始された厚岸沖避難線（Aライン）観測をあわせて、1991年5月より北海道南東沖に係留係を固定線上に設置し、この海域を流れる親潮の係留観測を行っている。今回は、北海道南東沖の大陸斜面上に1991年5月に設置した係留係の観測結果について報告した。

沿岸側（AK2）では海底地形の影響が強く、南西→西南西方向に流れるとともに、海底地形沿いの方向の変動が大きかった。沖合側（AK5）では、南西から西南西方向への流れは1997年10月までにかつて流れており、特に1995年9月にかけてこの方向の流れが強まった。しかしながら、1997年の秋以降は、暖海水の影響を受けて、上層と中層では東北方向へ、下層では北西方向へ大きく転流した。この両向きの流れは、転流する以前は、冬か春にかけて流れが大きくなるという季節変化を見せず、暖海水が現れても転流は不明瞭になった。

サハリン東岸沖での長期係留観測結果－高密度陸棚水の流量見積もり－

深町 康
北海道大学低温科学研究所

水田 元太
北海道大学大学院地球環境科学研究科

大島 慶一郎・若土 正晴
北海道大学低温科学研究所

オホーツク海のサハリン東岸沖は、北太平洋中層水の起源水の一つと考えられている北西部陸棚域で生成される高密度陸棚水（Dense Shelf Water: DSW）の輸送経路として、重要な海域である。しかし、この海域に存在する東カラフト流（East Sakhalin Current: ESC）およびDSWの実態については、短期の係留観測などが行われて来てなかったこともあり、理解が進んでいなかった。そこで、日・露・米の国際共同観測の一環として、1998年から2年間にわたる長期係留観測を、この海域で初めて実施した。

係留係は陸棚および大陸斜面域にあり、S3N上の3点、49.5N上の2点、サハリン北端からカシュハロウバンクを結んだ線上の4点である。これらの係留点の中で、M2（144.4E、53.00N、480m）、M3（144.75E、53.00N、972m）およびM7（143.9E、54.92N、480m）では、DSW流量を見積もるために、その密度範囲（ボテンシャル密度が26.7-27.0）に当たる測定（200-450m）で流速計、流速計、水温計などの測器を設置した。

ESCの流速およびその分布には、顕著な季節変動が存在した。S3Nで計ると、最も流速が強くなるのは冬季であり、流速の最大値は、春季には陸棚上のM1（144.00E、53.00N、98m）に、冬季にはM2に、そして春には更に沖側のM3に存在した。この流速値とコーダの変動により、ESC流量にも顕著な季節変動が見られ、その変動幅は秋季の最大値14 Svから冬季の最大値14 Svに変化している。

係留係は、北部陸棚域で生成される冷水系の水温計で計測されるるDSWが南へ輸送される過程において、沖側の高層・高塩水と混合し、変質したDSWが観測される。そこで、これらの水塊間の混合比を考え、観測された変質後のDSW流量から、冷海水付近の純粋なDSW流量を算出した。DSWの単位距離（経度方向）当たりの流量を、S3NのM2とM3において比較すると、1998年夏から1999年夏までの期間では、2点間の距離はわずか23 kmしかな