ることなく表すことができ、地域間の比較や経年変化をみるのに適していると思われる。この基準を用いて豪雨の経年変化を調べた結果、全国を平均すると、対象の19年間では豪雨頻度の明確な経年変化は認められなかった。しかし、地域別にみると、明瞭ではないものの、関東地方平野部や南九州などで増加傾向が、中部地方東部などで減少傾向がみられた。月ごとに経年変化をみると、全国平均では明瞭な傾向はみられなかったが、梅雨期に太平洋側で増加傾向がある。8月に中部地方で減少傾向がみられた。

バングラデシュにおける最近の降水量変動と大洪水

松本淳
東京大学大学院理学系研究科地球惑星科学

バンガラデシュでは1998年に記録的大洪水が発生し、国土の約3分の2が水没し、これは記録上では、今世紀最大規模である。過去の大洪水としては、最近では1987・88年がある。1987年・88年の降水量分布を1日〜3日程度の時間スケールで解析すると、バンガラデシュの河川水位が急激に上昇した時には、バンガラデシュ北部および隣接するインド北東部で日降水量数100ミリ程度の豪雨が、数日間持続している点が共通に認められた。一方、1998年には、河川水位が急激に増加した時でも、バンガラデシュ気象局データからみる限りでは、バンガラデシュ国内での降水量は多くなかった。流量データにより、インドから流入した水流量が、過去の大洪水に比べて多かったことが知られている。インド北部での多降水量がこの年の大洪水の主原因であったと考えられる。なお、バンガラデシュ国内8地点で平均した過去140年間の積雪深度と降水量の長期変動には、最近とくに降水量が多い傾向は認められず、地球温暖化のバンガラデシュでも降水量への影響は、総降水量でみる限りにおいては、明瞭ではない。

日本海に発生するポーラーロウ

柳瀬亘・新野宏
東京大学海洋研究所

ポーラーロウの定義には様々なものがあるが、ここでは「寒帯前線より高緯度側の寒気内に発生する低気圧で、水平スケール200〜1000kmのコンマ状またはスパイラル状の雲を伴うもの」と定義する。冬季日本海に発生するポーラーロウは豪雪・強風・激波などによる気象災害を引き起こすため、社会的な影響も大きい。初めにまず世界各地の海洋上に発生するポーラーロウの特徴を、これまでの研究についてレビューした。ポーラーロウの形成機構は多様で、CISK、VIHE、傾圧不安定、順圧不安定などが、事例毎に発達段階毎に寄与の度合いを変えて作用する。日本海の特徴は比較的低緯度に位置し、周囲を陸地に囲まれているため、豊富な観測データが利用できる点にある。しかしながら陸地や山岳の熱的・力学的な効果は、その発生機構を複雑化する要因でもある。続いて発表者達が解析した1997年1月22日の事例について、格子間隔5kmの気象研究所非静力学モデル（MRI-NHM）で再現実験を行なった結果について紹介した。その結果、ポーラーロウの発生と移動はある程度予測可能であり、目やスパイラルバンド、暖気核構造を良く再現できること。発達 seamを行なったところ、発達機構としては、凝結暖の効果と海面を通しての熱フラックスが重要であることがある。

発表以降に1999年1月の事例を再発表解析した所、上層の寒冷渦の影響も重要であることが分かってきた。今後は、海面を通しての熱フラックスによって形成された対流混合層と寒冷渦との関係を調べていく方針である。

梅雨期に集中豪雨を生じる降水量の発生・維持機構について

加藤輝之
気象研究所予報研究部

梅雨期の集中豪雨については、総観場とメソスケールプロセスとの相互作用、降雨バンドの発生・維持、降雨バンドにともなう下層ジェットの形成・維持など解明されていない点が多い。それは、過去の研究で用いられて
高解像度大気大循環モデルに現れた日本域の降水システム

河谷 芳雄・高橋 正明
東京大学気候システム研究センター

大気大循環モデルの中で梅雨前線はどのモデルでもうまく再現されていない。その理由としては水平解像度が不足していること、また物理過程に問題が残されていることが考えられている。そこで水平解像度が約100 kmである高解像度大気大循環モデルを用いて梅雨前線の再現を試みた。積雲対流パラメタリゼーションはArakawa-Schubert型、湿潤対流調節型はKuo型の3つで試してみたところArakawa-Schubert型が一番降雨が現実的であった。6月の月平均分布を観ると、対流圏下層における水蒸気フラックスは太平洋高気圧帯を周るものとインドモンスーンによるものが卓越しており、それらの収束は中国～日本にかけて顕著に見られ、それが東西に集中して伸びた降水帯を形成していた。またその構造を詳しく解析すると、比満・相当温位の強い水平勾配、下層ジェット、湿潤中立成層の形成が見られ、梅雨前線に特徴的な数100 kmの現象が以上大循環モデルを用いてもうまく再現できることを示した。定量的に降水量が少ないという問題点が残されていたために、Emori et al. (1999)による積雲抑制を導入したArakawa-Schubert型のパラメタリゼーションを用いて実験すると、定量的にも梅雨前線がうまく再現できた。これらより、大気大循環モデルを用いでも梅雨前線は数100 kmのスケールの中でうまく再現できることを示した。

1993年の日本の冷夏・多雨に関連した台風・梅雨前線サイクルと熱帯西大西洋域の対流活動

加藤 内蔵進・木下 綾子
岡山大学教育学部

1993年の夏は、7月後半～8月でも日本付近に梅雨前線が停滞して関東以西の降水量が大変多いなど、過去50年ぐらいの中でも特に顕著な冷夏・多雨年であった。一方では、日本列島への台風の襲来は一般に梅雨明け後の時期から多くなるのに、1993年の冷夏時には、台風の襲来に伴う降水も多かったのが特徴である。そこで本研究では、「7月後半以降には、どうして梅雨前線と台風という、一見、相反する状況が現れやすくなったのか？」という点に注目して検討した。その結果、7月後半以降の状況は「台風の発達・北進やそれに続く梅雨前線の活発化に伴う西日本の異常降水サイクル」に関連していいた事が明らかになった。春から対流活動域が150E以東の赤道域へ偏っており、そのために15N/120～145Eでの対流活動は抑制されていた。それ故に、十分な雨が進行した7月後半になって初めて、西進を伴う雲システムとして「発源的に顕在化した」事が重要な因子として示唆される。